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Abstract: There have been sustained efforts toward using naturalistic methods in developmental
science to measure infant behaviors in the real world from an egocentric perspective because statistical
regularities in the environment can shape and be shaped by the developing infant. However, there
is no user-friendly and unobtrusive technology to densely and reliably sample life in the wild. To
address this gap, we present the design, implementation and validation of the EgoActive platform,
which addresses limitations of existing wearable technologies for developmental research. EgoActive
records the active infants’ egocentric perspective of the world via a miniature wireless head-mounted
camera concurrently with their physiological responses to this input via a lightweight, wireless
ECG/acceleration sensor. We also provide software tools to facilitate data analyses. Our validation
studies showed that the cameras and body sensors performed well. Families also reported that
the platform was comfortable, easy to use and operate, and did not interfere with daily activities.
The synchronized multimodal data from the EgoActive platform can help tease apart complex
processes that are important for child development to further our understanding of areas ranging
from executive function to emotion processing and social learning.

Keywords: infant; child; wearable sensors; egocentric view; head-mounted camera; ECG; body
movement; naturalistic research methods; real-world big data; multimodal measures

1. Introduction

One fundamental desideratum of developmental science is to formulate theoretical
models that can explain phenomena occurring in infants’ and children’s everyday life—for
instance, how children befriend other children, an infant’s utterance of the first word,
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and how infants and children use social information (e.g., facial expressions) in order to
learn about the world around them. Beholding such a desideratum makes developmental
research ecologically committed, and its ecological validity needs to be tested with reference
to the natural environment. That environment has regularities, or natural statistics, such as
the frequency of particular words spoken or occurrence of faces in an infant’s field of view,
that can shape and be shaped by the developing infant [1]. Historically, there has been
consensus that the ecological validity of developmental theories and models is important
(e.g., [2–6]). However, the majority of the developmental research still relies on lab-based
research, on the assumption that the lab phenomena resemble those encountered in the real
world. Recent evidence indicates that often these assumptions can be wrong (e.g., young
infants tend to have faces frequently in their view), and can have detrimental consequences
for scientific progress [4,7]. While laboratory-based methods are of uttermost importance
in testing with high precision the causal inferences and what could potentially happen in
children’s lives if specific conditions or combinations of factors occur, they cannot show
what actually does happen in everyday life [4]. For this purpose, the recommendation is
to take a naturalistic approach and use methods that capture the rich diversity of a child’s
spontaneous responses in their natural environment as well as the distribution of children’s
experiences (e.g., [2–4]).

For the past decade, there has been a sustained effort towards increasing the use of nat-
uralistic methods (e.g., [8–12]). These efforts confirmed on the one hand that the naturalistic
approaches are much needed, but on the other hand they also revealed that, to a great ex-
tent, the necessary tools are massively lagging behind (e.g., [13]). Traditionally, naturalistic
methods were predominantly focused on observations of behavior and environmental fac-
tors conducted by a researcher physically present in the infants and children’s environment,
sometimes equipped with a video camera or an audio recorder. While useful in capturing
some aspects of children’s behavior and the aspects of the environment to which they may
be related, these approaches do not provide the degree of precision and sensitivity neces-
sary for capturing the complexity of the mechanisms supporting the wide diversity and
quickly changing behaviors, cognitive and emotional abilities. Furthermore, they lack the
ability to densely capture with precision the dynamic changes in the auditory–visual input
that are likely to contribute to infants’, toddlers’ and children’s cognitive and emotional
development. Through the actual presence of the researcher, these approaches also tend
to be fairly intrusive and change the environment. In this paper, we present the design,
implementation, and validation of a platform (EgoActive) with integrated wireless wearable
sensors and associated software aiming to overcome this major methodological limitation.

1.1. Importance of Wearable Sensors for Developmental Research in the Wild

Development is the result of many nested processes that take place and interact with
each other over multiple time scales (e.g., [11,14–16]). In order to explain the complexity of
developmental processes in the real world, technologies are required that can capture the
emergence of a wide array of cognitive and socio-emotional functions, motor development,
as well as the recurrent mutual interactions with the internal and external factors relevant
for their emergence. Particularly relevant are technologies that do not rely on elaborate
motor and language modalities of response, and can be easily deployed in the natural
environment, with little interference to everyday life. To a large extent, the existent theories
of development are predominantly relying on data from Western, Educated, Industrialized,
Rich and Democratic (WEIRD) countries, and very little is known about the extent to
which these models explain the socio-emotional and cognitive development of children
worldwide (e.g., [17–19]). From this perspective, the technologies required for the natu-
ralistic approach need to be scalable, and easy to deploy in a wide range of cultural and
socio-economical environments. The EgoActive platform proposes to integrate measures of
autonomic nervous system (ANS) function, in particular measures of cardiac activity, and
body movement, with measures of the visual and auditory environment as it appears in
infants’, children’s and caregivers’ egocentric perspectives.
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The motivation for measuring the dynamic patterns of the ANS rests on the fact
that it is one of the outputs of the central nervous system [20,21] which underlies many
behaviors, from emotional expressions, to vocal productions [21–25]. ANS activity mea-
surement has been fruitful in understanding both typical and atypical development, with
atypical ANS shown in autism manifestations of spectrum disorders [26,27], attention
deficit and hyperactivity disorders (ADHD, [28]), conduct disorders [29], as well as the
emergence of other neuropsychiatric conditions [30]. Therefore, towards our aim of devel-
oping technologies that can accurately capture the complex and multifaceted nature of the
developmental process occurring in the natural environment, measures of ANS activity are
an ideal candidate.

Amongst the many ANS indices, of high importance are the demonstrated links
between specific patterns of heart rate (HR) changes and cognitive functions, such as
attention (e.g., [31–34]), as well as changes in arousal and emotion regulation abilities [35,36].
For example, during periods of sustained attention, the HR registers increased deceleration
in tandem with overall quietness of the body movement [37–42]. Higher HR deceleration
during sustained attention is associated with less distractibility [43,44] and enhanced
neural processing of the attended information (e.g., [45,46]). Attention is a crucial cognitive
function which registers rapid developments during the first year of life. It is essential
for many adaptive processes throughout the lifespan, as well as a building block for
the development of many complex cognitive abilities, such as the executive functions
(e.g., [47–55]). The early development of attention as well as the cognitive functions it
supports, set the infants to fare better in many aspects of life in subsequent years (e.g., [56]).

The specific variations in the HR which occur as a function of the respiration cycle
under heavy control from the parasympathetic nervous system (respiratory sinus arrhyth-
mia (RSA), [57]) are also important for understanding development [58–60]. For example,
accumulating evidence suggests that individual differences in children’s baseline RSA are
associated with their emotion regulation abilities (e.g., [58,61–68]) and the quality of social
interactions [69]. Importantly, measures of infant and children’s baseline RSA are sensitive
to environmental factors, such as caregiver’s mental health, and caregiving behaviors
(e.g., [61,70]), and are predictors of several developmental outcomes. Feldman et al. [71]
have found that infants with high baseline RSA manifest attenuated stress response, have
more organized sleep and better cognitive control at the age of 10-years [71]. On the other
hand, low baseline RSA has been linked to the emergence of anxiety disorders, aggression
(e.g., [58]), and oppositional defiant and callous-unemotional behaviors [72].

Alongside measures that can provide insights into different internal cognitive func-
tions and affective states, it is also very important to measure the environmental factors
and the diversity of experiences that contribute to their development [73–77]. Research
within the last decade has shown that the visual and auditory events that occur in in-
fants’ and toddlers’ egocentric perspectives are dramatically different from what adults
experience [7,78,79]. Furthermore, what infants see from their own perspective changes
dramatically throughout the first years of life, with various factors contributing to these dif-
ferences. As developing organisms, infants tend to actively seek the information required
for their further development [80], and thus their sensory and cognitive abilities at different
points during development influences the type of environmental information they can
attend [80,81]. Infants’ socio-emotional and cognitive development is also likely to change
the characteristics of their environment. Extensive research shows that adults modulate
their facial and vocal expressivity towards infants to match their sensorial and cognitive
abilities, in order to facilitate the processing of relevant information [82,83]. Infants’ own
motor development also influences the environmental information they can access [7,84].
As infants gain motor independence, from being able to maintain a stable head position to
crawling and walking, visual and auditory objects, including people, will be perceived from
more varied angles and distances [7,84,85]. Head-mounted cameras have been shown to be
ideal for capturing the diversity of visual and auditory information that appears in infants’
and toddlers’ views in the natural environment [7,73,78,79], as well as how this changes at
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different time scales, from variations during short term activities, to changes throughout
the day, weeks and months. For example, in their seminal study using head-mounted
cameras in the ‘wild’, Jayraman and colleagues [78,79] have shown that while human faces
are more frequent in young infants’ views, hands and other parts of the people’s bodies are
more often contained in the environmental scenes available to older infants and toddlers.

1.2. Limitations of Existing Wearable Sensors for Developmental Research in the Wild

For the last decades, the advances in consumer-directed wearable biosensing devices
have shown that the measurement of egocentric views, cardiac activity, and body movement
in the wild is not only possible, but that the general public is open to adopt such technology
for everyday monitoring of physical health and activity (e.g., [86–88]), but also in various
professional settings (e.g., [89–91]). Although such technology has been predominantly
developed for adults, its ubiquitousness suggests that similar technologies for infants
and young children could be received with a fair degree of openness for researching
development in the ‘wild’. However, creating wireless wearable solutions for developing
populations, particularly for research in the ‘wild’ without the direct supervision of a
specialist, presents important challenges. Flexibility, safety, unobtrusiveness and accuracy
are some of the key challenges.

Many of the previously developed wearable devices, both head-mounted cameras and
body sensors, that have the necessary accuracy to be used for research purposes involve
wires, are fairly bulky, and are difficult to operate by a non-specialist. For instance, in terms
of recording the cardiac activity and body movement, options such as those created by
Biosignalsplux (PLUX Biosignals, Lisbon, Portugal) and Biopac (BIOPAC Systems, Inc.,
Goleta, CA, USA) involve wet electrodes connected by wires to a data acquisition hub.
The hub in itself can be fairly bulky and heavy, particularly for the younger infants which
interferes with their body movement, and together with the wires present safety issues and
are intrusive for everyday routines. Most of the head-mounted cameras present similar
issues (e.g., [9,92,93]). For instance, the solution presented by Long et al. [9] involves
the need of a bulky helmet and fairly large GoPro Hero 10 Bones camera (GoPro Inc.,
San Mateo, CA, USA). Many of these devices, particularly those for recording cardiac
activity and body movement, are also usually difficult to operate by a non-specialist [13]
which makes long term deployment in the natural environment impossible or extremely
difficult. Other options, such as the sensing vest created by Maitha et al. [13], although it is
largely wireless and has been described as easy to operate by non-specialists, is fairly heavy
for young infants (i.e., it weighs ~400 g). The vest also contains to a large extent rubber, it
covers most of the infant upper torso, and it needs to be fitted pretty snugly around the
body for good signal quality [13]. This leads to overheating, which is a significant issue
for its use in warmer climates or where air conditioning is not available. Therefore, it is
not ideal for being deployed at scale in a wide range of socio-economical environments.
A limitation of many of the head-mounted cameras used for research in the ‘wild’ that
are on the lighter side is the fairly narrow field of view (e.g., Looxcie-69 × 41◦ [H × V];
Looxcie, Inc., Sunnyvale, CA, USA), which limits the accuracy for capturing what is likely
to be visually fixated by the wearer. They also tend to have fairly poor video resolution
(e.g., 720 × 480 pixels) which creates difficulties for automated methods for extracting the
relevant data [9,92]. This is particularly important since dense sampling of naturalistic
experiences leads to big datasets which cannot be analyzed without automated algorithms
for meaningful data extraction (e.g., [94,95]). Importantly, none of these devices, usually
advertised as spy or active cameras, have been specifically designed for infants and young
children, and require custom mounts to be worn by developing populations (e.g., [9,92,93]).
They also have a very limited battery life, usually under an hour, and hence do not allow
uninterrupted dense data recording.

For recording cardiac activity and body movement, commercially available wireless
options, such as the Gabi Smartcare armband (Gabi Smartcare, Belgium), have been specif-
ically designed for young infants, and more easily meet the criteria for wearability and
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unobtrusiveness. However, many of these options rely on photoplethysmography, which
is prone to noise caused by motion, environmental light, loose contact with the skin, and
also poses issues for dark skin (e.g., [13,96]). In many cases, such as the Gabi Smartcare
armband (Gabi Smartcare, Belgium), the devices are not validated on infants and young
children during active states [97]. Furthermore, many of these commercially available
options tend to have the raw signal and the data storage under a paywall. This limits their
affordability, makes it difficult to correct and verify the data, and also difficult to test new
developments in the raw signal processing [13].

Crucially, to our knowledge, there are no technological solutions that allow the synchro-
nized recording of the egocentric view and autonomic activity across multiple individuals
in the ‘wild’. The integration and joint analysis of these streams of data are essential for
understanding the complex and recurrent mutual interactions between the development
of infants’ cognitive and socio-emotional functions on the one hand, and the environment
experienced by them on the other (e.g., [34,98,99]).

1.3. The EgoActive Platform

In the following sections, we present the design, implementation and validation of the
EgoActive platform, which addresses many of the limitations of wearable technologies for
developmental research.

The process of designing the platform was guided by a series of high-level require-
ments prescribed by the aims of the ecologically valid developmental research approaches,
as indicated above. More specifically, we focused on the following: to be suitable for infants,
young children, and individuals throughout the lifespan; to present the robustness and
precision required for scientific research; to be able to temporally synchronize streams
of data generated by multiple devices and individuals; to be scalable to a wide range
of socio-economical and geographical environments, and affordable; to be easy to use
by individuals with a wide range of expertise, from tech-savvy to those with very little
experience of using technical devices; to have an open design and access to raw signal and
data in order to maximize its use and further development by the scientific community.

In order to satisfy these high-level requirements, we identified a number of more specific
physical and operational requirements that guided the implementation of the design.

Physically, we require that the wearable devices are comfortable and of sufficiently
low weight that an infant is largely unaware they are wearing them and their behavior is
unaffected. The devices must be safe to ensure that no participants are harmed by taking
part in data collection activities and to meet regulatory requirements. They should be
unobtrusive, i.e., small and as out of sight as possible when worn, such that participants
behave naturally and do not react to the presence of the devices on other participants. They
should be easy to manufacture, using off-the-shelf parts and widely available materials
as far as possible, in order to keep costs low and simplify the process of other researchers
replicating their construction.

There are also requirements relating to the operation of the devices and system as
a whole. Since the data capture process requires significant time investment from the
participants and the data itself has high scientific value, the robustness of the data storage
is paramount. We therefore require robustness and redundancy in data storage in order
to minimize data loss. This is reflected in the inclusion of a data backup capability within
our system and to minimize data loss when wearable devices are turned off or lose power
during recording. In order to minimize how often the participants must recharge or switch
devices, we require wearable devices to have extended continuous recording capability both
in terms of battery life but also the capacity of data storage media within the devices. The
resolution, temporal for body sensor and spatio-temporal for cameras, must be sufficient
to capture the events of interest. For the body sensor, this relates to the rate of change in
heart rate during attention onset and offset. For the camera, the spatial resolution must
enable extraction of visual information comparable to that extracted by the participant’s
visual system. There is a related requirement that the field of view of the camera should
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be adequate to capture all, or the majority, of the scene contents to which the participant’s
visual system is attending. We also require that the time series data collected from all devices
is temporally aligned. This necessitates some form of temporal synchronization procedure
between devices. Our goal is to retain the simplicity of the devices by minimizing addition
of extra sensors for synchronization (utilizing existing sensing capability where possible)
and for the synchronization process itself to be simple to execute without errors. Finally,
we anticipate the devices collecting significant volumes of data. If a single participant
collects tens of hours of video data, this quickly becomes challenging to store, manage and
process. Our ultimate operational requirement is that the processing required to transform
the raw data into usable time series is automatic and computationally efficient, therefore
successfully scaling to big data.

In Section 2, we present the design and implementation of the hardware and software
parts of the EgoActive platform. The hardware comprises three parts: (1) charging, syn-
chronization, and data back-up station; (2) head-mounted cameras (HMCs); and (3) ECG
and acceleration body sensors. In Section 3, we present the software to support different
functions of the hardware, and to implement signal preprocessing steps required prior to
the extraction of more meaningful features. Specifically, the software we developed com-
prises of: (1) Android application for device synchronization and temporary data back-up;
(2) open-source software for extracting and processing the synchronization codes from the
audio-video and ECG time series, as well as for temporally aligning them; (3) open-source
software for extracting HR from the raw ECG signal; and (4) open-source software that
automatically detect which portions of the video and ECG data are of sufficient quality to
be usable.

2. Platform Hardware Design, Fabrication and Validation
2.1. Overview

The sensing part of the EgoActive platform was developed in order to allow recording
for extended periods of time of the egocentric perspective of wearers (infants, children, and
their caregivers), temporally aligned with measures of cardiac activity (i.e., ECG) and body
movement in the natural environment.

Towards these aims, the sensing part of the EgoActive platform includes wireless
head-mounted cameras (HMC), with different options for the lens field of view (FOV), that
can be worn simultaneously by infants, children and adults (Figure 1).
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Figure 1. The EgoActive head-mounted camera (HMC) worn by a 6-month-old infant (a) and an
adult (b). The HMC dimensions are tailored to fit the head circumference of young infants (6-
to 8-months-old), older infants and toddlers (9-months-old and older), and adults. The HMC for
younger infants integrates a narrow-FOV lens, while the HMC for older individuals integrates a
wide-FOV lens. In all cases, the HMC is very light (52 g for the narrow-FOV version, and 58 g for the
wide FOV). (c) HMC and the EgoActive body sensor worn together by a 6-month-old infant.
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For recording cardiac activity and body movement, the EgoActive platform includes
integrated wearable body sensors that record ECG via wet electrodes and body movement
via a triaxial accelerometer (Figure 2). The integrated sensor also includes a photo sensor
used for temporal synchronization with other devices in the platform (e.g., HMC).
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Figure 2. EgoActive body sensor positioning on a 6-month-old infant (a) and an adult (b). The
EgoActive body sensor has a small footprint and it is light. (c) A sample EgoActive body sensor
recording of an infant. The ECG and three-axis accelerometer signals are recorded simultaneously (at
250 Hz for the ECG, at 65 Hz for the accelerometer). The QRS complex in the ECG can be seen clearly
repeated in this signal. While the precise morphology of the QRS complex can vary (e.g., depth of the
Q and S troughs), the R-peak is a consistent feature necessary for later analysis.

The dimensions of the devices are tailored to fit the head and body size of infants of
different ages, as well as older children and adults. When used concomitantly, the devices
have continuous recording autonomy of up to 2 h 10 min, which facilitates habituation
to the device and spontaneous behavior. With the inclusion of multiple devices for each
individual, the platform also gives the possibility to record continuously for longer than
2 h 10 min by swapping devices when the battery runs out.

The devices can be used either independently, or related to each other. For the more
complex scenarios where the research questions require the analysis of the data recorded by
the head-mounted camera to be temporally aligned with that recorded by the body sensor
(from one or multiple individuals), the precise temporal cross-device synchronization is
a major challenge. Cross-device synchronization entails sensing a signal from a shared
source on all devices. Our devices sense different modalities of data: the camera captures
video and audio while the body sensors capture ECG and acceleration. This presented
two options. One was to augment one of the devices with an additional sensor such that a
single synchronization source could be used by all devices, the other was to use a different
synchronization source for the two types of device (e.g., vibration for the body sensor and
sound for the camera). We chose the first option, more specifically to use a coded light
signal. This can be recorded directly by the cameras while we augment the body sensors
with a light sensor. This adds very little to the cost or complexity of the body sensor and
we store only a binarized light signal adding very little to data storage requirements. This
solution simplifies the generation of the synchronization signal and reduces a possible
source of error by avoiding the need to ensure the two synchronization signal sources are
themselves synchronized.

The functioning of the sensing hardware components is supported by a base unit
that implements their synchronization, charging, and temporary data backup. Figure 3
illustrates the base unit with its components and the connectivity diagram. All components
are compactly contained in a suitcase style box, in a layout that is intuitively accessible to
a wide range of users. The key elements of the base unit are represented by the Android
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Samsung A8 tablet (Samsung Electronics Co., Ltd., Suwon-si, Republic of Korea) and the
powerbank. The tablet’s main functions are to support the temporal synchronization of the
head-mounted cameras and body sensors, as well as the temporary data back-up for the
duration of deployment in the natural environment via a custom Android application (see
Section 3).
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2.2. Head-Mounted Camera

The design goals for the head-mounted camera were to produce a device able to record
visual scenes from the wearers’ egocentric perspective, as well as the associated sound
for an extended continuous recording. In order to capture most visual information that
the wearer is likely to fixate, the captured visual scenes were required to approximate as
much as possible the human FOV. In order to meet our criteria for comfort, safety, and
unobtrusiveness, the physical device was required to be small, lightweight, and to adapt to
the differences in head circumference across different age groups. Of particular importance
was to achieve a small footprint relative to the small head of infants given that all previous
head-mounted cameras used for research with infants are large [9]. We also aimed to
achieve a minimum 2 h of battery life that can support continuous recording without the
need to operate the device. Alongside comfort and small footprint, this would ensure that
once the camera is placed on the head and recording, the wearer will habituate to it and
his/her behavior will be less likely influenced by it.

These requirements posed many challenges, which largely stem from the need of
achieving a small footprint for the entire device and comfort to wearer, and the fact that the
majority of the operational requirements involve large components. Many of the existing
head-mounted camera designs involve containing the optical units/lenses, circuit board
and battery in a single case. This tends to lead to a fairly bulky device, which often is
difficult to align with the wearer’s line of sight. These bulky devices (e.g., GoPro Hero
Bones (GoPro Inc., San Mateo, CA, USA), Looxcie (Looxcie, Inc., Sunnyvale, CA, USA), and
Veho Muvi Pro (Veho, Southampton, UK)) need a special head mount and tend to be worn
fairly high on the forehead and head. Through their sheer size, they can represent a safety
risk for younger children, and are a major intrusion to the appearance of both children
and adult wearers. We therefore distributed the components (circuit board, lens, battery)
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alongside a head-band like mount, which can wrap around the wearer’s forehead. In this
design, the circuit board occupies the flat surface above the right ear. We further used two
smaller batteries located above the left ear, rather than a single large battery, which allows
the headset to flexibly fit around the head but allows for extended continuous recording.
This distributed design not only led to a smaller footprint of the parts that are directly in
sight, but also a better alignment of the lens with the center of the wearer’s FOV (Figure 4).
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3.7 V lithium ion batteries; (b) the circuit board and its key elements. The circuit board measures
35.00 mm in length, 25.00 mm in height and 0.50 mm deep.

2.2.1. Hardware Design

Circuit board. The circuit board was specifically customized to meet the functional
and operational requirement by an external company. It was developed around a JX-F23 2.0
MP image sensor with MIPI CSI2 and dual-data lane serial interfaces (Silicon Optronics, Inc.,
Shanghai, China). The JX-F23 consists of 1932 × 1088 active pixel sensor array, where each
pixel is 2.8 × 2.8 µm, with on-chip 10 bit ADC, programmable gain control, and correlated
double sampling in order to reduce fixed pattern noise. The sensor has an electronic rolling
shutter, sensitivity of 3300 mV/lux-s, and RGB Bayer pattern for the color filter array. The
image sensor is coupled with a Goke GK7202 processor (Goke Microelectronics Co., Ltd,
Changsha, China). GK7202 has low power consumption, supports multistream encoding
capabilities, and efficient video compression ratio. Prior to video encoding, frames at full
HD (1920 × 1080 pixels) resolution are center-cropped from the pixel data recorded by the
sensor. The video encoder uses a variable frame rate which averages 30 frames per second.

The circuit board also integrates a real-time clock (RTC) which enables the alignment
of the entire platform to the actual time via a temporal synchronization signal described
in Section 3.1.1. The RTC can be set by a text file in the SD card. In order to maintain
the continuous function of the RTC, the circuit board was designed to include a 3 mAh
rechargeable lithium-ion coin battery exclusively dedicated to power the RTC. Whenever
the camera is charged, the RTC battery will be recharged as well. For audio recording,
the circuit board also integrates a microphone. Audio is recorded in stereo at 32 KHz and
32 bits per sample and encoded as MPEG AAC audio.

Optical unit(s). Two optical units/lenses were considered for the head-mounted
camera, one which has a wide field of view (FOV, diagonal 106.6◦, horizontal 89.3◦, vertical
58.1◦) and one with a narrower FOV (diagonal 73.4◦, horizontal 62.8◦, vertical 38.0◦). FOV
was measured via a geometric calibration performed using the Matlab (The MathWorks,
Inc., Portola Valley, CA, USA) Camera Calibrator tool (see Appendix B for additional
details). While the wide FOV captures a larger part of the natural infant and adult FOV,
it is physically fairly large, which would lead to a forehead section that is bulky relative
to the small head dimensions of infants, particularly the younger ones (5–6 months-old).
The wider FOV also exhibits more significant fisheye distortion (larger radial distortion
parameters in intrinsic calibration parameters). If required for subsequent processing, the
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calibrated distortion parameters can be used to undistort the images prior to processing. A
larger headset would be more obtrusive, and also potentially pose safety risks. In order
to overcome these limitations, we chose to evaluate a smaller FOV optical unit as well.
The validation studies we conducted (see Section 2.5) indicate that the narrower FOV lens
reliably captures the majority of the fixations made by the 6-month-old infants, while the
wider FOV is required for a similar performance for older infants, children and adults. In
light of these findings, it was decided to design versions of the head-mounted camera that
include the narrow FOV for the younger infants (6–7 months), and the wider FOV for older
infants (>7 months old), children and adults. The lenses are connected to the circuit board
via a surface mount, flexible printed circuit (FPC) connector.

For both types of lenses, the HMC device has an average current consumption of
320 mA at 3.7 V supply potential. In order to enable a minimum of 2 h continuous recording
as per our requirements while maintaining a flexible and small footprint, two fairly small
350 mAh lithium ion batteries (24.0 × 25.0 × 6 mm, 3.7 V 350 mAh) were connected in
parallel. The voltage versus current curves (Figure 5) show how the 2 batteries share
the load evenly during both the recording and charging cycles, supplying approximately
160 mA each during the camera recording period and for over 1 h 40 min with the mea-
surement equipment connected. However, when disconnected from the test equipment, a
fully charged 700 mAh battery pack was observed to keep the HMC actively recording for
approximately 2 h 10 min.
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Video format. Video data are written to a 128 GB micro SD card in 5 min consecutive
blocks. After recording, these blocks can be stitched into a continuous video of the full
session length. In the event that the power is removed by switching off the device then any
data held in the device’s internal memory will be lost. Therefore, in the worst case, up to
5 min of recording could be lost. In the context of extended real-world recordings, this was
considered to be a reasonable tradeoff. In practice, however, temporary files are written
while the 5 min block is being recorded. If power is lost and recording later resumed, this
partial block continues to be written to until 5 min of video has been recorded. We can
automatically identify these split blocks by finding consecutive frames with large gaps
between their presentation timestamps. We can split the video file at this point and restore
the partial block to the end of the previous session. The videos are stored in MP4 format,
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compressed using the H.264 codec with a 1920 × 1080 pixel resolution, and MPEG-AAC
codec for audio with stereo channels, sample rate of 32 kHz and 32 bits per sample.

Temperature management. For a wearable device, the temperature is relevant for
comfort and safety. We aimed at maintaining the temperature of the functioning device be-
low 43 ◦C in line with the more conservative safety standards for audio/video information
and communication technology equipment (BS EN IEC 62368-1:2020+A11:2020). Towards
this aim, we designed a temperature management system. First, the microprocessor was
located on the external surface of the circuit board (facing away from the body). Second, to
facilitate the dissipation of the temperature away from the body, an aluminum heat sink
was attached with a layer of high thermal conductivity foam (5 W/m-K) on the surface
of the microprocessor, while the internal side of the circuit board (facing the body) was
covered with a layer of thermally insulating foam (0.8 W/m-K). In addition, the liquid
silicone wrap of the casing (see Section 2.2.2) was intended to add an extra layer (1 mm
thick) of thermal insulation at the point of contact with the body.

To test the efficiency of this system, the temperature sensor from Biosignalsplux
(PLUX Biosignals, Portugal) was used to measure temperature of the HMC headset section
containing the circuit board at the point of contact with the skin. We chose to measure
the temperature at this location given that it is the only part likely to record changes in
temperature during functioning. The temperature sensor was a NTC thermistor element
(2.04 mm diameter) which has an operational range between 0 ◦C and 50 ◦C. We measured
the temperature of both the HMC headsets incorporating the wide (N = 5) and narrow
(N = 5) FOV lenses. The temperature was recorded continuously for a minimum of 1 h
50 min, while the camera was worn on the head by an adult as it would typically be for
research purposes, at an average room temperature of 25.29 ◦C (SD = 0.60 ◦C). The average
recording length (time on) was 118.0 min (SD = 17.2 min). Both the HMC with the wide-
and narrow-FOV lenses recorded an average temperature below 40 ◦C (Figure 6), hence
within approximately 3 ◦C of the usual body temperature.
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Figure 6. The HMC temperature overtime: (a) An example temperature recording (2 h, 9 min) for
a narrow-FOV camera. The maximum and mean temperature was calculated from 10 min from
recording onset. (b) The average maximum and mean temperature for narrow-FOV (N = 5) and
wide-FOV (N = 5) cameras. Error bars represent the standard error of the means.

2.2.2. Headset Case Design

The headset case design was one of the most challenging aspects of the platform to
achieve. The housing of the circuit board, optical unit, batteries, and wiring was required
to be both rigid and flexible. Rigidity was needed to protect the batteries, circuit board and
optical unit, whilst flexibility was a must for allowing the entire setup to naturally follow
the contour of the head and to be comfortable when worn. Furthermore, the materials
had to be adequate for extended contact with the skin. Particularly for the young infants,
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comfort and the possibility to wear the HMC in contact with the skin were of uttermost
importance. Discomfort during psychophysiology recordings is well known to lead to a
high attrition rate in infancy research [100–103].

In order to satisfy the mechanical properties imposed by our requirements, we decided
to adopt a 2-part design strategy that combines rigid and flexible materials. Within this new
innovative design (Figure 7), the battery and circuit board are housed in rigid casings made
from a thermoplastic material, which is further enclosed by a web-like casing made from an
elastomer. The wrap-like casing acts as a carrier to combine all the electrical components,
housing the cabling, battery, circuit board, and optical unit. The design feasibility and
material compatibility were verified using 3D printing. For the rigid cases, 3D printing
via Multi-Jet Fusion was used because it produces functional, end-use production parts
that would enable us to have true verification in terms of mechanical properties and design
feasibility. Multi-Jet Fusion uses an inkjet array to selectively apply fusing and detailing
agents across a bed of nylon powder, which are then fused by heating elements into a solid
layer. For testing the prototypes of the wrap-like casing, Polyjet 3D printing with digital
photopolymer was used. The Polyjet 3D printing builds multimaterial prototypes with
flexible features which works well in simulating components made to have elastomeric
features. It uses a jetting process where voxels of liquid photopolymer are sprayed from
multiple jets onto a build platform and it is cured in layers that form elastomeric parts. In
our particular case, the material of choice was 3DP silicone because it has similar character-
istics to the true liquid silicone rubber (LSR), such as reproducibility after deformation or
stress and elasticity.
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Figure 7. The EgoActive HMC casing relies on a 2-part design that combines rigid and flexible
materials in order to satisfy the mechanical properties imposed by the requirements. The wrap-like
structure is made of soft and flexible liquid silicone rubber, while the batteries and circuit board cases
are made of rigid impact copolymer polypropylene. The entire camera, electronics and casing, weighs
52 g for the narrow-FOV lens version and 58 g for the wide-FOV lens version. The lens enclosure
measures 8 mm in height for the wide-FOV lens, and 4 mm in height for the narrow-FOV lens. The
depth of the circuit board and battery casings with the silicone wrap is 12 mm.

The final design encloses all unnecessary access points, except the USB charging socket,
SD card, the on/off switch, and the lens. The design also includes a recess for the SD card to
prevent it from accidentally being ejected while still maintaining the ability to remove the
card for reading its data; a recess for the slide switch to prevent any small parts breaking
away and becoming exposed outside the case.

For the final manufacturing of the HMC headset case, we used plastic injection mold-
ing. For the circuit board and battery cases, an impact copolymer polypropylene was
chosen. This material exhibits high melt flow rate which allows it to achieve a very thin
casing, whilst also having very high impact resistance and very good thermal stability. As a
specific material type and brand, we chose INEOS PP 500-GA20 (Ineos, UK). According to
the manufacturer’s data sheet, this material is recommended for toy manufacturing, food
containers, and safe to be in contact with human skin. It is also widely available. For the
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web casing, we used LSR at ShoreA 60. During prototyping, we established that Shore
60 balances well between the requirement of having a soft and comfortable headset, and the
ability to maintain the shape required for accurate positioning on the head. Furthermore,
LSR is also known to have electrical and heat insulating properties, which are relevant in
terms of safety and comfort. As a specific material type and brand, we chose Elastosil 3003
(Wacker Chemie AG, Germany) (Shore 60 A/B) because, according to the manufacturer’s
datasheet, it has a good biocompatibility profile, it is recommended to be used for products
that are in extended contact with infant and adult skin, and for products that are in contact
with food. The PM-T2 finish gives a pleasant soft touch feel.

The headset is held in position on the infant head by two straps. For both the infant
and the adult, the back strap adjusts the length of the entire headset to the individual’s head
circumference. For the infant, the top strap is primarily meant to prevent the headset sliding
down while in use. The straps are manufactured from a soft elastic neoprene material. Due
to the use of LSR Shore 60, which is flexible but maintains shape, neither the infant nor the
adult headset require a tight fit around the head in order to maintain the desirable location
of the lens (i.e., above the eyebrows and approximately aligned with the nose).

2.3. Body Sensor

The design goals for the body sensor were to produce a small and lightweight device
able to record reliable heart rate and body movement data over a period of 3 to 4 h (Figure 8).
The recorded data would need to be time coded in such a way that it could be accurately
synchronized during post-processing to a video recorded using a HMC. It should also
be low cost, comfortable, safe, meet relevant regulations and be easy to reproduce on a
small-scale production run.
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deep, while weighing 21.0 g.

2.3.1. Hardware Design

The body sensor is built around an Adafruit Feather M0 AdaloggerTM (Adafruit
Industries LLC, New York, NY, USA) which features a ATSAMD21G18 ARM Cortex M0+
(Microchip Technology Inc., Chandler, AZ, USA) low power embedded microcontroller,
running at its default system speed of 48 MHz. The Adalogger (Adafruit Industries LLC,
New York, NY, USA) provided a ready made solution for basic SD card interfacing and
USB battery charging circuits. The Feather’s small form factor provided the perfect size,
weight and processing power as well as having a library of support functions, available
within the firmware development toolset, for logging data to an SD card.

To complement the AdaloggerTM (Adafruit Industries LLC, New York, NY, USA), a
bespoke featherwing-compatible circuit board was designed (Figure 9) which contained
the interface from the body measurement sensors (ECG, movement) and a photo sensor
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back to the Adafruit Feather M0 AdaloggerTM microcontroller (Adafruit Industries LLC,
New York, NY, USA).
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ECG Interface. For the ECG interface, an Analog Devices AD8232 (Analog Devices,
Inc., Wilmington, MA, USA) single-lead heart rate monitor preamplifier was selected
because of its suitability in conditioning noisy biopotential signals. It can be configured for
either two or three electrode placements, with the third electrode being used as a right leg
drive amplifier to reduce the common mode rejection of the system. We chose to use the
two-electrode configuration for the simplicity offered to the end user when positioning the
device on the body. The circuit around the AD8232 allows for a simple two-pole high-pass
filter to help block the DC component from the input signal while also allowing the lowest
cutoff frequency. The AD8232 also includes a ‘leads off’ detection circuit whose output is
read and logged along with the recorded ECG signal data and although it is not currently
used it is available as a secondary check for ECG validation during post-processing. The
ECG signal is sampled by the microcontroller’s analogue to digital conversion peripheral
(ADC) at a rate of 250 Hz. The 250 Hz sampling rate for the ECG is recommended as
the minimum to accurately capture the R wave [104] and also for more advanced heart rate
variability analysis (including RSA) [105].

Accelerometer. An Analog Devices ADXL355 (Analog Devices, Inc., Wilmington, MA,
USA) three axis accelerometer was selected to act as the body movement detection sensor.
Although not the cheapest option, its low power, low offset drift, ultralow noise, 20 bit
binary output conversion and simple digital serial peripheral interface made it an ideal
choice for this application. The accelerometer’s three-axis output data are sampled and
recorded by the microcontroller at a rate of 65 Hz. These calibrated three-axis signals are
combined into a single resultant signal during processing.

Photo sensor for temporal synchronization. The body sensor does not include a
RTC implementation and therefore cannot record a unique time stamp either contained
within the file structure or recorded within the data itself. In order to address the require-
ments for temporal synchronization, the body sensor contains a Kingbright KPS-3227SP1C
(Kingbright, Taiwan) ambient light photo sensor whose output is digitally sampled at a
rate of 250 Hz. This ambient light photo sensor allows recording a 10 bit coded light se-
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quence provided by the Samsung Android tablet (Samsung Electronics Co., Ltd., Suwon-si,
Republic of Korea) via the bespoke software application. During post-processing, this
light signal is used to realign the time of acceleration and ECG signal to the RTC of the
head-mounted camera. The photo sensor (luminosity), acceleration, and ECG signals are
all recorded concurrently.

2.3.2. Firmware Design

One of the design goals was that the final device supports 3 to 4 h of continuous
recording. Power consumption and therefore battery life were an important parameter to
measure during the design cycle and firmware development, which had to be embedded
with the requirement of maintaining a small footprint and hence finding a small battery.

As with the HMC, the body sensor data are stored locally on a micro SD card and
during the first iterations, the firmware was structured in a way which prioritized data
preservation by storing each and every new data sample to one of two human readable text
files on the SD card, one for heart rate measurements and the other for the accelerometer
body movement measurements. However, running the firmware in this way resulted in the
device consuming an average of 320 mA due to a nearly continuous SD card activity. This
would have required a sizable 1.3 Ah (ampere-hour) battery to meet the 4 h usage time of
the design specification which was not suitable in terms of the small footprint requirement.
The ECG and ACC sampling rate was also limited due to the amount of time the processor
needed to wait for the SD card’s internal processes to finish, and thus restricting the speed
of the main processing loop.

The average current consumption was reduced dramatically to 40 mA by restructuring
the firmware, writing data in 512 byte blocks and thus reducing the number of individual
data transfers to the SD card. Data read from the sensor interfaces are held within the
microcontroller’s internal memory until there are enough data to efficiently write a 512 byte
block to an open file on the SD card. This stores both the ECG to a significance of three
decimal places (SD = 3.297), and the accelerometer data to a significance of three decimal
places (range: +2 g to −2 g). After the 5 min block of data has been transferred to the
currently open file and the data transfer is committed, the file is closed and a new file is
opened ready to accept further data.

Data transfer rates were improved further by storing the local data in a machine
readable, raw format and off loading the process of converting the data into a human
readable format to the post-processing scripts which run on more powerful desktop PCs
(i.e., converting the .dat files to .txt files). Reducing the amount of time the device was
waiting for an SD card data transfer and also removing the process of converting the raw
sensor data to a human readable format meant that we could use this free time to increase
the sampling rate of the ECG signal to 250 Hz. These efficiencies in data handling resulted
in the device consuming only 12 mA average current (Figure 10), resulting in the selection
of a fairly small lithium ion battery (46.0 × 9.0 × 4.5 mm, 3.7 V 150 mAh), meeting the
requirement of a small footprint. The fully charged 150 mAh battery was observed to keep
the body sensor actively recording for approximately 10 h.

With the efficiency gain from storing the raw sensor data, rather than human readable
text strings, a 32 GB SD card can hold up to 4028 h worth of data in total. The data are
stored in individual files holding 5 min worth of data at a time. In the event that the power
is removed by switching off the device, then any data held in the devices internal memory
will be lost; this would be a maximum of 5 min worth. In the context of the extended
real-world recordings, this was considered to be a reasonable tradeoff.
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2.3.3. Case Design

The body sensor case was designed to meet the requirements of maintaining a small
footprint for the device, comfort during use, protection of the electronics, and to provide
user safety. Similar to the HMC, a prototype was designed, and the design feasibility and
material compatibility verification was performed using 3D printing via Multi-Jet Fusion.
The final small footprint design (Figure 7) allows minimal exposure of the device internal
circuit components to the user. It encloses all unnecessary access points, except the USB
charging socket, SD card and the on/off switch. The design also includes a recess for the
SD card to prevent it from accidentally being ejected while still maintaining the ability to
remove the card for reading its data; a recess for the slide switch to prevent any small parts
breaking away and becoming exposed outside the case, and sufficient radius of external
edges to achieve comfort.

In terms of the manufacturing of the final design, after factoring the casing design
requirements in terms of material choice, quantity, and relatively low complexity; plastic
injection molding was selected. For the material, an impact copolymer polypropylene was
chosen (INEOS PP 500-GA20; Ineos, UK). This material exhibits high melt flow rate which
allows it to achieve a very thin casing, whilst also having very high impact resistance and
very good thermal stability. According to the manufacturer’s data sheet, this material is
recommended for toy manufacturing, food containers, and hence safe to be in contact with
human skin.

The mounting of the sensor on the human body is via the two ECG electrodes attached
to the chest. We developed and tested our sensor design using the Ambu Blue sensors
(Ambu A/S, Denmark) given their offset fitting that has been shown to reduce the signal
noise during the data acquisition. The offset fitting also allows the sensor to be attached
and reattached without the need to apply pressure on the body, which is particularly
relevant for preventing infant distress. Furthermore, as per manufacturer’s instructions,
these electrodes can be worn for extended periods of time. All these aspects are important
in terms of achieving high quality data during recordings in the natural environment.
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2.4. Base Unit

The base unit provides a station with which to charge, synchronize, backup and
transport the HMCs and body sensors. It comprises predominantly off-the-shelf hardware
components, and a small proportion of custom made elements (e.g., the foam layer that
maintains the electronics in place, the screen that covers the tablet). All components and
materials are widely available, giving the possibility to anyone interested to build their own.
We now describe the physical design and construction along with the specific hardware
components used in the base unit.

The base unit is housed within a WAG TEKNO 2007 (W.AG Funktion + Design GmbH,
Germany) polypropylene carry case (external dimensions: 340 mm × 275 mm × 83 mm).
For further information regarding how different components are secured in the box, please
see Section 3.1 and Appendix D.

We chose to use the Samsung A8 tablet for synchronization and backup purposes. The
specific hardware model is important due to its ‘on the go’ functionality, which is required
for the transfer of files between multiple external drives (the cameras) and internal storage
via its USB-C port as well as simultaneously charging over the same port. It also supports
large capacity SD cards (512 GB) which we use as the backup location.

Although the head-mounted cameras, body sensors, and tablet can be charged via
regular USB cables from any power source, we designed the base unit to provide a backup
power supply and also to act as a power distribution hub. The base unit includes a Varta
57977 15,000 mAh power bank (Varta AG, Germany) charged via the micro USB input,
which is connected to a flush mount micro USB port in the back of the carry case, allowing
power input from a USB AC adapter. Importantly, the power bank supports pass-through
charging, meaning that it can be simultaneously charged and used, allowing the base unit
to be left connected to mains power over the period of use. The power bank provides
two USB-A outputs which are used to charge the body sensors. The power bank USB-C
power delivery (PD) output is connected to the PD input of an RS PRO 4 Port USB 3.0 USB
C Hub (RS Group plc, UK). This serves two purposes: first, it connects the Samsung A8
tablet (Samsung Electronics Co., Ltd., Suwon-si, Republic of Korea) to four USB-A cables
to which the HMCs can be connected for data backup; second, it supplies power to the
tablet and HMCs for charging. The power bank allows some autonomy from the main
electricity source, which facilitates deployment in environments where electricity is scarce
or inconsistent, and gives a certain degree of portability to the entire platform (e.g., can be
used outdoors during a day out).

2.5. Validation and User Experience of the EgoActive Hardware

The criteria for the design of the EgoActive hardware were based on factors such as
suitability for a wide age range (i.e., from infants to adults) and ease of use by families
with varied technical skills. To ensure that these criteria did not impact the quality of
the information recorded by the camera lens and ECG sensors, we conducted a series of
validation studies that compared our sensors to other commercially available systems.
Furthermore, to assess user experience, we recruited 7 families with 6-month-old infants
from the UK to use the EgoActive Platform in their homes, while carrying out their daily
routines and activities. The caregivers were asked to record approximately 4 h/day, both
the infant and the caregiver simultaneously wearing the devices, for a period of one week.
We used subjective reports from the caregiver to assess whether infants and caregivers
had a positive experience wearing and operating the HMC and body sensor, and whether
wearing both devices interfered with daily routines and activities.

The following sections present the results of the validation studies for the HMC and
sensor, and users’ experiences of the EgoActive platform.
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2.5.1. Validation Studies of EgoActive Head-Mounted Camera
Suitability of the FOV

We tested whether the camera’s field of view (FOV) was sufficiently wide to spatially
capture the range of fixations made by infants and adults during a naturalistic situation
in the lab. For this purpose, we recorded infants’ and adults’ egocentric perspectives
concurrently from a head-mounted eye-tracker (Positive Science Inc., USA [106]) and our
EgoActive HMC. The eye-tracker measured the spatial location of fixations with high
accuracy (20 [106]) which allowed us to estimate whether fixated locations fell within our
HMC’s FOV. We chose to integrate the EgoActive HMC with a head-mounted eye tracker
because the latter allowed wearers to conduct naturalistic behaviors such as free play for
infants or making tea for adults. Figure 11 illustrates the general approach.

1 
 

 

Figure 11. Positioning of equipment and visual example from the validation of the head-mounted
camera (HMC) wide field of view (FOV) alongside the eye-tracking (ET) system.

The Positive Science head-mounted eye-tracker (the Tethered Laboratory Unit, Positive
Science Inc., Rochester, NY, USA) consists of two cameras mounted on a headband: one
which records the scene in front of the observer (located above the right eye; FOV: horizontal
81.80◦, vertical 67.78◦, diagonal 95.30◦) and one which records the right eye (Figure 11).
The scene camera captures a large proportion of the infants’ FOV [106]. In addition, we
incorporated our EgoActive camera into the headset, aligned to the center of the forehead.
Both our and the eye-tracking scene cameras were adjusted to have a field of view aligned
with the infants’ line of sight.

Participants. For the purpose of validating the HMC for capturing what is likely to
be fixated from the infant (6 and 12 months) and toddler (24 and 36 months) view, we
recorded a period of free play between the infant/toddler and their caregivers (N = 32). For
validating the HMC for adults (N = 9), we recorded a period of typical everyday behavior
(i.e., making a cup of tea). Table 1 indicates the sample size included in the analysis for
each age range and type of HMC.

Procedure. For the infant and toddler play, the caregiver was instructed to play with
their child as they would normally do at home, using the toys and other objects present in
the lab’s playroom. For the adult activity, the participants were invited to make a cup of tea
in a dedicated area in the lab.

Given the dynamic changes in the visual environment in which the eye-tracking
took place, an offline eye-tracking calibration procedure was adopted, as recommended
for this type of situation [107]. This procedure was implemented in two stages. First, a
series of pseudo-calibrations were conducted prior to the play for infants and prior to
the tea-making activity for adults. They are similar to the typical online protocols (e.g.,
peek-a-boo game), and designed to allow the calibration of the eye-tracker for capturing
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fixations in different sections of the visual field, including variations in depth. For infants,
all pseudo-calibrations were 5 points, while there was a combination of 9 (for fixations
in depth) and 5 (for fixations in the lower visual field) points for adults. Second, after
the recording session was completed, Positive Science Yarbus software (Positive Science,
Inc., Rochester, NY, USA) was used to determine the point of gaze and superimpose the
eye video with the scene video. This enabled offline calibration using the points from the
pseudo-calibration as a reference.

Table 1. Age distribution across the HMC with narrow or wide FOV. Values show the mean across
participants in months and days.

Narrow-FOV HMC Wide-FOV HMC

Age N
Mean Age

N
Mean Age

(Months—m, Days—d) (Months—m, Days—d)

6 months 10 6 m, 8 d NA NA

12 months 8 12 m, 15 d 8 11 m, 28 d

24 months 10 24 m, 28 d 6 25 m, 2 d

36 months 5 37 m, 5 d 4 38 m, 2 d

Adults 9 306 m, 28 d 9 361 m, 9 d

Data processing and results. For the purpose of validating the HMC FOV, we ex-
tracted a 5 min segment from the recording session for each infant, toddlers and adult. The
scene video superimposed with the point of gaze was temporally aligned with the HMC
video. Custom-built Matlab (The MathWorks, Portola Valley, CA, USA) scripts were used
to label each frame of the HMC video in terms of whether it contains the object that is
visually fixated as indicated by the head-mounted eye tracker. We further calculated the
proportion of frames from the total number of frames of the HMC video recording that
captured the objects from the scene fixated by the infants, toddlers and adults. Overall, the
narrow-FOV HMC captured a smaller proportion of the fixated spatial locations in the par-
ticipants’ view (M = 0.60, SD = 0.33), relative to the wider FOV HMC (M = 0.93, SD = 0.10),
and this was particularly the case for the older infants, toddlers, and adults (Figure 12).
For the 6-month-old infants, the narrow-FOV HMC captured over 80% of the fixated
spatial locations.
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User Experience

The majority of the caregivers (97%) rated their experience with the HMCs as being
positive, and 100% that it was easy to operate. Most caregivers also reported that they
tended to forget that they were wearing the HMC (33% were not aware of its presence,
44% were somewhat aware of its presence). The majority of wearers reported that the
HMC did not interfere with daily routines and activities (81%). Furthermore, the majority
of the caregivers (67%) reported that the infant’s HMC was accidentally removed only
infrequently. Taken together, these results indicate that the HMCs are comfortable enough
that, at least based on the adults’ reports, the users tend to have little awareness of their
presence, and that they are integrating fairly well with their daily routines and activities.
This in part reflected by the fact that participants (infant and adult) tend to record with
the HMCs for relatively long periods of time (M = 25 h 10 min/week, SD = 5 h 35 min,
from the target of 28 h). Infants wore the HMC whilst this was recording for an average of
3 h 52 min/day (SD = 1 h) out of a total average recording of 3 h 58 min/day (SD = 1 h
1 min). During the period of time when the HMC was intended to be worn by infants for
recording, it was removed on average 3 times (SD = 3 times) per day or not being worn for
6 min (SD = 7 min) on average per day. This indicates that the infants comply fairly well
with the procedure for using the HMC. The fact that the infant HMC is only infrequently
removed during use, also suggests that its physical features, including the temperature, are
unlikely to cause discomfort.

2.5.2. Validation Studies of EgoActive Body Sensor

We carried out three validation studies to evaluate different aspects of the EgoActive
sensor, using complementary methodological approaches. First, we tested the reliability
with which the EgoActive sensorrecords ECG relative to a commercially available wearable
sensor during naturalistic social interactions. Second, we assessed the effectiveness of the
EgoActive sensorin accurately recording ECG and acceleration for long periods of time, in
line with its intended use in the home environment, relative to an ECG simulator. Third,
we used subjective reports from the caregiver to assess whether infants and caregivers
had a positive experience wearing and operating the sensor during their daily routines
and activities.

Comparison with Commercially Available Wearable Sensors—Short Recordings

This study examined the EgoActive sensor’s capability to record ECG and acceleration
data during social interactions in a naturalistic setting. Caregivers and infants were invited
to play as they would do at home for 20 min (range 14–24 min) in the lab playroom.
Participants were able to play with any toy or objects they wished from those available in
the playroom.

We compared our EgoActive sensor to the commercially available Biosignalsplux
wearable sensor (PLUX Biosignals, Portugal). Our interest was in testing the device on
infants since their developing motor skills present the risk of a wider range of noise that
can occur within the ECG. In this study, we focused on a short period of play in the
lab rather than longer durations in the home environment, predominantly due to the
characteristics of the Biosignalsplux wearable sensor (PLUX Biosignals, Portugal). It is
fairly bulky for an infant, and involves several wires that connect the electrodes to the hub.
Although the Biosignalsplux sensor (PLUX Biosignals, Portugal) has some limitations as a
wearable, it stands out for its high sampling rate (up to 1000 Hz) and capability to integrate
multiple sensors. As a result, it is a good resource for assessing real-life situations and
gathering valuable information. Additionally, in our experience, a free play period in the
lab playroom exposes several situations that can impact ECG signal quality, similar to the
home environment. A sampling rate of 500 Hz was chosen for the Biosignalsplux (PLUX
Biosignals, Portugal) wearable sensor in order to provide a high-resolution heart rate to
allow for accurate alignment with the EgoActive sensor.
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Participants. The sample included 3-, 6-, 12-month-old infants and 24- and 36-month-
old toddlers (Total N = 30; Table 2).

Table 2. Age distribution. Values show the mean across participants in months and days.

Age N
Mean Age

Months—m, Days—d

3 months 6 3 m, 27 d

6 months 5 6 m, 41 d

9 months 3 8 m, 85 d

12 months 8 13 m, 0 d

24 months 3 25 m, 18 d

36 months 5 37 m, 71 d

Procedure. Before attaching the Biosignalsplux wearable sensor (PLUX Biosignals,
Portugal) and EgoActive sensors to the infant’s chest, they were synchronized using a light
signal from the base unit. The Biosignalsplux wearable sensor (PLUX Biosignals, Portugal)
was placed on the left side of the chest, while our EgoActive sensor was placed on the
right side. This configuration allowed both devices to measure the same underlying source
for ECG and heart rate. The heart rate was extracted from both devices, aligned with the
Biosignalsplux sensor (PLUX Biosignals, Portugal), and then the difference between the
two signals was calculated at each time point for the Biosignalsplux signal. It is worth
noting that while some minor differences in noise level and ECG morphology arise from
the different sensor locations, the biomechanics underlying the pumping heart arise from
the same source for both locations. These similar biomechanics lead to only small expected
discrepancies between the two heart rates (as shown in [108], where 2 ms was the maximum
standard deviation of R–R intervals calculated between different measurement locations).
The overall quality of the match between heart rates was measured by the proportion
of the heart rates that fell in agreement within 5 bpm, as defined by Equation (1). The
5 bpm were chosen as similar to the mean absolute error between wearable devices and
ambulatory ECG recordings over a 24 h period [109], and was a way to exclude incorrect
R-peak detections in a dynamic recording setting, while still preserving those R peaks
that matchup between the two devices, yet allowing for some minor deviations between
the two.

Proportion signal agreement =
# HRPlux beats within 5bpm o f HREgoActive beats

Total # HRPlux beats
(1)

Data processing and results. We obtained concurrent ECG recordings from 30 partici-
pants (MOverlapLength = 27 min, MinOverlapLength = 15 min; MaxOverlapLength = 43 min). The
ECG signal from the two devices were aligned via a two-parameter optimization: shift and
stretch of the ECG signal from the EgoActive sensor. The stretch parameter corresponds
to the relative clock speed (see Section 2.5.2, Comparison with ECG Simulator—Long
Recordings), while the shift parameter primarily captures the time offset between the two
devices being turned on.

The average signal agreement within 5 bpm was 95.4% (Min = 81%; Max = 100%), with
26/30 sharing more than 90% of the signal and 19/30 sharing over 95% of the signal. There
was no statistically significant correlation with age (r = −0.24, p = 0.21), suggesting that the
age of the participant was not a factor in signal quality (Figure 13).

In order to justify the 5 bpm limit and also to quantify the combined effect of the
reduced sampling rate of the EgoActive sensor and the differing sensor locations, the
average signal within 5 bpm was compared against the proportion of total signal within
5 bpm. The mean absolute difference for those regions within 5 bpm was calculated for each
participant, and is shown in Figure 14. The mean of these measurements was 0.906 bpm
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(Min = 0.58; Max = 1.67 bpm), and 23/30 of the recordings had a mean difference < 1 bpm for
these regions. These measurements displayed a significant negative correlation (r = −0.55,
p = 0.002), with noisier signals displaying less agreement within 5 bpm and higher average
deviations within 5 bpm. However, removal of the five signals with the lowest proportion
of matching signals reveals that the identified negative linear association is not present in
the remaining twenty-five signals (r = −0.26, p = 0.21, M = 0.836 bpm). This serves as a
rough estimate for the difference in detected heart rate due to differences in device location
and sampling rate.
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representing older participants (see Figures 13 and 15).
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Figure 15 shows that there was no correlation between the average difference in heart
rate (for areas < 5 bpm difference) and age for the participants studied (r = 0.045, p = 0.81).
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This shows that the EgoActive device has the same level of effectiveness relative to the Plux
device across the ages measured.

Comparison with ECG Simulator—Long Recordings

A set of validations evaluating the effectiveness of long-term EgoActive sensor record-
ings was also carried out. The sensor is designed for long naturalistic recordings, but relies
on an internal clock for time keeping. As such, it is important to assess the accuracy of this
clock, and whether any drift occurs over time. Furthermore, while the comparison with
the BiosignalsPlux device is important as detailed above, it is limited by the absence of the
ground truth for both devices. For example, both the BiosignalsPlux (PLUX Biosignals,
Portugal) and EgoActive sensors could be subject to incorrect recordings from high motion
and other sources of infant noise. In order to address this limitation and investigate the
performance of our sensor over long periods of time, a simulator, TechPatient Cardio
Version 4 (HE Instruments LLC, Lake Worth, FL, USA), was used.

Procedure. The simulator was set to generate a uniform 150 bpm ECG signal, and five
recordings between 2 and 10 h were carried out (M = 4.5 h, SD = 3.1 h) on five separate
EgoActive sensors.

Data processing and results. The accuracy of the sensor was then tested by dividing
the expected mean time gap between ECG peaks (0.4 s) by the recorded mean time gap
between ECG peaks for every half hour. Unlike the naturalistic signal in the previous study,
the ECG simulator is essentially not noisy and provides the ground truth for comparison
purposes. As stated in Section 2.3.2, the sensor writes data to a .dat file every 5 min. This
process took no longer than 0.08 s on any recordings (a duration long enough to miss the
ECG peak) and the only missed peaks occurred during the data transfer process, i.e., while
converting to .dat files. All other ECG peaks were fully detected and as such, no further
signal quality analysis will occur here.

The calculated instantaneous heart rate was batched into averages for each half hour.
This provides an accurate representation of the internal clock during that time. Any
significant change in half-hour-averages will highlight the consistency of the recording (i.e.,
variation and drift of the clock). Figure 16 shows both the average relative clock speed,
and the distribution of clock speeds across the recordings. The overall average relative
clock speed was around 0.9999, i.e., the clock would be 0.1 s ahead of a real-time clock
after 1000 s of recording, or alternatively the device would record a 150 bpm heart rate
as 149.985 bpm. We therefore apply a 0.9999 correction to any output time series in order
to minimize inaccuracies further. There are some minor variations within a recording, but
no clear trend of drift for the clock speeding up or slowing down for a given sensor. Three
recordings trended down, two trended up, and the average absolute drift was only a shift
of 2.3 × 10−6 in relative clock speed per half hour.
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User Experience

Similar to users’ experience with the HMC, a very high percentage of users rated their
experience with the EgoActive sensor as positive (89%) and easy to place on both adults
(100%) and children (78%) despite their inexperience with the devices and the electrodes.
Parents reported that it was fairly easy to remove the sensing pads and body sensor from
their body (78%) and their child’s body (56%), and that wearing the body sensor did not
interfere with their or their child’s daily activities (100%). In fact, participants (infants and
adults) tend to frequently record with the body sensor for long periods of time (M = 23 h
58 min/week). We identified ECG signals on infants wearing the body sensor for M = 3 h
52 min/day (SD = 1.18). These results indicate that the body sensor is a wearable device
that can comfortably be worn for extended periods of time by adults and infants as young
as 6 months.

3. Software

We now describe the software developed for the EgoActive platform. This falls
into two categories. First, we have developed an Android app in Java (described in
Section 3.1) which runs on the base unit tablet and which provides synchronization and
data management functionality. This app is used by participants while the platform is
deployed during data collection. Second, we have developed a number of software tools
in Python for automatic preprocessing of the raw data captured by our devices prior to
further extraction of meaningful features. This is run after a round of data collection is
complete on dedicated processing servers. Specifically, these preprocessing tools must: 1.
extract the synchronization codes from data recorded by each device so that we can match
and temporally align the different modalities of data (Section 3.2.1); 2. extract heart rate
from the raw ECG signal (Section 3.2.2); 3. preprocess the accelerometer data into a usable
form (Section 3.2.3); and 4. automatically detect which portions of the HMC video data are
of sufficient quality to be usable (Section 3.2.4).

3.1. Android App for Device Synchronization and Data Backup

The Android application was developed to enable the synchronization of the devices
through the display of a 10 bit binary pulse at the beginning of a recording session; and
in order to backup the data from the HMCs and sensors onto the Android tablet. The
application’s overall layout is depicted in Figure 17. The “Admin Room” is completely
isolated from the rest of the application and inaccessible from the “User Home” area.
Moreover, the “Admin Room” is safeguarded by a password, making it unlikely for
unauthorized access. Inside the “Admin Room,” there is a section dedicated to allocating
camera and sensor URIs, effectively designating them as “Safe foreign devices” for data
transfer. Only devices handled by the specific researchers assigned to each box are marked
as safe. Appendix B includes a detailed description of a single run through the app.

The software was developed for and tested on the Samsung A8 with Android 11
that we use in our base unit. In principle, the application could work on other devices or
versions but this has not been tested. The version of Android is important due to its security
implementations and stopgaps. Android 11 utilizes Uniform Resource Identifiers (URI)
as the internal file handler of choice. URIs exist to securely move files between internal
and external folders, in order to deal with the critique of previous Android version debug
permissions (ADB) [110].

We also modified the tablet settings to prevent users from leaving the app and access-
ing the home screen. This mitigates the risk of accidental app closure or unintended user
actions through the use of the ‘home bar.’ This ensures the stability and reliability of the
application while also ensuring users do not get lost while using it. Figure 18 shows how a
combination of the UI of the app and the modifications made to the hardware encourages
users to interact with the application as we intended.
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Figure 18. An annotated sample image from the application and an example of how the application
works in combination with the hardware modifications to make use cases clear.

We now describe the design and implementation of the two key features of the appli-
cation: synchronization and data backup.

3.1.1. Design of the Synchronization Signal

The synchronization signal serves three purposes. First, it enables matching between
recording sessions from different devices using the synchronization bitcode. Second,
once correspondence between sessions has been established, it enables precise temporal
synchronization between time series data captured by all devices. Third, since the body
sensor is not equipped with a RTC, by encoding date and time information into the
synchronization code we are able to augment body sensor recordings with this information.
For the first purpose, we require that the generated synchronization codes are sufficiently
distinct that, when combined with the additional information from a camera’s RTC and the
ordering of recorded sessions on the body sensor, allow unambiguous matching between
sessions. This must include robustness to user error so that we can detect and (if possible)
recover from scenarios such as following the synchronization procedure for only a subset
of the devices or running the synchronization process multiple times in quick succession.

For usability, we wish to minimize the time required to record the synchronization
signal. However, we are limited by the effective sample rate of the camera. While the
camera averages 30 Hz, this can drop as low as 20 Hz during normal performance. This is
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further compounded by the rolling shutter capture, automatic exposure and white balance
adjustment of the camera. These add noise to the signal and make it non-trivial to later
decode to a binary signal. For this reason, we limited the synchronization signal to 5 Hz
which we found could be reliably decoded from video data in practice.

The synchronization signal consists of a sequence of 10 temporally consecutive 400 ms
periods generated by the EgoActive App, representing a 10 bit code (see Figure 19). The
value of each bit is represented by the intensity within that period. An “on” bit is repre-
sented by a 200 ms high-intensity pulse, followed by a 200 ms low-intensity period. An
“off” bit is represented by a 400 ms low-intensity period. The first 3 bits encode the syn-
chronization date (0–7, specifically the day of the month modulo 8). The next 5 bits encode
the synchronization hour (0–23). The final 2 bits are a counter that encode the number of
synchronizations initiated within a single hour. This counter disambiguates situations in
which users synchronized devices more than once within a single hour (up to a maximum
of 4). Thus, the tablet date and time, and counter can generate a unique synchronization
code across all devices for a recording session. In its current implementation, unique
synchronization codes are generated if the total recording period is 8-days or less and users
do not synchronize more than 4 times within a given hour.
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Figure 19. Examples of the 10 bit synchronization signal that generates a unique code to temporally
align different devices. The solid blue line represents the constant base sequence used to locate the
synchronization signal. The dashed colored lines represent the synchronization signal that encodes
the date (magenta), hour (red) and counter (grey). (a) The unique code is: 1111111111 (all 10 bits
“on”). (b) The unique code is: 1011001111.

To facilitate locating the 10 bit code recorded by the HMC or sensor, we generated
a base sequence before and after the synchronization signal. The beginning of the syn-
chronization signal was preceded by a 2000 ms low-intensity period, followed by a high-
intensity pulse, low-intensity period, high-intensity pulse sequence (400 ms each). The
end of the synchronization signal was then followed by a low/high/low/high-intensity
sequence (400 ms each; see solid blue line in Figure 19). Finally, a full green screen was pre-
sented for 1000 ms. This indicated to users that the synchronization process was completed.
The green screen further facilitated locating the 10 bit code in videos (see Section 3.2.1).
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We playback the synchronization pattern on the tablet screen by setting the screen color
to black (R = G = B = 0) for 0, white (R = G = B = 255) for 1 and green (R = B = 0, G = 255) for
the post-signal period. In practice, to avoid having to generate the synchronization patterns
on-the-fly (and therefore relying on the timing of the device), instead we precompute all
210 = 1024 synchronization codes and save them as animated GIF format images. When the
synchronization process is initiated by the user, the date and time of the tablet clock along
with its internal 2 bit counter is used to select which GIF should be retrieved and presented.
Since GIF display is not natively supported on Androids, we use the MavenCentral Android
GIF viewer [111].

3.1.2. Data Backup

The application also has the function to backup the HMC recordings onto the Android
tablet. When the HMCs are connected to the base unit via their charging cables, the backup
function within the app can be initiated. This automatically transfers all new video files
(i.e., those that have not yet been backed up) to the internal SD card in the tablet via a URI
transfer. This provides redundancy in case the HMC SD cards are subsequently damaged
but also provides some initial structuring of the data: video files from all four cameras are
now stored in a single location with separate folders for each camera, date and hour. By
leveraging the built-in security measures of an Android device, the application provides a
safe and reliable backup solution. At the end of a data collection phase when the base unit
is returned to the researchers, the backup process is run a final time to ensure all camera
files have been copied to the tablet. Then, the researchers need only copy data from the
tablet SD card (and body sensor SD cards) to a central file store.

To implement the data transfer process itself, we use SimpleStorage API [112], an
open-source API responsible for representing the files as URIs for the purpose of mobility
between devices. SimpleStorage is simple and secure, and the fact that the API is open-
source means safety can be verified through analysis of the code. Each file is associated with
a specific Multipurpose Internet Mail Extension (MIME) type. In the Android operating
system, MIME types are further categorized into ten subtypes known as URIs. For our
application, this means that only files conforming to the correct MIME/URI structure
are transferred during the backup process. In our case, video files transmitted by the
designated cameras within the password-protected “Admin Room”.

3.2. Software for Preprocessing Raw Data

In the current implementation of the EgoActive platform, data from the HMC and
sensors are stored as 5 min data files (MP4s for HMC videos, and custom binary files for
sensor data). Thus, as part of the platform, we provide a set of software tools implemented
in Python to help users preprocess the raw data files that can facilitate analyses of the wealth
of multimodal data. In particular, we describe our tools for extracting the synchronization
signal from devices, extracting heart rate from ECG, accelerometer preprocessing and HMC
video quality labelling to identify potentially unusable segments.

3.2.1. Software for Temporal Synchronization of HMC and Body Sensor Data

We aim to build a fast and computationally efficient solution to accurately locate and
decode the 10 bit synchronization signal recorded by the HMCs and body sensors. This
decoding generates a unique code that can be used to temporally align different devices.

The same algorithm is used to locate and decode the synchronization signal in both
data modalities; however, there are some minor differences in preprocessing video versus
the luminosity signal recorded by the body sensor. These are described first.

Body sensor luminosity signal preprocessing. The body sensor stores the recorded
luminosity as a binary signal sampled at approximately 250 Hz. This signal is not uni-
formly sampled in time and so we uniformly resample at 500 Hz using nearest neighbor
interpolation to maintain a binary signal.
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Video preprocessing. The video data are also non-uniformly sampled in time (the
video encoder in our HMC uses variable frame rate encoding). First, we uniformly resample
the videos to 30 Hz using nearest frame interpolation and downsample resolution by a
factor of 0.5 to 960 × 540 pixels. Since video data are written in 5 min blocks, we also identify
consecutive video files and stitch them into a single continuous file. This resampling and
stitching is done efficiently using FFmpeg [113] running on a GPU. The resampled and
stitched videos are saved for later processing. To extract the synchronization signal from
these videos, we convert to a 1D time series representing the mean intensity. In order to
perform this process efficiently, we implement this as spatial global average pooling in
PyTorch (The Linux Foundation, San Francisco, CA, USA) and perform the processing on
the GPU operating on batches of frames in parallel. This provides a signal for each color
channel. From this, we extract two signals:

1. The ‘greenness’ signal is defined as max(0,G-R-B). This signal (see Figure 20a) has a
large value when the mean color of the frame is green, i.e., when the average value
over pixels is significantly larger in the green channel than red and blue, otherwise it
is zero.

2. The average intensity signal is simply the average over the three color channels (see
blue curves in Figure 20c).
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Synchronization signal matching. Having extracted synchronization codes from 
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verted to a decimal representation for easier matching. Once matches are identified, the 
devices are temporally aligned by setting time = 0 to the start of the synchronization signal 
(i.e., start of bit 1 in the 10 bit code; Figure 20). Note that synchronization signals might be 
recorded by some but not all of the devices. Hence, we cannot guarantee a one-to-one 
match between all detected synchronization signals. Synchronization codes and hence 
matches should be unique in all but pathological cases (where >4 user-initiated synchro-
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tections must preserve this temporal ordering. In addition, since the HMCs are equipped 
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Figure 20. An overview of the synchronization signal detection and decoding process for video data.
The initial raw video frame data (top) is converted to a 1D greenness signal (a) which is used to
coarsely locate candidate segments by convolution with a filter providing a response (b) which is
maximal when the filter detects the transition to the post-signal green frame. Precise location is found
by sliding a template signal ((c)—red) over the mean intensity signal ((c)—blue) and computing the
normalized cross-correlation (position of maximum response shown for two detected segments).
Finally, the 10 bit code is extracted by thresholding the mean of the signal within the “high” periods
of the 10 bit signal (bottom). The “*” is the convolution operator.

The average intensity signal from video frames is continuous (not binary) and signif-
icantly noisier than the luminosity signal from the body sensor. For this reason, for the
videos we run an initial coarse search to locate candidate segments within the video that
may contain a synchronization signal. This exploits the additional information of the green
screen presented at the end of the synchronization signal. To do so, we simply search for
points of transition from zero greenness to high greenness. This is implemented efficiently
as a PyTorch 1D (The Linux Foundation, San Francisco, CA, USA) convolution layer with a
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single fixed filter (shown in Figure 20a in red) and executed on the GPU. This gives a large
response (see Figure 20b) when the transition from the −1 segment to +1 segment aligns
with the increase in greenness. The filter is zero padded at the front such that the position of
the filter when encountering a peak response provides a frame index that occurs before the
start of the synchronization signal. Finally, we run a peak finding algorithm on this signal
to provide the candidate segments to search for synchronization signals. We constrain
the peak finding such that the minimum distance between peaks is 500 frames (16.7 s).
This time was determined as the minimum required for a user to run two consecutive
synchronization processes in the app and avoid detecting the same synchronization signal
twice if there is noise in the greenness signal.

Synchronization signal location. After preprocessing, both the body sensor lumi-
nosity and video data provide 1D, uniformly sampled time series. We now search these
two time series for the precise location of any synchronization signals. Exactly the same
algorithm is used in both cases, the only difference being that, for the videos, we only
search the already-identified candidate segments whereas for the body sensor luminosity
we search the entire sequence. For the video signals we also upsample to 100 Hz using
linear interpolation. To locate synchronization signals, we slide a template signal over the
raw signal and compute the normalized cross-correlation (NCC). Since the 10 bit code is
unknown, we do not know whether the actual signal contains zeros or ones in this portion
of the signal. Hence, in the template, we set the possible high parts of the 10 bit code signal
to a half value (see Figure 20c, red curve). This can be seen as the average of all possible 10
bit codes and therefore the best choice for searching as the ‘expected’ signal. The location
of synchronization signals is given as the local maxima of the NCC response. We record
the position of these detections to use later for temporal alignment. We apply an additional
threshold to the NCC maxima and only retain those whose NCC value is above the thresh-
old. This removes spurious detections caused by noise in the signal. The threshold is set
conservatively enough to deal with 0.4 s of incorrectly transmitted synchronization signal.
For the body sensor, this is wide enough to deal with a signal which was recorded during
the data transfer (the conversion of data to a .dat file, which occurs every 5 min), the main
source of corruption that could potentially occur during the process for the body sensor.

We validated the synchronization signal detection algorithm on a dataset of 1444
time series, of which 1152 contained at least one synchronization signal for a total of 1218
synchronization signals in total. All signals were successfully detected and only three
false detections occurred in all the time series analyzed. This implies that the synchroniza-
tion signal is sufficiently structured to avoid being activated by random noise, while the
threshold is also low enough to ensure all genuine signals are detected.

Synchronization signal decoding. Having located synchronization signals in the
body sensor luminosity or video time series, we extract the 10 bit code by finding the
mean of the recorded signal over each part of the signal that could contain a “high” signal.
Specifically, we decode the ith bit through Equation (2).

bi =
1

ei − si

ei

∑
j=si

xj > t (2)

si and ei are the start and end positions of the high segment of the ith bit, x is the
measured signal and t is a threshold. For the (binary) luminosity signal, we use a threshold
of 0.5 and in practice implement this by taking the median value over the segment. For the
(continuous) video signal, we use a threshold of 0.3. This lower value is required since a
white screen is usually recorded as an intensity less than 1.

Synchronization signal matching. Having extracted synchronization codes from
body sensor and video data, we are able to find matches between different time series
both within and between the different modalities of data. The 10 bit binary code can be
converted to a decimal representation for easier matching. Once matches are identified, the
devices are temporally aligned by setting time = 0 to the start of the synchronization signal
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(i.e., start of bit 1 in the 10 bit code; Figure 20). Note that synchronization signals might be
recorded by some but not all of the devices. Hence, we cannot guarantee a one-to-one match
between all detected synchronization signals. Synchronization codes and hence matches
should be unique in all but pathological cases (where >4 user-initiated synchronizations
are run within a single hour). In these rare cases, we can still disambiguate the matches.
Recordings on all devices are ordered by time and the sequence of matched detections must
preserve this temporal ordering. In addition, since the HMCs are equipped with real-time
clocks, date/time information in body sensor synchronization codes can be used to select
HMC recordings at a similar time. Having established a match and with the corresponding
locations of the signal within the original time series, we can define all time series with
respect to the reference synchronization time providing the final synchronized time series
data. Where a time series contains multiple synchronization signals, we use the latest one
as the start of the time series.

3.2.2. Body Sensor ECG Processing

The raw ECG signal captured by the EgoActive sensor is processed in two stages, each
encompassing several steps: first the raw ECG is processed into a heart rate (HR) signal
(the main steps are detailed algorithmically in the top row blue boxes of Figure 21); second,
the HR undergoes a process of cleaning in order to yield reliable HR signal stretches to be
used in subsequent analyses, along with noise and artefact identification for unreliable HR
signal stretches (the main steps appear in the bottom row red boxes of Figure 21).
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Figure 21. Proposed pipeline for processing recorded raw ECG signal into usable heart rate (HR)
signal. ECG processing steps in top row (blue); HR processing steps in bottom row (red).

ECG processing and R-peak detection. In an ECG, a detection algorithm seeks to
identify the QRS complex, a characteristic feature of the ECG with an R-peak in the
center [114]. The set of detected R peaks is then converted into the instantaneous heart rate
(calculated in beats per minute) by using the formula in Equation (3) below. Here, tpeaks
refers to the set of time indices (in seconds) corresponding to the labeled R peaks and ∆
denotes the differencing operator which calculates the inter-peak gaps.

HR(bpm) =
60

∆tpeaks
(3)

Initial preprocessing is required to filter noise out and to allow for the QRS complex
detection [115], the source of characteristic R peaks within the ECG. With adult ECG, a
high-pass filter of 0.5 Hz is used in combination with a notch filter at the mains-electricity
frequency (e.g., 50 Hz or 60 Hz). The 0.5 Hz threshold along with a notch filter is the default
setting in the Neurokit2 open source Python (Python Software Foundation, Wilmington,
DE, USA) library for ECG peak detection [116] and in other studies (e.g., [117]), while also
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being the same lower bound used for monitor-quality ECGs [118]. The Neurokit2 peak
detection method (default settings) was used to detect R peaks on the preprocessed ECG
signal [116], where the QRS complexes are identified based on the steepness of the absolute
gradient of the ECG, and the local maxima are identified as the R waves.

Infants have a higher heart rate than adults [119] and as such have a different frequency
content within the signal. In comparing bandpass filtering ranges for preprocessing of
infant ECG, a 1–17 Hz bandpass was found to approximately halve the R-wave peak
compared to the 0.05–150 Hz option [120]. In order to preserve the R-wave peak in children,
we experimentally verified the optimal set of filters on a hand-labeled dataset of infant
ECGs (N = 88, age range: 5–42 months, mean duration: 33 min). A 15 Hz high-pass
filter (HPF) with a notch filter at the mains-electricity frequency was found to be the most
effective approach, and so was adopted (Figure 22).
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Figure 22. A demonstration of the improved performance of the 15 Hz HPF compared to other HPF
options and three pre-existing methods: the HeartPy package approach [121], Rodrigues et al. [122]
and the Neurokit default pipeline. These comparisons all include the local novel correction. The
specificity (true negative rate) measures successful non-detection of incorrect peaks, the sensitivity
(true positive rate) measures successful detection of correct peaks, and the positive predictive value
(precision) measures the proportion of correct peaks detected to all peaks detected for a given method.

The specificity (true negative rate), sensitivity (true positive rate), and positive predic-
tive values (precision) were used as measures of success. While the ability to detect peaks
(sensitivity) is highly valued, it is arguably more important to not predict peaks where
none exist (specificity, positive predictive value) as it is easier to recover small amounts of
lost signal than to reject incorrectly labeled beats. Fortunately, the 15 Hz HPF + Neurokit2
approach was the best across all metrics, and so no tradeoff had to be made.

A novel local correction relative to the unfiltered signal was then carried out in order
to counteract the shifting peaks effects of frequency filtering. This correction iteratively
searches for the largest peak ±0.01 s either side of the peak location on the processed ECG,
to check for a larger local peak within the raw unprocessed ECG.
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Heart rate processing. Missing R peaks translate into artificially low heart rates. If the
heartbeat was uniform, the heart rate due to the missing peak would register as precisely
half the value of the neighboring heart rates. However, since heart rates exhibit constant
variation, a more sophisticated algorithm is needed to automatically detect missing R peaks
in a ground truth. Conversely, an additionally detected peak would inflate the heart rate
artificially. Beat-to-beat comparisons are reported in the literature to identify mislabeled R
waves, e.g., setting thresholds for detecting longer or shorter times between subsequent R
waves as missing or incorrect R waves, respectively [123]. As the real-time necessity for
beat-to-beat comparisons ceases for post-processing, our approach is to apply a threshold
over a wider beat-window in order to robustly account for noise, hence missing/additional
R peaks were found by significant deviations from a local median. The optimal parameters
were chosen to minimize the average residual heart rate between the processed heart rate
and a labeled ground truth in an infant dataset (N = 88) (see Figure 23, where a filter
width of 31 and acceptance threshold of 1.3 led to the lowest average heart rate residual of
0.334 bpm). Any R peaks that fall outside that region are removed and the gap is filled by
linear interpolation from the nearest R peaks that fall within the local median range.
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Wrongly located R peaks can still be undetected by the median filter approach. A
useful observation is that an early-labeled beat will lead to a much greater heart rate rise
and then a much steeper heart rate drop than would typically appear within a natural signal
(Figure 24). A late-labeled beat will do the opposite. This motivates our proposal to search
for the alignment of three consecutive sign changes concurrently with a large variation
in the heart rate difference (>15 bpm for the first and third heart rate gaps, >25 bpm
for the middle gap), thus identifying the mislabeled beats within a signal, provided the
neighboring beats are correct.

Methods for assessing HR quality reported in the literature include checking for non-
stationary signal, viable heart-rate range, and high signal-to-noise ratio (SNR) [124], or
extracting shapes and behaviors of the signal and grouping the samples by an agglom-
erative clustering approach [125]. Kramer requires the user to accept/reject the signal
in full, an approach which is not efficient for long naturalistic recordings. Rodrigues’s
approach required periods of noise and signal, and became computationally inefficient for
longer recordings. For the newly developed sensor, a custom algorithm was designed to
detect areas of good quality heart rate signal within long recordings in a computationally
efficient manner.

The beat correction algorithm for missed/additional beats was used as an initial
measure of signal quality. Figure 24 highlights that correctly labeled R peaks will typically
fall inside the expected bounds, whereas incorrectly labeled R peaks are likely going to
either cause a steep increase or decrease in heart rate (for additional or missing labels,
respectively). By calculating the proportion of “wrong” labels within a given filter width, a
rolling measure of heart rate signal quality is calculated, hereby referred to as the “signal
quality index” (SQI). An SQI vector was created and used to identify signal locations where
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less than 75% of the recorded beats within a sliding window width of 31 beats deviate by
more than 1.3 from the local median. This vector works as an indicator of unreliable regions
(i.e., the local median indicates the existence of poor signal within the measured region). In
order to make the indicator more specific, various manipulations were used. The regions
of good SQI were then grown according to whether specific beats at the boundary fell
inside the local median range. Conversely, any continuous regions >3.5 s long of recordings
outside the local median were set to zero SQI, as were any gaps in heart rate longer than
2.5 s. Additionally, any good regions <5 s long were set to zero SQI in order to only leave
segments of a reasonable size. These parameters could be tailored depending on how long
of a heart rate region is useful for a given academic question.
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3.2.3. Acceleration Processing

The three calibrated orthogonal axes signals from the use of the body sensor accelerom-
eter are presented in gravitational units (g). Data were collected for the 29 infants and
toddlers aged between 3 and 36 months (14 ± 10 months). Periods of no signal, and
the 5 points before and after, were identified and removed as <0.001 g from a 5-point
moving standard deviation. Further, the bottom and top 0.05% of data points were re-
moved as potential outliers. The absolute peak acceleration across all three axes was
1.56 ± 0.24 g. Simultaneous data were obtained using the Plux ACC accelerometer (Biosig-
nalsplux, Portugal), and provided good agreement with 1.88 ± 0.49 g. With the EgoActive
device, for three participants there were occasional peak values exceeding the accelerome-
ter limits of ±2 g. As absolute values above 2 g were infrequent, an accelerometer range
of ±2 g is suitable for 6–36 month old infants in a free-moving environment when the
device is located on the left lateral superior chest that will dampen body accelerations
through its position proximal on soft tissue away from skeletal bony landmarks. Com-
bining the three axes provided resultant accelerations of 2.03 ± 0.40 g (EgoActive) and
2.47 ± 0.55 g (Biosignalsplux—Biosignalsplux, Portugal). These peak resultant accelera-
tions during a free-moving environment are greater than those found when supine without
toys, under a play gym or in a car seat of approximately 0.5 ± 0.2 g found for infants aged
5.2 ± 2.3 months with the accelerometer placed on the ankle [126].

3.2.4. HMC Quality Control Processing

Since we rely on non-expert users to operate the devices and since data are captured
in uncontrolled, natural environments, there are several ways in which unusable or unin-
formative video data can be captured. Unusable video occurs when video is captured in
an inadequately lit environment. In this scenario, even with the camera’s autoexposure
set to maximum, the signal to noise ratio of the captured video is too low to extract any
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meaningful signal. Uninformative video occurs when the camera is not being worn. For
example, at the beginning or end of a recording session, the user might put the camera
down while it is still recording. Hence, we need to detect periods of no camera motion.
We label, but preserve, unusable periods. This means absolute timestamps are preserved
throughout the video while still enabling extracted data to be ignored during the unusable
periods. To provide both a means to store these time segment labels but also to provide
an intuitive visualization, we log unusable/uninformative periods in a subtitle file (SRT
format) accompanying each video file. This means that an operator can playback the video
and see informative labels for periods that will be excluded from analysis. Finally, it is
possible to wear the adult camera upside down. When this accidentally occurs, we need to
detect the video inversion and correct it before attempting to extract any information from
the videos. We now describe how we automatically detect each of these cases.

Dark period detection. During search for the synchronization signal, we already
compute mean intensity per frame and color channel. This is done efficiently using global
average pooling on the GPU so has very low computational cost. We further average over
color channels providing a scalar time series indicating the mean average brightness over
the video. To detect dark periods, we simply threshold this signal and label frames where
the mean brightness is below the threshold. The threshold value is chosen by manually
selecting dark and light periods and finding the optimal separation between the two. In
practice, we threshold on a value of T = 0.15 (with intensities normalized between 0 and 1).

Static period detection. A static camera can occur when the infant is sleeping, or
when the HMC has been removed and left recording on a stationary surface. A static
camera means that static scene elements do not move in the image, though dynamic scene
contents may still move (for example people walking in front of the camera). To detect
static scenes we compute dense optical flow between adjacent frames with a light version
of the RAFT neural network [127], in which each frame is sampled once per second of
the session recording. Scenes with a static camera are generally characterized by a lack of
motion at the image boundary, where motion due to dynamic objects is minimal. Therefore,
we extract only the image boundary of the optical flow (defined as a 5 pixel border around the
image frame), which we split into 20 equally sized segments, to evaluate boundary motion.
Subsequently, we compute the mean absolute value of the flow magnitude in these segments,
and find the number of segments where this value is below a predetermined threshold value
(which we set to 2 pixels), signifying a lack of motion. If the number of these segments is
greater than or equal to 5 segments, then we classify the image pair as being static. We use a
validation set of over 8k frames to achieve >98% classification accuracy.

Inversion detection. Due to user error, videos can be inverted due to participants
wearing HMCs upside-down. Usually, entire videos are inverted though occasionally
a user corrects the orientation part way through. It is vital to detect inverted videos
since any subsequent processing for tasks such as face detection are likely to be more
degraded since face detection networks are not usually trained on inverted faces. Our
assumption is that inversion should be evident from scene contents visible in most frames
(for example regions recognized as floor or objects on the floor should be below walls,
people and ceiling). We use a convolutional neural network (CNN) to recognize such scene
contents and their arrangement. The CNN is trained to take an image as input and to
output a single scalar probability indicating the probability that the frame is inverted. For
training, we manually identify a set of inverted and non-inverted videos captured in diverse
and natural environments. From these videos, we form a dataset of 16k labeled frames,
of which half are inverted and half are normal orientation. For our CNN architecture,
we use the B0 variant of the EfficientNet model [128]. We use a model that was pre-
trained for ImageNet classification such that we only need to fine-tune it for our task. We
replace the final classification layer with a fully connected layer with a single output and
sigmoid activation. We perform the fine-tuning using binary cross-entropy loss, the Adam
optimizer, a batch size of 16 and downsample video frames to size 224 by 224 prior to
input. We train for 5 epochs. We use an unseen validation set comprising an additional
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4k frames (evenly balanced between inverted and non-inverted) on which we achieve
>99% classification accuracy and >99% precision and recall. Within our pipeline, we use
this model to classify one frame per second over a session as either inverted or normal
orientation. We log the session as wholly inverted if it is greater than 80 percent inverted
from this sampling. Sessions with a high, but <80%, predicted inverted frame rate are
tagged for later verification by a human.

4. Discussion

Child development involves complex and interactive processes that occur over mul-
tiple time scales (e.g., [11,14–16]). These processes require a deeper understanding of
how infants actively explore their environment. As infants develop their cognitive, social,
language and motor capabilities, they interact with their environment, carers and other
people from their unique (and developing) egocentric perspective. This interaction, in turn,
dynamically changes the information that they attend to and acquire as they develop (for a
review, see [7]). Although a strength of non-natural lab-based studies is tight experimental
control, they fail to capture the wealth of data that can help researchers understand infants’
trajectory for critical developmental areas ranging from executive function to emotion
processing and social learning. Thus, a naturalistic approach, in which large amounts of
multimodal data are collected in the wild, is needed to advance developmental science.
However, to date, there is no user-friendly and unobtrusive technology to densely and
reliably sample life in the wild.

4.1. New Tools for Developmental Research

To address this gap, we developed the EgoActive platform which provides wireless
and wearable sensors to measure infants’ and carers’ egocentric auditory and visual ex-
periences concurrently with their ongoing cardiac activity and body movements. The
head-mounted cameras to record egocentric perspectives were designed to be lightweight
and small so that they can be used across a large age range from infants (as young as
5–6 months) to adults. Despite this important small-form factor for the naturalistic ap-
proach, the lens has a sufficient FOV to capture the visual environment, and the camera
records high-resolution images at 30 Hz continuously for several hours. A similar design
philosophy was taken for the body sensors to record ECG and acceleration across a large
age range. We used a two-electrode configuration to ensure ease of use with infant-friendly
electrodes while allowing for reliable ECG sampling at 250 Hz continuously for several
hours. This sampling rate can accurately capture R peaks, and allow for more advanced
HR variability analyses [104,105]. Acceleration is accurately recorded by a calibrated ac-
celerometer at 65 Hz. The casing material for the HMCs and body sensors are lightweight
and comfortable for users, particularly infants, yet durable enough to insulate and protect
camera lens, circuit boards, batteries and internal cables. The EgoActive platform includes
a portable base unit to synchronize different devices, and act as a charging station and data
backup. Lastly, we developed open source software tools to facilitate critical preprocessing
stages for the raw data, including temporally aligning data from different devices and data
cleaning (see Appendix A for a list).

We validated the EgoActive platform (see Section 2.5) to ensure that our custom
designed wearable sensors unobtrusively and reliably capture infants’, toddlers’ and adults’
egocentric perspectives and physiological states during daily activities (e.g., play or tea
time). For the HMC, we showed that the camera lens’ FOV captured more than 80% of user
fixations recorded by a head-mounted eye tracking system [106]. Although our EgoActive
HMC only measures the scene as a function of head direction, the comparison with the
eye-tracking data in our validation study suggests that the scenes captured by the HMC
include the majority of fixations that users are likely to make. However, this is a limitation
that should be considered for specific studies. For ECG and acceleration, we measured data
concurrently from our EgoActive device and the Biosignalplux (Biosignalsplux, Portugal)
device which has been used in previous studies with adults (e.g., [129–131]). Our device
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performed comparably to the Biosignalplux (Biosignalsplux, Portugal) device. We also used
an ECG simulator to demonstrate that the EgoActive sensor had reliable recordings over
a long period relative to a ground truth. Finally, we asked families to use the EgoActive
platform for one week to gauge user experience. A majority of the caregivers reported that
the platform was easy to use and operate, comfortable and did not interfere with their daily
activities. The caregivers also reported that 6-month-old infants infrequently removed the
devices. Thus, following our specification, other researchers can construct the EgoActive
platform for use in their research without further need for validation.

4.2. Challenges for the EgoActive Platform

We designed the EgoActive platform to be well suited for developmental research
‘in the wild’. However, there remain challenges in using our platform for the naturalistic
approach. First, despite its user-friendliness (see Section 2.5), our platform may still require
that users are comfortable with technology and that they have some minimum level of
technical competency. Here, we think that researchers can improve overall usability; for
example, by familiarizing users with the platform, and providing training with the sensor
devices (as we did). Second, there can be challenges with infants (and adults) interacting
with the sensors beyond their intended use (e.g., older infants may remove the sensors).
We provide software solutions to help detect these periods (see Section 3.2) and will
continue to improve on these solutions. Third, there can be challenges with maintaining
the different components. We designed the platform to use off-the-shelf components where
possible, and otherwise readily available materials. The technology used to manufacture
the components at a relatively small scale is also widely available. Lastly, there can be
privacy concerns as the platform records video and audio from their everyday environment
(e.g., home). Researchers should therefore have good ethical protocols in place in line with
their institution recommendations and country legislation concerning data privacy and
reporting issues.

4.3. Summary and Research Potential

To summarize, the EgoActive platform allows researchers to measure dynamic changes
to individuals’ natural environment from their egocentric perspective synchronized to cor-
responding changes to their physiological states. The synchronized data from our platform
can be used to tease apart the complex processes that are important for development. For
example, changes to heart rate have been shown to relate to infants’ attentional states
(e.g., [31–34]). The synchronized video and ECG data allow researchers to determine
whether different stimuli in the environment (e.g., faces, toys or people) can predict heart-
rate fluctuations and possibly these attentional states. Given that the platform is easy to use,
infants can be tested longitudinally to quantify changes to their egocentric experiences of
the environment as they develop more motor coordination. The capacity to record concur-
rently from infants and caregivers will allow researchers to study parent-child interactions
with richer data collected in natural situations and with any unintended influences by
researchers mitigated (e.g., [66,132,133]).

The data collected in the wild can complement lab-based experiments, e.g., EEG stud-
ies that provide measures of neural development [134]. Lastly, as noted above, researchers
can collect large and rich multimodal data using our platform. This wealth of data can be
used to quantify statistical regularities in infants’, toddlers’ and children’s auditory and
visual environment. The multimodal data can also contribute to improving the output
of mathematical models and machine-learning systems that aim to automatically process
auditory or visual input for specific tasks (e.g., detect facial emotions or detect certain
sounds such as crying), particularly from infants’ egocentric perspective. Most existing
training data are based on data scraped from the internet and may therefore not generalize
to natural situations. Furthermore, little to none of these data contain information actively
sampled by infants and children from their environment.
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We highlight that the EgoActive platform can be easily deployed, as illustrated in
Figure 25. This important design feature means that researchers can also systematically
test and compare populations from a wide range of cultural and socio-economical environ-
ments, beyond the WEIRD countries. Indeed, very little is known about the extent to which
existing developmental models, based on lab data collected in WEIRD countries, explain the
cognitive and socio-emotional development of children worldwide (e.g., [17,18,135]). These
newly developed tools for the naturalistic approaches are crucial for achieving step changes
in understanding child development across longer age spans through larger-scale studies.
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Appendix A

The following additional resources will be made available to researchers upon request:

1. A sample dataset comprising a raw video and body sensor recording and the resulting
synchronized time series after applying our preprocessing pipeline.

2. Python source code for:

(a) Video resampling, stitching and synchronization signal detection,
(b) Detection of dark/static/inverted videos or video segments,
(c) Conversion of raw .dat body sensor files into human-readable .txt files,
(d) Extraction, processing, and quality assessment of heart rate from raw ECG

signal, and
(e) Extraction and processing of accelerometer files.

3. AutoCAD designs for base unit foam insert layers.
4. Java source code for Android tablet backup and synchronization app.
5. Body sensor manufacturing files:

(a) KiCAD project files for the body sensor body sensor circuit board design.
(b) Bill of Materials.
(c) Arduino sketch, the program code which drives the body sensor processor.
(d) Python script to read and convert the raw binary .dat files into human-readable

.txt files for heart rate and accelerometer data.
(e) CAD files for the body sensor case design (injection molding and 3D printing).

6. HMC manufacturing files:

(a) System diagram,
(b) Bill of Materials,
(c) CAD designs for the HMC casings (injection molding and 3D printing), and
(d) Instructions for assembling the HMC.

Appendix B

Camera Calibration Results

We performed a geometric calibration of both the wide- and narrow-FOV lenses using
a pinhole perspective model with two radial and two tangential distortion parameters.
For each lens, we moved the camera around a fixed calibration target to capture the target
from different perspectives. This target was a planar black and white checkerboard pattern
with 7 rows and 10 columns (35 black and 35 white squares). We then extracted 12 frames
which captured the target from 12 different perspectives with the camera’s native resolution
of 1920 × 1080 pixels. We show visual results in Figures A1 and A2 for the wide- and
narrow-FOV lens, respectively. In (a), we show the 12 captured images. In (b), we show the
mean reprojection errors per image for the checkerboard corners. For both cameras, the
calibration has subpixel level accuracy (mean error approximately 0.3 pixels). In (c), we
show the estimated poses of the calibration target relative to the camera. This shows the
range of poses used within the calibration.

The calibration provides the following estimates for the intrinsic parameters of
the cameras:
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Table A1. Camera calibration parameters for the wide-FOV and narrow-FOV lenses.

Wide-FOV Lens Narrow-FOV Lens

Focal length (x) 972.3 pixels 1571.5 pixels
Focal length (y) 971.7 pixels 1569.6 pixels

Principal point (x) 967.3 pixels 946.3 pixels
Principal point (y) 525.8 pixels 512.0 pixels
Radial distortion 1 0.0638 0.0462
Radial distortion 2 −0.0979 −0.0768

Tangential distortion 1 −3.3806 × 10−4 −5.42 × 10−4

Tangential distortion 2 −8.75 × 10−5 3.01 × 10−4

As expected, the wide FOV of the adult camera is reflected in the shorter focal length.
The resulting increased fisheye distortion is reflected in the larger magnitude of the radial
distortion coefficients.
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Appendix C

Single Run through of the App

The experience of using the Android application varies depending on the roles of
setup, user, and researcher. The setup process involves the initial configuration of the
application on a new Android device.

Table A2. User actions within the Android application.

Role Process Actions

Administrators Initial setup

• Perform typical Android setup procedure
• Insert SD card
• Install application from Github
• Give application full administrator rights in settings

Administrators Data collection preparations

• Receive the box
• Retrieve cameras/body sensors from inside box
• Enter ‘Admin Room’ in application
• Initialize cameras
• Create save location on tablet
• Exit Admin Room
• Enter User Home

End users Data collection in the
natural environment

• Receive box
• Receive short training by administrators
• Initialize the synchronization process to begin recording
• Record data
• Backup data
• Repeat until time to give box back
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• Time/Counter verification

To select the GIF displayed on synchronization, the time, date and counter are encoded
into binary as shown in Source code listing A1. This returns a 10 bit binary string that is
used to select a synchronization GIF from the list.

Source code listing A1. Java code snippet for converting date, time and counter into
10 bit binary string.
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// Convert the day of the month modulo 8 to 3 bit string 

int day3bits = day % 8; 

String daybin = String.format(“%3s”,  

              Integer.toBinaryString(day3bits)).replaceAll(“ “, “0”); 

// Convert the hour of the day to 5 bit string 

String hourbin = String.format(“%5s”,  

              Integer.toBinaryString(hour)).replaceAll(“ “, “0”); 

// Convert counter to 2 bit string 

int count2bits = counter % 2; 

String countbin = String.format(“%2s”,  

              Integer.toBinaryString(count2bits)).replaceAll(“ “, “0”); 

// Create 10 bit code by concatenating 

String bin = daybin + hourbin + countbin; 

// Convert back to decimal 

dec1 = Integer.parseInt(bin, 2); // Use this value to choose GIF 

return bin; 

• Timer/Delay (Discussing the several minute requirement through sync to stop over-
lapping files)

The application relies heavily on the public API SimpleStorage to work due to the
nature of file transmission within Android, the file transfer speed can vary from device to
device, and it takes an average of 30 s to transfer a 5 GB file; however, within some extreme
circumstances during testing, it could take up to 15 min to transfer a file, depending on
the efficiency of the hardware/how full the device was. For this reason, there is an in-built
warning regarding the transfer of files and requiring up to 30 min. Within testing, should a
new transfer be started before the previous finished, it would create overlapping folders
which overall caused the application to run incredibly slowly and resulted in missing data.

Appendix D

CAD Designs for the Four Foam Insert Layers and Perspex Cover for the Base Unit Case

(See Section 2.4)
The base unit is housed within a WAG TEKNO 2007 polypropylene carry case (external

dimensions: 340 mm × 275 mm × 83 mm; W.AG Funktion + Design GmbH, Germany).
The bottom of the case contains the hardware components while the lid provides storage
and carry space for four HMCs and two body sensors. To provide a rigid mounting surface,
we screw and glue 24 mm × 28 mm wooden inserts along the two sides of the case with a
chamfered edge to fit the curved internal corners of the case. The electronic components
are held in place and cushioned by four layers of polyethylene closed cell foam which we
laser cut according to custom designs (see below). These are glued to the case and the layer
below, bringing the top of the final foam layer flush with the wooden inserts. Everything
is held in place by a Perspex sheet which is screwed to the wooden inserts, providing cut
outs for the tablet screen, charge and backup cables and access to the tablet power button.
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Importantly, the Perspex sheet also has cutouts specifically sized for the HMCs and sensors
to ensure ease and reliability of synchronizing the devices (Figure 18 main text).
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