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Sickle Cell Disease

Sickle cell disease (SCD) is a group of autosomal recessive genetic blood disorders

caused by a mutation in the sixth codon of the β goblin gene that results in abnormal

hemoglobin (Hemoglobin S, HbS) (Knight-Perry et al., 2009; Rees et al., 2010; Serjeant

and Serjeant, 2001). The principal phenotypes are homozygous sickle cell (HbSS)

disease, sickle cell-hemoglobin C , sickle cell-β0 thalassemia, sickle cell-β1 thalassemia,

HbSOArab and HbSDPunjab and HbSLepore Boston SCD (Nagel et al., 2003; Serjeant and

Serjeant, 2001). Deoxygenated HbS forms insoluble rigid polymers (sickle) under

hypoxic conditions and reverts back to normal on re-oxygenation. However, with

repeated cycles of sickling and unsickling, erythrocytes become irreversibly sickled and

lose their biconcave shape and fluidity.

The primary pathological process in SCD, namely vasoocclusive crisis is a recurrent

occlusion of blood vessels which causes ischemia, severe pain episodes (painful crisis), and

damage to the brain, eyes, lungs, spleen, liver, and other vital organs (Ballas et al., 2010;

Serjeant and Serjeant, 2001). Despite the apparent genetic simplicity, patients with SCD

display a remarkable diversity in clinical manifestations and disease severity (Chui and

Dover, 2001; Fertrin and Costa, 2010). The Cooperative Study of Sickle Cell Disease

(Platt et al., 1991) found that 39% of 3578 patients with SCD did not have painful episodes,
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whereas 1% had more than six per year. It appears that type and severity of the

complication of the disease are modulated by genetic, environmental, and other factors

(Sebastiani et al., 2005; Steinberg, 2005).

The Scope of the Problem

SCD is the commonest genetic blood disorders worldwide. About 5.2% of the world

population (over 7% of pregnant women) carries a significant hemoglobin variant. HbS

accounts for 40% of carriers but causes over 80% of the disorders because of the localized

very high carrier prevalence (Modell and Darlison, 2008). The disease affects predominantly

people of African, Mediterranean, Indian, and Middle Eastern lineage. There are

approximately 100,000 people with SCD in the United States, 20,000 in United Kingdom,

1�2 million in Nigeria, and a lot more in the subcontinent of India. A recent estimate

suggests more than 200,000 affected children, about 80% of the global total, are born in

Africa every year (0.74% of birth in sub-Saharan Africa) (Modell and Darlison, 2008).

There is no reliable data in the literature on life expectancy and mortality rate of patients

with SCD in Africa (Serjeant, 2005). However, the available scantly information from hospitals

and sickle clinics reveal that life expectancy is as low as 20 years (Tshilolo et al., 2008). In the

United States, because of the good clinical health care system and clinical management about

50% of patients live for more than 50 years of age (Platt et al., 1994) and the most frequent

causes of death are infection (33�48%) and stroke (9.8%) (Manci et al., 2003).

Clinical Manifestation of SCD

Sickle cell pain

Sickle cell pain is the commonest manifestations of the disease in which episodic

microvessel occlusion in one or more sites induces tissue damage accompanied by severe

pain and inflammation (Ballas, 2005; Stuart and Nagel, 2004). The pain may be acute or

chronic, somatic or visceral, unilateral or bilateral, localized or diffuse (Ballas, 1998).

Acute painful episodes affect long bones and joints, particularly the lower back and pelvis

(Ballas and Delengowski, 1993). Other region of the body, including the scalp, face, jaw,

abdomen, and pelvis may also be affected be involved (Charache et al., 1995, 1996). The

objective signs of a painful crisis, such as fever, leukocytosis, joint effusions, and

tenderness occur in about 50% of patients at initial presentation (Ballas et al., 1988).

Painful crisis affects nearly all patients often beginning in late infancy and recurring

throughout life (Almeida and Roberts, 2005) and it is the major cause of hospital

admissions (Brozovic et al., 1987). Moreover, adults who experience painful crises more

than three times per year tend to have shorter life expectancies (Platt et al., 1991).
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Bone and Joint Complications

Vasoocclusion can occur in any organ but it is particularly common in the bone marrow

and it leads bone marrow infarction typically in the medullary cavity or epiphyses (Kim and

Miller, 2002; Lonergan et al., 2001). Epiphyseal infarction has a predilection for the head

of the femur (avascular necrosis), followed by the humorous, knee, and the small joints of

the hands and feet (Jean-Baptiste and De Ceulaer, 2000; Lonergan et al., 2001). A

significant number of HbSS patient develop epiphyseal osteonecrosis (Styles and Vichinsky,

1996; Ware et al., 1991), bone infection (Almeida and Roberts, 2005; Neonato et al., 2000),

and transient red cell aplasia (abnormal decrease of reticulocytes) (Goldstein et al., 1987;

Serjeant et al., 2001).

Cardiopulmonary Complications

Pulmonary complications account for 20�30% of mortality (Maitre et al., 2011) and

significant morbidity. Moreover, acute chest syndrome (ACS), a form of acute lung injury

which occurs frequently with variable severity in patients with the disease, is the second most

common cause of hospital admission (Platt et al., 1994). Repeated episodes of ACS often

predispose to chronic pulmonary scarring and high blood pressure in the arteries of the lungs

(pulmonary hypertension) (Gladwin et al., 2004; Stuart and Setty, 2001a, 2001b; Vichinsky

et al., 2000). SCD is associated with multiple morphological and functional cardiac anomalies

(Ballas et al., 2010; Lester et al., 1990; Lindsay et al., 1974), such as dilated chambers, septal

hypertrophy, and abnormal contractility (Covitz et al., 1995; Liem et al., 2009).

Neurological complications

Neurological and cranial complications occur in at least 25% of patients with SCD

(Hebbel, 2005). These complications include transient ischemic attacks, overt and silent

cerebral infarction, cerebral hemorrhage, posterior reversible encephalopathy syndrome,

cerebral venous thrombosis and atrophy, and seizures (Alkan et al., 2009; Henderson et al.,

2003; Liu et al., 1994; Yildirim et al., 2005). Cerebral infarction is the common cause of

stroke in the first two decades of life and from the fourth decade onward; whereas,

hemorrhagic stroke occurs commonly in the third decade (Ohene-Frempong et al., 1998).

Clinical stroke with focal signs lasting more than 24 h is more common in children (Earley

et al., 1998). Regardless of brain structural abnormalities, children with sickle disease with

or without a history of overt stroke tend to have lower cognitive ability (Hogan et al., 2006;

Noll et al., 2001; Watkins et al., 1998), and ocular (Elagouz et al., 2010; Nagpal et al.,

1977) and ophthalmic (Babalola and Wambebe, 2005; To and Nadel, 1991) complications.

Renal abnormalities

Various functional and morphological renal abnormalities are manifested in SCD. Renal

failure which occurs in 4�21% of adult HbSS patients is a significant contributor to
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premature death (Guasch et al., 2006). The renal features of SCD include hematuria,

proteinuria, tubular disturbances, acute kidney injury, and chronic kidney disease

(Scheinman, 2009). A urinary concentration defect is the most common tubular abnormality

and it can present as enuresis (Devereux and Knowles, 1985; Scheinman, 2009).

Hemolytic crisis

SCD is associated with variable degrees of anemia depending with genotype; with most severe

being in HbSS. After the first 5 years of life, the hemoglobin (Hb) concentration remains

constant in steady-state conditions. However, a significant drop in concentration occurs

periodically due to hyperhemolysis, splenic sequestration, and aplastic crisis (Manci et al.,

2003). Hyperhemolysis is diagnosed when the exacerbation of anemia occurs in the absence

of splenic and hepatic sequestrations. Isolated hyperhemolysis in the absence of painful crisis

is referred to as hemolytic crisis. Intravascular hemolysis (1/3 of SCD hemolysis) and

extravascular hemolysis are driven by HbS polymerization and HbS instability respectively

(Bensinger and Gillette, 1974; Hebbel, 2010). Recent evidence suggests that chronic

intravascular hemolysis is associated with a state of progressive vasculopathy, characterized by

reduced nitric oxide (NO) bioavailability, prooxidant and pro-inflammatory stress,

coagulopathy, pulmonary hypertension, stroke, leg ulcers, and priapism (Gladwin and Kato,

2005; Gladwin et al., 2004; Kato et al., 2007; Morris et al., 2008; Reiter et al., 2002).

Splenic complications

Abnormal splenic function in HbSS patients is common by 6 months of age, and it affects more

than 20% by 1 year and over 40% by 2 years (Serjeant and Serjeant, 2001). This abnormality is

the result of trapping and subsequent destruction of sickled cells in the spleen. The relatively

hypoxic and acidic splenic environment and slow blood flow provide a conductive milieu for

sickling (Harrod et al., 2007). Enhanced sickling and repetitive infarctions lead to functional

asplenia and ultimately splenic fibrosis and atrophy (Adekile et al., 2002; Pearson et al., 1969,

1985). This functional asplenia in turn results in increased susceptibility to sepsis, particularly

from encapsulated bacteria (Ballas et al., 2010).

Pathophysiology of Vasoocclusion

The two major pathophysiological processes underpinning the complications associated

with SCD are vasoocclusion with reperfusion injury and hemolytic anemia (Frenette, 2002;

Rees et al., 2010). According to the classical paradigm, acute vasoocclustion was thought to

be caused by entrapment of RBC containing the rope-like fiber of deoxygenated HbS. HbS

polymerizes when deoxygenated, since valine which substituted glutamic acid in position

six can interact hydrophobically with the complementary sites on adjacent globin chains

(Hebbel et al., 2009; Stuart and Nagel, 2004). The polymerization of HbS is a

nucleation-initiated reaction with a delay time, during which no polymer is detectable. At

the end of the delay time, the critical nucleus is formed and exponential polymer formation
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follows (Eaton and Hofrichter, 1990; Ferrone, 2004). Although HbS polymerization and red

cell sickling are central to the pathophysiology of the disease, the primary events in

vasoocclusion involve interactions of complex factors (Embury, 2004; Kaul et al., 2009).

First, studies on polymerization kinetics have shown that the range of the transit times

of RBC in the microcirculation is short relative to the range of delay times of HbS, and

consequently most of HbS under physiological conditions fails to polymerize unless the

delay times are lengthened, such as inflammation and enhanced adhesion of sickle cell

and vascular endothelium (Mozzarelli et al., 1987; Turhan et al., 2002; Hebbel et al., 2009).

Second, there no correlation between painful events and the number of sickled cells.

Moreover, there is evidence that white blood cells of sickle cell patients, which seem to

have a higher propensity to adhere to vascular endothelium, play a critical role

vasoocclusion (Canalli et al., 2008; Frenette, 2002, 2004). Leukocytes adhesion to vascular

endothelium is mediated by the interaction of leukocyte adhesion molecules L-selectin

(CD62L), αMβ2 integrine (CD11b/CD18) and LFA-1 (CD11A/CD18) with endothelial

adhesion molecules including, intercellular adhesion molecule-1, vascular adhesion

molecule-1 (VCAM-1), E-selectin, and P-selectin (Johnson and Telen, 2008; Okpala, 2002;

Turhan et al., 2002). The fact that leukocytes are far larger, stiffer, and stickier than red cells,

they are more effective in slowing microvascular blood flow, and ultimately, the initiation

and propagation of vasoocclusion (Chiang and Frenette, 2005; Hebbel et al., 2009). The

prothrombotic activity (Ataga and Orringer, 2003; Stuart and Setty, 2001a, 2001b) and

elevated levels of markers of platelet activation, such as plasma soluble P-selectin (CD62P)

and CD40L (Inwald et al., 2000; Tomer et al., 2001a; Wun et al., 1997), that are manifested

in steady state patients are thought to contribute significantly to vasoocclusive events.

Management of SCD

A matched allogeneic hemopoietic cell transplantation (HSCT) is the only curative treatment

for SCD (Johnson et al., 1984; Pinto and Roberts, 2008). Most groups reported event-free

survival rates of around 80�90% (Bernaudin et al., 2007; Panepinto et al., 2007). However,

the HSCT is restricted by the availability of matched related donors and associated risks of

graft rejection, graft-versus-host-disease, recurrent infections, infertility, organ damage, and

mortality (Fitzhugh et al., 2008; Pinto and Roberts, 2008). Similarly, gene therapy has been

shown to have a curative potential in mouse models of sickle cell anemia (Perumbeti and

Malik, 2010). But, there are several technical and safety challenges to overcome before it could

be translated into viable clinical applications (Olowoyeye and Okwundu, 2010). Regardless,

bone marrow and gene therapies are unlikely to be readily accessible to most sickle patient in

sub-Saharan Africa because of the health care costs. Hence, in spite of their limitations, the

current pathophysiology-based supportive therapies are likely to remain the cornerstone of

symptomatic management for the disease in the foreseeable future (Sankaran, 2011).

In practice, high-risk patients, particularly children, in the developed countries are treated

with periodic blood transfusion. This therapy reduces recurrent (Pegelow et al., 1995) and
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initial stroke by over 80% (Gebreyohanns and Adams, 2004). Unfortunately, it is associated

with a high rate of complications—transmission of infective agents, alloimmunization

and transfusion reactions, and severe iron overload (Wang and Dwan, 2013). Hydroxyurea

(HU), which is the only FDA approved pharmacological agent, is efficacious in reducing

vasoocclusive crisis, blood transfusion requirement, ACS, organ damage and mortality

in children and adults. However it remains a vastly underutilized drug due to continuous

concerns about short and long-term side effects (Hankins and Aygun, 2009), which include

myelosuppression (Lanzkron et al., 2008), malignancy (Zumberg et al., 2005), irreversible

male subfertility, and teratogenicity (Ballas et al., 2009; Berthaut et al., 2008). Other factor

that complicates HU usage are that it undergoes renal clearance, therefore dose adjustment

and close monitoring of myelotoxicity must be implemented in individual with renal

impairment (Yan et al., 2005). In addition, a large number of patents with SCD do not respond

to treatment with HU (Stuart and Nagel, 2004). Other antiplatelet, anticoagulation, and

anti-inflammatory experimental treatments have been studied extensively; nevertheless, the

reported outcomes either controversial in term of safety or disappointing in efficacy (Ataga and

Key, 2007; Hebbel et al., 2004; Strouse et al., 2006). The failure to develop safe and effective

therapy is due to the multifactorial nature of SCD and its numerous and diverse clinical

features including, chronic inflammation (Hebbel et al., 2004), blood cell membrane defect

(Hebbel, 1991; Ren et al., 2005), chronic hemolysis (Kato et al., 2007), and high oxidative

stress (Wood and Granger, 2007). Therefore, a single multifunctional or combination treatment

is necessary to help ameliorate the varied abnormalities associated with the disease.

Cell Membrane Defect in SCD

Abnormal red blood cell membrane transport, (Gibson and Ellory, 2002), phospholipid

organization (Barber et al., 2009; Kuypers, 2007), phospholipid fatty acid composition

(Connor et al., 1997; Ren et al., 2006), and enhanced red cell membrane lipid peroxidation

(Browne et al., 1998; Repka and Hebbel, 1991; Sugihara et al., 1992) have been reported

in SCD. Moreover, there is evidence that platelets and mononuclear cells of patients with

the disease have defective phospholipid fatty acid composition (Ren et al., 2005b). These

abnormalities are thought to play a significant role in the pathophysiology and clinical

severity of the disease (Hebbel, 1991).

Blood Cell Membrane Fatty Acid Composition

We have investigated fatty acid composition of (i) red blood cells of Nigerian HbSS

patients and matched health controls, (ii) red blood cells, platelets and mononuclear cells

of British HbSS patients and healthy controls (Ren et al., 2005a, 2005b), and (iii) red blood

cells of Sudanese HbSS patients and controls (Daak et al., 2011). The red cells of the

patients from the three countries with contrasting environmental and nutritional background
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had abnormal fatty acid composition. This abnormality, which was evident in the inner and

outer leaflets of the lipid bilayer, was manifested primarily by an increase in arachidonic

acid (AA, 20:4n-6) and a concomitant decrease in the omega-3 fatty acids, eicosapentaenoic

(EPA, 20:5n-3), and docosahexaenoic (DHA, 22:6n-3). Perhaps, more surprisingly, the

mononuclear cells and platelets of the patients, although not affect directly by the genetic

defect, had the same fatty acid abnormality as the red blood cells (Figure 27.1).Therefore,

it appears that the high omega-6 and low omega-3 fatty acids of blood cells is a peculiar

biochemical feature of the disease and unlikely to be a reflection of nutritional intake

(Connor et al., 1997; Daak et al., 2011; Manodori et al., 2000; Ren et al., 2005b, 2006).

The long-chain omega-6 and -3 polyunsaturated fatty acids (LCPUFA) are vital structural

and functional components of cells and organelles, and the balance between the two fatty

acid families is a determinant of blood cell aggregation and coagulation, adhesion,

deformability, and inflammatory response (Mills et al., 1993; Mukherjee et al., 2004;

Nishiyama et al., 2000; Saito and Kubo, 2003). Hence, it is postulated that the imbalance

of membrane n-6/n-3 LCPUFA is the antecedent of the loss of membrane asymmetry,

blood cell adhesion and aggregation, and vasoocclusion in SCD (Ren et al., 2005).

HU Treatment and Red Cell Membrane Fatty Acids

HU, which is commonly used as an effective therapy for SCD (Hoppe et al., 2000; Segal

et al., 2008; Strouse et al., 2008; Stuart and Nagel, 2004), is a chemotherapeutic agent

that inhibits ribonucleotide reductase and interferes with the S-phase of the cell cycle

Figure 27.1
Arachidonic (AA, 20:4n-6), eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3)

fatty acid composition of red cells, platelets and mononuclear cells of patients with SCD and
healthy controls.
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(Trompeter and Roberts, 2009). The myelosuppressive and cytotoxic effects of HU induce

RBC regeneration and the recruitment of earlier progenitors programmed to produce higher

levels of HbF (Dover et al., 1986; Fathallah and Atweh, 2006). There is evidence that one

of the mechanisms by which HU increases HbF levels is mediated through a NO-dependant

activation of soluble quanylyl cyclase in erythroid cells (Cokic et al., 2003; Lou et al.,

2009). It was thought that HU mediates its action solely through induction of fetal

hemoglobin (HbF) and subsequent inhibition of polymerization of deoxyhemoglobin S

(Steinberg et al., 1997). However, clinical improvements do occur prior to a significant rise

in levels of HbF (Charache et al., 1996) suggesting that HU may modulate the

pathophysiology of the disease through other additional mechanisms. Indeed, emerging

evidence reveals that the mechanisms of action of HU involve a reduction of leukocytes,

reticulocyte and platelet counts (Ballas et al., 1999), myeloperoxidase activity, blood cell

adhesion (Johnson and Telen, 2008), the externalization of the proaggregatory

aminophospholipid, serine (Covas et al., 2004), and an increased production of NO

(Nahavandi et al., 2002).

The myriad of effects elicited by HU in SCD seem to involve plasma membrane of blood

and endothelial cells. Consequently, we have investigated whether or not the compound has

any effect on red blood cell membrane phospholipid fatty acids. Sudanese HbSS patients

at steady-state, HU-treated (n5 19) and -untreated (n5 17), and healthy (HbAA) controls

(n5 20) matched for ethnicity and economic background were recruited from Abnaof

Pediatric Hospital, Khartoum, Sudan. The two main findings of this study were:

1. The HU-treated patients compared with their untreated counterparts had lower AA,

docosatetraenoic (DTA, 22:4n-6), docosapentaenoic (22:5n-6) acids in red blood cell

ethanolamine (EPG) and serine (SPG) phosphoglycerides which are primarily located in

the inner leaflet of membrane lipid bilayer (Daak et al., 2011) (Figure 27.2). There were

no such reductions in the aforementioned fatty acids in choline phosphoglycerides and

sphingomyelin, which are found predominantly in the outer leaflet of membrane lipid

bilayer. This finding leads us to suggest that HU releases selectively AA from the inner

membrane phospholgycerides (Daak et al., 2011). Our suggestion is consistent with

reports that: (i) Prostaglandin E2, the vasodilator metabolite of AA, induces the synthesis

of HbF in erythroid colonies derived from peripheral blood cells (Datta, 1985) and the

synthesis is obviated by aspirin, the potent inhibitor of cyclooxygenase, COX (Datta

et al., 1991); (ii) HU generates NO in vivo (Glover et al., 1999; King, 2004; Nahavandi

et al., 2002) and that NO activates cytostolic phospholipase A2 alpha (cPLA2α) and
COX2 (Fitzpatrick and Soberman, 2001; Kim et al., 2005; Xu et al., 2008). cPlA2 α
has a high selectivity for liberating AA from membrane phosphoglycerides.

2. There was no reduction in n-3 fatty acids in sphingomyelin, choline phosphoglycerides

or serine phosphoglycerides in the HU treated group. As membrane n-3 fatty acid

abnormality is one of the biochemical features of SCD, it appears this was ameliorated
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by HU therapy. This modulation of membrane fatty acid composition would be

expected to help enhance transmembrane ion flux, cell hydration, rheology, and

deformability (Djemli-Shipkolye et al., 2003; Ho et al., 1999; Poschl et al., 1996),

factors which are known to improve in HU-treated sickle cell patients (Adragna et al.,

1994; Athanassiou et al., 2006; Ballas et al., 1989).

Omega-3 Fatty Acid Supplementation of Sickle Cell Patients

The effect fish oil supplementation, a source of EPA and DHA, was investigated in

African-American HbSS patients (n5 6) by Tomer et al. (2001a). The patients were given

menhaden fish oil (0.25 g/kg/day) containing 12% EPA and 18% DHA, or placebo (olive

oil, 0.25 g/kg/day) for 1 year. Subsequent to supplementation there was a remarkable

reduction in the frequency of pain episodes requiring hospital presentation (from 7.8 to 3.8

per year) and plasma levels of thrombolytic products (D-dimer; prothrombin fragment 1.2,

F1.2; plasmin:antiplasmin complex) in the fish oil group. Similarly, Okpala et al. (2011)

have demonstrated a significant decrease in the number of crisis and steady-state hemolysis

in 16 Nigerian HbSS patients treated with Cod liver oil containing EPA and DHA. Golfetto

I (unpublished data) observed clinically significant improvement and catch-up growth in
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Figure 27.2
Linoleic (LA, 18:2n-6), arachidonic (AA, 20:4n-6), docosatetraenoic (DTA, 22:4n-6),

eicosapentaenoic (EPA, 20:5n-3), and docosahexaenoic (DHA, 22:6n-3) acid composition of red
blood cell ethanolamine phosphoglycerides of hydoxyurea-untreated and -treated sickle cell

patients (HbSS) and healthy controls (HbAA).
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Venezuelan teenagers with SCD treated with fish oil. The potential clinical benefit of fish

oil-derived omega-3 fatty acids for patients with SCD was not fully appreciated because the

above studies were either underpowered or did not use placebo controls.

We investigated the therapeutic potential of omega-3 fatty acids for patients with

homozygous SCD in a randomized, placebo-controlled, double-blind trial (Daak et al.,

2013a), One hundred forty patients recruited from a single center in Sudan were randomly
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Figure 27.3
Mean percentage eicosapentaenoic (EPA), docosahexaenoic (DHA) (A) and linoleic (LA)
and arachidonic (AA) (B) acid composition of red blood cell membrane ethanolamine

phosphoglycerides at baseline and after 1 year supplementation. Reproduced from the American
Journal of Clinical Nutrition (Daak et al., 2013a) with permission from the American Society of Nutrition.
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assigned and received, daily omega-3 capsules containing 277.8 mg DHA and 39.0 mg EPA

or placebo for 1 year. One hundred twenty-eight patients were followed up and data

obtained for intention-to-treat analysis. The primary and secondary endpoints were: rate

of clinically overt vasoocclusive events, degree of hemolysis, blood transfusion rate, school

attendance and blood cell counts. Supplementation for 12 months increased the levels

of EPA and DHA threefold, and decreased the levels of linolenic acid (LA) and AA

(Figure 27.3) in red blood cell choline and ethanolamine phosphoglycerides compared with

their placebo counterparts. Clinically, omega-3 fatty acid treatment reduced the median rate

of clinical vasoocclusive events (0 compared with 1.0 per year, p, 0.0001) (Figure 27.4),

severe anemia (3.2% compared with 16.4%; p, 0.05), blood transfusion (4.5% compared

with 16.4%; p, 0.05), white blood cell count (14.46 3.3 compared with 15.66 4.03 10

(3)/μL; p, 0.05), and the OR of the inability to attend school at least once during the study

period because of illness related to the disease to 0.4 (95% CI: 0.2, 0.9; p, 0.05). The

evidence of this randomized study (Daak et al., 2013a) and the two pilot investigations

(Tomer et al., 2001b) provide robust evidence that omega-3 fatty acids can be an effective,

safe, and affordable treatment for patients with the disease.

Omega Fatty Acid Supplementation and Antioxidant Status in SCD

Despite the evident beneficial effects of n-3 fatty supplementation for patients with SCD,

there was a lingering concern that the fatty acids, because of their high double bond index

Figure 27.4
Cumulative event rate of clinical vasoocclusive crises in the omega-3 supplemented and

unsupplemented (placebo) patients. Reproduced from the American Journal of Clinical Nutrition
(Daak et al., 2013a) with permission from the American Society of Nutrition.
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and susceptibility to peroxidation (Hashimoto et al., 1999), might exacerbate the inherent

oxidative stress associated with the disease. We have investigated antioxidant status of

omega-3 fatty acid supplemented and unsupplemented sickle cell patients. Eighty (n5 80)

steady-state patients with homozygous SCD, aged 2�14 years, who attend regular follow-

up visits in the SCD Referral Clinic, Ibn-Aoaf Pediatrics, and Khartoum Teaching

Hospitals, Sudan were recruited. After recruitment, the subjects were randomized and given

277.8 mg DHA and 39.0 mg EPA (active group) or a high oleic acid (41%) sunflower seed

oil blend (placebo group) for 1 year. Vitamin E, 1 � 5 mg/capsule, was incorporated in both

types of capsules to help prevent peroxidation.
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Figure 27.5
Activity of red blood cell cytosolic gluthatione peroxidase (GPx-1) of omega-3 fatty acid

supplemented (active) and unsupplemented (placebo) HbSS sickle cell patients.
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Figure 27.6
Activity of red blood cell Cu/Zn superoxide dismutase of omega-3 fatty acid supplemented (active)

and unsupplemented (placebo) HbSS sickle cell patients.
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Plasma α -tocopherol concentration and the activities of cytosolic glutathione peroxidase

(GPX-1) and Cu/Zn-superoxide dismutase (Cu/Zn-SOD) were used to assess the level of

antioxidant protection. The omega-3 fatty acid supplemented patients compared with the

placebo group had significantly lower GPX-1 (Figure 27.5) and Cu/Zn-SOD (Figure 27.6)

activity and higher plasma alpha-tocopherol concentration (Figure 27.7) (Daak et al., 2013b)

demonstrating that omega-3 fatty acid supplementation does not exacerbate oxidative stress in

sickle cell patients. Indeed, perhaps paradoxically, it seems to bestow oxidative protection.

Conclusions

It is evident that patients with SCD have red blood cell, mononuclear cell, and platelet

membrane fatty acid perturbation which is primarily manifested by lower LA, EPA, and

DHA and higher AA, DTA, 22:4n-6, and docosapentaenoic (22:5n-6) acid levels. Moreover,

studies conducted by us and others demonstrate that EPA and DHA supplementation

ameliorates the membrane fatty acid abnormality and reduces the frequency and severity of

vasoocclusive crisis and anemia without exacerbating the inherent oxidative stress. If these

findings are reproduced in a large multicenter trial, EPA and DHA could be an effective,

safe, and affordable therapy for the disease.
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