
Chapter

Building a Big Data Platform Using
Software without Licence Costs
Vassil Vassilev, Viktor Sowinski-Mydlarz, Pawel Gasiorowski,
Sorin Radu, Sabin Nakarmi, Martin Hristev,
Reza Baghaeishiva and Tarun Bali

Abstract

This chapter presents the experience in developing and utilizing Big Data plat-
forms using software without license costs, acquired while working on several projects
at two research institutions – the Cyber Security Research Centre of London Metro-
politan University in the United Kingdom and the GATE Institute of Sofia University
in Bulgaria. Unlike the universal computational infrastructures available from large
cloud service providers such as Amazon, Google, Microsoft and others, which provide
only a wide range of universal tools, we implemented a more specialized solution for
Big Data processing on a private cloud, tailored to the needs of academic institutions,
public organizations and smaller enterprises which cannot afford high running costs,
or do significant in-house development. Since most of the currently available com-
mercial platforms for Big Data are based on open-source software, such a solution is
fully compatible with enterprise solutions from leading vendors like Cloudera, HP,
IBM, Oracle and others. Although such an approach may be considered less reliable
due to the limited support, it also has many advantages, making it attractive for small
institutions with limited budgets, research institutions working on innovative solu-
tions and software houses developing new platforms and applications. It can be
implemented entirely on the premises, avoiding cloud service costs and can be tailored
to meet the specific needs of the organizations. At the same time, it retains the
opportunity for scaling up and migrating the developed solutions as the situations
evolve.

Keywords: big data, AI, data platform, private cloud, public domain

1. Introduction

According to the recent Gartner report on strategic technology trends [1]. Platform
Engineering is one of today’s top 10 trends influencing enterprise strategies. Data
Platforms deal with the entire lifeline of digital data from the moment it is generated at
the data source through the communication channels which collect it and transport it
to the destinations where it is accumulated, transformed, stored and processed, all the
way to the actual interpretation of the result at the destination [2]. Behind its

1



continuing expansion are two orthogonal but interconnected factors of development
in the digital age – the evolution of computing technologies and the vast amount of
digital data available from different sources which are potentially useful for different
purposes.

The evolution of data processing in the digital age went through four main para-
digms, constantly vacillating between centralization and decentralization:

• Localization of the data processing in a single physical place (desktop, embedded or
mobile device). Dominant during the early computing and communication
devices.

• Distribution of the processing power across multiple physical locations on a
computer or communication network (client-server or peer-to-peer architecture).
Exploits the opportunities for sharing provided by contemporary digital
networking on local, regional or global scale.

• Concentration of the processing power by creating virtual locations for hosting
multiple processors (cloud or edge computing). Initially supported and later even
enforced by the big vendors because it facilitates the performance of
computations on a scale previously not imaginable and unaffordable.

• Virtualization of the computation by creating logical processors in different
physical and virtual locations (blockchains or data spaces).

Since the beginning of the new Millenium this conceptual evolution was acceler-
ated by the evolution of software technologies. Firstly, two complementing enabling
technologies contributed to this evolution: virtualization of the computational infra-
structure and containerization of the execution environment (see Figure 1). While the
virtualization allows applications to be executed in the environment of a virtual
operating system, chosen by convenience, containerization allows the execution to be
identical, regardless of the deployment location. The contemporary cloud provision
for deployment employs both approaches, thus supporting the high scalability of the
hardware and software infrastructure as well as the mobility of the applications across
the platform locations. The transparency of the application deployment in such a case
is provided by the container management system, which is a key element of each
cloud provision [3].

This shift of the computational paradigms is paired with the expansion of the
software systems towards service-oriented architectures (SOA), where the
applications are not executed in isolation but as an element of a service workflow
(see Figure 2). The platforms with SOA architecture can orchestrate the services, thus
adding the possibility for automation of workflow planning and execution.

Unlike cloud computing, which essentially pushes for centralization of data
processing on the cloud, the SOA better supports distributed architectures for peer-to-
peer data processing in blockchains and data spaces. However, the two architectures
are not antagonistic, since the service orchestration is also popular on the data plat-
forms, while they may also act as data service providers or data service consumers in
data spaces [4].

What is extremely encouraging is that all these opportunities are freely available
and can be implemented in-house, tailored to the needs of the organization. This
chapter presents the experience in implementing data platforms on a private cloud for

2

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



processing Big Data using software without license costs, which can be obtained from
the public domain, or as community editions of commercial products.

The plan of the chapter is as follows. In the next section, following a brief review of
some of the existing solutions, we will discuss the main alternatives which drive the
design of data platforms. In the subsequent section, we will describe the main com-
ponents of the platform. After that, we will present several pilot projects, which we
implemented using such platforms – one for real-time security analytics, one for
outdoor air quality monitoring and one for more complex urban development

Figure 1.
Evolution of data processing from the desktop to the cloud.

Figure 2.
Data processing workflow in a service-oriented architecture.

3

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



combining both outdoor and indoor environment factor analysis. At the end we will
discuss the lessons learned, will formulate some recommendations and will discuss
some future enhancements of the platform.

2. Alternatives and choices: models, technologies and tools

Data platforms and, specifically, Big Data platforms are complex systems which
combine powerful hardware and software. They target decision-making, business
organization and operation management. On the one hand, the main players in the
market for enterprise software offer their own tools and whole ecosystems for data
processing and Big Data management. Both traditional software powerhouses, such as
IBM, Hewlett-Packard, Oracle and Amazon in the United States and SAP in Europe
[5–9], as well as some of the purpose-built software companies specialized in market-
ing Big Data tools, such as Cloudera [10] are offering enterprise suites with extremely
powerful data management and data analysis capabilities, based on well-established
concepts originating in the open-source community [11]. On the other hand, the
global service providers, such as Amazon, Google, and Microsoft [12–14] are hosting
most of these tools on their own cloud premises thanks to the technologies of
virtualization, containerization and orchestration which are the foundation of cloud
computing. In some cases, this symbiosis goes even further by embedding mecha-
nisms for utilization of the specific storage infrastructure, like the recent Cloudera
platform CDH, which is seamlessly integrated with the object storage of AWS [12].
However, although midsize companies and smaller software houses prefer to rely on
software vendors and service suppliers, the price tag associated with it is exorbitantly
high. In most cases, it is out of reach for many private and public organizations, and
they typically look for a bespoke solution on their own premises instead. An additional
advantage of having custom-built data platforms on the premises is the compatibility
and the opportunity for subsequent migration to an enterprise platform. Since most of
the current data platforms are assembled out of software products and systems which
originate in the open-source community, in the case of scaling up these in-house
platforms, it would be possible to migrate the applications much more easily. This
section will systematically consider the necessary decisions to prepare ourselves for
building a custom-tailored in-house platform for processing Big Data on a private
cloud. This would be a competitive solution for data-intensive but relatively small
organizations such as research institutes, local councils, public agencies and SMEs.

2.1 Conceptualization of data processing, workflows and data services

To build a platform which supports the entire lifecycle of the data from the
moment it has been generated until the moment the result of its processing is
interpreted, we need to have a clear conceptual understanding of the use of such a
platform for its intended use. The most economical and useful way to do it is to have a
model, presented graphically using a set of diagrams, which is complemented by a
description of the typical business scenarios and detailed technical specifications:

• Data: data sources, data formats and data pre- and post-processors.

• Platform infrastructure: hardware and software components and subsystems.

4

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



• Data processing architecture: software pipelines and data flows.

• System interaction: communication ports, protocols and operations.

• Operation timelines: scenarios for using the platform for specific business tasks.

From a software engineering perspective, the standard way of doing this is using
UML as a modeling language. It provides the most complete set of diagrams, which
makes the design informative and technically sound, but it may also lead to “analysis
paralysis” in complex tasks such as the platform design. Because of this, we prefer a
logical approach, which combines the modeling of the conceptual ontologies with
flowcharts of their use. It also guarantees consistency across the diagrams but is more
economical than UML. As an example, Figure 3 shows the ontology of data processing.
Some of the concepts in it are physical and will later become software components of
the platform, while others are purely logical, helping to understand the problem,
conceptualize the processes and explain the results of processing the data on the
platform. In ontology, we can model the data processing operations as relations
between the states and organize them into a hierarchy, similar to the concept taxon-
omy. The full ontology of the platform, as we modeled it, includes more than 600
different concepts, but the development of the platform can be incremental so that the
ontology can be a useful starting point for the design. As a step towards this, Figure 4
illustrates the sharing of both data and services for processing it across several business
projects analyzing the environment impact on urban life. Three projects are consid-
ered “first level”: monitoring outdoor air pollution (Project 3), analyzing the medica-
tion prescriptions in the local pharmacies (Project 2) and mapping them in the local

Figure 3.
Ontology of data processing on the data platform (core fragment).

5

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



area using public sources of geolocation information (Project 1). Additionally, there are
two cross-domain projects for secondary analysis of the impact of environmental pollu-
tion on public healthcare (Project 5) and on urban development (Project 4), which use
data, existing services, and some of the results produced by the “first-level” projects.
They can provide deeper, policy-driving analysis of the environmental impact based on
factors, trends and heuristic methods. The diagram shows the data sources, data flows
and dependencies between the services. It is sufficient for the design of software archi-
tecture according to both the privacy and the sharing policies.

The conceptual model must lead to a practical implementation of the scenarios of
use and the most natural way to do this is to map it to a service-oriented architecture
(SOA). All aspects of the SOA – functional, temporal, causal, etc., can be designed so
that they retain semantic consistency with the conceptual model. The integrity can be
guaranteed by stereotyping the ontological entities, which preserves the meaning
across different diagrams, similar to the stereotyping in UML. For our example,
Figure 5 shows the workflow of correlating data in the form of a directed graph,
which implements the “Real-time Correlation” service from Figure 4.

We have found this approach more useful than the use of UML at the early stage of
design of the platform since it ignores low-level details and combines many different
aspects of the model in a single diagram, which facilitates early grasping of the
essentials and organizing the work on a technical level in an optimal way. The next
sections will go systematically through the alternative choices and detailed descrip-
tions of the tools which map this conceptual model to a working system.

2.2 Exploring data and metadata

The enterprise data platforms, as well as the platforms built on the public cloud,
have configurable components from a chosen software ecosystem. Their universality is

Figure 4.
Data platform as a service-oriented architecture (urban life projects).

6

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



restricted only by the software vendor, or by the support provided by the public cloud
to the installed ecosystem. The private cloud-based platforms do not have these
limitations, although their scope is more limited. This allows custom-tailored design,
which better accounts for the specific data to be processed on the platform. Quite a
few characteristics of the data need to be considered at this stage:

• The data differs significantly in a variety of ways – formats, granularity, volume,
noise, location, etc.

• Data processing is performed along a complex workflow of operation – sampling,
aggregation, buffering, feature selection, training, validation, analyzing,
merging, interpretation, explanation, etc.

• The tasks for data analysis have large diversity – detection, recognition,
classification, correlation, factorization, prediction, etc.

• For each analytical task there is a whole variety of methods with different
applicability – temporal, structural, logical, model-driven, behavioral,
hybrid, etc.

• To reach wider community of users the data processing needs to be
comprehensive by providing statistics, reports, explanation, etc.

This variety directly affects the subsequent choices of technologies, methods and
tools for building the ecosystem of the platform. The main technical characteristics of

Figure 5.
Workflow for data processing on the platform (data correlation scenario).

7

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



the data which may have an impact on the design choices are shown in Table 1.
Particular attention is needed for the processing of time series in real-time [15].

Creating data models is one of the early tasks which can be addressed during the
design of the platform since it helps both the processing and the persistence of the
data. Depending on the data sources, different approaches can be used for modeling:
purely relational using ER diagrams, object-relational using UML class diagrams,
hypertext using XML or JSON and logical using semantic languages like RDF/RDFS/
OWL. An additional important factor to help understanding the data and preparing it
for subsequent processing is the metadata, the information about the data. It can be
used for data cleaning and filtering, for semantic enrichment by adding missing
attributes and establishing missing links, as well as for preparing persistent storage
and efficient retrieval of the data via semantic indexing.

2.3 Choosing methods for data processing

Data processing on the platform may occur in a variety of contexts and can serve
different purposes, so the selection of suitable methods for each task will affect the
choice of tools during the development phase:

• Different stages of data pipeline: at the source, before transmission, during
transmission, on arrival, before storing, inside the repository, etc.

• Different structure and format of the data: structured (CSV, SQL), semi-
structured (JSON, XML, RDF, SVG, etc.) and unstructured (binary, document,
graphics, etc.)

• Different preparation of the rough data: filtering, formatting, anonymization,
normalization, enrichment, aggregation, buffering, accumulation, etc.

Data types Sources Content Ingestion Transport

Samples
(structured data)

networks, hardware
and software

readings, packets,
locations

one-off memory sharing,
parameter passing

Artefacts
(unstructured
data)

media editors,
reporters and cameras

documents,
images, videos

one-off FTP/S, HTTP/S, SSH,
FTAM, WebDAV,
WebSockets

Messages
(semistructured
data)

messengers, devices
and monitors

alerts, logs,
messages, emails

one-off MQTT, AMQP, SMS,
IRC, XMPP, ModBus,
Websocket, RCS

Streams (fully/
semi-structured
sequences)

signal emitters,
trackers and video
cameras

timeseries,
broadcasts, feeds

continuous HLS, WebRTC, RTSP,
RTMP, SRT, MPEGDASH,
ModBus

Datasets (fully/
semi/unstructured
collections)

spreadsheets,
databases and
simulators

descriptions,
operations,
locations, etc.

one-off,
batch

FTP/S, HTTP/S, AFTP,
OFTP, AS2, WebDAV

Repositories
(collections of
datasets)

databases, warehouses
and data lakes

mixed batch supported by the
repository

Table 1.
Data characteristics affecting the platform design.

8

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



• Different tasks of the processing: detection, classification, recognition,
correlation, profiling, prediction, etc.

• Different methods behind the algorithms: statistical, clustering, graph-based,
rule-based, model-based, optimization-based, etc.

• Different interpretations of the results: simple reporting, black box explanation,
white box explanation, impact factor analysis, etc.

Constructing an enterprise-quality data platform requires well-proven methods for
which there are mature tools, guaranteeing robust and reliable operation. In some
cases, the data processing may be implemented using publicly available libraries; in
other cases, there are no suitable tools, and bespoke software needs to be developed
with Python as the ultimate language of choice for programming. Although it might be
assumed that the more sophisticated methods for data analysis are not easy, with the
huge advancement in statistical, behavioural and machine learning methods, their use
is a completely feasible task supported with a huge amount of software libraries. Less
advanced methods are a bigger problem, since there is rarely a universal and high-
quality software available to implement them.

2.4 Software tools for data management and data processing

The technology stack of the platform includes software components for processing
the data along its lifecycle, from the sources to the presentation of the results. For
most of the necessary tasks, there are software products in the public domain, and
many enterprise software products also have community editions, so the composition
of a relatively universal data platform using software without license fees is absolutely
feasible. Table 2 contains some software sufficient to compose a technology stack
powerful enough for a wide class of typical Big Data scenarios. We used most of them

Operations Description Software products

Data
Preprocessing

Processing at the source, in
transition, before analysis

Hackolade (modelling), Annotator (annotating),
Amnesia (anonymizing)

Data ingestion Transporting files, exports,
messages, streams,

Mosquito (messages), Kafka (streams), NiFi
(files), Hop (general)

Data
persistence

Storage in structured, hypertext
and binary format

PostgreSQL (SQL), MongoDB (JSON) Neo4J
(RDF), 3DCityDB (CityGML)

Data
Postprocessing

Transformation, analysis and
integration

Python (data-), Java (operation-), JS (Web-) and
shell scripts (OS-centric)

Big data
management

Storing, retrieving, mapping &
searching Big Data

Hadoop (pairs), Storm (tuples), Cassandra
(tables), HPCC (clusters)

Big data
analysis

Analyzing Big Data using
statistical, ML & RL

Spark (analysis of distributed data),
Storm (analysis of streaming data)

Interpretation Data integration, reporting and
visualization

JS (texts), Jupyther (diagrams), Cesium (maps),
Grafana (general)

Table 2.
Technology stack for data processing on big data platforms.

9

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



in several projects, and as we will show in the next section, it is both powerful and
highly scalable for working on multiple projects.

A separate consideration is needed for the choice of components for Big Data
processing. Our platform is based on Apache Hadoop, which has one of the oldest Big
Data ecosystems [16]. It maintains the data in files, which makes it inherently slower.
There are some more recent and modern alternatives in the public domain, such as
Cassandra, Storm, and HPCC, plus some highly scalable no-SQL databases like Redis,
CouchDB and OrientDB [17], which might be more suitable for specific characteristics
of the Big Data, like speed of growth, degree of dependency, etc. Our choice of
Hadoop was dictated by the need for compatibility with our academic and business
partners. Being an originator of many enterprise systems, it may be seen as an “old-
fashioned” choice, but Hadoop has a rich ecosystem which is compatible with many
commercial systems, so it is still attractive.

The use of additional databases besides the main Big Data repository may seem
redundant at first sight but it is justified. Firstly, the rough data, the pre-processed
data and the archived data can be used in different projects for different purposes.
Keeping the data in a single place in a single format may lead to inefficiency due to the
need for conversion. Secondly, sometimes, it is preferable to store specific data in its
original format for specific operations, supported natively by specialized database
systems. This applies to all non-SQL data – hypertext in JSON format (MongoDB),
graphs in RDF format (Neo4J) and 2D/3D in CityGML format (3DCityDB).

The separation of preliminary data processing from Big Data processing leads to
two different approaches for supporting the analysis of the data. In the Big Data
cluster, this can be done using the tools from the Hadoop ecosystem (we use Apache
Spark [18]), while in the temporary area of holding the data, it can be processed
within the respective databases using their own APIs or externally, using Python.

3. Building the data platform

Our motivation for developing a private cloud-based data platform comes from
our interest in the automation of data processing using explicit policy rules for con-
trolling the execution. Initially, we incorporated some of these ideas in the data
processing framework for threat intelligence and security analytics of the Cyber
Security Research Centre [19]. In another project, we needed computational resources
on the public cloud and hosted the software components on Amazon AWS [20]. This
experience led us to the concept of implementing a data platform on our own private
cloud, which resulted in the solution reported here [21]. In this section, we will
describe the main steps of the process.

3.1 Hardware and system software

The starting point for the implementation of the data platform for processing Big
Data on a private cloud is the hardware infrastructure. In a realistic scenario, cloud
technology requires multiple hosts organized in a virtual cloud infrastructure
according to the principle “the more memory – the better”. However, being academic
institutions primarily focused on research and innovation, both in London and in
Sofia, we started with a single server host first. Currently, we are running our plat-
forms on hosts with 128GB RAM/256GB RAM, equipped with 80 TB/120 TB hard disk
space (in London/Sofia, respectively). Such capacity might be considered a minimum

10

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



requirement to provide an adequate environment for several teams to work on differ-
ent projects. Thanks to the scalability of the platform, at a subsequent stage, it can be
migrated to a more capable hardware infrastructure with multiple hosts and much
larger memory space, as necessary.

Secondly comes the system software, which provides support for the development,
deployment and execution of the software components of the platform. This system
software is completely independent of the data which the platform is going to process
and is neutral to the possible applications deployed to it. The system software which
we used for this purpose is shown in Table 3.

All system software can be used without license costs and can be obtained from the
respective public sites on the Internet. The community versions of enterprise products
may have some limitations, but they are still fully functional and can be used for the
purpose in non-commercial environment.

3.2 Assembling the platform

Endorsing the previous recommendations leads to the possibility of building an
entirely user-empowered platform for processing Big Data on a private cloud, fully
compatible with more sophisticated enterprise platforms from the big vendors [5–10].
The software architecture of a similar solution, like our data platform, is shown in
Figure 6. It is formed out of five different groups of software components:

• Platform management (platform-specific but service and data independent) –
management of the platform resources: Kubernetes for container management,
Docker for containerization, Proxmox for remote access and resource
management, Nginx for security control, Elasticsearch and Kibana for auditing
and reporting, Airflow and MLFlow for workflow and process scheduling and
monitoring.

• Data ingestion (service specific but data independent) – Mosquitto, Kafka, Nifi
and the general-purpose Hop for managing the communication channels,
transportation, ingestion and storing.

Platform role Description Software products

Platform
management

Register, allocate and control
resources

Nginx (access control), Proxmox (admin,
develop, deploy)

Virtual machine
management

Emulate different OS on the
infrastructure

Linux KVM (virtualize)

Container
management

Distribute, isolate and
synchronize components

Docker (containerize), Kubernetes (locate),
Zookeeper (synchronize)

Workflow
management

Compose, schedule and
integrate workflows

AirFlow (orchestrate), Flask (integrate)

Process
management

Monitor and report the
execution

MLFlow (monitor, report)

Service
management

Search, retrieve and report the
consumption

Elasticsearch (search, retrieve), Kibana
(accumulate, report)

Table 3.
System tools for managing of platform resources.

11

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



• Data repositories (data specific but service independent) – database management
systems for temporary data storage of data in four different formats – SQL
(PostgreSQL), JSON (MongoDB), RDF (Neo4J) and CityGML (3DCityDB).

• Data management and data processing (data and service-specific) – bespoke
software components developed to meet the specific requirements of the
applications for managing and processing the data along its entire lifeline.

• Big data cluster – it incorporates the ecosystem for Big Data management and
analysis. In our case, we used tools from Hadoop ecosystem, but they can be
substituted or complemented with tools from other ecosystems. The use of Spark
or Storm for analysis is not restrictive, either, since Hadoop can run directly
Python and Java.

All software components are based on software without license costs from the
public domain and community edition of enterprise products, selected to provide
support for development, deployment and operation as discussed earlier. Their
choices can be easily adapted to meet the specific requirements of the organizations.

Although the proposed architecture cannot match the universality, scalability and
extendibility of public cloud provisioning, it works sufficiently well for many cus-
tomers due to its simplicity and flexibility. The separation of platform management
from data management, and the temporary data from the Big Data leads to an open
architecture, highly scalable and extendable on both platform and layer levels. At the
Cyber Security Research Centre of London Metropolitan University, the Big Data

Figure 6.
System architecture of a cloud-based data platform (two hosts version).

12

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



cluster is installed on a single host and accommodates only 80 TB of data, while at
GATE Institute of Sofia University, it spans many physical hosts with a total memory
capacity measured in petabytes. At the same time, at the Cyber Security Research
Centre, all other components of the platform are installed on a single physical host,
while at GATE Institute the separate groups of components are installed on different
hosts to support working on multiple projects in parallel and to handle much larger
amounts of data.

3.3 Setting up the deployment context of software components

Unlike ordinary information systems, which operate isolated from other software
systems, the applications running on the platform consist of components which are
dependent on each other within their context of execution. The data in different
applications may come from the same data sources, while different data processing
pipelines may use the services provided by the same components. This leads to the
need for putting suitable control mechanisms in place for communication tracking,
data access control, component isolation, process synchronization and workflow
orchestration. The virtualization and containerization mechanisms on the cloud
support a variety of options for achieving this. Table 4 presents the alternative
deployment contexts available for both the design of platform components used in all
applications, as well as for the design of specific application components in different
projects.

In SOA, each software component can be seen as a server, accessible through a
dedicated TCP/IP port and exposing services on a different level – administration,
implementation, and operation and at different stages of working – designing,
developing, deploying and using. From this perspective, the TCP/IP ports of the
engines executing the component services can be opened using three methods:

• Static IP address on the Internet, if needed, to be accessible by the physical users.

• Dynamic IP address, valid locally only and accessed by the different tools
installed on the operating systems of the host computers or the VMs running on
them.

• Dynamic IP address accessed programmatically from within the permitted VMs
or containers of the platform according to the deployment of the software
component.

The choice of a suitable context for component deployment can be made at design
time, but since it may significantly affect the development, it must be made carefully.
There are several design considerations to be accounted for, the most important being
the degree of sharing and isolation of the services. Installing the components directly
under the control of the operating system (“bare metal”) provides the widest possibil-
ity for sharing, but at the same time, it guarantees only very low isolation, while
containerizing them provides the highest level of isolation but lowers the possibility
for synchronization. An additional consideration which may need to be accounted for
during the design is the visibility of the communications and the need to protect the
information privacy and operation security. The closer to the operating system, the
less control mechanisms can be used, while encapsulating the components within
containers provides multiple mechanisms for controlling them.

13

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



3.4 Enforcing security policies

The last step is to open the TCP ports for access to the services. Since each
component exposes a service, the access to platform services from external clients or
internal components is through a corresponding port. This can be done using two
methods – control of the port visibility in accordance with the security policies (see
Table 4) and allocating operational rights to external users according to their profiles.
The first requires service registration after component deployment and must be
updated for each new application, while the second requires user profiling.

4. Pilot projects

In this section, we will present three pilot projects, which have been completed
using the platform by a joint team of London Metropolitan University and GATE
Institute in three different projects – Computer network security analysis [22], Envi-
ronment pollution monitoring in Sofia [23], and Impact of environment pollution on
public health in London [24]. The successful completion of the projects proves the
viability of the concept and its potential for use by public organizations, NGOs, SMEs
and academic institutions dealing with Big Data.

4.1 Computer network traffic analysis (real-time pilot)

This project was the first pilot test of the data platform implemented after the
concept described previously. It was dedicated to the detection of unsolicited behav-
iour due to unauthorized intrusion and/or the presence of malicious software. The
goal was to analyze the network traffic and the event logs in real time to detect
potentially missed interventions, as well as to perform a secondary analysis by

Engine Function Context Software support

Operating system
(OS)

Resource
allocation

Hardware Linux, Windows, MacOS

Hypervisor (HV) Resource
virtualization

OS Linux KVM, VMWare vSphere, MSHyper-V,
Oracle VBox

Virtual machine
(VM)

Resource
isolation

OS or HV Ubuntu Linux, MS Windows, Oracle Solaris,
Apple MacOS

Container
manager (CM)

Component
virtualization

OS or VM K8 Kubernetes, Apache Mesos, HashiCorp
Nomad

Container (CNT) Component
isolation

OS, VM or CM Docker, LXC, Windows Containers,
Podman

Server (SRV) Service isolation OS, VM or CNT NodeJS, JupytherHub,MongoDB, GlassFish,
PostgreSQL, Neo4J

Runtime (RT) Service execution OS, VM, CNT or
SRV

Language-specific (programme interpreters,
script shells, etc.)

Component Service OS, VM, RT CNT
or SRV

Task-specific (data management, data
analysis, visualization, etc.)

Table 4.
Context of deployment of software components on the cloud.

14

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



examining the network traffic over a longer period. As a data source, we used a staged
environment, running applications with malicious software attached to them. The
generated data was captured by network analysers and transported for further analy-
sis on the cloud over two protocols – TCP for the network packets and MQTT for the
logs generated within a staged environment.

We performed two different analytics – real-time pre-processing and Pearson
correlation of the streams and packet classification and intervention recognition using
machine learning algorithms. The correlation analysis did not produce very exciting
results due to the insufficient data generated by the simulator and the different speeds
of the streams, but the subsequent forensic analysis using standard machine learning
algorithms (logistic regression, neural networks and SVM) and deep learning (we
used seven-layer CNN) was very interesting. It showed that although deep learning
definitively produces the best results, it might not be the most suitable since some of
the classical machine learning algorithms, which are much simpler, produce almost as
good results. In our case, the SVG algorithm produced results close to the results
obtained using CNN (see Table 5).

In this pilot, we used Docker for containerization of MongoDB as data storage and
several data management components – for transportation (Mosquitto and Kafka),

Method No. packets RST (%) ACK (%) SYN (%) Avg (%)

Regression 6268 85 81 31 66

SVM 6268 94 84 96 91

NN 6268 88 72 94 85

CNN 45,000 90 91 92 91

Table 5.
Precision of different methods for prediction of network packets (in %).

Figure 7.
Software components of the cloud-based data platform (portal host only).

15

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



operation synchronizing (Zookeeper), integration (Flask), workflow orchestration
(AirFlow) and monitoring (MLFlow) – see Figure 7. Since we used only one physical
host, the container management system did not play a significant role in the project.

The project was the first valuable test of the platform thanks to the data processing
in both motion and peace, as well as the variety of methods for processing data both
online and offline [22]. It is also interesting that due to the lockdown, the way in
which the team of Cyber Security Research Centre of London Metropolitan University
worked changed drastically – the staged environment was created earlier in London,
while the actual platform for data processing is on the private cloud server of GATE
Institute in Sofia, where the data was sent over the Internet. Both the development
and the deployment of bespoke software were done remotely from London, which
proves additionally the viability of the whole concept.

4.2 Environment pollution monitoring (Sofia pilot)

This project was focused on the environmental monitoring in Sofia due to the
significant air pollution in the city [23]. The air pollution data was collected from 13
sensor stations across the city. The readings were formatted as JSON objects and sent
to the cloud over MQTT for analysis. Before the data was accumulated in the
MongoDB database, it was correlated using the standard Pearson algorithm for
establishing dependence between different factors of pollution like temperature,
humidity, gases, and particles in the air (see Table 6). The archived data from
previous periods was uploaded to the same database using NiFi to train the machine
learning algorithms before prediction.

An essential addition to the platform in this project was the integration of the
Cesium GS Cesium JS component, which allows multi-layered visualization on top of
2D maps [25]. As a 2D base, we used the free service provided by the OpenStreetMap
Foundation [26], which has worldwide coverage. We integrated and visualized a
variety of data from different data sources using two methods:

• Pop-ups: By combining pop-up windows rendering data from different sources
with the visual stream of the map. The pop-up window on Figure 8, for example,
combines sensor data from MongoDB with ontological information from
OpenStgreetMap. We have also experimented with adding an explicit
ontological model of the urban area in RDF format extracted from the Neo4J
graph database [24].

• Projections: By superimposing additional layers on top of the base 2D maps to add
urban infrastructure and 3D building models. In Figure 9, for example, the 3D

No CO SO2 NO2 O3 PM2 PM10 Press Hum Temp

1 0.5039 6.3676 15.730 43.096 5.8484 8.291 955.855 46.322 16.202

2 0.4969 5.4908 38.971 53.154 8.6820 15.797 933.432 46.311 16.578

3 0.5010 4.7727 11.779 47.642 3.5257 5.965 959.594 96.717 20.416

4 1.1032 8.7043 9.9153 37.223 7.3437 15.251 960.677 31.885 18.247

5 0.3916 6.8086 14.5090 35.469 6.9110 15.995 959.174 54.637 12.476

Table 6.
Positive correlation between outdoor temperature and humidity (Pearson 0.972).

16

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



model of the building which has been reconstructed offline from its 2D floor
plan, is subsequently embedded in the map to show the location of indoor
sensors.

As a result of this integration, we can display a rich combination of data, coming
from different sources in different formats [23]. This application has been live for
more than a year and can be accessed over the Web at: http://194.141.1.61/.

In this pilot project, we also added several components for platform management,
implemented using public domain and community edition software:

Figure 8.
Data integration and visualization of the air pollution in Sofia.

Figure 9.
Integrating 3D buildings model and ontological information with 2D map.

17

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



• Remote access: Proxmox

• Identity management and access control: NGinx

• Indexing and searching: Elasticsearch

• Auditing and reporting of data services and operations: Kibana

The main data sources of these components are the system logs generated on
different levels of operation of the platform software – OS, VMs, containers, servers,
and runtime engines (see Table 4). These additional components are application
independent; their primary role is to enhance the control of the operations. This way,
they prepare the migration of the platform pilots to commercial provision, as well as
the use of the platform as data and service provider in future dataspaces [4].

4.3 Impact of environment pollution on public health (London pilot)

This project started as a mirror of the project for monitoring the air pollution in Sofia.
We first implemented most of the functionality we had in Sofia, this time on the private
cloud of the Cyber Security Research Centre of London Metropolitan University (see
Figure 10). The real-time sensor data we were ingesting from the stations in London
came from 130 locations, so the amount of data was around 10 times bigger than in Sofia,
although, in terms of real-time, it is still manageable. Because of this, the sensor data was
initially gathered in the MongoDB database in JSON format for preliminary analysis.
Further, we were able to collect offline archived data from the last 5 years in a structured
format (CSV files), which was transferred to the server and stored initially in PostgreSQL
database for trends analysis. Finally, we implemented our own sensor station to collect
information about indoor pollution and used its output to correlate the indoor and
outdoor factors in the area around the building of the university [26]. The correlation

Figure 10.
Data integration and visualization of the air pollution in London.

18

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



showed a very close dependence between indoor pollution and outdoor pollution with
some rare outburst which activities inside the building can explain.

Further expansion of the platform was achieved thanks to the addition of a new
data source with data about medication prescriptions, freely available from one of the
sites of UK National Health Service (NHS). Due to the volume of this data, we
transferred the entire dataset we obtained from NHS using NiFi directly to the
Hadoop cluster. To enable further use and more complex analysis of all data periodi-
cally all the temporary data stored in MongoDB was transferred to the Hadoop cluster
using NiFi. The two datasets – the air pollution readings and the prescription data –
were then joined in Hadoop and analyzed using Spark for possible correlation between
the pollution and the respiratory diseases, which were categorized on the base of the
prescribed medications. The analysis was performed using three different methods of
calculating the correlation – Pearson, Spearman and Kendall, with comparable results.
Figure 11 presents some of the results of this analysis for a fragment of the dataset of
prescriptions against the category of respiratory diseases. As it is clearly visible from
the diagrams, there is a strong correlation between most pollutants and respiratory
diseases, with NO2 predictably being the most harmful. This pilot has been live for
several months and is available on the Web at: http://217.38.61.107:5000/.

The most significant addition to the platform in this project was the full utilization
of Big Data technologies for cross-domain data analysis. The Hadoop cluster for
managing the Big Data was created on three virtual machines, emulating hosts for one
name node and two data nodes accommodating the data in Hadoop HDF memory
space. The Big Data analytics was performed in a distributed environment with a
Spark server operating on the name node and two Spark clients operating on the data
nodes. The project is currently still under way and will continue analyzing the data for
revealing further dependencies as well as the dynamic of changes depending on the
environment conditions and the period.

Figure 11.
Correlation between air pollutants and respiratory diseases in greater London.

19

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



5. The gains and the burdens of being independent

Big Data platform on the cloud has many advantages for public and private busi-
nesses, large and small organizations, academia and industry (see Table 7).

Operationally, platforms on the premises provide more limited opportunities in
comparison with the platforms of the public clouds. For example, most public clouds
support the training of machine learning algorithms, which drastically reduces the
time and computational resources needed for training. However, the private clouds
retain the data ownership and protect the privacy of data and operations.

The software without license fees brings some disadvantages, too. Custom-built
platforms may incur higher maintenance costs due to the need to hire highly qualified
staff or even external consultants. But this drawback diminishes quickly with multiple
projects because of the cost spreading, while the running costs on the public clouds are
cumulative and, as a result, are higher per project. From a strategic perspective, in-
house operation has an additional advantage – it stimulates the local economy by
fostering independence from the commercial software vendors and service providers.
In balance, this solution is definitively a better choice for project oriented organiza-
tions and software houses with extensive in-house development.

6. Possible extensions and directions for future work

The concept of a data platform for Big Data processing on a private cloud using free
software proved itself strongly through the pilots. Our work in this direction can
continue to make the platform more valuable for both the organizations which employ
it as a development environment and for clients which rely on its services:

• Methodology adoption: The DevOps employs shared repositories for various
purposes. Previously, we have used GitLab for automatic creation of computing
infrastructure, component deployment and integration on the public cloud [20].
It significantly increases the productivity and improves the quality. It can be

Virtualization Containerization Orchestration

• Heterogeneity of hardware
and system software

• Modularization of the software
with no dependencies to set

• Support for reusability of
existing solutions in process
workflows

• Scalability of devices,
memory and users

• Efficiency in memory, CPU and
storage usage

• Model-driven application
development

• Choice of convenient
computational environment

• Portability of containers across
platforms without code changes

• Support for auditing of
monitoring, analyzing, and
billing purposes

• Transparency of the physical
location of the data and
services

• Supporting configuration
generation using templates

• Reproducibility of operations by
preserving dependencies

• Centralization of the system
administration and
maintenance

• Full traceability of the operations
for testing and debugging
purposes

• Possibility for process
automation based on planning
heuristics

Table 7.
Advantages of cloud-based data platform for Big Data processing.

20

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



employed on the private cloud as well. This is valuable for software vendors and
consultancy organizations in which multiple teams are working in parallel,
sharing both data and software.

• Analysis hybridization: The open architecture allows the addition of more
components, particularly for hybridization of the analytics. We have already
done some work on hybrid analytics by combining pure data analysis with
knowledge-based reasoning [16]. This would allow cross-domain analysis beyond
the simple data analysis since it can utilize the dependencies within the data
formulated in heuristic rules.

• Workflow automation: We have also conducted some experiments for the
generation of Docker and Airflow, configuration files, based on the ontological
model of the platform (see Figure 3). This can be done using templates, which
can also be used for explanation generation, accounting for the causal links
between tasks and results [21].

• Service homogenization: Combining bespoke and universal components may lead
to granularity problems. For example, we were trying to implement the access
control using Fiware Keyrock [27], but it required too many additional
components, so we used Nginx instead. On the other hand, for the enrichment of
data in tabular format, we wanted to use the Grafterizer [28], but for non-
relational data, we needed other components, so we opted out in favour of a more
universal bespoke development.

Figure 12.
Architecture of GATE big data platform.

21

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



With the growth of digital data, the need for utilization of data platforms becomes
more important by the day. The open and highly scalable architecture of a platform
built on private clouds using software without a license fee can easily evolve into an
enterprise solution, running on multiple physical hosts and managing petabytes of
data. This guarantees scalability without the need for significant initial investment.
For example, Figure 12 shows the enterprise version of the GATE Data Platform, built
this way—not only a viable but also a highly lucrative option.

Acknowledgements

The work reported here has been conducted over a period of more than 5 years in
collaboration with colleagues, students and industrial partners from London Metro-
politan University in the United Kingdom and Sofia University in Bulgaria. It has been
made possible thanks to several grants from the United Kingdom (Innovate UK and
HEIF), the Bulgarian government (OPNOIR Grant Agreement No.
BG05M2OP001-1.003-0002-C01) and the EU H2020 Research Framework (WIDE-
SPREAD 2018–2020 Grant Agreement No. 857155). It has also been supported by
private companies in the United Kingdom (Lloyds Banking Group, Oxagon) and
Bulgaria (Rila Solutions, Ontotext), providing additional resources for platform
development. The authors are greatly thankful to all collaborators and partners for
their professional help, continuing support and unwavering trust over the years. All
recommendations and considerations, however, are purely of the authors and should
not be considered the official policy of these organizations.

Author details

Vassil Vassilev1,2*, Viktor Sowinski-Mydlarz1,2, Pawel Gasiorowski1,2, Sorin Radu2,
Sabin Nakarmi1,2, Martin Hristev1, Reza Baghaeishiva1 and Tarun Bali2

1 Cyber Security Research Centre – London Metropolitan University, UK

2 GATE Institute – Sofia University, Bulgaria

*Address all correspondence to: v.vassilev@londonmet.ac.uk

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

22

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation



References

[1] Gartner, Inc. 10 top strategic
technology trends [Internet]. 2023.
Available from: https://www.gartner.
com/en/information-technology/
[Accessed: July 06, 2023]

[2] Moses B, Gavish L. What is a data
platform? [Internet]. 2023. Available
from: https://www.montecarlodata.com/
[Accessed: July 07, 2023]

[3] Strong A. Containerization vs.
virtualization: What is the difference?
[Internet]. 2022. Available from: https://
www.burwood.com/blog-archive/
[Accessed: July 07, 2023]

[4] Anjomshoaa A et al. Data platforms
for data spaces. In: Curry E et al., editors.
Data Spaces. Cham: Springer; 2022.
DOI: 10.1007/978-3-030-98636-0_3

[5] IBM. IBM storage scale Big Data and
analytics support [Internet]. 2023.
Available from: https://www.ibm.com/
docs/en/storage-scale-bda [Accessed:
July 07, 2023]

[6] Hewlett-Packard Enterprise. HPE
Ezmeral Data Fabric [Internet]. 2023.
Available from: https://www.hpe.com/
us/en/hpe-ezmeral-data-fabric.html
[Accessed: July 07, 2023]

[7] Oracle. Oracle Big Data Appliance
[Internet]. 2023. Available from: https://
docs.oracle.com/en/bigdata/big-data-
appliance/index.html [Accessed: July 07,
2023]

[8] Amazon Web Services, Inc. Amazon
EMR [Internet]. 2023. Available from:
https://aws.amazon.com/emr/
[Accessed: July 07, 2023]

[9] SAP. SAP HANA Cloud [Internet].
2023. Available from: https://www.sap.
com/uk/ products/technology-platform/
hana.html [Accessed: July 07, 2023]

[10] Cloudera, Inc. Cloudera Data
Platform [Internet]. 2023. Available
from: https://www.cloudera.com/
products/cloudera-data-platform.html
[Accessed: July 07, 2023]

[11] Kunigk J, Buss I, Wilkinson P,
George L. Architecting Modern Data
Platforms. 1st ed. Sebastopol: O’Reilly;
2019. p. 640

[12] Amazon Web Services, Inc. AWS
Lake Formation [Internet. 2022.
Available from: https://aws.amazon.
com/lake-formation/?c=a&sec=uc3
[Accessed: July 07, 2023]

[13] Google. Cloud data warehouse to
power your data-driven innovation
[Internet]. 2023. Available from: https://
cloud.google.com/bigquery/ [Accessed:
July 07, 2023]

[14] Microsoft. Azure Databricks
[Internet]. 2023. Available from: https://
azure.microsoft.com/en-gb/products/
databricks [Accessed: July 07, 2023]

[15] Almeida A, Brás S, Sargento S,
Pinto FC. Time series big data: A survey
on data stream frameworks, analysis and
algorithms. Journal of Big Data. 2023;
10(1):83. DOI: 10.1186/s40537-023-
00760-1

[16] White T. Hadoop. 4th ed.
Sebastopol: O’Reilly; 2015. p. 754

[17] Taylor D. Top 15 Big Data tools and
software [Internet]. 2023. Available
from: https://www.guru99.com/big-
data-tools.html [Accessed:
November 07, 2023]

[18] Chambers B, Zaharia M. The
Definitive Guide. 1st ed. Sebastopol:
O’Reilly; 2018. p. 603

23

Building a Big Data Platform Using Software without Licence Costs
DOI: http://dx.doi.org/10.5772/intechopen.1003268



[19] Vassilev V, Sowinski-Mydlarz V,
et al. Intelligence graphs for threat
intelligence and security policy
validation. In: Bansal P et al., editors.
Intelligent Systems and Computing. Vol.
1164. Springer; 2020. pp. 125-139.
DOI: 10.1007/978-981-15-4992-2_13

[20] Vassilev V, Phipps A, Lane M, et al.
Two-factor authentication for voice
assistance in digital banking using public
cloud services. In: Proc. 10th Int. Conf.
Confluence. Noida, India: IEEE; 2020.
pp. 404-409. DOI: 10.1109/
Confluence47617.2020.9058332

[21] Vassilev V, Ilieva S, Sowinski-
Mydlarz V, et al. AI-based hybrid data
platforms. In: Curry E et al., editors.
Data Spaces. Springer; 2022.
pp. 147-170

[22] Vassilev V, Ouazzane K, Sowinski-
Mydlarz V, et al. Network security
analytics on the cloud: Public vs. private
case. In: Proc. 13th Int. Conf.
Confluence. Noida, India: IEEE; 2023.
pp. 151-156. DOI: 10.1109/
Confluence56041.2023.10048889

[23] Vassilev V, Sowinski-Mydlarz V,
Mariyanayagam D, et al. Towards first
urban data space in Bulgaria. In: Proc.
IEEE Int. Smart Cities Conference.
Paphos, Cyprus: IEEE; 2022. pp. 1-7.
DOI: 10.1109/ISC255366.2022.
9922237

[24] Vassilev V, Virdee B, Ouazzane K,
et al. Data platform and urban data
services on private cloud. In: Zghang Y
et al., editors. Smart Trends in
Computing and Communications. Vol.
650. Springer LNNS; 2023. pp. 263-275.
DOI: 10.1007/978-981-99-0838-7_23

[25] Cesium GS, Inc. The platform for 3D
geospatial [Internet]. 2023. Available
from: https://cesium.com/ [Accessed:
November 07, 2023]

[26] OpenStreetMap Foundation. Planet
OSM [Internet]. 2023. Available from:
https://planet.openstreetmap.org/data
[Accessed: November 07, 2023]

[27] Fiware. Keyrock Identity Manager
[Internet]. 2023. Available from:
https://keyrockfiware.github.io/
[Accessed: July 14, 2023]

[28] Stiftelsen S. Grafterizer 2.0
[Internet]. 2023. Available from: https://
www.eubusinessgraph.eu/grafterizer-
2-0/ [Accessed: November 07, 2023]

24

Open-Source Horizons – Challenges and Opportunities for Collaboration and Innovation


