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Abstract

Within the evolving landscape of fifth-generation (5G) wireless networks, the introduc-
tion of network-slicing protocols has become pivotal, enabling the accommodation of
diverse application needs while fortifying defences against potential security breaches.
This study endeavours to construct a comprehensive network-slicing model integrated
with an attack detection system within the 5G framework. Leveraging software-defined
networking (SDN) along with deep learning techniques, this approach seeks to fortify
security measures while optimizing network performance. This undertaking introduces
network slicing predicated on SDN with the OpenFlow protocol and Ryu control tech-
nology, complemented by a neural network model for attack detection using deep learning
methodologies. Additionally, the proposed convolutional neural networks-long short-term
memory approach demonstrates superiority over conventional ML algorithms, signifying
its potential for real-time attack detection. Evaluation of the proposed system using a 5G
dataset showcases an impressive accuracy of 99%, surpassing previous studies, and affirm-
ing the efficacy of the approach. Moreover, network slicing significantly enhances quality
of service by segmenting services based on bandwidth. Future research will concentrate
on real-world implementation, encompassing diverse dataset evaluations, and assessing the
model’s adaptability across varied scenarios.

1 INTRODUCTION AND RELATED
WORKS

Fifth-generation (5G) networks represent the latest advance-
ments in mobile communication technologies as defined by the
International Telecommunication Union. The inaugural com-
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mercial network debuted in Finland in June 2018, heralding
a new era of ubiquitous connectivity and paving the way for
yet unimaginable services. The 5G infrastructure offers accel-
erated transmission speeds, enhanced coverage, and facilitates
the seamless operation of diverse applications, including remote
functionalities such as surgery, manufacturing, and driving. This
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technological leap promises to transform the fabric of reality
into a virtual realm.

Of particular interest to consumers is the heightened data
transfer capacity of 5G coupled with reduced latencies. A higher
data rate ensures the smoother operation of nearly all services
compared to lower rates. For instance, the upcoming prolifera-
tion of 4K and 8K videos at high frame rates in cloud gaming
hinges upon both robust data capabilities and low latencies.
Lower latency not only enriches the mobile gaming experience
but also unlocks an array of novel services that necessitate a syn-
ergy between low latency and ultra-reliability. In the first phase,
5G technology was concerned with providing high-speed data
rates, which includes the three main categories described below
[1].

1. Enhanced mobile broadband (eMBB) includes a high data
rate and high traffic.

2. Ultra-reliable, low-latency communication (uRLLC) includes
low latency, low error rate, and superior reliability.

3. Massive machine-type communication (mMTC) involves
many connected devices and saves power [2].

Enhanced mobile broadband aims to provide almost fibre
speeds over the air. It improves the radio path with new base
stations and end devices (phones, mobile routers). URLLC and
mMTC are both for machine-to-machine communications, and
their benefits are more difficult to understand for large audi-
ences [2]. The mMTC provides connections for many Internet
of Thing (IoT) sensors, like temperature, humidity, pressure,
movement, vibration, magnetic and location. All of that works
with minimal power consumption and maximizes battery life.
On the mobile network side, mMTC means that up to 1 million
sensors can be located in one square kilometre. The URLLC is
needed especially for autonomous driving and other solutions
that need reliable and low-latency communication, like power
grid control [3].

The concept of slicing was innovated and refined specifically
to enable 5G to effectively cater to these diverse requirements. It
involves the segmentation of the 5G network capacity, depart-
ing from a uniform ‘best-effort’ approach. This segmentation
allows for distinct traffic categories, with some benefiting from
higher transfer speeds while others experience reduced delays.
Network slicing stands as a pivotal technique for delivering the
aforementioned services in a resource-optimized manner within
the mobile network infrastructure. Both the radio path and
core network can undergo partitioning into multiple slices, each
capable of possessing its unique characteristics and resource
allocation. By implementing slicing, individualized capacities
can be provided and assured, ensuring a tangible enhance-
ment in the quality of service (QoS) for specific customers or
types of traffic. Efficient QoS had not been available before
5G [4].

Slicing and low delays are logical to be bundled together,
as many services requiring low delays also require guaran-
teed capacity. QoS. However, all three main categories, eMBB,
mMTC, and uRLLC, are designed to be sliceable features,

as they require different delays, power consumption, and
throughput.

In addition, the slicing network provides additional network
security and the ability to apply different types of secu-
rity on each slice to detect attacks [5]. This paper applied
the network slicing process using the OpenFlow protocol,
SDN, and Ryu Control to segment and manage network traf-
fic. Neural network techniques were also employed to detect
and identify the types of attacks to which 5G networks are
exposed.

Many works have proposed different techniques for slicing
5G networks and preventing cyber-attacks from improv-
ing network services. The concept of 5G network slicing
is employed to manage network traffic and direct connec-
tions to the most suitable slice [6]. A proposed mathematical
model can offer on-demand slice isolation and ensure mini-
mal delay for 5G core network slices, proactively mitigating
distributed denial-of-service attacks in the 5G core through
slice isolation. The authors in [7] introduce novel provision-
ing models for third-party slices and discuss their isolation
properties. Ref. [8] suggests an effective and secure service-
oriented authentication that supports network slicing and fog
computing for 5G-enabled IoT services. They also introduce a
privacy-preserving slice selection mechanism to preserve both
component slice types and access user service types. Ref. [9]
employs the constrained application protocol (CoAP) and mes-
sage queue telemetry transport (MQTT) application protocols
to provide efficient mechanisms and methods for over-the-
air (OTA) delivery of software updates and security patches
to IoT devices. The authors also evaluate which protocol
suits the proposed models and applications better. In [10], the
authors provide a prototype of software chaining using net-
work function virtualization (NFV), while [11] demonstrates
information-centric networking using SDN for service chain-
ing. However, all of these contributions provide specific use
cases that may not make optimal use of underlying resources,
and no details on the algorithms were provided without utiliz-
ing attack detection to improve QoS. The authors in [12] have
implemented VNFs of cloud radio access networks (CRAN)
and made them publicly available at the Juju Network Store,
allowing the implementation of the first stage of resource
management (resource selection). Nevertheless, this endeavor
hinges on virtual machines, which exhibit higher memory
consumption compared to containers. Furthermore, it lacks
the provision of a controller block to trigger the collection
of metrics on the performance of the NFVs for optimiz-
ing the slice of performance metrics concerning the network
function virtualization (NFV), crucial for the optimization of
slices.

Our system employs a dual approach: first, network slic-
ing leveraging OpenFlow control within the software-defined
networking (SDN) environment; second, the application of
deep learning techniques to detect potential attacks on indi-
vidual slices. This integration aims to enhance network ser-
vices by fortifying security measures and refining operational
efficiencies.
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ABOOD ET AL. 3

1.1 Motivations

There are several motivations for introducing network slic-
ing and attack detection, which can be deployed with a 5G
network:

1. Network slicing represents a promising feature enabling
business customers to procure customized connectivity
aligned with their distinct operational needs within a shared
infrastructure. For instance, while some businesses require
high throughput, others prioritize extensive connectivity, low
latency, or heightened reliability.

2. Beyond managing user traffic, the significance of 5G slic-
ing lies in fortifying systems against potential attacks and
fault occurrences, as any disruption or compromise typically
impacts solely the targeted slice, safeguarding the broader
network.

3. Our ongoing initiative involves the development of a
model aimed at identifying various types of network attacks
to which the system may be vulnerable. This endeavour
employs neural networks in conjunction with network seg-
mentation methodologies to bolster the network’s security
posture.

1.2 Problem statement

Enhancing the network infrastructure to deliver three
critical services—enhanced mobile broadband (eMBB),
massive machine type communication (eMTC), and ultra-
reliable low latency communication (uRLLC)—poses a
significant challenge. This challenge revolves around the
complex task of accommodating these diverse services
on a unified physical network while concurrently uphold-
ing robust network security measures to counter potential
attacks.

1.3 Main objectives

The main goal of this study is to construct a network-slicing
model integrated with an attack detection system designed to
identify and mitigate potential threats within the 5G network.
The specific objectives include: locating a suitable 5G data col-
lector responsible for gathering data from segmented slices
of the 5G network, identifying an appropriate neural network
classifier, establishing a 5G network using software-defined net-
working (SDN), and developing network slices governed by
OpenFlow control.

1.4 Contributions

The main contributions of the proposed system are:

1. Create 5G network slices based on SDN, Ryu Control, and
OpenFlow protocol.

2. Detect attacks based on the neural network model by build-
ing a classifier model that classifies the packets as attack or
not, using deep learning.

3. Build 5G network core, relying on the SDN environment to
represent a 5G core network.

4. Employ OpenFlow protocol to separate the data plane from
control for dividing the network into slices with different
bands and services.

We will organize the remainder of this paper as follows: Sec-
tion 2 gives theoretical background about SDN architecture,
the challenges faced in SDN, its fundamental characteristics,
OpenFlow protocol specification, and the parameters used in
SDN Plus, slicing network technique, machine learning tech-
nique, and deep learning convolutional neural networks (CNN)
algorithm. We describe the proposed system for optimal 5G
network slicing to improve QoS against attacks in the SDN
environment illustrated in Section 3. Implementation results
and evaluation that describe the results of the proposed sys-
tem and then the implementation of the model evaluated are
elaborated in Section 4. Finally, we will conclude the paper and
suggest some future work to be carried out in Section 5.

2 THEORETICAL BACKGROUND

Network slicing is a technique used in modern computer net-
works to create multiple unique/distinct logical and virtualized
networks over a common multi-domain infrastructure, includ-
ing access, core, and transport, and can be deployed across
multiple operators [13]. The utilization of network slicing is
prevalent within the framework of 5G wireless networks, facili-
tating operators to tailor network services according to distinct
user and application requirements, encompassing diverse needs
in throughput, latency, and reliability. Not only does it involve
securing networks against potential attacks, but it also neces-
sitates employing numerous techniques, as emphasized in our
research. Leveraging software-defined networking (SDN), ana-
lytics, and automation, mobile network operators (MNOs)
can efficiently generate network slices designed to accom-
modate specific applications, services, user sets, or network
functionalities.

2.1 Software-defined networks

The term “software-defined networking” (SDN) denotes a net-
work design and management approach that segregates the
control plane, responsible for managing network traffic and
selecting routes [14], from the data plane, handling actual
data packet transmission. Within SDN, network administra-
tion is centralized through a software-based controller, enabling
dynamic resource configuration to meet user and application
requirements. This centralization streamlines network oversight,
facilitating enhanced monitoring, traffic optimization, and rapid
responses to evolving traffic patterns and security threats. With
its inherent advantages in delivering more adaptable, scalable,
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4 ABOOD ET AL.

TABLE 1 A comparison between traditional and SDN networks.

NO. Criteria Traditional network SDN

1. Network management Difficult Easy

2. Global network view Difficult Central view at the controller

3. Maintenance cost Higher Less

4. Time required for update/error handling Long time Short time

5. Controller utilization Not relevant Important

6. Controller availability Not relevant Important

Abbreviation: SDN, software-defined networking.

and efficient network governance, SDN has experienced esca-
lating adoption, notably within cloud computing and data centre
environments, in recent years. SDN can create and control a
virtual network or traditional hardware via software.

So-called “programmable networks” are introduced to facil-
itate current networks to evolve. This concept was stated a
few years ago. Previously, the development of various forms
of technology-enabled the communication networking to be
programmed. The SANE/Ethane project introduced a novel
architecture for enterprise networks. The main focus lies in
using centralized controllers to manage policies and security
within a network. Therefore, this project is considered the origin
of what is today known as SDNs. Table 1 draws a comparison
between the traditional and SDN networks [15, 16].

Initially conceived to address diverse networking challenges,
SDNs are built upon the foundational concept of segregat-
ing control and data planes. Within SDNs, four fundamental
principles typically underpin their architecture:

1. Separation of control and data plane: A logical separation should
be made between these two planes, after which an inter-
face is used to connect them. External entities obtain the
controlling aspect instead of forwarding devices.

2. Network programmability: A basic concept in the structure of
SDNs is the open API, as there should be easy access, con-
figuration, and modification of networking elements through
software and scripts.

3. Network abstraction: The network can be virtually seen
by hierarchically higher positioned elements so that the
service or application has an overall awareness of the net-
work. However, any physical attribution is irrelevant to the
configuration or computation.

4. Logically centralized control: Each forwarding device has a link to
a controlling one and has to function according to its policy.

In SDNs, the controlling and forwarding functions are sepa-
rated within the networks, which enable the direct programming
of the network control. Separating the control and data planes
is fundamental in the structure of SDNs. Through this process,
the switch becomes simply a forwarding device, whereas the
controller implements the control logic while being physically
or logically centralized. The latter form of controller delineates
network behaviour and boasts several advantages. This mode
proves straightforward and less prone to errors when alter-

FIGURE 1 The three-layer architecture in software-defined networking.

ing network policies using software, particularly when executed
from a single location without device reconfiguration. Secondly,
higher-level policies can be upheld through control programs
that autonomously adapt to dynamic network changes. Thirdly,
developing appropriate network functionalities becomes more
adaptable and uncomplicated due to the central control logic’s
comprehensive understanding of the network (topology and
resource states). Controllers could adjust the flow table dynam-
ically to avoid congestion. Controllers possess the capability
to dynamically adjust flow tables, avert congestion or apply
alternate routing algorithms to manage traffic. Consequently,
a pivotal value proposition of SDNs lies in their capacity to
program networks for controlling the underlying data plane.
The benefits of SDN have been underscored across diverse
scenarios, spanning enterprises and data centres, with notable
illustrations such as Google B4 [17]. As shown in Figure 1, the
division of the SDN architecture consists of three layers: the
infrastructure, control, and application layers.

2.2 OpenFlow protocol

The OpenFlow protocol [18] is an initially standardized pro-
tocol for SDNs. Although there are many alternatives, such as
extensible messaging and presence protocol (EMPP) [19], Open
vSwitch Database (OVSDB) [20, 21], and OpFlex [22], it has
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ABOOD ET AL. 5

FIGURE 2 The OpenFlow switch.

been set as the standard, one and multiple companies support it
in their SDN solutions. This protocol was introduced by McK-
eown et al. to enable an easier networking experiment within
campus networks [18]. There is more than one version of the
protocol specifications available, the most common of which is
1.0 (released on 31st December 2009). Others include 1.1 [23],
1.2 [24], 1.3 [25], 1.4 [26], and 1.5 [27] (and are accessible via the
direct URL links provided below). The details of the changes
between one version and another are provided in the OpenFlow
1.5.1 specification document [28]. The Open Flow is an open
protocol that enables the programming of switch flow tables by
a software application. It comprises three items: the OpenFlow-
compliant switch, controller, and channel. The switch uses the
flow table for forwarding the packet. Flow tables are lists of
flow entries, with each a match field, a counter, and a set of
instructions. In SDNs, the Open Flow switch simply forwards
received packets. Figure 2 shows how the OpenFlow Switch has
several flow tables and one group table for the packet lookup
and forwards.

∙ OpenFlow Switch Specification 1.1.0, [Online]. Available:
https://opennetworking.org/wpcontent/uploads/2013/
02/of-config-1.1.pdf

∙ OpenFlow Switch Specification 1.2.0, [Online]. Available:
https://opennetworking.org/wp-content/uploads/2014/
10/openflow-spec-v1.2.pdf

∙ OpenFlow Switch Specification 1.3.0, [Online]. Available:
https://opennetworking.org/wp-content/uploads/2014/
10/openflow-spec-v1.3.0.pdf

∙ Open Networking Foundation, [Online]. Available:
https://opennetworking.org/wp-content/uploads/2014/
10/openflow-spec-v1.4.0.pdf

∙ Open Networking Foundation, [Online]. Available:
https://opennetworking.org/wp-content/uploads/2014/
10/openflow-switch-v1.5.0.pdf

∙ Open Networking Foundation, [Online]. Available: https://
www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-switch-
v1.5.1.pdf

There is also an OpenFlow channel for external controllers.
The switches’ flow table consists of more than one flow entry or
main field (match fields, counters, instructions) that determines
how packets’ processing and forwarding will occur.

1. Match fields: It is where the received packets are matched.
They include information from the 15-tuple packet’s head-
ers like (ingress port, metadata, Ethernet Src, Ethernet Dest,
Ethernet type, virtual local area network (VLAN) ID, VLAN
priority, multiprotocol label switching (MPLS) label, MPLS
traffic class, IP Src, IP Dest, IP Proto, IP type of service
(TOS) field, Transport Src. Port, Transport Dest).

2. Counters: It collects statistical information about a certain
flow, including how many packets come in, the number of
bytes, and flow duration.

3. Instructions: These should be executed when a packet is
matched. They determine how the packet is handled
(forwarded or dropped).

Match fields present a description of the packets that the
entries are associated with. This involves ingress ports and cer-
tain header fields, like IP and Mac addresses. The network
administrators set them through the controller, using either a
particular value or a wild card matching any flow.

Figure 3 shows how packets are processed through the
pipeline. First, the metadata field and the action set get an empty
initialization from the first table (Table 0) to the last (Table
n). The packets are made into matches to the consecutive flow
tables, where the entry with a higher priority is chosen. The end
of the pipeline is reached whenever no packet is matched or no
“Goto” instruction is set. There are three processes for all flow
tables: First is matching the packets to the high-priority entries,
next is applying the instruction to the packet, and finally, the
packet is transferred to the following table for any further acts.

2.3 Machine learning

Machine learning (ML) is the process of learning machines
to treat the data quickly and efficiently to obtain maximal
productivity with minimum resources. In other words, ML is a
research domain of computer science related to the invention
of effective pattern realization techniques capable of adapting
to the dynamic changes of problems in size and type. ML
algorithms are applied in many computing processes where
straightforward algorithms are insufficient. Several applications
were introduced depending on the ML concepts, such as attack
classification, spam filtering and search engines [29]. We can
define the classification technique as identifying to which
category or class the new data belongs. In other words, the clas-
sification task maps items in the dataset into one of a predefined
group of categories. This process is performed in two steps:
building a classification model depending on a set of training
features and their related classes. This model predicts the class
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FIGURE 3 OpenFlow packet processing pipeline.

of unclassified data [30]. The classification technique is applied
in many industries and fields, such as attack, spam and medical
text classification, using several algorithms such as support
vector machine [31–33], decision tree, Random Forest [34],
and Naïve Bayes [35]. Historically, many approaches have been
used for classification, including Naïve Bayes, decision trees,
artificial neural networks, Random Forests, and association
rules.

∙ Decision tree (DT): Among the prevalent classification meth-
ods, the decision tree stands as a widely utilized approach.
It operates by organizing features based on their values. The
tree structure encompasses three node types: the root node,
internal nodes, and leaf nodes [36]. Positioned at the apex,
the root node lacks incoming edges; internal nodes possess
a single incoming edge and one or more outgoing edges.
Conversely, leaf nodes, for text classification, possess one
incoming edge but no outgoing edges. Supervised machine
learning employing decision trees involves iterative divi-
sion of data into increasingly smaller segments, constructing
hierarchical decision trees extensively used in classification
tasks. Decision trees employ if-else rules, effectively abstract-
ing data to streamline decision-making processes [37]. In
document classification, the structure of the decision tree
hinges upon a defined set of rules derived from extracted
document features. These rules dictate the decision-making
process, enabling effective classification based on document
attributes.

∙ Random Forest: Employing a multitude of decision trees during
its preparatory phase, the random forest methodology swiftly
generates a diverse set of outcomes within machine learning.
It serves as an effective countermeasure against the tendency
of decision trees to overfit their training datasets. This simula-
tion algorithm applies the widely-used bootstrap aggregation
strategy to train tree learners. Instead of solely relying on a
training set 𝑋 = 𝑥1,…𝑥𝑛 with corresponding 𝑌 = 𝑦1,…𝑦𝑛,

frequently bagging (𝐵 times) picks a random sample to sub-
stitute the training set and matches trees for 𝑏 = 1,…,𝐵 to
such samples. Examples, with substitution, 𝑛 illustration of
X, Y training; name these 𝑋𝑏, 𝑌𝑏. Train a tree 𝑓𝑏 on 𝑋𝑏, for
classification or regression. Predictions for unknown samples
𝑥′can be produced after training.

f =
1
B

∑
fb(x′ )Bb = 1 (1)

where 𝑓îs predictions from each tree, 𝐵 is repeatedly bagging,
𝑏 is sampling for (𝑏 = 1,…,), 𝑓𝑏 is regression tree, and 𝑥’ is
unseen [38].

∙ Convolutional neural networks: Deep learning techniques are
based on neural networks, a subset of machine learning (ML).
They are made up of node layers that have input layers, hid-
den layers, and output layers. Each node has a threshold and
a weight that are connected. An individual node is activated
and sends data to the network’s next layer if its output exceeds
the predefined threshold value. Otherwise, no data is passed
to the next network layer [39]. CNNs excel in hierarchically
extracting features from data through convolution, gradually
interpreting complex patterns. They generate feature maps
highlighting specific data aspects and utilize pooling layers
to condense these features, enhancing pattern recognition.
With specialized layers and functions, CNNs are versatile
tools applicable not only in image analysis but also in diverse
fields like natural language processing, medical imaging, and
autonomous vehicles [40].

Various neural nets are used for different use cases and data
types. Recurrent neural networks, for instance, are frequently
employed in voice and natural language processing. In contrast,
convolutional neural networks (ConvNets or CNNs) are often
used for classification and computer vision tasks. Convolutional
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ABOOD ET AL. 7

neural networks (CNN) now provide a more scalable approach
to classification and object recognition tasks, leveraging princi-
ples from linear algebra, specifically matrix multiplication, used
for the classification object. In network slicing based on 5G,
how does CNN work?

Convolutional neural networks (CNNs) are a type of neural
network commonly used in image and video processing appli-
cations. In the context of network slicing based on 5G, CNNs
can be used for tasks such as image recognition, object detec-
tion, and video processing, which are important components
of many emerging 5G use cases, such as autonomous vehicles,
smart cities, and remote healthcare. CNN is distinguished from
other neural networks by its superior performance. They have
three main types of layers, which are:

∙ Convolutional layer: The convolutional layer is the core building
block of a CNN, where most computation occurs. It requires
a few components: input data, a filter, and a feature map.
We also have a feature detector, also known as a kernel or a
filter, which will move across the features, checking if the fea-
ture is present. This process is known as a convolution. The
structure of the CNN can become hierarchical when another
convolution layer follows the initial convolution layer [41, 42].

∙ Pooling layer: Pooling layers, also known as down sampling,
conduct dimensionality reduction, reducing the number of
parameters in the input. Like the convolutional layer, the
pooling operation sweeps a filter across the entire input, but
the difference is that this filter has no weights. Instead, the
kernel applies an aggregation function to the values within
the receptive field, populating the output array. Pooling can
be divided into two categories:
○ Max pooling: As the filter moves across the input, it

selects the feature with the maximum value to send to
the output array. That is why this method is frequently
preferred over average pooling.

○ Average pooling: As the filter moves across the input, it
calculates the average value within the features to send to
the output array.

∙ Fully-connected layer: The full-connected layer’s name accurately
depicts its function. In partially connected layers, the feature
values of the input features are not directly connected to the
output layer. In the fully-connected layer, however, each node
in the output layer connects directly to a node in the previous
layer. This layer performs categorization based on the fea-
tures retrieved by the previous layers and their various filters.
While convolutional and pooling layers typically utilize ReLu
functions to classify inputs, FC layers typically use a SoftMax
activation function to produce a probability ranging from 0
to 1 [43].

2.4 Hyperparameter optimization

Hyperparameter tuning, statistically speaking, takes a snapshot
of a model’s current performance and compares it to past snap-
shots. All hyperparameters must be set to their default values
to start an ML algorithm training. When the model hyper-

parameters are fine-tuned, the model’s performance on the
validation set is maximized. Hyperparameters are parameters
that are established before the learning process begins. In con-
trast, the values of model parameters are determined from the
data via training. Model parameters relate to the weights and
coefficients the algorithm produces using the data. Each algo-
rithm has its own set of hyperparameters, such as the depth
parameter for a decision tree. Hyperparameters cannot be mod-
ified manually to get optimal model performance. To find
the optimal configuration, automatic optimization is required.
This optimization is done through processes such as random
search or Bayesian optimization. In contrast, the parameters
of parametric models are calculated while fitting them to the
data [44].

Because hyperparameters may directly influence the training
algorithm’s behaviour, they are considered important. Choos-
ing the right hyperparameters has a significant impact on the
model’s performance. Separating the data into three sets (train-
ing, testing, and validation sets) is crucial to update the default
parameters to ensure that the required accuracy is acquired to
avoid data leaks [45].

2.5 Data standardization

Data standardization is a preprocessing stage, a scaling pro-
cedure, or a mapping technique. Where can we locate a new
set from an established one? It can be incredibly useful for
predicting or forecasting purposes. As we all know, there are
various approaches for projecting or forecasting, but they all
differ greatly. The standardization technique is needed to get
them closer together to retain the wide variance in predic-
tion and forecasting. However, standardization methods such
as z-score, max–min, decimal normalization, and numerosity
reduction normalization are still used [46, 47]. Z-score nor-
malization [48] is a method that generates standardized values
or samples of data from unstructured data by utilizing terms
such as mean and standard deviation. So, as seen in Equa-
tion (2) [46], the data can be normalized using the z-score
parameter:

v′i =
(v − 𝜇)

𝜎
(2)

v′i is a normalized value, v is the original value, μ is the mean of
data, and σ is the standard deviation of the data.

2.6 Evaluation measures

The NIDS efficiency evaluation involved several features
defined in the confusion matrix [49, 50].

∙ True positives (TP): It means correct values in actual and pre-
diction for positive values, which means actual value yes and
predicate value yes.
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8 ABOOD ET AL.

∙ True negatives (TN): It means correct values in actual and pre-
diction for negative values, which means the actual value is
no and the predicate value is no.

∙ False positives (FP): It means incorrect values in actual and pre-
diction for positive values, which means the actual value is no
and the predicate value is yes.

∙ False negatives (FN): It means incorrect values in actual and
prediction for positive values, which means the actual value is
no and the predicate value is yes.

Each of the accuracy (ACC), precision (P), recall (R) and F1-
measure (F1) metrics is used in evaluating [51]. These features
are obtained in the following way:

∙ Accuracy (ACC): It shows the percentage of true detection
over the total traffic trace:

ACC =
TP + TN

TP + TN + FP + FN
× 100% (3)

∙ Precision (P): It shows how many intrusions predicted by a
NIDS are actual intrusions. The higher P then, the lower the
false alarm is:

P =
TP

TP + FP
× 100% (4)

∙ Recall (R): It shows the percentage of predicted intrusions
versus all intrusions presented. The higher the R-value, the
better.

R =
TP

TP + FN
× 100% (5)

∙ F1-measure (F1): It gives a better measure of the accuracy of
a NIDS by considering both the precision (P) and the recall
(R). A higher F1 value is more favourable.

F 1 =
2

1

P
+

1

R

× 100% (6)

∙ False positive rate (FPR) against true positive rate (TPR): The
FPR and TPR are calculated as follows [52]:

FPR =
FP

FP + TN
× 100% (7)

TPR =
TP

FP + TN
× 100% (8)

3 THE PROPOSED SYSTEM

The proposed system improves QoS and security in 5G net-
works by slicing the network into slices according to the type
of service provided within the SDN environment and detecting

the attacks that these slices are exposed to. This system con-
sists of five main stages: Build an attack detector model, build
a 5G network core, create a 5G slice network, collect slice net-
work data, and detect an attack on slice using the attack detector
model. The general framework for improving service quality
and security in 5G networks includes five main pillars, as shown
in Figure 4.

∙ Collect 5G data from the UNSW_NB15 Dataset and
NSL_KDD dataset.

∙ Using the collected data, build an attack detector model
depending on CNN. To discover the types of attacks that the
network can be exposed to.

∙ Build 5G network core, relying on the SDN environment to
represent a 5G network.

∙ Create 5G network slices using the OpenFlow protocol
designed to separate the data plane from control for dividing
the network into slices with different bands and services.

∙ Detect the attack on each slice by using the attack detector
model.

3.1 5G dataset

The dataset used in this research was collected from UNSW-
NB15, a network intrusion dataset. It contains nine attacks:
Backdoors, Fuzzers, DoS, and worms. The dataset contains raw
network packets. The number of records in the training set is
175,341 records, and the testing set is 82,332 records from the
different types, attack and normal [53]. URL: https://research.
unsw.edu.au/projects/unsw-nb15-dataset

3.2 Build an attack detector model

Detection of attacks in a 5G network by analysing the pack-
ets and classifying them into normal and abnormal. The deep
learning algorithm is relied upon in classification because it is
considered more efficient in higher dimensional areas and is
used in situations with more dimensions than samples. Figure 5
illustrates the design of the system that has been suggested. This
section presents (offline phase), that is, the proposed system
training and the stages used to detect the attacks present in the
data sets used in the training of the attack model.

3.2.1 Data preprocessing

Deep learning algorithms do not function too well for raw data
processing. Therefore, the data must be pre-processed before
being fed to a CNN algorithm. In other words, some trans-
formations must be applied, as shown in Table 2. The raw
data is transferred into a clean, pre-processed data collection.
Some ML models require information in a specified format.
Where INT stands for initialization or initiation, representing
the protocol state value for a particular flag. It encompasses
four distinct cases, indicating whether it signifies initialization,
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ABOOD ET AL. 9

FIGURE 4 General framework.

FIGURE 5 Attack detector model.

TABLE 2 Distribution of categories in features.

No Protocol type Service Flag

1 Ddp – INT

2 ipv6-frag – INT

3 Cftp – INT

4 Wsn – INT

5 Tcp ftp INT

6 Tcp – INT

7 Pvp – INT

finishing, connection, or reconnection. In our case it is only
initiation (INT) as in Tables 2 and 3.

∙ Coding the features categories: A transformation has been
applied to convert the categorical values into numerical ones
in order to apply to the induction model, as shown in Table 3.

3.2.2 Feature extraction with RFE

Feature selection is a principal concept in ML that signifi-
cantly affects the model performance. Inappropriate or partially
related features may harm the model’s efficiency, particularly
in attack detection. Therefore, data cleaning and feature selec-
tion are essential steps in the model design. Feature selection
is the process by which certain features are determined manu-
ally or automatically. The presence of inappropriate features in
the data can reduce accuracy and cause models to learn based
on irrelevant features. Recursive feature elimination (RFE) is
used for feature selection. RFE works by searching for a subset
of features by starting with all (42 features) in the 5G train-
ing dataset and successfully removing features until the desired
number remains. This is achieved by fitting the given machine-
learning algorithm used in the model’s core, sorting features by
relevance, eliminating the least significant features, and re-fitting

 17518636, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cm

u2.12735 by T
est, W

iley O
nline L

ibrary on [18/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 ABOOD ET AL.

TABLE 3 Coding the features categories.

No Protocol type Service Flag Protocol type code Service code Flag code

1 Ddp – INT 20 0 3

2 ipv6-frag – INT 53 0 3

3 Cftp – INT 12 0 3

4 Wsn – INT 128 0 3

5 Pvp – INT 87 0 3

6 wb-expak – INT 126 0 3

7 Mtp – INT 72 0 3

8 pri-enc – INT 83 0 3

9 sat-mon – INT 94 0 3

10 Cphb – INT 15 0 3

FIGURE 6 Hybrid deep learning classification model.

ALGORITHM 1 Feature Extraction with RFE alg.

Input: Features

Output: Best feature

Begin
While (more 5G dataset records exist) do
{
D = next filed
Add feature to feature-list
}
Compute RFE score for each feature.
Select the best feature with the maximum score
Return best features
End

the model to achieve this. This procedure is continued until only
the most closely related traits remain, as shown in Algorithm 1.

3.2.3 Hybrid deep learning classification model

This part explains the architecture of our hybrid model to clas-
sify the network attack, depicted in Figure 6. The architecture
is composed of two stages. In the first stage, the CNN is used
to extract the spatial features, which contain four convolution

layers with output dimensions of 32, 64, 128, and 128, respec-
tively, with a kernel size of 3 × 3 for each convolution layer. In
comparison, long short-term memory (LSTM) can extract tem-
poral characteristics with a size 32. The data will pass through
the convolution layer, where the filters will extract the most crit-
ical features to generate a feature map. Then the output will be
sent to an LSTM layer to extract temporal features, followed
by a dropout layer to prevent overfitting. This combination of
CNN and LSTM layers, followed by a fully connected layer that
uses the softmax layer, is used at the output for classification
purposes, as shown in Algorithm 2. To enhance the detection
model’s capability, we used a hyperparameter.

3.3 Build 5G network core using SDN

The first part, in this stage, is applied to create a separate
device from the MiniNet on VMware on a local computer.
The MiniNet network simulator involves a GUI editor called
MiniEdit, a tool for demonstrating how the MiniNet could cre-
ate networks. MiniEdit is distinguished by its simplified user
interface. To add hosts to the network scenario, switches and
controllers are added using their specified tools. The links are
added between the nodes upon the canvas to create a connec-
tion between the terminals, switches, and controllers, forming

 17518636, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cm

u2.12735 by T
est, W

iley O
nline L

ibrary on [18/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ABOOD ET AL. 11

FIGURE 7 Core network detail.

FIGURE 8 5G software-defined networking core network.

ALGORITHM 2 Hybrid Deep Learning Classification Model alg.

Input: Record of packet

Output: Classified packet

Begin
While (more 5G dataset records exist) do
{
D = next packet feature passes through convolution filter layer
Extract the most critical features to generate a feature map
Do normalization
Pass through LSTM to extract temporal features
Prevent overfitting by a dropout layer
Classified packet
}
Return classified packets
End

a network. The Ryu control was used to control traffic flow
between switches. Also, Figure 7 explains the details of the
network.

This part uses SDN, an approach to networking that uses
software-based controllers or APIs to communicate with under-
lying hardware infrastructure and direct traffic on a network.
That differs from traditional networks, which use dedicated
hardware devices (i.e., routers and switches) to control network
traffic. Software defined networking can create and control a
virtual or traditional hardware network via software.

SDN network allows organizations to segment different vir-
tual networks within a single physical network. It also offers a
novel method of regulating data packet routing through a cen-
tralized server, as illustrated in Figure 8 and Algorithm 3 and
4. The proposed system uses miniedit, a graphic user interface
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12 ABOOD ET AL.

ALGORITHM 3 5G network core

Input: information

Output: 5G core network (switching, routing, and control)

Begin
{
Create template host and host configuration
Create template link
{
http_link_config = dict(bw = 1)
audio_link_config = dict(bw = 10)
video_link_config = dict(bw = 100)
}
Create template Switch OpenFlow
{
addSwitch(‘s1’,protocols = ‘OpenFlow13’,dpid = “001”)
addSwitch(‘s2’,protocols = ‘OpenFlow13’,dpid = “002”)
addSwitch(‘s3’,protocols = ‘OpenFlow13’,dpid = “003”)
addSwitch(‘s4’,protocols = ‘OpenFlow13’,dpid = “004”)
addSwitch(‘s5’,protocols = ‘OpenFlow13’,dpid = “005”)
addSwitch(‘s6’,protocols = ‘OpenFlow13’,dpid = “006”)
addSwitch(‘s7’,protocols = ‘OpenFlow13’,dpid = “007”)
addSwitch(‘s8’,protocols = ‘OpenFlow13’,dpid = “008”)
}
Add links between switch
Add links between switch and tower
Add controller = RemoteController(“c1”)
}
Return 5G Network
End

ALGORITHM 4 5G Network slices

Input: 5G core network

Output: 5G network slices

Begin
{
Input OpenFlow switch port
Apply OpenFlow control
Mapped slice_to_port
Apply Ryn control on the switch
Select the datapath for each slice
Run the traffic on each slice
Return 5G network slice
}
End

(GUI) program, to design the network and convert the designed
topology to the Python language with the OpenFlow proto-
col and Ryu control to manage the traffic flow. This network
used eight Switch OpenFlow and three data sources (video,
audio, and text). A controller works to divide the network into
three segments according to the needs of the beneficiary. 5G
network slices, in this study, will use SDN techniques and Open-
Flow protocol to slice networks, which creates multiple unique
logical and virtualized networks over a common multi-domain
infrastructure. So, that can be used to support a certain appli-
cation, service, group of users, or network. With its numerous
applications, network slicing is one of the most essential 5G
technologies. It will support new services with vastly different

requirements, such as connecting vehicles, voice calls, and video,
which require different throughput, latency, and reliability. Here,
the network is sliced into three logical networks:

∙ The first one uses eMBB; these applications are very video-
centric and consume much bandwidth, and will generate the
most traffic on the mobile network; their tracks are shown in
purple.

∙ The second slice is for audio applications; its tracks are shown
in red.

∙ The last part is for web text applications (HTTP resources);
its tracks are shown in orange.

Where the band of each slice is initially defined, and then
the slice is determined for each application through a protocol
OpenFlow.

3.4 Improving QoS based on slicing and
applying the attack detection model

The proposed system explains that network slicing provides
security to the 5G mobile communications networks in various
ways. The first security technique that network slicing provides
is the isolation of slices from each other. The isolation limits
any security challenge to a single slice rather than the entire net-
work and improves QoS against attacks, reducing the scale of
security impacts. The isolation essentially protects the resources
and traffic in each network portion. Secondly, each slice has an
attack detector model based on deep learning techniques for
attack detection that better deals with the security vulnerabil-
ities and problems they face. Third, the infrastructure for 5G
slices allows devices or functions to be moved from one slice to
another. With this capability, it is possible to isolate a network
element subjected to a cyberattack and assign it to a different
segment to prevent further damage due to the attack.

Ultimately, the distinction or difference between our pro-
posed system and conventional systems lies in multiple aspects
that enhance the functionality and bolster the security of fifth-
generation networks. A key distinction lies in our approach,
which combines two pivotal concepts.

∙ Firstly, it involves segmenting the network into distinct slices
and assigning each slice to transmit specific data types to
ensure enhanced quality. Consequently, in the event of an
attack on one slice, its impact remains isolated without
affecting other slices.

∙ Secondly, our methodology integrates neural network theo-
ries, leveraging optimized hyperparameters to enhance the
detection of attacks on individual slices—an innovative
approach not previously employed in traditional systems.

4 IMPLEMENTATION, RESULTS, AND
EVALUATION

This section introduces the experimental results of the pro-
posed system. Various experiments are performed for the
proposed techniques, starting with building an attack detection
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ABOOD ET AL. 13

model, using SDN to build a 5G core network, slicing the 5G
network, and improving QoS against attacks by using a slicing
and attack detection model. The proposed system tests have
been executed using the Python language 3.9 version, virtual
machine (VM) in Oracle V.M. Virtualbox, and the Java program-
ming language 8.0.2. The proposed system utilizes Mininet to
create SDN devices. The Ryu controller has been connected to
a mininet emulator to build the SDN environment.

4.1 Attack detector model result

The system implements six stages to generate an attack detector.

4.1.1 Preprocessing 5G dataset

This training data set contains noise and some data loss, which
causes errors in processing and extracting important features.
Therefore, pre-processing steps are essential to obtain the best
result.

4.1.2 Encoding

A transformation has been applied to convert the categorical
values into numerical ones in order to apply them to the classi-
fication model, as shown in Table 3. Our dataset contains three
features that have multi categories, such as protocol_type, which
has 133 (like HTTP, DNS, SMTP, FTP, etc.) categories, and ser-
vice has 13 categories (like TCP, U.D.P., UNAS, OSPF, SCTP,
etc.) and feature flag has nine categories.

4.1.3 Features standardization

Called (feature normalization), the standardization step in the
proposed system is data standardization, which has an impor-
tant role in removing the spacing between values and the
difference in measurements between attributes, resulting in a
bias in the classification process. The Z-score function imposed
a convergence procedure between the values and increased clas-
sification accuracy. The continuous values were converted to
discrete values to reduce the burden in the classification process.
Here, μ is the mean value of the feature, and σ is the standard
deviation of the feature. If a value equals the mean of all the fea-
ture values, it is normalised to 0. While if it is less than the mean,
it is negative; if it is greater than the mean, it is positive. The size
of such negative and positive integers is decided by the original
feature’s standard deviation, as in Equation (2). If the unnormal-
ized data had a large standard deviation, the normalized values
would be closer to 0. Table 4 shows the original features data
for the dataset, while Table 5 shows the standardized data.

Five columns (fields), which are (duration, protocol_type,
rate, sttl, and sload) have been represented by a diagram to show
the difference before and after the normalization, as shown in
Figure 9. T
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14 ABOOD ET AL.

4.1.4 Feature selection

After analysing the 5G dataset, a total of (42) features were
derived. However, a new challenge was confronted, namely sort-
ing out the relevant features from the unrelated ones to improve
how accurate the proposed model is. In ML, feature selection
is one of the most important concepts significantly affecting
the model’s performance. The process of selecting the features
that have the greatest impact on the prediction is called feature
selection. This may be done either automatically or manually.
Including unnecessary features may cause the model accuracy
to decline, as the model will be trained using elements of no
relevance.

The feature selection techniques have been used in this the-
sis to reduce overfitting, improve accuracy, and reduce training
time, allowing for training more quickly. Initially, all features
of the proposed model are used, obtaining an accuracy rate
of approximately 94%. This is considered to be a low rate for
predicting models. After using the recursive feature elimination
model to select the most relative feature (34 features) with no
logical changes to In the model code, as shown in Table 6, the
accuracy rate became 99%, a more sufficient and effective rate
as shown in Table 7.

4.1.5 Select attack detection model

To select the best compatible attack classification model with
the collected dataset, three algorithms are tested during the
experimental phase: the DT, RF, hybrid CNN and LSTM.
Each model was analysed using the collected dataset, and its
parameters were enhanced and tuned.

Table 7 and Figure 10 show the results of each algorithm
before and after using feature selection. The results conclude
that the best algorithm for attack detection is the hybrid deep
learning classification model used in this research.

4.2 Network slicing result

In this section, the proposed system implements network slic-
ing in an SDN environment to enable the isolation of network
resources. To show how the different requirements can be
fulfilled on a shared physical infrastructure by using network
slicing. A multi-hop topology is used for emulation.

After building the network with three hosts, three sources,
and eight switches, the bandwidth is 1, 10, and 100 Mbps.
The system isolates the network topology into three slices: the
upper slice (h1 -> s1 -> s4 -> s5 -> s8 -> source 1 (video
source), 100 Mbps), the middle slice (h2 -> s2 -> s4 -> s6 -
> s8 -> source 2 (audio source) 10 Mbps)and the lower slice
(h3 -> s3 -> s4 -> s7 -> s8 -> source 3 (text source) 1 Mbps).

Ryu control will divide the physical network into three log-
ical networks. Figure 10 and 11 shows the examination of the
network in terms of the connection, as for example h1 station
only connects to h4 (video source) and vice versa, as well as,
Figure 12 shows the size of each slice. As an example, the upper
slice has a 100 Mbps bandwidth size. T
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ABOOD ET AL. 15

FIGURE 9 Before and after the dataset normalization.

TABLE 6 Feature selection result.

Item Result

Num features 34

Selected features T T T T T T T T T T T T T T T T T T T T T T T F F F T T F T T T T T T T F F F T T F

Feature ranking 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 6 5 1 1 3 1 1 1 1 1 1 1 8 9 2 1 1 7

Legend: T = True / F = False.

TABLE 7 Results of classification.

Algorithm Before feature selection After feature selection

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

DT 0.95 0.94 0.94 0.94 0.97 0.97 0.98 0.98

RF 0.93 0.94 0.94 0.94 0.96 0.97 0.97 0.97

CNN and LSTM 0.92 0.93 0.93 0.9312 0.98 0.99 0.98 0.99

4.3 Model evaluation

The proposed system in this study was evaluated in two phases:

4.3.1 Evaluation of our model by using metrics

In the first stage, the results were evaluated using measures of
precision, recall, F1 score, and accuracy; three ML models were
tested during the experimental phase: RF, DT, and deep learn-
ing CNN with the LSTM algorithm. Each model was divided

the data set into training (80%) and test (20%) sets. In the
beginning, the ML algorithms were used without their default
parameters and feature selection, as explained in Table 7. After
that, parameter enhancement, normalization data, and feature
selection were applied for each algorithm, as shown in Table 7
above. The result in Table 7 explains that the DT RF algo-
rithms achieved high results for attack classification. The use of
the feature selection technique and the tuning of hyperparame-
ters have had a significant effect on improving the results. The
deep learning CNN with the LSTM algorithm achieved better
performances. Table 7 presents the classification results for the
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16 ABOOD ET AL.

FIGURE 10 Before and after normalization of classification results.

FIGURE 11 Verifying connectivity for each slice.

FIGURE 12 Verifying bandwidth for each slice.

CNN that show rates of (0.98, 0.99, 0.98, and 0.99) for preci-
sion, recall, and F1-score and accuracy measures, respectively,
after feature selection.

4.4 Evaluation of our model with related
literature

In this part, our proposal is evaluated through comparison with
previous works. In comparison with Leila Mohammad Pour’s
system [54], which used these datasets to find the attack, our

FIGURE 13 Comparison between Leila’s result against the proposed.

system’s results were better than Leila’s result, where the degree
of accuracy of its results was 98.02%. In comparison, the system
accuracy result is 99%, as shown in Figure 13.

Moreover, compared to the work presented in [55], whereby
the GA-LR-DT was used, the XGBoost-DT attained a test
accuracy score of 90.85% compared to 81.42% obtained by the
GA-LR-DT. Furthermore, the results obtained in this paper are
superior to those obtained in [56]. The Sigmoid PIO selected 14
optimal features of the UNSW-NB15 and obtained an accuracy
score of 91.30% through the validation dataset. A comparison
between the proposed system in this paper against those sur-
veyed in the literature shows that our system is more accurate,
as shown in Figure 14.

4.5 Summary

The simulation endeavours produced insightful outcomes
across various phases of system implementation and
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ABOOD ET AL. 17

FIGURE 14 Comparison between previous works algorithm.

evaluation. Notably, the attack detector model exhibited robust
performance following meticulous preprocessing, encoding,
standardization, and feature selection processes. Through these
steps, the accuracy rates surged to an impressive 99%, signifying
the model’s capability to discern and classify potential threats
with heightened precision.

Moreover, the integration of network slicing within the SDN
environment yielded compelling results. The creation of distinct
slices with varied bandwidth allocations effectively demon-
strated the capacity to isolate and allocate resources tailored to
specific requirements. This dynamic allocation was exemplified
by the upper, middle, and lower slices, each serving different
data types with bandwidths of 100, 10, and 1 Mbps, respectively.
In evaluating the model using comprehensive metrics encom-
passing precision, recall, F1-score, and accuracy, the comparison
with established machine learning models showcased the sys-
tem’s superiority. Particularly, the fine-tuning of algorithms and
feature selection techniques elevated the performance of the
proposed deep learning CNN with LSTM, achieving remark-
able precision and recall rates of 0.98 and 0.99, respectively, and
an overall accuracy rate of 99%.

Furthermore, in juxtaposition with existing literature and
comparative analyses, the system’s accuracy rates consistently
surpassed those of previous models using similar datasets.
This substantiates the system’s efficacy and prowess in out-
performing established methodologies, thereby reinforcing its
robustness and reliability in detecting attacks and optimizing
network resource allocation. The simulation results collectively
underscore the effectiveness and efficiency of the proposed sys-
tem, reaffirming its competence in fortifying security measures,
optimizing resource utilization through slicing, and surpassing
benchmarks set by prior studies.

5 CONCLUSION AND
RECOMMENDATIONS FOR FUTURE
WORK

This paper introduces a method aimed at enhancing qual-
ity of service (QoS) resilience against attacks in an SDN
environment through the utilization of 5G network slicing
alongside CNN and LSTM algorithms. The proposed model
adopts a dual approach: segmenting the network into default

groups and identifying services within each segment to opti-
mize fifth-generation network quality. Our study demonstrated
the superior performance of the CNN-LSTM approach com-
pared to traditional ML algorithms such as DT or RF, indicating
its potential for real-time attack detection.

Network slicing, furthermore, elevates network QoS by
segmenting services based on bandwidth allocation. Future
endeavours include implementing the proposed model in a live
SDN system to evaluate performance in terms of throughput
and latency across diverse datasets.
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