
Real Time Cyber Analytics Data Collection Framework

Herbert Maosa

Cyber Security Research Centre

London Metropolitan Universuty

London, UK

h.maosa1@londonmet.ac.uk

Prof. Karim Ouazzane

Cyber Security Research Centre

London Metropolitan Universuty

London, UK

k.ouazzane@londonmet.ac.uk

Viktor Sowinski-Mydlarz

Cyber Security Research Centre

London Metropolitan Universuty

London, UK

w.sowinskimydlarz@londonmet.ac.uk

Abstract— For effective security, it is critical that event data is

collected in near real time as possible to enable early detection

and response to threats. Performing analytics from event logs

stored in databases slows down the response time due to the time

cost of database insertion and retrieval operations. We present

a data collection framework that minimizes the need for long

term storage. Events are buffered in memory, up to a

configurable threshold, before being streamed in real time using

live streaming technologies. The framework deploys virtualized

data collecting agents that ingest data from multiple sources

including external Threat Intelligence. The framework enables

the correlation of events from various sources, improving

detection precision. We have tested the framework in a real

time, machine-learning based threat detection system. Our

results show a time gain of 300 milliseconds in transmission time

from event capture to analytics system, compared with storage-

based collection frameworks. Threat detection was measured at

95%, which is comparable to the benchmark snort IDS.

Keywords— Data Collection, Event Correlation, Cyber event

analytics, Real time detection, Log analysis

I. INTRODUCTION

Security analytics systems rely upon data sourced from

multiple network infrastructure devices such as Intrusion

Prevention and Detection Systems (IDPS), network firewalls

and routers, network switches and various application

firewalls. Before this data can be analyzed for possible

security threats, it needs to be collected. Therefore, data

collection is a crucial and critical step in the cyber analytics

process. Consequently, data collection might as well be a

performance-critical path for analytics systems (Ramah et al.,

2006),(Qadeer et al., 2010), especially when the need to

consume big data or perform analysis in real time arises.

The figure below presents a typical cyber analytics process.

Data
Source

Data
Collection

Analysis

Processing

Filtering NormalizationParsing Fusion

Different analytics applications will be the consumers of the

data collected and processed in the preceding stages. Suppose

the analytics applications and consequent processes are time

sensitive. In that case, the data collection stage must make the

ingested data available as quickly as possible, while at the

same time collecting sufficient data on which to form

accurate inferences.

While detection capability remains key in any cyber response

system, the timeliness of the detection is even more

paramount as attacks detected too late would have caused

significant damage by the re-action time.

This paper presents a data collection framework that enables

the real time detection and response of cyber threats. The near

total elimination of local long-term storage of collected data

saves significant time cost complexity. The use of state-of-

the-art real time streaming technologies ensures that data is

available to analytics applications as soon as practically

possible, enabling our analytics applications to implement

real-time reactions.

The innovation of our solution comes in several ways. Firstly,

the system ingests from multiple source types including

external cyber threat intelligence. This improves the maturity

capability of the overall security operations. Secondly, the

architecture improves the storage layer by allowing in-

memory analytics, which improves the overall detection and

response time. Further, the architecture embraces modern

technologies to enable real time streaming and analysis of

security events, mitigating technology limitations prevalent

in the state-of-the-art solutions.

Fig 1. Typical Analytics Process

Our contribution is a flexible, scalable, expansible, and multi-

source collection architecture and framework for data

collection that enables timely detection of security threats and

response.

The rest of this paper is organized as follows:

First, we review some of the recent research in data collection

for cyber security, where we critically analyze and highlight

the research gaps this paper addresses. Then we present our

proposed framework, highlighting the architectural pillars

that differentiate our work. We then illustrate an

implementation based on our Framework, followed by

experimentation and results. We conclude this work and

propose some future work.

II. RELATED WORK

Various research on data collection methods and technologies

can be found in the research literature.

The collection module proposed in (Razaq et al., 2016)

populates security-related data in a local MySQL database,

after which a Hadoop snoop job exports the data to an off-

shore data store based on Hadoop File System. Analytics

applications then run atop the data in the Hadoop system.

The real-time cyber threat detection platform in (Carvalho et

al., 2016) collects data from both internal and external

sources. After some pre-processing, the data is loaded into

multiple databases according to data type (Malware

Database, Social Media Database, Email Database, etc.). Big

data analytics is then deployed using machine learning

algorithms that train and detect threats in real-time data flows.

Open Source technologies are used in (R. More et al., 2017)

to detect threats in real time. Captured Sensor data is

uploaded to Apache Hadoop Clusters before being trained

and classified using Apache Mahout.

Deliu et al (Deliu et al., 2017), compared the performance of

extracting intelligence data from hacker forums using

Convolutional Neural Networks(CNN) vs traditional

machine learning algorithms. The emphasis of both these

papers is the comparison of different machine learning

algorithms in extracting cyber threat intelligence.

The same authors (Deliu et al., 2018) deployed a two stage

process to extract Cyber Threat Intelligence (CTI) from

hacker forums using Support Vector Machine algorithm for

the classification. A second stage involved utilizing Latent

Dirichlet Allocation algorithm to aggregate the data based on

topics of discussion.

A server/client based agent model was used to develop a

system for collecting open source intelligence from multiple

sources in (Kim et al., 2018). The system was used to collect

and extract Indicators of Compromise (IOC) from Open-

Source Intelligence (OSINT) feeds and correlate them.

The framework proposed in (Jin et al., 2018) implements a

collection layer that integrates the data collected from various

source types including network, application logs, and

external intelligence.

For real time detection, the authors in (Lopez et al., 2018)

evaluate the use of Open Source Platform for Network

Function Virtualization(OPNFV) for real time threat

detection. They implement a capture module that use Bro

Probes and employs Spark Streams to stream the captured

packet header data to cloud-based Apache Kafka

Infrastructure for temporary storage. The batch data is then

fed to machine learning based trainers. Classifiers use this

historic batch-processed data to detect threats in live streams

in an implementation of the Lamba Architecture.

The framework proposed in (Arizona State University et al.,

2019) employs custom web crawlers to collect darknet data

from webpages and then archives the data for long term

storage. In (Koloveas et al., 2021), web crawlers are also used

in the data acquisition module to collect data from various

Intelligence feeds. The collected data is then stored in an

internal NoSQL Database (MongoDB) for later Data

Analysis.

The IoT Data Collection Framework presented in (De Vita et

al., 2020) uses a micro controller unit capable of controlling

several sensors to address heterogeneity of data captured

from various sensors at the physical layer. The data is then

stored in Influx DB, a non-relational database optimized for

storing long time series data.

In (P. More & Mishra, 2020), time complexity is reduced by

enhancing the feature reduction algorithm of Principal

Component Algorithm (PCA) based analysis.

The real-time Network Intrusion Detection System (NIDS)

presented in (Seo & Pak, 2021) relies on optimizing the

feature selection of a first level packet based machine

learning classifier to achieve faster detection speeds, before

engaging a second-level full featured packet session classifier

to achieve accurate detection.

The literature reviewed reveals that active research in data

collection for cyber security is concentrated on methods and

techniques with little work done in addressing the need for

the timeous collection and delivery of data for real time

analytics. Additionally, the state-of-the-art in data collection

frameworks rely on early storage of collected data in some

form of database, making real time analytics of cyber events

a futile effort.

In this paper, we address the above concerns by presenting a

system architecture for data collection that is biased toward

real time detection and response to cyber threats. The system

allows for both online and offline analytics by using filtered

event logs that are buffered in memory using data structures.

The in-memory data is streamed to cloud-based Apache

Kafka storage clusters at an optimized threshold and interval.

This architecture allows for real time detection as well as

forensic analysis.

III. PROPOSED DATA COLLECTION FRAMEWORK

The framework is presented in figure 2 below

Internal (Monitored) Environment

CTI Collector Collector - Events & Alerts

Vulnerability
Database

Attack
Database

Sensor

Sensor Sensor

External CTI External CTI

CTI Collector

Analytics

Analytics

NoSQL(MongoDB)

C
lo

u
d

 L
ay

er
C

ol
le

ct
io

n
 L

ay
er

P
hy

si
ca

l L
ay

er

Physical layer: This represents the IT infrastructure systems

comprising servers, network, and security infrastructure

devices. Various sensors are deployed in the internal

environment, capturing events of interest. The External

Cyber Threat Intelligence (CTI) Databases are located

elsewhere on the Internet and act as sources of various Cyber

Intelligence feeds of interest. In this research, a virtualized

sandbox environment containing real malware samples

represents the internal infrastructure, while other virtualized

servers host scripts for external data collection.

Collection Layer: This layer implements several custom

scripts, applications, adapters, and plugins for collecting data

from the various physical layer systems. SNORT in IDS

mode is the probe used to collect network activity from real

malware samples in the form of packet captures. Due to the

heterogeneity of the physical layer systems, the incoming

data is in different formats. This layer is therefore also

responsible for pre-processing steps such as filtering and

normalization. As discussed earlier, one of the key

bottlenecks in the reviewed frameworks is the use of local

long-term storage for the collected data at this stage. In our

framework, we keep this data in memory data structures,

eliminating the computational cost of database operations.

Streaming modules export data to cloud-based storage and

analytics systems when data structures grow to an optimized

threshold.

Cloud layer: The cloud layer is home to cloud-based storage

and analytics applications. We implement this layer by

installing Kafka Brokers and servers in the cloud and using

custom applications to stream events. Further, for long-term

storage, data is exported from Kafka servers to NoSQL-based

database (MongoDB) at configurable thresholds. This allows

for the analytics applications to work in both online and

offline modes.

A. Data Sources

The system currently processes data from multiple sources as

follows:

• Network Packets : Live Network activity is captured

using the snort IDS tool. The captured traffic is from

network activity from live malware that has been

executed in windows machines in a controlled
Fig 2. Data Collection and Analytics

(sandbox) environment. The network traffic is saved

at periodic intervals in the standard .pcap format.

Additionally, forensic network traffic is obtained

from public sources. This traffic is also

representative of various malware activities as

captured in different environments elsewhere

around the internet.

• Event Data : Snort has been set up in IDS mode to

capture suspicious traffic according to various rules.

As snort detects possible intrusions, it generates

alerts . These alerts are captured in syslog format.

Our system ingests these alerts for future analysis

and correlation. Additionally, the activities of the

malware inside the windows host machines are

captured by the Windows Operating System using

the Windows Event Management system and stored

as EVTX files. Likewise, our system takes these

EVTX files and pre-processes them before onward

transmission and storage for further analysis and

correlation.

B. Data Pre-Processing

Before onward transmission of the data and analysis, certain

pre-processing procedures are performed.

• Packet Filtering : The captured .pcap network

packets comprise the IP header and the payload. We

eliminate the payload from further transmission and

analysis in our current implementation. This

increases the throughput of our system as we only

need to transmit the IP header , which is maximum

20 bytes in length.

• Alert and Log Filtering : Further, the snort alerts and

windows EVTX logs contain more information than

is needed for our analytics. For correlations to work,

we need to extract the fields of interest upon which

we can establish relationships with the other

sources. We pass the alerts and evtx logs through a

filter, to extract attributes of interest.

• JSON formatting: Further, the filtered IP header,

alert and evtx logs are digitally serialized in JSON

format . The JSON structure is stored in memory up

to a configurable buffer limit, after the data is

streamed into cloud-based analytics applications.

IV. EXPERIMENTS AND RESULTS

A. Data Generation

The diagram below illustrates the implementation of a

Sandbox Environment used for generating and collecting

network activity from real malware samples.

Windows 10 Enterprise
Data source

Remnux v7 focal
Analytics/Collector_client

Live Malware
• Trojans
• Worms
• Viruses

Windows
EVTX Logs

Packet
Capture

Snort
Alerts

VMWare HyperVisor

Windows Enterprise Server

The set-up is based on isolating the infected environment

using virtualization technology. The various components are

described below

• Host System : The host system is a dedicated cloud

server configured with 4TB of HDD storage, 64GB

RAM and 16 CPU cores.

• Host Operating System: The Host Operating System

is Ubuntu Linux 20.04 Focal, with hardware

acceleration enabled for virtualisation support

• Virtualisation Layer : Virtualisation is implemented

using the Linux native Kernel Virtual Machine

Manager (KVM) with Qemu.

• Virtual Machines : Four Virtual Machines have been

set up in the sandbox. Three are running Microsoft

Windows 10 Home, configured with 60GB HDD

and 4GB RAM. The fourth virtual machine is a

Remnux system(ref), which is based on Ubuntu

18.04 bionic. The Remnux system is a purpose-built

Linux system comprising a curated list of

applications, tools, and utilities for malware

analysis. The screenshot below shows a live capture

Fig 3. Sandbox Environment

set for data collection

of the virtual machines from the Linux Kernel

Virtual Machine Manager.

Live malware samples have been downloaded and are

introduced into the windows host machines. This malware

comprises viruses, worms and trojans. As the malware

executes inside the windows hosts, the windows event

management system logs open file handles, processes, files,

and command execution and records all these events as log

files in the Windows EVTX format. Further, the malware

attempts network connections as they scan for more targets

or contacts their command-and-control Centre. These

network activities are captured by the SNORT IDS in the

remnux machine. Further, SNORT triggers alert if the

network connections match the snort IDS rules.

1) Collection Process

Several python scripts are utilized in the collection process

• Collector server : This is the server side of a

centralised collector script. It runs outside the

controlled environment (sandbox) and listens for

TCP connections on a configurable port, currently

7508. Upon connection, it receives raw bytes of data

from a client collector and saves them into a .pcap

file in a central location.

• Collector client : This is the client side of the

collector script. It runs in a controlled environment.

The script scans the storage directory at

configurable intervals and transfers all new .pcap

files to the central collector above

• Pcap_filter : This script takes a pcap file and

dissects each packet into individual header fields,

discarding the payload and serializing the filtered

header into a json structure and file.

• Json_producer : This script takes as input Json

formatted data structure from either persistent file

storage or in-memory and streams the contents to a

listening Kafka broker in the cloud using Apache

Kafka real time streaming technology. The script

implements Kafka Producer client.

• mqtt_producer : Like the script above,

mqtt_producer.py takes json formatted structure and

streams the contents to a listening MQTT broker in

the cloud using eclipse MQTT broker using real

time MQTT real time messaging technology

• cve_parser: This script parses NVD CVE file,

which is in JSON format and filters the CVE

attributes of interest, saving the contents into a new

JSON formatted file. This filtered JSON CVE file

will later be used for software vulnerability

detection.

The packet captures, log files and alerts are collected by the

client collector script running on the remnux machine and

sent to the central collector running on the host system. After

parsing and filtering as earlier described, these data are

streamed into MQTT and Kafka brokers in the cloud.

The diagram below depicts the onward processing of the data

B. Analytics

To complete the experiment and demonstrate our

framework's use case, we implement threat detection through

containerization and parameterization of machine learning

code. The details of the containerization and parameterization

of the machine learning code are a subject for another paper.

Here we demonstrate the application of the resultant analytics

based on the data streamed by our framework. Fig 5 below

illustrates the output from the analysis

Windows
EVTX Logs

Packet
Capture

Snort
Alerts

• Collector Server
• Real Time Event Streamer
• Ubuntu Linux 18.0 LTS

JSON
Formatted

Fig 4. Event Log Streaming

We use Multi-Layer Perceptron Neural Network (MLP

NN) and Support Vector Machine (SVM). The NN model is

sequential with three layers. The SVM uses radial basis

function kernel. The training data for our research comes

from Netresec (public packet capture

repository - https://www.netresec.com). The format of the

files is PCAP, and CSV and their size varies from 6MB to

318MB. The PCAP files are used for initial model

training. We used 7 CSV files and 10 PCAP files,

including Ursnif and Trick Bot infected traffic. We also

used DDoS flood data examples (PSH-SYN-FIN, URG-

PSH-SYN). Each record has numerical data, describing the

packet numbers, the time and length of the

packets. Categorical variables are the source and destination

IP addresses, protocol used and packet info. The model has

trained over 250 epochs (number of passes through the whole

dataset) with batch size of 128 training examples in a single

batch.

Below we show successful reception of the data streams from

our sandboxed data sources.

Using MLFlow, we show below a packet dissection analysis

of the received data, showing metrics of interest used for

Intrusion detection.

V. SUMMARY

Data collection is a critical part of an analytics system. If the

collection framework involves storing data into secondary

storage before processing and use, a significant time penalty

can be incurred. Timely response is key in alleviating the

consequences of a cyber-attack.

In this paper, a data collection framework for real time

analytics has been presented. In-memory data structures are

used to hold filtered real-time data. Event records are

immediately presented into the data structure without the time

wasteful need first to accumulate them into log files. This

presents an opportunity to treat time-series and otherwise

static data in real time. Using Apache Kafka, records in the

data structure are streamed to cloud-based analytics systems.

Our Containerized machine learning analytics system ingests

this data and detects threats in real time. The results show that

there is a time gain of 300 milliseconds in transmission time

from event capture to analytics system, when compared with

storage-based collection frameworks. The threat detection

was measured at 95%, which is comparable to the benchmark

snort IDS.

VI. FUTURE WORK

The framework currently uses multiple data collectors per

stream but in one virtualized system node. This could result

in sub-optimal resource utilization if the volume of data to be

processed is limited, wasting the entire virtualized resource.

On the other hand, if the data velocity and volume from the

various sources are big, as would be expected in today’s era

of big data, the framework might not scale. We therefore look

towards containerization of the collectors, with a control

module that implements real time performance monitoring of

the containers that allows the system to apply container auto-

scaling depending on resource utilization. This is the future

direction of our research.

REFERENCES

Fig 5. Analytics

https://www.netresec.com/

Arizona State University, Benjamin, V., Valacich, J. S.,

University of Arizona, Chen, H., & University of

Arizona. (2019). DICE-E: A Framework for

Conducting Darknet Identification, Collection,

Evaluation with Ethics. MIS Quarterly, 43(1), 1–

22. https://doi.org/10.25300/MISQ/2019/13808

Carvalho, V. S., Polidoro, M. J., & Magalhaes, J. P. (2016).

OwlSight: Platform for Real-Time Detection and

Visualization of Cyber Threats. 2016 IEEE 2nd

International Conference on Big Data Security on

Cloud (BigDataSecurity), IEEE International

Conference on High Performance and Smart

Computing (HPSC), and IEEE International

Conference on Intelligent Data and Security (IDS),

61–66. https://doi.org/10.1109/BigDataSecurity-

HPSC-IDS.2016.73

De Vita, F., Bruneo, D., & Das, S. K. (2020). A Novel Data

Collection Framework for Telemetry and Anomaly

Detection in Industrial IoT Systems. 2020

IEEE/ACM Fifth International Conference on

Internet-of-Things Design and Implementation

(IoTDI), 245–251.

https://doi.org/10.1109/IoTDI49375.2020.00032

Deliu, I., Leichter, C., & Franke, K. (2017). Extracting

cyber threat intelligence from hacker forums:

Support vector machines versus convolutional

neural networks. 2017 IEEE International

Conference on Big Data (Big Data), 3648–3656.

https://doi.org/10.1109/BigData.2017.8258359

Deliu, I., Leichter, C., & Franke, K. (2018). Collecting

Cyber Threat Intelligence from Hacker Forums via

a Two-Stage, Hybrid Process using Support Vector

Machines and Latent Dirichlet Allocation. 2018

IEEE International Conference on Big Data (Big

Data), 5008–5013.

https://doi.org/10.1109/BigData.2018.8622469

Jin, X., Cui, B., Yang, J., & Cheng, Z. (2018). An Adaptive

Analysis Framework for Correlating Cyber-

Security-Related Data. 2018 IEEE 32nd

International Conference on Advanced Information

Networking and Applications (AINA), 915–919.

https://doi.org/10.1109/AINA.2018.00134

Kim, N., Lee, S., Cho, H., Kim, B.-I., & Jun, M. (2018).

Design of a Cyber Threat Information Collection

System for Cyber Attack Correlation. 2018

International Conference on Platform Technology

and Service (PlatCon), 1–6.

https://doi.org/10.1109/PlatCon.2018.8472775

Koloveas, P., Chantzios, T., Alevizopoulou, S.,

Skiadopoulos, S., & Tryfonopoulos, C. (2021).

inTIME: A Machine Learning-Based Framework

for Gathering and Leveraging Web Data to Cyber-

Threat Intelligence. Electronics, 10(7), 818.

https://doi.org/10.3390/electronics10070818

Lopez, M. A., Gonzalez Pastana Lobato, A., Duarte, O. C.

M. B., & Pujolle, G. (2018). An evaluation of a

virtual network function for real-time threat

detection using stream processing. 2018 Fourth

International Conference on Mobile and Secure

Services (MobiSecServ), 1–5.

https://doi.org/10.1109/MOBISECSERV.2018.831

1440

More, P., & Mishra, P. (2020). Enhanced-PCA based

Dimensionality Reduction and Feature Selection

for Real-Time Network Threat Detection.

Engineering, Technology & Applied Science

Research, 10(5), 6270–6275.

https://doi.org/10.48084/etasr.3801

More, R., Unakal, A., Kulkarni, V., & Goudar, R. H. (2017).

Real time threat detection system in cloud using

big data analytics. 2017 2nd IEEE International

Conference on Recent Trends in Electronics,

Information & Communication Technology

(RTEICT), 1262–1264.

https://doi.org/10.1109/RTEICT.2017.8256801

Qadeer, M. A., Iqbal, A., Zahid, M., & Siddiqui, M. R.

(2010). Network Traffic Analysis and Intrusion

Detection Using Packet Sniffer. 2010 Second

International Conference on Communication

Software and Networks, 313–317.

https://doi.org/10.1109/ICCSN.2010.104

Ramah, K. H., Ayari, H., & Kamoun, F. (2006). Traffic

Anomaly Detection and Characterization in the

Tunisian National University Network. In F.

Boavida, T. Plagemann, B. Stiller, C. Westphal, &

E. Monteiro (Eds.), NETWORKING 2006.

Networking Technologies, Services, and Protocols;

Performance of Computer and Communication

Networks; Mobile and Wireless Communications

Systems (Vol. 3976, pp. 136–147). Springer Berlin

Heidelberg. https://doi.org/10.1007/11753810_12

Razaq, A., Tianfield, H., & Barrie, P. (2016). A big data

analytics based approach to anomaly detection.

Proceedings of the 3rd IEEE/ACM International

Conference on Big Data Computing, Applications

and Technologies - BDCAT ’16, 187–193.

https://doi.org/10.1145/3006299.3006317

Seo, W., & Pak, W. (2021). Real-Time Network Intrusion

Prevention System Based on Hybrid Machine

Learning. IEEE Access, 9, 46386–46397.

https://doi.org/10.1109/ACCESS.2021.3066620

