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ABSTRACT This paper proposes a transmitter system based on direct antenna amplitude-shift keying mod-
ulation for point-to-point microwave link. The proposed system is formed from a conventional microstrip
antenna and a novel reconfigurable metasurface layer (RMSL). The proposed RMSL has two states:
OFF (or Logic-0) and ON (or Logic-1) where each switching scenario provides a certain gain level. This
is achieved through controlling the proposed RMSL switching configuration to control the amplitude of the
transmitted signal. Results show that such a system can modulate electromagnetic signals directly by varying
the antenna’s gain from about 2 dBi for Logic-0 to 13.8 dBi for Logic-1. An analytical model-based ray-
tracing technique is invoked to explain the operation of the proposed antenna system. To demonstrate the
operation of the proposed system, both the antenna and the RMSL structures were fabricated, assembled and
tested. Measurements show good agreement with the theoretical model and numerical simulations obtained
using CST Microwave Studio software package. The overall system has dimensions of 25 × 25 × 7.3 cm3.

INDEX TERMS ASK modulation, direct antenna modulation, microstrip antenna, reconfigurable
metasurface.

The associate editor coordinating the review of this manuscript and

approving it for publication was Debabrata K. Karmokar .

I. INTRODUCTION
Amplitude-shift keying (ASK) is a digital modulation scheme
that was invented for modern wireless communication
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networks where the amplitude of the carrier wave is varied
in accordance with the baseband data source [1]. In any
wireless communication system, the carrier wave, which is
a sinusoidal signal of a high frequency corresponding to
the radio frequency (RF) channel of interest, is modulated
with the baseband data prior to transmission. The digital
signal is upconverted using a mixer, which is a nonlinear
device. The output of the mixer needs to be filtered to remove
intermodulation artifacts generated in the modulation process
and the resulting signal is amplified with a power amplifier
(PA) before transmission [1]. Unfortunately, high peak-to-
average-power ratio of the baseband signals can cause the
PA, which is a nonlinear device to generate spuria responses
that can interfere with other wireless systems. To eliminate
this issue a relative new technique has been developed and
is referred to as direct antenna modulation (DAM) [2]. This
modulation scheme uses the baseband data to control the
radiation properties of an antenna to generate a modulated
signal.

Various approaches of DAM have been presented in litera-
ture [3], [4], [5], [6]. Many researchers achieved ASK-DAM
by controlling the antenna input impedance. In [7] it is
shown that although reconfigurable antenna systems could
fulfil the requirements for smart communication systems
however, they have limitations for application in most types
of modulation schemes. The authors in [8] designed a DAM
based on array of switchable passive reflectors. Pulse dura-
tion modulation was achieved directly with a multiple/input-
multiple/output (MIMO) system through timed switching for
antennas [9].
In [10] a new feed mechanism is proposed for an elec-

trically small antenna. Using this technique, an arbitrary
amplitude-modulated waveform can be transmitted through
a high-Q electrically small transient-state antenna. In [11]
and [12] a new strategy involving direct transmission of data
via programmable coding RMSL is employed to modulate a
signal. In [13] it is shown that the use of metasurface struc-
tures can be used to enhance the performance of an antenna as
well as the electromagnetic wave characteristics. Moreover,
it is shown that metasurface can be used to for beam forming
applications. In [14], a high gain RMSL-antenna is pre-
sented. This antenna was further developed in [15] to realize
gain variation by changing the metasurface array dimen-
sions. A reprogrammable hologram was produced based on a
one-bit metasurface for imaging applications in [16]. In [17]
microwave imaging is proposed based on 2-bit programmable
metasurface for a single sensor at a single frequency. Scatter-
ing diffusion is improved in [18] using an active metasurface
at THz frequencies. The authors of [19] presented dual band
metasurface operating at microwave frequencies. In [20],
a digital coding transmissive RMSL is proposed that pro-
duces multiple beams. In [21] and [22], a multifunctional
coding RMSL has been suggested as a means of producing
dual-circularly polarized beams.

In this paper, the design of an ASK-modulator based
on patch antenna-RMSL is presented for point-to-point

microwave link. The proposed ASK-modulator technique
addresses the nonlinearity issue with power amplifiers and
reduces the complexity and expense of the transmitter. The
proposed system can be used in many wireless communica-
tion applications including near-field [8], fixed point-to-point
microwave link, Radar [23], remote sensing [24], DAM [25]
and medical applications [26].

II. SYSTEM OPERATION
The proposed system basically consists of two components,
i.e., a microstrip antenna having a gain of about 1 dBi gain
(Gt), and a RMSL consisting of 5× 5 unit cells. The unit cells
are controlled by a group of light-dependent resistors (LDR).
The RMSL is used to enhance the gain of the microstrip
antenna, which is controlled by the activation status of the
LDR. If the LDR devices are OFF, the microstrip antenna
gain is about 2 dBi, however when LDR devices are ON, the
microstrip antenna gain is enhanced to about 13.8 dBi. The
resultant gain achieved is thus:

Gt =

{
2 dBi status : OFF
13.8 dBi status : ON

(1)

The gain improvement in the ON state results by the improve-
ment of the impedance matching of the metasurface layer
and the increase in the effective aperture area of the antenna.
In [27] it’s shown how metasurface can change the radiation
phase of a patch antenna to an in-phase profile such that
the antenna radiates like a planar wave thus enhancing the
antenna’s performance.

The received power (Pr) at the proposed antenna for a fixed
point-to-point microwave link is given by Friis transmission
equation [28]

Pr = Pt + Gr + 20 log
(

λ

4πR

)
+

{
2 dBi status : OFF
13.8 dBi status : ON

(2)

where Pt is the transmitted power (dB), Gr is the receiver
gain (dBi), λ is the wavelength (m) and R is the distance
between the transmitter and the receiver (m). Equation (2)
clearly shows that using the proposed RMSL, the transmitted
power can be boosted according to the activation status of the
LDR devices. If the RMSL is managed via a data source via a
microcontroller, the transmitted power will represent the data.
Fig. 1 illustrates the proposed system as an ASK-modulator.

III. ANTENNA DESIGN
The proposed antenna is based on the design of a standard
microstrip patch antenna where the width (W ) and the length
(L) can be determined from the following expressions [28]:

W =
c
2fo

√
2

εr + 1
(3)

L =
c

2fo
√
εeff

− 0.824h

[(
εeff + 0.3

) (W
h + 0.264

)(
εeff − 0.258

) (W
h + 0.8

)]
(4)
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FIGURE 1. System schematic of the proposed ASK modulator.

where

εeff =
εr + 1

2
−
εr − 1

2

 1√
1 + 12 h

W

 (5)

Fig. 2 shows the design of the proposed microstrip antenna
at 2.45 GHz, where the patch antenna is directly fed through
a coaxial probe of a 50 � SMA port. The patch geometry is
based on a truncated rectangular structure that was inspired
by [29]; however, the patch edges have been etched to create
corrugated slots. The purpose for this is to reduce unwanted
surface effects that can compromise the antenna’s impedance
matching characteristics. It should be noted that the slots
have been known to affect the symmetry of the radiation
pattern [15]. The FR4 material with εr = 4.3, tan δ = 0.025,
and thickness of 2 mm was chosen to implement the antenna.
The corresponding dimensions of the slot in terms of wave-
length are as follows: 7.5 mm= 0.061λo, 3.5 mm= 0.028λo,
4.5 mm = 0.036λo, and 1.2 mm = 0.0098λo where λo
is the center frequency. The rectangular grove has a width
of 0.008λo, larger side length of 0.01λo and shorter side
length of 0.01λo. These values were obtained through opti-
mization using CST Microwave Studio (MWS).

IV. RMSL DESIGN
The unit cell, which is shown in Fig. 3, is constructed from
microstrip-lines, cross with T-shaped ends also commonly
referred to a crutch cross, and U-shaped resonant structures.
The motion of the electrical current over the structure is
controlled by the four LDR devices which eliminate the
limitations of the traditional patches [30]. The LDR devices
provide a mechanism to control the antenna gain in both the
azimuth and zenith planes. The dimensions of the unit cell
are approximately λ/2 at the operating frequency according
to the criterion given in [31].

FIGURE 2. Microstrip antenna patch details in millimeter scale.

FIGURE 3. Metasurface unit cell structure in millimeter scale.

Electromagnetic characterization of the proposed unit cell
was investigated numerically using CST MWS in [32].
To evaluate the constitutive characteristics of the unit cell,
it was located at the center of a virtual waveguide, as illus-
trated in Fig. 4. The top and bottom sides (perpendicular to
the y-axis) of the boundary conditions are chosen as Perfect-
Magnetic-Conductors (PMC), while the left and right sides
are chosen as Perfect-Electric-Conductors (PEC) (perpendic-
ular to x-axis).
According to Fig. 4, two ports along the z-axis are used to
stimulate the TEM mode. The magnitude fluctuation of S21
for the ON and OFF situations is depicted in Fig. 4(a). It is
important to note that the resonant frequency at Logic-1 was
required to be at 2.56 GHz for the given design specifications,
however in the case of Logic-0, the frequency resonance
is eliminated from the frequency of interest. As a result,
only Logic-1 can achieve the maximum power transfer at
2.45 GHz, and Logic-0 results in no power transmission.

The corresponding phase variation of the forward trans-
mission coefficient (S21) is plotted in Fig. 4(b) for both ON
and OFF states. For the ON case, the matching impedance
occurs at the resonant frequency of 2.56 GHz where the
phase is 0◦. This phenomenon declares that imaginary part
of the impedance to vanish, and it confirms that the result
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FIGURE 4. Unit cell performance characterization, (a) S21 magnitude spectra, and (c) S21 phase response.

of maximum-power-transfer can be obtained at Logic-1 [10].
The ON and OFF states of the LDR determine the sections
of the metasurface unit cell structure, shown in Fig. 5, that
are connected. In the ON state, the LDR makes the unit
cell appear bigger and the corresponding frequency drops,
however the vice versa applies when the LDR is in the OFF
state.

The transmission-line model in [30] and [33] has been
modified to manage the proposed RMSL design. The mod-
ifications comprise addition of an extra-capacitance (Cextra)
parallel with the switch (Sextra), as shown in Fig. 5. When
the LDR of the reconfigurable metasurface unit cell is in the
OFF state, four new capacitances appear due to the gaps in
the reconfigurable metasurface unit cell structure. Therefore,
Cextra in Fig. 5 represents the equivalent capacitance of the
four capacitances. Sextra represents the four LDR devices.
By switching the unit cell to the OFF state, the frequency
resonance must vanish from the frequency band of interest.
On the other hand, in theON state, the four LDR devices leads
to eliminate the four gaps. In this case, the proposed RMSL
provides a well-defined frequency response at 2.56 GHz.

Based on the unit cell’s geometrical dimensions, the fol-
lowing equations can be used to calculate the lumped circuit
components [33]:

Cg ≈
2ϵ◦ϵreff L

π

(
Lh
L

)
ln

[
1

sin
(πg
2L

)]
(6a)

Lg ≈
µ◦L
2π

(
Lv
L

)
ln

 1

sin
(
πL2
2L

)
 (6b)

ϵreff =
ϵr + 1

2
+
ϵr − 1

2

{[
1 + 12

(
h
w

)]−0.5

+

[
1 −

(w
h

)]2}
(6c)

FIGURE 5. The equivalent circuit of the proposed RMSL.

where Lg is the total inductance of the metasurface layer, and
Cg is the total capacitance of the metasurface layer, which is
mostly due to the fringing capacitance. The substrate thick-
ness and microstrip-line width are represented by h and w.
The gap between the two neighboring unit cell’s and between
the center and edges, respectively, are represented by L and
g. Lengths Lh = 2L3 + L4 and Lv = 2L3 + g2. For a very
thin metasurface substrate, ϵreff can be assumed to equate to
unity from equation (6c). From the equivalent circuit model
given in Fig. 5, the resonance frequency fr can be obtained
using the following expression [33]:

fr =
1
2π

√
Cg + Cextra

CgCextraLg
(7)

For the ON state, the calculated equivalent circuit param-
eters are as follows: Cg = 0.1953pF,Lg = 21.241nH and
fr = 2.47 GHz. For the OFF state, Cextra appears in series
with Cg which results in reducing the value of equivalent
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FIGURE 6. Surface current distributions of the proposed unit cell;
(a) status-ON; (b) status-OFF.

FIGURE 7. The proposed RMSL structure.

capacitance and shift-up the resonance frequency. A small
capacitance value of Cextra is expected by considering the
physical gap. In fact, Cextra has a value of 0.08pF and as
a result, the resonance frequency fr shifts up in frequency
to 4.4 GHz.

The surface current distributions over the proposed meta-
surface unit cell structure in the ON and OFF LDR states are
shown in Fig. 6. The surface current over the antenna structure
is due to the flow of electrical charge over the antenna struc-
ture. The non-uniform distribution of surface current is due to
the changing electromagnetic field impinging on the antenna
and the interaction between the adjacent metasurface unit
cells. Nevertheless, in the case of ON state, the surface current
distribution reaches a maximum magnitude of 29 dBA/m,
as shown in Fig. 6(a), at a resonance frequency of 2.45 GHz.

FIGURE 8. Ray-tracing based phase difference.

FIGURE 9. A parametric study for the proposed system performance.

In the OFF state, the surface current distribution is observed
to be around 0 dBA/m, as shown in Fig. 6(b).

The proposed RMSL is based on an array of 5 × 5 unit
cells distributed uniformly. The RMSL that is constructed
from the proposed unit cell is mounted on a FR4 substrate
(εr = 4.3, tan δ = 0.025) with a thickness of 1 mm. The
dimensions of the individual unit cell are 50 × 50 mm2

where outer physical dimensions of the conductor region
are 45 × 36 mm2 and the space between the conductors of
neighbor unit cells are 10mm and 14mm along x- and y-axes,
respectively. To ensure minimum coupling between the unit
cells, the periodicity of the unit cell was adjusted to 50 mm
(∼λ/2) [31]. A perspective view of the proposed antenna and
RMSL structure is shown in Fig. 7.

One of the key points in the design of the RMSL was the
determination of focal length (F) under ON and OFF LDR
states. While optimal gain may be obtained when the distance
between the RMSL and the antenna is set to achieve the
paraxial rays, proper focal length selection is essential. The
unit cell in the ON and OFF scenarios has a distinct focal
length. We achieved the greatest increase in antenna gain
when RMSL was placed at the focus point. When the RMSL
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FIGURE 10. The fabricated prototypes and measurement setup. From left to right: Fabricated microstrip antenna, top view of the
RMSL, and antenna measurement setup inside the RF anechoic chamber.

was switched to the OFF state, the focal length changes
to a different value and the antenna gain drops. The gap
between the RMSL and antenna was held constant in this
study.

In this work, two methods are introduced to find the
value of the focal point. The first approach uses ray-tracing
analysis, which was motivated by optical theory in [34].
The authors performed the necessary computations while
imagining the metasurface layer as a lens mounted antenna
to investigate the basic workings of the layer. The RMSL’s
dimensions were kept the same as the ground plane of the
microstrip antenna to reduce the side-lobe levels. Moreover,
the phase difference between the central unit cell and the
diagonal unit cell on the metasurface layer were made to be
(2n+ 1)π rad (n is an integer). This condition is necessary to
guarantee the maximum possible deconstructive interference
of the radiated electromagnetic waves from the layer’s unit
cells at the rim. From the illustrated in Fig. 8 it can be shown
that the phase difference is given by [35].

k
[
Ri −

(
⇀r i.r̂◦

)]
= ψi − ψ◦ (8)

where k is the propagation constant in free space. The dis-
tance from the center of the patch antenna to the center of the
ith element is represented by Ri, and

⇀r i is the position vector
of the ith element. The direction vector of the main beam is
r̂◦ . To meet this condition, the term ψi −ψ◦ must be adjusted
to be 3π rad. The other clue at the broadside direction is that
both ⇀r i and r̂◦ are almost perpendicular, which means that the
dot product between ⇀r i and r̂◦ is null. Therefore, the value of
Ri is found to be 153 mm, θ1 = 67.6

◦

. RMSL is mounted at
a focal point (F) distance of 70 mm.

Based on CST MWS simulations, the second approach is
determined by the focal length. To achieve the greatest gain
increase, CST MWS is used to investigate the ideal metasur-
face placement, array size, and orientation of the microstrip
patch antenna. By changing the reconfigurable metasurface
array configuration size from 1 × 1, 3 × 3, and 5 × 5,
the antenna gain is found to change significantly as shown
in Fig. 9.

V. MEASUREMENTS AND VALIDATION
The antenna and RMSL were constructed and installed,
as shown in Fig. 10, following the determination of the
ideal system design parameters. Chemical etching using PCB
technology is used to create the antenna and RMSL. Four
plastic screws, each measuring 70 mm in length, are used to
install the RMSL. It is important to note that LDR are not
soldered while making RMSL. Instead, two distinct layers
are constructed to show the ON and OFF states. A common
measuring system is used to assess the antenna performance
in terms of S11 spectra and radiation patterns. Coaxial cables,
an Agilent PNA 8720 series vector network analyzer, and an
82357A USB to GPIB interface that is linked to an external
computer make up the measurement setup. As shown in
Fig. 10, the antenna is mounted on a rotating holder which
is located inside an RF anechoic chamber.

The simulated and measured S11 variation as the function
of frequency and the antenna radiation pattern at ϕ = 0

◦

and
ϕ = 90

◦

planes are shown in Fig.11. Fig. 11(a) shows S11 of
the antennawithout RMSL. It is observed from this figure that
the antenna radiation pattern covers a wide 3-dB beamwidth
of 136◦ with a gain of about 1 dBi at 2.45 GHz. The spectra
of S11 for the antenna with RMSL in the OFF state is shown
in Fig. 11(b) together with radiation patterns at perpendicular
planes. The antenna resonates frequency at 2.45 GHz with a
gain of about 2 dBi and exhibits a 3-dB beamwidth of 113◦.
The final set of measurements is presented in Fig. 11(c) for
the antenna with RMSL in the ON state. It is found from
this figure that the antenna exhibits a gain of about 13.8 dBi
at 2.45 GHz. In this case, the antenna’s 3-dB beamwidth is
significantly reduced to 26◦.

Total efficiency of the antennas was investigated in this
study. The total efficiency of the antenna was 20% when
RMSL is not employed. However, by assembling the RMSL
on the microstrip antenna, the total efficiency improved to
28% in the OFF state but in the ON state the efficiency sig-
nificantly increased to 45%. The reason for the improvement
in total efficiency in the ON state is because the reactive
part of the RMSL at its resonance frequency, i.e., operating
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FIGURE 11. Measured and simulated results of the proposed antennas, (a.1) S11 spectra of the antenna without RMSL, (a.2), and (a.3) radiation
pattern of the antenna without the RMSL atϕ = 0

◦
and ϕ = 90

◦
, respectively, (b.1) S11 spectra of the antenna with RMSL in the OFF state, (b.2), and

(b.3) radiation pattern of the antenna with RMSL in the OFF state at ϕ = 0
◦

and ϕ = 90
◦
, respectively, (c.1)S11 spectra of the antenna with RMSL in the

ON state, (c.2), and (c.3) radiation pattern of the antenna with RMSL in the ON state at ϕ = 0
◦

and ϕ = 90
◦
, respectively.

frequency, is negated. Hence, optimum power is transferred
through the RMSL.

RMSL does not have the same symmetry along x and y-
planes. Thus, to observe the effects of RMSL placement on
the antenna performance, RMSL is rotated 90

◦

with respect
to the microstrip antenna on x−y plane around its center. The
antenna parameters are listed in Table 1 for non-rotated and

90
◦

-rotated cases.When the RMSL is rotated 90
◦

, the antenna
gain obtained is 2.6 dBi and 10 dBi for theOFF andON states,
respectively. The difference in the gain between the ON and
OFF states is 7.4 dB. An optimum gain of 9 dB was obtained
at 0◦ orientation. Therefore, 0

◦

orientation was chosen as the
optimal case. The simulated antenna gain was 11.8 dB. The
discrepancy between the measured and simulated results is
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TABLE 1. Effects of RMSL rotation on the antenna performance.

TABLE 2. Comparison of the proposed work with other published results.

FIGURE 12. Channel performance: (a) BER for 12 bits/s/Hz, and (b) CC evaluations.

attributed to manufacturing tolerance and the inaccuracy of
the simulation models. Front-to-back ratio (F

/
B) change is

insignificant by the orientation of the RMSL.
Previous antenna research has essentially paid attention to

improving the antenna gain. The performance of the proposed
antenna is compared with other published works in Table 2.
It is evident from the table that the proposed antenna exhibits
exceptional gain improvement resulting from the use of the
reconfigurable RMSL. In this work, the application intended
for the proposed antenna is for controlling the antenna gain
required direct antenna modulation schemes. According to

authors’ knowledge, the proposed work is the first of its kind
on intelligent metasurface layer for amplitude modulation
technology.

VI. CHANNEL PERFORMANCE RESULTS
In this section, the proposed antenna system is evaluated in
terms of bit error rate (BER) and channel capacity (CC).
ASK schema was applied to the antenna directly by reconfig-
uring the RMSL. This was achieved by switching the status
of the LDR devices. The BER performance was determined
at various signal-to-noise ratios (SNR) and in the ON/OFF

VOLUME 11, 2023 77513
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LDR scenarios. In the MATLAB computation Additive white
Gaussian noise (AWGN) was considered. The maximum
BER is placed at 100 and the maximum number of bits is
taken as 1 × 107. The BER behavior as a function of S/N and
RMSL array size is shown in Fig. 12(a). The performance of
the proposed antenna system in terms of CC as a function
of S/N and RMSL array size is shown in Fig. 12(b). It was
discovered that significant variation in CC could occur with
changing the switching scenarios at the frequency band of
interest.

VII. CONCLUSION
Proposed here is an ASK transmitter system based on
microstrip antenna and RMSL for point-to-point microwave
link. When the RMSL is turned on (Logic-1), the proposed
antenna system offers a gain of 13.8 dBi. However, when the
RMSL is turned off (Logic-0), the gain only reaches 2 dBi
in relation to cycles of the modulation period. Digital coding
can regulate the transmitted electromagnetic power from the
proposed antenna system by electrically switching each unit
cell in the RMSL. The operating principle is explained using
an analogous circuit model and optical ray-tracing analysis.
By changing the metasurface layer, the antenna gain can be
controlled. The antenna system was practically evaluated.
The measured findings show excellent agreement with the
numerical predictions. Rotating the RMSL in relation to the
microstrip antenna around its center allowed one to see how
the positioning of the RMSL affects the antenna’s perfor-
mance. It was discovered that the radiation pattern and gain
could be significantly altered by 90◦ rotation of the metasur-
face layer with respect to the patch antenna’s normal axis.
It was discovered that when the RMSL is switched to the OFF
state, the surface current over the structure is reduced and
vice-versa in the ON state. The phase variation of the forward
transmission coefficient shows impedance matching at the
resonant frequency at the ON state. In this case, the phase
is zero and the imaginary part of the impedance is negligible.
As a result, maximum power transfer is obtained at Logic-
1. Finally, the efficiency of the antenna system was found to
be significantly enhanced by switching the RMSL to the ON
state. This was because the reactive component of the antenna
is negated at its resonance frequency. As a future work,
the proposed RMSL structure needs to be analyzed using
different modulation processes. Also, investigation needs to
be conducted to realize beam splitting for space division
multiple access applications.
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