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Abstract— For effective security, it is critical that event data is 

collected in near real time as possible to enable early detection 

and response to threats. Performing analytics from event logs 

stored in databases slows down the response time due to the time 

cost of database insertion and retrieval operations. We present 

a data collection framework that minimizes the need for long 

term storage. Events are buffered in memory, up to a 

configurable threshold, before being streamed in real time using 

live streaming technologies. The framework deploys virtualized 

data collecting agents that ingest data from multiple sources 

including external Threat Intelligence. The framework enables 

the correlation of events from various sources, improving 

detection precision. We have tested the framework in a real 

time, machine-learning based threat detection system. Our 

results show a time gain of 300 milliseconds in transmission time 

from event capture to analytics system, compared with storage-

based collection frameworks. Threat detection was measured at 

95%, which is comparable to the benchmark snort IDS.  

Keywords— Data Collection, Event Correlation, Cyber event 

analytics, Real time detection, Log analysis 

I. INTRODUCTION 

Security analytics systems rely upon data sourced from 

multiple network infrastructure devices such as Intrusion 

Prevention and Detection Systems (IDPS), network firewalls 

and routers, network switches and various application 

firewalls. Before this data can be analyzed for possible 

security threats, it needs to be collected. Therefore, data 

collection is a crucial and critical step in the cyber analytics 

process. Consequently, data collection might as well be a 

performance-critical path for analytics systems (Ramah et al., 

2006),(Qadeer et al., 2010), especially when the need to 

consume big data or perform analysis in real time arises. 

The figure below presents a typical cyber analytics process. 
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Different analytics applications will be the consumers of the 

data collected and processed in the preceding stages. Suppose 

the analytics applications and consequent processes are time 

sensitive. In that case, the data collection stage must make the 

ingested data available as quickly as possible, while at the 

same time collecting sufficient data on which to form 

accurate inferences. 

While detection capability remains key in any cyber response 

system, the timeliness of the detection is even more 

paramount as attacks detected too late would have caused 

significant damage by the re-action time. 

This paper presents a data collection framework that enables 

the real time detection and response of cyber threats. The near 

total elimination of local long-term storage of collected data 

saves significant time cost complexity. The use of state-of-

the-art real time streaming technologies ensures that data is 

available to analytics applications as soon as practically 

possible, enabling our analytics applications to implement 

real-time reactions. 

The innovation of our solution comes in several ways. Firstly, 

the system ingests from multiple source types including 

external cyber threat intelligence. This improves the maturity 

capability of the overall security operations. Secondly, the 

architecture improves the storage layer by allowing in-

memory analytics, which improves the overall detection and 

response time. Further, the architecture embraces modern 

technologies to enable real time streaming and analysis of 

security events, mitigating technology limitations prevalent 

in the state-of-the-art solutions. 

Fig 1. Typical Analytics Process 

 



Our contribution is a flexible, scalable, expansible, and multi-

source collection architecture and framework for data 

collection that enables timely detection of security threats and 

response. 

The rest of this paper is organized as follows: 

First, we review some of the recent research in data collection 

for cyber security, where we critically analyze and highlight 

the research gaps this paper addresses. Then we present our 

proposed framework, highlighting the architectural pillars 

that differentiate our work. We then illustrate an 

implementation based on our Framework, followed by 

experimentation and results. We conclude this work and 

propose some future work. 

 

II. RELATED WORK 

 

Various research on data collection methods and technologies 

can be found in the research literature. 

The collection module proposed in (Razaq et al., 2016) 

populates security-related data in a local MySQL database, 

after which a Hadoop snoop job exports the data to an off-

shore data store based on Hadoop File System. Analytics 

applications then run atop the data in the Hadoop system. 

The real-time cyber threat detection platform in (Carvalho et 

al., 2016) collects data from both internal and external 

sources. After some pre-processing, the data is loaded into 

multiple databases according to data type (Malware 

Database, Social Media Database, Email Database, etc.). Big 

data analytics is then deployed using machine learning 

algorithms that train and detect threats in real-time data flows. 

Open Source technologies are used in (R. More et al., 2017) 

to detect threats in real time. Captured Sensor data is 

uploaded to Apache Hadoop Clusters before being trained 

and classified using Apache Mahout. 

Deliu et al (Deliu et al., 2017), compared the performance of 

extracting intelligence data from hacker forums using 

Convolutional Neural Networks(CNN) vs traditional 

machine learning algorithms.  The emphasis of both these 

papers is the comparison of different machine learning 

algorithms in extracting cyber threat intelligence. 

The same authors (Deliu et al., 2018) deployed a two stage 

process to extract Cyber Threat Intelligence (CTI) from 

hacker forums using Support Vector Machine algorithm for 

the classification. A second stage involved utilizing Latent 

Dirichlet Allocation algorithm to aggregate the data based on 

topics of discussion.  

A server/client based agent model was used to develop a 

system for collecting open source intelligence from multiple 

sources in (Kim et al., 2018). The system was used to collect 

and extract Indicators of Compromise (IOC) from Open-

Source Intelligence (OSINT) feeds and correlate them.  

The framework proposed in (Jin et al., 2018) implements a 

collection layer that integrates the data collected from various 

source types including network, application logs, and 

external intelligence. 

For real time detection, the authors in (Lopez et al., 2018) 

evaluate the use of  Open Source Platform for  Network 

Function Virtualization(OPNFV) for real time threat 

detection. They implement a capture module that use Bro 

Probes and employs Spark Streams to stream the captured 

packet header data to cloud-based Apache Kafka 

Infrastructure for temporary storage. The batch data is then 

fed to machine learning based trainers. Classifiers use this 

historic batch-processed data to detect threats in live streams 

in an implementation of the Lamba Architecture. 

The framework proposed in (Arizona State University et al., 

2019) employs custom web crawlers to collect darknet data 

from webpages and then archives the data for long term 

storage. In (Koloveas et al., 2021), web crawlers are also used 

in the data acquisition module to collect data from various 

Intelligence feeds. The collected data is then stored in an 

internal NoSQL Database (MongoDB) for later Data 

Analysis.  

The IoT Data Collection Framework presented in (De Vita et 

al., 2020) uses a micro controller unit capable of controlling 

several sensors to address heterogeneity of data captured 

from various sensors at the physical layer. The data is then 

stored in Influx DB, a non-relational database optimized for 

storing long time series data. 

In (P. More & Mishra, 2020), time complexity is reduced by 

enhancing the feature reduction algorithm of Principal 

Component Algorithm (PCA) based analysis. 



The real-time Network Intrusion Detection System (NIDS) 

presented in (Seo & Pak, 2021) relies on optimizing the 

feature selection of a first level packet based machine 

learning classifier to achieve faster detection speeds, before 

engaging a second-level full featured packet session classifier 

to achieve accurate detection. 

The literature reviewed reveals that active research in data 

collection for cyber security is concentrated on methods and 

techniques with little work done in addressing the need for 

the timeous collection and delivery of data for real time 

analytics. Additionally, the state-of-the-art in data collection 

frameworks rely on early storage of collected data in some 

form of database, making real time analytics of cyber events 

a futile effort.  

In this paper, we address the above concerns by presenting a 

system architecture for data collection that is biased toward 

real time detection and response to cyber threats. The system 

allows for both online and offline analytics by using filtered 

event logs that are buffered in memory using data structures. 

The in-memory data is streamed to cloud-based Apache 

Kafka storage clusters at an optimized threshold and interval. 

This architecture allows for real time detection as well as 

forensic analysis.  

III. PROPOSED DATA COLLECTION  FRAMEWORK 

The framework is presented in figure 2 below 
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Physical layer: This represents the IT infrastructure systems 

comprising servers, network, and security infrastructure 

devices. Various sensors are deployed in the internal 

environment, capturing events of interest. The External 

Cyber Threat Intelligence (CTI) Databases are located 

elsewhere on the Internet and act as sources of various Cyber 

Intelligence feeds of interest. In this research, a virtualized 

sandbox environment containing real malware samples 

represents the internal infrastructure, while other virtualized 

servers host scripts for external data collection.  

Collection Layer: This layer implements several custom 

scripts, applications, adapters, and plugins for collecting data 

from the various physical layer systems. SNORT in IDS 

mode is the probe used to collect network activity from real 

malware samples in the form of packet captures. Due to the 

heterogeneity of the physical layer systems, the incoming 

data is in different formats. This layer is therefore also 

responsible for pre-processing steps such as filtering and 

normalization. As discussed earlier, one of the key 

bottlenecks in the reviewed frameworks is the use of local 

long-term storage for the collected data at this stage. In our 

framework, we keep this data in memory data structures, 

eliminating the computational cost of database operations. 

Streaming modules export data to cloud-based storage and 

analytics systems when data structures grow to an optimized 

threshold.  

Cloud layer: The cloud layer is home to cloud-based storage 

and analytics applications. We implement this layer by 

installing Kafka Brokers and servers in the cloud and using 

custom applications to stream events. Further, for long-term 

storage, data is exported from Kafka servers to NoSQL-based 

database (MongoDB) at configurable thresholds. This allows 

for the analytics applications to work in both online and 

offline modes. 

A. Data Sources 

The system currently processes data from multiple sources as 

follows: 

• Network Packets : Live Network activity is captured 

using the snort IDS tool. The captured traffic is from 

network activity from live malware that has been 

executed in windows machines in a controlled 
Fig 2. Data Collection and Analytics 



(sandbox) environment. The network traffic is saved 

at periodic intervals in the standard .pcap format. 

Additionally, forensic network traffic is obtained 

from public sources. This traffic is also 

representative of various malware activities as 

captured in different environments elsewhere 

around the internet. 

• Event Data : Snort has been set up in IDS mode to 

capture suspicious traffic according to various rules. 

As snort detects possible intrusions, it generates 

alerts . These alerts are captured in syslog format. 

Our system ingests these alerts for future analysis 

and correlation. Additionally, the activities of the 

malware inside the windows host machines are 

captured by the Windows Operating System using 

the Windows Event Management system and stored 

as EVTX files.  Likewise, our system takes these 

EVTX files and pre-processes them before onward 

transmission and storage for further analysis and 

correlation. 

B. Data Pre-Processing 

Before onward transmission of the data and analysis, certain 

pre-processing procedures are performed. 

• Packet Filtering : The captured .pcap network 

packets comprise the IP header and the payload. We 

eliminate the payload from further transmission and 

analysis in our current implementation. This 

increases the throughput of our system as we only 

need to transmit the IP header , which is maximum 

20 bytes in length.  

• Alert and Log Filtering : Further, the snort alerts and 

windows EVTX logs contain more information than 

is needed for our analytics. For correlations to work,  

we need to extract the fields of interest upon which 

we can establish relationships with the other 

sources. We pass the alerts and evtx logs through a 

filter, to extract attributes of interest. 

• JSON formatting: Further, the filtered  IP header, 

alert and evtx logs are digitally serialized in JSON 

format . The JSON structure is stored in memory up 

to a configurable buffer limit, after the data is 

streamed into cloud-based analytics applications. 

 

IV. EXPERIMENTS AND RESULTS 

A. Data Generation 

The diagram below illustrates the implementation of a 

Sandbox Environment used for generating and collecting 

network activity from real malware samples. 
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The set-up is based on isolating the infected environment 

using virtualization technology. The various components are 

described below 

• Host System : The host system is a dedicated cloud 

server configured with 4TB of HDD storage, 64GB 

RAM and 16 CPU cores. 

• Host Operating System: The Host Operating System 

is Ubuntu Linux 20.04 Focal, with hardware 

acceleration enabled for virtualisation support 

• Virtualisation Layer : Virtualisation is implemented 

using the Linux native Kernel Virtual Machine 

Manager (KVM) with Qemu. 

• Virtual Machines : Four Virtual Machines have been 

set up in the sandbox. Three are running Microsoft 

Windows 10 Home, configured with 60GB HDD 

and 4GB RAM. The fourth virtual machine is a 

Remnux system(ref), which is based on Ubuntu 

18.04 bionic. The Remnux system is a purpose-built 

Linux system comprising a curated list of 

applications, tools, and utilities for malware 

analysis. The screenshot below shows a live capture 

Fig 3. Sandbox Environment 
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of the virtual machines from the Linux Kernel 

Virtual Machine Manager. 

Live malware samples have been downloaded and are 

introduced into the windows host machines. This malware 

comprises viruses, worms and trojans. As the malware 

executes inside the windows hosts, the windows event 

management system logs open file handles, processes, files, 

and command execution and records all these events as log 

files in the Windows EVTX format. Further, the malware 

attempts network connections as they scan for more targets 

or contacts their command-and-control Centre. These 

network activities are captured by the SNORT IDS in the 

remnux machine. Further, SNORT triggers alert if the 

network connections match the snort IDS rules.  

1) Collection Process 

Several python scripts are utilized in the collection process 

• Collector server : This is the server side of a 

centralised collector script. It runs outside the 

controlled environment (sandbox) and listens for 

TCP connections on a configurable port, currently 

7508. Upon connection, it receives raw bytes of data 

from a client collector and saves them into a .pcap 

file in a central location. 

• Collector client : This is the client side of the 

collector script. It runs in a controlled environment. 

The script scans the storage directory at 

configurable intervals and transfers all new .pcap 

files to the central collector above 

• Pcap_filter : This script takes a pcap file and 

dissects each packet into individual header fields, 

discarding the payload and serializing the filtered 

header into a json structure and file. 

• Json_producer : This script takes as input Json 

formatted data structure from either persistent file 

storage or in-memory and streams the contents to a 

listening Kafka broker in the cloud using Apache 

Kafka real time streaming technology. The script 

implements Kafka Producer client. 

• mqtt_producer : Like the script above, 

mqtt_producer.py takes json formatted structure and 

streams the contents to a listening MQTT broker in 

the cloud using eclipse MQTT broker using real 

time MQTT real time messaging technology 

• cve_parser: This script parses NVD CVE file, 

which is in JSON format and filters the CVE 

attributes of interest, saving the contents into a new 

JSON formatted file. This filtered JSON CVE file 

will later be used for software vulnerability 

detection. 

The packet captures, log files and alerts are collected by the 

client collector script running on the remnux machine and 

sent to the central collector running on the host system. After 

parsing and filtering as earlier described, these data are 

streamed into MQTT and Kafka brokers in the cloud. 

The diagram below depicts the onward processing of the data 

 

 

 

B. Analytics 

To complete the experiment and demonstrate our 

framework's use case, we implement threat detection through 

containerization and parameterization of machine learning 

code. The details of the containerization and parameterization 

of the machine learning code are a subject for another paper. 

Here we demonstrate the application of the resultant analytics 

based on the data streamed by our framework. Fig 5 below 

illustrates the output from the analysis 
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We use Multi-Layer Perceptron Neural Network (MLP 

NN) and Support Vector Machine (SVM). The NN model is 

sequential with three layers. The SVM uses radial basis 

function kernel. The training data for our research comes 

from Netresec (public packet capture 

repository - https://www.netresec.com). The format of the 

files is PCAP, and CSV and their size varies from 6MB to 

318MB. The PCAP files are used for initial model 

training. We used 7 CSV files and 10 PCAP files, 

including Ursnif and Trick Bot infected traffic. We also 

used DDoS flood data examples (PSH-SYN-FIN, URG-

PSH-SYN). Each record has numerical data, describing the 

packet numbers, the time and length of the 

packets. Categorical variables are the source and destination 

IP addresses, protocol used and packet info. The model has 

trained over 250 epochs (number of passes through the whole 

dataset) with batch size of 128 training examples in a single 

batch.   

Below we show successful reception of the data streams from 

our sandboxed data sources. 

Using MLFlow, we show below a packet dissection analysis 

of the received data, showing metrics of interest used for 

Intrusion detection. 

 

 

 

V. SUMMARY 

Data collection is a critical part of an analytics system. If the 

collection framework involves storing data into secondary 

storage before processing and use, a significant time penalty 

can be incurred. Timely response is key in alleviating the 

consequences of a cyber-attack. 

In this paper, a data collection framework for real time 

analytics has been presented. In-memory data structures are 

used to hold filtered real-time data. Event records are 

immediately presented into the data structure without the time 

wasteful need first to accumulate them into log files. This 

presents an opportunity to treat time-series and otherwise 

static data in real time. Using Apache Kafka, records in the 

data structure are streamed to cloud-based analytics systems. 

Our Containerized machine learning analytics system ingests 

this data and detects threats in real time. The results show that 

there is a time gain of 300 milliseconds in transmission time 

from event capture to analytics system, when compared with 

storage-based collection frameworks. The threat detection 

was measured at 95%, which is comparable to the benchmark 

snort IDS.  

VI. FUTURE WORK 

The framework currently uses multiple data collectors per 

stream but in one virtualized system node. This could result 

in sub-optimal resource utilization if the volume of data to be 

processed is limited, wasting the entire virtualized resource. 

On the other hand, if the data velocity and volume from the 

various sources are big, as would be expected in today’s era 

of big data, the framework might not scale. We therefore look 

towards containerization of the collectors, with a control 

module that implements real time performance monitoring of 

the containers that allows the system to apply container auto-

scaling depending on resource utilization. This is the future 

direction of our research. 
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