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ABSTRACT: A novel technique is presented to design highly compact microstrip ultra-

wideband (UWB) bandpass filters that exhibit high selectivity quasi-elliptical response. The

design is based on transversal signal-interaction concepts that enable the inclusion of single

or dual notch-bands within the filter’s passband to eliminate interference from other services

that coexist within the UWB spectrum. The filter configuration comprises of two transmission

paths which include folded T-shaped stepped impedance resonators (SIRs) that are capaci-

tively coupled with the input/output lines to enable signal transmission. It is shown that by

combining the filters of different passband centre frequencies an UWB filter can be realised

with either a single- or dual-notch function. The theoretical performance of the filter is corro-

borated via measurements to confirm that the proposed filter exhibits UWB passband of

123% for a 3 dB fractional bandwidth, a flat group-delay with maximum variation of less

than 0.3 ns, passband insertion loss less than 0.94 dB, high selectivity, a sharp rejection

notch-band with attenuation of 223 dB, and a good overall out-of-band performance. Fur-

thermore, the filter occupies a significantly small area of 94 mm2
compared with its classical

counterparts. VC 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:549–559, 2014.

Keywords: bandpass filter (BPF); variable notch-band; ultra-wideband (UWB) filter; stepped

impedance resonator (SIR); transversal signal-interaction concepts

I. INTRODUCTION

In today’s world of wireless communications systems,

design of microwave filters has become critical due to

increasing demand for advanced communication systems.

Examination of recent research literature reveals that

ultra-wideband (UWB) applications have aroused consid-

erable interest of academic researchers and RF/microwave

industry since the Federal Communications Commission

(FCC) authorized the frequency band from 3.1 to 10.6

GHz for commercial use [1]. This is very significant as

UWB communications technology offers the potential for

very high data rate (>500 Mbit/s) transmission at low

transmit power levels making it suitable for emerging

short-range technologies. The low power requirement

necessitates the filter to exhibit low insertion-loss, high

selectivity, and flat group delay to minimize distortion of

UWB signal. These specifications make the design of

UWB filters a challenging task compared with other kinds

of microwave filters.

Bandpass filter (BPF) designs for use in UWB wireless

communication systems have been implemented using

various topologies and employ a variety of procedures,

which can generally be classified in three groups, namely:

(i) designs based on multiple mode resonators (MMRs)

[2–5]; (ii) designs based on cascading a lowpass/bandstop

filter with a highpass filter [6–8]; and (iii) designs based

on the transversal signal-interaction concepts [9–11]. The

introduction of MMRs has supported a new generation of

UWB filter designs in the wireless community. A number

of MMRs with various structures have been applied in the

past few years to model UWB BPFs that contribute a

great deal to the success of these crucial microwave com-

ponents. In [2] and [3], a stepped-impedance MMR com-

prising of k/2 low-impedance segment at the structure’s
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center with two identical k/4 high-impedance segments on

its sides is used to locate its first three resonant modes

within the UWB band. In [4] a nonuniform coplanar

waveguide MMR with short-circuited ends is proposed to

the design of UWB BPF. Another approach is proposed in

[5] to realize an UWB filter by loading three open stubs

in shunt in the conventional MMR structure at its center

and at two symmetrical locations. The resulting UWB fil-

ter constructed using the latter approach exploits the first

four resonant modes by locating them inside the 3.1–10.6

GHz UWB band. The higher resonant modes are pushed

to higher frequencies to create a wider upper stopband.

A simple approach has been proposed to realize an

UWB BPF by cascading a low-pass/band-stop filter with a

high-pass filter [6–8]. The main advantage with filters uti-

lizing this design approach is achieving a wide upper stop-

band; however, the filter posses a relatively large size. The

application of transversal signal-interaction concept in the

design of microwave filter circuits has already been investi-

gated [9–11]. In these filter structures, the input signal is

split and propagates through two different feed-forward sig-

nal paths. The design entails forcing signal energy cancella-

tion to produce transmission zeros (TZs) and hence high

selectivity and harmonic suppression. In [10], a novel UWB

BPF is proposed by cascading two planar marchand baluns,

but the selectivity of the filter is not very good and the filter

size is relatively large. To improve the selectivity, the

authors in [11] proposed a configuration based on cascading

a marchand balun with two different transmission lines.

To minimize the size of the transceiver, there is a demand

for UWB filters that incorporate a high-attenuation narrow-

band notch capability. Several structures for UWB BPF with

notch-bands have been previously proposed [12–19]. The

main shortcoming of some of the cited design approaches is

that they yield only a single notch function. Nowadays, the

concern is the design of filters whose individual components

are capable of generating multiple notch-bands. Some of the

filters in this class that were investigated during the last few

years are based on multilayer structures [20, 21], an asymmet-

ric coupling strip [22], simplified composite right/left-handed

resonator [23], defected ground structure (DGS) [24, 25] and

folded open stub-loaded MMR [26]. Design of UWB BPF

with notch-band using a combination of wideband bandpass

filters (BPFs) was first proposed in [15]. The UWB notch-

band BPF with wider passband, smaller size, and deeper sup-

pression in stopband has been proposed in [27]. The Authors

in [28] have used the approach proposed in [15] to create

UWB BPF with dual notch-bands, however, the filter is lim-

ited by many drawbacks including poor in-band and out-of-

band performance, relatively large electrical size, and imped-

ance mismatching at the input and output ports. In this paper,

we have refined the design of the UWB BPF proposed in [27]

that enables the inclusion of either a single narrow or dual

notch-bands within the filter’s passband. The UWB BPF is

analyzed and a design procedure provided to realize a filter

with significantly smaller size as well as wider passband in

comparison with its classical counterparts.

II. FOLDED T-SHAPED STEPPED IMPEDANCE
RESONATOR (SIR)

The typical configuration of a SIR is shown in Figure 1a.

The resonator configuration proposed here consists of a

folded T-shaped SIR, which can be implemented with either

low-impedance or low- and high-impedance segments, as

illustrated in Figures 1b and 1c, respectively. In the follow-

ing sections, we demonstrate that the proposed dual-mode

resonator contributes towards the realization of compact

wideband BPFs when its impedance characteristics and

electrical lengths are properly chosen. Compared with other

resonators implemented using linear microstrip lines, the

proposed resonant structure has the following properties: (i)

high degree of compactness; (ii) wide passband capability

that is achieved by coupling its resonant modes; (iii) contri-

bution to the design of UWB notch-band bandpass filter;

and ability to support a wide stopband by exploiting an

appropriate feed structure.

A. Theoretical Modeling of the T-Shaped Resonator
Structure
Initially, we demonstrate the proposed resonator has similar

resonance characteristics to a traditional SIR but it is more

compact in size. Then we investigate the resonance condi-

tion of the proposed resonator by using even-mode and odd-

mode analysis. A typical SIR shown in Figure 1a consists of

a middle low impedance line section with characteristic

impedance Zb and electrical length hb connected to identical

high-impedance line sections of characteristic impedance Za

and electrical length ha on either side of the middle section.

When the symmetry plane P-Q in Figure 1a is open-circuit

the input admittance of the SIR, which consists of a narrow

high-impedance line section of characteristic impedance Za

and electrical length ha is connected to a wider low-

impedance line section of characteristic impedance Zb and

electrical length hb, is given by:

Yin51=Zin5jYa
Yatan hacot hb1Yb

Yacot hb2Ybtan ha

� �
: (1)

In this case, the resonator’s low-impedance section is

split and folded as illustrated in Figure 1b. When the sym-

metry plane P-Q in Figure 1a is not open-circuit the input

admittance of the SIR, is given by:

Yin5
jYa2 Ybtan hb1Yatan hað Þ Yb2Yatan hatan hbð Þ

YaYbð12tan 2hbÞð12tan 2haÞ22ðYa
21Yb

2Þðtan hatan hbÞ

� �
: (2)
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Under this condition, the basic resonator can be folded

as in Figure 1c. Resonance condition is defined when Yin

50: Hence, the resonance mode for the first condition can

be determined from the following transcendental equation:

Rz5
Yb

Ya
52tan hacot hb: (3)

where Rz is the impedance ratio of the SIR structure. The

ratio of fundamental and higher order resonant frequencies

can be determined from (2) in terms of Rz and length ratio

U defined as:

U5
ha

ha1hb
: (4)

By substituting (4) into (2), several resonant modes

can be found that are dependent on Rz and U. By adjust-

ing the impedance ratio Rz and length ratio U it is possi-

ble to control the resonant conditions. Thus, it is possible

to couple different resonant modes together to form a

wideband performance. Once these parameters are deter-

mined, the low-impedance segment can be split in half

and folded for compactness, as shown in Figure 1b, where

the input impedance Zin is given by:

Zin5jZa

Zatan ha2 Zb

2

� �
cot hb

Za1 Zb

2

� �
cot hbtan ha

( )
: (5)

The two sections of length hb are effectively in paral-

lel. The corresponding input admittance Yin is given by:

Yin5jYa
2Yb1Yacot hbtan ha

Yacot hb22Ybtan ha

� �
: (6)

The resonance condition can then be determined using

the following transcendental equation:

Rz52
1

2
tan hacot hb: (7)

This equation indicates the resonator structure in Fig-

ure 1b has identical resonance characteristics to a typical

SIR structure in Figure 1a (when P-Q is open-circuit) with

the advantage of using half the impedance ratio to realize

a significantly compact design.

B. Even/Odd-Mode Analysis of the Proposed Resonator
Structures
Since the layout of the proposed resonator is symmetrical

in the plane P-Q, as indicated in Figure 1, their resonance

condition can be analyzed through even-mode and odd-

mode analysis. In the analysis, the P-Q plane is replaced

by an electrical/magnetic wall. For odd-mode excitation,

the plane is equal to electrical wall. Figure 2a indicates

the approximate equivalent circuit of the proposed resona-

tor in Figure 1b for odd-mode excitation. The input admit-

tance Yinodd can be expressed as:

Yinodd52jYbcot hb: (8)

For even-mode excitation, the plane is equal to mag-

netic wall and the approximate equivalent circuit is

Figure 1 Three SIR configuration structures; (a) traditional step impedance; (b) proposed folded T-shape with low-impedance segments;

and (c) proposed folded T-shape with low-impedance and high-impedance segments.
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illustrated in Figure 2b. The input admittance Yineven is

given by:

Yineven5j
Yb

2

4Ybtan hb12Yatan ha

2Yb2Yatan hatan hb

� �
: (9)

From the condition Yin 5 0 the fundamental resonances

occur at:

For odd mode : cot hb50: (10)

For even mode : 4Ybtan hb12Yatan ha50: (11)

Similarly for the proposed resonator in Figure 1c, the

approximate equivalent circuit are shown in Figures 2c

and 2d for even-mode and odd-mode, respectively. The

input admittance Yinodd is calculated as follow:

Yinodd5jYc
Yctan hbtan hc2Yb

Yctan hb1Ybtan hc

� �
: (12)

Figure 2 Equivalent circuit of the proposed resonator configuration in Figure 1b under conditions of: (a) odd-mode and (b) even-mode.

Equivalent circuit of Figure 1c under conditions of: (c) odd-mode and (d) even-mode.

Figure 3 Equivalent circuit model of simplified signal interac-

tion concept.

Figure 4 Layout of prototype wideband filter. The optimized

parameters are: L1 5 11.1, d1 5 3.2, L2 5 3.7, L3 5 0.5, W1 5 0.1,

W2 5 0.5, and W3 5 1 (dimensions are in millimeters).
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And the input admittance Yineven can be given by:

Yineven5jYc
Yb Yatan ha12Ybtan hbð Þ1Yctan hc 2Yb2Yatan hatan hbð Þ
Yc 2Yb2Yatan hatan hbð Þ2Ybtan hc Yatan ha12Ybtan hbð Þ

� �
: (13)

Then resonance conditions are given by:

For odd mode:

Yctan hbtan hc2Yb50: (14)

For even mode:

Yb Yatan ha12Ybtan hbð Þ1Yctan hc 2Yb2Yatan hatan hbð Þ50:

(15)

From the above equations, it can be concluded that reso-

nance conditions can be controlled by adjusting electrical

lengths of the resonator’s structure for both even and odd-

modes. These specifications can be utilised for the design

of wideband bandpass filters with adjustable passbands.

III. SIMPLIFIED TRANSVERSAL SIGNAL-INTERACTION
CONCEPT

Figure 3 shows the equivalent circuit model of simplified

signal interaction concept where the input signal is split

and propagates through two feed-forward signal paths

with different electrical lengths. The signal transmission

can be given by [29]:

y hð Þ5 h1 h1ð Þ1h2 h2ð Þ½ �:x hð Þ (16)

h1 h1ð Þ5eih1 ; h2 h2ð Þ5eih2 (17)

Based on the transversal filter concepts, a passband and

stopband can be achieved by the following relations [29]:

h1 f0ð Þ5h2 f0ð Þ62np; n50; 1; 2 . . .ð Þ (18)

h1 f0ð Þ5h2 f0ð Þ6np; n51; 3; 5 . . .ð Þ (19)

where f0 is the center frequency of the filter. As will be

shown in the next section the proposed filter configuration

Figure 5 Simulated insertion-loss response of the proposed wideband BPF: (a) S21 of the feed structure as a function of L1; (b) S-param-

eters of the proposed wideband BPF; (c) location of TZs, which depend on length Lt (where Lt 5 L1 1 d1); and (d) the affect on the FBW

as a function of coupling gap (s).

Compact UWB BPF with Variable Notch Characteristics 553

International Journal of RF and Microwave Computer-Aided Engineering DOI 10.1002/mmce



is located in the two paths and are coupled with the input/

output ports. The parameters of the filter structure and its

coupling with the input/output ports are exploited to con-

trol its bandwidth and generate notch-bands.

IV. PROTOTYPE WIDEBAND BPF DESIGN

For the proposed resonator in Figure 1b it is evident from

(10) that the odd resonant modes depend on the length hb

of the low-impedance line with corresponding length of

L2, which is given by [30]:

fodd5
c

4L2
ffiffiffiffiffiffi
eeff
p (20)

where c is the speed of light in the free space, and eeff

denotes the effective dielectric constant of the microstrip

line. The relationship shows the odd-mode resonant fre-

quencies are inversely dependent on length proportional to

length hb. The resonant frequencies of even–mode excita-

tion depend on the length of ha with corresponding length

of Lt (where Lt 5 L1 1 d). Similarly as ha increases the

even-mode resonant frequencies move towards lower fre-

quencies. The dimensions of the T-shape structure gener-

ates resonant modes and the first two modes are coupled

together in the configuration proposed in Figure 4 to create

a wide passband. The input/output feed structure creates

TZs, which are a function of the length of coupling arms.

With this structure it is possible to suppress higher resonant

modes and achieve a wide stopband. Figure 5a indicates the

insertion-loss response of the input/output coupling struc-

ture, which is a function of L1. It shows the transmission

response resulting from the input/output structure without

the T-shaped resonator. It should be noted that a parallel-

coupling feed structure with a cross coupling can contribute

to strong coupling and therefore low passband insertion-

loss as well as additional TZs in the region of the spectrum

above and below the passband skirts [27].

As it is evident from Figure 5a, this cross-coupled feed

structure is capable of producing multiple TZs, which are

distributed among the lower and upper stopband region.

The location of TZs can easily be controlled by varying the

length of L1. It can be clearly observed that by decreasing

L1, while other optimized parameters remain fixed, the fre-

quency of the TZs move towards upwards in frequency. In

addition, the proposed structure has intrinsic transmission

zero whose location can be controlled by varying Lt. Figure

5b shows an excellent S21 response of the wideband filter

structure. It has four TZs distributed around 2.39, 6.57,

Figure 6 (a) Layout of one UWB BPF with single-notch function and (b) signal flow through the filter structure.
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7.65, and 9.95 GHz, which contribute a great deal to

the high selectivity and good upper stopband perform-

ance. In addition, three transmission poles within the

passband are almost balanced, which has the potential to

provide balanced wideband passband behavior. As was

discussed earlier, by changing uawith corresponding

length of Lt, the even resonant modes decrease in fre-

quency while the odd modes remain fixed. It is evident

from Figure 5c by changing Lt it is feasible to change

the location of TZs and consequently the bandwidth of

the passband. By increasing Lt from 10.4 to 13.4 mm,

the passband is shifted toward lower frequencies. In

addition, the filter’s fractional bandwidth (FBW) can be

controlled by adjusting the coupling gap (s) between the

resonator and the capacitive cross-coupled feed structure.

This is evident in Figure 5d, by merely increasing s
from 0.1 to 0.25 mm, the FBW decreases from 64

to 45%.

Figure 7 a and b Show the simulated insertion-loss and phase response, respectively, of the UWB filter in Figure 6a composed of Filter-

A and Filter-B. The structure creates a notch-band at the lower end of the passband response; (c) and (d) show S21 and phase response,

respectively, of the UWB filter with a notch-band at the upper end of the passband; and (e) and (f) show S21 and phase response of UWB

filter with dual notch-bands. (Note: shaded areas indicate the regions of suppression).
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V. UWB BPF WITH SINGLE/ DOUBLE NOTCH-BANDS

Figure 6a shows the layout of the proposed UWB filter

with its physical parameters. Figure 6b depicts the sche-

matic diagram of the proposed filter where the input sig-

nal propagate from port 1 to port 2 along paths 1 and 2

through the wideband filters Filter-A and Filter-B devel-

oped using the proposed design in Section IV. To achieve

an UWB BPF with excellent performance and including a

sharp notch-band, the filters with a different passband

center frequency were connected as depicted in Figure 6a.

The mechanism of creating the UWB passband with nar-

row notch-bands was implemented using the transversal

signal interaction concepts. A narrow rejection band is

implemented by forcing the signal propagating on paths 1

and 2 to cancel at the output port, which is achieved

when the signal magnitudes are equal with a phase differ-

ential of 180�. This structure is capable of producing sin-

gle narrow notch-band or dual notch-bands at low and

high frequencies simultaneously. The frequency and phase

response of the UWB filter in Figure 6a with a notch-

band at the lower end of the filter’s response are shown

in Figures 7a and 7b, respectively [27]. As can be seen

from Figure 7a, when the S21 response of Filter-A over-

laps with that of Filter-B, this creates a region of suppres-

sion resulting in a narrow and sharp notch-band at around

5.21 GHz. Moreover, it is evident from Figure 7b, the

insertion-loss of Filter-A and Filter-B have a phase differ-

ence about 180� in the suppression region as predicted by

the transversal signal-interaction concept.

To generate the notch at a higher frequency, the S21

response of Filter-A was shifted upwards by decreasing

the length of Lt so that it overlapped with the response of

Filter-B. Thus, a narrow notch-band was created at a

higher frequency, as shown in Figure 7c. As is evident in

Figure 7d, the phase difference between Filter-A and

Filter-B is about 180� in the suppression region as well.

According to the discussion in previous section, by

decreasing the coupling gap (s) between the folded T-

shaped resonator and the input/output lines the bandwidth

of the prototype wideband filter can be increased. Hence,

by decreasing the coupling gap in the proposed UWB

structure, the S21 response of Filter-A overlaps with that

of Filter-B at a lower and upper frequency to simultane-

ously create two narrow notch-bands within the UWB

passband, as shown in Figure 7e. The structure was opti-

mized using Agilent’s advance design system (ADS). The

optimized parameters to achieve a high-performance

UWB BPF with a single notch are: L1 5 6.5, d1 5 1.4,

L2 5 13.4, d2 5 0.3, L3 5 4.4, L4 5 5.4, L5 5 0.5, W1 5 0.1,

W2 5 0.2, W3 5 0.5, W4 5 1, and s 5 0.1 (all dimensions

Figure 9 Photograph of the fabricated filter.

Figure 8 Center frequency of notch-band as a function of

length Ls (Ls 5 L2 1 d2).

Figure 10 (a) Measured and simulated S-parameter results of

the proposed filter and (b) group-delay.
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given are in millimeters) [27]. The input/output line of 50

X lines are matched to the resonant structure via high

impedance line of length L5 and width W4. By adjusting

L1 1 d1, L2 1 d2, and the coupling gap (s), the notch

response can be adjusted relatively easily. As indicated in

Figure 8, by decreasing Ls (Ls 5 L2 1 d2) from 13.7 to

12.2 mm, while keeping all other parameters fixed, the

notch frequency can be made to shift towards the higher

frequency. The rejection level of the notch can effectively

mitigate interference signals from 5 GHz WLAN IEEE

802.11a systems.

VI. SIMULATED AND MEASURED RESULTS

Full-wave electromagnetic simulation tool (ADS) has

been used to analyze the design of the proposed filter.

Moreover, the final prototype was fabricated on the sub-

strate with thickness of 32 mil and dielectric constant of

3.38 to experimentally verify the theoretical results of the

proposed design.

By use of the optimized physical dimensions, a super

performance compact UWB BPF with notch-band was

fabricated and its performance measured. The S-parameters

were measured using an Agilent 8722ES network analyzer.

The photograph of the fabricated filter is shown in

Figure 9.

Figure 10 shows the measured and simulated

S-parameter response and group-delay of filter [27]. These

results confirm the proposed filter exhibits a wide passband

from 2.66 to 11.2 GHz, with a corresponding FBW of

123% for S11> 10 dB, which covers FCC mask. The

response is accompanied by a narrow bandstop notch with

a FBW of 8.8% from 4.98 to 5.44 GHz, and peak rejection

of 223.38 dB. In addition, the flat group-delay is achieved

except at the notch-band with maximum variation of <0.3

ns. The discrepancy between the measured and simulated

group-delay is attributed to the fabrication tolerance and

inaccuracy of the CAD models. The stopband has width of

4.75 GHz, with a relative stopband bandwidth of 34%. The

proposed filter exhibits a quasi-elliptical response with

maximally flat passband response. The simulated and

measured insertion-loss is <0.27 and 0.94 dB, respectively,

and the return-loss is better than 12 dB across most of the

passband. The actual area of the filter is 94 mm2. Table I

gives a comparison of the proposed design in terms of size

and performance with a number of best previously reported

UWB filters. The FBW and stopband are enhanced by

around 20 and 23%, respectively, and size is reduced

around 26% in comparison with design presented in [15].

The proposed filter satisfies the stringent requirements of

next generation of UWB telecommunication systems.

VII. CONCLUSION

By exploiting proposed folded T-shaped SIR resonator, a

very compact dual-mode wideband BPF has been realised.

An UWB filter was created by combining two of these

wideband filters. The resulting UWB filter possessed sig-

nificantly enhanced out-of-band rejection compared with

currently published UWB filters. It was shown notch-

bands can be introduced within the filter’s passband

response enabling the rejection of interfering signals at 5

GHz from WLAN IEEE 802.11a systems. The mechanism

of creating notch-bands was delineated using the transver-

sal signal-interaction concept. The filter possesses a very

wide passband of 123% for a 3 dB factional bandwidth, a

flat group-delay, relatively low insertion-loss (<0.94 dB),

high selectivity, sharply rejection notch-band (223 dB),

and a good overall out-of-band performance. These

TABLE I Comparison of the Proposed Filter with Best Reported UWB BPFs

Ref. Area (mm2) FBW (%)

Insertion/

return-loss (dB) Group-Delay (ns)

Single-/dual-notch

capability Structure

[2] 16.9 113% 0.55/10.00 0.23 no/no MMR

[3] 29.9 110% 1.30/14.00 0.30 no/no MMR

[5] 37.12 114% 1.40/14.30 0.64 no/no MMR

[10] 840 110% 1.35/10.50 0.50 no/no Marchand balun

[11] 450 110% 1.20/12.00 0.50 no/no Marchand balun 1 TL

[12] 180.8 110% 0.90/11.05 0.27 yes/no SIR stubs

[13] 170.8 103.2% 0.45/12.00 0.60 yes/yes Parasitic coupled line

[14] 576 117.6% 1.00/10.00 0.20 yes/no DGS

[15] 127.9 101.9% 0.37/14.18 Not given yes/no Folded SIR

[16] 160.4 107.7% 0.80/12.00 Not given yes/no Radial stub

[17] 191.8 114.5% 0.83/10.08 0.29 yes/no MMR 1 slotline

[18] 78.8 114.5% 0.50/10.00 0.50 yes/no CRLH

[19] 59.5 124% 1.10/10.00 0.19 yes/no Multiple slotline resonaors

[20] 300.8 120.4% 0.75/15.00 0.40 no/yes Multilayer LCP

[21] 405.7 106.3% 0.66/10.00 0.20 yes/yes Multilayer LCP

[22] 63.7 118.8% 0.80/12.50 0.20 no/yes Asymmetric coupling strip

[23] 680 118.2% >1.0/10.00 Not given no/yes SCRLH

[24] 60.3 110% 0.46/15.00 0.32 yes/yes Surface-coupled

[25] 220 108.5% 2.00/15.00 Not given no/yes TL1 defected SIR

[26] 88 114% 1.00/12.00 Not given yes/yes MMR

This work 94 123.2% 0.94/12.00 0.30 yes/yes Folded SIR
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features make the proposed filter structure a commercially

viable for numerous broadband wireless communications

and radar systems.
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