

Data Platforms, Clouds and Spaces: Trends in Contemporary Data Processing

Prof. Vassil Vassilev & Team

Cyber Security Research Centre

SCDM, 28 Sep 2022

Content

- 1 Contemporary Data Processing
- **2** Data Platform of Cyber Security Research Centre

3 Alternatives and Choices

- The Data
- * The Metadata
- The Technologies
- * The Tools

4 The Lifecycle

- > Design
- > Development
- > Deployment
- > Orchestration
- Monitoring
- Auditing

5 Where to go from here?

1 Contemporary Data Processing: From the Desktop to the Cloud

Source: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

- Hardware infrastructure
- ✓ Operating system
- ✓ Middleware software
- Execution environment

Data Spaces: Decentralized Supply and Consumption of Data Services

- Initiative of Fraunhofer Institute in Germany to serve the needs of Germany's industry, heavily based on B2B
 - Addresses the need for information from external sources in digital format over the Internet (*accessibility*)
 - Does not require the data to be available at the place of its use (*distribution*)
 - Retain the ownership while sharing the data and services (control)
 - Requires only two participants: provider (*sharing* the data it owns and/or *exposing* some data services) and consumer (*consuming* the shared data and/or *utilizing* the exposed data service for its own use); they can be combined in the same service-oriented architecture (client/server+server/server+peer-to-peer)

Adopted across EU (International Data Space Association, IDSA)

Example: Urban Mobility Data Space

	City Mobility Centre	Environment Control Agency	Urban Planning Department
Data Shared	routes, places, vehicles, times	pollutions, standards, polluters	
Data Access Permissions	public (routes, places, times), restricted (vehicles, locations)	public (pollutions, standards), restricted (polluters)	
Operations Supported	locating, placing, timing	pollution, polluter determination	
Operations Rights	public (placing, timing), restricted (locating)	public (pollution), restricted (polluter)	
Data Consumed		routes, places, vehicles	vehicles, places, routes, pollutions, polluters
Operations Executed		placing, locating	place pollutions, vehicle pollutions, route pollutions

Data Space as Service-oriented Architecture

Data Platform support needed for Data Spaces

Data service consumption

> Identification of the services (addressing)
 > Identification of the consumers (authenticating)
 > Requesting the services (consuming)
 > Requesting the consumption (reporting)

✓ Data service provision

- « Registration of providers and consumers (identity management)
- Assignment of responsibilities for data sharing and service
 provisioning to providers (provider profiling)
- Assignment of rights for data access and privileges for operation execution to consumers (consumer profiling)
 [access and privileges for operation]
 [access and privileges for op
- « Identification of the communications (session tracking)
- « Logging of the operations (event logging)
- « Estimation of the consumptions (service reporting)
- « Calculation of the cost of consumption (billing)

Data platforms certification under GAIA-X initiative of IDSA

2 Data Platform of Cyber Security Research Centre

- Piloted at the Cyber Security Research Centre of London Metropolitan University with funding from DCMS and HEIF
 - Private cloud, based on commodity server architecture
 - Public domain software for virtualization, containerization and orchestration of the server-side applications
 - Communal editions of enterprise software products for data management on the server
 - Free software for application development
 - Web-based interfaces for service deployment and use
- Replicated by the partner organization, GATE Institute of Sofia University
- Tested in three different scenarios for data processing in realtime: security analytics, outdoor air pollution in London and indoor air pollution factor analysis

Project 1: Real-time Security Data Analytics

Classification of Network Packets using Regression, NN and SVM

Model	Predicted regular packets:	Regular packets in test set:	Predicted ACK packets:	ACK packets in test set:	Predicted SYN packets:	SYN packets in test set:	Accuracy:
Neural Network	129	303	2023	1851	8	6	79%
Support Vector Machine	107	276	2050	1877	3	7	90%
Logistic Regression	417	258	1743	1893	0	9	71%
Linear Regression	791	255	1369	1897	0	8	60%

Legend

ACK	 acknowledgement flag confirming normal exchange of packets between two sites
SYN	 synchronization flag signaling initiation of normal communication between two sides

Detection of Potential Unauthorized Intrusions using CNN

ACK packets in test set:	39913	Predicted ACK packets:	43647
SYN packets in test set:	13	Predicted SYN packets:	12
RST packets in test set:	165	Predicted RST packets:	164

Legend

- acknowledgement flag confirming normal exchange of ACK packets between two sites
- synchronization flag signaling initiation of normal SYN communication between two sides
- warning flag sent after anomaly has been detected in the RST previous communication

Project 2: Outdoor Air Pollution in London

Harrow - Stanmore Q 🛱 🌐 w West Outdoor Devices Outdoor Measurements Outdoor Statistics Indoor Devices (to be added) Indoor Measurements Indoor Statistics (to be added) Hackney - Queensbridge Road Hanngey Bounds Green Haringey - Haringey Wallham | orest - Crooker Barnet - Shawbeny Vale LocalAuthorityCode 12 Redbude LocalAuthorityName Hackney Hamel Limiteley Orent Kingsbury SiteCode HK9 Harrow -Finner Road Hackney - Queensbridge Road BURRY PURK Park South SiteName Roadside SiteType DateClosed 2022-02-01T00:00:00 DateOpened 51.539324 Latitude Watham Longitude -0.070078971 Waitham Forest Levic LatitudeWGS84 6717254.12686 South Ruislip alt allo Mansderk Lano LongitudeWGS84 -7801.1553 Hackney LANDARS BARANTON Library **DisplayOffsetX** Greenshotd DisplayOffsetY lington ingerkäteeta Hackney DataOwner Primary School - MANA-KARI Len ART raik Matthe and a same share in terrate DataManager King's College London http://www.iondonair.org.uk/london/asp/pub SiteLink site=HK9 Hom Land Reasonation and C Calino Faling Town Hall uthall FDMS Southall Railway Ealing Action Tewn Hall F2M(5c) Ealing Classification Fulham Snept insiow and Ealing SEEDMS C Dourslow Hrendord A206 Burrage Ginve mwich - Plumslead H Land (Hoskins SI settine start and a start of the set Richmond Upon Hiames - Casle Winslow Heston Road "Wandsworth: Gatlersea BRAYING MARINE Richmond Upon Inames Barnes Wellands Southwark - Vicar age Chun Greenwich Blackheath Slade Rephilderstmelt cho blantstatestitionough JunctLewistiam. Laenpr Vale Wabdsworld . Greenwich - Westhernwichessaironwood FDMS Rectimond Upon Huames Chertsey-Road Blankey R. I Cirency way, is - in Research Lewisham - Henor Oak Park Fellher Eambeth Cresteburch Road South Circular Road - Latitide House Cation Kingston Upon Thames - Kingston Vale Greenwich - Fiveways Sidcup Rd A20 Wandsworth : Amplian Helle Siftent Green Wandsworth Tooling Crystal Palace: Crystal Palace Parade I water and water faster By Kreddington don Metton Road ANSAN HAND FRAMES STOREN Bromley Rent Office HARRING N NYKAY Manor Hannisk Hannah Avenu Croydan - Housian Heath Marton - Marden Civic Centre 2 Merton - Willow Lane Industrial Estate ution Heckington Lane north ul 23 2022 53 54 UT CESIUM

Logical Analysis of Air Pollution by combining Ontological and Sensor Data

- Identifying location of the sensor station meta-data stored in MongoDB Database
- Loading individual descriptions of the objects from the city ontology stored in Neo4J Database
- Calculating the distance between air quality station and the objects in Cypher query language
- Analysing the air quality measurements at this location in Python

Project 3: Indoor Air Pollution Analysis

Correlation between Outdoor and Indoor levels of Particles in the Air

PM10 Measurements - Holloway Road

Correlation Matrix

Indoor Value	Outdoor Value
n -	0.3634504520543431
0.3634504520543431	1

3 Alternatives and Choices: Data, Metadata, Technologies and Tools

- The data is on multiple scales different formats, granularity, volume, noise, location...
- The tasks for data analysis have large diversity detection, recognition, classification, correlation, factorisation, prediction...
- There is a variety of methods with different applicability temporal, structural, logical, model-driven, behavioural, hybrid
- Data analysis is performed as part of complex workflows sampling, aggregation, buffering, feature selection, training, validation, analysis, merging, interpretation, explanation...
- The applications may require significant resources (both in terms of memory and computing power).
- Al technologies for data processing need to be comprehensive to reach wide community of users.

All about Data

Data Types	Data Sources	Ingestion Methods	Transport Protocols
Samples	Hardware (external devices, infrastructure)	One-off	memory sharing, parameter passing
Files	OS (clients, suppliers)	One-off, Batch	FTP, HTTP, SCP, WebDAV, etc.
Messages	Events (Messengers, Listeners, Loggers)	One-off, Batch, Continuous	MQTT, AMQP, SMS/MMS, RCS, SOAP, etc.
Repository Collections	Drivers (databases, data warehouses, data lakes)	One-off, Batch	native to the repository
Streams	APIs (sensors, service providers)	Continuous	native to the streaming

The Metadata and its Utilization

- ✓ Understand the data for **better design** of applications
- Enrich semantically the data for more informative and more convenient handling

C Fulders

· Pale Treasury

BATTERY AND

8 7NJ_800

· G.PMIG

. O. PHE

0.00

ER/UML >>> SQL DB, ER files

+ 2014F

. 0. PMIE

O Meanseners

RDF/XML >>> Graph DB, XML files

M. Terri

· si him

. TIMP

8 212,03

BENGOR, DURT, PMIL

 Prepare the data for further storage and processing

JSON >>> NoSQL DB, JSON files

Technologies for Data Processing

Different Stages along the Data Processing Pipeline: At the source, Before transmission, During transmission, On arrival, Within repository, After retrieval, etc.

Different Structure and Formats of the Data: structured (CSV, SQL), semi-structured (JSON, XML, RDF, SVG, etc.) and unstructured (binary, text, graphics, video)

Different Preparation of the Rough Data: Filtering, Formatting, Anonymisation, Normalization, Enrichment, Aggregation, Reconciliation, Buffering, Accumulation, etc.

Different Methods for Data Analysis: Statistics, Regression, Correlation, Clustering, Graph based, Rule based, Neural, Genetic, Swarm, Deep Learning, Reinforcement Learning, etc.

Different Interpretations of the Results: Simple **r**eporting, Blackbox explanation, Whitebox explanation, Causal explanation, Impact factor analysis, etc.

Software for Data Pipelines on the Cloud

Туре	Software	Context
Virtual Machine	VMWare Workstation, Oracle VM, KVM Windows 10, MS Linux, etc.	OS or hypervisor
Hypervisor	VMWare vSphere, Oracle Virtual Box, MS Hyper-V, Linux KVM	OS
Container	Docker, LXC, Windows Containers, Portainer, Podman	OS, VM or container manager
Container Manager	Google Kubernetes, Apache Mesos, Docker Swarm, HashiCorp Nomad	OS
Engine	code interpreter (i.e., Python)	OS, VM or container
Server	off-the-shelf software (i.e., MongoDB)	OS, VM or container
Application	general server-side component (i.e., service registry)	Engine or server, deployed to OS
Service	domain-specific server-side component (i.e., sensor data filter)	Engine or server, deployed to VM
Microservice	application-specific server-side component (i.e., 2D city map)	Engine or server, deployed to container

Advantages of Cloud-based Data Pipelines

Containerization

- Modularization with no dependencies to set
- Efficiency in memory, CPU, and storage usage
- Application containers are portable across platforms without code changes
- Support for configuration
 generation through the use of parametrization and templates
- Full traceability of the operations for testing and debugging purposes

Orchestration

- Model-driven application development
- Support for reusability of existing solutions in the form of process workflows
- Support for auditing of data processing pipelines for monitoring, analysing and billing purposes
- Support for reproducibility by preserving data dependencies
- Possibility for process automation based on workflow models and planning heuristics

Take away: Always Informed Decisions with Optimal Choices

- covering the full extent: generation, pre-processing, transportation, post-processing, analysis, interpretation, reporting, etc.
- constructing the richest models: features, types, structures, constraints, annotations, indexes, etc.
- selecting the most appropriate methods: statistic, clustering, rulebased, graph-based, ML, RL, etc.
- using the most convenient tools: programming languages, engines, libraries, APIs, software tools, development methodologies
- placing in the right context: operating systems, virtual machines, containers, runtime engines
- managing with an adequate organisation: resources, policies, tasks, users

4 Data Services Lifecycle: DataOps in Action

- **DataOps:** "A set of practices, processes and technologies that combines an integrated and process-oriented perspective on data with automation and methods of agile software engineering to improve quality, speed, and collaboration and promote a culture of continuous improvement in the area of data analytics"
 - Logical specification
 - Physical design
 - Software development
 - Application deployment
 - Service orchestration
 - Process monitoring
 - Operations auditing

Logical Specification: Data sources, Information Flows & Services

- ✓ Data sources
- Data processing services
- Parametric dependencies
- Information flows between services

Physical Design: Software Components

- Data formats, files and protocols
- Client-side and thirdparty provider APIs
- Server-side services and containerized microservices
- Language interpreters and runtime engines
- Configuration files, templates & scripts

Software Development: Resource access using Proxmox VE

	nvironment 7.1-12 S	earch		Documentation	Greate VM 😭 Greate CT 🔒 wikto	r@pam 🖣
erver View 🗸		(GL-DOCDB-01) on node 'vg'		► Start 🖒 St		O Help
erver View Datacenter D	Virtual Machine 125 (Summary Console Hardware Cloud-Init Options Task History Monitor Snapshots Firewall	GL-DOCDB-01 (Uptime: 4 days 07: i Status HA State Node CPU usage Memory usage Hootdisk size HPs CPU usage 0 0 0 0 0 0 0 0 0 0 0 0 0	18:44) running none vg 5.74% of 4 CPU(s) 59.75% (19.12 GiB of 32.00 GiB) 250.00 GiB 194.141.1.66 fe80:8092:d8ff:fe8d:o4d More 2022-07-05 2022-07-05 2022-07-05 13:47:00 13:52:00 13:57:00 14:02:00	Notes 125 - GL-DOCDB-01 - 194.141.1.66 - W	Hour (average) //ktor 16Gb/4CPU/250Gb	© ©
		Memory usage			📀 Total 🛛 🕤 RAM usa	ge
		32 Gi -				

Application Deployment: Component Management using OS, VM and Docker

Service Orchestration: Workflow Scheduling and Execution using AirFlow

2	Airflow	DAGs Da	ta Profiling 💙	Browse 🗸	Admin 🛩 Do	cs ❤ About ❤			2022-07-02 04:46:10 UTC	
DA	DAGs Search:									
	0	DAG		Schedule	Owner	Recent Tasks	Last Run	DAG Runs 🕄	Links	
ß	Off	correlation		@once	airflow				҈♥♥₩₩₽★≥ ≠ ≣♡⊗	
Ø	Off	ingest_kafka_dat	а	@once	airflow				⊙♥≉ di 🛍 ★ ☰ ☰ ᢒ 😣	
Ø	Off	ingest_mqtt_data		@once	airflow				⊙∮≉∦₿★≡≁≡S⊗	
ß	Off	Initial_Model		@once	airflow	20000000	2022-06-30 00:00 🚯		⊙♥≉ di 🖬 ★ ☰ ☰ ᢒ 😣	
Ø	Off	Initial_Model_CN	N	@once	airflow	20000000	2022-06-30 00:00		⊙♥♥₩₩₩★≥ ∮ ≣©⊗	
Ø	Off	Live_Stream_And	d_Update	*/5 * * * *	airflow				⊙♥≉ di 🖬 ★ ☰ ☰ ᢒ 😣	
ß	Off	Simulate_Stream	ing	*/10 * * * *	airflow		2022-07-01 09:30 6		⊙ ♥ ♥ ₼ № ★ ≝ ≁ ≣ C ⊗	

Showing 1 to 7 of 7 entries

Hide Paused DAGs

Process Monitoring: Execution Statistics gathering using MLFlow

A Not secure | 194.141.1.6.5000/#/experiments/0/runs/352ad13144e4476ab3c888ccf

Number of new ACK packets streamed 🗠	974
umber of new RST packets streamed	2
lumber of new SYN packets streamed	23
lumber of new regular packets streamed	0
lumber of predicted ACK	977
lumber of predicted RST	2
lumber of predicted SYN 🗠	20
lumber of predicted regular packets	0
lumber of ACK packets in initial test set 🗠	2008
lumber of RST packets in initial test set 🗠	0
lumber of SYN packets in initial test set 🗠	0
lumber of new samples used for training 🗠	999
lumber of regular packets in initial test set	4260
est accuracy - current model 🗠	0.983
est accuracy - updated model	0.32

Tags

C

Name	Value	Actions	

Operations Auditing: Event Log Analysis and Reporting using **Elasticsearch and Kibana**

5 Where to go from here?

- Cross-domain integration of both data and analytics (i.e., environment and transport, environment and healthcare, healthcare and social services, environment and social services, etc.)
- Combining of real-time data with historical data for trends analysis and investigation of process dynamics (retrospective and predictive analytics)
- Localization of the data sources using rich data formats which allow combining geolocation data with sensor data (using richer representations such as semantic in GeoJSON and layering in KML)
- Spatial navigation to data sources by linking spatial ontologies and sensor data (using VR and games engines)
- Combining sensor data, symbolic meta-data and ontological information for logical analysis of the data beyond the pure data patterns (hybridization)

Publications

- [1] V. Vassilev, B. Virdee, K. Ouazzane, D. Maryanayagam, V. Sowinski-Mydlarz, et al., "Data Platform and Urban Data Services on Private Cloud", in: *Proc. Int. Conf. Smart Trends in Computing and Communications* (SmartCom2023), 24-25 Jan 2023, Jaipur, India, IEEE, 2023 (in print).
- [2] V. Sowinski-Mydlarz, V. Vassilev, K. Ouazzane, and A. Phipps, "Security analytics framework validation based on threat intelligence", in: *Proc. 9th Annual Conf. Computational Science and Computational Intelligence* (CSCI2022), Dec 14-16, 2022, Las Vegas, USA, IEEE, 2023 (in print).
- [3] V. Vassilev, V. Sowinski-Mydlarz, D. Mariyanayagam, et al., "Towards first urban data space in Bulgaria", in: *Proc. Int. Smart Cities Conference* (ISC2), 26-29 Sep 2022, Paphos, Cyprus, IEEE, 2022.
- [4] V. Vassilev, S. Ilieva, D. Antonova, V. Sowinski-Mydlarz, et al., "Albased Hybrid Data Platforms", in: Curry, E., Scerri, S. and Tuikka, T. (eds.), Data Spaces: Design, Deployments and Future Directions, pp. 147-172, Springer, 2021.
- [5] V. Vassilev, V. Sowinski-Mydlarz, P. Gasiorowski, K. Ouazzane, et al., "Intelligence Graphs for Threat Intelligence and Security Policy Validation of Cyber Systems", in: *P. Bansal et al. (eds.), Advances in Intelligent Systems and Computing*, Vol. 1164, pp. 125-140, Springer, 2020.

Questions?