
Compact Notch Filter Design Using Stepped
Impedance Resonators for Sharp Roll-Off
and Large Wideband Rejection

H. Asadbeigi,1 B. S. Virdee2

1Department of Electronics, Toyserkan Branch, Islamic Azad University, Toyserkan, Iran
2Faculty of Life Sciences and Computing, Centre for Communications Technology, London
Metropolitan University, London, United Kingdom

Received 28 July 2014; accepted 13 November 2014

ABSTRACT: This article presents the design of a compact notch filter with a sharp roll-off

and high rejection over a wideband. The filter comprises stepped impedance resonators that

are interconnected to each other at strategic points on the resonator for optimal 3 dB roll-

off and high rejection over a wide stop-band. The fabricated third-order filter exhibits a

steep 3 dB roll-off and rejection exceeding 50 dB over the frequency range 2.70–

6.19 GHz. VC 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:490–494, 2015.
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I. INTRODUCTION

Notch or bandstop filters (BSFs) are widely used in mod-

ern communication systems to eliminate unwanted signals,

harmonics, and interference. Several methods have been

previously reported to design and implement BSFs. In [1],

the authors present a BSF design using periodic pairs of

L-shaped strips that are embedded inside a ground-plane

slot, and insert periodic pairs of L-shaped stubs in the

microstrip transmission-line. Reported in [2] is a compara-

tive study on designing BSF using split-ring resonator and

complementary split-ring resonator. In [3], it is shown

that by defecting the ground-plane with two semicomple-

mentary split-ring resonators and etching two line resona-

tors within the input/output microstrip-line results in a

structure that exhibits bandstop function. The above exam-

ples use defected ground structure (DGS) technology that

has several shortcomings, namely: (1) high fabrication

cost; (2) low immunity to crosstalk; (3) ground-plane

interference; and (4) relatively large size. Other techni-

ques of designing BSFs include using signal interference

[4], where bandstop function is achieved by interfering

signals propagating along two parallel transmission-lines

having different electrical lengths and characteristic impe-

dances. Although the filter provides a wideband response,

however, its 3 dB roll-off and stop-band rejection is medi-

ocre, and its size is large for practical applications. In [5],

the authors use interdigital capacitor loaded loop resona-

tors coupled to a meandering microstrip line to realize a

BSF, however, its fractional bandwidth is low and its

stop-band rejection poor.

In this article, a novel BSF structure is proposed that

overcomes the shortcomings of the aforementioned techni-

ques. A third-order BSF structure is fabricated to demon-

strate that it exhibits the following characteristics: wide

stop-band performance, steep 3 dB roll-off, high rejection

level in the stop-band, low fabrication cost, and compact

size.

II. FILTER STRUCTURE AND DESIGN

Microstrip stepped impedance resonator (SIR) consists of

a high impedance section of characteristic impedance Z1

and electrical length u1 attached to two low impedance

sections of characteristic impedances Z2 and electrical

length u2, as shown in Figure 1. The SIR is made more

compact in size by folding inward the low impedance sec-

tions as shown in Figure 2a. The LC equivalent model

representing the resonator is depicted in Figure 2b, where

Lt1 is the inductance of the tapped feed-line, Ct1 is the

associated capacitance at the tapped feed-line, and Lt2 is

the half inductance of the high impedance line connecting
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the two feed-lines. The inductance Lt3 corresponds to the

high impedance line. The elements Lt4, Ct2, and Lt5 in the

dotted box represent the step impedance discontinuity,

and Ct3 represents the low impedance section of the reso-

nator. In the analysis, the SIR filter is considered to be

symmetrical along the P–P
0

plane. The even-mode and

odd-mode input impedance of LC circuit can be then be

determined. The odd-mode equivalent circuit of the SIR is

represented in Figure 2c, where the input impedance Zino

is given by
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The even-mode input impedance Zine in Figure 2d can

be determined using

Zine5jxLt11
1

Y 0ine

(5)

Y
0
ine5jxCt11

1

Z00ine

(6)

0 0Zine5jx Lt31Lt4ð Þ1 1
000Yine

(7)

000Yine5jxCt21
jxCt3

12x2Lt5Ct3

(8)

The S21 and S11 parameters can be derived using [6]:

S215
Zo ð Zine2Zino Þ
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(9)

S115
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The dimensions of filter layout in Figure 2a are:

L1 5 3.8 mm, L2 5 1.25 mm, L3 5 0.87 mm, L4 5 3 mm,

W1 5 0.2 mm, W2 5 6 mm, and Wf 5 1.3 mm. The simu-

lated S-parameters as a function of L1 are shown in Figure

3a. By decreasing L1 from 3.8 to 2.8 mm in steps of

0.5 mm, the two transmission zeros move towards the low

Figure 1 Structure of microstrip stepped impedance resonator.

Figure 2 Layout of the single order filter and its equivalent odd- and even-mode circuits. (a) Layout of single order BSF, (b) LC equiva-

lent circuit model of the single order BSF, (c) odd-mode equivalent model, and (d) even-mode equivalent model.
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frequency end, thus enabling the control of the filter skirt.

Figure 3b shows the S-parameters response when the mag-

nitude of L4 is varied from 3 to 2.6 mm in steps of

0.2 mm. This graph shows that the 3 dB cut-off frequency

is controlled by parameter L4. The simulated S-parameters

of the single order BSF and its equivalent circuit in Fig-

ures 2a and 2b, respectively, are presented in Figure 3c.

There is good agreement between the two S21 responses.

The values of the LC equivalent circuit model are:

Lt1 5 1.23 nH, Lt2 5 1.52 nH, Lt3 5 0.91 nH, Lt4 5 0.08

nH, Lt5 5 0.03 nH, Ct1 5 402 fF, Ct2 5295 fF, Ct3 52.02

pF.

III. HIGH-ORDER BSF DESIGN

To achieve a highly sharp 3 dB cut-off frequency and

significantly improved stop-band characteristics multiple

SIRs where used that are interconnected using microstrip

lines of dimensions 0.1 3 0.1 mm2, as shown in Figure

4a. This configuration generates multiple transmission

zeros that contribute toward enhancing the filter

response. Figures 4a and 4b show the structure of third-

order filter and its corresponding frequency response,

respectively. It can be observed that the skirt, the rejec-

tion level, and stop-band of the filter are significantly

improved than the single order filter in Figure 2a. The

effect on the S21 frequency response by the various

orders of filter is shown in Figure 4c. The results show

the sharpness and stop-band rejection performance of the

filter can be improved by increasing of the order of the

filter. The seven order filter provides the optimum

response in terms of sharp cut-off, rejection level, and

stop-band performance.

The LC equivalent circuit of the third-order filter is

depicted in Figure 5a. As the microstrip section inter-

connecting the resonators is very short, the associated

capacitance and the inductance are negligible and have

been ignored in the circuit analysis. The frequency

response of the third-order filter, in Figure 5b, shows

that there is good agreement between the simulated and

measured results. Although there is generally a good

match in the LC equivalent circuit response with the

Figure 3 Simulated transmission and reflection-coefficient

responses for microstrip layout dimensions L1 and L4. (a) Simu-

lated S21 and S11 response as a function of dimension L1, (b)

simulated S21 and S11 response as a function of dimension L4, (c)

simulated S21 and S11 response for single order BSF and the cal-

culated response of the LC equivalent circuit model.

Figure 4 Layout of the proposed BSF and the simulated scat-

tering parameters frequency responses. (a) Layout of third-order

BSF, (b) simulated S21 and S11 response of third-order BSF, and

(c) S21 for different orders of BSF.
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simulated and measured responses, however, the LC
equivalent circuit exhibits a slightly lower cut-off fre-

quency and higher rejection across approximately 3–

5 GHz. This is attributed to the simplified LC equivalent

circuit model that does not take into account the micro-

strip sections interconnecting the resonators, parasitic

coupling between adjacent resonators, discontinuity

capacitance, open-end fringing fields, and dielectric and

conductor loss.

IV. SIMULATED AND EXPERIMENTAL RESULTS

A third-order BSF was designed and fabricated on Rogers

RO4003C substrate with thickness 5 0.508 mm,

permittivity 5 3.38, and loss tangent 5 0.0027. Figure 5b

shows excellent correlation between the simulated and

measured results. The filter has a 3 dB bandwidth of

6.91 GHz from 2.2 to 9.11 GHz, and its insertion-loss is

less than 1 dB between DC to 2 GHz, and less than 1.3

dB between 9.2 and 13 GHz corresponding to the lower

and upper passbands, respectively. The filter’s return-loss

is less than 0.5 dB while the insertion-loss is greater than

50 dB in the stop-band between 2.70 and 6.19 GHz. The

photograph of filter is shown in Figure 6. The fabricated

filter excluding I/O feed-lines occupies an area of 25.9 3

8.19 mm2. The comparison in Table I shows the proposed

technique provides a compact design than [2–5], and has

the largest stop-band than [1–5].

V. CONCLUSION

The design of a compact BSF with a wide stop-band per-

formance was implemented by interconnecting SIRs. The

parameters that controlled the transmission zeros and cut-

off frequency of the filter were determined its microstrip

structure. A third-order filter was designed and fabricated

to verify its performance. Measured results confirm the

filter exhibits a wideband response with steep 3 dB roll-

off and high rejection level over a wide stop-band. The

filter’s planer structure offers enhanced immunity to

crosstalk and ground-plane interference compared to DGS

BSF configurations.
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