

Data Platforms, Clouds and Spaces: Integration & Hybridization in Data Processing

Vassil Vassilev

Professor in AI and Intelligent Systems London Metropolitan University – London, UK

Content

- 1 Contemporary Data Processing: From the Desktop to the Cloud and beyond
- 2 Data Platforms on the Private Cloud
- **3** Alternatives and Choices
 - The Data
 - * The Metadata
 - The Technologies
 - * The Tools
- 4 Conclusion: Where to go from here?

1 Contemporary Data Processing: From the Desktop to the Cloud and beyond

Source: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

- Hardware infrastructure
- ✓ Operating system
- Middleware software
- Execution environment

Data Platforms: Centralized Data Management, Data Processing and Service Provision

- Evolution of the industrial computing over the Internet
 - Computational Power to support computation hungry data processing
 - Storage Space to accommodate large amount of data
 - Support of large variety of data formats, transportation protocols and processing modes
 - > Extended lifecycle of the data from the source to the actual use
 - Fully centralised control of the development, deployment, operation and maintenance
- Proven best during the pandemics business as usual during total lockdown

Data Spaces: Decentralized Supply and Consumption of Data Services

- Initiative of Fraunhofer Institute in Germany to serve the needs of Germany's industry, focused on B2B
 - Addresses the need for information from external sources in digital format over the Internet (*access to external data*)
 - Does not require the data to be available at the place of its use (distributed data processing)
 - Retain the ownership while sharing data and services (*local control*)
 - Requires only two participants: provider (*sharing* the data it owns and/or *exposing* some data services) and consumer (*consuming* the shared data and/or *utilizing* the exposed data services) combined in a service-oriented architecture
- Adopted in EU (International Data Space Association, IDSA)

Data Space as Service-oriented Architecture (SOA)

Example: Urban Mobility Data Space

	City Mobility Centre	Environment Control Agency	Urban Planning Department
Data Shared	routes, places, vehicles, times	pollutions, standards, polluters	
Data Access Permissions	public (routes, places, times), restricted (vehicles, locations)	public (pollutions, standards), restricted (polluters)	
Operations Supported	locating, placing, timing	pollution, polluter determination	
Operations Rights	public (placing, timing), restricted (locating)	public (pollution), restricted (polluter)	
Data Consumed		routes, places, vehicles	vehicles, places, routes, pollutions, polluters
Operations Executed		placing, locating	place pollutions, vehicle pollutions, route pollutions

Data Platform support needed for Data Spaces

Data service consumption

> Identification of the services (addressing)
 > Identification of the consumers (authenticating)
 > Requesting the services (consuming)
 > Requesting the consumption (reporting)

✓ Data service provision

- « Registration of providers and consumers (identity management)
- Assignment of responsibilities for data sharing and service
 provisioning to providers (provider profiling)
- Assignment of rights for data access and privileges for operation execution to consumers (consumer profiling)
 [access and privileges for operation]
 [access and privileges for op
- « Identification of the communications (session tracking)
- « Logging of the operations (event logging)
- « Estimation of the consumptions (service reporting)
- « Calculation of the cost of consumption (billing)

Data platforms certification under GAIA-X initiative of IDSA

2 Data Platform on the Private Cloud

- Piloted at the Cyber Security Research Centre of London Metropolitan University with funding from UK DCMS & HEIF
 - Private cloud server, based on commodity architecture (Linux)
 - Public domain software for virtualization, containerization and orchestration of the server-side applications (Kubernetes, Docker)
 - Communal editions of enterprise software products for data management on the server (Postgres, MongoDB, Neo4J, Hadoop)
 - Free software for application development (Python, Java)
 - Web-based service development & deployment (Proxmox)
- Replicated by the partner organization, GATE Institute of Sofia University funded by BG Govt & EU Horizon 2020
- Tested in three different scenarios for data processing in real-time: real-time security analytics (completed), air quality assessment in Sofia and in London (ongoing)

Project 1: Real-time Security Data Analytics

Classification of Network Packets using Regression, NN and SVM methods

Model	Predicted regular packets:	Regular packets in test set:	Predicted ACK packets:	ACK packets in test set:	Predicted SYN packets:	SYN packets in test set:	Accuracy:
Neural Network	129	303	2023	1851	8	6	79%
Support Vector Machine	107	276	2050	1877	3	7	90%
Logistic Regression	417	258	1743	1893	Ó	9	71%
Linear Regression	791	255	1369	1897	0	8	60%

Legend

ACK	 acknowledgement flag confirming normal exchange of packets between two sites
SYN	 synchronization flag signaling initiation of normal communication between two sides

Detection of Potential Unauthorized Intrusions using CNN

Actual flags within the dataset	Predicted Suspicious Flags
---------------------------------	-----------------------------------

ACK packets in test set:	39913	Predicted ACK packets:	43647
SYN packets in test set:	13	Predicted SYN packets:	12
RST packets in test set:	165	Predicted RST packets:	164

Legend

12

- acknowledgement flag confirming normal exchange of ACK packets between two sites
- synchronization flag signaling initiation of normal SYN communication between two sides
- warning flag sent after anomaly has been detected in the RST previous communication

Project 2: Outdoor Air Pollution

Собръщало на автобусен тратмпорт Суха с редон РА "Красна полавалед автобу кв. Служист РА "Красна полавалед автобу кв. Служист РА "Красна полавалед автобу кв. Служист Спарк "Хиподрума" Кв. Иван Вазов 104"Овча купел" 29 ДКЦ - "Борово"

район "Стулемладост

Поликлиника "Враждебна"

Q 🛱 🌐 🎆

?)

'id': 6, 'deviceld': 'AT22533432', 'type': 'Develiot', 'longitude': 23.413528, 'latitude': 42.711722, 'address': 'кръстовище на ул.28 и ул.59', 'name': 'Поликлиника "Враждебна" - При повишена влажност е възможно да има отклонения в измерените стойности', 'description': None, 'installationDate': '2019-09-04T00:00:00', 'powerSupply': 4, 'contactOrganisation': 'TBS', 'contactEmail': 'servicedesk@telelink.com', 'contactPhone': '02/920 40 40', 'organisation': 'SofiaMunicipality', 'createdAt': '2019-12-23T17:34:02.853207', 'updatedAt': '2023-01-17T14:37:42.987613', 'lastActivity': '2023-03-15T17:34:39.81436', 'isOnline': True

TIME : 2023-06-22T13:00:00Z CO : 0.37740870776189367 HUMIDITY : 68.62633333333333 NO2 : 91.71093665622357 O3 : 72.35140105358326 PM10 : 0.34297773889441996 PM2 : 0.16940282493172 PRESSURE : 949.4343333333333 SO2 : 13.573515648226333 TEMP : 22.205

Sofia Air

London Air

Logical Analysis of Air Pollution by combining Ontological and Sensor Data

City Ontology in OWL

Logical Analysis of Air Pollution by combining Ontological and Sensor Data

- Identifying location of the sensor station meta-data stored in MongoDB Database
- Loading individual descriptions of the objects from the city ontology stored in Neo4J Database
- Calculating the distance between air quality station and the objects in Cypher query language
- Analysing the air quality measurements at this location in Python

Project 3: Indoor Air Pollution Analysis

3D buildings reconstruction using 2D floor map (Sofia)

			Dia	# @	?
Outdoor Devices	Outdoor Measurements	Outdoor Statis	stics 📔 Indoor 🛛	Devices (to be addeo	d)
Indoor Measurem	ents Indoor Statistics (to	be added)	Internal I	LMU Air Quality	×
		1	Field name	Value	
			created_at	'2022-07- 02T14:03:28Z'	
		may have	entry_id	46750	
A COL	- Alan		PM1.0	'1.00000'	
	1- 31	Teles	PM2.5	'1.00000'	
	A FEE		PM10	'1.00000'	
ATT A			Temperature	'nan'	
E A A		EXXX.	Pressure	'nan'	
	A STATE	1919	Humidity	'0.00000'	
	The second	a rain	eCO2	'424.00000'	
		F	tVOC	'3.00000'	
		N. C.C.	SXI.		A
Jul 4 2022 04:24:26 UTC	Upg	ade for commercial us	e. Data attribution	12 1 1	
	Jul 4 2022 12:	00:00 UTC	Jul 5	2022 00:00:00 UTC	K X

Indoor air quality assessment using sensor data (London)

Correlation between Outdoor and Indoor levels of Particles in the Air

PM10 Measurements - Holloway Road

Correlation Matrix

Indoor Value	Outdoor Value
1	0.3634504520543431
0.3634504520543431	1

3 Alternatives and Choices: Data, Metadata, Technologies and Tools

- The data is on multiple scales different formats, granularity, volume, noise, location...
- The tasks for data analysis have large diversity detection, recognition, classification, correlation, factorisation, prediction...
- There is a variety of methods with different applicability temporal, structural, logical, model-driven, behavioural, hybrid
- Data analysis is performed as part of complex workflows sampling, aggregation, buffering, feature selection, training, validation, analysis, merging, interpretation, explanation...
- The applications may require significant resources (both in terms of memory and computing power).
- Al technologies for data processing need to be comprehensive to reach wide community of users.

All about Data

Data Types	Data Sources	Ingestion Methods	Transport Protocols
Samples	Hardware (external devices, infrastructure)	One-off	memory sharing, parameter passing
Files	OS (clients, suppliers)	One-off, Batch	FTP, HTTP, SCP, WebDAV, etc.
Messages	Events (Messengers, Listeners, Loggers)	One-off, Batch, Continuous	MQTT, AMQP, SMS/MMS, RCS, SOAP, etc.
Repository Collections	Drivers (databases, data warehouses, data lakes)	One-off, Batch	native to the repository
Streams	APIs (sensors, service providers)	Continuous	native to the streaming

The Metadata and its Utilization

- ✓ Understand the data for **better design** of applications
- Enrich semantically the data for more informative and more convenient handling

C Fulders

· Pale Treasury

BATTERY AND

8 7NJ_800

· G.PMIG

. O. PHE

0.00

ER/UML >>> SQL DB, ER files

+ 2014F

. 0. PMIE

O Meanseners

RDF/XML >>> Graph DB, XML files

M. Terri

· si him

. TIMP

8 212,03

BENGOR, DURT, PMIL

 Prepare the data for further storage and processing

JSON >>> NoSQL DB, JSON files

Technologies for Data Processing

Different Stages along the Data Processing Pipeline: At the source, Before transmission, During transmission, On arrival, Within repository, After retrieval, etc.

Different Structure and Formats of the Data: structured (CSV, SQL), semi-structured (JSON, XML) and unstructured (binary, text, pictures, video)

Different Preparation of the Rough Data: Filtering, Formatting, Anonymisation, Normalization, Enrichment, Aggregation, Reconciliation, Buffering, Accumulation, etc.

Different Methods for Data Analysis: Statistics, Regression, Correlation, Clustering, Graph based, Rule based, Neural, Genetic, Swarm, Deep Learning, Reinforcement Learning, etc.

Different Interpretations of the Results: Simple **r**eporting, Blackbox explanation, Whitebox explanation, Causal explanation, Impact factor analysis, etc.

Software for Data Pipelines on the Cloud

Туре	Software	Context
Virtual Machine	VMWare Workstation, Oracle VM, KVM Windows 10, MS Linux, etc.	OS or hypervisor
Hypervisor	VMWare vSphere, Oracle Virtual Box, MS Hyper-V, Linux KVM	OS
Container	Docker, LXC, Windows Containers, Portainer, Podman	OS, VM or container manager
Container Manager	Google Kubernetes, Apache Mesos, Docker Swarm, HashiCorp Nomad	OS
Engine	code interpreter (i.e., Python)	OS, VM or container
Server	off-the-shelf software (i.e., MongoDB)	OS, VM or container
Application	general server-side component (i.e., service registry)	Engine or server, deployed to OS
Service	domain-specific server-side component (i.e., sensor data filter)	Engine or server, deployed to VM
Microservice	application-specific server-side component (i.e., 2D city map)	Engine or server, deployed to container

Advantages of Cloud-based Data Platforms

Containerization

- Modularization with no dependencies to set
- Efficiency in memory, CPU, and storage usage
- Application containers are portable across platforms without code changes
- Support for configuration
 generation through the use of parametrization and templates
- Full traceability of the operations for testing and debugging purposes

Orchestration

- Model-driven application development
- Support for reusability of existing solutions in the form of process workflows
- Support for auditing of data processing pipelines for monitoring, analysing and billing purposes
- Support for reproducibility by preserving data dependencies
- Possibility for process automation based on workflow models and planning heuristics

4 Where to go from here?

- > Cross-domain integration of data and analytics (environment & transport, environment & healthcare, healthcare & social services, etc.)
 - >> Combining real-time with historical data for trends analysis of process dynamics (retrospective & predictive analytics)
 - >>> Further logical analysis based on the use of data formats which allow combining geolocation data with sensor data (CityGML, GeoJSON, KML, etc.)
 - >>>> Building navigation and heat maps by linking spatial, geolocation and numerical data (3D and VR simulations)
 - >>>> Model optimization and adaptation through further hybridization (reinforcement learning)

Publications

- [1] V. Vassilev, B. Virdee, K. Ouazzane, D. Maryanayagam, V. Sowinski-Mydlarz, et al., "Data Platform and Urban Data Services on Private Cloud", in: *Proc. Int. Conf. Smart Trends in Computing and Communications* (SmartCom 2023), 16-17 Jan 2023, Jaipur, India (IEEE, in print).
- [2] V. Vassilev, K. Ouazzane, V. Sowinski-Mydlarz, et al., "Network Security Analytics on the Cloud: Public vs. Private Case", in: Proc. 13th Int. Conf. Cloud Computing, Data Science & Engineering (Confluence 2023), 19-20 Jan 2023, Noida, India (IEEE, in print).
- [3] **V. Vassilev**, **V. Sowinski-Mydlarz**, **D. Mariyanayagam**, **et al.**, "Towards first urban data space in Bulgaria", in: *Proc. Int. Smart Cities Conference* (ISC2), Paphos, Cyprus, pp. 1-7 (IEEE, 2022).
- [4] V. Vassilev, D. Donchev and D. Tonchev, "Risk Assessment in Transactions under Threat as a Partially Observable Markov Decision Process", In: L. Amorosi, P. Dell'Olmo, and I. Lari (eds.), Optimization in Artificial Intelligence and Decision Sciences, pp. 199-212, (Springer, 2021).
- [5] V. Vassilev, S. Ilieva, D. Antonova, V. Sowinski-Mydlarz, et al., "AI-based Hybrid Data Platforms", in: E. Curry et al. (eds.), Data Spaces: Design, Deployments and Future Directions, pp. 147-172 (Springer, 2021).
- [6] V. Vassilev, V. Sowinski-Mydlarz, P. Gasiorowski, K. Ouazzane, et al., "Intelligence Graphs for Threat Intelligence and Security Policy Validation of Cyber Systems", in: *P. Bansal et al. (eds.), Advances in Intelligent Systems and Computing*, Vol. 1164, pp. 125-140 (Springer, 2020).

Questions?