High gain/bandwidth off‑chip antenna loaded with metamaterial unit‑cell impedance matching circuit for sub‑terahertz near‑field electronic systems

Alibakhshikenari, Mohammad, Virdee, Bal, Mariyanayagam, Dion, Vadalà, Valeria, Naser-Moghadasi, Mohammad, See, Chan, Dayoub, Iyad, Aïssa, Sonia, Livreri, Patrizia, Burokur, Shah Nawaz, Pietrenko‑Dabrowska, Anna, Falcone, Francisco, Koziel, Slawomir and Limiti, Ernesto (2022) High gain/bandwidth off‑chip antenna loaded with metamaterial unit‑cell impedance matching circuit for sub‑terahertz near‑field electronic systems. Scientific Reports, 12 (17893). pp. 1-11. ISSN 2045-2322

[img]
Preview
Text
s41598-022-22828-3.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (3MB) | Preview
Official URL: https://doi.org/10.1038/s41598-022-22828-3

Abstract / Description

An innovative off-chip antenna (OCA) is presented that exhibits high gain and efficiency performance at the terahertz (THz) band and has a wide operational bandwidth. The proposed OCA is implemented on stacked silicon layers and consists of an open circuit meandering line. It is shown that by loading the antenna with an array of subwavelength circular dielectric slots and terminating it with a metamaterial unit cell, its impedance bandwidth is enhanced by a factor of two and its gain on average by about 4 dB. Unlike conventional antennas, where the energy is dissipated in a resistive load, the technique proposed here significantly reduces losses. The antenna is excited from underneath the antenna by coupling RF energy from an open-circuited feedline through a slot in the ground-plane of the middle substrate layer. The feedline is shielded with another substrate layer which has a ground-plane on its opposite surface to mitigate the influence of the structure on which the antenna is mounted. The antenna has the dimensions 12.3 × 4.5 × 0.905 mm3 and operates across the 0.137–0.158 THz band corresponding to a fractional bandwidth of 14.23%. Over this frequency range the average measured gain and efficiency are 8.6 dBi and 77%, respectively. These characteristics makes the proposed antenna suitable for integration in sub-terahertz near-field electronic systems such as radio frequency identification (RFID) devices with high spatial resolution.

Item Type: Article
Uncontrolled Keywords: terahertz (THz) technologies; high gain/bandwidth of‑chip antenna; innovative of-chip antenna (OCA)
Subjects: 600 Technology > 620 Engineering & allied operations
Department: School of Computing and Digital Media
Depositing User: Bal Virdee
Date Deposited: 22 Nov 2022 12:09
Last Modified: 20 Jan 2023 12:34
URI: https://repository.londonmet.ac.uk/id/eprint/8046

Downloads

Downloads per month over past year



Downloads each year

Actions (login required)

View Item View Item