
1 | P a g e

A New Feature Engineering Framework for

Financial Cyber Fraud Detection Using Machine

Learning and Deep Learning

This dissertation is submitted for the degree of

Doctor of Philosophy

 BY

Chie Ikeda

Date: September 2022

School of Computing and Digital Media

London Metropolitan University

166-220 Holloway Road, London, N7 8DB

2 | P a g e

Acknowledgements

I would like to acknowledge and give my warmest thanks to many people, without

them it would not have been possible to complete my journey. I would first like

to express my gratitude to my supervisor, Prof. Karim Ouazzane who made this

work possible and provided extraordinary support, guidance and advice carried

me through all the stages of my research. Always motivated me when things got

hard, always pointed me in the right direction and encouraged me to never give

up. I would further like to thank my second advisor, Dr. Qicheng Yu, who have

also motivated me and supported me with his exact advice and feedback. This

project would not have been as good without his help.

Finally, I would also like to thank my family, especially my husband for

understanding my condition and being extremely supportive.

Thank you very much, everyone.

Chie Ikeda

3 | P a g e

I would like to dedicate this thesis to my future self…

4 | P a g e

Abstract:

As online payment system advances, the total losses via online banking in the United

Kingdom have increased because fraudulent techniques have also progressed and used

advanced technology. Using traditional fraud detection models with only raw transaction

data cannot cope with the emerging new and innovative scheme to deceive financial

institutions. Many studies published by both academic and commercial organisations

introduce new fraud detection models using various machine learning algorithms,

however, financial fraud losses via the online banking have been still increasing. This

thesis looks at the holistic views of feature engineering for classification and machine

learning (ML) and deep learning (DL) algorithms for fraud detection to understand their

capabilities and how to deal with input data in each algorithm. And then, proposes a new

feature engineering framework that can produce the most effective features set for any

ML and DL algorithms by taking both methods of feature engineering and features

selection into a new framework. The framework consists of two main components: feature

creation and feature selection. The purpose of feature creation component is to create

many effective feature candidates by feature aggregation and transformation based on

customer’s behaviour. The purpose of feature selection is to evaluate all features and to

drop irrelevant features and very high correlated features from the dataset. In the

experiment, I proved the effect of using a new feature engineering framework by using a

real-life banking transactional data provided by a private European bank and evaluating

performances of the built fraud detection models in an appropriate way. Machine

Learning and Deep learning models perform at their best when the created features set by

the new framework are applied with higher scores in all evaluation metrics compared to

the scores of the models built with the original dataset.

5 | P a g e

List of Publications

• Chie Ikeda, Karim Ouazzane, Qicheng Yu. New Feature Engineering

Framework for Machine Learning in Financial Fraud Detection. Conference: 10th

International Conference on Advances in Computing and Information

Technology (ACITY 2020). November 2020.

• Chie Ikeda, Karim Ouazzane, Qicheng Yu, Svetla Hubenova. New Feature

Engineering Framework for Deep Learning in Financial Fraud Detection.

International Journal of Advanced Computer Science and Applications (IJACSA),

December 2021. Volume: 12 Issue 12.

6 | P a g e

Contents

1. Introduction ... 16

1.1. Research Problem .. 22

1.2. Aim and Objectives of this research ... 23

1.3. Research Methodology ... 26

1.3.1. Analytical Approach ... 27

1.3.2. Practical Approach .. 29

1.3.3. Observation Approach .. 30

1.4. Summary Overview Diagram ... 31

1.5. The Contributions to Knowledge .. 32

1.6. Structure of the thesis .. 33

2. Literature Review .. 35

2.1. Machine Learning Algorithms .. 35

2.1.1. Supervised Learning ... 35

2.1.2. Unsupervised Learning ... 44

2.3. Deep Learning .. 50

2.4. Feature Engineering ... 62

2.4.1. Feature Aggregation for Evolving Customer Behaviour 62

2.4.2. Feature Transformation using Mathematical Equations 66

2.5. Feature Selection .. 73

2.6. Feature Engineering Tools and Framework .. 77

2.7. Summary & Conclusion ... 83

2.8. Literature Synthesis ... 85

3. Feature Engineering Framework for Financial Fraud Detection Models 87

3.1. Overview ... 87

3.2. Feature Creation Processes ... 89

3.2.1. Data Preparation ... 89

7 | P a g e

3.2.2. Feature Creation Processes .. 103

3.3. Feature Selection Process Component ... 108

3.3.1. Feature Selection ... 109

3.3.2. Performance Metrics for Fraud Detection Models .. 116

3.4. Key Summary ... 133

4. Online Banking Transaction Data ... 134

4.1. Data Source and Description ... 134

4.2. Exploratory Data Analysis (EDA) .. 138

4.3. Conclusion ... 148

5. Experiments and Validation of Fraud Detection Framework 149

5.1. Data Preparation processes ... 149

5.2. Feature Creation Processes for Experiment .. 154

5.3. Feature Selection Processes for the Experiment ... 157

5.4. Model Preparation ... 160

5.4.1. Split the dataset into Training and Test sets ... 160

5.4.2. Modelling ... 162

5.5. Model Preparation ... 168

5.6. Evaluation and Discussions ... 188

5.7. Conclusion ... 194

6. Conclusion and Future Work ... 195

6.1. Introduction of the main achieved work .. 195

6.2. Research Contributions ... 201

6.3. Recommendation for Future Research .. 202

References .. 204

8 | P a g e

Lists of Figures:

Figure 1-1. Annual remote banking fraud losses

Figure 1-2. Annual case volumes of remote banking fraud

Figure 1-3. Internet banking fraud losses

Figure 1-4. Example of a feature engineering concept

Figure 1-5. Example of the effect of feature engineering

Figure 1-6. A flow for building an effective classification ML/DL model

Figure 1-7. Overview of the approach steps in the thesis

Figure 2-1. Support vector machine approach

Figure 2-2. The maximum margin hyperplane

Figure 2-3. Hybridization of supervised and unsupervised learning

Figure 2-4. Decision tree for fraud detection

Figure 2-5. Random forest

Figure 2-6. Artificial neural network architecture

Figure 2-7. Activation function for NNs

Figure 2-8. Layer of ANNs in credit card

Figure 2-9. Image of grouping customers in similar data pattern

Figure 2-10. K-means clustering

Figure 2-11. Anomaly detection with isolation forest

Figure 2-12. Example of isolating a non-anomalous point in a 2D gaussian distribution

Figure 2-13. Example of isolating an anomalous point in a 2D gaussian distribution

9 | P a g e

Figure 2-14. The logic of local outlier factor

Figure 2-15. Deep learning neural networks

Figure 2-16. Autoencoder with hidden layers

Figure 2-17. Autoencoder neural networks

Figure 2-18. Convolutional neural networks architecture

Figure 2-19. Basic structure of CNNs

Figure 2-20. Recurrent neural networks with a hidden state

Figure 2-21. RNNs architecture

Figure 2-22. The concepts of RNNs with LSTM

Figure 2-23. Feature aggregation for evolving customer behaviour

Figure 2-24. Applying the transaction aggregation process with the HOBA principle

Figure 2-25. Example of how to deal with the image recognition data in deep learning processes

Figure 2-26. Connections between the nodes with each weight

Figure 2-27. The impact of feature scaling on the wine dataset

Figure 2-28. Feature Transformation using PCA

Figure 2-29. Overfitting the training data

Figure 2-30. Underfitting the training data

Figure 2-31. Appropriate fitting model

Figure 2-32. Demonstration of the concept deep feature synthesis

Figure 2-33. The algorithm of deep feature synthesis

Figure 2-34. Sample case of using DFS tool

Figure 2-35. Features creation using the DFS tool

10 | P a g e

Figure 2-36. ExploreKit system architecture

Figure 3-1. Conceptual feature engineering framework

Figure 3-2. Example of different sources

Figure 3-3. Image of data integration into the banking system

Figure 3-4. Logical data modelling of online banking system

Figure 3-5. Example of one-hot encoding method

Figure 3-6. Sample of dummy coding

Figure 3-7. Specific number can connect to other information tables

Figure 3-8. Blanks indicate missing values in dataset

Figure 3-9. A flow of processes for dealing with missing values

Figure 3-10. Standardisation feature values

Figure 3-11. Sample of correlation matrix

Figure 3-12. Outline processes in the random forest algorithm

Figure 3-13. Decision trees inside of random forests

Figure 3-14. Feature importance scores of top 30 features

Figure 3-15. Linear and nonlinear separation of sample data

Figure 3-16. Mapping the data from two-dimensional space to three-dimensional space

Figure 3-17. Nonlinear SVM with polynomial kernel

Figure 3-18. SVM classifier using an RBF kernel

Figure 3-19 One-class support vector machine

Figure 3-20. The steps of random forest algorithm

Figure 3-21. Instance of LOF

11 | P a g e

Figure 3-22. Architecture of autoencoder

Figure 3-23. Precision versus recall

Figure 3-24. Example of a precision and recall curve

Figure 3-25. Typical ROC curve

Figure 3-26. Area under the ROC curve (AUC)

Figure 4-1. ER diagram for an online banking system

Figure 4-2. Unbalanced dataset

Figure 4-3. The distribution of transaction amount

Figure 4-4. Boxplot of transaction amount by fraud frag

Figure 4-5. Distribution of the transaction frequency of the available balance

Figure 4-6. Distribution of transaction login latency

Figure 4-7. Access device type used for transaction

Figure 4-8. Credit card types

Figure 4-9. Comparison between normal and fraud patterns in access code types

Figure 4-10. Various types of client’s screen browser in IDVD_CLIENTSCREENRESOID

Figure 4-11. Transactions over timestamp in months

Figure 4-12. Transaction timestamps in the dataset

Figure 4-13. Transactions over timestamp in weekdays

Figure 4-14. Transactions over timestamp in days

Figure 4-15. Transactions over timestamp in hours

Figure 4-16. Distribution of log transformation amount

Figure 4-17. Distribution of log transformation available balance

12 | P a g e

Figure 4-18. Login latency transformed by standard deviation

Figure 5-1. Training set and test set

Figure 5-2. A way how to consider splitting a dataset

Figure 5-3. The dataset split with 80:20 ratio

Figure 5-4. AUC of the one-class SVM model with dataset 1

Figure 5-5. AUC of the one-class SVM model with dataset 2

Figure 5-6. AUC of the one-class SVM model with dataset 3

Figure 5-7. AUC of the RF model with dataset 1

Figure 5-8. AUC of the RF model with dataset 2

Figure 5-9. AUC of the RF model with dataset 3

Figure 5-10. AUC of the Isolation Forest model using dataset 1

Figure 5-11. AUC of the Isolation Forest model using dataset 2

Figure 5-12. AUC of the Isolation Forest model using dataset 3

Figure 5-13. AUC of the LOF model using dataset 1

Figure 5-14. AUC of the LOF model using dataset 2

Figure 5-15. AUC of the LOF model using dataset 3

Figure 5-16. The reconstruction error threshold 4 in dataset 1

Figure 5-17. Confusion matrix of the autoencoder model with dataset 1 using a threshold of 4

Figure 5-18. AUC of the AE model of threshold 4 with dataset 1

Figure 5-19. The reconstruction error threshold 4 in dataset 2

Figure 5-20. Confusion matrix of the autoencoder model with dataset 2 using a threshold of 4

Figure 5-21. AUC of the AE model of threshold 4 built with dataset 2

13 | P a g e

Figure 5-22. The reconstruction error threshold 4 in dataset 3

Figure 5-23. Confusion matrix of the autoencoder model with dataset 3 using a threshold of 4

Figure 5-24. AUC of the AE model of threshold 4 built with dataset 3

Figure 5-25. The reconstruction error threshold 1 in dataset 1

Figure 5-26. Confusion matrix of the autoencoder model with dataset 1 using a threshold of 1

Figure 5-27. AUC of the AE model of threshold 1 built with dataset 1

Figure 5-28. The reconstruction error threshold 1 in dataset 2

Figure 5-29. Confusion matrix of the autoencoder model with dataset 2 using a threshold of 1

Figure 5-30. AUC of the AE model of threshold 1 built with dataset 2

Figure 5-31. The reconstruction error threshold 1 in dataset 3

Figure 5-32. Confusion matrix of the AE model with dataset 3 using Threshold of 1

Figure 5-33. AUC of the AE model of threshold 1 built with dataset 3

Figure 6-1. The outputs in each phase

14 | P a g e

Glossary:

UK United Kingdom

US United States

ATM Automated Teller Machine

ML Machine Learning

FDS Fraud Detection Systems

SVM Support Vector Machine

NN Neural Networks

DT Decision Tree

RF Random Forests

HMM Hidden Markov Model

PGA Peer Group Analysis

RNN Recurrent Neural Network

DL Deep Learning

FE Feature Engineering

ANN Artificial Neural Networks

PCA Principle Component Analysis

IF Isolation Forests

LOF Local Outlier Factor

AE Autoencoder

CNN Convolutional Neural Networks

AUC Area Under the ROC Curve

ID Identification

IP Internal Protocol Address

OHE One-Hot Encoding

ReLu Rectified Linear Unit

ELU Exponential Linear Unit

SGD Stochastic Gradient Descent

TP True Positive

15 | P a g e

TN True Negative

FN False Negative

FP False Positive

TPR True Positive Rate

FPR False Positive Rate

EDA Exploratory Data Analysis

ROC Receiver Operating Curve

16 | P a g e

1. Introduction

As online payment system advances, fraud schemes have shifted from physical fraud

actions by using stolen credit cards directly or into online banking fraud actions by using

advanced digital techniques. Until several years ago, the use of credit or debit cards were

the great majority of transaction methods in financial services via ATMs, shops, and at

bank teller. However, in recent years, remote online banking using the internet via any

portable devices has become a popular method for transaction money and at the same

time, financial fraud losses via the online banking have been increasing. According to UK

finance report in 2021 [1] (see Figure 1-1), total losses through remote online banking in

the United Kingdom have reached £197.3 million in 2020, up 31percent higher than in

2019. The annual number of cases of fraudulent transaction via internet banking and

mobile banking has been rapidly growing from 32,721 cases in 2019 to 66,150 cases in

2020, with other financial fraud losses such as payment cards and cheques decreasing

from £470.2 million to £452.6 million [1] (see Figure 1-2).

Figure 1-1. Annual remote banking fraud losses [1]

17 | P a g e

Figure 1-2. Annual case volumes of remote banking fraud [1]

Specifically, internet banking fraud cases have been increasing the most. Over 72 percent

of UK people utilised online banking in 2019 and the number of online banking user have

further increased in 2020. Thus, the number of fraudulent schemes using internet banking

have increased and the number of losses by the internet banking fraud tends to increase

year by year (see Figure 1-3). The internet banking fraud has been taking place when a

fraudster gets access to a customer’s account of online banking and carries out an

unauthorised money transfer [1].

Figure 1-3. Internet banking fraud losses [1]

Fraudster have stolen money by accessing customer’s bank account via the remote

banking channels. The fraud schemes have become digital and technologically more

advanced. To address constant changes in fraud behaviour, in recent years, many

18 | P a g e

academic studies and some financial industries proposed to employ machine learning

(ML) methods in fraud detection systems (FDS) [2][3]. A variety of ML algorithms are

used for detecting fraud patterns from the large amounts of transaction dataset. For

instance, support vector machines (SVM) [4], neural networks (NN) [5][6], decision tree

(DT) [7] and random forests (RF) [8] are popularly used in many studies and they

improved the accuracy of fraud detection models. Other often-used techniques for

discovering a fraud based on user’s regular behaviour in real time are the Hidden Markov

Model (HMM) [9], Peer Group Analysis (PGA) [10], a recurrent neural network (RNN)

[11] [12], and deep learning [13] [14] [15]. However, it is still challenging to detect new

fraudulent actions by only using raw feature values in original dataset.

A feature represents a measurable aspect of raw data that can be utilised for analysis [17].

Features come from available data and appear as columns in datasets such as Name,

Postcode, Phone number, Age, Sex, and so on. Performance of machine learning models

depends on the quality of the features [22]. Feature engineering (FE) is known as

techniques to create new features by transforming raw features or to extract effective

features from different sources [17] [104]. In the past several years, most studies of using

feature engineering have been image and voice recognitions which deal with high-

dimensional features such as high resolution of images (pixels) and digital audio files

(mp3, etc) [16] [17] [18]. In recent years, feature engineering became a popular method

in classification studies and has been implemented for improving an accuracy of machine

learning models [19] [20] [21]. The aim of using FE for classification is to reveal latent

data patterns from an original dataset, which enable ML algorithms to learn differences

in a target. For instance, Figure 1-4 illustrates two different depictions for points

belonging to a classification problem dataset. On the left, one can see that instances in

19 | P a g e

connection with the two classes are present in alternating small clusters. It is difficult to

draw a reasonable classifier on this depiction that separates the two classes for the most

machine learning algorithms. On the other hand, if the feature � is replaced by its ����,

as seen in the depiction on the right, it makes the two classes reasonably separable by

most classifiers. The process of altering the feature representation of a prediction

modelling problem to better fit a training algorithm is called “Feature Engineering” [22].

Figure 1-4. Example of a feature engineering concept [22]

Feature engineering is a method of mapping a given data into a different dimension which

is easier to interpret for a ML algorithm and is considered as a key method to improve

accuracy of the models of ML and DL by transforming the given data into new features

which represent latent data patterns. The most well-studied feature engineering method

in financial fraud detection for creating new features is feature aggregation. Feature

aggregation is to create new features which are a combination of two or more features in

the given data using domain knowledge to create a new feature. For instance, in case of

transaction fraud, if a fraudster uses the stolen credit card in unusual hours and transaction

amount unlike the credit card holder, it may be possible to differentiate between a fraud

and the card holder by a fraud detection model. However, if there is not really a difference

in individual features such as time and amount, it will not be easy to distinguish a fraud

by using only the raw features for a fraud detection model. New features, which aggregate

20 | P a g e

two or more individual features in a dataset, will give a clear boundary to algorithms for

easily understanding and reveal the latent pattern of user behaviour on transaction data.

Feature transformation is another technique for mapping raw data to a different space and

uses mathematical or statistical functions on raw data to create new features. The new

created features will not hold the same interpretation as the original features, but they will

obtain more distinguishable capability in a different dimension than the original

dimension. For Instance, Figure 1-5 shows before and after implementing a feature

engineering method on the raw data. On the left hand side plot, there are two classes of

points in a circular pattern. For any algorithms, it is not easy to divide this data pattern

into one part. On the right hand side plot, the input data is clearly divided into two parts

for the algorithms.

Figure 1-5. Example of the effect of feature engineering [22]

In order to transform the given data to make the algorithms understand easily the different

patents, a cartesian coordinate system (x2 + y2= r2) was applied to the data. The data was

transformed to be understandable for the algorithms.

Not a lot of research has been carried out using FE for improving an accuracy of a fraud

detection model. A few studies using feature engineering for classification problem

21 | P a g e

implemented feature engineering methods on the original dataset and created new

engineered features which were used for building a machine learning model. They

evaluated the model performance with/without the engineering features and demonstrated

the effectiveness of using feature engineering [19] [20]. Although these studies

introduced the methods on how to create new features using feature engineering and used

all created features, they did not select features after the creation. In general, the

performance of machine learning algorithms is influenced by input feature values for

better or worse. Thus, containing lots of features will cause worse performance of

machine learning models, such as overfitting and low accuracy.

Overfitting occurs when a machine learning model learns all the data points in the given

dataset [80]. Hence, involving many irrelevant features in training data will give a

negative impact on classification accuracy of a fraud detection model because of a noise

in the learning process. Therefore, there exists some research in financial fraud detection

using feature engineering and they introduced a feature engineering as feature selection

techniques for selecting better attributes from the dataset only.

As a result, in this research I proposed and studied a feature engineering framework which

consists of two methods namely feature creation and feature selection. This research is

mainly focused on the possibility to develop an innovative feature engineering framework

to create and select the effective features for online banking fraud detection. The

contribution of my research will be three-folds. First, to develop a new feature

engineering framework that can provide an effective feature set for improving an

accuracy of a financial fraud detection model. Second, to use both feature engineering

and feature selection methods simultaneously in the framework. Third, to use the actual

22 | P a g e

online banking dataset including fraudulent data and examine how the provided feature

set from the framework helps to improve the performance of fraud detection models.

1.1. Research Problem

As part of my hypothesis the key research question I came up with is: if an effective

features set is created by using all methods of feature aggregation and feature

transformation and feature selection consistently in a framework, the performance of

fraud detection models built with effective features set is likely to be improved.

In general, the performance of machine learning models is determined by the quality of

training data. Specifically, raw data collected from various sources is messy and

disorganised in the first stage. In the raw data, some feature values have missing values

and character strings that machine learning algorithms cannot handle. Therefore, the raw

data needs to be cleaned and converted to numerical data prior to implementing feature

engineering. According to the relevant studies for classification cases using feature

engineering, they have used the definition of feature engineering differently. Many

studies have defined feature engineering as feature creation and created new features by

aggregating individual features in dataset. In other studies, feature engineering is defined

as feature selection or extraction methods for selecting appropriate and effective features

from different data sources.

This study will address the research questions presented below:

• Can new features from original dataset be created by defining feature aggregation and

transformation methods? (See Section 3.2.2)

23 | P a g e

• Can effective features be selected to improve performances of machine learning and

deep learning models from the whole data? (See Section 3.2.3)

• Can a model based on the created features set by the feature engineering framework

improve the performance of machine learning models? (See Section 5.4)

• Can a model’s performance be improved by using the features set which is created by

using all methods which include feature aggregation, feature transformation and

feature selection consistently in the framework rather than the model build with

original features set? (See Section 5.5)

The outcomes of this research will be used to provide better protection to the banking

customers by using more effective feature set which improves the performance of ML

and DL models in fraud detection systems.

1.2. Aim and Objectives of this research

The aim of this research is to develop feature engineering framework which can produce

a new feature set used for machine learning and deep learning models to learn transaction

behaviour, that will improve accuracy of fraud detection and decrease the number of

losses by fraudulent transaction via online banking. This will be achieved by creating a

novel framework which generates new features by effective feature engineering methods

and selects appropriate features that can improve the accuracy of ML and DL models.

One will focus on the development of feature engineering framework that can create

useful features that will influence the accuracy of fraud detection models by using feature

engineering techniques in combination with feature aggregation and transformation.

Combining both techniques will lead to a high potential features that can improve ML/DL

24 | P a g e

model’s performance. The effectiveness of the fraud detection models is determined by

either the volume of data or other qualities of the data. The two main elements on the

framework – feature creation and feature selection are important processes to produce

effective features set. Including many redundant or high correlated features in the process

of training data will have a negative influence on classification of ML models in terms of

overfitting. To reduce the overfitting risk, I added the feature selection processes in the

framework as a part of feature engineering. The feature selection component contains two

major feature measurement methods: correlation covariance and feature importance.

Figure 1-6. A flow for building an effective classification ML/DL model

(This is further explained in Chapter 3)

Figure 1-6 shows a flow for building an effective classification machine learning or deep

learning model. This describes a whole structure of steps in data preparation and training

ML/DL models. Both steps of data preparation and training and prediction model have

the potential for improving the performance of a fraud detection model. In the case of

financial fraud detection, many studies have focused on the training and prediction model

steps by adjusting parameters in the selected ML/DL algorithms or building a new

25 | P a g e

prediction model with a novel concepts. On the other hand, the number of studies that

have mainly dealt with the data preparation portion including feature engineering for

financial fraud detection is very few . Therefore, my research scope focuses on the data

preparation phases which consists of data cleaning, feature engineering and feature

selection. The prepared dataset that is used for training a ML or DL model have still a

chance to make the models improve to a better accuracy.

The main objectives of this research are:

• To explore the current state of research in fraud detection and the cases specifically

using feature engineering methods for classification models, and to identify the main

issues, existing approaches, and available methods for improving performance of the

fraud detection models. See Chapter 2 for detailed exploration.

• To investigate database structure tables of banking transaction and to consider which

attributes in each table are constantly available to be extracted. See Chapter 3 for

concrete idea of which attributes commonly exist on banking data.

• To investigate how to deal with character string datatype values and missing values

in each attribute. See Chapter 3 for exploration of appropriate techniques.

• To research into both methods of feature engineering and selection for fraud detection

and to consider how to create new features that express customer’s behaviour during

a transaction and reveal the different aspect of input values for making machine

learning or deep learning models distinguish between normal and fraud easier. Also,

to consider how to select the effective features from all attributes. See Chapter 3 for

a detailed methods of creating and selecting effective features.

26 | P a g e

• To design a new framework that provides an effective feature set which can be

prepared by both in terms of feature engineering and feature selection. See Chapter 3

for more details.

• To analyse the multidimensional banking dataset which was provided by a private

European Bank in terms of both the exploratory data analysis with visualisation and

the assessment of available attributes in the dataset. See Chapter 4 for analysis of the

given data.

• To implement the feature engineering framework by using the actual banking dataset

for evaluating the effectiveness of a use of the engineered features. Therefore, the

models are built by the different types of the datasets that are the raw dataset, all

features set, and the selected features set. The model’s performances are evaluated by

some classifier metrics. See Chapter 5 for performance evaluation by using

appropriate metrics.

1.3. Research Methodology

The methodology of the proposed research combines some methods, which are needed to

fulfil individual objectives. The methodology consists of three different phases: analytical

approach, practical approach, and observational approach, to build a new feature

engineering framework that can provide an effective features set for various machine

learning algorithms. In the analytical approach, there are mainly three key topics which

are needed to analyse: retrievable data, feature engineering methods, and ML and DL

algorithms commonly used as a fraud detection model. Scenarios for feature generation

without considering what data is consistently obtainable may not be generalizable. First,

that is because it may not be possible to obtain the expected feature values for applying

27 | P a g e

feature aggregation. Second, it is necessary to understand the current situation of feature

engineering methods and frameworks for finding out the gap between the current methods

and hypothesized methods in my research. Lastly, investigating what algorithms are

commonly used as a fraud detection model is important because a new dataset prepared

through the processes in the framework needs to improve the performance of any

algorithms of the fraud detection model. The analytical approach will mainly be applied

during the research stage when there is a need for crucial analysis and comparison of other

methods. In practical approach, there are three topics: exploratory data analysis (EDA),

framework development and adjustment. EDA is to visualise trends and patterns in the

obtained data. Before applying EDA using the data directly in the feature engineering

processes, it is important to grasp the data tendency of what data is dealt with in the

experiment. Based on the analysis of the feature engineering methods in the analytical

approach, the feature engineering framework is developed and implemented. During this

phase, it is significant to apply the planned feature engineering methods to the actual data

obtained, understand the gaps between the resulting values, and then adjust the method if

necessary. The observation approach will be applied for measuring the effect of the

created feature set by comparing the performance of each machine and deep learning

models and evaluating the use of the feature engineering framework. The objective of the

observational approach is to determine whether the datasets generated are valid based on

metrics that can accurately assess the performance of fraud detection models based on

imbalanced data.

1.3.1. Analytical Approach

Before collecting data, it is important to consider a scenario of customer’s behaviour

during a transaction and which data is available to extract. Many studies on financial fraud

28 | P a g e

detection focused on how to create effective features for a machine learning algorithm

without considering whether data is available or not. However, in this research, analysing

what data is available on online banking system is essential because this makes it possible

to generate features that have a certain effect regardless of which financial institution uses

them.

Therefore, it is necessary to grasp what data can be obtained from a typical bank system,

and to conceptualize what kind of feature values related to customer behaviour can be

generated from those data. That is the analytical approach.

 Data Collection – collect data from various sources which are connected to

transactional banking database. The collected data will need to be arranged for

creating valuable features that will improve accuracy of fraud detection models. Two

different categories of data will be collected:

• Dynamic data- shows user activities or behaviour on online banking and via ATM

machine, such as transaction records, amount, location, IP address, latency, access

record, timestamp, etc and will be frequently updated.

• Static data - indicates general information with relation to customer and bank

information, i.e., name, age, birthday, email, home address, phone number, bank

account, etc and will be seldom updated.

 Data Preparation – considering how to deal with missing data 1and the type of

character strings will be demanded because the collected data from various sources

usually has a lot of missing variables and the different types of data. Inappropriate

data processing will cause lowering the prediction accuracy of machine learning

models. This will focus on using technique of dealing with missing values and

29 | P a g e

converting the type of character strings to numeric types correctly and efficiently.

Therefore, this will provide deeper insight into data preparation for fraud detection.

 Feature Engineering Exploration – investigate techniques of feature engineering

for classification between feature aggregation and transformation. Feature

aggregation indicates how to create new features which can show the difference

between normal and fraudulent behaviour on transaction. Feature transformation

indicates how to create new features which will represent latent pattern of the raw

data by applying various mathematical functions. Also, this will be needed to study

the feasibility of these techniques on general transactional banking dataset.

 Feature Evaluation Exploration– investigate the correlation between feature

creation and selection in terms of the effectiveness of impact on prediction accuracy

of ML models. And then, determine methods on how to evaluate and select the

features in the dataset.

 Analytical approach is further expanded in Chapter 3 and 4.

1.3.2. Practical Approach

 Framework Development and Implementation– This is to investigate available

toolsets and a software for developing the framework that can provide a fundamental

platform to achieve my objectives. This will include the data preparation such as data

cleaning and handling missing values. Also, investigation on which machine learning

and deep learning algorithms best fit the needs for evaluating the effectiveness of the

created feature set will be addressed.

30 | P a g e

 Model Development – This is to build fraud detection models by training each

algorithm with the three different types of datasets: an original dataset, a dataset

including all created new features by feature engineering and the selected features

dataset.

 Practical approach is further expanded in Chapter 5.

1.3.3. Observation Approach

 Performance Evaluation and Analysing – both performance of ML/DL models and

the effectiveness of using the feature set prepared by the framework will be evaluated

with respect to the predictions with the actual data. Various comparison of the

performance between the different types of models will be analysed.

 Observation approach is covered in detail in Chapter 5.

31 | P a g e

1.4. Summary Overview Diagram

The below diagram illustrates an overview of the approaches for the research. In the thesis,

I proceed each phase in order.

Figure 1-7. Overview of the approach steps in the thesis

32 | P a g e

1.5. The Contributions to Knowledge

The research conceptualizes a feature engineering framework for financial fraud detection

that creates an effective feature set for either machine learning or deep learning models

based on customer’s behaviour and information on transactions. Additionally, feature

transformation methods which are popularly utilised for dealing with high-resolution data

in image processing are incorporated to the feature creation process in the framework for

financial fraud detection. Furthermore, it also covers feature selection process that

remove unnecessary features from the dataset to avoid overfitting or a negative influence

on the performance of models in the framework. In many studies for fraud detection using

feature engineering, the three methods of feature aggregation and feature transformation

and feature selection were not incorporated consistently. Particularly, there were not

feature engineering methods for preparing better input data for deep learning in

classification. In my research hypothesis, a features set created by the processes in the

framework will enable ML/DL models to detect fraudulent transaction with better

accuracy than the models without the features. More specifically, the research

contributions include:

• Develop a new feature engineering framework that consists of major three feature

engineering methods namely feature aggregation, feature transformation and feature

selection consistently. There are not many features engineering-based frameworks in

financial fraud detection. Few frameworks exist for financial fraud detection;

however, they are only based on feature creation but not feature selection.

• Build a new feature engineering creation method which combines both feature

aggregation based on customer behaviour and feature transformation for revealing

33 | P a g e

new data patterns. Before this research, there were no feature creation method using

both different feature engineering of feature aggregation and feature transformation.

In particular, feature transformation was not used in the financial fraud detection case

and was mainly used in image processing.

• Demonstrate the effectiveness of features prepared through the processes and

techniques in the framework by using an actual online banking transaction dataset and

comparing the performance between a baseline model and a model built with an

optimised feature set.

• Generate the feature engineering framework for both machine learning and deep

learning that are popularly used in fraud detection cases. It was proved that both

algorithms have a common effect using the created features set based on real-life bank

transactions. Before this research and in many relevant studies either machine

learning or deep learning were used but not both.

1.6. Structure of the thesis

To report the findings of the research in detail, this document is organized as follows:

Chapter 2: Literature Review

In this chapter, various research papers and articles have been reviewed and studied in

the context of the feature engineering, some algorithms of machine learning and deep

learning for fraud detection. The description of the existing research, methodologies and

proposed solutions to problems closely related to feature engineering, and each algorithm

how to deal with input values were performed.

34 | P a g e

Chapter 3: A Feature Engineering Framework for Financial Fraud Detection

Models

This chapter forms the core of the thesis. It provides details about the conceptual

framework of feature engineering for fraud detection. The core focused has been on

methods of feature engineering where feature creation and selection are discussed. This

is followed by fraud detection models that provide insight into handling the input data

and learning capabilities and are discussed with the appropriate metrices for performance

evaluation.

Chapter 4: Online Banking Transaction Data

This chapter provides exploratory data analysis using an actual banking transaction

dataset and summarize the key observations based on the exploratory data analysis.

Chapter 5: Experiments and Validation of the Framework

Based on the conceptual framework discussed in Chapter 3, this chapter provides

experimental approaches using the actual online transaction dataset that is explained in

Chapter 4. The chapter also evaluates and compares the performances of the models based

on appropriate criteria.

Chapter 6: Conclusion and Future Work

The final chapter provides conclusion on the thesis, describes what has been achieved,

recaps on the research contribution and recommendations for the further work.

35 | P a g e

2. Literature Review

Research hypothesis states that the performance of either machine learning or deep

learning for financial fraud detection can be improved if effective features set that is

created by using all methods of feature aggregation and feature transformation and feature

selection is consistently used in the framework. The relevant literature review was

conducted to support the research hypothesis and to produce a novel feature engineering

for financial fraud detection.

2.1. Machine Learning Algorithms

Many different methods/algorithms of machine learning (ML) algorithms are used for

detecting fraudulent transactions across a variety of areas such as a credit card, online

payment and remote banking. Both supervised learning and unsupervised learning are

popularly used as a fraud detection model in a variety of the related research papers.

2.1.1. Supervised Learning

Supervised learning uses training data including desired outputs which is also called a

target for learning the data patterns and it is typically used for classification such as fraud

detection (fraudster or customer).

Here are some of the popular supervised learning algorithms used in the studies of fraud

detection.

I. Support Vector Machines (SVMs)

SVMs are a popular supervised learning models that classifies input samples as fraud or

not in some studies of fraud detection [4][27][28]. SVM for binary classification uses a

36 | P a g e

boundary line, which is called an optimal hyperplane, to separate the two classes between

fraud and non-fraud. The boundary line does not only separate the classes but also settles

as far away from the closest samples between two features: x1 and x2 as possible as shown

in Figure 2-1. The distance between the optimal hyperplane and the closest data point

from the two classes is called the margin. SVM calculates the maximum margin by using

the Euclidian norm to determine an optimal hyperplane in dimensions greater than 2 for

better classification. For instance, in the two features of x1 and x2, the best hyperplane can

separate two classes (labelled ‘○’ and ‘◇’ shown in Figure 2-1) between the points of

both closest samples.

Figure 2-1. Support vector machine approach [89]

A linear classifier is defined as ℎ��� = sin ����� + �� and it is assumed a binary

classification setting with labels {+1,−1}. The margin (γ) is the distance from the hyperplane

to the closest samples.

Figure 2-2. The maximum margin hyperplane [90]

37 | P a g e

A hyperplane is determined by a vector � which is the normal vector. The hyperplane is

described as � = ��|��� + � = 0� . The equations of ��� − � =1 (anything is one

class) and ��� − � = −1 (anything is other class) are calculated to determine the best

position in Figure 2-2.

D. Adbelhamid et al. [4] suggested the automated fraud detection system using SVMs for

detecting various type of banking fraudulence. In the study, they reinforced both

supervised learning and unsupervised learning by hybridizing two classes as illustrated in

Figure 2-3. Their technique is to separate fraud transaction from non-fraud transactions

to avoid a false generalisation by filtering the positive part. Learning only single class

could well reduce non-fraud transactions space and extend the space of fraud transactions

by using hybridisation. They built the SVM models with three different datasets for

testing various types of frauds: credit card fraud, money laundering and mortgage. Based

on the hybridisation of single class and binary SVM methods, the performance of the

models was significantly improved compared to similar studies using other algorithms.

Figure 2-3. Hybridization of supervised and unsupervised learning [27]

D.Zang et al. [27] also used a weighted SVM technique to detect credit card fraud. The

SVM technique considers the cost of misclassification by using transaction balances.

38 | P a g e

Weights in the paper were introduced as the penalty of misclassification and reflected the

financial importance between two classes of fraud and non-fraud transactions. Credit card

fraud dataset is usually imbalanced. The weighted SVM model with random under

sampling method as a weight for data points of fraud was built and applied to samples of

credit card transactions in a European bank. The result described that using the weighed

SVM technique could dramatically improve the detection models built with other

algorithms. However, the most difficulties of using SVM are selecting appropriate hyper

parameters and dealing with larger data sets.

II. Decision Trees (DT)

Decision Trees (DT) is a supervised learning method for classification, and it is used to

visually represent decisions by making processes such as tree structure. DT generally

begins with a single node, where diverges in possible outcomes. In the trees, each node

represents target labels while the outcomes represent junctions of features bringing to

target labels. Figure 2-4 shows the diagram of a possible decision tree for detecting

fraudulent action based on several input features. Each question of features is the node.

The judgements of “yes” or “no” draw the branches in the tree to the next child nodes. If

the larger amount than average was spent in 24 hours and several purchases were occurred

in a day from risky venders, it is classified as fraud with 90 percent probability.

39 | P a g e

Figure 2-4. Decision tree for fraud detection [7]

DT decides the optimal choice based on purity by calculating the information gain for

splitting nodes with the highest value. The information gain is measured by entropy which

is the criterion of impurity which leads to how a DT model decides to split the data. The

entropy equation is as below:

 ���� = ∑ − �� log" ��#�$% (eq. 2.1)

Where �� is the probability of a class � which could be a negative class or a positive class.

The information gain is simply calculated by subtracting the entropy of Y given X from

the entropy of Y, which is given an additional part of information X about Y as written

below:

&' �(, *� = ��(� − ��(|*� (eq. 2.2)

In many studies of fraud detection, DT is used as one of supervised learning models. A.

Makolo et al. [29], E.A. Amusan [30] and P. Tiwari [31] use decision trees to build a

model for credit card fraud detection and compare performances with other machine

learning models. Although DT’s models are not the best models with highest

performance, the most advantage of using DT is to provide the highly interpretation of

the model comparing with other ML models.

40 | P a g e

III. Random Forest (RF)

Random forest is a supervised learning algorithm which manipulates many individual

decision trees. Each DT casts a vote for a class prediction and the most voted class

becomes the model’s prediction as shown in Figure 2-5.

Figure 2-5. Random forest [8]

One of the disadvantages of using DT is overfitting and bias. DT keeps generating new

nodes to fit the data very well including noise data, but it will become too complex tree

which indicates that an accuracy of the DT model is very high with the train data but

making many mistakes with new data. On that point, RF can mitigate overfitting by

adopting bagging method, which is also known as bootstrap technique, that can build

multiple DT models with different combinations of training data selected randomly. RF

is a powerful and popular method in many studies for financial fraud detection.

C. Liu et al. [8] selected random forest as a financial fraud detection model. They used a

RF model with a variety of combination of variables based on the feature importance

measurement, feature selection and correlation analysis. The RF model could improve

the detection accuracy efficiently. M. S. Kumar et al. [32] introduced a credit card fraud

detection system using random forest algorithm. The accuracy of the detection system

41 | P a g e

was about 90%. R. Sailusha et al. [33] also used RF for credit card fraud detection in both

online transactions and e-commerce systems. In order to verify the effect of the RF model,

they used the Adaboost algorithm for comparison. The results of two models were

measured by accuracy, recall, precision and F1-score. The RF model surpassed the

Adaboost model in all results. However, the RF has the limit of taking long time when it

deals with a vast number of trees. It is not effective for real-time predictions.

IV. Neural Networks (NNs)

Neural networks (NN), also known as artificial neural networks (ANNs), are series of

algorithms that are inspired by the networks of biological neurons discovered in the

human brain and consist of multiple node layers with threshold and weights, containing

an input layer, one or more hidden layers and output layer. Each node is a perceptron

which is the simplest NNs architectures and feeds the signal generated by multiple

connections from nodes of the input layer to nodes of the output layer through the hidden

layer(s) as shown in Figure2-6.

Figure 2-6. Artificial neural network architecture [91]

The depicted in Figure 2-7 below shows the fundamental function of neural network.

Each input data (+,, +- … , +/) is generated with its individual weight (0,, 0- … , 0/) and

42 | P a g e

then these outputs are added (0, ∗ +, + 0- ∗ +- + …). The output of this activation

function becomes y.

Figure 2-7. Activation function for NNs [35]

The most common formula known as binary threshold neuron becomes like:

 2 = � + ∑ ��� �� (eq. 2.3)

 3 = 4 1 �5 2 ≥ 00 78ℎ�9���� (eq. 2.4)

NNs (ANNs) are applied in various studies in financial fraud detection as a fundamental

idea.

R.Patidar et al. [35] have adopted NNs with genetic algorithm for credit card fraud

detection that uses individual features in the input layer to train the card holder’s traits

and behaviour as shown in Figure 2-8. Genetic algorithm is used for determining the best

number of hidden layers and nodes for credit card fraud detection. They adopted

supervised learning feed forward back propagation method in NNs. When a new

transaction arrives for approval, it is forwarded to a stream of authorization system that

delivers the information for classifying fraud transaction or not. Performance of NNs

combined with genetic algorithm was very efficient.

43 | P a g e

Figure 2-8. Layer of ANNs in credit card [36]

M. Kolali Khormuji et al. [36] used a cascade artificial neural networks for boosting

recognition rate and accuracy of the fraud detection system. The cascade ANNs system

aimed at achieving a very high recognition rate and reliability rate by gating networks

that were utilised for congregating the confidence values of a few parallel artificial neural

networks. In order to define the best weights for taking a balance between accuracy rate

and reliability rate, the imperialist competitive algorithm (ICA) was used to achieve the

whole optimal performance. ICA is a new progressive algorithm which has been proven

in some other studies of having a good performance using imperialistic competition. In

their experiments, the cascade ANNs with ICA led to the best performance to detect fraud

transactions with about 98% accuracy.

There are a few disadvantages of neural networks. One of disadvantages is its black-box

model. In comparison with a DT model, it is difficult to understand that why or how the

NN models reached a certain output. Another disadvantage of using NN is that it takes

much longer time to calculate input data than traditional ML algorithms because the

neural network algorithm proceeds each feature to multiple connecting nodes in the

44 | P a g e

hidden layers. Therefore, it requires the quantity of computational power and sufficient

memory for parallel processing and takes a high cost.

2.1.2. Unsupervised Learning

Unsupervised learning algorithm is suitable for classifying input data into some similar

groups without using labelled data that is predefined tags like a fraud or not in the fraud

detection case. It learns positions of each variable in input features and measures distances

between them for clustering around similar groups to find the hidden data pattern from

the given data. It has been used in a variety of studies in financial fraud detections for

discovering fraud patterns by grouping customers in similar data patterns (Figure 2-9).

Figure 2-9. Image of grouping customers in similar data pattern

I. Clustering (K-Means)

K-means clustering is the most popular unsupervised learning algorithm and is a centroid

-based clustering algorithm that calculates the distance between a centroid data point and

given data point. In order to discover underlying patterns, K-means inspects a settled

number k of clusters in dataset. The number of k will be regarded as the number of

centroids which is the centre of the cluster. After defining the number of k, k-means

assigns all data points into the nearest cluster as shown in Figure 2-10.

45 | P a g e

Figure 2-10. K-means clustering [92]

The processes of k-means algorithm are as below:

i. Initialise the centre of the cluster by shuffling the dataset and randomly

choosing k data points for specifying number of clusters k.

ii. Calculate the sum of the squared distance between data points and all centre

of data points (centroids).

iii. Determine each data point to the centroid.

iv. Estimate the centroids for the clusters by measuring the average of each data

point that belongs to each cluster.

The objective of k-means is to minimize the squared error function. The objective

function is as follows:

 : = ∑ ∑ ��;<�� −=;$%>�$% ?;‖" (eq. 2.5)

Where ��; = 1 for data point xi if it exists in cluster k. If it does not belong to cluster k,

then ��; = 0. µk is the centre point of xi ‘s cluster.

46 | P a g e

In order to prevent customers from fraudulent online transaction, P. Singh [38] used the

k-means method for clustering locations based on each IP address where customers have

spent money via e-banking and the purposes of what they have spent money for.

M. Hegazy [39], B. Angelin [40] and B.A. Abdulsalami [41] also used the K-means

clustering algorithm for discovering different behaviours between customers and

fraudsters using credit cards by data mining.

II. Isolation Forest (IF)

Isolation forest (IF) is an unsupervised learning algorithm for anomaly detection and

performs “isolation” anomalies by building decision tresses over features randomly. First

two features are randomly selected and then, the data points are split by randomly

choosing a value of the selected features between the minimum and the maximum. IF

calculate anomaly score to determine how anomalous a data point is [94]. The algorithm

uses the following anomaly score given a data point X and a sample size of n:

 ��*, �� = 2B C�D�E��
F�G� (eq. 2.6)

Where h(x) is the median exploration height for x from the isolation trees assembled,

while c(n) is the median exploration depth to detect any normal node in the isolation trees.

n is the number of external nodes which is located at the bottom of a tree in the sample

size. The anomaly scores lie between 0 and 1.

When the observation score is close to 1, the path height (depth) is very short and then,

the data point is simply isolated. It is judged as anomaly. When the observation score is

smaller than 0.5, the path hight (depth) is long, and then, it is judged as a normal data

point as illustrated in Figure 2-11.

47 | P a g e

Figure 2-11. Anomaly detection with isolation forest [94]

The scores for each tree are calculated and the averages cross different trees obtain the

final anomaly score for whole forest. The closest anomaly score is 1. Figures 2-12 and 2-

13 show the sub dataset that was split by random tree choice based on the isolated data

point to create a forest. Figure 2-12 describes the example of isolating a non-anomalous

point whereas Figure 2-13 shows the example of isolating an anomalous point.

Figure 2-12. Example of isolating a non-anomalous point in a 2D gaussian distribution [41]

Figure 2-13. Example of isolating an anomalous point in a 2D gaussian distribution [41]

48 | P a g e

There are many studies for credit card fraud detection using IF algorithm [42] [43] [44]

[45] and they demonstrated and achieved a high accuracy of the fraud detection systems

using IF algorithm.

S. S. Negi et al. [45] proposed to use IF and local outlier factor (LOF) algorithms. They

showed higher effectiveness of using these algorithms than other machine learning

algorithms such as random forest, naïve bays, and support vector machine. The accuracy

of the IF model was approximately 99% which was the best score among other model’s

ones. In the several studies for credit card fraud detection [42] [43] [44], they also

proposed to use IF algorithms which is good at detecting anomaly samples and will

achieve a great accuracy.

III. Local Outlier Factor (LOF)

Local outlier factor is an unsupervised learning algorithm for anomaly detection and

calculates the local density deviation of an input data point regarding its neighbours.

Outliers are described based on a concept of a local density. The local density is provided

by k-nearest neighbours, whose distance is used to evaluate the density. Outliers are

points that have a substantially lower frequency than their neighbours. The number of

neighbours is typically set larger than the minimum number of cases a cluster must

contain, thus other samples can be local outliers relating to the cluster.

All local reachable densities of each point are calculated as below [46]:

 H9I J�7� = ‖K;�L�‖
∑ MNO#PQ�RS ;�LT←L�VT∈XY�V� (eq. 2.7)

‖ZJ�7�‖ indicates number of neighbours. Refer to the following equation, where o is the

point in the centre and o’ is a point near it.

 9�[\ℎI��8 J�7 ← 7]� = max�I��8 J�7�, I��8�7, 7]�� (eq. 2.8)

49 | P a g e

To calculate the LOF score for a specific point, first, the k-nearest neighbours ‖ZJ�7�‖

should be determined for each data point. Second, the local density for a data point is

estimated by calculating H9I J�7� by using the ‖ZJ�7�‖ . Then, the LOF score is

calculated by the following equation:

 abc J�7� = ∑ def YgVTh
def Y�V�VT∈XY �V�

‖K ;�L�‖ (eq. 2.9)

 = ∑ H9I J�7]� ∗ ∑ 9�[\ℎI��8 J�7] ← 7�LT∈K;�L�LT∈ K;�L� (eq. 2.10)

The Figure 2-14 below describes the local outlier factor with the minimum number of set

3 nearest neighbours, which is referred to as Min Pts.

Figure 2-14. The logic of local outlier factor [46]

This algorithm is also popularly used in several studies for credit card fraud detection [46]

[47] [48].

S. Jaiswal et al. [47] and H. John al. [46] also suggested to use both algorithms of IF and

LOF for credit card fraud detection because the credit card datasets are highly skewed

and imbalance. These unsupervised learning algorithms evaluate the different data point

between a fraud and customer by calculating the local deviation of the density of the input

50 | P a g e

case in relation to its neighbours. In their experiment, the LOF model achieved highest

accuracy rate of 97% followed by the IF (76%).

D. Tripathi et al. [48] suggested to use LOF for credit card fraud detection. They evaluated

the performance over the different nearest neighbours regarding the rates of true negative

and false negative, accuracy of the detection system. In their experiment, they used the

two types of datasets that are both fraudulent transaction dataset and imbalance target

data. Dataset 1 contains 100,000 transactions with 2,659 fraudulent actions, which is

100:3 ratio of the imbalance transaction cases, published in UCSD-FLCO competition.

Dataset 2 has 94,682 transactions with 2,094 fraudulent transactions, which is 9:3 ratio,

provided by the University of California, San Diego. The LOF model was built with these

datasets and different K-nearest neighbours. The results showed that the accuracy of each

model is lying between 60 and 69% for dataset 1 and 96% for dataset 2 with alternative

neighbours. The larger volumes of transactions were precisely detected by the LOF model.

2.3. Deep Learning

Deep learning is a subfield of machine learning algorithms and uses a structure of multiple

layers based on neural networks shown in Figure 2-15. It is designed and works like a

human brain. The layers in deep learning can learn implied representation of input raw

data without feature extraction that focuses on reducing the number of features from the

original set by creating new summarised original features set.

51 | P a g e

Figure 2-15. Deep learning neural networks [49]

The step of feature extraction is contained in the neural network layers. As described in

the content of NNs previously, the typical NNs is composed of several layers, input

layer, two or more hidden layers and output layer. The concept of deep learning is

fundamentally same as NNs.

Deep learning has been popularly used for image, audio and video recognitions in terms

of coping with big data in depth. It learns input data by dividing it into a plurality of

segmented data patterns through many hidden layers. Recently it came to be used for

classification issues such as fraud detection in financial area.

I. Autoencoder Neural Networks (AE)

Autoencoder is an unsupervised deep learning algorithm [49] and a type of ANNs as

shown in Figure 2-16. It learns how to compress and decompress input data for

representation of the original input data and discovers specific features from the given

data during the process of data compression, also known as dimensionality reduction, and

how to map the compressed features to the latent layer. The autoencoder finds out how to

reconstruct the input data from mapping the features. The most advantage of using

autoencoder for financial fraud detection is that autoencoder does not need fraudulent

transaction data to learn fraud patterns.

52 | P a g e

Figure 2-16. Autoencoder with hidden layers [49]

In order to measure how well the input data can be reconstructed, a loss function is

calculated for updating different weights and reducing the loss between the represented

data and the original data. Autoencoder uses unlabelled training data {x (1), x (2), x (3),

…}, where x (i) Є Rn and applies backpropagation to learn how to approximate to a

function ℎj,k(x) ≈ �l as displayed in Figure 2-17. The output �l is similar to x.

Figure 2-17. Autoencoder neural networks [49]

There are three main layers of autoencoder: encoder, hidden and decode.

(a) Encoder Layer

An autoencoder model learns how to reduce dimensions of input features and compress

the given data into an encoded representation.

53 | P a g e

(b) Hidden Layer

This layer holds the compressed representation of the given data and expresses the most

compacted dimensional features.

(c) Decoder Layer

The model learns how to reconstruct the compressed data to the original data by using the

loss function and calculates the loss between the original data and the reconstructed data.

The loss function l (x,�l) is measured by gradient descent over the parameters of encoder

and decoder networks [49]:

l (x,�l) =‖� − �l‖" = <� − ℎj,k��� <"
 (eq.2.11)

The equation of encoder and decoder are given as follows [49]:

 Encoder h(x) = ∑(Wx) or Tanh(Wx) (eq.2.12)

 Decoder ℎj,k��� = ∑(W*h(x)) or Tanh(W*h(x)) (eq.2.13)

The proportion of fraud transaction data is very little whereas the number of legitimate

transaction data is very large. It is difficult to keep track of new fraudulent behaviour and

state-of-the-art fraud schemes from a few fraud samples because fraudulent actions are

not carried out by one person. On the other hand, legitimate transactions are carried out

by the same customer who holds his or her own bank account or credit card. Autoencoder

can reconstruct customers’ behaviour patterns by learning from specific features among

large history transaction data. Autoencoder models judge fraudulent data by using loss

function with mean squared error (MSE) that measures the error distance of variables in

specific features between the learnt data and new input data. There are some related

54 | P a g e

studies of fraud detection using the autoencoder model [49] [50] [51] [52] and they chose

autoencoder techniques from the perspective of coping with unbalanced transaction

datasets. They commonly use two popular techniques of feature engineering, which are

principal component analysis (PCA) and standardisation.

PCA is a technique of dimensionality reduction and uses orthogonal transformation that

computes covariance matrix which represents the correlation between two variables.

Unlike machine learning models, deep learning is essential for data processing

standardisation as it standardises and weight each attribute to measure how much specific

features influence.

Standardisation is an essential data processing for using deep learning because deep

learning multiplies each attribute and sets the weighting coefficients. Deep learning has

not implemented feature engineering on input data from the point of view of adding latent

data patterns.

Fraud transaction data is always imbalanced and needs to be carefully handled while using

machine learning algorithms. Popular methods of coping with imbalanced datasets are

oversampling and under sampling which are techniques to balance the class distribution.

Oversampling is utilised to synthesise new samples of fraudulent classes but, it will take

in noise. Under sampling removes samples from the majority class in the trained dataset

but, it may remove useful information or important data.

Autoencoder is good for coping with imbalanced datasets without considering the

minority class issue because it only uses the majority class samples. Some researches for

credit card fraud detection use an autoencoder model [50] [51] [52]. P.Jiang et al. [50]

designed a six-layer autoencoder for the dataset and selected SoftMax with cross-entropy

55 | P a g e

as the loss function for final classification to detect credit card fraud. The autoencoder

model improved the classification accuracy of the fraud class when the threshold was

equal to 0.6 rather than the other rate of thresholds. A. Pumsirirat et al. [52] used deep

learning based on auto-encoder and restricted Boltzmann machine, also called stochastic

Hopfield network with hidden units, for credit card fraud detection. Fraudsters gain new

technology that enables them to steal money from customers. Their autoencoder applied

backpropagation by setting the input data equal to the output data. Restricted Boltzmann

machine is a set of random quantities having the memoryless property of a stochastic

process and it can reconstruct legitimate transactions to discover fraudsters from

legitimate patterns and holds two layers, input layer and hidden layer. They used the

library of TensorFlow to implement autoencoder and restricted Boltzmann machine. The

number of studies of financial fraud detection using autoencoder is not a few, but almost

all studies use only raw data as the input data for autoencoder. They do not apply feature

engineering methods to the raw data because DL methods have a function of feature

extraction to reduce the number of features in an input data and automatically learns

features at multiple levels by combining the input features.

II. Convolutional neural networks (CNNs)

The aim of CNNs is to find patterns in image features to recognise objects and classes via

convolutions where the input data filters the information and produces a feature map.

CNNs is well suited to image classification and recognition and efficiently used for

helping to build a more robust feature space based on a signal in Figure 2-18.

56 | P a g e

Figure 2-18. Convolutional neural networks architecture [54]

CNNs transforms the input data from the input layer through all connected layers into a

set of class scores provided by the output layer. Although there are a variety of the CNN

architecture, they are based on the pattern of layers as shown in Figure 2-19. There are

three main groups: input layer, feature extraction layers, classification layers. The input

layer accepts three-dimensional input commonly in the form spatially of the size of the

image and has a depth representation of the colour channels. The feature extraction layers

consist of a general repeating pattern of the sequence: convolution layer and pooling

layer. Convolutional layers have parameters for the layer and additional hyperparameters.

Pooling layers are generally inserted between successive convolutional layers and reduce

the data representation progressively over the network. They operate independently on

every depth slice of the input. These layers discover several features in the images and

progressively construct higher-order features. This corresponds directly to the continuing

theme in deep learning by which features are automatically learned as opposed to

traditionally hand engineered. Lastly, classification layers in which one or more fully

connected layers take the higher-order features produce class probabilities.

57 | P a g e

Figure 2-19. Basic structure of CNNs [54]

CNNs are applied in many cases of dealing with MRI data [55], 3D shape data [56] and

graph data [56]. Even though the main purpose of using CNNs in a variety of studies is

to handle the specific image and audio data, there are seldom cases using CNNs for

classification such as financial fraud detection.

Z. Zhang et.al [57] proposes a fraud detection model using the convolutional neural

network in the online transaction field. In the paper, the CNN model constructed an input

feature sequencing layer that carries out the reorganisation of raw transaction features to

assemble different convolutional patterns. The experimental data was provided by a

commercial bank, and it was a total of about five million data of a six-month sequential

transaction data. They used the sequential transaction data only and processed the data to

multiple dimensions for using CNNs model. Their purpose was not to learn fraud

behaviour but tried to reconstruct the input by handling the processed transaction data as

well as image or audio records.

58 | P a g e

III. Recurrent neural networks (RNNs)

RNNs means chaining multiple layers to create a sequence of dependent computations

and are influenced by what it has learnt from the past which is also called as memories.

When RNNs learn input data, they recall things learnt from prior inputs while producing

outputs. A different output could be produced with the same input based on previous

inputs in the series. As shown in Figure 2-20, x1, x2,x3 are inputs where h1,h2,h3 indicate

hidden layers. RNNs use a loss function to calculate the outputs (y1,y2,y3). The loss is

later backpropagated and weights (W) are updated.

Figure 2-20. Recurrent neural networks with a hidden state [94]

The network in RNNs may have many hidden states and the same activation function in

each hidden state is computed and produces the output of each layer. The activation

function is defined as below [94]:

 ℎ�S� = 5�ℎ�SB%�, ��S�, m� (eq.2.14)

Where activation function f (), ℎ�SB%�: previous step, ��S�: input, m: parameters

59 | P a g e

RNNs can have loops in the connections and model temporal behaviour gain accuracy in

domains. RNNs is suitable for dealing with sequential data such as time-series prediction,

video analysis, and music information retrieval. RNNs are a superset of feed-forward

neural networks but they add the concept of recurrent connections. The connections span

adjustment time-steps such as a previous time-step, giving the model the concept of time.

Although the conventional connections do not have cycles in recurrent neural networks,

recurrent connections can form cycles including connections back to the original neurons

themselves at feature time-steps as displayed in Figure 2-21.

Figure 2-21. RNNs architecture [59]

The output is calculated from the hidden state at the given time-step. The previous input

vector at the precious time step will influence the ongoing output at the ongoing time-

step through the recurrent links.

Long Short-Term Memory (LSTM) networks are the most general used variation of

RNNs, which were introduced in 1997 by Hochreiter and Schmidhuber [59] and

remember values over arbitrary intervals. The crucial component of the LSTM is the

memory cell and both gates: the forget gate and the input gate. The contents of memory

60 | P a g e

cell are modulated by the input gates and forget gates. The gating structure allows

information to be retained across many time-steps and consequently allows gradients to

flow across many time-steps. LSTM networks consist of many connected LSTM cells

and perform well in how efficient they are during learning. In the concept of the feed-

forward multilayer neural networks with RNNs, each node connects the output of a

hidden layer neuron as an input to the same hidden layer neuron as shown in Figure 2-22.

Figure 2-22. The concepts of RNNs with LSTM [62]

Each LSTM unit has two types of connections:

- Connections from the previous time-step (outputs of those units)

- Connections from the previous layer

The memory cell in an LSTM network is the central concept that allows the network to

maintain state over time. The basic layer accepts an input vector x and gives output y. The

output y is influenced by the input x and the history of all inputs. The layer is influenced

by the history of inputs through the recurrent connections. The RNN has some internal

state that is updated every time when a vector is inputted to the layer [60].

61 | P a g e

The data scientist team at Barclays which is a British multinational universal bank has

released the paper about RNNs for fraud detection on debit card transactions [61].

According to the paper, they used deep recurrent neural networks on debit card

transactions and compared the detection performance with classical ML approaches

which they have already introduced in the fraud detection system. Using the RNN model

with LSTM on their own a large transaction data had better performance than others.

I. Benchaji et al. [62] also developed a credit card fraud detection system using LSTM

networks as a sequence learner including transaction sequences. The purpose of the study

was to capture the historic purchase behaviour of credit card users with the goal of

improving accuracy of a fraud detection model on new incoming transactions. The dataset

they used was generated by a multi-agent-based simulation methodology based on a

sample of aggregated real transaction data from a private Spain bank and it contained

transactions corresponding to card purchases occurred for 180 days and consisted of

almost 600,000 transaction records with 7,200 fraudulent records. The LSTM model’s

performance was measured by using AUC and the Mean Square Error over the last 10

epochs and show quite high accuracy.

62 | P a g e

2.4. Feature Engineering

2.4.1. Feature Aggregation for Evolving Customer

Behaviour

In many studies of feature engineering in financial fraud detection, feature aggregation is

the most popular method to evolve a customer’s behaviour when credit card’s transaction

occurs. When a transaction is carried out, it links with some features such as time, date

and amount. The fundamental concept of feature aggregation is to create a new feature

by aggregating these individual feature based on customer behaviour. Aggregation makes

more detailed features that express customer’s own transactional patterns related to for

example to geo-location and the amount of money and the time stamp. Based on

customer’s ID, some action features are aggregated as the image shown in Figure 2-23.

Figure 2-23. Feature aggregation for evolving customer behaviour

For instance, aggregated features can be “the average amount by transaction device per

day in the past one week”, “number of transactions via a specific IP address per day in

the past two weeks” , “the average amount per day over the past one week” and “the

average amount spent per day over the past 15 days”.

63 | P a g e

Many studies of feature engineering for financial fraud detection have used feature

aggregation methods to create new features that expose customer’s behavioural patterns

on transaction [28] [65] [66] [67].

Zhang et al. [66] suggested a new feature engineering methodology that employs

homogeneity-oriented behaviour analysis (HOBA) which generates feature variables by

using a feature aggregation method based on recency, frequency and monetary (RFM)

and groups into homogenous fraudulent patterns for credit card fraud detection. The RFM

is popularly used for behaviour analysis in the marketing area. For instance, “How

recently did a credit card holder make a transaction”, “How often did a credit card holder

make transactions”, “How much did a credit card holder spend in transactions” and

“Where did a credit card holder make transactions”. These factors were created by feature

aggregation related to user’s behaviour analysis based on regular intervals during a

transaction as seen in Figure 2-24. To evaluate the effectiveness of applying the new

methodology, they used SVM, RF,CNN and RNN for the experiment. The performances

of the models built with the HOBA features exceeded the performances of the models

built without the HOBA features in all measures.

Figure 2-24. Applying the transaction aggregation process with the HOBA principle [66]

64 | P a g e

The methodology of using HOBA principle was used for only time stamps in their study.

However, it may not be sufficient to create aggregated features that reveal different

behaviour between a customer and fraud with only a time stamp attribute. Furthermore,

the HOBA principle does not contain a feature selection concept.

Y.Lucas et al. [65] suggested using a feature aggregation framework based on multi-

perspective Hidden Markov Models (HMMs) for credit card fraud detection. The history

of credit card transactions has the card holder’s habits of the timing or the place of using

a credit card in the last 24h. HMM is a sequence classification model which considers the

sequential properties of transaction data. The multi-perspective HMMs categorise a

symbol on transactions such as “merchant and amount”, “timing”, “fraud or customer”,”

genuine” and observe each symbol as the sequential event on transactions. The HMMs

calculate the likelihood of sequences of observed symbols and create features of each

event as shown in Table 2-1. To measure the effectiveness of the addition of the HMM

features, they use perspective, recall and AUC metrics, and random forest as an

experimental model. Consequently, the use of the HMM-based features improved the

precision-recall AUC of the random forest model significantly compared with the use of

the original features only.

Table 2-1. Aggregated feature creation on the card holders and the terminal [65]

65 | P a g e

A.Bahnsen et al. [67] deployed the transaction aggregation strategy and suggested to

create a new feature aggregation set for monitoring the spending customer’s behaviour

patterns based on evaluating the periodic behaviour of the transaction time using the

method of von Mises distribution. They used the aggregation strategy on real credit card

transaction data provided by a large European card institution and created time features

by performing calculations such as the number of transactions in the last 24 hours, the

sum of the transaction’s amounts in the same time period and so on. Table 2-2 provides

calculation example of aggregated features. Where xi
a1 is the number of transactions in

the last 24 hours, xi
a2 is the sum of the transaction’s amounts in the same time period, xi

a3

is the number of transactions with the same transaction type and same location in the last

24 hours and xi
a4 is the sum of the transactions amounts of the transactions with the same

type and location in the last 24 hours.

Table 2-2. Example of calculation of aggregated features [67]

As a result, they showed the effectiveness of using the aggregated features for a fraud

detection model by comparing the performance of machine learning models with/without

the aggregated features.

Both studies of Y.Lucas et al. [65] and A.Bahnsen et al. [67] have demonstrated the

impact of using feature engineering methods on data with improved performance of

machine learning models. In their works, they focused only on the feature aggregations

66 | P a g e

side to reveal latent fraudulent patterns. Transaction data in financial institutions has

many common attributes such as time, amount, balance, deposit, credit history, bank

information, access devices and so on. In the studies of using feature aggregation for

transaction data, they create quite similar patterns of features based on the user behaviour

on transactions specifically using time and amount. On the other hand, it may be

vulnerable to intrusion from advanced fraudulent schemes by only implementing feature

aggregation methods on the features pertaining to transaction.

2.4.2. Feature Transformation using Mathematical

Equations

There are several mathematical equations for transforming a single attribute into other

dimensions by mapping data. The most popular techniques of feature transformation are

counts, subtraction, multiplication, deviation, average, maximum, median, minimum,

standardisation, and logarithm transformation and they are introduced in some research

of feature engineering for improving machine learning performances by using

mathematical functions for classification problems [68] [69] [70] [71].

A.Nagaraja et al. [68] introduced an approach for any network anomaly detection using

feature transformation based on mathematical methods. They used feature clustering

based on the gaussian distribution function and a k-Nearest Neighbours (KNN) classifier

as a detection model for finding the similarity between observations. The distribution

function provides the equivalent deviation and threshold values to carry similarity

calculation, and then the distance function of KNN measures the distance of the

transformation features and determines if the input is fraud or a legitimate value. Using

transformation features improves the detection accuracy in comparison with using the

raw data only. J. Heaton [69] proved that performances of the studied classification

67 | P a g e

models with various types of transformed features were improved in comparison with

performances of the models with only raw features. In his study, he created new features

by using the sixteen methods of feature transformations such as counts, rational

differences, polynomials, distance formula, distance between quadratic roots, powers and

logarithms. Then, he selected the four model types of deep neural networks, gradient

boosted machines, random forests and support vector machine and evaluated the model’s

performances. F. Nargesian et al. [70] suggested to use Learning Feature Engineering

(LEF) which is a tool for automatically determining the effective features from the

performances based on the examinations of their mathematical transformations such as

log, square roots, round, sigmoid, subtraction, tanh, and the other four arithmetic

calculations. The LFE method is utilised with a multi-layer perceptron classifiers (MLP)

as the automated learning algorithm. It learns from each pattern of performances based

on the mathematical transformation data and then, selects the best features based on the

correlation coefficient as a new feature set. The result of comparison of the machine

learning (ML) models with using engineered features and non-engineered features shows

that the ML models with the engineered features improved a rate of classification

accuracy rather than using the independent original raw features. K. Veeramachaneni et

al. [71] introduced feature transformation tools and technique of using mathematical

equations such as average, sum, standardisation, Min-Max normalisation, and log

transformation. They examined created features by using feature transformation tools on

various classification issues, i.e., analysing online behaviour, health condition related

social networks and fraud detection, and presented the possibility of building classifiers

more effectively by using the transformed features set.

68 | P a g e

The all studies of A. Nagaraja et al. [68] , J. Heaton [69], F. Nargesian et al. [70], and K.

Veeramachaneni et al. [71] have demonstrated that the effectiveness of using feature

transformation methods. However, they have not considered feature creations based on

analysing human’s behaviour.

Feature transformation is primarily used for dealing with data of images and audio records

[15] [16], i.e., picture elements (pixel), MPEG-1 Audio Layer-3 (MP3) and Moving

Picture Experts Group (MPEG) and these datasets are used by deep learning techniques

for image or voice recognition. As explained about a deep learning structure in Section

2.3., deep learning processes input features by encoding and decoding and creates new

features through the multiple hidden layers and learns hierarchical feature representations

as shown in Figure 2-25 [72].

Figure 2-25. Example of how to deal with the image recognition data in deep learning processes [72]

Each layer can have a different number of neurons and each layer is fully linked to the

next layer. Figure 2-26 shows the three components of input0, input1, and input2, which

connects to the next node by using weights and biases accordingly. New transformed

69 | P a g e

features are created by combining each input with weights in the next layer, which is

known as feature engineering in deep learning.

Figure 2-26. Connections between the nodes with each weight [95]

For deep learning algorithms, feature transformation is to set evaluation criteria for values

in features and is necessary because the input features are calculated together and

measured equally. In order to arrange standards for features, feature scaling is required

before creating a deep learning model.

A) Feature Scaling

In each feature, data values will be in a wide range of numbers and various standards.

Feature scaling is a way where the range of the data variables in independent features is

normalised, and it will support all various standards of a wide range of variables in the

same range. There are two popular methods of feature scaling: Standardisation and

Normalisation. Normalisation, also known as min-max scaling, is better used for the data

variables in each feature which does not follow a gaussian distribution and good to use

for algorithms which do not expect any distribution of the data such as a neural networks

and K-nearest neighbours. Normalisation is a necessary pre-processing procedure in

Neural Networks algorithm that demands data variables in all features on a 0 to 1 scale.

However, it will be given highly impact on by outliers.

70 | P a g e

In contrast, standardisation is good to use for algorithms which expect to use the data

which follows a gaussian distribution. Standardisation will be not affected even though

the data variables include outliers in the feature because it does not have a bordering range.

Figure 2-27 shows an instance of the independent features of alcohol and Malic Acid

content in the wine dataset provided by the UCI machine learning repository [73]. We

can see the impact of the two feature scaling techniques of normalisation and

standardisation on the data.

Figure 2-27. The impact of feature scaling on the wine dataset [73]

The plot in Figure 2-27 describes three different scales: the green dots are volume-percent,

the red dots are standardised features, and the blue dots are normalised features.

• Normalisation

The Min-Max normalisation transforms x to �]by rescaling the range of data variables in

features to scale the range in [0,1]. The formula for Min-Max normalisation �]
(normalised value) is defined as below [17]:

�] = nBopq�n�
ors�n�Bopq�n� (eq. 2.15)

71 | P a g e

Where: x means original value, max (x) and min (x) indicate the maximum and the

minimum values of the feature appropriately.

• Standardisation

Standardisation is a process of adjusting the data values for obtaining the characteristics

of standard normal distribution [17]. The data values standard in each feature are rescaled

by calculating the following formula [17]:

�8[�I[9I��[8�7� = tB>NOu �t�
vSOuQOMQ wNx�OS�Lu �t� (eq. 2.16)

Mean (X) is computed by only using the values in the independent feature. Standard

deviation is a method of scaling the values based on z-score which calculates the

following equation [17]:

�8[�I[9I y�z�[8�7� = {∑ �t|Bt} �~G|��KB% (eq. 2.17)

Where:

*� = Value of each data point

 *� = Mean

N = Number

B) Principal Component Analysis (PCA)

Principal component analysis (PCA) is a technique for reducing feature dimensions from

the original feature dimensions but keeps the meaningful variation in the original

attributions. PCA explores correlations among the given data and produces new aggregate

variables which is a condensed dimensional feature, called principal components (PC).

72 | P a g e

For instance, Figure 2-28 describes features of three dimensions in original data space

mapped to two dimensions in component space by applying PCA [75]. There are

practically three fundamental schemes of using PCA. First, it is helpful to analyse

correlated variables. Second, it is good to reduce redundant features that are unrelated to

a target. Lastly, it is useful to divide mixed up data patterns in original data space into

classifying each pattern in component space where machine learning algorithms can

easily differentiate these patterns [76].

Figure 2-28. Feature transformation using PCA [75]

The PCA formula is given the following [75]:

Samples X1, X2, …., XN Є Rn of the variable X Є Rn that randomly selected.

max‖O‖$%
%
K ∑ �[� �*� − %

K ∑ *�� ��" = K�$% max‖O‖$%[��nn� (eq. 2.18)

�nn = %
K ∑ �*� − %

K ∑ *�K�$% � �*� − %
K ∑ *�K�$% � K�$% T (eq. 2.19)

Where a is eigenvector corresponding to the maximum eigenvalue of a variance-

covariance matrix of �tt and evaluate a (eq. 2.18).

V. Dheepa et al. [77] and M. R. Lepoivre et al. [78] have invested the customer transaction

behaviour with a technique of PCA and examined a fraud detection by SVM classifier.

73 | P a g e

The SVM model could make better classification between customers and frauds with the

PCA features.

So far, I studied various methods of feature transformation for not only machine learning,

but also deep learning and explored the possibility of taking the effective feature

transformation methods in my framework. Through the whole studies in Section 2.4., I

have learned that the feature engineering performed quite well for machine learning and

deep learning and there is a potential to make more effective features by using both

methods of feature aggregation and transformation. Next, I have explored methods on

how to select effective features for improving ML/DL model’s performance from all

features in the dataset.

2.5. Feature Selection

Feature selection is a method of removing the irrelevant, inconsistent, and redundant

variables when developing a predictive model [86]. In some literatures, feature selection

is considered as a feature engineering method. In most research, feature selection is

referred to as feature reduction, which is also known as dimensionality reduction to avoid

from overfitting [80] [82] [83].

In general, performances of machine learning algorithms are influenced by the training

data. The important part of the success of building a good machine learning model is

coming up with the good training data which contains adequate relevant features and not

too many irrelevant ones [82]. There are two major reasons for the low performances of

ML algorithms, which are overfitting and underfitting.

74 | P a g e

When a machine learning model gets trained with a huge data, the model learns the whole

features including the noise and inaccurate data entities in the dataset. Then, the model

will not be able to categorise the data precisely because the model covers all variances in

many irrelevant features. It is called an overfitting model. Underfitting is the opposite of

overfitting. It happens when the model is too simple to learn the fundamental structure of

the training data whereas overfitting appears when the model is too complex relative to

the values and noisiness of the training data. The performance of the underfitting model

is poor because the model is too simple to classify the target.

Figure 2-29 and figure 2-30 show the problems of underfitting and overfitting and how a

linear regression model with polynomial features can be used to approximate nonlinear

functions. For instance, the model in Figure 2-30 is prone to underfit, which means the

model’s predictions incur inaccurate. On the other hand, the model in Figure 2-29 strongly

overfits the training data, which indicates that the model performs much better on the

training data than the true function.

Figure 2-29. Overfitting with training data [81]

Figure 2-30. Underfitting with training data [81]

75 | P a g e

Complex models such as deep learning and neural networks can detect sublet patterns in

the data, however, if the training dataset includes noisiness and irrelevant features, then a

model is likely to detect patterns in the irrelevant and noise itself [80].

To avoid overfitting and underfitting, here are summarised possible solutions from the

research [80] [82] [83]:

A) Preventing model overfitting

• Reduce the number of variables in training data when building a predictive model.

• Assemble more training data.

• Decrease the noise or irrelevance in training data by removing outliers or

unrelated attributes.

B) Preventing model underfitting

• Select more effective features in training data.

• Build a predictive model with enough data.

• Select a more effective model with more parameters.

Figure 2-31 shows a good performance line model which covers majority of the samples

in the data and maintains the balance between overfitting and underfitting.

Figure 2-31. Appropriate fitting model [81]

76 | P a g e

In short, the good performance model needs to be fed with effective features in the

training data which has the powerful valid features without the irrelevant features.

Using feature selection in training data will make a better predictive model.

R.C. Chen et al. [84] studied a feature selection process for credit card fraud detection. In

order to select most influenced attributes related to a fraud detection system, they used

the feature selection methods i.e., filter, wrapper and embedded methods to find an

effective feature in unsupervised learning to discover a credit card fraud. The experiment

was conducted based on six different unsupervised learning algorithms with the selected

features and only raw features. The overall results were enhanced with the selected

features rather than only using raw features.

C. E. Brodley et al. [85] proved the necessity for feature selection through their

experiments with the development of an automated subset selection algorithm for fraud

detection that employed the Expectation-Maximization clustering method that disperse

separability and maximum likelihood.

Kajal Kamaljit Kaur [86] concluded that feature selection and balancing unbalanced label

dataset should be carried out to enhance a credit card fraud detection for machine learning

algorithms, for instance in the paper, they employed random forests, Naïve Bayes,

Logistic regression, Multilayer proception NN, ANN. Through the whole results of

experiments using the selected features is remarkably significant in achieving meaningful

results.

All the Above studies have proven the effectiveness of using feature selection and

improved accuracy of machine learning algorithms. However, in their studies, they only

77 | P a g e

focused on selecting effective features from a given dataset and do not use feature

engineering from the aspect of creating effective candidate features for machine learning.

I have learned a lot from existing studies of using feature engineering or feature selection

and understood their effectiveness for machine learning and deep learning specifically in

financial fraud detection. Next, I explore existing studies of a new feature engineering

framework that is used in not only fraud detection cases but also any classification cases

to learn the general impact of using the feature engineering framework.

2.6. Feature Engineering Tools and Framework

The concepts and individual techniques of feature engineering were reviewed and studied

in the variety of areas. Through the reviews, the effectiveness of using feature aggregation

or feature transformation methods were proven. Below, some studies of using feature

engineering tools and framework are highlighted.

K. Veeramachaneni [20] et al. developed Deep Feature Synthesis (DFS) tool that

generates lots of features by aggregating features in a relational database structure. The

DFS acts feature engineering for multi-table and transactional datasets generally found in

datasets. Many features are created by using the fundamental statistic: average, sum,

maximum, minimum and standard deviation. The input to DFS is a set of related to

entities and the tables associated with them. Figure 2-32 illustrates the concept of deep

feature synthesis.

78 | P a g e

Figure 2-32. Demonstration of the concept Deep Feature Synthesis [20]

Both ��c��� and y�c��� features can be synthesized independently while �c���

features depend on both ��c��� and y�c��� features.

The first features set is computed by considering the features and their values in the table

that is called “entity features”. �c��� (Entity features) derives features by calculating a

value for each entry ��,� . These features should be based on the calculation function

applied elementwise to the array �:,�, and they also include applying a function to the

entire set of values for the �SP feature, �:,�, and ��,�, given by:

 ��,�] = efeat g�:,� , � h (eq. 2.20)

There are other two entities of ���c79�[9I� and �;��[\J�[9I� which relate to each

other. A forward relationship is between an instance � of entity ��, and a single instance

of another entity i in �; . This is analysed the forward relationship between i has an

explicit dependence on �. A backword relationship is from an instance i in �; to all the

instances � = �1 … M} in �� that have forward relationship to J.

Direct Features (I5�[8) is applied over the forward relationships. Features in a related

entity � ∈ �; are transferred as features for the � ∈ �� . Relational Features(95�[8) is

applied over the backward relationships and is derived for an instance of i of entity �; by

79 | P a g e

applying a mathematical function to �:,�|NY�|� , which is a collection of values for feature �

in related entity ��, gathered by extracting every values for feature � in entity �� where

the identifier of �; is �; = �. This transformation is provided by:

��,�]� = rfeat � �:,�|NY�|� � (eq. 2.21)

Figure 2-33 shows the algorithm how to generate features for target entity in the DFS. c�
is presented to make features for the �SP entity. The organisation of repeated calls and

calculation of each feature type is in accordance with the restrictions explained in the

algorithm.

Figure 2-33. The algorithm of Deep Feature Synthesis [20]

The ��c���, yc���, [�I �c��� functions in Figure 2-33 are responsible for

synthesizing their respective feature types based on the given input.

Figure 2-34 demonstrates an example of a feature that would be created by the DFS tool

and displays how features are computed by traversing relationships between entities.

80 | P a g e

Figure 2-34. Sample case of using DFS tool [20]

The Deep Feature Synthesis is a feature engineering tool useful for generating many

features productively and effectively for machine learning algorithms. However, this tool

is not built for a fraud detection case but for a general use.

R. Wedge et al. [79] suggested using the DFS tool that creates new attributes for machine

learning models of credit card fraud detection using the relational structure of the dataset.

In the processes of DFS, both feature aggregation and transformation methods are used

to create new features using attributes of the related transactions. For instance, they

applied the Hour in transaction time to determine when a transaction has occurred during

the day and use statistical methods i.e., average, mean, sum and standard deviation to

express the user behaviour on the transaction time base. Timestamps in transactions are

significant processes in DFS to compute features of every month and within 24 hours as

shown in Figure 2-35.

81 | P a g e

Figure 2-35. Features creation using the DFS tool [79]

In Figure 2-38, each feature aggregates data belonging to previous transactions from the

credit card. The left column displays how the feature is calculated. The right column

explains what the feature means. At the end, they generated 237 features (over 100

behavioural pattern features) for each transaction and reduced the false positive rate by

54%. However, in their study, they used all 237 generated features without feature

selection.

Another feature engineering framework is Automatic Feature Generation and Selection

which is also called ExploreKit. G. Katz et al. [19] developed the framework that

generates a large set of candidate features, with the aim of maximizing performance of

ML models according to user-selected criteria. They employed the approach of machine

learning-based feature selection which predicts and selects the useful new created features

from a large set of candidate features as seen in Figure 2-36.

82 | P a g e

 Figure 2-36. ExploreKit system architecture [19]

The ExploreKit framework includes two main parts, generation of candidate features and

ranking candidate features. The aim of generating candidate features is to generate a large

set of candidate features c�#OuQ using the present features set c�. There are three types of

operators to create candidate features set c�#OuQ for iteration �, which are unary, binary

and higher order. Unary operators implement on a single feature and uses discretizers

which are used to convert continuous into discrete ones, and normalizers which are used

to fit the scale of continuous features to specific distributions. In this paper, the

EqualRanged discretization for numeric features (partition on the range of values of the

feature into X equal segments) is implemented.

Next, binary operators are applied on a pair of features and consist of the four basic

arithmetic operations such as +, −,×,÷. Finally, Higher order operations utilise multiple

features for the generation of a new one and implement five operators such as Max, Min,

Average, Standard Deviation, and Count. Another main part in the ExploreKit is ranking

candidate features. In this part, feature importance is used to rank the large number of

candidate features c�#OuQ . In their experiment, they demonstrated the effectiveness of

83 | P a g e

using the ExploreKit on multiple datasets by leading an extensive evaluation with 3

different ML algorithms for classification. They managed to reduce 20% classification-

error overall when using the framework. However, they only tested on the general datasets

that are a well-balanced target numbers and are not related to financial fraud. The

ExploreKit has a process of feature generation, but it only uses arithmetic operation for

increasing the number of new features without customer’s behaviour analysis.

2.7. Summary & Conclusion

The research carried out as part of the literature review outlined a huge number of the

related studies both part of feature engineering methods and fraud detection algorithms

such as supervised, unsupervised, and deep learning in the financial area. First, the

research of machine learning algorithms in financial institutions was conducted to

develop an understanding of a fraud detection problem and to learn how they treat input

data in each algorithm. Basically, machine learning algorithms learnt different tendencies

between normal transactions and fraudulent transactions from given features in a dataset

by using various calculation methods. Most of the studies were carried out in the field of

credit card fraud detection and they have focused on increasing the accuracy of fraud

detection by using advanced machine learning techniques instead of elaborating input

features. In financial fraud detection, most studies of using feature engineering methods

were about feature aggregation based on customer’s behaviour during a

transaction. Deep learning uses a structure of multiple layers where each input feature

combines each other and unifies as one feature in the next layer. To avoid the curse of

dimensionality, feature engineering method in deep learning is used for the purpose of

dimensionality reduction rather than the purpose of clarifying the latent patterns of input

84 | P a g e

data. Most studies using deep learning in financial fraud detection have not applied

feature aggregation methods on the input data with an aim of new feature creation. In

Chapter 2, I introduced three types of the most representative deep learning algorithms:

autoencoder neural networks (AEs), convolutional neural networks (CNNs), recurrent

neural networks (RNNs). The fundamental concept of their structures was very similar in

terms of a use of hidden layers and reconstruction of the input data by computing weights

between features. They also implement feature engineering when calculating each weight

for generating new features in hidden layers. Feature selection is a process to select a

subset of features from a dataset and is considered as a feature engineering method. In

most studies, feature selection is used for avoiding overfitting and low accuracy. When a

machine learning model gets trained with a large amount including the noise and

irrelevant data, this will cause worse performance of machine learning models.

Throughout the literature reviews in Chapter 2, they proved that applying feature

engineering and feature selection methods to an original dataset for training machine

learning algorithms improves the prediction accuracy of the models. They provided the

evidence of effectiveness of using feature aggregation, feature transformation, feature

selection individually. However, they have not used the whole methods simultaneously

in one study. Furthermore, they seldom used the feature engineering methods for deep

learning. Hence, this is the way I need to build a new framework that consists of both

methods of feature creation and feature selection in a series of feature engineering

processes and the framework also can provide the most effective features set for not only

machine learning but deep learning.

85 | P a g e

2.8. Literature Synthesis

This section describes the applicable literature that has been consolidated in creating the

new feature engineering framework as shown in Table 2-3.

Literature How it is used Section

Machie
Learning
Algorithms

There are many kind of machine learning
algorithms are introduced to learn how input
features are dealt in each algorithm. Our
main study is feature engineering which
generates new features for improving the
ML model’s performance. Therefore, it is
necessary to understand the structure of data
processes in ML algorithms.

Data Preparation

Feature Selection

Support Vector
Machine

The SVM model is trained by using both
only raw dataset as a baseline model and the
created new feature set for evaluating the
effectiveness of using the new feature set.

Evaluation Model

SVM

Random Forests
The RF model is built with all features set
for measuring feature importance.

Feature Selection

Feature Importance

Artificial Neural
Networks

ANNs is used for understanding as basic
concept of deep learning and how to work
with input features

ANNs

Deep Learning

Autoencoder
Neural
Networks

Autoencoder is selected as the representative
of a deep learning model for financial fraud
detection and the autoencoder model is built
with both only raw dataset and the created
new features set for evaluating the
effectiveness of using the new feature set.

Evaluation Model

AEs

Conventional
Neural
Networks

CNN is covered for learning the possibility
of using deep learning for financial fraud
detection.

Deep Learning

CNNs

Recurrent
Neural
Networks

RNN is covered for learning the possibility
of using deep learning for financial fraud
detection.

Deep Learning

RNNs

Clustering Clustering is used as part of the feature
engineering technique and as part of the
standardisation technique.

Feature

Engineering

K-mean

PCA

86 | P a g e

Table 2-3. The summary of literatures and how they are used in my research work

Isolation Forest IF algorithm is selected as the representative
of unsupervised learning and it is built with
both only raw dataset as a baseline model
and the created new features set for
evaluating the effectiveness of using the new
feature set.

Evaluation Model

IF model

Feature selection

Local Outlier
Factor

LOF algorithm is selected as the
representative of unsupervised learning, and
it is built with both only raw dataset as a
baseline model and the created new features
set for evaluating the effectiveness of using
the new feature set.

Evaluation Model

LOF model

Feature Selection

Feature
Aggregations

Feature aggregation is used as part of feature
creation method.

Feature Creation

Feature
Transformations

Feature transformation is used as part of
feature creation method.

Feature Creation

Feature
Engineering
Framework

Feature engineering framework is used to
learn the latest technique and other
techniques of feature engineering

Feature
Engineering
Framework

Feature
Selection

Feature selection is used for understanding
why other studies have applied the feature
selection techniques among the dataset and
how they worked.

Feature Importance

87 | P a g e

3. Feature Engineering Framework for

Financial Fraud Detection Models

3.1. Overview

As discussed in Chapter 1, both financial institutes and academic studies have tackled

topics pertinent to the fraud issues using advanced machine learning methods to detect

fraudulent actions more certainly. However, the total losses through online banking in the

United Kingdom have still increased because fraudulent techniques have progressed and

used advanced technology. It is difficult to expose fraudulent behaviour patterns by only

using raw data extracted from the linked tables to transactions. In Chapter 2, the current

studies of various approaches using machine learning and deep learning algorithms for

financial fraud detection are highlighted and studied in terms of the process of how to

deal with the input data. Then, the current studies of feature engineering methods for

classification are explored.

Through the overall reviews in Chapter 2, it was convincing that using features created

by feature engineering methods is very effective for improving performance of fraud

detection models and it was evident that there are different weaknesses that need

addressing. The intent of my research is to encourage the use of an effective features set

generated by the new feature engineering framework that contains both processes of

feature creation and feature selection.

Figure 3-1 displays a feature engineering framework that demonstrates the series of

processes in the feature creation workflow and the feature selection workflow.

88 | P a g e

Figure 3-1. Conceptual Feature Engineering Framework

The framework shown in Figure 3-1 consists of the following processes:

• The aim of the feature creation processes is to create new effective features for a

predictive model. To achieve it, first, the collected raw data needs to be organized

and arranged as part of a data preparation workflow. Then, feature engineering

techniques are applied to clean data. Eventually, two datasets will be prepared

through the feature creation processes. First one is a simple raw dataset that is

cleaned and arranged for building a baseline model. Another one is an engineered

features set that includes both raw attributes and new features created by the feature

engineering techniques: feature aggregation and feature transformation. Further

elaboration can be found in Section 3.2.

• The aim of the feature selection processes is to exclude irrelevant features and high

correlated values from the dataset based on two types of feature performance

indicators: correlation coefficient and feature importance. The selected features

89 | P a g e

dataset is used for building a predictive model as the most effective performance

model compared to the other datasets: a raw dataset and the dataset with all features.

This section will also cover processes of the performance evaluation of each model.

3.2. Feature Creation Processes

Under the feature creation processes, there are two main parts to create new features,

namely data preparation and feature creation.

3.2.1. Data Preparation

I. Data Integration

Data quality and accessibility are the most important part for machine learning and will

make an impact on model accuracy of the model. With the online payment system

advances, transaction data in the digital world becomes much better to access. Also, the

related data with transaction can be collected from the various sources such as different

payment channels, web service, portable devices, flat files, and payment digital

applications [57] as shown in Figure 3-2.

Figure 3-2. Example of different sources [57]

90 | P a g e

As drawn in Figure 3-2, transactions are linked to multiple data sources such as the

information of credit/debit cards, commercial institutions or banks where financial

services to customers, internet/online services, portable/remote accessing devices,

locations, and online/offline shops are provided and need to be collected in one place to

demonstrate customer’s transaction behaviour.

Data integration is the process of putting data together from different sources into a single

unified place and assists both online and offline data collection. As described in Figure

3-2, various types of customer’s queries for transactions or transfer from the bank account

are integrated into the banking system. The diagram in Figure 3-3 shows the logical flow

of data in the system, processes and data sources related to the transaction.

Figure 3-3. Image of data integration into the banking system [105]

In many studies related to financial fraud detection, although their datasets for their

experiments were provided from private financial institutions or downloaded from

Opensource and they were already integrated into one table from different sources, data

for analysing fraudulent transaction should be collected based on a plan which attributes

can be extracted and how to integrate them into a one table.

91 | P a g e

II. Data Modelling

Data modelling is the process of designing a clarified diagram of data tables from

different sources using data elements and flows and providing a scheme for merging the

discrete attributes into a new data format to be stored in a database. Figure 3-4 below

shows a database schema of the logical data model for online banking system.

Figure 3-4. Logical Data modelling of Online Banking System

Customer

PK CustoemrID

CustomerAddress1

CustomerAddress2

CustomerFirstName

CsutomerMiddleName

City

ZipCode

EmailAddress

HomePhone

CellPhone

WorkPhone

SSN

FK UserLoginID

FK CustomerTypeID

BankingTransaction

PK BankingTransactionID

FK CardTransactionID

TransactionDate

FK TransactionTypeID

TransactionAmount

NewBalance

FK AccountID

FK CustomerID

FK UserLoginID

TransactionType

PK TransactionTypeID

TransactionTypeName

TransactionTypeDescription

TransactionFeeAmount

UserLogins

PK UserLoginID

UserLogin

UserPassword

Account

PK AccountID

CurrentBalance

FK AccountTypeID

AccountStatus

AccountName

FK CustomerID

AccountType

PK AccountTypeID

AccountTypeCode

AccountTypeDescription

Login Account

FK UserLoginID

FK AccountID

Card

PK CardID

CardPassword

CardActivateDate

CardAmountLimit

CardIssuedDate

CardStatus

CardNumber
Card_Transaction

PK CardTransactionID

CardAuthorization

TransactionType

TransactionAmount

NewBalance

FK AccountID

FK CardID

CardTransactionTyoe

FK SessionID

Customer_Account

FK AccountID

FK CustomerID

CustomerType

PK CustomerTypeID

CustomerTypeCode

CustomerTypeDescription

Session

PK SeesionID

SessionAuthorization

SessionType

FK WebsiteSessionID

FK SessionDeviceID

Seesion Code

Device

PK DeviceID

DeviceName

DeviceMacAddress

WebSession

PK WebSessionID

SeesionID

DeviceID

WebsiteDomain

IPAddress

AccessDateTime

92 | P a g e

The reason why it is important to understand the data modelling in the research is because

attributes used for building a detection model will be extracted from the banking database

tables based on the domain knowledge of a data engineer who determines which attributes

are useful. In this research, although a bunch of online banking data provided by a

European private bank was already extracted from the system, all attributes related to

user’s behaviour on transaction should be considered as to whether they need to be

collected for making a good fraud detection model.

III. Group by Customer Party ID

Raw data collected from various sources will be messed and have many missing values.

Thus, the raw data needs to be cleaned. Before data cleaning, the data needs to be grouped

by customer base so that it is necessary to analyse and fill in missing values in each

attribute by individual customer’s tendency. While a customer uses an online banking

system, each customer may have his/her own transaction behaviour or payment patterns

based on regular accessing time, common device and IP address, a regular payment, and

amounts. Therefore, if missing values are filled with all averages of all customer’s

variables in the attribute, the data will affect the performance of the detection model. In

order to deal with the missing values more appropriately in this research, the dataset will

be arranged by grouping customer ID base before data cleaning. More detailed techniques

of handling missing values are studied and described in the next paragraph.

IV. Data Cleaning

The processes of data cleaning have mainly two operations: converting character string

to numeric data type and coping with missing, noise or wrong values.

93 | P a g e

(A) Convert categorical feature’s datatype:

A categorical variable is used to represent categories or labels as the name implies. For

example, a categorical variable would describe major cities in the world, the industry of

a company, color types in a product, or gender types in the personal information. The

number of categorical values can be represented numerically. However, the values of a

categorical variable cannot be ordered regarding one another. For instance, green is

neither greater than nor less than red as a color type. These types of categorical values are

called nonordinal. Other categorical variables are interval variables which indicate

between two things that define the spectrums of values for measurement points, for

instance, income attribute will be expressed as the ranges of 0-1,000, 1,000-2,000 and

more, which can be represented numerically. There are also large categorical variables

such as IP addresses, transaction IDs, or customer IDs, which are categorical values with

over hundreds values of unique users. Although IP addresses and customer IDs are

numeric, their size is normally not relevant to the task at hand. For instance, the IP address

should be relevant while doing fraud detection on each transaction. Consequently, some

IP addresses may create more fraudulent transactions than others. However, a subnet of

147.199.x.x is not constitutionally more fraud than 147.200.x.x. In other words, the

subnet number does not matter. There are some techniques to convert categorical

variables to numerical variables appropriately [56] [55] [54].

There are some categories, which cannot be usually numeric variables. For instance, hair

color can be “black”, ”blond”, ”brown”, etc. Therefore, an encoding method is required

to turn these nonnumeric categories into numbers. There are some encoding methods to

convert string values to numeric values. Thus, I investigate these methos and study how

they work, then determine which method is appropriate to a purpose of my research.

94 | P a g e

i. One-Hot Encoding

A progressing method is to utilise a group of bits. Each bit describes a feasible

category. If the variable cannot be part of multiple categories at once, then only one

bit in the group can be “1”. This is called one-hot encoding (OHE). Each of the bits

become a feature. Therefore, a categorical variable with N possible categories is

encoded as a feature vector of length N. Figure 3-5 shows an example.

Figure 3-5. Example of one-hot encoding method [56]

OHE is quite easy to understand, however it applies one or more bit than is rigidly

necessary. If I notice that N-1 of the bits are 0, then the last bit must be 1 because the

variable should take on one of the N values. This restriction is described so that the

sum of all bits should be equal to 1.

 �% + �" + ⋯ + �K = 1 (eq. 3.1)

Therefore, I can see a linear dependency on this equation. Linear dependent features

are a little disrupting because they imply that the linear models will not be unique.

Consequently, it becomes difficult to understand the effect of a feature on the

prediction.

95 | P a g e

ii. Dummy Coding

The issue of using OHE method is that it gives for N degrees of freedom, while the

variable itself calls for only N-1. Dummy coding eliminates the additional degree of

freedom by utilising only N-1 features in the description as shown in Figure 3-6.

Figure 3-6. Sample of dummy coding [56]

One feature (Yellow in Figure 3-6) is described by the vector of all zeros. The result

of modelling with dummy coding is more explicable than with OHE. This is clear to

see in a simple linear regression issue. For instance, some data about the information

of land prices in three cities: London, Liverpool, and Manchester are shown in Table

3-1.

Index City Land price (£)

0 London 340,000
1 London 500,000
2 London 280,000
3 Liverpool 800,000
4 Liverpool 100,000
5 Liverpool 160,000
6 Manchester 220,000
7 Manchester 700,000
8 Manchester 145,000

Table 3-1. Information of land prices in three cities [19]

I trained a linear regressor to predict land price based solely on the identity of the city.

The linear regression model can be described as:

96 | P a g e

 3 = �%�% + ⋯ + �u�u (eq. 3.2)

It is customary to fit the intercept in order that 3 can be a nonzero value while the �]R

are zeros and the �]R are weights.

 3 = �%�% + ⋯ + �u�u + � (eq. 3.3)

Table 3-2 describes the implementation of OHE on the categorical variables.

Table 3-2. Categorical variables in City were converted to one-hot encoding

Table 3-3. Categorical variables in City were converted to dummy coding

Table 3-3 describes the implementation of dummy coding on the categorical

variables. Then, I fit a linear regression model by using a package of a sklearn python

library on each data. The results of weights and interceptions in each model are shown

in Table 3-4. With one-hot encoding, the intercept phrase illustrates the overall mean

of the target variable, Land price, and each of the linear coefficients illustrates how

much that land’s average price differs from the overall mean. With dummy coding,

the bias coefficient illustrates the mean value of the target variable y for the reference

category, whose instance is City Liverpool. The coefficient for the ith feature is

97 | P a g e

equivalent to the difference between the mean target value for the ith category and the

mean of the reference category. Table 3-4 shows how these encoding methods

generate quite different coefficients for linear regression models.

 w1 w2 w3 B

One-Hot Encoding -7222.22 12777.77 -5555.55 360555.55

Dummy Coding 0 20000 1666.66 353333.33

Table 3-4. Learned coefficients by linear regression

iii. Effect Coding

Another method of encoding categorical variable is effect coding. Effect coding is

quite similar to dummy coding, but it uses “-1” for representing the reference category

instead of zeros. Table 3-5 describes the implementation of effect coding on the

categorical variables.

Table 3-5. Categorical variables in City were converted to effect coding

The advantage of using effect coding is to give a simpler interpretation of results in

linear regression models. The intercept phrase illustrates the overall mean of the target

variable, and each coefficient expresses how much the means of each category differ

from the overall mean. OHE method discovered the same intercept and coefficients,

however in this case, there are linear coefficients for each city. In the case of effect

coding, no single feature indicates the reference category. Thus, the effect of the

98 | P a g e

reference category requires to be separately calculated as the negative sum of the

coefficients of any other categories.

I introduced the three major methods of encoding for categorical variables: One-hot

encoding, dummy coding, effect coding. They are very similar to one another and

have pros and cons respectively. Dummy coding and effect coding provide rise to

unique and interpretable models whereas one-hot encoding allows for multiple valid

models for the same problem. The advantage of OHE is that each feature apparently

corresponds to a category. Furthermore, missing values will be encoded as all zero

values, and the output would be the global mean of the target variable. The

disadvantage of dummy coding is that it cannot simply deal with missing data because

all zero values are already mapped to the reference category. In contrast, effect coding

uses a different code for the reference category. However, handling the vector of

many -1s will take a highly computation cost and need large storage. Therefore, effect

coding is seldom selected to use in the most ML studies due to the fact that it is

expensive.

However, all three methods are not suitable for categorical values when the number

of categories becomes large such as the user ID, IP addresses, software version and

so on. The challenge is to find a better method for encoding categories that is efficient

but is not costly.

iv. Label Encoding

Label encoding is quite simple approach and converts each categorical variable to a

number. It encodes labels with a value between 0 and N where N is the number of

discrete labels. Consider below the sample in Table 3-6:

99 | P a g e

ID City
1 London

2 Liverpool

3 Manchester

4 Liverpool

5 Bristol

6 Canterbury

7 Cambridge

8 London

9 Bath

10 Manchester

Table 3-6. Sample of categorical variables

If I use this data to train a machine learning algorithm, the city attribute needs to be

encoded to the numeric variables, and in this case, I use label encoding. A package of

label encoding method is available from Scikit-learn and it is easy to use. After

applying a label encoding method, the result becomes as seen in Table 3-7 below.

ID City

1 1

2 2

3 3

4 2

5 4

6 5

7 6

8 1

9 7

10 3

Table 3-7. Converted into numerical variables by using label encoding

Label encoding is a simple and easy way to convert character values to numerical

values. Such numerical values are arbitrary, however. In some cases, it is more

efficient to assign specific numbers. For instance, each city or town has an official

UK area code e.g., 020 for London, 0117 for Bristol, etc. [97]. If the area codes are

assigned to the city names as shown in in Table 3-6, such data can be connected to

other data that use the same area codes, such as demographics, income, etc.

100 | P a g e

Country names can be also represented by country codes e.g., US 1, UK 44, Japan 81,

etc and they can keep their own meaning as it has even though they are converted to

numerical values. Another example is city feature values such as East London, Central

London, Edinburgh, Enfield, etc can convert into individual postcodes that are

commonly used as a representation of the area information and can provide more

additional information by connecting each postcode such as the information of local

communities, real property, and the public peace, where generally can be grouped by

each postcode. The connection image is described in Figure 3-7.

Figure 3-7. Specific number can connect to other information tables

There will be another chance to obtain more rich features related to customer’s

information. Thus, If I assign random numbers to place name features with encoding

methods, then these features will lose original meaning and other connection.

(B) Types of missing data analysis:

One of the hard tasks while dealing with raw data is missing values. Usually, raw data is

not organised and has a lot of missing values because of human errors, privacy concerns,

disruptions and so on. Missing values are shown as blank in a dataset displayed in Figure

3-8. There are roughly two types of missing values. The first type of missing data is

completely independent of other values. There is no relationship between the missing

101 | P a g e

values and any other values in the dataset, which means that there is no pattern of being

missing values. In this case, the data became missing because of human error or some

system failure while logging the data. This type of missing values can be dealt with

unbiased analysis. The next type is that missing values are only subsamples of the data.

There is some relationship between the missing values and other values or data, and there

is some pattern of being missing values. For instance, there are some categories in the

Approach Methods attribute such as Website, mobile apps, phone call, and visit. If there

are missing values under the IP Address attribute, the missing values may indicate that

they are missing due to phone call or visit in the Approach Methods attribute. Thus, in

this case, the missing value of the IP address should be substituted by the specific number

which differs from other IP addresses.

Figure 3-8. Blanks indicates missing values in dataset

In many studies of financial fraud detection, they have not dealt with missing values

correctly because they have utilised the prepared dataset provided by a cooperative

financial institution or an open-data which was already cleaned and processed. However,

a real-life data will include missing values that will affect the performance of the ML

models if they are not dealt with appropriately. There are mainly three options to deal

102 | P a g e

with missing values. The most common approach for missing values is to drop the whole

rows including other variables in various attributes. This approach is quite simple and

easy, but there is also a risk of deleting important values in other attributes. So, it is

necessary to analyse whether the rows to be deleted do not include the important values

or not before deleting the whole missing values. Another approach is to fill the missing

values with zero [42]. This approach may mislead a machine learning model if the missing

values are proceeded incorrectly. For instance, if “0” is already used as a substitution for

“no” in an attribute which has missing values, the missing values to be filled with zero

will have the meaning of “no” as well. In this case, the missing values need to be filled

with an unused number. The other approach is imputation that fills missing data with the

median/average of each customer in each attribute.

In any case, the data in each attribute should be analysed before the missing values are

dealt with using any one of the approaches.

Eventually, I created the process flow for dealing with missing values correctly as shown

in Figure 3-9.

103 | P a g e

Figure 3-9. A flow of processes for dealing with missing values

3.2.2. Feature Creation Processes

The feature creation part is the most significant in the framework because of having an

influence over the performance of machine learning models. In any banking system, there

are some common data related to transaction such as customer, bank, credit card, timeslot,

accessing device and networks. Thus, applicable features which can be extracted from the

banking system need to be checked whether they have variables correctly before using

for feature aggregation and transformation in the framework.

I. Feature Aggregation based on Customer Behaviour

The purpose of creating aggregated features is to have feature values with more clear

difference in transaction’s behaviour between customer and fraudster. By aggregating

feature values of customer’s ID and some dynamic features e.g., amount, time, access

device and network information, the new aggregated features represent new patterns.

104 | P a g e

Increasing the related features to a transaction means increasing the dimensions that make

a machine learning model with the detailed patterns. Table 3-8 describes some fixed

attributes in a transaction and new aggregated features based on a scenario of individual

customer’s journey via online banking.

Table 3-8. Feature aggregation scenario

Attributes Feature Aggregation with Scenario of customer’s journey

on transaction

Time - Days since the last transaction
- Hours since the last transaction
- Minutes since the last transaction
- Weekdays since the last transaction

Amount - Amount of the last transaction in every month
- Average amount of transactions
- Count amount of transactions
- Last amount of transactions
- Maximum amount of transactions
- Minimum amount of transactions

Balance - Balance of the last transaction in every month
- Average balance of transactions
- Count balance of transactions
- Last balance of transactions
- Maximum balance of transactions
- Minimum balance of transactions

Login /
IP address/
Accessing

 Device

- Last login via a specific IP address
- Average Login latency
- When accessed with a specific IP address
- Which device was used with a specific IP address
- Last transaction with a specific IP address
- How many accessed with a specific IP address in

weekdays/Days

Event Which event was occurred via a specific device
 Which event was occurred via a specific financial

institution

Customer ID Count of last transaction per weekdays by a specific
IP address based on customer ID

 Count of last transaction per weekdays and
timestamp based on customer ID

 Count of last transaction per weekdays and last
latency based on customer ID

 Count of last transaction amount by a specific IP
address based on customer ID

105 | P a g e

II. Feature Transformation based on mathematical functions

As described in Chapter 2, there are existing methods of feature transformation i.e.,

scaling (standardisation), log transformation, grouping, count, PCA, and statistics, which

were used only for transforming a feature value to a different value in various research

fields but also used in other research areas [19] [68] [72] [73]. For instance, feature scaling

is a method for scaling a wide range of the data variables to the same range and it is

popularly applied for deep learning in image recognition. Confidence Interval Formulas

were commonly used for observing a point estimate and measuring feature values in data

analysis. Logarithm transformation formula were popularly used for removing skewness

because machine learning algorithms will be biased when the data distribution is skewed.

K-means is used to discover groups which have not been clearly labelled in the data. In

general, K-means is not used as a feature engineering method but an unsupervised

algorithm that can be used for any type of grouping [92] [106]. However, in terms of

generating new feature variables from raw data, it is worth using the output feature

variables which were created by the K-means method. The purpose of using feature

transformation here is to create new feature values that can represent the latent data

patterns and make a machine learning algorithm easily understand the difference between

legitimate and fraud. Therefore, in this research the transformation methods are

incorporated in the feature engineering framework.

The functions utilised in the framework are outlined below in Table 3-9:

106 | P a g e

Formula Description

1) Confidence Interval Formulas A statistic estimation formula that uses the normal
distribution for observing a point estimate by calculating
maximum, minimum, median, and mean.

2) Standard Deviation
A method of scaling the values based on z-score which
calculates the following equation:

S8[�I[9I y�z�[8�7� = {∑ �t|Bt} �~G|��KB%

3) Logarithm transformation
formula

A method of removing skewness by adapting the
formula below: ��] = log����

4) K-Means clustering
The objective of k-means is to minimize the squared
error function. The objective function is as follows:

 : = ∑ ∑ ��;<�� −=;$%>�$% ?;‖"

5) Principal Component Analysis
(PCA)

A method of exploring correlations among the given
feature values and integrating into a similar group as a
new feature.

�nn = 1
Z � �K

�$% *� − 1
Z � *���K

�$% *� − 1
Z � *���K

�$%

max‖O‖$%
1
Z ��[��*� − 1

Z
K

�$%
� *���"

�
= max‖O‖$% [� �nn�

Table 3-9. Feature transformation methods in the research

In terms of dealing with only PCA, this transformation needs to be implemented after

standardisation because PCA provides more weights to the variables in a selected feature

by measuring each variable equally.

III. Standardisation

Variables in each feature that are measured at different scales do not contribute equally

to the ML/DL model fitting. Standardisation is an essential data processing specifically

for using deep learning because deep learning calculates the given feature values by

multiplying each other for determining the weighting coefficients in hidden layers. It is

also important for non-tree machine learning models, such as support vector machine

(SVM), clustering models, are often hugely dependent on scaling (this sentence needs

107 | P a g e

fixing). For instance, SVM attempts to maximise the distance between the boundary line

and the support vectors. If one feature has very vast values, it will monopolise over other

features during distance measurement. Thus, feature-wise standardised (? = 0, � = 1� is

usually used prior to model fitting for the purpose of giving the same influence on the

measured distance.

Figure 3-10. Standardisation feature values [98]

Standardisation is a step of data pre-processing which is applied to independent variables

in features. In Figure 3-10, before standardizing variables in each feature of x1,x2 and x3,

the range of data in each distribution is different. This will make a non-tree machine

learning model which uses Euclidean Distance measure mislead measurement of a target.

On the other hand, after standardizing variables in each feature of x1,x2 and x3, the range

of data in each distribution was common and can be compared and equally measured to

weight all the features. It also will help in speeding up the calculations in the ML models.

The data values standard in each feature are rescaled by calculating the following formula:

 �8[I[9I��[8�7� = tB>NOu �t�
vSOuQOMQ wNx�OS�Lu �t� (eq. 3.4)

To standardise the data, we use the StandardScaler from the sklearn python library:

108 | P a g e

With the feature creation processes which apply many feature engineering techniques on

an original dataset, a large number of features are generated. However, all features may

not be useful for machine learning algorithms. Now I will consider feature selection

processes to reduce meaningless or high correlation features.

3.3. Feature Selection Process Component

Through the processes in the feature creation component, many new features were added

in the dataset. However, redundant features might be also included in the dataset, which

have an impact on model performance for the worse and will cause overfitting [58]. Under

the component of feature selection processes, there are two main parts to create new

features: Feature Selection and Performance Measurement.

 Feature selection is a process of selecting the most useful features to train on among input

variables. If the training data contains too many irrelevant features, the performance of

machine learning models may degrade. In the feature selection section, there are three

main steps for selecting the effective features from all features in the dataset including

new features: Measurement for correlation coefficient values, building a feature selection

model, and feature importance measurement. In the feature measurement part, I calculate

correlation coefficient and measure feature importance, and then drop redundant features.

from sklearn.preprocessing import StandardScaler

X_train_stand = X_train.copy()

X_test_stand = X_test.copy()

scale = StandardScaler().fit(X_train_stand[[i]])

X_train_stand[i] = scale.transform(X_train_stand[[i]])

X_test_stand[i] = scale.transform(X_test_stand[[i]])

109 | P a g e

Another method for feature selection is the performance measurement which consists of

modelling with three different types of feature sets and evaluating the model performance.

3.3.1. Feature Selection

I. Measurement for correlation coefficient values

When there are high correlations between two or more explanatory variables in the dataset,

multicollinearity exists and will cause overfitting in a multiple regression model. The

Pearson correlation coefficient is a statistical method to measure the degree of intensity

of the relationship between two random feature variables, X and Y [107].

 In the framework, I selected Pearson correlation to calculate the strength between two

variables from different types of correlation coefficients. The range of the strength values

of the correlation is expressed between -1 and 1. A value of -1 indicates the perfect

negative relationship between the two feature values. On the contrary, a value of 1

indicates the perfect positive relationship between the two feature values. Values close to

zero means weak or no relationship between the two values as shown in Table 3-10. The

equation of the Pearson correlation coefficient is shown below with a correlation of a

variable of 1 [107]:

 �n� = �Lx�n,��
�E�� = 1 (eq. 3.5)

Where:

�n� = ��[9�7� �97I�\8 − �7���8 \799�H[8�7� \7�55�\���8

 7z��, 3� = 7z[9�[�\� 75 z[9�[�H�� � [�I 3

�n = �8[�I[9I I�z�[8�7� 75 �

�� = �8[�I[9I I�z�[8�7� 75 3

110 | P a g e

Table 3-10. Benchmark of correlation coefficient

In the experiment, the Pearson correlation coefficient is computed in python using the

corr() method as shown in Figure 3-11.

Figure 3-11. Sample of correlation matrix

Since the dataset is too large to display all results between every pair of features, as a

sample of correlations between a specific feature and others, Table 3-11 shows how much

each feature correlates with the bank account number:

 Corr_matrix= df_banking_dataset.corr()

 Corr_matrix[“ACTD_BANKACCTNO”].sort_values(ascending=False)

Range of Correlation Interpretation

+- 0.9 to +- 1.0 Very high positive(negative) correlation

+- 0.7 to +- 0.9 High positive (negative) correlation

+- 0.5 to +- 0.7 Moderate positive (negative) correlation

+-0.1 to +- 0.5 Low positive (negative) correlation

0.0 No correlation

111 | P a g e

ACTD_BANKACCTNO

ACTD_BANKACCTNO 1

ACTD_ACCTTYPENM 0.645984

LATENCY_log 0.397597

LATENCY_std 0.235693

Event_INTERNET_BANKING 0.064752

Authentiation_Code_log 0.061193

Class 0.031434

TRNSD_FASTERSTANDARDPAYMENTIND 0.02844

ACTD_AVAILABLEBL 0.017514

Transaction_ID 0.015699

Latency_diff 0.010944

Event_DIGITAL BRANCH -0.041485

Amount_std -0.062837

IP_ID -0.065832

Authentication_Code -0.067865

Channel -0.069975

DEVICE -0.079998

Weekday -0.114141

Fraud_flag -0.135582

IDVD_USERAGE0TTX -0.140925

Event_INC_Code -0.143715

Amount_confRate -0.147124

Subchannel -0.156701

Event_Sub_Device -0.169679

Customer_ID_confRate -0.190379

IP_Adress_confRate -0.206447

CUSTD_PARTYID_TRNSD_Amount_log_count
_LATUPDATE_Weekdays

-0.213371

ACTD_AVAILABLEBLBALANCE_min_mean -0.256167

ACTD_AVAILABLEBLBALANCE_log -0.264038

IDVD_IPADDRESSID -0.283122

IP_Adress_log -0.310436

Action_Type -0.311109

IDVDATA_TRNSTS -0.315315

Channel_Event -0.383213

Event_Act -0.407158

Action_Type_confRate -0.419303

Brand -0.43251

Table 3-11. Correlations with bank account number

112 | P a g e

Note that the correlation coefficient only measures linear correlations, which means that

if x goes up, then y normally goes up or down. It is not directly for measuring nonlinear

relationships. However, it is important to understand the correlation coefficient with each

attribute because the high correlated values may cause of leakage or overfitting in

machine learning.

In my framework, the threshold value to drop either two variables which have high

correlation coefficient is set above +- 0.9.

II. Feature Importance Measurement

Feature importance scores can give an insight into the dataset. The relative scores can

emphasize which attributes may be relevant to the target, and which attributes are the

least relevant. To calculate a feature importance score in each attribute, I built a random

forest algorithm which is an ensemble of decision trees. A random number of rows and

all the attributes from the dataset are selected, which is known as bootstrapping, and then

some features will be randomly selected and start building decision trees. In the algorithm,

it will build multiple decision trees in parallel based on information obtained by

subtracting entropy or Gini index and calculating node impurities of each of the

appropriate attribute where it is branching. Each decision tree will become larger to its

maximum depth and will provide prediction. The outline processes in the random forest

algorithm are shown in the below Figure 3-12.

113 | P a g e

Figure 3-12. Outline processes in a random forest algorithm [100]

Figure 3-13 shows the example of two decision trees in ensemble of trees which calculates

node impurities from if that appropriate attribute is branching out.

Figure 3-13. Decision trees inside of random forests [59]

The node impurity can be gained from a Random Forest algorithm using the following

equation [59]:

Z7I� &���9�83 = ¡¢K£
K¤¥ ∗ '�¦ − ¡�K£e

K£ � ∗ '�M¦ − ¡�K£d
K£ � ∗ '��¦ (eq. 3.6)

114 | P a g e

Where;

Nt = number of samples for the appropriate node

NP = number of samples chosen at the previous node

Ntr = number of samples branched out in the right node from main node

Ntl = number of samples blanched out in the left node from main node

Gi = Gini index of the appropriate node

Gir = Gini index of the right node branching from main node

Gil = Gini index of the left node branching from main node

In order to obtain the above feature importance scores, a feature selection model with the

random forest algorithm is built through using the Python library of the

RandomForestClassifier class in scikit-learn which is convenient and optimised for

decision trees . Further details on the RF model will be covered in Chapter 5.

The following code is available in the Python library which exhibit feature importance

scores.

The graph below shows an example of the best 30 feature importance scores in ascending

order in Figure 3-14.

from sklearn.ensemble import RandomForestClassifier

df_rf = RandomForestClassifier (n_estimators=500, max_leaf_nodes=16, n_jobs=-1)

df_rf.fix (X_train, y_train)

y_pred_rf = df_rf.predict (X_test)

importance = df_rf.feature_importances_

115 | P a g e

Figure 3-14. Feature importance scores of top 30 features

In my framework, based on the result of feature importance scores, features with 0.0 score

are dropped from the dataset.

116 | P a g e

3.3.2. Performance Metrics for Fraud Detection Models

I.Modelling

To evaluate the effectiveness of the created feature sets, several combinations of machine

learning and deep learning algorithms and the different features sets are within each

model. As introduced in many studies pertinent to fraud detection (in Chapter 2), a variety

of algorithms were used as a fraud detection model in their studies. These algorithms had

individual methods to deal with the input feature values and expressed various

performances. To secure consistency the effectiveness of created feature set, various

algorithms which were often used in a fraud detection case should be tested with the

features sets created in the framework and their performances need to be compared.

In the experiment, I use support vector machine, random forest, isolation forest, local

outlier factor, and autoencoder for model verification. All algorithms are popularly used

in the studies for fraud detection. One of my framework’s strengths is that it can provide

the most effective features set for a specific machine learning or deep learning algorithm

which one wants to use. The framework is flexible and adaptable for any models and can

provide the best combination features set.

Here are the recaps of using these algorithms in the experiment:

(A) Support Vector Machines Classification

SVM is one of the versatile machine learning model, capable of performing linear or

nonlinear classification. It is particularly well suited for classification of the medium-

sized dataset. Although linear SVM classifiers are capable and work well in many cases,

lots of datasets will not be close to being linearly separable. Nonlinear SVM can handle

117 | P a g e

the datasets that added more features and are not linearly separable as shown in Figure 3-

15.

Figure 3-15. Linear and nonlinear separation of sample data [99]

In order to tackle the nonlinear separation datasets, there is a mathematical technique

called the kernel trick that is used for bridging linear and nonlinear SVM. Figure 3-16

describes the way to map samples from two-dimensional space to three-dimensional

space by using a kernel function. It shows a decision surface that apparently divides

between different classes.

Figure 3-16. Mapping the data from two-dimensional space to three-dimensional space [88]

The kernel trick can provide a more efficient and simple way to transform data into higher

dimensions. There are two kernels that are popularly used in SVM classifier, the

polynomial kernel and the radial basis function (RBF) kernel. The polynomial kernel uses

the following mathematical function to map the data to higher dimensions [101]:

∅��, 3� = �*�3 + 1�Q (eq. 3.7)

118 | P a g e

With Z original features and I degrees of polynomial, the polynomial kernel outputs ZQ

expanded features. Figure 3-17 shows the SVM classifier using a 3rd-degree polynomial

kernel. If a SVM model is overfitting, the number of degree can be reduced. Conversely,

if the model is underfitting, the number of degree can be increased as well. Finding out

the right hyperparameter will be key to become a good model.

Figure 3-17. Nonlinear SVM with polynomial kernel [101]

The RBF kernel is to add features calculated using a similarity function, which adjusts

how much each sample resembles a particular landmark, and it is defined the bell-shaped

function. The following function is used for mapping the data to higher dimensions [101]:

Ø�*, (� = ����−©‖* − (‖") (eq. 3.8)

The parameter of © determines how much influence a single sample has. Figure 3-18

shows the plot of the SVM classifier using an RBF kernel.

Figure 3-18. SVM classifier using an RBF kernel [101]

119 | P a g e

A common approach to adjusting the hyperparameter is to use grid search in practical

terms because of its difficulty to determine an appropriate parameter manually. However,

in Python library, it provides a package of the SVM algorithm with some default setup.

(B) One-class Support Vector Machine (SVM)

The above SVM classifiers are general methods used for classification. A one-class SVM

is provided for outlier detection, and it is better suited for fraud detection [72]. The one-

class SVM algorithm instead tries to isolate the cases in high-dimensional space from the

origin. In the original space, this will conform to discovering a small region that covers

all the cases. If a new case does not belong with this region, it is a fraud. It determines a

smooth boundary that separates the transformed vectors into normal and anomaly

samples, and then builds up a model of a normal behaviour, where points of data that

depart from that model are classified as anomalies. The popular function in the one-class

SVM is support vector data description (SVDD) which was introduced by Tax and Duin

in 2004. The concept of SVDD is that a minimum radius hypersphere is fixed around

most of the transformed vectors in the feature space. The data points that settle outside

the hypersphere are classified as anomalies as shown in Figure 3-19 [89].

Given training data: S =ª�%,….,,��¬, �� ∈ ℝu,

ξ %�� 8ℎ� �H[\J z[9�[�H��

z: 8ℎ� 9�¯�H[9��[8�7� �[9[��8�9

°�∎�: 8ℎ� J�9��H 5��\8�7�

�: 8ℎ� 9[I��� , ²: 8ℎ� \��89� 75 8ℎ� ℎ3��9��ℎ�9�

min³,´,µ �" + %
>x ∑ ¶%>� (eq. 3.9)

120 | P a g e

��\ℎ 8ℎ[8
 ‖·���� − ²‖ ≤ �" + ¶%, ∀H = 1, … , �, ¶% ≥ 0 (eq. 3.10)

Figure 3-19. One-class support vector machine [89]

As well as nonlinear SVM classification above, the one-class SVM method is also

provided the package from sckit-learn . There are a few hyperparameters to fine-tune,

which works good especially with high-dimensional datasets.

(C) Random Forest (RF)

Random forest is a supervised learning algorithm and consists of many decision trees. It

is a highly accurate and robust method because of the number of decision trees performing

in the process. The algorithm works as shown in Figure 3-20 and proceeds with the

following steps:

1) Randomly select samples from a given dataset

2) Build up a decision tree for each sample and gain a prediction result from each

decision tree.

3) Carry out a vote for each predicted result

4) Select the prediction result with the most votes as the final prediction

121 | P a g e

Figure 3-20. The steps of Random Forest algorithm [107]

(D) Isolation Forest (IF)

This is an efficient algorithm for anomaly detection, especially in high-dimensional

datasets and builds a random forest where each decision tree is grown randomly: it selects

a feature randomly at individual node, then it selects a value of threshold randomly from

between the minimum and maximum values for splitting the dataset into two. It compares

the density of samples around a given sample to the density around its neighbours. An

anomaly is regularly more isolated than its J nearest neighbours. To observe anomalies,

the processes are as follows:

1) Choose a feature randomly and choose a value for that feature randomly within its

spectrum.

2) The value becomes the new maximum (minimum) of that feature’s spectrum if the

sample’s feature value falls below (above) the chosen value.

3) Confirm if at least one other sample has values in the spectrum of each feature in the

dataset, where some spectrums were adjusted via step2. If not, then the sample is

isolated.

122 | P a g e

4) Reiterate step1 to 3 until the sample is isolated. The number of times I go through the

above steps is the isolation number. The lower the number, the more abnormal the

sample is.

(E) Local Outlier Factor (LOF)

Local outlier factor calculates the local density deviation of a certain data point in terms

of the number of its neighbours and compares it to the density of other points. The higher

the local outlier factor value for a samples, the more fraudulent the sample. In the below

image of feature space, LOF can identify T1,T2 and T3 as frauds, which are local outliers

to Cluster 2 in Figure 3-21.

Figure 3-21. Instance of LOF [102]

To define each data point, the following processes will be carried out [102]:

1) Compute distances between a certain data point (P) and every other point by using

Manhattan distance which is a distance formula between two points in a certain

dimensional vector space.

‖�% − �"‖ + ‖3% − 3"‖ = I��8 ��1, �2� (eq. 3.11)

2) Discover the Kth closest point:

Kth nearest neighbour’s distance = K – Dist(P) (eq. 3.12)

123 | P a g e

3) Discover the K closest points, where those whose distances are smaller than the Kth

point. The K-distance neighbourhood of P, Nk(P).

4) Discover its density by assessing how close its neighbours are to it. Generally, the

inverse of the average distance between point P and its neighbours. The lower the

density, the farther P is from its neighbours.

Local reachability density = LRDk(P)

5) Discover its local outlier factor (LOFk(P)): LOFk(P) is fundamentally the sum of the

distance between P and its neighbours, weighted by the sum those point’s densities.

(F) Autoencoder (AE)

Autoencoder is a typical deep neural networks among others and shares a strong

resemblance with multiplayer perceptron neurons and then an output layer. AE is artificial

neural networks capable of leaning dense representations of the input data. As an

architecture of the autoencoder, hyperparameter that is the number of nodes in the code

layer needs to be determined before training the AE. Figure 3-22 describes the

autoencoder architecture which consists of two parts: an encoder and a decoder. The

encoder converts the input dataset of features into a different representation whereas the

decoder converts this freshly learned representation to the original layout. The encoder

part should be taken care of most because the new features set can be derived from the

original dataset of features. I will refer to the encoder function of the autoencoder as

h=f(x), which takes in the original observations x and utilises the freshly learned

representation captured in function f to output h. The decoder function that reconstructs

the original observations utilising the encoder function is r=g(h).

124 | P a g e

Figure 3-22. Architecture of autoencoder [52]

Before training the autoencoder, I need to grasp some core components in neural networks

and determine which functions and parameters are used for modelling as presented below:

• Active Functions

An activation function is applied to the hidden layer to reconstruct the original

observations. This activation functions represents the decoder portion of the

autoencoder. The output layer represents the newly reconstructed observations. To

compute the reconstruction error, I will compare the newly constructed observations

with the original ones. A neural network learns the weights to apply to the nodes at

each of the layers but whether the nodes will be activated or not is decided by the

activation function. Specifically, an activation function is applied to the weighted

input and bias at each layer. The information in each node is passed to the next layer.

However, it is not simply binary activations. In order to have a range of activation

values, I can select a linear activation function or a nonlinear activation function. The

linear activation function is unbounded. It can produce activation values between

negative infinity and positive infinity. Popular nonlinear activation functions have

sigmoid, tanh, rectified linear unit (ReLu), exponential linear unit (ELU), and

softmax. The sigmoid function is bounded and can produce activation values between

125 | P a g e

0 and 1. The tanh function is also bounded and can produce activation values between

-1 and +1. Its gradient is steeper than that of the sigmoid function. The ReLu function

has an interesting property. If the weighted input plus bias is positive, ReLu will return

the weighted input plus bias. Otherwise, it will return zero. Thus, ReLu is unbounded

for positive values of the weighted input plus bias. The ELU function is unbounded

and adapts a log curve for negative values. It is based on ReLu that has an extra alpha

constant α except negative points. The ELU is also in identity function form for

nonnegative inputs, but it becomes smooth gradually until its output equal to -α. It

tends to converge faster than ReLu. Lastly, the softmax function is utilised as the final

activation function in a neural network for classification problems because it

normalises classification probabilities to values that aggregate to a probability of one.

Among all these functions, the linear activation function is the simplest and least

computationally expensive. ELU and ReLu are the most popular activation functions

used. ReLu is the next least computationally expensive followed by others. The ELU

function is better generalisation performance than ReLu and fully continuous.

• Number of Hidden Layers

The number of hidden layers plus the output layer count toward the number of layers

in a neural network. As I learned in Chapter 2, layers will be represented by

subnetworks in certain architectures.

• Number of Epochs/Optimizer

Neural networks train for many rounds, which is known as epochs. In each of these

epochs, the neural network adapts its learned weights to lower its loss from the

previous epoch. The number of epochs determines the number of times the training

126 | P a g e

occurs over the full dataset passed into the neural network. The process for learning

the weights is fixed by the optimizer. That process boosts the neural network to

efficiently learn the optimal weights for the various nodes across whole layers which

minimizes the loss function I have selected. The neural network requires to adjust its

predictions for the optimal weights in an intelligent way to learn. One approach is to

iteratively move the weights in the direction that boosts lower the loss function

increasingly. However, an even better approach is to move the weights in this

direction but with a degree of randomness. This process is known as stochastic

gradient descent (SGD). Generally, optimizer is used in training neural networks the

most. SGD has a single learning rate for all the weight updates that it makes, and this

learning rate does not change during training. However, in most studies, it’s better to

adapt the learning rate over the circuit of the training. For instance, in the earlier

epochs, it becomes more reasonable to adapt the weights by a large degree and to have

a large learning rate. Conversely, in later epochs, when the weights are more optimal,

it becomes more reasonable to adapt the weights by a small degree to delicately fine-

tune the weights than to take massive processes in one direction or another. Thus, the

Adam optimization algorithm which is derived from adaptive moment estimation is a

better optimizer than SGD. The Adam optimizer dynamically adapts the learning rate

over the circuit of the training process, different from SGD.

• Loss Function

Regarding the loss function, in order to evaluate the model based on the reconstruction

error between the newly reconstructed matrix of features based on the autoencoder

and the original feature matrix that I feed into the autoencoder, the evaluation metric

needs to be selected.

127 | P a g e

• Batch Size

The batch sets the number of samples the neural network trains on before creating the

next gradient update. If the batch is equal to the total number of observations, the

neural network will make a gradient update once every epoch. Alternatively, it will

create updates multiple times per epoch.

The detailed implementation is described in Chapter 5. I used the Scikit-Learn which

provides the autoencoder library to build the AE model.

II.Performance Evaluation

The most common metrics of model validation is accuracy, the area under the receiver

operating characteristic curve (AUC), true positive (TP) and false negative (FN).

Accuracy is derived by the ratio of number of correct predictions from the total number

of observation samples. However, evaluating the model performance in the case of

dealing with unbalanced labelled dataset by only accuracy is not precise because there is

possibility of being a good accuracy score despite of only correcting a majority class

which is nonfraud and failing in detecting a minority class which is fraud. I need to build

and compare the model performance with appropriate metrics for considering a balance

between the true positives ratio (TPR) and the false-positive ratio (FPR). True positive

(TP) is the number of predictions as fraud where the actual result is also fraud. On the

other hand, false positive (FP) is the number of predictions as a legitimate transaction

where the actual result is the customer. True negatives (TN) and false negatives (FN) are

also significant metrics when measuring the performance of recall and precision. TN is

the number of predictions of fraud where actual result was also fraud. FN is the number

128 | P a g e

of predictions of fraud where actual result was nonfraud. A summary of the TP, FP, TN,

and FN, which is called confusion matrix is shown in Table 3-12.

of observations Actual Nonfraud Actual Fraud

Predicted
Nonfraud

True Positives
(TP)

False Positives
(FP)

Predicted
Fraud

False Negatives
(FN)

True Negatives
(TN)

Table 3-12. Confusion matrix

For the imbalanced transactions dataset, a better way to evaluate the performance of

models is to apply recall and precision. Recall is the number of true positives over the

number of total actual positives in the dataset. For fraud detection, recall measures the

number of fraud detections made from all fraudulent samples in the dataset. A high recall

indicates that the model has detected most of the true frauds. On the other hand, precision

is the number of true positives over the number of total positive predictions. For fraud

detection, precision assesses the number of fraud detections that truly belong to frauds. A

high precision indicates that many true frauds are detected from all of positive predictions.

In the high precision and low recall case, the financial institution would lose lots of money

because of fraud, however, it would not cause problem on customers by unwanted

rejecting transactions. In the low precision and high recall case, the financial institution

would detect lots of the fraud, however, it would most absolutely anger customers by

unwanted rejecting lots of the legitimated transactions by customers. It is a trade-off

between recall and precision.

129 | P a g e

Figure 3-23. Precision versus Recall [109]

As shown in Figure 3-23, the first scenario A consists of positive class samples which is

in red and negative class samples highlighted in yellow. The green line is the decision

boundary which divides the samples into the positive class and negative class. For

instance, to increase precision, the green threshold is shifted to the right-hand side and

became scenario B. Precision becomes 100% as positive samples on the right-hand side

divided by total samples on right side makes 2/2. Then, recall becomes 50% in scenario

B because positive samples on right side divided by total positive samples makes 2/4.

When precision increases, recall decreases. On the other hand, to increase recall, the green

threshold is changed in the left-hand side and became scenario C. Recall becomes 100%

because positive samples on right side divided by total positive samples makes 4/4. In

this case, permission became lower than recall score. This scenario describes that any of

the positive samples will not be missed although many negative samples will be allowed

to get on the right side. In the example, only two thresholds were determined. However,

precision and recall scores are calculated across many thresholds and these scores will

draw a curve with precision as the y-axis and recall as the x-axis as shown in Figure 3-24

[110].

130 | P a g e

Figure 3-24. Example of a precision and recall curve [110]

The above figure shows a trade-off between false positives and false negatives. F1-

Measure is the harmonic mean of precision and recall. The best score is 1 whereas the

worst score is 0. This metric seeks the balance between precision and recall as shown in

Table 3-13.

Precision
��

�� + cZ

Recall
��

�� + c�

F1-measure 2 ∗ �9�\���7� ∗ ��\[HH
�9�\���7� + ��\[HH

Table 3-13. Performance metrics definition

One method to compute classifiers is to measure AUC which stands for “Area under the

ROC Curve.” AUC is a performance measurement for the classification issues at different

threshold settings. Another common method is ROC curve which stands for “Receiver

Operating Characteristic Curve” and draws two parameters: the true positive rate (TPR)

and the false positive rate (FPR). TPR is an equivalent with recall or specificity, which is

the ratio of negative instances that are precisely classified as negative. The FRP is the

ratio of negative instances that are wrongly classifies as positive. TPR and FPR are

defined as follows:

131 | P a g e

��� = �º
�º»¼K (eq. 3.13)

c�� = ¼º
¼º»¼K (eq. 3.14)

An ROC curve draws TPR against FPR at various classification thresholds. There is a

trade-off: The higher the recall (TPR), the more false positives (FPR) the classier

produces.

Figure 3-25 shows a general ROC curve.

Figure 3-25. Typical ROC curve

AUC describes the measurement of separability which shows how much the model is

capable of dividing between classes and adjusts the whole two-dimensional area

underneath the whole ROC curve from 0 to 1 as shown in Figure 3-26.

Figure 3-26. Area under the ROC curve (AUC)

The better model is at predicting 0 classes as 0 and 1 classes as 1. AUC ranges in value

from 0 to 1. If a model could predict 100% correct, then AUC range becomes 1.0 in the

132 | P a g e

higher area than the threshold. If a model predicted 100% wrong, then AUC range

becomes 0.0 in lower area than the threshold.

Scikit-Learn provides the precision, recall, f1-measure, and AUC functions as below:

from sklearn.metrics import precicion_score, recall_score, f1_score, roc_auc_score

precision_score (Train_y, Test_y)

recall_score (Train_y, Test_y)

f1_score (Train_y, Test_y)

roc_auc_score (Train_y, y_scores)

133 | P a g e

3.4. Key Summary

This section describes the high-level summary of the content of this chapter.

 Proposed a new feature engineering framework that can generate an effective feature

set by using various feature engineering methods and selecting practical features from

all attributes.

 Made a suggestion of using a flow of processes for dealing with missing values

appropriately and presented various options for dealing with categorical values.

 Presented details data cleaning techniques for preparing an appropriate data before

feature engineering.

 Provided a technique to perform feature aggregation and transformation is discussed.

The focus is specifically on creating features that are based on customer’s behaviour

on transactions and shows new aspects of input values and enable a ML/DL algorithm

easy to learn the difference between normal and fraudulent behaviour.

 Introduced concepts of what the new feature engineering framework is and justified

why feature selection is necessary to be embedded in the framework; also proposed

techniques on how to estimate the feature values.

 Provided an insight into the use of machine learning and deep learning models for

fraud detection and how they can deal with the input data inside of their algorithms.

 Techniques to evaluate the effectiveness of the prepared feature set from the

framework are appropriately discussed and proposed.

134 | P a g e

4. Online Banking Transaction Data

4.1. Data Source and Description

The online banking datasets are provided by a European private bank for only academic

purposes and are anonymised. They contain about 130,000 transactions including

fraudulent actions which account for 5 % of all transaction that are conducted via the

online banking and were collected from 7th September 2015 to 7th July 2016. The original

data was comprised over 300 JSON files assembled from 7 different data tables which

are linking to the related tables in an online banking system as shown in Figure 4-1. Each

file contains the history data of transactions by many customers conducted during the

time period from September 2015 to July 2016. Generally, it is not difficult to read a

JSON format file by using a Python library, however, the JSON files I obtained were

composed of a very complicated structures and simply could not be loaded under the

python environment in my computer. In order to read the whole files and convert to CSV

format, I used a free open software which enables me to convert the JSON files into CSV

files without using python. Although it worked and I managed to convert the JSON files

into the CSV files, one difficulty to use this software was the time it took (time-

consuming). I had to load the files one by one manually because the software could not

read and proceed multiple files at one time. After reading all JSON files, the same number

of CSV files were generated.

135 | P a g e

Figure 4-1. ER diagram for an online banking system.

There were originally 120 attributes in the dataset, however, many attributes have over

80% of missing values. Although there were many attributes with a lot of missing values,

most of the attributes were static data such as Customer’s Surname, Middle Name, First

Name, Last Name, Home Address, Office Address, Bank Address, Email 2 and Email 3,

Customer’s Phone Number 1 and Phone Number 2 and so on. Some attributes are

dynamic data related to the web browser and session actions. They are valuable attributes

as they represent of part of user’s behaviour during the transaction. At least two methods

of handling missing values are considered in order to keep them in the dataset. The first

method was to fill the missing values with the average numbers or the same content across

the same users. However, it was difficult to implement because most of the attributes have

blanks under the same user. Another method was to fill the missing values with zero or

other numbers. But this method had risks of giving an algorithm the wrong

implementation. Filling in with zero or other numbers over 80% of the missing values

136 | P a g e

may cause incorrect user’s behaviour on the web browser and session actions. It is worth

experimenting with other important and reliable features rather than using features that

may give misleading implementations. This is because the main theme of this research is

how to create impactful feature values from given attributes. Priority in this research is

given to generating effective features from the remaining features and demonstrating their

effects. Therefore, the attributes having over 80% missing values were removed from the

dataset. After removing these features, the total number of meaningful features for

modelling consequently became 41 features such as transaction amount, event, IP address,

device information, online access ID, timestamp, customer ID, email domain, account

information, etc. as shown in Table 4-1.

137 | P a g e

Attribute Name Description

ED_EVENTTYPETX Type of event e.g., Customer Login, Make Payment etc

ED_TXNID Transaction ID

ED_CHANNELIDENTIFIER
A way that customers can interact with a bank. This can
be via the telephone, internet banking, branch, mobile.

ED_FINANCIALINSTITUTENM Financial Institute name

ED_SUBCHANNELNM Sub-channel name

CUSTD_PARTYID Customer Party ID

CUSTD_EMAILADDRESSTX Customer’s email address

EVENT Event of transaction

AUTO_RESPONSE Auto-response

LGIN_LATENCY Latency

SEC_LATENCY Second Latency

IDVD_LOGINTYPE Login Type

ACTD_BANKACCTNO Account’s bank account number

ACTD_ACCTTYPENM Account type

ACTD_AVAILABLEBALANCE Available balance

ACCTLGN_LASTUPDATE Last login date

ACCTLGN_FARSTUPDATE Frist login date

TRNSD_BENEFICIARYACCTNO Beneficiary account number

TRNSD_TRNSAM Transaction amount

TRNSD_LASTBALANCE Transaction last balance

TRNSD_TXNREFERENCETX Transaction reference

IDVD_FASTPASS First pass code

IDVD_SECPASS Second pass code

IDVD_LASTPASS Last pass code

IDVD_IPADDRESSID IP address

IDVD_CLIENTSCREENRESOID Client screen resolution

IDVD_USERAGENTTX User-agent

IDVD_DEVICEID Device ID

IDVD_INTESESSIONID Internet session ID

IDVD_SCREENSIZE Client screen resolution

IDVD_Devicetype Access device type

IDVD_IPADDRESSID IP address

IDVD_DEVICEINFO Device Information

IDVD_TELSESSIONID Telephone session ID

IDVDATA_TRNSTS Transactions timestamps

EVENT Event of transaction

ACCESS_CD Access Code

Last LATENCY Latency

LATUPDATE Latest update timestamps

ACTD_AVAILABLECARD Card Type

Is Fraud Fraud flag whether fraud or not

Table 4-1. Description of attributes in the original dataset

138 | P a g e

4.2. Exploratory Data Analysis (EDA)

The exploratory data analysis in this section is intended to investigate trends and patterns

in data and summarize the key observations. It provides the fundamental understanding

of the data, missing values, and distribution. EDA is very helpful for the data preparation

process as a first step towards achieving improved machine learning models. The EDA

methods in this section mainly consist of histograms, scatter plot and distributions.

Through these methods of EDA, I will explore and define the problem statement on the

dataset.

In order to initiate exploring the insights of the data, I used Jupiter notebook and imported

the dataset. The dataset contains 4,273 fraudulent transactions out of 130,000 transactions

with dataset as shown in Figure 4-2.

Figure 4-2. Unbalanced dataset

The features used for the EDA in this section include Transaction Amount, the transaction

datetime, Auto Response, Access Code, Device Information, Credit Card and Event Type.

139 | P a g e

The distribution of transaction amount in the dataset is highly skewed to the left as

illustrated in Figure 4-3. The fraudulent transaction amount is described in red whereas

the legitimate transaction amount is shown in green. In the plot of the distribution of

transaction amounts, the mean value of both transactions is between £134.89 and £136.22

while the largest transaction is marked between £3,149 and £5,095 as shown in Figure 4-

3.

Figure 4-3. The distribution of transaction amount

In Figure 4-4, the boxplot of Transaction Amount by Fraud Flag displays the distribution

for each flag, which is a fraud or not. It shows the distribution is different when it reaches

to minimum, first quartile, median, third quartile, and maximum.

Figure 4-4. Boxplot of transaction amount by fraud frag

140 | P a g e

In Figure 4-5, the feature of available Balance which indicates the total amount of money

the account holder can use is plotted. The Figure 4-5 shows the fraudulent transaction of

available balance is in red while the customer’s transaction of available balance is in green.

The distribution of the available balance is highly skewed to the left as well as the

transaction amount.

Figure 4-5. Distribution of the transaction frequency of the available balance

Figure 4-6 and figure 4-7 also display the login latency during transactions. It is difficult

to discriminate the difference from both tendency of values in fraud and non-fraud.

Figure 4-6. Distribution of transaction login latency

141 | P a g e

Figure 4-7 shows the number of transaction which is flagged as fraud per access device.

The fraudulent transaction has been carried out from both, desktop and mobile.

Figure 4-7. Access device type used for transaction

Figure 4-8 displays the number of transaction which is flagged as fraud or not based on

the used card type such as American Express, Discover, Visa and Mastercard. The most

fraudulent transaction occurred using Visa or Mastercard.

Figure 4-8. Credit card types

142 | P a g e

Figure 4-9 shows the types of access code which is the key piece of information a user

needs to access the internet banking and bank online. The access code in the provided

data seems to be only represented by the common initial code. The pattern in orange is

frauds and the pattern in blue is normal. At a glance, they are no obvious difference.

Figure 4-9. Comparison between normal and fraud patterns in access code types

The below figure 4-10 shows various kinds of client’s use browsers during the

transactions. The blue bars are normal transactions whereas the orange bars are fraudulent

ones.

143 | P a g e

Figure 4-10. Various types of client’s screen browser in IDVD_CLIENTSCREENRESOID

144 | P a g e

Now, the timestamp is considered as an important feature to discover different behavior

between a customer and a fraudster as customers and it will contain their usual lifestyle

patterns on a time-series basis. Regarding the number of records in the dataset, the

timestamp did not hold a whole sequential time records between November 2015 to June

2016, but it seemed to be fragmentary collected in a certain period. Figure 4-11 shows

the number of records between normal transaction and fraud in each month, in which the

transaction records were gathered specifically between April and June.

Figure 4-11. Transactions over timestamp in months

Apart from the months, the other related time features such as weekdays, days, and hours

were still very significant features that will imply difference between normal and

fradulent behaviour. Figure 4-12 shows all transaction timestamps in the dataset.

Figure 4-12. Transaction timestamps in the dataset

145 | P a g e

From this single timestamp feature, I created three different types of time features:

Weekdays, Days and Hours, which can be aggregated with other features and produced

new features by time slicing in Figures 4-13, 4-14 and 4-15.

Figure 4-13. Transactions over timestamp in weekdays

Figure 4-14. Transactions over timestamp in days

Figure 4-15. Transactions over timestamp in Hours

146 | P a g e

Specifically, fraud transactions in hours have not occurred from 8 am to 11pm and they

seem to become more active after 5pm until midnight.

Throughout the whole visualisations per significant features for fraud detection, the

picked-up features in this dataset do not have a remarkable difference between fraud and

non-fraud at a glance. In my framework, values in the features will be mapped to the

different space to show other aspects of the features by using some techniques of feature

engineering. For instance, a logarithm function, which is one of the popular mathematical

functions, is applied on Transaction Amount and Available Balance. Tendency of the

original values in the feature was shown in Figure 4-3 and Figure 4-5. After applying the

log function, the histogram of log transformation is shown in Figure 4-16 and in Figure

4-17. The distribution in green shows normal transactions while the one in red represents

fraudulent transactions.

Figure 4-16. Distribution of log transformation amount

147 | P a g e

Figure 4-17. Distribution of log transformation available balance

From the visualisation of the log transformation, the distribution graphs provide clearer

differences between fraud in red and nonfraud in green than the graphs which are plotted

with the original values in Transaction amount and Available Balance. Specifically, the

graph in Figure 4-17 shows the left distribution in green can be clearly classified as

nonfraud. As another example of visualisation using transformation technique, the

transformed feature which applied a function of standard deviation on the login latency

of transactions displayed in Figure 4-6 is plotted and shown in Figure 4-18.

Figure 4-18. Login latency transformed by standard deviation

148 | P a g e

Figure 4-18 presents the tendency of fraudulent transaction in red. Clearly, a fraudster

seems to login faster and carry out the transaction quickly in comparison with the latency

of normal transactions shown in green. This tendency could not be seen in the plot of the

raw feature shown in Figure 4-6.

4.3. Conclusion

Throughout the outputs in Chapter 4, some key attributes related to customer’s behaviour

on transaction were visualised and compared with the variables between fraud/non-fraud.

Among them, variables in each attribute seemed not to show a clear different tendency

between fraud and nonfraud. Therefore, it would be difficult to detect fraudulent

transaction by only a rule-based fraud detection system if there is not so much different

behaviour on a transaction.

Another insight from the EDA in this section is that the transformed features using

techniques of feature engineering could present other aspects of the features which enable

a machine learning algorithm to learn the different behaviour of fraud transaction easier.

Through the feature engineering framework built in this research, more engineered

features can be created and used for machine learning and deep learning which will be

addressed in Chapter 5.

149 | P a g e

5. Experiments and Validation of Fraud

Detection Framework

5.1. Data Preparation processes

As explained details in Chapter 4, a real-life online transaction dataset provided by a

European private bank was already integrated from different sources and ready for use as

shown in Table 5-1. Thus, the data integration and data modelling processes were not

necessary in the experiment. To confirm which attribute needs to be converted from

character string to numeric data type, firstly, the data type of each attribute was checked

and recognised.

Attribute Name Data type

CUSTD_PARTYID int64

ED_EVENTTYPETX object

ED_TXNID float64

ED_CHANNELIDENTIFIER object

ED_FINANCIALINSTITUTENM object

ED_SUBCHANNELNM object

CUSTD_EMAILADDRESSTX object

EVENT object

AUTO_RESPONSE float64

LGIN_LATENCY float64

SEC_LATENCY float64

IDVD_LOGINTYPE int64

ACTD_BANKACCTNO int64

ACTD_ACCTTYPENM int64

ACTD_AVAILABLEBALANCE float64

ACCTLGN_LASTUPDATE datetime

TRNSD_BENEFICIARYACCTNO int64

TRNSD_TRNSAM float64

TRNSD_LASTBALANCE float64

TRNSD_TXNREFERENCETX float64

IDVDATA_TRNSTS datetime

IDVD_FASTPASS object

IDVD_SECPASS object

150 | P a g e

IDVD_LASTPASS object

IDVD_IPADDRESSID float64

IDVD_CLIENTSCREENRESOID float64

IDVD_USERAGENTTX float64

IDVD_DEVICEID float64

IDVD_INTESESSIONID int64

IDVD_SCREENSIZE float64

IDVD_DeviceType object

IDVD_DEVICEINFO object

IDVD_TELSESSIONID float64

ACCESS_CD int64

Last_LATENCY float64

LATUPDATE datetime

ACTD_AVAILABLECARD object

Is Fraud int64

Table 5-1. Data types of each feature value in the given dataset

From the above investigation, some features such as available card types, device types,

device information, Email domain types, financial institution name, and event types, need

to be converted from a string format to a numerical format. Before converting any

attributes, as explained in Chapter 3, I need to investigate the contents in each categorical

feature and consider which type of encoding methods should apply to the categorical

values. Firstly, if the number of categorical types in each attribute are less than ten

categories, one-hot encoding is used for converting categorical values into one-hot

vectors. If not, I use the label encoding method on the categorical values for

transformation to numerical values. Based on the Data Type shown in column in Table

5-1, I plotted the categorical attributes in order as follows.

ACTD_AVAILABLECARD Counts

Visa 87334

Mastercard 43267

American Express 1936

Discover 1398

Table 5-2. Category of available cards

151 | P a g e

EVENT Counts

Session Payment Request 122581

Session Request 6278

Password Reset Payment Request 1954

Customer Payment Request 1161

Payment Request 1124

Customer Request 646

Payment Request 495

Product Payment Request 34

Table 5-3. Category of large segment event types

ED_CHANNELIDENTIFIER Counts

INTERNET_BANKING 103233

TELEPHONY 6808

DIGITAL BRANCH 135

Table 5-4. Category of channel types

Device info Counts

Desktop 74502

Mobile 48412

Table 5-5. Category of device types

IDVD_FASTPASS Counts

T 75759

F 48412

Table 5-6. Category of first pass code

IDVD_SECPASS Counts

T 6782

F 127491

Table 5-7. Category of second pass code

IDVD_LASTPASS Counts

T 105120

F 29153

Table 5-8. Category of last pass code

152 | P a g e

ED_FINANCIALINSTITUTENM Counts

LTB 61548

HAL 40572

BOS 7115

LTS 814

LTJ 55

LTSB 52

HFX 14

LPB 3

LTI 3

Table 5-9. Category of financial institution names

ACCESS_CD Counts

W 98964

C 16145

R 8671

H 7872

S 2621

Table 5-10. Category of access codes

Although the above nine categorical features could be displayed, the rest of a few features

could not be displayed because there were too many types of categories to plot. For

instance, the feature value of screen size has 196 types of categories. The feature value of

email domain also has 59 kinds of categories. Moreover, the feature value of device

information has 1,188 categories. I applied the label encoding method to these feature

values for converting numbers. Table 5-11 shows new created features using the one-hot

encoding method provided by Python Library, Scikit-Learn OneHot Encoder. The other

features are transformed to numerical variables by Scikit-Learn LabelEncoder.

Column Dtype

EVENT_CustomerRequest int64

EVENT_PasswordResetPaymentRequest int64

EVENT_PaymentPaymentRequest int64

EVENT_PaymentRequest int64

EVENT_ProductPaymentRequest int64

EVENT_SessionPaymentRequest int64

EVENT_SessionRequest int64

153 | P a g e

ED_FINANCIALINSTITUTENM_BOS int64

ED_FINANCIALINSTITUTENM_BoS int64

ED_FINANCIALINSTITUTENM_HAL int64

ED_FINANCIALINSTITUTENM_HFX int64

ED_FINANCIALINSTITUTENM_LPB int64

ED_FINANCIALINSTITUTENM_LTB int64

ED_FINANCIALINSTITUTENM_LTI int64

ED_FINANCIALINSTITUTENM_LTJ int64

ED_FINANCIALINSTITUTENM_LTS int64

ED_FINANCIALINSTITUTENM_LTSB int64

ED_CHANNELIDENTIFIER_DIGITAL BRANCH int64

ED_CHANNELIDENTIFIER_INTERNET_BANKING int64

ED_CHANNELIDENTIFIER_TELEPHONY int64

DeviceType_desktop int64

DeviceType_mobile int64

ACTD_AVAILABLEBLCARD_charge card int64

ACTD_AVAILABLEBLCARD_credit int64

ACTD_AVAILABLEBLCARD_debit int64

ACTD_AVAILABLEBLCARD_debit or credit int64

IDVD_FASTPASS_F int64

IDVD_FASTPASS_T int64

IDVD_SECPASS_F int64

IDVD_SECPASS_T int64

IDVD_LASTPASS_F int64

IDVD_LASTPASS_T int64

ACCESS_CD_C int64

ACCESS_CD_H int64

ACCESS_CD_R int64

ACCESS_CD_S int64

ACCESS_CD_W int64

ACTD_CARDTYPE_American Express int64

ACTD_CARDTYPE_discover int64

ACTD_CARDTYPE_mastercard int64

ACTD_CARDTYPE_visa int64

Table 5-11. New features created by the one-hot encoder method

154 | P a g e

5.2. Feature Creation Processes for Experiment

Online banking systems in any bank will have multiple common tables and attributes such

as transaction amount, time, access information, card information, device information,

etc. As I presented the conceptual new framework in Chapter 3, I defined the feature

aggregation formula based on a scenario of customer’s journey on transaction which uses

the six fixed attributes shown in Table 5-12. Following the feature aggregation formula,

I carried out the feature creation processes on key feature values linked to customer’s

transaction behaviour, i.e., Time, Balance, Amount, Latency, Event type, IP address, and

Customer ID shown in Table 5-12.

155 | P a g e

Table 5-12. New created features by feature aggregation

Target Attributes New created features Description

LATUPDATE_Weekdays Last update per weekdays

Time LATUPDATE_Hours Last update per hours

LATUPDATE_Days Last update per days

LATUPDATE_Minute Last update per minute

mean_last_ Amount Mean of Last amount

count_Amount The count of amount of transactions

Amount count_last Amount The count of amount of last transaction

last_Amount Last amount of transactinos

min_last_balance Maximum last amount

max_last Amount Maximum last amount

mean_last_balance Mean of balance last transaction

mean_balance Mean of Balance

Balance count_balance The count of balance of transactions

last_balance Last Balance of transactions

max_balance Maximum Balance

min_balance Minimum last Balance

mean_latency Mean of latency

LGIN_LATENCY1 Login with latency1

Login / LGIN_LATENCY2 Login with latency2

IP address/ Last_IPaddress Last accessed IP address

Accessing Device Last_login_IPaddress Last login hours with specific IP address

Device_IPaddress Accessed device with IP address

count_IPaddress Count of accessed IP address

Event_IPaddress Specific event with accessed IP address

Event Event_device Specific event with used device

Event_ FINANCIALINSTITUTENM Specific event with selected financial institution

CUSTD_PARTYID_IDVD_CLIENTSCREENRESOID_

count_LATUPDATE_Weekdays

Count of last update per weekdays by each client’s screen

 resolution based on Customer ID

CUSTD_PARTYID_IPADDRESSID_count_

LATUPDATE_Weekdays

Count of last update per weekdays by each IP address based

 on Customer ID

CUSTD_PARTYID_IDVDATE_TRNSTS_count_

LATUPDATE_Weekdays

Count of last update per weekdays of transaction timestamp

 by each customer ID

CUSTD_PARTYID_LAST_LATENCY_count_

LATUPDATE_Weekdays

Count of last update per weekdays by last latency of

 each customer ID

Customer ID
CUSTD_PARTYID_TRNSD_TRANSSESSIONCD_

count_LATUPDATE_Weekdays

Count of last update per weekdays by transaction session ID

 of each customer ID

CUSTD_PARTYID_ACTD_AVAILABLBALANCE_

log_count_LATUPDATE_Weekday

Count of last update per available balance of log transformation

 by each customer ID

CUSTD_PARTYID_ACCESS_CD_count_

LATUPDATE_Weekdays
Count of last update per access code of each customer ID

CUSTD_PARTYID_TRNSD_Amount_log_count_

LATUPDATE_weekdays

Count of last update per transaction amount of

log transformation by each customer ID

CUSTD_PARTYID_TRNSD_Amount_count_

LATUPDATE_Weekdays
Count of last update per transaction amount of each customer ID

156 | P a g e

Then, I applied the five feature transformation methods which were determined to use in

the framework as described in Chapter 3 to each attribute related to a transaction. The

new transformed features are shown in the below Table 5-13.

Table 5-13. New created features by feature transformation

Transform Methods New created features Description

Balance_min_mean Minimum mean of Balance

ACTD_AVAILABLEBALANCE_min_mean Minimum mean of available balance

Trans_ Amount_min_mean Minimum mean of Transaction amount

mean_last_ Amount_count Mean of the count of Last Amount

Confidence Interval min_last Amount Minimum last amount

 Formulas min_last_balance Maximum last amount

max_last Amount Maximum last amount

max_last_balance Maximum last Balance

count_last Amount The count of amount of last transaction

count_minimum_balance The count of total minimum Balane in month

mean_last Amount Mean of amount last transaction

mean_last_balance Mean of balance last transaction

max_last_ Amount Maximum amount last transaction

Log Transformation Amount_log Log transformation of Amount

ACTD_AVAILABLEBALANCE_log Log transformation of available balance

Balance_min_std Minimum standard deviation of Balance

ACTD_AVAILABLEBALANCE_min_std Minimum standard deviation of available balance

Trans_ Amount_min_std Minimum standard deviation of transaction amount

Standard Deviation AUTO_RESPONSE_std Standard deviation of Auto Response

LATENCY1_std Standard deviation of latency 1

LATENCY2_std Standard deviation of latency 2

LAST_LATENCY_std Standard deviation of last latency

Days_std Standard deviation of days

Weekday_std Standard deviation of weekday

Hours_std Standard deviation of hours

K-Means clusters_1 Cluster 1 by K-Means

clusters_2 Cluster 2 by K-Means

clusters_3 Cluster 3 by K-Means

PCA_EVENT0 PCA of Event

PCA_EVENT1 PCA of Event

PCA PCA_FinancialInfo0 PCA of Financial Institution Info

PCA_FinancialInfo1 PCA of Financial Institution Info

PCA_FinancialInfo2 PCA of Financial Institution Info

PCA_CustomerID_IP_Amount PCA of Customer ID and IP address and Amount

157 | P a g e

5.3. Feature Selection Processes for the Experiment

To select appropriate features which will not give a drastic influence on overfitting, there

are two processes in the framework as described in Chapter 3: calculating correlation of

features and drop some features with very high positive or negative correlation with the

other feature, then, measuring feature importance. First, I checked correlation coefficient

by using correlation matrix. The number of all attributes in the dataset is too big to plot

at a time, thus, I extracted some candidate features to be dropped based on the threshold

value above +- 0.9 as shown in Table 5-14.

Table 5-14. Features with very high correlation coefficient with the other feature.

From the correlation coefficient variables, I extracted features which have very

correlation greater than +- 0.90 and dropped these attributes painted in grey as shown in

Table 5-14.

Next, to measure the feature importance, I built a simple random forest model which is

an ensemble of decision trees and trained it via the bagging method by using both the

original and the created features. I used a library of “RandomForestClassifier” provided

by scikit-learn that is an open-source python library. That library is convenient and

X_feature Y_feature Score

ED_SUBSCR_Found ED_SUBSCR_NotFound -1

IDVD_FASTPASS_F IDVD_FASTPASS_T -1

IDVD_LASTPASS_T IDVD_LASTPASS_F -1

IDVD_SECPASS_T IDVD_SECPASS_F -1

IDVD_LASTPASS_F IDVD_LASTPASS_T -1

LATENCY1_std PCA_PASS0 -1

ACTD_AVAILABLEBLCARD_debit ACTD_AVAILABLEBLCARD_credit -0.99332958

ACTD_CARDTYPE_visa ACTD_CARDTYPE_mastercard -0.940520223

AUTO_RESPONSE_std AUTO_RESPONSE 1

Days_std LATUPDATE_Days 1

TRNSD_Amount_log Trans_min_mean 1

Balance_min_mean Balance_min_std 1

Hours_std LATUPDATE_Hours 1

ACTD_AVAILABLEBLBALANCE_log ACTD_AVAILABLEBLBALANCE_min_mean 1

ED_CHANNELIDENTIFIER_INTERNET_BANKING EIA Code Device_BROWSER 0.987223011

EIA Code Device_BROWSER ED_CHANNELIDENTIFIER_INTERNET_BANKING 0.987223011

Amount Amt_to_IDVD_IPADDRESSID 0.957201039

count_balance count_last 0.903642141

count_last_balance count_last 0.903642141

158 | P a g e

optimised for DTs which has all the hyperparameters of bagging classifier to control how

trees are grown. Scikit-learn measures feature importance by looking at how much the

tree nodes that use that feature reduce impurity on average and computes a score of feature

importance automatically for each feature after training. I selected the features which has

positive feature importance scores. Which means that I dropped the features with no score

of feature importance. The result of feature importance measurement after dropping the

irrelevant features is presented in Table 5-15. The feature importance was measured using

all features in the dataset including both raw features and new created features.

Features Name Importance
ED_TXNID 0.146411203

CUSTD_PARTYID_LAST_LATENCY_count_LATUPDATE_Weekdays 0.138431516

IDVD_IPADDRESSID 0.084311684

CUSTD_PARTYID_IDVD_IPADDRESSID_count_LATUPDATE_Weekdays 0.054836879

EIA Code Device_BROWSER 0.050055369

PCA_EVENT0 0.04996359

count_last 0.048155935

count_balance 0.044048671

CUSTD_PARTYID_ACTD_AVAILABLEBLBALANCE_log_count_LATUPDATE_Weekdays 0.0385729

CUSTD_PARTYID 0.036525414

LAST_LATENCY_std 0.034676433

CUSTD_PARTYID_TRNSD_Amount_log_count_LATUPDATE_Weekdays 0.033201245

CUSTD_PARTYID_IDVD_CLIENTSCREENRESOID_count_LATUPDATE_Weekdays 0.031423183

IDVDATA_TRNSTS 0.026768962

LATUPDATE_Days_to_mean_CustomerID 0.019360331

FIRSTLGIN_Days 0.018580164

ACCESS_CD_W 0.015114629

IDVD_SCREENSIZE 0.012545246

Amt_to_mean_ED_TXNID 0.011591451

LATUPDATE_Days 0.009760756

TransactionID 0.008878403

ACCESS_CD_C 0.007942867

TRNSD_BENEFICIARYACCTNO 0.007511596

mean_balance 0.006406679

ED_FINANCIALINSTITUTENM_HAL 0.005652446

max_last_balance 0.005568455

min_last_balance 0.005504727

CUSTD_PARTYID_DeviceInfo_count_LATUPDATE_Weekdays 0.004856424

ED_FINANCIALINSTITUTENM_LTB 0.004042116

IDVD_CLIENTSCREENRESOID 0.003921893

FIRSTLGIN_Hours 0.003887878

LATUPDATE_Weekdays_to_mean_CustomerID 0.003757351

FIRSTLGIN_Weekdays 0.002689806

Amount 0.001679155

FIRSTLGIN_Minute 0.001570854

159 | P a g e

max_last 0.001544174

TRNSD_TXNREFERENCETX 0.00120954

ACTD_AVAILABLEBLBALANCE_log 0.00113074

ED_SUBSCR_Found 0.001048989

Amt_to_mean_LGIN_LATENCY1 0.001039936

mean_last 0.001007615

max_balance 0.000935558

AUTO_RESPONSE 0.000908164

TRNSD_Amount_log 0.000878105

IDVD_CONF_Found 0.000767246

min_last 0.000671129

LATENCY1_std 0.000646932

EIA Code Device_TELEPHONY 0.00064605

debit_Payment_American_C 0.000641869

Amt_to_mean_CustomerID 0.000562255

LATUPDATE_Weekdays 0.000551129

IDVD_CONF_New 0.000522654

ACCESS_CD_H 0.00052211

ACTD_BANKACCTNO 0.000497427

DeviceInfo 0.000482292

TRNSD_LASTBALANCE 0.000430867

LATUPDATE_Hours 0.000424496

LATENCY2_std 0.000340366

LastACCTLGN_Days 0.000330836

LATUPDATE_Minute 0.00031417

ACTD_AVAILABLEBLBALANCE 0.000281977

BALANCE_log 0.00027607

min_balance 0.000261497

LastACCTLGN_Minute 0.000257389

LATUPDATE_Second 0.00025461

ED_EMAILA 0.000250312

LastACCTLGN_Weekdays 0.000240946

IDVD_IPADDRESSID.1 0.000200519

LastACCTLGN_Hours 0.00015863

credit_Payment_discover_H 0.000138939

IDVD_FASTPASS_F 0.000133314

IDVD_LASTPASS_F 0.000125768

debit_Payment_mastercard_R 0.000120587

credit_Payment_mastercard_R 0.000108201

Table 5-15. Feature importance measurement

The above table shows that many features with higher importance rate are the new

features created by feature engineering methods in the framework.

Now, I finally had three types of feature sets: (1) the original dataset, (2) the original

dataset plus newly created features, (3) the only selected features in accordance with

impact of feature importance. In order to evaluate the effectiveness of using feature

160 | P a g e

created by the feature engineering framework, as described in Chapter 3, I selected

machine learning and deep learning algorithms to carry out experiments on these datasets.

5.4. Model Preparation

Now that the data is prepared, let’s proceed to build models with the datasets.

5.4.1. Split the dataset into Training and Test sets

Before building the models, as stated in Chapter 2, machine learning algorithms learn

from training data to make good performance on feature cases. A dataset was split into

two sets: the training set and the test set as seen in Figure 5-1. To observe a machine

learning model’s behaviour, I train each model with the training set and adjust its

parameters during the learning stage. Then I test the machine learning model after the

training stage with the test set which is not used in the training set. By measuring how the

model performs using the test data, I get an estimate of the generalisation error which tells

me how well the model will perform on samples it has never seen before.

To determine the best train-test ratio is not simple. The parameter estimates have a high

variance with less training data. On the contrary, less testing data affects high variance in

performance measures. The size of dataset indicates a split ratio. When using the same

ratio for datasets of different sizes, it is necessary to adjust the sizes of the training and

testing sets. This means that if the sizes of the datasets are different, using the same ratio

may result in different sizes of the training and testing sets.

161 | P a g e

Figure 5-1. Training set and test set

If the size of dataset is smaller than 10,000, the split ratio would be a suitable with 70:30.

For more smaller datasets such as less than 1,000, each sample is extremely valuable and

cannot be separated any for validation in case of the holdout method. On the other hand,

if a very large datasets such as over 1,000,000 is provided, the split ratio can be 99:1

because the size of the test set is still large. In Figure 5-2 shows a way how to consider

splitting a dataset [108].

Figure 5-2. A way how to consider splitting a dataset [108]

The dataset in this research contained over 130,000. Therefore, 80:20 was a good starting

point as shown in Figure 5-3.

Figure 5-3. The dataset split with 80:20 ratio

162 | P a g e

While coding in Python, the training data and test data can be created by the following.

X is all data without a target label. On the contrary, Y has only a target label record

without other attributes. The test set size is defined at a rate of 20%.

I ended up having a training set with 107,418 instances (80% of the original dataset) and

a test set with 26,855 instances (the remaining 20%). The most significant thing I must

consider here is that the ratio of fraud transaction in both training data and testing data

should be equal because a prediction model needs to detect fraud under the same

environment where the model was built and will be used for. As shown in Table 5-16,

both ratio of fraud in training and testing data are about 5%, which is also the same ratio

of fraud with the whole dataset.

 # Of Non-Fraud
Transaction

#Of Fraud
Transaction

Ratio of
Fraud

Training data 107,418 5,532 5%

Testing data 26,855 1,392 5%

Table 5-16. The dataset split into training and testing

5.4.2. Modelling

To evaluate the effective feature sets, I selected five types of algorithms which are

Support Vector Machine (SVM), Random Forest (RF), Isolation Forest (IF), Local Outler

Factor (LOF), and Autoencoder (AE) and built fraud detection models with original

features and created features. To implement these models, I installed the Anaconda

distribution of Python with version 3.6 and created an isolated Python 3.6 environment.

Train_x, Test_x, Train_y, Test_y =

train_test_split (X, Y, test_size=0.2, random_state=RANDOM_SEED)

163 | P a g e

The packages of SVM, RF, IF, and LOF algorithms were provided from scikit-learn. As

to AE, I installed TensorFlow and Keras to build the model. TensorFlow is also an open-

source program provided by Google. Keras is an open-source library for neural networks

that is used on the top of TensorFlow to develop a deep learning model.

(A) Support vector machine

As I described in Chapter 3, there are multiple types of SVM methods; the SVM classifier

and the one-class SVM algorithm for commonly used as an anomaly detection model that

enables to handle unbalanced classification problems. In the experiment, I selected the

one-class SVM algorithm and used a RFB kernel with the default parameter settings

instead of manually arranging and adjusting the optimal settings. Conveniently, a sklearn

library provides a package of “sklearn.svm.OneClassSVM” for building a model easily.

There are some parameters I need to set to in the One-Class SVM algorithm. For instance,

degree refers to the degree of polynomial function. Gamma is the kernel coefficient which

defines how loosely the model will fit the training data.

(B) Random Forest

A random forest classifier is built using the Scikit-learn library. The RF algorithm is based

on ensemble learning and combines multiple decision trees. I use default setup in the

library as below.

The RandomForestClassieir class of the sklearn.ensemble library is adapted to solve

classification problems via random forest. The n_estimators parameter is the most

#One-Class SVM

OneClassSVM (kernel='rbf', degree=3, gamma=”auto”, max_iter=-1,

random_state=state)

164 | P a g e

important in the library and refers to the number of trees in the forest. I used the default

value of 100 for building the random forest model.

(C) Isolation Forest

The sklearn library provides the package of isolation forest algorithm for anomaly

detection. In the package, some settings are required. For instance, “n_estimators” refers

to the number of trees in the forest and the default value is 100. “max_samples” is the

number of samples to be drawn to train each base estimator. The default value is “auto”.

Contamination refers to the expected proportion of outliers in the dataset. Thus, I set up

the outlier fraction as the ratio of fraud in the dataset.

(D) Local Outlier Factor

The local outlier factor algorithm computes the local density deviation of a given data

point with respect to its neighbours. I imported the package of

“sklearn.neighbours.LocalOutlierFactor” for local outlier factor as well as the above

algorithms and applied with the default setup of each parameter as below:

“contamination” refers to the proportion of outliers in the dataset. “n_neighbours” is the

number of neighbours and is set to 20 as the default value.

Isolation Forest

from sklearn.ensemble import IsolationForest

IsolationForest (n_estimators=100, max_samples=’auto’,

contamination=outlier_fraction, random_state=state)

#Random Forest Classifier

from sklearn.ensemble import RandomForestClassifier

 rfc= RandomForestClassifier(n_estimators=100, random_state=state)

165 | P a g e

(E) Autoencoder for Fraud Detection

As mentioned in Chapter 2, autoencoder uses only legitimate transactions data during the

training and tries to minimize the reconstruction error. The autoencoder model detects the

fraudulent transaction by correcting the weight of the reconstruction loss. Therefore, it is

difficult to reconstruct the input data when its data is the fraudulent transaction, and the

reconstruction error will be higher. Fraud transactions are detected based on points where

the reconstruction loss is larger than a fixed threshold.

As mentioned in Chapter 3, I needed to determine some parameters and functions as

shown below before I moved into the specific architectures of the autoencoder model:

 Number of hidden layers

 Optimizer

 Loss function

 Number of epochs

 Batch size

 Select number of threshold

In the experiment, it starts with a four-layer autoencoder consisting of a three-hidden layer

plus a single output layer. In order to compile the layers for the autoencoder neural

networks, I needed to select a loss function which guides the learning of the weights, and

Iocal Outlier Factor

from sklearn.neighbors import LocalOutlierFactor

LocalOutlierFactor(n_neighbors=20, contamination="auto")

166 | P a g e

an optimizer to set the process by which the weights are learned. The optimizer I selected

is the Adam Optimise. Regarding loss function, I used mean squared error as the

evaluation metric for the experiment. Next, I needed to select the number of epochs for

training and fitting the model. I carried out this to 1,000 and set the batch size to a generic

128 samples to start with. To use the test set to evaluate how successively this autoencoder

can identify fraud in financial transactions dataset I will need to create a test set with

twenty percent of the data and labels. In summary, I set up the parameters as shown in

Table 5-17.

Table 5-17. Parameters of Autoencoder

To build the model with the above determined parameters, the library of autoencoder is

provided by TensorFlow and Kearas which are available to run on multiple CPUs and

GPUs making fast performance. While training the samples, autoencoder encodes and

compresses feature values and tries to represent the input data by using seven fully

connected layers with 18, 10, 6, and 6 respectively. The first three layers are used for my

encoder, the last two go for the decoder. Furthermore, L1 regularization, which is called

Lasso Regression, is used during training. Regarding the number of neurons, it depends

on the selected dataset. When the model is built with dataset 1, which is the original

dataset, the number of neurons becomes 41. Whereas when the model is built with dataset

2 or dataset 3, the number of neurons becomes 100 and 57 respectively.

167 | P a g e

input_layer = Input(shape=(input_dim,))

encoder = Dense(encoding_dim, activation="tanh",

activity_regularizer=regularizers.l1(learning_rate))(input_layer)

encoder = Dense(hidden_dim1, activation="elu")(encoder)

encoder = Dense(hidden_dim2, activation="tanh")(encoder)

encoder = Dense(hidden_dim3, activation="tanh")(encoder)

encoder = Dense(hidden_dim3, activation="elu")(encoder)

decoder = Dense(hidden_dim2, activation='elu')(encoder)

decoder = Dense(hidden_dim1, activation='tanh')(decoder)

decoder = Dense(input_dim, activation='elu')(decoder)

autoencoder = Model(inputs=input_layer, outputs=decoder)

The parameters for training the model are 1,000 epochs with a batch seize of 128

samples which is shown in Table 5-17. In order to build an autoencoder model, Keras

functional API which is a way to create models with multiple inputs or outputs for

Python that is integrated with TensorFlow was utilised.

Autoencoder

from keras.models import Model, load_model

from keras.layers import Input, Dense

autoencoder.compile(optimizer='adam',metrics=['accuracy'],loss='mean_squared_error')

nb_epochs = 1000

batch_size = 128

history = autoencoder.fit(x=train_x, y=train_x, epochs=nb_epoch, batch_size=batch_size,

shuffle=True, validation_data=(test_x, test_x), verbose=1, callbacks=[cp, tb]).history

168 | P a g e

5.5. Model Preparation

The effectiveness of the feature engineering framework is measured through a

comparison with the performance of the building models with the three different types of

datasets. As stated in the previous section, to evaluate the efficiency of the created and

selected features, the model performance is assessed by AUC, recall, precision, and F-

measure.

Here is the information of the three datasets which were used to build each model.

• Dataset 1: only raw features in the original dataset.

• Dataset 2: raw features and all new features.

• Dataset 3: only selected features

(A) Support Vector Machine model

Table 5-18 displays performance of the one-class SVM model built with dataset 1 as a

baseline model. In that Table, there are two results of three-evaluation metrics: precision,

recall, and f1-score, for the 0-class case as normal transactions and the 1-class case as

fraudulent transactions respectively. In this case, I focus on each result of the metrics in

the 1-class case which shows how many detected fraudulent transactions correctly.

169 | P a g e

 Table 5-18. The results of each evaluation metrics of one-class SVM model with dataset 1

As shown in Figure 5-4, the AUC 0.09 was very bad and indicates that the model could

not classify the target correctly.

Figure 5-4. AUC of the one-class SVM model built with dataset 1

Table 5-19 displays performance of the one-class SVM model built with dataset 2. Each

result got better scores than the first model built with dataset 1. Specifically, the score of

recall significantly increased.

Table 5-19. The results of the One-Class SVM model with dataset 2 in the three-evaluation metrics

SVM classifier (Baseline) model

 precision recall f1-score support

 0 0.75 0.16 0.26 127349

 1 0.00 0.03 0.00 6924

 accuracy 0.15 134273

 macro avg 0.38 0.09 0.13 134273

weighted avg 0.71 0.15 0.25 134273

Classification Report (All Features) model:

precision recall f1-score

0 0.98 0.43 0.6

1 0.08 0.87 0.14

accuracy 0.45

macro avg 0.53 0.65 0.37

weighted avg 0.94 0.45 0.57

170 | P a g e

The AUC score of the model became 0.65 as shown in Figure 5-5. It was surprisingly

improved than the AUC 0.09 of the baseline model.

Figure 5-5. AUC of the one-class SVM model built with dataset 2

Lastly, performance of the one-class SVM model built with dataset 3 are shown in Table

5-20. All performance became much better than the first SVM model. Comparing with

performance of the model built with dataset 2, the recall score of the model built with

dataset 3 become lower. However, other evaluation scores became better than the model

built with dataset 2. Furthermore, the prediction ratio of the 0-class case also became

much better than the other models as shown in Table 5-20.

Table 5-20. The results of the One-Class SVM model with dataset 3 in the three-evaluation metrics

The AUC score of the model built with dataset 3 was 0.61 as illustrated in Figure 5-6.

Classification Report (Selected Features) mdoel:

precision recall f1-score

0 0.96 0.94 0.95

1 0.19 0.28 0.23

accuracy 0.9

macro avg 0.57 0.61 0.59

weighted avg 0.92 0.9 0.91

171 | P a g e

Figure 5-6. AUC of the one-class SVM model built with dataset 3

(B) Random Forest Models

The random forest algorithm was used to build three RF models using the different types

of datasets: dataset 1, dataset 2, and dataset 3. Performance of the first RF model built

with dataset 1 are shown in Table 5-21.

Table 5-21. The results of the RF model with dataset 1 in the three-evaluation metrics

The baseline RF model became already good performance in each evaluation metric.

The AUC score also became 0.74 as seen in Figure 5-7.

Classification Report (Baseline) model:

precision recall f1-score

0 0.97 1 0.99

1 1 0.48 0.64

accuracy 0.97

macro avg 0.99 0.74 0.82

weighted avg 0.97 0.97 0.97

172 | P a g e

Figure 5-7. AUC of the RF model built with dataset 1

Next, the random forest algorithm built with dataset 2. The results show in Table 5-22.

Table 5-22. The results of the RF model with dataset 2 in the three-evaluation metrics

The AUC score also became 0.93 as shown in Figure 5-8.

Figure 5-8. AUC of the RF model built with dataset 2

Lastly, performance of the RF model built with dataset 3 are shown in Table 5-23.

Classification Report (All Features) model:

precision recall f1-score

0 0.99 0.99 0.99

1 0.9 0.88 0.89

accuracy 0.99

macro avg 0.94 0.94 0.94

weighted avg 0.99 0.99 0.99

173 | P a g e

Table 5-23. The results of the RF model with dataset 3 in the three-evaluation metrics

The AUC score was 0.94 (see Figure 5-9) and became slightly better than the model built

with dataset 2.

Figure 5-9. AUC of the RF model built with dataset 3

(C) Isolation Forest Models

In order to build the IF models built with each dataset, as stated in Chapter 3, I used the

scikit-learn python library and obtained the following results.

First, Table 5-24 shows performance of the IF model built with dataset 1.

Table 5-24. The results of the IF model with dataset 1 in the three-evaluation metrics

Classification Report (Selected Features) model:

precision recall f1-score

0 0.99 1 1

1 0.99 0.88 0.93

accuracy 0.99

macro avg 0.99 0.94 0.96

weighted avg 0.99 0.99 0.99

174 | P a g e

The prediction results in the 0-class case were higher than the prediction results in the 1-

class case. The AUC score was 0.55 as displayed in Figure 5-10.

Figure 5-10. AUC of the IF baseline model

Next, performance of the model built with dataset 2 describes in Table 5-25.

Table 5-25. The results of the IF model with dataset 2 in the three-evaluation metrics

The AUC score was 0.64 as seen in Figure 5-11.

Figure 5-11. AUC of the IF model built with dataset 2

Isolation Forest (All Features) model

 precision recall f1-score

 0 0.95 0.96 0.95 630030.96 0.96 0.96

 1 0.19 0.16 0.17 41340.30 0.31 0.30

 accuracy 0.91 671370.93

 macro avg 0.57 0.56 0.56 671370.63 0.64 0.63

weighted avg 0.90 0.91 0.90 671370.93 0.93 0.93

175 | P a g e

Lastly, performance of the IF models with dataset 3 became as presented in Table 5-26.

The scores of all metrics in the 1-class case doubled the scores of IF baseline model.

Table 5-26. The results of the IF model with dataset 3 in the three-evaluation metrics

The AUC score was 0.66 as shown in Figure 5-12.

Figure 5-12. AUC of the IF model built with dataset 3

(D) Local Outlier Factor Models

First, the results of each metrics of local outlier factor model built with dataset 1 displayed

in Table 5-27.

Table 5-27. The results of the LOF model with dataset 1 in the three-evaluation metrics

Isolation Forest (Selected Features) model

 precision recall f1-score

 0 0.95 0.96 0.95 630030.97 0.96 0.96

 1 0.19 0.16 0.17 41340.34 0.36 0.35

 accuracy 0.91 671370.93

 macro avg 0.57 0.56 0.56 671370.65 0.66 0.66

weighted avg 0.90 0.91 0.90 671370.93 0.93 0.93

176 | P a g e

The AUC score became 0.48 in Figure 5-13.

Figure 5-13. AUC of the LOF model built with dataset 1

Next, performance of the LOF model built with dataset 2 is described in Table 5-28.

Table 5-28. The results of the LOF model with dataset 2 in the three-evaluation metrics

The AUC score of the LOF model was 0.5 as seen in Figure 5-14.

Figure 5-14. AUC of the LOF model built with dataset 2

177 | P a g e

Lastly, performance of the model built with dataset 3 became in Table 5-29. Comparing

with the performances of both the baseline model and the model built with dataset 2,

performance of the model built with dataset 3 was improved.

Table 5-29. The results of the LOF model with dataset 3 in the three-evaluation metrics

The AUC score of the LOF model was 0.55 as illustrated in Figure 5-15.

Figure 5-15. AUC of the LOF model built with dataset 3

(E) Autoencoder models

Building the autoencoder model is not same way with other algorithms. Autoencoders

tries to minimise the reconstruction error as part of the training. While training the

autoencoder model, I needed to adjust the reconstruction error threshold which I

described in Chapter 3. The given threshold is used for determining to be normal or

fraud respectively. First, I built the AE models with the reconstruction error threshold 4

and assessed how successively these AE models can identify fraud. Figure 5-16

178 | P a g e

illustrates the reconstruction error threshold of 4 in dataset 1. The dots above the

threshold line demonstrate the true positive and false positive prediction cases. The

orange dots show fraudulent transaction and blue dots show normal transaction. In case

of a threshold of 4, many orange dots appear under the threshold line.

Figure 5-16. The reconstruction error threshold 4 in dataset 1

The aim of determining the threshold is to classify between the orange and blue dots.

Therefore, Figure 5-16 illustrates that the threshold 4 is not appropriate line to classify

the given data into two classes. Figure 5-17 shows the confusion matrix of the AE model

built with dataset 1.

Figure 5-17. Confusion matrix of the autoencoder model with dataset 1 using a threshold of 4

179 | P a g e

The confusion matrix shows that the number of detected actual frauds is low. The AUC

score was 0.65 as shown in Figure 5-18.

Figure 5-18. AUC of the AE model of threshold4 with dataset 1

The scores of the three-evaluation metrics calculated based on the results of confusion

matrix became below in Table 5-30.

Table 5-30. The results of evaluation metrics

Next, Figure 5-19 illustrates the reconstruction error threshold of 4 in dataset 2.

Figure 5-19. The reconstruction error threshold 4 in dataset 2

180 | P a g e

Newly created features have been added, so several orange dots expand beyond the

reconstruction error threshold of 4.

Figure 5-20 shows the confusion matrix of the AE model built with dataset 2.

Figure 5-20. Confusion matrix of the autoencoder model with dataset 2 using a threshold of 4

The confusion matrix shows that the number of detected actual frauds become better than

the first AE model, but still low. The AUC score was 0.83 as illustrated in Figure 5-21.

Figure 5-21. AUC of the AE model of threshold 4 built with dataset 2

The scores of the three-evaluation metrics are presented in Table 5-31.

Table 5-31. The results of evaluation metrics

181 | P a g e

Lastly, Figure 5-22 illustrates the reconstruction error threshold of 4 in dataset 3. The

orange dots spread further towards the threshold, making the algorithm easier to separate

fraud and the nonfraud.

Figure 5-22. The reconstruction error threshold 4 in dataset 3

Figure 5-23 shows the confusion matrix of the AE model built with dataset 3.

Figure 5-23. Confusion matrix of the autoencoder model with dataset 3 using a threshold of 4

The confusion matrix shows that the number of detected actual frauds become better than

the AE model built with dataset 1, but still low. The AUC score became 0.92 as displayed

in Figure 5-24.

182 | P a g e

Figure 5-24. AUC of the AE model of threshold 4 built with dataset 3

The scores of the three-evaluation metrics are presented in Table 5-32.

Table 5-32. The results of evaluation metrics

From the above all performance evaluations of the AE models built with each dataset, the

reconstruction error threshold 4 was not enough to segment two class dots of orange and

blue. Now, I changed the threshold value from 4 to 1 and built the AE models with each

dataset.

Figure 5-25 illustrates the reconstruction error threshold of 1 in Dataset 1. By changing

the threshold definition from 4 to 1, the accuracy of fraud detection increased, however

the number of cases where nonfraud was detected as fraud increased in Figure 5-26.

183 | P a g e

Figure 5-25. The reconstruction error threshold 1 in dataset 1

Figure 5-26 shows the confusion matrix of the AE model built with dataset 1 using the

threshold of 1.

Figure 5-26. Confusion matrix of the autoencoder model with dataset 1 using a threshold of 1

The AUC score became 0.77 and was more than the AE baseline model with the threshold

4 as seen in Figure 5-27.

184 | P a g e

Figure 5-27. AUC of the AE model of threshold 1 built with dataset 1

The scores of the three-evaluation metrics of the AE model built with dataset 1 is

displayed in Table 5-33.

Table 5-33. The results of evaluation metrics

Next, Figure 5-28 illustrates the reconstruction error threshold 1 in dataset 2.

Figure 5-28. The reconstruction error threshold 1 in dataset 2

By shifting the threshold from 4 to 1, the accuracy of fraud detection increased while the

number of cases where nonfraud was detected as fraud increased. As a result of lowering

the threshold to discriminate more fraudulent data, the accuracy of fraud detection

185 | P a g e

increased, but it led to the result that non-fraudulent data was identified as fraud. Figure

5-29 shows the confusion matrix of the AE model built with dataset 2 using the threshold

of 1.

Figure 5-29. Confusion matrix of the autoencoder model with dataset 2 using a threshold of 1

The AUC score became 0.91 and was more than the AE baseline model with the threshold

1 as seen in Figure 5-30.

Figure 5-30. AUC of the AE model of threshold 1 built with dataset 2

The scores of the three-evaluation metrics of the AE model built with dataset 1 is

presented in Table 5-34.

186 | P a g e

Table 5-34. The results of evaluation metrics

All performances of the evaluation metrics increased and got better than the AE model

built with dataset 2 using the threshold 4.

Lastly, Figure 5-31 illustrates the reconstruction error threshold of 1 in dataset 3.

Narrowing down to only features that were likely to be effective in model discrimination

made the thresholds of blue dots and orange dots clearer. A threshold value of 1 was more

appropriate for the boundary between fraudulent data and non-fraudulent data, and the

AE model discrimination accuracy was improved.

Figure 5-31. The reconstruction error threshold 1 in dataset 3

Figure 5-32 shows the confusion matrix of the AE model built with dataset 3 using the

threshold of 1.

187 | P a g e

Figure 5-32. Confusion matrix of the AE model with dataset 3 using Threshold of 1

The AUC score became 0.96 as displayed in Figure 5-33 which is the best score amongst

all AE models.

Figure 5-33. AUC of the AE model of threshold 1 built with dataset 3

The scores of the three-evaluation metrics of the AE model built with dataset 1 is shown

in Table 5-35.

Table 5-35. The results of evaluation metrics

188 | P a g e

5.6. Evaluation and Discussions

Through the whole experiment, performances of all models built with the dataset

including the created features by using feature engineering methods in the framework was

conspicuously improved than the models’ performance when using only the original

features. Here are individual assessments and a summary for each model’s result. I

summarised each score of four evaluation metrics: precision, recall, f1-score, and AUC,

respectively for a better discussion. Recall measures the percentage of actual fraud

transactions that were correctly classified. Precision measures the percentage of

transactions flagged as fraud that were correctly classified. It all depends on what a user

focus on. When maximising a precision score, the probability of judging the non-fraud

transactions as fraudulent transaction can be lower. On the other hand, if a user wants to

focus on detecting actual fraud transactions, then maximising a recall score is very

important. F-1 score is a measure of combination of both precision and recall scores. F-1

score can help balance the metric across positive or negative samples. When evaluating

the scores of each metrics, one needs to consider the balance of the two metrics of recall

and precision.

(A) Support Vector Machine models

Support vector machine was not good at handling a big data that is over 100,000 data.

During the experiment, modelling and prediction took much time (i.e., over 6 hours) for

obtaining only one model’s result. Overall, it took over 18 hours for building three

different SVM models and predicting test set.

Table 5-36 shows the summary of each score of the evaluation metrics in each model

built with dataset 1, dataset 2, and dataset 3.

189 | P a g e

Dataset No. Precision Recall F1-score AUC

Dataset 1 0.00 0.03 0.00 0.09

Dataset 2 0.08 0.87 0.14 0.65

Dataset 3 0.19 0.28 0.23 0.61

 Table 5-36. The summary of all scores in the one-class SVM models

Regarding the evaluation metrics’ scores for the model trained on dataset 1, the precision

score is 0.00, and recall score is 0.03. These low scores indicate that the model has not

learned the different patterns between fraud and non-fraud transactions, which means that

the model is unable to distinguish between fraudulent and non-fraudulent behaviour. Both

scores of the models with dataset 2 and dataset 3 increased more than the scores of the

model with dataset 1. It indicates that new features which were created by feature

engineering methods could reveal the different pattern on transaction between a fraud and

nonfraud. Comparing the model with dataset 2 and the model with dataset 3, specifically

a recall of the model with dataset 2 is very higher than the model with dataset 3. On the

other hand, the scores of a precision and F1-measure of the model with dataset 3 are

higher than the model with dataset 2. A balance between precision and recall is a trade-

off. If a bank places importance in the case of which customers are not classified as fraud,

precision score should be considered preferentially. In this case, the dataset 3 will be the

best features set for SVM. If a bank considers that detecting fraudulent cases are first

priority, recall score will be significant and then, the dataset 2 will be the best features set

for SVM. In any case, the total performance of the models built with dataset 2 and dataset

3 were significantly improved when comparing with the performance of the model built

with dataset 1.

190 | P a g e

(B) Random Forest models

Table 5-37 shows the summary of each score of the evaluation metrics in each model

built with dataset 1, dataset 2, and dataset 3. As shown in Table 5-37, all model’s

performance is very high.

Dataset No. Precision Recall F1-score AUC

Dataset 1 1.0 0.48 0.64 0.74

Dataset 2 0.90 0.88 0.89 0.93

Dataset 3 0.99 0.88 0.93 0.94

Table 5-37. The summary of all scores in the RF models

Precision score in the model with dataset 1 became 1.0 which means that all customers

could be classified as nonfraud. However, this model could not learn the patterns of

fraudsters very well from the only raw features because the recall score became 0.48. On

the other hand, both scores of precisions and recall in the models with dataset 2 and

dataset 3 became much higher than the model with dataset 1. This result indicates that

new features created by feature engineering methods could reveal the different patterns

between customer and fraudsters. From all scores in the metrics, the models using dataset

2 and dataset 3 are greater than the model using dataset 1. This time, dataset 3 is suggested

to use for the RF algorithm as the best combination of building a fraud detection model.

(C) Isolation Forest models

Table 5-38 shows the summary of each score of the evaluation metrics in each model

built with dataset 1, dataset 2, and dataset 3.

191 | P a g e

Dataset No. Precision Recall F1-score AUC

Dataset 1 0.19 0.16 0.17 0.55

Dataset 2 0.30 0.31 0.30 0.64

Dataset 3 0.34 0.36 0.35 0.66

Table 5-38. The summary of all scores in the IF models

Similar to previous observations, scores of precisions and recall in the models with dataset

2 and dataset 3 became almost doubled from the scores in the model with dataset 1. This

indicates that more customers will be classified as nonfraud correctly and more fraudsters

can be detected precisely by using the models built with the engineered features.

Specifically, the model using dataset 3 surpassed the other IF models.

(D) Isolation Outlier Factor models

Table 5-39 shows the summary of each score of the evaluation metrics in each model

built with dataset 1, dataset 2, and dataset 3.

Each score of performance measurements were very low in Table 5-39. This indicates

that the LOF algorithm needs to be carefully set up with appropriate hyper parameters or

trained in a different way while building the model. The important point of this research

is to improve the baseline model’s performance by using the new engineered features.

Therefore, the model with dataset 1 was assumed as the baseline model and the

performance of the models with dataset 2 and dataset 3 were more improved than the

Dataset No. Precision Recall F1-score AUC

Dataset 1 0.02 0.04 0.03 0.48

Dataset 2 0.05 0.05 0.05 0.50

Dataset 3 0.15 0.15 0.15 0.55

Table 5-39. The summary of all scores in the LOF models

192 | P a g e

model with dataset 1 even though the performance was not good with the LOF algorithm.

In this case, the best combination became the LOF algorithm and dataset 3.

(E) Autoencoder models

The results in Table 5-40 show performance of the AE models using Threshold 4.

Comparing the precision scores among all models, the models with dataset 2 and dataset

3 were improved drastically than the model with dataset 1. This indicates that almost all

customers could be classified as nonfraud correctly. Focusing on the scores of recall, the

AE model seems not to recognise the different pattern between customers and fraudsters.

Dataset No. Precision Recall F1-score AUC

Dataset 1 0.20 0.05 0.08 0.65

Dataset 2 0.93 0.07 0.13 0.83

Dataset 3 0.90 0.08 0.15 0.92

Table 5-40. The summary of all scores in the AE models with Threshold 4

In terms of the total results of the model’s performance, both models built with dataset 2

and dataset 3 achieved higher scores than the performance of the model with dataset 1 in

all respects. Regarding preventing money from being stolen by fraudsters, the best

performance model is the AE model with dataset 3. However, the autoencoder does not

only use input data to recognise the difference between fraud and nonfraud, but also it

uses the threshold value for dividing by border between the fraud and nonfraud as shown

in Table 5-41.

Next, Table 5-41 shows the results of the AE models using Threshold 1.

193 | P a g e

Table 5-41. The summary of all scores in the AE models with Threshold 1

All performance of the AE models with Threshold 1 were improved more than the

performance of the AE models with Threshold 4. This result indicates that using the

effective dataset is to have an impact on the AE model’s performance. And also, it is

important to set an appropriate threshold value for improving the model’s performance.

Regarding the precision of the models with threshold 1, the scores were lower than the

scores of all models with threshold 4 whereas the recall, AUC and F1-scores became

higher. This result shows that the models have become more rigorous in detecting

fraudsters and have determined that certain customers are fraudsters. Although the

precision of the model with dataset 3 became lowest, the other metrics shows that the

model could discriminate more clearly between customers and fraudsters.

Throughout the whole experiment, performances of all models built with dataset 2 and

dataset 3 which include many new features created via the feature engineering steps in

the framework were significantly improved than performances of the models built with

dataset 1 which is an original dataset. Comparing the model with Dataset 2 and the model

with dataset 3, there are a few different results between these models. First, the models

built with dataset 3: Random Forest and Isolation Forest, were the best performance

models among other same algorithm’s models. These algorithms are based on the

decision tree algorithm. So, this kind of algorithms based the decision tree algorithm will

be improved the model’s accuracy by using dataset 3 in which only effective candidate

Dataset No. Precision Recall F1-score AUC

Dataset 1 0.19 0.06 0.09 0.77

Dataset 2 0.78 0.09 0.16 0.91

Dataset 3 0.43 0.65 0.52 0.96

194 | P a g e

features are selected. On the other hand, evaluation of the results of some algorithms such

as one-class SVM, local outlier factor, and autoencoder depends on what impact a user

cares about. Recall has an impact on huge money loss whereas precision influence on

customer satisfaction and confidence. The score of precision shows the number of

predictions as fraud where actual result is customer whereas the score of recall shows that

the model predicts fraud transactions where actual result is fraud. A balance between

precision and recall is a trade-off. Therefore, a user can select an appropriate dataset

according to a purpose of building a model.

In conclusion, using the dataset containing only effective features will make machine

learning and deep learning algorithms easier to identify fraudulent patterns than using the

dataset containing both many effective and meaningless features. This indicates that

irrelevant features will make it difficult to distinguish between fraudulent and non-

fraudulent transactions while the algorithms are learning data patterns.

5.7. Conclusion

In many financial fraud detection cases and studies, they used a variety of machine

learning algorithms and deep learning. They suggested to use the different algorithms for

financial fraud detections as shown in Chapter 2. Thus, I proposed a new feature

engineering framework that can provide the most effective features set for any algorithms

for financial fraud detection. Through the experiment, I proved the effectiveness of using

the dataset provided by the framework. Furthermore, I also proved that there was

compatibility between a given features set and a specific algorithm.

195 | P a g e

6. Conclusion and Future Work

6.1. Introduction of the main achieved work

This research seeks to advance the field of financial fraud detection by creating a new

feature engineering framework consisting of two components: feature creation and

selection. The approach adopted was to design and implement this framework by

prototyping in order to provide evidence on the effectiveness and feasibility of this

framework. Introduction of the fraud detection models built with the feature engineering

dataset prepared by the framework demonstrated its advantage over several other baseline

models built with the raw dataset. Introduction of multi-techniques of feature engineering

that allows the creation of temporal action features and statistical and arithmetic features,

which make machine learning and deep learning algorithms more easily to discover the

different data patterns between normal and fraudulent transactions. In this chapter, this

study will be concluded and will provide a closing remark on the problem statement as

well as the effectiveness of the proposed solution. Furthermore, recommendations and

future research areas that can improve the fraud detection model’s performance are

discussed as well.

As online payment system advances, fraud schemes have shifted from physical fraud

actions by using the stolen credit card physically and directly at ATM or shops into online

banking fraud actions by using advanced digital techniques in the internet websites. There

are limitations of fraud detection system using only machine learning techniques for

online banking transaction. Because of this there is an increase in fraudulent activities.

Fraudsters no longer have to walk into a shop, ATM or bank’s branch to carry out an

attack, they can simply use someone’s identity or steal the information through means of

196 | P a g e

hacking. The damage caused by these fraudulent activities goes beyond direct monetary

loss for any financial institutions.

As discussed in Chapter 2 many of the existing studies of machine learning and deep

learning algorithms are used for fraud detection cases, their limitations are compounded

by fraudster’s ability to continuously change their tactics in order to avoid detection. Only

focusing on the improvement of machine learning techniques will not be able to catch up

with these changing tactics and, moreover, as was explained in Chapter 2, there are not

many existing studies which focus on feature engineering techniques for financial fraud

detection. Research carried out in this study provide a proof of my hypothesis that the

performance of fraud detection models can indeed be improved if machine learning or

deep learning algorithms are trained by using the optimised feature set that contains new

created features by various feature engineering techniques based on real life banking

transactional data. After several theoretical analysis and analytical methods being

described in Chapter 3, the output of the framework is summarised individually in

different phases that eventually lead to producing the effective feature set for a fraud

detection model. Figure 6-1 below shows the outputs in each different phase.

Figure 6-1. The output in each phase

197 | P a g e

Phase 1 includes:

 Data integration, modelling, and preparation processes. The quality of the whole

dataset is determined based on the appropriate data extraction and processing

methods in this phase.

 Extraction of required attributes from the integrated transaction data, which is

used for feature engineering in Phase 2 to create new aggregated and transformed

features. In general, the objects of attributes in banking transaction data are

common, so I can define the feasible plan to extract the fixed features.

 Exploratory data analysis that can provide insight into hidden data patterns

between normal and fraudulent transactions.

 Output that becomes the cleaned raw dataset, which can be used for a baseline

model.

Phase 2 includes:

 Implementation of feature engineering methods: feature aggregation which

creates new features based on customer’s transaction behaviour by aggregating

multiple attributes in the dataset prepared in Chapter 5, and feature transformation

which creates new features based on mathematical and statistical functions.

 Feature aggregation methods: there are some common attributes which certainly

exist in online banking data such as time, amount, balance, Internet information,

customer’s information, and event. In the framework, 35 aggregated features are

198 | P a g e

created based on customer’s journeys on transaction at least if the expected

attributes can be fully extracted.

 Feature transformation methods: there are some functions that are commonly

utilised for feature transformations such as log transformation, counts, statistical

functions, standardisation, PCA and so on. The purpose of feature transformation

here is to create new features that can represent the latent data patterns which

make a machine learning algorithm easily understand the difference between

legitimate and fraud. In the framework, five mathematical functions which are

popularly used in various research as feature transformation are adopted.

Phase 3 includes:

 Measurement for correlation coefficient values: The correlation coefficient is a

statistical method to measure the degree of intensity of the relationship between

two feature variables X and Y. This is used for avoiding a cause of overfitting.

 Feature importance measurement: The feature importance scores are calculated

based on the information with regard to how many times each feature in training

data contributes to model’s discrimination.

 With regard to the results of correlation coefficient and feature importance, I

selected the effective candidate features from all features in the dataset containing

both the raw attributes and all created features in phase 2.

Phase 4 includes:

 Details on design and implementation of using various algorithms.

199 | P a g e

 Model evaluations by using predefined performance metrics such as precision,

recall, AUC, and F1-score.

 The effective candidate features set that were created in phase 3 and were tested

and evaluated based on appropriate performance metrics in the framework.

 The most effective features set can be provided for a specific model.

The design and implementation defined in the above phases was used to experiment the

performance of three different types of machine learning namely SVM, isolation forests,

local outlier factor, and an autoencoder as deep learning, using three different types of

datasets explained in detail in Chapter 5. The best performance model was the RF model

built with the selected features set in all respects when compared with performances of

other models. Furthermore, performances of all algorithms using the dataset including

new created features were dramatically improved. The results proved that use of the

optimised features set provided by the feature engineering framework can improve

ML/DL classifiers with better accuracy when compared to the use of the raw dataset for

classifiers.

Overall, Table 6-1 below provides an overview on how the aim and objectives proposed

in Chapter 1 are addressed.

200 | P a g e

Table 6-1. An overview of the aim and objectives achieved

Aim and Objectives Status Summary

To explore the current state of research in
fraud detection and the cases specifically
using feature engineering methods for
classification models, and to identify the
main issues, existing approaches, and
available methods for improving
performance of the fraud detection
models.

Met Details can be found in Chapter 2. Existing
research covers across machine learning and
deep learning models for fraud detection to
understand current conditions, problems,
and limitations. Regarding feature
engineering, not a lot of research has been
done on using feature engineering concepts
to the dataset for classification in fraud
detection. Moreover, very few papers exist
on using both concepts of feature creation
and selection simultaneously. Each method
of feature engineering and selection for
classifiers was investigated and summarised
individually.

To investigate database structure tables
of banking transaction and to consider
which attributes in each table are
constantly available to be extracted.

Met Further details in Chapter 3. The main
purpose of this aim and objective is to
maintain a certain positive effect of using the
framework. Therefore, mandatory attributes
in any online banking transaction data are
fixed. Even there is not full attributes in
actual banking dataset, some key engineered
features can be created with other mandatory
attributes.

To investigate how to deal with character
string datatype values and missing values
in each attribute.

Partially
Met

Further details can be found in Chapter 3. In
the chapter, the general outline on how to
deal with missing values and character string
datatype is described, but part of the
implementation is left for future work as it is
beyond the scope of this research.

To research into both methods of feature
engineering and selection for fraud
detection and to consider how to create
new features that express customer’s
behaviour during a transaction and reveal
the different aspect of input values for
making machine learning or deep
learning models distinguish between
normal and fraud easier. Also, to consider
how to select the effective features from
all attributes.

Partially
Met

Further details can be found in Chapter 2 and
Chapter 3. The thesis used several major
techniques of feature engineering in various
latest papers and studies for classification
and applied them to financial fraud
detection. Regarding feature selection, this
time the effectiveness of using feature
selection after feature creation is proved.
However, in future work, there is still room
for improvements on feature selection
methods.

To analyse the multidimensional banking
dataset which was provide by a private
European in terms of both the exploratory
data analysis with visualisation and the
assessment of available attributes in the
dataset.

Met Further details in Chapter 4. Through the
exploratory data analysis (EDA), trends and
patterns in the dataset are investigated and
provides insight of the data and the
difference between normal and fraudulent
transactions.

201 | P a g e

6.2. Research Contributions

This section gives a list of contributions as outcomes to this research. The core

contribution of this research is to incorporate feature creation and feature selection into

the framework and to provide the most effective features set for machine learning and

deep learning algorithms. Specifically, in the feature creation process, both techniques of

feature aggregation and feature transformation are included. Feature transformation

methods are commonly used for deep learning in image recognition. In terms of creating

new features with different aspects of the data, my research has combined the two

concepts of feature aggregation and feature transformation and succeeded in producing

brand new valuable features. Another novelty in the research is that many similar studies

in financial sector have not done both feature engineering and feature selection

consistently. Through the experiment, the effectiveness of using the features set generated

by all processes in the framework was proven.

The heart of the concept consists of the following groups:

(A) Novelty framework

• Advanced feature engineering technique that combines two different approaches:

feature aggregation for expressing customer’s behaviour during transaction, and

feature transformation for mapping raw data into a different space that can reveal

the latent pattern of the data into the framework.

• Combined both concepts of feature engineering and feature selection consistently.

As clearly shown the results in Chapter 5, the effectiveness of the integration of

feature engineering and feature selection can be proved.

202 | P a g e

(B) Improved methods for data preparation

• Data preparation that includes the significant ways how to deal with missing

values and how to convert character string data into numerical data correctly. In

the data preparation phase, the conceptual and actual methods of dealing with the

missing or character string data are provided.

6.3. Recommendation for Future Research

The feature engineering framework that is proposed in this thesis can be used for machine

learning and deep learning algorithms in financial fraud detection, specifically

recommended for being used in online banking. However, collecting the overall network

information and accessing device information into one place are challenging from a

viewpoint of network security or private information.

Apart from the above consideration, the feature engineering framework can be further

improved by:

Obtaining a dataset having less loss values : although the actual online banking

transaction dataset was provided and had a large volume of records, many loss values in

the dataset remained and included timestamp as well. If there were the full records of

timestamp, other deep learning such as recurrent neural network (RNN) and

convolutional neural network (CNN) could have been used and tested with the proposed

features set.

Implementing other techniques of feature selection: In this thesis, fundamental

concepts and techniques for measuring and selecting features were adopted. Through

203 | P a g e

using the more advanced methods of feature selection in the framework, the output

features set can improve the performance of fraud detection models.

Implementing other techniques of feature selection: In this thesis, fundamental

concepts and techniques for measuring and selecting features were adopted. Through

using the more advanced methods of feature selection in the framework, the output

features set can improve the performance of fraud detection models.

Adding additional attributes related to customer’s actions using credit card, online

payment, and e-shops: Feature engineering has still a high potential to create effective

features for machine learning and deep learning algorithms. Adding features related to

the customer’s actions with use of credit card or shopping behaviours can create better

engineered features in the framework and can make a better prediction model.

204 | P a g e

References

1.UK Finance Fraud Action (2021) FRAUD – THE FACTS 2021:The definitive
overview of payment industry fraud.

2.Angela Makolo and Tayo Adeboye I.J.(2021), ‘Credit Card Fraud Detection System
Using Machine Learning’, Information Technology and Computer Science, Issue 4,
P24-37, Published Online August 2021 in MECS, DOI: 10.5815/ijitcs.2021.04.03.

3.Niccolo Mejia (2020), AI-Based Fraud Detection in Banking – Current Applications
and Trends [Online]. Available at: https://emerj.com/ai-sector-overviews/artificial-
intelligence-fraud-banking/ (Accessed: May 2021)

4.Djeffal Abdelhamid, Soltani Khaoula, Ouassaf Atika (2014), ‘Automatic Bank
Fraud Detection Using Support Vector Machines’, Proceedings of the International
conference on Computing Technology and Information Management, Dubai, UAE,
2014 ISBN: 978-0-9891305-5-4 ©2014 SDIWC

5.Juergen Schmidhuber (2015), ‘Deep Learning in Neural Networks: An Overview’,
Neural and Evolutionary Computing Journal, vol. 61: P85–117, DOI:
10.1016/j.neunet.2014.09.003

6.Emin Aleskerov, Bernd Freisleben, R. Rao. (1997), ‘CARDWATCH: a neural
network-based database mining system for credit card fraud detection’, Proceedings
of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr)
(1997): P220-226.

7.Marjan Abdeyazdan, Ali Rayat Pisheh (2016), Discrimination Aware Decision Tree
Learning [Online]. Available at:
http://iieng.org/images/proceedings_pdf/E0816003.pdf/ (Accessed: Aug 2021)

8.Chengwei Liu, Yixiang Chan, Syed Hasnain, Alam Kazmi, Hao Fu (2017),
Financial Fraud Detection Model: Based on Random Forest [Online]. Available at:
http://www.ccsenet.org/journal/index.php/ijef/article/viewFile/46957/27054
(Accessed: June 2021)

9.Joshi, Shrijit, Phoha, Vir (2005), ‘Investigating hidden Markov models capabilities in
anomaly detection’, Proceedings of the Annual Southeast Conference, Vol 1. 98-103.
10.1145/1167350.1167387

10.Foo Chi Hui, Venkaiah Chowdary Koneru, Norazman Mat Ali, Safurah Harun
(2014), ‘Implementing Peer Group Analysis within a Track and Trace System to
Detect Potential Frauds’, International Journal of Supply Chain Management, Vol 3.
No.1, P2051-30771

11.Yoshihiro Ando, Hidehito Gomi, Hidehiko Tanaka (2016), ‘Detecting Fraudulent
Behaviour Using Recurrent Neural Networks’, Computer Security Symposium, Oct
2016

12., Shuhao Wang, Cancheng Liu, Xiang Gao, Hongtao Qu, and Wei Xu (2017),
‘Session-Based Fraud Detection in Online E-Commerce Transactions Using
Recurrent Neural Networks’, Machine Learning and Knowledge Discovery in
Databases, Springer International Publishing 2017

205 | P a g e

13.Apapan Pumsirirat and Liu Yan (2018), ‘Credit Card Fraud Detection using Deep
Learning based on Auto-Encoder and Restricted Boltzmann’, International Journal of
Advanced Computer Science and Applications (ijacsa), Vol 9, Issue 1,
DOI:/10.14569/IJACSA.2018.090103

14.Isa Modibbo Ismail and Ekpe Okorafor (2021), An adaptive predictive financial
fraud detection approach using deep learning methods on a big data platform [Online].
Available at: https://afribary.com/works/an-adaptive-predictive-financial-fraud-
detection-approach-using-deep-learning-methods-on-a-big-data-platform (Accessed:
June 2021)

15.Yibo Wang, Wei Xu (2018), ‘Leveraging deep learning with LDA-based text
analytics to detect automobile insurance fraud’, Decision Support Systems, Volume
105, P 87-95

16.Sam Scott, Stan Matwin (1999), ‘Feature Engineering for Text Classification’,
Proceedings of ICML-99, 16th International Conference on Machine Learning, P 379-
388

17.Alice X. Zheng (2017), Mastering Feature Engineering: Principles and Techniques
for Data Scientists [online]. Available at:
https://www.repath.in/gallery/feature_engineering_for_machine_learning.pdf
(Accessed: January 2022)

18.Rakhi Chakraborty (2013), Domain Keyword Extraction Technique : A New
Weighting Method based on Frequency Analysis [online]. Available at:
DOI:10.5121/CSIT.2013.3211 (Accessed: Sep 2020)

19.Gilad Katz, E.C.Richard Shin, Dawn Song (2016), ‘ExploreKit: Automatic Feature
Generation and Selection’, 16th IEEE International Conference on Data Mining,
ICDM 2016, P979-984. 10.1109/ICDM.2016.0123

20.James Max Kanter, Kalyan Veeramachaneni (2015), Deep Feature Synthesis:
Towards Automating Date Science Endeavors, 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pp. 1-10, DOI:
10.1109/DSAA.2015.7344858

21.James Max Kanter, Kalyan Veeramachaneni (2016), Label, Segment, Featurise: a
cross domain framework for prediction engineering, In 2016 IEEE International
Conference on Data Science and Advanced Analytics, DSAA 2016, P 430-439

22.Pawel Grabinski (2018), Feature Engineering for Machine Learning: 10 Examples,
KDnuggets [online]. Available at: https://www.kdnuggets.com/2018/12/feature-
engineering-explained.html (Accessed: June 2021)

23.Daniel Massa, Raul Valverde (2014), ‘A Fraud Detection System Based on Anomaly
Intrusion Detection Systems for E-Commerce Applications’, Journal Computer
Information Science Vol.7, No.2, DOI:10.5539/cis.v7n2p117

24.Ogwueleka, Francisca (2011), ‘Data mining application in credit card fraud detection
system’, Journal of Engineering Science and Technology. Vol.6. P311-322, 2011

25.Rakhi Chakraborty (2013), ‘Domain Keyword Extraction Technique: A New
Weighting Method Based on Frequency Analysis’, ACER 2013, pp. 109118, DOI :

206 | P a g e

10.5121/csit.2013.3211

26.Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Aël Le Borgne, Olivier Caelen,

Yannis Mazzer, Gianluca Bontempi (2018), ‘SCARFF: a Scalable Framework for
Streaming Credit Card Fraud Detection with Spark’, Journal Information Fusion 41C,
p182-194, Available at: https://doi.org/10.1016/j.inffus.2017.09.005

27.Dongfang Zhang, Basu Bhandari, Dennis Black (2020), ‘Credit Card Fraud
Detection Using Weighted Support Vector Machine’, Applied Mathematics in Model
Development Department, Comerica Bank [online]. Available at: DOI:
10.4236/am.2020.1112087, (Accessed: December 2020)

28.V. Dheepa, R. Dhanapal (2012), ‘Behaviour based credit card fraud detection using
support vector machines’, Journal SOCO 2012, DOI:10.21917/IJSC.2012.0061

29.Ifedayo Oladeji, Peter Makolo, Ramon Zamora, Tek Tjing Lie (2021), ‘Density-
based clustering and probabilistic classification for integrated transmission-
distribution network security state prediction’, Journal of WILEY, Volume 211,
DOI:10.1002/widm.1342

30.E.A. Amusan O.M. Alade O.D. Fenwa J.O. Emuoyibofarhe (2021), ‘Credit Card
Fraud Detection on Skewed Data using Machine Learning Techniques’, Journal of
Computing and Informatics (LAUJCI) – ISSN: 2714-4194 Volume 2 Issue 1

31.Pooja Tiwari, Simran Mehta, Nishtha Sakhuja, Jitendra Kumar, Ashutosh

Kumar Singh (2021), Credit Card Fraud Detection using Machine Learning,
Artificial Intelligence [online]. Available at: arXiv:2108.10005 (Accessed: Aug 2021)

32.M. S. Kumar, V. Soundarya, S. Kavitha, E. S. Keerthika and E. Aswini (2019),
‘Credit Card Fraud Detection Using Random Forest Algorithm’, IEEE Conference
Publication, 2019 3rd International Conference on Computing and Communications
Technologies (ICCCT), pp. 149-153, DOI: 10.1109/ICCCT2.2019.8824930

33.R. Sailusha, V. Gnaneswar, R. Ramesh and G. R. Rao (2020), ‘Credit Card Fraud
Detection Using Machine Learning’, 2020 4th International Conference on Intelligent
Computing and Control Systems (ICICCS), P1264-1270, DOI:
10.1109/ICICCS48265.2020.9121114

34.Casilda Aresti (2018), Technology and operations management: PayPal’s Use of
Machine Learning to Enhance Fraud Detection [online]. Available at:
https://digital.hbs.edu/platform-rctom/submission/paypals-use-of-machine-learning-
to-enhance-fraud-detection-and-more/ (Accessed: Nov 2019)

35.Raghavendra Patidar, Lokesh Sharma (2011), ‘Credit Card Fraud Detection Using
Neural Network’, India International Journal of Soft Computing and Engineering
(IJSCE) ISSN: 2231-2307, Vol. 1, Issue-NCAI2011

36.Morteza Kolali Khormuji, Mehrnoosh Bazrafkan, Maryam Sharifian, Seyed

Javad Mirabedini, Ali Harounabadi (2014), ‘Credit Card Fraud Detection with a
Cascade Artificial Neural Network and Imperialist Competitive Algorithm’,
International Journal of Computer Applications (0975 8887) Vol. 96 - No. 25

37., KolaliKhormuji, Morteza, Bazrafkan, Mehrnoosh, Sharifian, Maryam,

Mirabedini, Seyed, Harounabadi Ali (2014), ‘Credit Card Fraud Detection with a

207 | P a g e

Cascade Artificial Neural Network and Imperialist Competitive Algorithm’,
International Journal of Computer Applications, Vol. 96 P 1-9, DOI: 10.5120/16947-
6736

38.Parvinder Singh, Mandeep Singh (2015), ‘Froud Detection by Monitoring Customer
Behaviour and Activities’, International Journal of Computer Applications, Vol. 111,
No 11

39.Mohamed Hegazy, Ahmed Madian, Mohamed Ragaie (2016), ‘Enhanced Fraud
Miner: Credit Card Fraud Detection using Clustering Data Mining Techniques’,
Egyptian Computer Science Journal (ISSN: 1110 – 2586) Volume 40 – Issue 03

40.B. Angelin and A. Geetha (2020), "Outlier Detection using Clustering Techniques –
K-means and K-median," 2020 4th International Conference on Intelligent Computing
and Control Systems (ICICCS), P373-378, DOI:
10.1109/ICICCS48265.2020.9120990

41.B.A. Abdulsalami, A. A. Kolawole, M.A. Ogunrinde, M. Lawal, R.A. Azeez, A.Z.

Afolabi (2019), ’Comparative Analysis of Back-propagation Neural Network and K-
Means Clustering Algorithm in Fraud Detection in Online Credit Card Transactions’,
Fountain Journal of National and Applied Science, Available at:
https://doi.org/10.53704/fujnas.v8i1.315 (Accessed: Jun 29, 2019)

42.Isolation Forest and Local Outlier Factor for Credit Card Fraud Detection System, V.

Vijayakumar, Nallam Sri Divya, P. Sarojini, K. Sonika, International Journal of
Engineering and Advanced Technology (IJEAT), ISSN: 2249 – 8958, Volume-9
Issue-4, April 2020

43.Using isolation forest in anomaly detection: The case of credit card transactions,

Soumaya Ounacer, Hicham Ait El Bour, Younes Oubrahim, Mohamed Yassine

Ghoumari, Mohamed Azzouazi, Vol 6, No 2, 2018

44.A Hybrid and Improved Isolation Forest Algorithm for Anomaly Detection, G.

Madhukar RaoDharavath Ramesh, International Conference on Recent Trends in
Machine Learning, IoT, Smart Cities and Applications pp 589-598, October 2020

45.Topics, G. Kumar Singh, A. Bhayye, S. Dhamnaskar, S. Patil, and S. V. Phulari
(2021), ‘Credit Card Fraud Detection Using Isolation Forest’, International Journal of
Recent Advances in Multidisciplinary, IJRAMT, vol. 2, no. 6, P118–119

46.Hyder John, Sameena Naaz (2019), ‘Credit Card Fraud Detection using Local
Outlier Factor and Isolation Forest’, International Journal of Computer Science and
Engineering vol.7, Issure4, P1060-1064, DOI: 10.26438/ijcse/v7i4.10601064

47.Shubham Jaiswal, R. Brindha, Shubham Lakhotia (2021), ‘Credit Card Fraud
Detection Using Isolation Forest and Local Outlier Factor’, Annals of R.S.C.B., ISSN:
1583-6258, Vol. 25, Issue 5, 2021, Pages. 4391 – 4396

48.Diwakar Tripathi, Tushar Lone, Yograj Sharma (2018), ‘Credit Card Fraud
Detection using Local Outlier Factor’ , International Journal of Pure and Applied
Mathematics, Vol. 118, No.7, P229-234

49.Jeremy Jordan (2018), Introduction to autoencoders [Online]. Available at:
https://www.jeremyjordan.me/autoencoders (Accessed at: March 2019)

208 | P a g e

50.Zou Junyi, Jinliang Zhang, Pin Jiang (2019), ‘Credit Card Fraud Detection Using
Autoencoder Neural Network’, Journal of ArXiv, abs/1908.11553

51.Misra, Sumit, Soumyadeep Thakur, Manosij Ghosh, Sanjoy Kumar Saha (2020),
‘An Autoencoder Based Model for Detecting Fraudulent Credit Card Transaction’,
Procedia Computer Science Vol. 167, P 254-262, 2020

52.Apapan Pumsirirat, Liu Yan (2018), ‘Credit Card Fraud Detection using Deep
Learning based on Auto-Encoder and Restricted Boltzmann Machine’, International
Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue
1

53.Data Camp: Understanding Random Forests Classifiers in Python Tutorial [online]
https://www.datacamp.com/tutorial/random-forests-classifier-python (Accessed: Dec
2021)

54.Alom Md. Zahangir, Taha Tarek, Yakopcic Chris, Westberg Stefan, Sidike

Paheding, Nasrin Mst, Hasan Mahmudul, Essen Brian, Awwal Abdul (2019), ‘A
State-of-the-Art Survey on Deep Learning Theory and Architectures’, Asari Vijayan
Electronics. Vol 8. DOI:292. 10.3390/electronics8030292

55.F. Milletari, N. Navab, S. Ahmadi (2016), ‘V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation’, Fourth International
Conference on 3D Vision (3DV), Stanford, CA, USA, P565-571

56.Maturana and Scherer (2015), ‘VoxNet: A 3D Convolutional Neural Networks for
Real-Time Object Recognition’, 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), P922-928, DOI:
10.1109/IROS.2015.7353481

57.Zhaohui Zhang, Xinxin Zhou, Xiaobo Zhang, Lizhi Wang, Pengwei Wang (2018),
‘A Model Based on Convolutional Neural Network for Online Transaction Fraud
Detection’, Security and Communication Networks, vol. 2018, Article ID 5680264, P
9

58.Mohsen Hadian, Seyed Mohammad Ebrahimi Saryazdi, Ardashir

Mohammadzadeh, Masoud Babaei, (2021), ‘Chapter 11 - Application of artificial
intelligence in modelling, control, and fault diagnosis’, Applications of Artificial
Intelligence in Process Systems Engineering’, Application of Artificial Intelligence in
Process Systems Engineering, P255-323, DOI: 10.1016/B978-0-12-821092-5.00006-
1

59.Hochreiter and Schmidhuber (1997), ‘Long short-term memory’, Neural
Computation, Vol 9, Issue 8, pp. 1735-1780, DOI: 10.1162/neco.1997.9.8.1735

60.Ihianle Isibor, Nwajana Augustine, Ebenuwa Solomon, Otuka Richard , Owa

Kayode, Orisatoki Mobolaji (2020), ‘A Deep Learning Approach for Human
Activities Recognition from Multimodal Sensing Devices’, IEEE Access. Vol 8.
179028-179038. 10.1109/ACCESS.2020.3027979

61.Antonio Martini Barclays (2022), Deep Recurrent Neural Networks for Fraud
Detection on Debit Card Transactions: Quantitative Analytics, Fraud Detection 2022
[online]. Available at: https://www.crc.business-school.ed.ac.uk/sites/crc/files/2020-

209 | P a g e

10/E29-Deep-Recurrent-Neural-Networks-Martini.pdf (Accessed: June 2021)

62.Ibtissam Benchaji, Samira Douzi, and Bouabid El Ouahidi, Mohammed V, Rabat
(2021), ‘Credit Card Fraud Detection Model Based on LSTM Recurrent Neural
Networks’, Journal of Advances in Information Technology Vol. 12, No. 2

63.K. Fu, D. Cheng, Y. Tu, and L. Zhang (2017), ‘Credit Card Fraud Detection Using
Convolutional Neural Networks’, ICONIP 2016, DOI:10.1007/978-3-319-46675-
0_53

64., S. Y. Huang, R. H. Tsaih, and W. Y Lin (2014), Feature Extraction of Fraudulent
Financial Reporting Through Unsupervised Neural Networks [Online]. Available at:
http://www.nnw.cz/doi/2014/NNW.2014.24.031.pdf (Accessed: Jun 2020)

65.Yvan Lucas, Pierre-Edouard Portier, Léa Laporte, Liyun He-Guelton, Olivier

Caelen (2019), ‘Towards automated feature engineering for credit card fraud
detection using multi-perspective HMMs’, Future Generation Computer
Systems,Vol.102, P 393-402, ISSN 0167-739X, DOI:10.1016/j.future.2019.08.029

66.Xinwei Zhang, Yaoci Han, Wei Xu, Qili Wang (2021), ‘HOBA: A novel feature
engineering methodology for credit card fraud detection with a deep learning
architecture’, Information Sciences,Vol.557, P302-P316, ISSN 0020-0255

67.Alejandro Correa Bahnsen, Djamila Aouada, Aleksandar Stojanovic, Björn

Ottersten (2018), ‘Feature engineering for credit card fraud detection’, Expert
Systems with Applications, Vol.51, P134-142, ISSN 0957-4174,
DOI:10.1016/j.eswa.2015.12.030

68.Nagaraja Arun, B.Uma, Khalaf Khatatneh, Radhakrishna Vangipuram,

N.Rajasekhar, Kiran V.Sravan (2020), ‘Similarity based feature transformation for
network anomaly detection’, IEEE Access. P11.
DOI:10.1109/ACCESS.2020.2975716

69.Jeff Heaton (2017), Nova South-eastern University :Automated Feature Engineering
for Deep Neural Networks with Genetic Programming at College of Computing and
Engineering [online]. Available at:
https://www.heatonresearch.com/dload/phd/jheaton_dissertation_10259604.pdf
(Accessed: Sep 2020)

70.F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, Deepak Turaga (2016),
‘Learning Feature Engineering for Classification’, The 26th International Joint
Conference on Artificial Intelligence, P2529-2535, DOI:10.24963/ijcai.2017/352

71.James Max Kanter, Kalyan Veeramachaneni (2016), ‘Label, Segment, Features: a
cross domain framework for prediction engineering’, 2016 IEEE International
Conference on Data Science and Advanced Analytics, P430-439, DOI:
10.1109/DSAA.2016.54

72.Alina Raphael, Zvy Dubinsky, David Iluz, Nathan Netanyahu (2020), ‘Neural
Network Recognition of Marine Benthos and Corals’, Conference: 1st International
Electronic Conference on Biological Diversity, Ecology and Evolution,
DOI:10.3390/BDEE2021-09415

73.Sebastian Raschka (2014), About Feature Scaling and Normalization and the effect

210 | P a g e

of standardization for machine learning algorithms [Online]. Available at:
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html (Accessed:
Jul 2020)

74.Leo Breiman, Jerome H. Friedman (1985), ‘Estimating optimal transformations for
multiple regression and correlation’, Journal of the American Statistical Association,
Vol. 80, P580-598 DOI:10.1080/01621459.1985.104781572017

75.DeZyre Tutorials (2018), Principal Component Analysis Tutorial [Online]. Available
at: https://www.dezyre.com/data-science-in-python-tutorial/principal-component-
analysis-tutorial (Accessed: May 2022)

76.Analytics Vidhya Content Team (2018), Analytics Vidhya :Practical Guide to
Principal Component Analysis (PCA) in R and Python [Online]. Available at:
https://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-
component-analysis-python (Accessed: April 2020)

77.Dheepa and R. Dhanapal (2012), ‘Behaviour based credit card fraud detection using
support vector machines’, ICTACT Journal on Soft Computing, Vol. 02, Issue 04,
DOI: DOI: 10.21917/ijsc.2012.0061

78.M. R. Lepoivre, C. Avanzini, G. Bignon, L. Legender, A. K. Piwele (2016), ‘Credit
Card Fraud Detection with Unsupervised Algorithms’ , Journal of Advances in
Information Technology Vol. 7, No. 1, P34-38

79.Roy Wedge, James M. Kanter, Kalyan V (2017), Solving the “false positive”
problem in fraud prediction, In book: Machine Learning and Knowledge Discovery
in Databases, P372-388, DOI: 10.1007/978-3-030-10997-4_23

80.Dewang Nautiyal (2022), ML|Underfitting and Overfitting, Advanced Computer
Subject [online]. Available at: https://en.matasaroja.com/notipuhu/underfitting-and-
overfitting-in-machine-learning/?ref=leftbar-rightbar (Accessed: Jun 2022)

81.Scikit-learn: Underfitting VS Overfitting, Scikit Learn Official site [online]. Available
at: https://scikit-learn.org/0.15/auto_examples/plot_underfitting_overfitting.html
(Accessed May 2022)

82.Andrei Dmitri Gavrilov, Alex Jordache, Maya Vasdani, Jack Deng (2018),
‘Preventing Model Overfitting and Underfitting in Convolutional Neural Networks’,
International Journal of Software Science and Computational Intelligence (IJSSCI),
Vol 10. Issue 4, P18-28, DOI: 10.4018/IJSSCI.2018100102

83.H. Zhang, L. Zhang and Y. Jiang (2019), ‘Overfitting and Underfitting Analysis for
Deep Learning Based End-to-end Communication Systems’, 11th International
Conference on Wireless Communications and Signal Processing (WCSP), P1-6,
DOI:10.1109/WCSP.2019.8927876

84.R.C. Chen, S.T. Luo, X. Liang, V.C.S. Lee (2021), Personalized approach based on
SVM and ANN for detecting credit card fraud, Proceedings of the IEEE International
Conference on Neural Networks and Brain. pp. 810-815

85.Jennifer G. Dy, Carla E. Brodley (2004), ‘Feature selection for unsupervised
learning’, Journal of Machine Learning Research, Vol. 5, P144,
DOI:10.5555/1005332.1016787

211 | P a g e

86.Kajal Kamaljit Kaur (2021), ‘Credit Card Fraud Detection using Imbalance
Resampling Method with Feature Selection’, International Journal of Advanced
Trends in Computer Science and Engineering, Vol. 10 No. 3, P2016-2071

87.Zhaohui Zhang, Xinxin Zhou, Xiaobo Zhang, Lizhi Wang, Pengwei Wang (2018),
‘A Model Based on Convolutional Neural Network for Online Transaction Fraud
Detection’, Security and Communication Networks, vol. 2018, Article ID 5680264,
P9

88.Aurelien Geron (2019), Chapter 1: Hands-On Machine Learning with Scikit-Learn,
Keras & TensorFlow. [Textbook] O’RELLY, P16-17, 1st ED.

89.Pier Paolo Ippolito (2019), SVM: Feature Selection and Kernels, Towards Data
Science [online]. Available at: https://towardsdatascience.com/svm-feature-selection-
and-kernels-840781cc1a6c (Accessed: Nov 2021)

90.Cornell University Computer Science (2018) : Lecture 9: Support Vector Machine
[online]. Available at:
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html
(Accessed: Aug 2018)

91.Diana Ramos, Smartsheet (2018), Real-Life and Business Applications of Neural
Networks [online]. Available at: https://www.smartsheet.com/neural-network-
applications (Accessed: Aug 2022)

92.NVIDIA (2020), K-Means Clustering Algorithm: Glossary [online]. Available at:
https://www.nvidia.com/en-us/glossary/data-science/k-means/ (Accessed: Nov 2021)

93.Wo-Ruo Chen, Yong-Huan Yun, Ming Wen, Hong-Mei Lu, Zhi-Min Zhang
(2016), ‘Representative subset selection and outlier detection via isolation forest’,
Analytical Methods, Issue 39, 8. 10.1039/C6AY01574C. DOI:10.1039/C6AY01574C

94.Recurrent Neural Networks-Remembering what’s important (2019), gotensor
Recurrent Neural Network Article [online]
https://gotensor.com/2019/02/28/recurrent-neural-networks-remembering-whats-
important/ (Accessed: Dec 2021)

95.Robert Keim (2019), How to Use a Simple Perceptron Neural Network Example to
Classify DataTechnical Article [online] https://www.allaboutcircuits.com/technical-
articles/how-to-perform-classification-using-a-neural-network-a-simple-perceptron-
example/ (Accessed: Aug 2022)

96.Jian Yang , Zixin Tang, Zhenkai Guan, Wenjia Hua, Mingyu Wei, Chunjie

Wang, and Chenglong Gu, ‘Automatic Feature Engineering-Based Optimization
Method for Car Loan Fraud Detection’, Discrete Dynamics in Nature and Society,
vol. 2021, Article ID 6077540, 10 pages, 2021. https://doi.org/10.1155/2021/6077540

97.UK Area Codes, Official website [Online]. Available at:
https://www.visitnorthwest.com/uk-area-codes/ (Accessed: July 2022)

98.How and where to apply Feature Scaling, Shaurya Uppal, Medium.com [online].
Available at: https://shauryauppal.medium.com/how-and-where-to-apply-feature-
scaling-machine-learning-93316663cd63 (Accessed: July 2022)

99.Premanand S (2021), The A-Z guide to Support Vector Machine, Analytics Vidhya

212 | P a g e

[online] https://www.analyticsvidhya.com/blog/2021/06/support-vector-machine-
better-understanding/ (Accessed: June 2022)

100.Siddharth Misra, Hao Li (2020), Non-invasive fracture characterization based on
the classification of sonic wave travel times, in Machine Learning for Subsurface
Characterization, DOI:10.1016/b978-0-12-817736-5.00009-0

101.1.4. Support Vector Machines, Scikit Learn Official [Online]. Available at:
https://scikit-learn.org/stable/modules/svm.html (Accessed: Aug 2022)

102.Daniel Chepenko (2018), A Density-based algorithm for outlier detection, Towards
Data Science [online] https://towardsdatascience.com/density-based-algorithm-for-
outlier-detection-8f278d2f7983 (Accessed: Dec 2021)

103.Udayan Khurana, Horst Samulowitz, Deepak Turaga (2018), ‘Feature
Engineering for Predictive Modelling Using Reinforcement Learning’, The Thirty-
Second AAAI Conference on Artificial Intelligence (AAAI-18), Vol. 32, No.1, DOI:
10.1609/aaai.v32i1.11678

104.Inna Logunova (2022), Feature Engineering for Machine Learning, Serokell Labs
[online] https://serokell.io/blog/feature-engineering-for-machine-learning (Accessed:
Dec 2022)

105.Data Flow Diagram for Online Banking System [Online]. Available at: Geeks for
Geeks data https://www.geeksforgeeks.org/data-flow-diagram-for-online-banking-
system/ (Accessed: Dec 2021)

106.Andrea Trevino (2016), Introduction to K-means Clustering, Oracle AI & Data
Science [online] https://blogs.oracle.com/ai-and-datascience/post/introduction-to-k-
means-clustering (Accessed: Dec 2022)

107.Zou, Kelly & Sidharthan, Shawn & DeTora, Lisa & Chen, Yunmei & Ragin,

Ann & Edelman, Robert & Wu, Ying (2010), Statistical Evaluations of the
Reproducibility and Reliability of 3-Tesla High Resolution Magnetization Transfer
Brain Images: A Pilot Study on Healthy Subjects. International journal of biomedical
imaging. 2010. 618747. 10.1155/2010/618747.

108.Splitting a Dataset into Train and Test Sets [Online] Available at: Baeldung
https://www.baeldung.com/cs/train-test-datasets-ratio (Accessed: Dec 2022)

109.Precision versus recall: Differences, Use Cases and Evaluation [Online] Available
at: V7Labs https://www.v7labs.com/blog/precision-vs-recall-guide

110.Precision-Recall curve and AUC-RP [Online] Available at: https://hasty.ai/docs/mp-
wiki/metrics/precision-recall-curve-and-auc-pr (Dec 2022)

213 | P a g e

Appendix

214 | P a g e

Experimental Setup

(a) Workspace

In the experiment, I installed Anaconda Navigator on my computer, set up a Python

environment that has various common machine learning libraries, and configured

Jupyter Notebook to implement the framework.

Python is a very productive programming language, and it provides extensive libraries

which can be popularly and easily used for data analysis and machine learning and

deep learning model development. Anaconda is an open-source Python distribution

with many software tools such as Jupyter Notebook. Anaconda for Windows was

installed from https://www.anaconda.com/products/distribution including Python 3.7

or higher and used its packaging system.

(b) Python Libraries

There are several useful Python libraries: NumPy, pandas, Matplotlib, Scikit-Learn,

TensorFlow. for analysing data and building machine learning models. Table 1

describes the summary of the libraries used in the experiment:

Library Names Description

Numpy Numpy stands for numerical python, and it is the commonly
used for assisting large matrices and multi-dimensional
data. It includes mathematical functions for easy
computations. TensorFlow also uses Numpy inside to carry
out multiple operations on tensors.

Pandas Pandas is a significant library that provides various analysis
tools for visualising, manipulating, and cleaning data. It
supports operations such as aggregating, transforming,
indexing, sorting, and converting data.

Scikit-learn Scikit-learn is a valuable library to handle complex data and
works in conjunction with Numpy. It supports machine
learning algorithms which include a variety of supervised
and unsupervised learning, e.g., classification, clustering,
regression.

Matplotlib Matplotlib is a useful library for plotting numerical data

with graphs, pie charts, histograms, scatterplots, and so on.

215 | P a g e

TensorFlow TensorFlow is an open-source library used for high-level
computations. This library is also utilized in machine
learning and deep learning algorithms with many tensor
operations. It provides a solution for solving complex
computations in Mathematics.

Keras It makes possible to deal with deep learning engines easily
like TensorFlow with Python.

Table 1. Python Common Libraries

(c) Machine learning and Deep Learning algorithms

The above libraries provide several modules for creating machine learning and deep

learning models. The five different modules were used for building the models. Before

building each model, the dataset was split into training set and test set by using one of

the python library in Table 2.

Methods Hyperparameter Modules

Train Test
Split

test_size,
random_state

from sklearn.model_selection import train_test_split
Train_x, Text_x, Train_y, Test_y = train_test_split(X,Y)

One-Class
SVM

kernel, degree,
gamma, max_iter,

random_state

from sklearn.svm import OneClassSVM

clf = OneClassSVM ()

Random
Forest

max_depth,
random_state

import sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier ()

Isolation
Forest

n_estimators
max_samples
contamination
random_state

import sklearn.ensemble import IsolationForest

clf = IsolationForest ()

Local Outlier
Factor

n_neighbors
contamination

from sklearn.neighbors import LocalOutlierFactor
clf = LocalOutlierFactor ()

Autoencoder optimizer
metrics

loss
nb_epochs
batch_size

from keras.models import Model, load_model

from keras.layers import Input, Dense
autoencoder.compile()

Table 2. Python Modules of machine learning and deep learning

216 | P a g e

(d) Performance Evaluation Methods

The four metrics of model validation in this experiment were AUC, precision, recall,

and F1-measure. These methods were provided in Scikit-Learn library as described

in Table 3.

Methods Modules

AUC from sklearn.metrics import roc_auc_score
roc_auc_score (Train_y, y_scores)

Precision from sklearn.metrics import precision_score
precision_score (Train_y, Test_y)

Recall from sklearn.metrics import recall_score
recall_score (Train_y, Test_y)

F1-measure from sklearn.metrics import f1_score
f1_score (Train_y, Test_y)

Table 3. Python Modules of Performance Evaluation Metrics

