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Abstract

The research topic for this PhD thesis focuses on the topology prediction of beta-barrel
transmembrane proteins. Transmembrane proteins adopt various conformations that are
about the functions that they provide. The two most predominant classes are alpha-helix
bundles and beta-barrel transmembrane proteins. Alpha-helix proteins are present in larger
numbers than beta-barrel transmembrane proteins in structure databases. Therefore, there
is a need to find computational tools that can predict and detect the structure of beta-barrel
transmembrane proteins. Transmembrane proteins are used for active transport across the
membrane or signal transduction. Knowing the importance of their roles, it becomes
essential to understand the structures of the proteins. Transmembrane proteins are also a
significant focus for new drug discovery. Transmembrane beta-barrel proteins play critical
roles in the translocation machinery, pore formation, membrane anchoring, and ion
exchange. In bioinformatics, many years of research have been spent on the topology
prediction of transmembrane alpha-helices. The efforts to TMB (transmembrane beta-
barrel) proteins topology prediction have been overshadowed, and the prediction accuracy
could be improved with further research. Various methodologies have been developed in
the past to predict TMB proteins topology. Methods developed in the literature that are
available include turn identification, hydrophobicity profiles, rule-based prediction, HMM
(Hidden Markov model), ANN (Artificial Neural Networks), radial basis function
networks, or combinations of methods. The use of cascading classifier has never been fully
explored. This research presents and evaluates approaches such as ANN (Artificial Neural
Networks), KNN (K-Nearest Neighbors, SVM (Support Vector Machines), and a novel

approach to TMB topology prediction with the use of a cascading classifier. Computer
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simulations have been implemented in MATLAB, and the results have been evaluated.
Data were collected from various datasets and pre-processed for each machine learning
technique. A deep neural network was built with an input layer, hidden layers, and an
output. Optimisation of the cascading classifier was mainly obtained by optimising each
machine learning algorithm used and by starting using the parameters that gave the best
results for each machine learning algorithm. The cascading classifier results show that the
proposed methodology predicts transmembrane beta-barrel proteins topologies with high
accuracy for randomly selected proteins. Using the cascading classifier approach, the best
overall accuracy is 76.3%, with a precision of 0.831 and recall or probability of detection
of 0.799 for TMB topology prediction. The accuracy of 76.3% is achieved using a two-
layers cascading classifier. By constructing and using various machine-learning
frameworks, systems were developed to analyse the TMB topologies with significant
robustness. We have presented several experimental findings that may be useful for future
research. Using the cascading classifier, we used a novel approach for the topology

prediction of TMB proteins.
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1. Introduction

Proteins are macromolecules or large biological molecules that consist of one or more long
chains of amino residues. Protein secondary structure is the specific geometric shape
caused by inter-molecular and intra-molecular hydrogen bonding of amide groups
(Elmhurst College, 2003). There’s been much research on alpha-helix membrane proteins.
There are a few reasons for this. Alpha-helices contain an easily recognisable pattern of
highly hydrophobic consecutive sequences, and rules such as the ‘positive-inside rule’ (von
Heijne, 1992) can be applied. The positive-inside rule is a simple rule that defines how
proteins insert and orient in membranes. Positive charges stay in the cytoplasm. Another
reason, as explained earlier, is the profusion of alpha-helical membranes proteins
(compared to beta-barrel transmembrane proteins) in entire genomes, and the same applies
to datasets of proteins with experimentally solved structures in 3D.

There are significant improvements in the methods used to determine protein structures.
The number of proteins with known structures at the atomic level still corresponds to a
minimal fraction of known sequences (around 1%). There has been progress in technology
used to understand the functions and structures of membrane proteins. For TMB proteins
topology prediction, various techniques have been used. However, some areas are not fully
explored. For example, the use of k-nearest neighbors for TMB topology prediction has
not yet been implemented and evaluated. A complete comparison between k-nearest
neighbors classifiers, support vector machine and deep neural network has not been
evaluated. In a recent paper, Heffernan et al. (Heffernan, Paliwal, Lyons, Dehzangi,
Sharma, Wang, Sattar, Yang and

Zhou, 2015) obtained an 82% prediction accuracy using a deep learning neural network.
Recurrent neural networks provide successful results when applied to secondary structure
prediction (Pollastri, Przybylski, Rost, Baldi, 2002), (Daniel, 2003). The use of Deep
learning towards transmembrane beta-barrel topology prediction could provide a

significant advance in this field.
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1.1 Motivation

The prediction of secondary structure helps to define the 3D structure of proteins, but

100% single residue accuracy is not the goal. There are a few reasons why the accuracy of
100% has not been achieved so far. There are uncertainties and errors in the Protein Data
Bank (PDB), and some regions are classified as disordered instead of ordered in the PDB.
This leads to noisy data. Also, prediction errors can originate from a rigid secondary

structure definition without considering differences (Magnan and Baldi, 2014).

One of the most critical goals in bioinformatics is accurately predicting protein secondary
structures. It is essential in the design of drugs or novel enzymes. The location of beta-
barrel transmembrane proteins is in the outer membranes of gram-negative bacteria, outer
membranes of mitochondria or chloroplasts. They have critical functions such as passive
nutrient intake ion-transport. Accurate predictions of secondary and tertiary structures of
transmembrane proteins are therefore needed. Effective antibacterial drugs are developed

with a good knowledge of the 3D structures of transmembrane beta-barrels.

Efforts related to beta-barrel topology prediction have been overshadowed, and there could
be an improvement in prediction accuracy. Recent studies focus on alpha-helix
transmembrane regions prediction using an SVM- genetic algorithm (Kazemian et al.,
2013) or adaptive neural fuzzy inference system (Kazemian et al., 2014), for example. A
recent paper embarks upon a NN (Neural Network) technique and its comparison with
hybrid-two-level NN-SVM (Support Vector Machines) methodology to classify inter-class
and intra-class transitions to predict the number and range of beta membrane-spanning
regions (Kazemian et al., 2016). The computer simulation results demonstrate a significant
impact and a superior performance of NN-SVM tests with a five residue overlap for signal
protein over NN with and without redundant proteins for predicting transmembrane beta-
barrel spanning regions. Recent studies focus on alpha-helix transmembrane regions
prediction with the use of SVM- genetic algorithm (Kazemian et al., 2013) or adaptive

neural fuzzy inference system (Kazemian et al., 2014). This PhD thesis aims to evaluate
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what prediction methods and techniques have been used so far and find new approaches
and strategies that would improve the prediction accuracy results obtained from this
implementation could represent an essential advancement in the prediction of the topology
of beta-barrel transmembrane proteins with the use of a computer simulation. Deep
learning is a rapidly evolving field, and a significant advance in bioinformatics could be
provided while using those algorithms as part of the thesis. The most common deep
learning architectures are convolutional deep neural networks. Transmembrane beta-barrel
proteins datasets are usually small. The performance of multiple algorithms was evaluated
in a recent article (Sharma et al., 2016) using small datasets with various dimensionalities.
Their report indicated that KNN (k-nearest neighbors), SVM (Support vector machines)
and linear discriminant is the best algorithms when using small datasets. Some of those
models will be implemented as part of the thesis. The PhD thesis will include a
comprehensive evaluation and comparison of the various machine learning applications.
The results obtained from this paper will be applied and utilised to develop and improve a
complete scientific website referenced as the ‘transmembrane and signal peptide topology
prediction web server’. The objective of this server is to contribute to knowledge and
understanding in the field of transmembrane proteins, signal peptides and machine learning
algorithms through the development of an integrated software suite. The server includes
already an ensemble of artificial intelligence techniques such as artificial neural networks,
fuzzy inference systems, genetic algorithms, hidden Markov models and support vector
machines. Predicting beta-barrels, alpha-helices, and signal peptides in one website is
unprecedented, and the site will compete with the only few world-renowned websites, such
as TMHMM 2.0 (Krogh, Larsson, von Heijne & Sonnhammer, 2001), DAS (Cserzo,
Wallin, Simon, von Heijne and Elofsson, 1997), MEMSAT (Jones, Taylor & Thornton,
1994) and SOSUI (Hirokawa, Boon-Chieng and Mitaku, 1998).

1.2 Research Hypotheses
The key research questions, which are the basis of this research, are:
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Which machine learning technique is the most appropriate and has the best
predictive accuracy for the application of TMB topology prediction?

What model could be built to improve current predictions models available today?

This study will therefore need to address the following research questions:

TMB topology prediction is a saturated research area, and current models available

have low accuracy. What factors limit the improvement of prediction accuracy?

How to develop a novel model that can combine multiple machine learning

techniques? What architecture is the most appropriate?

How can the model be optimised to improve TMB topology prediction accuracy?

Can the proposed model add a significant contribution of knowledge to the topic

and be helpful in fields such as medicine?

1.3 Aim and Objectives

This research aims to evaluate the performance of selected machine learning techniques in

predicting TMB topologies and compare them. The goal of the prediction is to provide the

topology of beta-barrel within a protein or protein family and more specifically,

transmembrane proteins. The thesis aims at generating new knowledge in the field of

bioinformatics. Proteins are vital parts of many biological processes. Prediction methods

are of great importance for membrane proteins and are very helpful in drug discovery. If

there is a need to design new drugs, cure diseases, then it is necessary to understand the

actual molecular structure that drugs bind to and then better and improved drugs can be

developed. It is hoped that the research project will develop new understandings in the field

of machine learning.
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The main objectives are:

1. Review the various types of machine learning techniques and existing algorithms

that could be applied for beta-barrel TM topology prediction.

2. Review the various types of proteins, protein structures, and general aspects.

3. Use an appropriate methodology to collect, prepare and encode data using various

datasets.

4. Develop ANN, KNN, SVM and cascading classifier models.

5. Evaluate the performances of the proposed methods, analyse, and compare the

results.

1.4 Research methodology and design

This chapter examines the research methodology adopted in this thesis. It first defines the
philosophy that supports the approach taken with the research, discussing the use of a
positivism posture to study and the consequent choice of the exploratory, constructive, and
experimental approaches used. Hussey et al. (Hussey & Hussey, 1997) discuss
methodology and method. The writers define the methodology as the overall approach to
the research process encompassing a body of methods and define a method as the various
techniques of collecting and/or analysing data. Mason (2002) describes the concept of
methodological strategy, indicating that a particular method can be part of the strategy. The
approach here includes all aspects of the research process under the overall methodology.
The research design and the methods used, the data collection method chosen, and the
means of analysis are all considered part of the methodology and are defined in the

following sections.
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The methodology combines exploratory, constructive, and experimental methods. The
exploratory method aims to gain insights and familiarity with the topic of TMB topology
prediction. Multiple methods have been used to effectively conduct the proposed research
and test the model sets and machine learning techniques used. To ensure good research
design, it is also necessary to evaluate the data sources to make sure that they will help
answer research questions most effectively. The constructive method is used for building
the models. The experimental method is used for testing the models and tuning the

hyperparameters.

1.4.1 Research philosophy

A positivism approach was adopted in this research. As a philosophy, positivism adheres
to the view that only knowledge based on facts gained through measurements, for example,
is trustworthy. In positivism studies, the role of the researcher is limited to data
collection and interpretation objectively. In studies such as this thesis, research findings
are observable and quantifiable. There is often a distinction regarding research
philosophies between positivism and interpretivism (Bryman & Bell, 2007). In positivism,
the purpose of research is a scientific explanation. Researchers who work from this
perspective explains in quantitative terms how variables interact, shape events, and cause
outcomes. They often develop and test these explanations in experimental studies. This
framework maintains that reliable knowledge is based on direct observation or
manipulation of natural phenomena through empirical and experimental means (Lincoln &

Guba, 2000; Neuman, 2003).

1.4.2 Exploratory Method

The exploratory method aims to look for patterns, ideas, or hypotheses. It helps determine
the best research design, data collection method, selection of datasets and machine learning
techniques. It relies on secondary research, such as reviewing available literature and

datasets used.
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1.4.2.1 TMB datasets

A high-quality data set is used for training and validation purposes when constructing any
prediction. An extensive literature review is performed on the list of datasets used in recent
models and the list of available datasets that are available. Errors in databases are not
infrequent, and adding them is an element of noise. While such noise is often well tolerated
by machine learning, the problem is more significant in smaller data sets such as the one

used for TMB topology prediction.

1.4.2.2 Machine learning models

The initial literature review is used to find the various machine learning approaches used
to predict beta-barrel membrane proteins topology. Machine learning approaches prevail
over hydrophobicity methods due to their statistical formulation. There are few machine
learning-based beta-barrel TM topology predictors available based on ANN, HMM, SVM
or a combination of those machine learning techniques. An extensive literature review is
performed on the accuracy of the various methods described in various journals and

articles.

1.4.3 Constructive Method

This computing environment and computing language are selected. Models are
implemented in MATLAB. The models are continually learning and adapting to new data.

Hyperparameters for all algorithms are modified.

1.43.1 Machine learning models development
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This activity identifies the various functions in MATLAB used to create the models. It
defines the encoding techniques that are used. The architectures of the models are described

and implemented.

1.4.3.2 Machine learning models optimisation

This activity has the goal of improving performance. It assesses which model is the most
accurate for TMB topology prediction. Hyperparameters for ANN, KNN, SVM and

cascading classifier are modified.

1.4.4 Experimental Method

This method proves that the models created generate a better TMB topology prediction
accuracy. The data are collected from various online transmembrane beta-barrel datasets.
The activities include testing the models. Multiple runs are executed, and results are

provided. The analysis of results is evaluated with the use of performance graphs.

1.5 Thesis structure

To report the findings of the research in detail, the remainder of the thesis is organised as

follows:
e Chapter 2 presents the literature review. Multiple research papers have been
evaluated and analysed in the context of TMB topology prediction. The available
current tools, existing research, methodologies, and limitations have been described

in this chapter.

e Chapter 3 provides some theories and concepts related to machine learning

algorithms such as SVM, ANN, KNN and ensemble methods.
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Chapter 4 presents the various datasets of transmembrane proteins that are available

and the techniques used for data preparation.

Chapter 5 presents the implementation of ANN, KNN and SVM models in
MATLAB. Modification to the hyperparameters has been described. Results of the
implementations have been provided.

Chapter 6 presents the implementation of a cascading classifier in MATLAB.
Modification to the hyperparameters has been described. Results of the
implementations and runs have been provided.

Chapter 7 provides the discussion of findings.

Chapter 8 provides the conclusion of the thesis, describes the achievements and

contributions, and discusses future research.
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2. Literature Review

This chapter presents a review of publications in areas of transmembrane strand proteins.
It gives an overview of what has been achieved and used methods. Progress has been shown

for the past several decades, and still, the accuracy is modest

2.1 History and development of prediction methods

Three types of computational problems are related to transmembrane beta-barrel.
Transmembrane beta-barrel detection and discrimination (from other proteins) is the first
type. Transmembrane topology prediction and transmembrane beta-contacts prediction are
the second and third types. Machine learning can be applied to all these activities.

In the 1950s, Pauling et al. (Pauling and Corey, 1951) looked at creating alpha-helix and
beta-strand local conformations. Chou and Fasman developed the Chou-Fasman method in
1974 described in two different papers (Chou and Fasman, 1974a) and (Chou and Fasman,
1974b). Early prediction methods were developed using a simple analysis of how amino
acids are distributed in beta-strands (and alpha-helices). Chou et al. statistical method is
based on amino acids propensities defined as natural inclinations or tendencies to belong
to a given secondary structure. The propensity of a position is calculated using an average
of 5 residues (for a strand) surrounding each position rather than a position-by-position
analysis. However, this method is limited due to low accuracy, unreliable parameters, and
over prediction. Some methods used for the discrimination of transmembrane strand
proteins and identification of membrane-spanning B-strand segments are described in the

following paragraphs.
2.1.1 Discrimination of transmembrane strand proteins

Outer membrane proteins (OMPs), also known as a 3-barrel membrane or transmembrane
strand proteins, perform various functions, such as mediating nonspecific, passive
transport of ions and small molecules, selectively allowing the passage

of molecules such as maltose and sucrose. The success rate of discriminating p-barrel
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membrane proteins from other proteins is significantly lower than that ofa-
helical membrane proteins. Multiple methods have been proposed for determining OMPs.
These methods are based on hydrophobicity, sequence alignment, neural networks,
HMMs,  conformational parameters,  statistical = methods, nearest neighbor

algorithms, SVMs, and machine learning techniques.

2.1.1.1 Hidden Markov Models

HMM-B2TMR is based on HMM to predict beta-barrel transmembrane proteins topology
(Martelli, Fariselli, Krogh and Casadio, 2002). The novelty in this method is the
development of a specific input that is based on multiple sequence alignment. The
prediction accuracy is 83% in a jackknife test. A non-redundant dataset of 12 OMPs is used
for training and testing. Fariselli et al. developed a later version. They introduced a
decoding algorithm called the posterior-Viterbi algorithm (Fariselli, Martelli and Casadio,
2005). A decoding algorithm is needed when HMMs predict a given feature. Fariselli et al.
used the previously HMM developed by Martelli et al. to test their decoding algorithm.
Profiles from PSI-BLAST are used for inputs (Altschul, Madden, Schaffer, Zhang, Zhang,
Miller and Lipman, 1997).

PRED-TMBB is a server based on HMM (Bagos, Liakopoulos, Spyropoulos and
Hamodrakas, 2004a). A non-redundant dataset of 14 OMPs was used for the training. A
training set that is constituted of 16 non-homologous OMPs (Bagos, Liakopoulos,
Spyropoulos and Hamodrakas, 2004b) was used later in the model for retraining. The
training follows the conditional maximum likelihood method. Single sequences are used
as input. The Viterbi algorithm, N-best algorithm, or posterior decoding, in addition to the
dynamic programming algorithm, are also used (Bagos, Liakopoulos, Spyropoulos and
Hamodrakas, 2004a). The user can select one of the three different decoding options.
ProfTMB is based on HMM (Bigelow, Petrey, Liu, Przybylski, Rost, 2004). In the original
paper, the impact of using different profiles on ProfTMB accuracy was not evaluated. The
method described in the latest paper (Bigelow and Rost, 2006) reached an overall four-
state accuracy as high as 86%. The algorithm is mainly based on HMM-B2TMR with some
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modifications, like having four states for each residue defined as up-strand, down-strand,
periplasmic-loop, and outer-loop (Bigelow and Rost, 2006). The C++ source code can be
downloaded and compiled by the users, and the original training data or a modification of
it can be used with PROFtmb.

BETA-TM is a predictor based on HMM (Ahn, Yoo and Park, 2003). The Baum-Welch
algorithm with a dataset of 11 non-homologous proteins is used for training. The Viterbi
algorithm is used for decoding.

TMB-HMM is also an HMM-based topology predictor. The residues in the transmembrane
can be predicted as exposed to the membrane versus hidden in the protein structure (Singh,
N., Goodman, Walter, Helms, and Hayat, 2011). The residues that do not belong to beta-
barrel strands but are in the transmembrane region can also be predicted. TMB-HMM uses
frequency profiles obtained from MSAs as input. It has been trained on a dataset of 19
TMBs. It has a three-state prediction accuracy of 72%. The predictor was trained on a
relatively small training dataset, but it is expected that the accuracy will improve once more

3D structures of TMBs become available.

2.1.1.2 Radial basis function networks with PSSM profiles

Radial basis function networks have been suggested to predict the number of beta-barrel
strands and membrane-spanning regions in beta-barrel OMPs (Ou, Chen and Gromiha,
2010). In radial basis function networks, the hidden units perform the computation. To
define the topology of beta-barrel OMPs, it is essential to predict accurately the number of
beta-strands present in OMPs. This prediction is also important to determine the correct
assignment of strands in the membrane. Ou et al. created a protocol to predict the number
of beta-strand in OMPs. If there are more than 590 residues in the proteins, proteins will
be predicted as having 22 beta-strands. If there are less than 200 residues in the proteins,
proteins will be predicted as having 8 beta-strands. If the sequence length is 200500
residues, a radial basis function network is used simultaneously with amino acid

compositions such as Alanine, Aspartic acid, histidine, Tyrosine, and Valine to predict
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10,12,14,16 and 18 beta-strands, respectively (Ou, Chen and Gromiha, 2010). A cross-
validation accuracy of 96.4% is achieved for the correct prediction on the beta-strands
number. For the prediction of membrane-spanning regions, residues in transmembrane
beta-strands are identified using a radial basis function network that has been trained with
PSSM profiles (obtained from PSI-BLAST). With this method, there is a reduction in over-
prediction and under-prediction.

Over-prediction and under-prediction are significant problems in transmembrane strands
prediction. The method has an accuracy of 87%. Figure 1 represents the use of PSSM
profiles as features in the radial basis function network as described in the Ou et al. paper.
The PSSM profiles are generated from PSI-BLAST (Altschul, Madden, Schaffer, Zhang,
Zhang, Miller and Lipman, 1997). A 15x20 matrix is generated using a window size of 15.

It is used as an input for the radial basis function network.
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2.1.1.3
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Figure 1 Using PSSM profiles in radial basis function network

Source: Ou, Y. Y., Chen, S. A and Gromiha, M. M. (2010)

Nearest neighbor algorithm

Amino acid composition is one of the parameters, which can be used to identify -

barrel membrane proteins (Gromiha, 2005). Garrow et al. (2005) used the amino acid co

mposition and proposed a modified k-nearest neighbor algorithm, TMB-HUNT, to classify

the proteins into transmembrane B-barrel (TMB) and non- TMB. This method showed an

accuracy of 92.5% using weighted amino acids and evolutionary information.
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2.1.2 Identification of membrane-spanning 3-strand segments

2.1.2.1 Turn elimination method

Another approach used to predict and identify segments causing polypeptides to reverse
their direction is called turn identification and developed by Paul and Rosenbusch (Paul
and Rosenbusch, 1985). With the removal of beta-turns and the selection of a length of 6

residues for a strand, they predicted transmembrane beta-strands.

2.1.2.2 Hydrophobicity profiles

In biochemistry, an amphipathic molecule can interact on one side with nonpolar or
hydrophobic molecules and on the other side with polar or hydrophilic molecules. Beta-
sheets are often amphipathic and fold into the rest of the protein to protect the hydrophobic
sidechains from water environments. Vogel and Jéahnig developed a method for predicting
transmembrane beta-strands, and the method is based on the amphipathic characteristic of
beta-strands (Vogel and Jahnig, 1986). Jihnig (Jédhnig, 1990) indicated that hydrophobicity
analysis could be sufficient to predict amphiphilic alpha-helices and beta-strands proteins
that cross both sides of a membrane (Gromiha, 2010). Welte et al. (Welte, Weiss, Nestel,
Weckesser, Schiltz and Schulz, 1991) and Cowan et al. (Cowan and Schirmer, 1992) also
proposed a method based on the physicochemical properties of amino acids for the
prediction of transmembrane beta-barrel proteins. In 1993, Schirmer et al. applied the
algorithm of Kyte and Doolittle (Kyte and Doolittle, 1982) to identify transmembrane
proteins (Schirmer and Cowan, 1993). The Kyte and Doolittle algorithm (Kyte and
Doolittle, 1982) determines the mean hydrophobicity within a sliding window. Gromiha et
al. (Gromiha and Ponnuswamy, 1993) have used amino acid hydrophobic properties to
predict beta-strands. The method introduces two characteristics: It is not dependent only
on the amphipathic character of a sequence segment while identifying it as a

transmembrane strand. The method can predict strands in varying lengths. This method has
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an accuracy of 76% for predicting transmembrane beta-strands when used with porin from

Rhodobacter capsulatus.

2.1.23 Rule-based prediction

Gromiha et al. (Gromiha, Majumdar and Ponnuswamy, 1997) suggest predicting
transmembrane beta-strands using a rule-based approach. This is an important class of
methods. The predictor will use the statistical properties of amino acids. There are primary
rules and secondary rules. Rules consider hydrophobicity of amino acids or amphipathicity
of beta-strand segments, for example. (Gromiha, Majumdar and Ponnuswamy, 1997). This
method has a prediction accuracy of 82% for all the bacterial porins evaluated. A
disadvantage of this approach is that training sets based on are limited. Also, when there is
no similarity between the sequences and the proteins of the training set, it is more difficult
to obtain the structural characteristics of the bacterial OMPs. This method is used as part
of the software package named BioSuite (The NMITLI-BioSuite Team, 2007) used in

bioinformatics.

2.1.2.4 Artificial neural networks

The first method, proposed by Diederichs et al., is using a neural network to predict the
topology of bacterial OMPs. The neural network is like other neural networks used, such
as Holley et al. (Holley and Karplus, 1998); however, they use a smaller input window and
one output unit (Diederichs, Freigang, Umhau, Zeth and Breed, 1998). A dataset containing
seven bacterial porins was first used for the training, but a new dataset included some new
solved (non-porins) structures for retraining. The name of the server is OM_Topo_predict.
The server was not available at the time this research was conducted.

The use of neural networks for the prediction of transmembrane beta-barrel in OMPs was
suggested by Gromiha, Ahmad and Suwa. The method uses single sequence information
as input. The neural network comprises three layers (Gromiha, Ahmad and Suwa, 2004).
TMBETA-NET is a predictor for identifying beta-strand proteins that cross both sides of a

membrane. It used a neural network. Empirical rules are included to remove not likely
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predictions of transmembrane strands, such as a strand with three residues (Gromiha,
Ahmad and Suwa, 2005). The predictor is, therefore, more precise. It achieves a prediction
accuracy of 73% for membrane-spanning beta-strands. Applications of TMBETA-NET are
shown in figure 2. The figure represents the stretch of amino acid residues in the
transmembrane strand for OmpA using an amino acid sequence as input. There is height

membrane-spanning beta-strands segments in OmpA, as represented below.
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Figure 2 OmpA-Stretch of predicted amino acids residues in membrane-spanning beta-
strands using TMBETA-NET
Source: Gromiha, M.M., Ahmad, S. and Suwa, M. (2005)

2.1.2.5 Combination of methods

B2TMPRED is a predictor that combines dynamic programming (Jacoboni, Martelli,
Fariselli, De Pinto and Casadio, 2001) and a neural network. Sequence profiles derived
from PSI-BLAST (Altschul, Madden, Schaffer, Zhang, Zhang, Miller and Lipman, 1997)
are used as inputs. The method is trained using a dataset of 11 OMPs. Dynamic
programming is used to identify the location of the TM strands. The discrimination of
membrane beta-strands from extramembrane regions is achieved by creating and training
a feed-forward neural network.

Secondary structure prediction accuracy is as high as 78%. The predictor is available at:

http://gpcr.biocomp.unibo.it/cgi/predictors/outer/pred outercgi.cgi
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TBBpred is a predictor that combines neural networks and support vector machines (Natt,
Kaur, Raghava, 2004). The neural network part of the predictor uses evolutionary
information derived from multiple alignments. The support vector machines module uses
physicochemical properties. One of the methods alone can be selected by the user, but the
authors indicate that combining the methods (81.8%) will significantly improve the
prediction accuracy.

ConBBPred is a web server that combines individual predictors to a single consensus
prediction. Bagos et al. compared the performance of different methods for predicting beta-
barrel OMPs topology using a non-redundant dataset of 20 beta-barrel OMPs (Bagos,
Liakopoulos and Hamodrakas, 2005). They indicated that methods based on HMM are the
best predictors. When only transmembrane beta-barrel domains are used, predictors
achieve better results. The consensus prediction method is also using a dynamic
programming algorithm.

Zou et al. present a model that combines HMM and genetic algorithms (Zou, Wang, Wang,
and Hu, 2010). When designing HMM-based methods, the algorithms used for parameter
estimation and decoding are essential. The Baum-Welch algorithm is often selected for the
training of HMM for the prediction of TMB. Zou et al. use a genetic algorithm for training
and the posterior-Viterbi algorithm for decoding. The dataset includes 33 TMBs. It is one
of the largest datasets used so far in the literature. Zou et al. indicate that their method

achieves better results than all other methods for topology prediction.

2.1.2.6 Recursive neural networks

TMBpro suite is a three-stage method for transmembrane beta-barrel topology prediction,
beta-contacts, and tertiary structure prediction. A 1D-recursive Neural Network (1D-

RNN) and dynamic programming refinement are used (Randall, Cheng, Sweredoski and
Baldi, 2008). Recurrent neural networks are recursive neural networks with a particular
structure. Recursive neural networks operate on any hierarchical structure, while recurrent
neural networks operate on the linear progression of time. According to Q2 (84.2%) and

MCC (0.720), TMBproSS outperforms PRED-TMBB. TMBpro-SS is a secondary
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structure predictor, TMBpro-CON is a beta-contacts predictor, and TMBpro-3D is a

tertiary structure predictor.

2.2 Literature review on BOCTOPUS methods

2.2.1 BOCTOPUS1 method

BOCTOPUS is a recent method that has been used for the prediction of transmembrane
beta-barrel topologies is (Hayat and Elofsson, 2012). Support vector machines have been
utilised to predict the local structural preferences for a residue. An HMM model has been
used for the topology model for proteins. The architecture of BOCTOPUS is represented

in figure 3.
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Figure 3 OmpA-Stretch of predicted BOCTOPUS pipeline
Source: Hayat, S. and Elofsson, A. (2012)
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PSI-BLAST provides the PSSM for a given sequence (Altschul, Madden, Schaffer, Zhang,
Zhang, Miller and Lipman, 1997). The prediction of the residue-level preference for each
amino acid is obtained with three SVMs. The preference can be I, M or O. HMM uses an
‘IOM’ profile acquired to predict the topology. The Viterbi algorithm is used to obtain the
final topology. I correspond to the inner loop, O outer loop and M transmembrane beta-

strand.

2.2.2 BOCTOPUS2 method

Hayat et al. developed BOCTOPUS2 in 2016. It is an updated version of BOCTOPUS
(Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). This method can identify Barrel domains
and topologies and predict residues’ orientation in transmembrane beta-strands (Hayat,
Peters, Shu, Tsirigos and Elofsson, 2016). The prediction accuracy is 69%. It is an increase
of 10% in comparison to BOCTOPUS. BOCTOPUS2 is trained on 42 full Uniprot
sequences with a known 3D structure. It consists of two stages. The prediction of per-
residue location (referred to as inner-loop, outer-loop, membrane lipid-facing and
membrane pore-facing) is achieved using four SVMs in the first stage, and an HMM
predicts the overall topology in the second stage (Hayat, Peters, Shu, Tsirigos and Elofsson,
2016). Regarding the k-nearest neighbors algorithm, it has not been used for the prediction
of TMB topologies prediction. TMB-Hunt (Garrow, Agnew and Westhead, 2005) is a web
server that uses k-nearest neighbors only to discriminate between non-TMB proteins and
TMB proteins based on the composition of amino acids. This is a different problem than

predicting TMB topologies.

2.3 Summary

The literature review critically analysed published academic literature, mainly peer-
reviewed papers and books, on TMB topology prediction. It was possible to present an

overview of the current knowledge gained from previous work. When discussing each
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relevant piece of literature, the review highlighted the gaps and strengths and weaknesses
of a particular study, paper, or book. The review of the literature review helps to have a
clear understanding of what has been published in the subject area of research. Critical
theories in the field of TMB topology prediction have been evaluated. Leading research
groups and authors in the field and their essential contributions to the research topic have
been identified. A clear understanding of the research gap helped redefine the PhD research

questions.
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3. Machine learning algorithms

This chapter provides a description and overview of the three essential types of neural

networks that form the basis for most models in deep learning. K-nearest neigbhors

algorithms, Support Vector machines and ensemble methods. Some general guidelines for

the practical methodology involved in designing, building, training, and configuring a deep

neural network will be presented and some of the current applications of deep learning.

3.1 Neural Networks

3.1.1 Artificial neural networks

Artificial Neural Network, or ANN, is a group of multiple neurons at each layer. ANN is

also known as a Feed-Forward Neural network because inputs are processed only in the

forward direction. Figure 4 represents a schematic diagram of a backpropagation training

algorithm and a typical neuron model.
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ANN consists of 3 layers (Input, Hidden and Output). The input layer accepts the inputs,
the hidden layer processes the inputs, and the output layer produces the result. Essentially,
each layer tries to learn certain weights. A single perceptron (or neuron) can be imagined
as a Logistic Regression. ANN can solve tabular data, image data, or text data problems.
Artificial Neural networks can learn any nonlinear function. Hence, these networks are
popularly known as Universal Function Approximators. ANNs can learn weights that map
any input to the output.

One of the main reasons behind universal approximation is the activation function.
Activation functions introduce nonlinear properties to the network. This helps the network
learn any complex relationship between input and output. One common problem in all
these neural networks is the Vanishing and Exploding Gradient. This problem is associated
with the backpropagation algorithm. The weights of a neural network are updated through
this backpropagation algorithm by finding the gradients. So, in the case of a very deep
neural network (network with many hidden layers), the gradient vanishes or explodes as it
propagates backwards, which leads to vanishing and exploding gradient.

A recent article (LeCun, Bengio and Hinton, 2015) indicates that deep neural networks
outperform conventional methods in the areas of speech recognition or visual object
detection. The ideal features for protein structure prediction problems have not been
identified yet. DNSS is a predictor for secondary structure using deeper neural networks
(Spencer, Eickholt, and Cheng, 2015). The prediction accuracy is 80.7%. It is essential to
indicate that this predictor and other papers referring to predictors using deep neural

networks refer to TMB topology prediction.

Feed-forward neural networks are called feedforward as the information flows through the
function that is evaluated from x, through the intermediate computations used to define the
function and finally to the output y. This is called forward propagation. There are no
feedback connections in which outputs of the model are fed back into itself. When feedback

connections are included in feedforward networks, they are called recurrent neural
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networks, discussed later in the paragraph. Feedforward neural networks are essential to
machine learning practitioners, and they are used in many commercial applications.
Feedforward networks are called networks because they are usually represented by many
different functions. These chain structures are the most often used structures of neural
networks. The overall length of the chain gives the depth of the model. From this
terminology, the term ‘deep learning’ comes from. Hinton et al. define a deep neural
network as a feed-forward artificial neural network with more than one layer of hidden
units between the inputs and outputs (Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior et
al., 2012). The learning algorithm must decide how to use those layers to produce the
desired output, but the training data does not tell what each layer should do. Finally, these
networks are called neural as they are derived from neuroscience models. Each unit in
hidden layers is like a neuron as it receives an input from many other units and computes
its activation value. Feed-forward networks are not models of brain function but are
designed to achieve statistical generalization. Deep feedforward neural networks have full
potential and can be applied to various tasks. Advancements in optimisation to improve

the algorithms and model design are expected to perform further.

3.1.1.1 Regularisation

Regularisation refers to any modification that can be done to a learning algorithm that will
reduce the generalisation error. The training error will not be reduced. Regularisation
strategies for deep models will be covered in this paragraph. Those strategies can also be
used for models that can be utilised as a part of deep learning models. Dataset augmentation
is one strategy that can be used. If machine learning is trained on more data, it will
generalise better. In practical cases, there is a limitation on the amount of data, especially
in the situation of beta-barrel proteins. One way to circumvent this problem has been the
creation of artificial data and adding this data to the training set. This approach is notably
easier for classification problems such as object recognition and efficient for speech
recognition problems (Jaitly and Hinton, 2013). It is not readily applicable to other tasks

such as pattern recognition. Data augmentation also includes noise in the input (Sietsma
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and Dow, 1991); however, deep neural networks are not effective when noise is added.
Improvement of the robustness of deep neural networks can be performed by using random
noise applied to their inputs during training (Tang and Eliasmith, 2010). If the magnitude
of the noise is meticulously tuned, the process can be very efficient (Poole et al., 2014).
Therefore, it is essential to consider if the dataset augmentation has been applied when
comparing machine learning benchmark results. Dataset augmentation constructed
manually can often significantly reduce the generalisation error of machine learning
techniques. If a comparison of the performance of one machine learning technique to
another one is needed, the use of controlled experiments is recommended. Another strategy
that has been used is to add noise to the weights as described in this paper (Jim et al., 1996;
Graves, 2011) with recurrent neural networks. A recent article (Luo and Yang, 2014)
studied the effect of introducing different noise into different components of different types
of deep learning neural networks. They observed that a reasonable amount and a reasonable
magnitude of noise could improve the model's accuracy and convergence rate when
introduced into a deep learning model. The noise was added to the gradient descent
component of Logistic Regression into weights between layers for Multi-layer Logistic
Regression. During a noise-free training process of the model, weights between layers are
transmitted and updated without any loss of information or variances. However, during a
noise added training process, weights between layers are subject to some variation. Lastly,
the noise was added into the feature mapping component of a Convolutional Neural
Network.

Regularisation also includes the technique of early stopping. No changes are needed to the
primary training process, the definition of the function, or the ensemble of parameter values
that are allowed. It does not incur damages to the learning dynamics. It can be with other
regularisation strategies and on its own. A validation set is required for early stopping. It
signifies that some training data is not injected into the model. The computational cost of
the training process is also reduced with early stopping. A generalisation can be reduced
by combining multiple models (Breiman, 1994). This technique is called bagging
(bootstrap aggregating), part of a large approach called model averaging. This technique is

also referred to as the ensemble method. The different models will habitually not make all
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the same errors on the test set, which is why this model works. It involves constructing

different datasets. It is extremely powerful for reducing generalisation errors.

3.1.1.2 Gradient-based optimisation

Optimisation consists of minimising or maximising a function by finding the best value of
an argument. The optimisation is included in most deep learning algorithms. The objective
function (or criterion) represents the function that needs to be minimised or maximised.
When minimised, it is called the cost function (or loss function/error function). The term
differs depending on machine learning publications. Figure 5. represents the gradient

descent technique.
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Figure 5 Gradient descent

Source: Srihari, S. (n.d.)

There is f(x) = y which is the function, and f'(x)the derivative. x and y are real numbers.
Minimising a function using the derivative is helpful as it tells how to modify x to make a
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slight improvement in y. When moving x in the opposite sign of the derivative, f(x) can
be reduced. This is also named the gradient descent. When f(x) = 0, this corresponds to
critical points (also called stationary points). When f(x) is lower than all adjacent points,
it’s called the local minimum. At this point, f(x) cannot be decreased anymore. When f(x)
is higher than all adjacent points, it’s called the local maximum. At this point, f(x) cannot
be increased by making small steps. Saddle points correspond to critical points that are
neither maxima nor minima. The global minimum is a point that corresponds to the
absolute lowest value of f(x). When flat regions are surrounding saddle points or when
many local minima are not optimal, optimisation of the function is performed in the
practical use of deep learning. Steepest descent corresponds to the discrete analogue of
gradient descent. Hill climbing is an approach like steepest descent that is used with large

discrete problems (Russel and Norvig, 2003).

3.1.2 Recurrent neural networks

It was discussed earlier in the previous section that feedforward neural networks have
connections that do not form cycles. Recurrent neural networks (RNNs) are obtained when
cyclical connections are allowed. Elman networks (Elman, 1990), Jordan networks
(Jordan, 1990), time-delay neural networks (Lang et al., 1990) and echo state networks
(Jaeger, 2001) are varieties of RNNs. Recurrent neural networks (RNNs) processes
sequential data. Information about what has been calculated so far can be memorised in
RNN. The limitation is that they can look back only a few steps. Recurrent connections are
a way to bind inputs to the current or previous system states. Figure 6 represents a simple

RNN with a unique self-connected hidden layer.
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More sophisticated types of RNNs have been developed over the years. Two RNNs stacked
on top of each other create a bidirectional RNN. Based on the hidden state of both RNNs,
the computation of the output can occur. Deep bidirectional RNNs are like bidirectional
RNNs and give a higher learning capacity, but large training data is needed. LSTM
networks are to RNNs regarding the architecture, but the hidden state is computed
differently. Cells is another name for memory in LSTMs. The decision to keep or erase
information is determined by these cells. The input, current memory and previous state are
then combined by those cells. For more descriptions on recurrent neural networks, please
refer to the textbook of Graves (Graves, 2012). RNN captures the sequential information
present in the input data, i.e., the dependency between the words in the text while making
predictions. RNNs share the parameters across different time steps. This is popularly
known as Parameter Sharing. This results in fewer parameters to train and decreases the
computational cost.

Deep RNNs (RNNs with many time steps) also suffer from the vanishing and exploding

gradient problem, a common problem in all the different types of neural networks.
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3.1.3 Convolution neural networks

Convolutional neural networks (CNNs) are also called convolutional networks. They are a
neural network that works with grid-like input data and time-series data (1d grid). Time
series means taking samples at regular time intervals. CNNs also work with image data (2-
d grid). The variations in images cannot be considered with algorithms such as KNN.
Convolutional neural networks architecture consists of three main layers: the convolutional
layer, the pooling layer, and the fully connected layer. The convolutional layer is the core
building block. For example, one image becomes a stack of filtered images in the
convolutional layer using images. Pooling in the pooling layer is the process of shrinking
the image stack. It is necessary to pick a window size, a stride, walk to window across the
filtered images and from each window, the maximum value is taken. It is used for
dimensionality reduction. This helps limit both the memory and processing requirement
for running a CNN. The fully connected layer is the last layer, and it can classify data
samples. Every value gets a vote. AlexNet is a solution that won the IMAGENET
Challenge in 2012 using deep convolutional neural networks. IMAGENET is a challenge
for evaluating algorithms for object detection or localisation and image classification from
images and videos. AlexNet gave substantially better results than previous methods
(Krizhevsky, Sutskever and Hinton, 2012). Figure 7 represents the AlexNet architecture.
AlexNet consists of eight learning layers. It has five convolutional layers and three fully
connected layers. The output of the final fully-connected layers is a softmax regression
which converts the weights to probability distributions of the given 1000 classes. CNN
learns the filters automatically without mentioning them explicitly. These filters help
extract the right and relevant features from the input data. CNN also follows the concept

of parameter sharing.

43



204 \dense

192 102 128 20

— | dense| {dense)
P 3t l {\ 13

e 3 1000
\ 192 192 128 Max
20\[lerig Max‘ 128 Max‘ pooling
of 4 pooling pooling

3 48

204 2048

Figure 7 AlexNet CNN architecture
Source: Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017)

3.1.4 Applications

To apply deep learning techniques successfully, a good knowledge of algorithms is not
sufficient. A reputable machine learning practitioner must select an algorithm based on a
specific application. There is also a need to monitor and respond appropriately to feedback
observed during the experiments. The machine learning system will therefore be able to be
improved. Gathering more data, increasing/decreasing the model capacity, improving
inferences in a technique or debugging are important decisions that need to be performed.
All those tasks are time-consuming, and it is essential to decide earlier what action to take.
Recommendations can be adapted from Andrew Ng lecture at Stanford University (Ng,
2015). They determine the model’s goals or what error metric/error metric target value to
choose is part of standard recommendations. Those parameters should be selected
depending on the problem that the application is trying to solve. Establishing an end-to-
end working plan as early as possible in a project is also essential. Performance bottlenecks
need to be determined, and the practitioner should diagnose which components are

performing better or worse than expected. The practitioner should decide if it is due to
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overfitting, under-fitting, or a defect in the data. A final recommendation is the ability to
make incremental changes. This can include gathering new data, adjusting parameters, or
changing algorithms.

To give a few examples, deep learning can resolve problems in computer vision, speech
recognition or natural language processing (NLP). Designing algorithms that can perform
various tasks is one goal of deep learning, but specialisation is usually needed. Charges
related to computer vision require modelling many input features (pixels). Tasks in NLP
require modelling many possible values (as inputs features) corresponding to words in the
vocabulary. Big data analytics is one of the recent applications of deep learning. Many
private and public organisations have started to collect large amounts of information
specific to their domains that can be useful to solve problems. It can be seen particularly in
national intelligence, cyber security, marketing, fraud detection or medical informatics.
Deep learning can analyse and learn large amounts of unsupervised data, useful in big data
analytics. In Big data analytics, raw data is often unlabelled and un-categorized
(Najafabadi, Villanustre, Khoshgoftaar, Seliya and Muharemagic, 2015). Najafabadi et
al.’s paper cover the latest deep learning applications and the challenges in big data
analytics. Nowadays, many companies provide deep learning solutions across various
applications. The latest companies include Affectiva, Gridspace, Ditto Labs, Nervana,
Deep Genomics, Indico, Deep Instinct, Clarifai, Ibidon, Enlitic, Metamind, Ripjar,

MarianalQ.

3.2 K-Nearest Neighbors
3.2.1 General concept

K-nearest neighbors algorithms are the most accessible algorithms to understand.
Neighbors-based classification is classified as instance-based learning. Classification is
obtained based on a majority vote of the nearest neighbors of each point. The data class of
the point queried is obtained based on the data class with the most representatives within
the nearest neighbors of that point. KNN is used for both classification and regression

problems. An example of a KNN classifier is represented in figure 8 (Ajanki, 2007).
45



N A
- ~
- 4 ~
L N
’ N
4 \
4 \
’ \
/ \
/ \
! \
1 \
! 1
! 1
! 1
1

Figure 8 Example of k-nearest neighbors classifier

Source: Ajanki, A. (2007)

This is a KNN classifier with k=3 (solid line) and k=5 (dotted circle line). There are red
and blue known samples and a green unknown sample. The samples are placed in a two-
dimensional feature space. Each feature is one dimension to classify the unknown sample
as red or blue; the classifier uses a distance function to find the k-nearest neighbors of the
unknown sample. It can then predict the label of the green sample by finding the majority
of red or blue labels among the k-nearest neighbors. In this example, when k=3, the

unknown sample is predicted as red and when k=5, it is predicted to be blue.

3.2.2 Distance function

The distance function is an essential element of KNN algorithms. The performance of the
KNN algorithm can depend significantly on the distance function. The most popular
distance function is the Euclidian distance function. It is not used for categorical data. For
categorical data, Hamming distance function is used. The euclidian distance can be
generalised to a Minkowski distance (p-norm). For p=2, it corresponds to the Euclidian

distance. For p=I, it corresponds to Manhattan distance. By changing values of p, it is
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possible to obtain an all family of distance functions with properties that are very different

from the Euclidian distance.

3.2.3 Advantages and disadvantages

With nearest neighbors, there is no assumption. The only thing that is assumed is proximity.
Similar instances should have similar class values or similar targets for regression.
Assumptions are implied by the distance function. It’s a non-parametric approach. In a
sense, it lets the data speak for itself. There is nothing to infer from the data except k or
possibly D. It is easy to update in an online setting by adding a new item to the training set.
Cover and Hart (Cover & Hart, 1967) were able to show in the large sample case that the
probability of error of a 1-nearest neighbors classifier is less than twice the Bayes error
rate. Their paper also indicates that the error probability of the KNN rule monotonically
decreases in k to the Bayes error probability showing the versatility of the family of KNN
rules. Another advantage is that KNN is particularly well suited for multi-modal classes
and applications in which an object can have many class labels. On the downside, it is
necessary to handle missing data by filling in or creating a unique distance. It is sensitive
to class outliers (mislabelled training instances). It is also sensitive to many irrelevant
attributes (affect distance adds noise to the distance function). It is like Naive Bayes in this
case and not like decision trees. Decision trees will ignore irrelevant attributes. This
algorithm is not learning anything, and it is just storing all the training instances and then
comparing them at the testing time. It means that there is a need for space/storage to keep
all training examples and time to compute the distance to all examples. If the number of
training examples increases, the system will become slower and slower. Expense is testing,
not training time. It is a problem as it is better to have large training sets to make reasonable

and accurate estimates.
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3.3 Support Vector Machines

3.3.1 History of SVMs

Support Vector Machine is a supervised learning technique used for classification and
regression problems. It was first introduced in a 1992 article (Boser et al., 1992) in which
the author presented a training algorithm. The margin was maximised between the decision
boundary and the training patterns. SVMs were put into practical application as Large
Margin Classifiers. Vladimir Vapnik et al. (Vapnik, 1999) discussed the Statistical
Learning Theory about SVM. The statistical learning theory discusses the problem of
choosing desired functions based on empirical data. Structural Risk Minimization (SRM)
is the basis of SVMs. It was introduced by Vapnik et al. SVMs became successful within
handwritten digit recognition (Bottou et al., 199The article compares the performance of
multiple classifiers algorithms using handwritten digits from a standard database 1.1% test
error rate was discovered using SVM. This is the same error rate of a carefully constructed
neural network that they refer to as LeNet4. With SVMs, the number of training samples
is not impacting the results (Jonsson et al., 2002). When most neural networks compare the
empirical risk minimisation principle, better results are obtained. (Juwei Lu et al., 2001).
For the estimation of how various features modify classification results and identifying the
one that is important in planning, SVMs can be helpful. This is in addition to classification.
SVMs have been successfully utilised in face detection, image detection, speech
recognition or prediction. Bankruptcy prediction is an example. There are other uses (Byun

et al., 2003).

3.3.2 SVM concept

The goal of SVMs is to minimise an upper bound of the generalisation error by maximising
the margin between the data and the separating hyperplane (Amaris and Wu, 1999). Neural
networks minimise the empirical training error. Empirical Risk Minimization (ERM)
corresponds to standard learning approaches to reduce error on the training dataset. A

neural network is a typical example of an ERM. As described earlier, the basis for SVM is
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Structural Risk Minimization (SRM). SRM minimises an upper bound on the expected
risk. ERM minimises the error on the training data. SVMs can generalise well because of
this difference, and it’s the goal to achieve in statistical learning. There is no

overgeneralisation with SVM (Mitchell, 1997).

3.3.2.1 Support Vector Machines: The linearly separable case

The hyperplane which corresponds to a decision plane is what’s behind SVMs. The
positive class (+1) and the negative class (-1) are separated with the largest margin. The
latest is associated with the Vapnik-Chervonenkis (VC) dimension of an SVM. The VC
dimension quantifies the capacity (expressive power, complexity, flexibility, or richness)
of a space of functions that a statistical classification algorithm can learn. It corresponds to
the cardinality of the largest set of points that the algorithm has shattered. When two classes
are linearly separable, finding a hyperplane that gives the smallest generalisation error
compared to all the possible hyperplanes is not necessary. This hyperplane is the
hyperplane with the maximum margin of separation between the two classes. The sum of
the distances from the hyperplane to the closest data points of the two classes corresponds
to the margin. Support Vectors (SVs) refer to as the closest points. The solid line represents
the optimal separating hyperplane in figure 9. The linear separable case is also referred to

as the linear hard-margin classifier.

A .
Margin

Figure 9 Linear separating hyperplane: Separable case
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Source: Burges, C.J.C. (1998)

3.3.2.2 Support Vector Machines: The linearly non-separable case

With data used in practical applications, the separation between the two classes is
incomplete, but a hyperplane can still be defined. The hyperplane maximises the margin
of the training data. Positive slack variables in the constraints make this possible. In an
optimisation formed to equality, when a slack variable is an added problem, inequality
constraint is trans. The non-separable case is also referred to as the linear soft-margin

classifier and is represented in figure 10.

Figure 10 Linear separating hyperplane: Non-separable case

Source: Kumar, S. and Apparao, M. (2017)

3.3.2.3 Nonlinear Support Vector Machines

Nonlinear decision surfaces modifications are mandatory in classification problems when
a linear classifier is used (Tay and Ca0,2002). If the linear decision surface does not exist,
the data is mapped to a higher-dimensional space. It is also called the feature space, where
the separating decision surface can be found. In figure 11, the generalised optimal

separating hyperplane is represented and constructed in the high dimensional feature space.
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Computational learning theory makes use of Cover’s theorem. When nonlinear
transformation and a high enough dimensionality of the feature space is present, there is a
transformation of the input space into a new feature space. The patterns are linearly
separable with high probability in this feature space (Haykin, 2009). The nonlinear
transformation is obtained with the so-called kernel functions.

Kernel substitution is a way to obtain nonlinear algorithms from algorithms that had
previously a restriction on handling linear separable datasets (Campbell, 2000). Using
implicit kernels permit bypassing the curse of dimensionality (Vapnik,1999). Various
learning machines are built based on different kernel functions and create different

hyperplanes in the feature space.

3.3.24 Quadratic programming problem of SVMs

Quadratic programming is a type of mathematical optimisation problem. Quadratic
programming is the problem of finding a vector x that minimises a quadratic function,
possibly subject to linear constraints.

In the previous paragraph that discussed the linearly separable case, it was defined that the

optimal separating hyperplane is achieved with the minimisation of an equation under a
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specific constraint to separate the training data correctly. The optimisation goal used in the
equation is quadratic. The constraints are linear. Based on this constrained optimisation
problem, there is a possibility to create another problem. It’s called the dual problem.
Duality is sometimes called the duality principle. It refers to optimisation problems that
can be observed from two different perspectives that correspond to the first problem and
the dual problem. The dual problem solution leads to a lower bound to the primal problem
or minimisation solution. The dual problem is also named the Lagrangian dual problem.
Oher dual problems can be used, such as the Fenchel dual problem or the Wolfe dual
problem. The dual problem can be formulated using the Lagrange multipliers: With the
available training sample, find the Lagrange multipliers that maximise the objective
function subject to specific constraints. The objective function that needs to be maximised
in the situation of non-separable problems in the dual problem is almost equivalent to the
case for the separable problems. The difference is that the constraints in the separable case
are switched with more stringent constraints in the non-separable case.

There are several suggestions regarding the algorithms that can solve the dual problems.
QP algorithms that were used traditionally (Scholkopf, Burges and Smola, 1999), (Smola
and Scholkopf, 2004) are not the most appropriate when problems are significant for few
reasons (Keerthi, Shevade, Bhattacharyya and Murthy2001) because the kernel matrix
must be computed and stored in memory. The consequence is that a large memory is
needed. Methods used include the Cholesky decomposition of a large submatrix of the
kernel matrix.

Finally, coding these algorithms is very difficult, especially for practitioners developing
their SVM classifier implementation. Some methods can get rid of some or sometimes all
the problems defined earlier. A whole new set of QP problems was suggested by Osuna et
al. (Osuna, Freund and Girosit, 1997). A series of smaller QP sub-problems creates the
significant QP problem. One example that violates the Karush-Kuhn-Tucker (KKT)
conditions must be added to the examples for the previous sub-problem. In mathematical
optimisation, first-order necessary conditions (KKT conditions) are conditions so that a
solution in nonlinear programming is optimal, including the satisfaction of some regularity

conditions. A sequence of QP sub-problems will be guaranteed to converge when there is
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the addition of a least one violator all the time (Osuna, Freund and Girosit, 1997An
optimisation new training algorithm named Sequential Minimal Optimization was
proposed by Platt (Platt 1998). It solves the SVM QP problem rapidly without the need for
extra matrix storage and the use of numerical QP optimisation steps. SMO divides the QP
problem into multiple QP sub-problems using Osuna’s theorem. Two Lagrange multipliers
are chosen by the SMO to optimise at each step jointly. After finding the optimal values
for these multipliers, SVMs are updated to indicate the new optimal values. Numerical QP
optimisation is avoided as the two Lagrange multipliers are solved analytically. Extra
matrix storage is not needed; therefore, the memory of a personal computer is sufficient
for significant SVM training problems (Platt, 1998). Using a single threshold in Platt’s
SMO algorithm can lead to confusion and inefficiency, as Keerthi et al. (Keerthi, Shevade,
Bhattacharyya and Murthy, 2001) pointed out. Using clues taken from the KKT conditions
and applied to the dual problem, two threshold parameters are used to generate changes of
SMO. The basic SVMs for two-class problems initially separated the binary classes (k=2)
with a maximised margin criterion (Cortes and Vapnik, 1995).

However, real-world problems often require discrimination for more than two categories.
Multi-class pattern recognition has a wide range of applications, including optical character
recognition (Mori and Suen, 1995), intrusion detection (Khan, Awad and Thuraisingham,
2007), speech recognition (Ganapathiraju, Hamaker, Picone, 2004) and bioinformatics
(Baldi and Pollastri, 2002). In practice, the multi-class classification problems (k>2) are
commonly decomposed into a series of binary problems such that the standard SVM can
be directly applied.

Two representative ensemble schemes are one-versus-rest (Vapnik, 1998), (Bin, Yong and
ShaoWei, 2000) and one-versus-one (Kref3el,1999). Both one-versus-rest and one-versus-
one are special cases of the Error-Correcting Output Codes (ECOC) (Dietterich and Bakiri,
1995), which decomposes the multi-class problem into a predefined set of binary problems.

Multi-class SVMs are discussed in the following sub-chapters.

3.3.2.5 Multi-class SVMs: One to others
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One to others SVM is the method]1 described in the article published by Bin et al. (Bin,
Yong, and Shao-Wei, 2000). The first labelled samples can be classified by SVM1 and the
ith labelled ones by SVM. For the in-class problem (n>2), SVM classifiers are referred as
SVMi, i=1,2,...n.

3.3.2.6 Multi-class SVMs: Pairwise SVMs

Pairwise SVM is the method2 described in the article published by Bin et al. (Bin, Yong,
and Shao-Wei, 2000) and is also mentioned in the article published by Kreflel (KreBel,
1999). Trees correspond to the arrangement for pairwise classifiers. An SVM is represented
by each tree node. Pontil et al. (Pontil and Verri 1998) suggested a bottom-up tree to
recognise 3D objects. It was also applied to face recognition (Guo, Li and Chan, 2000),
(Guo, Li and Chan, 2001). A recent publication discusses the top-down tree structure (Platt,
Cristianini and Shawe-Taylor, 1999). The performance of the two strategies with
classification problems is not analysed theoretically (Heisele, Ho, Wu and Poggio, 2003).
New experimentation on people recognition indicates identical performances for
classification for both strategies (Nakajima, Pontil and Poggio, 2000). Figure 12 represents

examples of tree structures of multiclass SVMs.

(a) example of top-down tree structure  (b) example of bottom-up tree structure

Figure 12 Multi-class SVMs: Tree structure

Source: Byun, H., Lee, S. W. (2003)
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3.3.3 Applications of Support Vector Machines

It was discussed earlier that beta-barrel membrane topology prediction is considered a
pattern recognition problem. In this section, a discussion on some of the use of SVMs for
pattern recognition problems is addressed. Face detection, verification and authentication
are very popular in biometric, access control, identity authentication, or surveillance in
general. Much current research is performed for those applications using different methods.
Reliable performance is challenging to achieve. Identical facial configurations can be
observed with some persons due to minimal variations in the light intensity, makeup on
faces, different poses, and facial expression. Using a pair of glasses or having moustaches
can make it harder to recognise faces (Wang, Chua and Ho, 2002). Osuna et al introduced
frontal face detection (Osuna, Freund and Girosit, 1997). A 19x19 window scan input
images and an SVM is trained with a new decomposition algorithm and 2"-degree
polynomial kernel function. Global optimality can be guaranteed. Kumar et al. (Kumar
and Poggio 2000) have used the Osuna et al. algorithm to track real-time faces. The
algorithm’s speed was improved by Romdhani et al. (Romdhani, Schokopf, and Blake,
2001) using a method that includes reduced support vectors. They are derived from support
vectors. The improvement of face detection performance was obtained with majority
voting as described in the paper written by Bassiou et al. (Bassiou, Kotropoulos, Kosmidis
and Pitas, 2001). For face recognition and authentication, it comes to two different
problems to solve. In face recognition problems, a face is used as a test, and multiple
references faces are within a database. The algorithm tries to find the most significant
number of similar reference faces to the test face. A face for test and a face for reference
are used in face authentication problems. The algorithm needs to decide if the face for the
test is the same as the face used for reference.

Object detection and recognition have the objective of finding and tracking people on the
move. Applications include surveillance or traffic control. A system using SVM was
suggested by Pittore et al. It can detect the presence of people on the move from an image

sequence (Pittore, Basso and Verri, 1999).
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Handwritten character/digit recognition is also another application of SVMs. SVMs have
better performances than any other learning algorithms. There are problems with
handwriting recognition as considerable variability and distortions of patterns. Two
different feature families (statistical and structural) with an SVM classifier have been used
by Gorgevik et al. for handwritten digit recognition (Gorgevik, Cakmakov and Radevski,
2001). Single SVM classifiers have better performance than rule-based reasoning applied
to two separate classifiers. A vision-based handwritten digit recognition system using an
SVM classifier has been created by Teow et al. (Teow and Loe, 2002). SVM classifiers
have been utilised in Chinese check recognition systems, and Bin et al. (Bin, Yong, and
Shao-Wei, 2000) demonstrated that SVM possesses better generalisation ability than other
classifiers.

Speaker and speech recognition is another application of SVMs, and they have been used
with different datasets. The standard thresholding rule was replaced with SVMs for speaker
verification decision, acceptance, or rejection (Bengio and Mariethoz, 2001). There is a
significant improvement in performance with text-independent tasks. The normalisation of
polynomial kernel within SVMs was proposed by Wan et al. (Wan and Campbell, 2000).
Content-based image retrieval is another application of SVM. It can be used for a digital
library or a multimedia database. A distance-from-boundary for retrieving the texture
image was suggested by Guo et al. (Guo, Li and Chan, 2001). SVM can provide the
boundaries between classes.

In bioinformatics, significant applications include identifying proteins functions, gene
functions and microarray classification. Identifying protein function includes secondary
structure prediction, identification of binding sites, sub-nuclear localisation of proteins,
subcellular localisation, protein-protein interaction prediction, prediction of protein
disorder, identification of gene function includes promoter prediction, prediction of tissue-
specific localisation of genes, prediction of DNA methylation sites and DNA hot spots
prediction. Microarray classifications include leukaemia prediction, colon cancer
prediction and prediction of several genetic disorders. Data fusion which corresponds to
heterogeneous biological data is bringing more attention. The human genome is almost

entirely sequenced. Given a specific gene, there is a possibility to know the protein it
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encodes, to understand how similar that protein is compared to other proteins, how mRNA
expression levels are associated, the frequency of known or inferred transcription factor
binding sites that can be found in this gene’s upstream region or to know the identities of
multiple proteins that have an interference with the gene’s protein product. Pavlidis et al.
(Pavlidis, Weston, Cai and Noble, 2002) demonstrated the application of the SVM learning
algorithm to understand cellular function at the molecular level by grouping information
from disparate types of genomic data. SVMs were trained to recognise the function
category of yeast genes using an ensemble of microarray gene expression data and
phylogenetic profiles. Data are fixed-length, real-valued vectors in both types and a third-
degree polynomial kernel have been used. There is a comparison between the three
different techniques for combining those two data types. The comparison is represented in

figure 13.

Data Kernel Matrix  Discriminants
Early
integration

. — — +0
Intermediate
integration _’

H . — — +0
Late
2 : . +0
ntegration -

¢ — +0

-8B - -

Figure 13 Three methods for learning from heterogeneous data using SVM

Source: William Stafford Noble (2017)

Two data types are linked together to generate a specific set of input vectors for early
integration. The kernel values are being calculated separately for each data set and then

calculated with a sum in intermediate integration. The SVM trains each data type. The
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discriminant values are obtained with a sum in late integration. This paper also presents

heuristic techniques regarding scaling factors in the application for each kernel function.

3.3.4 Limitations of Support Vector Machines

Kernels have a significant impact on SVM performances. An explanation of the relation
between the standard regularisation theory and the SVM kernel method was given by
Smola et al. (Smola, 1998). Amari et al. (Amari and Wu, 1999) suggested a kernel having
a modification based on information-geometric consideration of the structure of the
Riemannian geometry induced. The suggestion had the objective to increase performance.
Sizes of the training and testing phases are also significant. When massive datasets that can
include millions of support vectors are used in the training phase, there is a problem that
has not been solved (Burges, 1998). A modification of the SMO (Platt, 1998) was proposed
to solve the training problem.

Another complex problem can be related to controlling the selection of Support Vectors. If
patterns that need to be classified are non-separable and the training data are noisy, there
is often a problem. Removing known errors from the data before training or removing them
after training will not produce the same optimal hyperplane. It’s because the errors are
necessary for penalising non-separability (Haykin, 1998). Limitations of SVM will also be
discussed while interpreting results from the MATLAB implementation.

Some elements used to implement an ANN and KNN can be reused to implement an SVM
classifier. The datasets, binarisation of the inputs/outputs, construction of the input and
target matrices, data division and assessPerformance function used previously will be

similar.

3.4 Ensemble methods

Ensemble’s methods use various machine learning algorithms to obtain better predictive
performance than the learning algorithms alone. It is not the same as statistical ensemble
used in statistical mechanics. Statistical ensembles are most of the time infinite. Machine

learning ensembles consist of a concrete finite set of alternative models. It has been decided
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to use an ensemble method as part of this paper to improve the predictive performance.
Cascading is a unique model of ensemble learning that is based on the concatenation of
several classifiers. It uses all information collected from the output from a given classifier
and use it as input for the next classifier in the cascade. Compared to voting or stacking
ensembles with multi-expert systems, cascading is multistage.

3.4.1 General concept

An ensemble is a supervised learning algorithm. It is trained and then will be used to make
predictions. The trained ensemble represents a single hypothesis. Ensembles can be
represented by having more flexibility in the functions they can represent. This flexibility
can lead to overfitting of the training data. The ensemble techniques such as bagging tend
to reduce problems that correlate with the overfitting of the training data. Ensembles can
provide excellent results when there is diversity among the models (Kuncheva and
Whitaker, 2003) (Sollich and Krogh, 1996). Most ensemble techniques look to include

variety among the models they are combining. (Brown, Wyatt, Harris, and Yao, 2005).

The number of component classifiers for an ensemble impacts the accuracy of prediction.
Few studies have been addressing this issue. For online ensemble classifiers, it’s even more
critical to determine the ensemble size, volume, and velocity of significant data streams.
Statistical tests have been used to get the correct number of components. A new theoretical
framework suggests that an ideal number of component classifiers for an ensemble can be
found. The framework is named “The law of diminishing returns in ensemble
construction”. This framework indicates that the highest accuracy can be achieved using
the same number of independent component classifiers as class labels (Bonab and Can,

2016).

Classification ensembles can be found in the Statistics and Machine learning Toolbox
(Mathworks, 2017). It includes boosting, random forest, bagging, random subspace and

ECOC ensembles for multiclass learning.
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3.4.2 Types of ensembles

3.4.2.1 Voting and averaging based ensemble methods

Voting is one of the simplest ways of combining the predictions from multiple machine
learning algorithms. Voting has been used mostly for classification, and averaging has been
used for regression. Creating multiple classification/regression models using training
datasets is the first step for both approaches. Each base model will be created using various
splits of the same training dataset and same algorithm. It can also be created using the same
dataset with different algorithms. Every model makes a prediction, all called a vote, for
each test instance. The final output prediction is the one that receives more than 50% of
the votes in majority voting. If none of the predictions gets more than 50% of the votes, it
can be concluded that the ensemble method cannot make a stable prediction for this
instance. There is a possibility to try the most voted prediction as to the final prediction,
and it’s named ‘plurality voting’ in some papers. Weighted voting is another option that
can be used. In majority voting, each model will have the same rights. In weighted voting,
it’s possible to emphasise one or more models. The prediction of the better models is
counted multiple times in weighted voting. Finding an appropriate set of weights is up to
the person performing the task. The average predictions will be calculated for every
instance of the test dataset in the simple averaging method. Most of the time, this method
will decrease overfitting and will create a smoother regression model. The weighted
average is the last method available and corresponds to a modified version of simple
averaging. The average is calculated from the multiplication of the prediction of each

model by the weight.

3.4.2.2 Bootstrap aggregating (bagging)

Bootstrap aggregating is also named bagging, is composed of each model in the ensemble
vote with equal weight. In bagging, training is done on each model in the ensemble using

a subset of the training dataset selected randomly. The first step involves the creation of
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multiple models. The models will be generated using an identical algorithm with random
sub-samples of the dataset. These sub-samples are selected randomly from the original
dataset using the bootstrap sampling method. Each sub-sample will be created
independently from the other. The training and generation can be executed at the same

time. The bagging technique is used in the random forest algorithm.

3.4.2.3 Boosting

Boosting defines a group of algorithms that can convert weak models to strong models.
Boosting is building an ensemble and will train each model with the same dataset. The
weights of instances will be modified and adjusted following the error of the last prediction.
The models are then obliged to focus on the complex instances. Boosting is a sequential
method, and parallel operations will not be used compared to bagging where it’s possible.
Adaboost is a popular boosting method algorithm. The Godel prize was won by the creators
of Adaboost. It can be executed simultaneously with multiples other learning algorithms to
improve performance. The output of the different learning algorithms, also named weak
learners, will be grouped into a weighted sum. That sum represents the final output of the
boosted classifier. AdaBoost can be adapted, meaning that subsequent weak learners are
slightly modified in favour of those instances that were not classified correctly by previous
classifiers. AdaBoost is also sensitive to noisy data and outliers. In some situations, it will
be less sensitive to the overfitting problem than other learning algorithms. Individual
learners can be weak; however, if their performance is slightly better than random guessing,
the final model will converge to a strong learner. Each learning algorithm will tend to fit
specific problem types more than others and have various parameters and configurations
to be modified before obtaining optimal performance on a dataset. AdaBoost, including
decision trees as weak learners, is often considered the best out-of-the-box classifier (Kégl,
2013). When it is used in conjunction with decision tree learning. The information obtained
at each stage about the relative 'hardness' of each training sample is put into the tree

algorithm. Later trees will tend to focus on harder-to-classify samples.

3.4.24 Multi-stage method cascading
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Cascading is a multistage method. Associated with each learner is confidence w5 such that
it can be said that d5 is confident of its output and can be used if w5 > 6j (the threshold).
Confidence corresponds to misclassifications and the instances for which the posterior is
not high enough. The idea is that an early simple classifier handles most instances, and a
more complex classifier is used only for a small percentage, so it does not significantly
increase the overall complexity. A Multi-stage Deep Classifier Cascades (MDCC) is
represented in Figure 14 to address some challenges in the open world recognition scenario.
Open world learning (OWL) is also known as open-world recognition, classification,
or open-world Al Itis getting increasingly important as the learning agent is
increasingly working in or facing the real-world open and dynamic environment. The core
of open-world learning or open-world Al is about recognising unknowns and learning them

so that the Al agent will become more and more knowledgeable.
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Figure 14 Architecture of Multi-stage Deep Classifier Cascades and model details of (a) root

node and (b) leaf nodes

Source: Guo, X., Alipour-Fanid, A., Wu, L., Purohit, H., Chen, X., Zeng, K. and Zhao, L. (2019)

The first cascading classifier was a face detector. This classifier needed to be quick as it
was implemented on cameras and phones with low-power CPUs (Viola and Jones, 2001).
The term cascading classifier has been used in statistics to define a model with various

stages. For example, a classifier such as k-means will use a vector of features and generate
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outputs for each possible classification result the probability that the vector belongs to the
class. This can be mainly used to decide; however, cascading classifiers utilise the output
as the input to another model, which corresponds to another stage. This will be useful for
models that have highly combinatorial or counting, which cannot be fitted without looking
at the interaction terms. The successive stage can gradually make an approximation of the
combinatorial nature of the classification or add interaction terms in classification

algorithms.

3.4.2.5 Stacking

Stacking is an ensemble learning technique to combine multiple classification models via
a meta-classifier. The individual classification models are trained based on the complete
training set; then, the meta-classifier is fitted based on the outputs -- meta-features -- of the
individual classification models in the ensemble. The meta-classifier can either be trained

on the predicted class labels or probabilities from the ensemble
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Figure 15 Stacking
Source: Tama, A.B., Rhee, K.H., (2017)

Tama et L. conducted a comparative experiment using different ensemble approaches,
including stacking, in a recent paper. To prove classifier ensemble can perform on intrusion

detection, they considered two real public datasets, e.g., network-based intrusion detection,
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namely NSL-KDD dataset (Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A, 2009).
and 802.11 network-based intrusion detection, namely GPRS dataset (Vilela, D.W.F.L.,
Ferreira, E.W.T., Shinoda, A.A., de Souza Araujo, N.V., de Oliveira, R. and Nascimento,
V.E.,2014). Among classifier ensembles, stacking is a powerful method for IDS since it

yields the best performance in terms of accuracy, precision, and F1.

3.4.3 Applications of ensembles methods

There have been various applications of ensemble learning in bioinformatics. Some
examples include the classification of gene expression microarray data and MS-based
proteomics data. Gene-gene interaction and identification using single nucleotide
polymorphism (SNPs) data taken from Genome-Wide Association studies is another
example. Prediction of regulatory elements from DNA and protein sequences is a third
example. Ensemble methods can be applied to other bioinformatics problems apart from
the three main areas listed earlier. For gene function prediction, a meta-ensemble based on
SVM was suggested (Guan et al., 2008). It has three base classifiers. The prediction is
achieved by selecting the best performance of the three for each gene ontology term. Shen
and Chou (Shen and Chou 2006) created nine sets of features for an ensemble used to
recognise protein folding. The features taken from the protein sequences included
secondary structure, polarizability, hydrophobicity, polarity, Van de Waals volume, and
various dimensions of pseudo-amino acid composition. KNN base classifiers have been
trained with the use of different feature sets. They have been put together as part of a
weighted voting manner. Ouali et al. (Ouali and King 2000) designed a classifier used for
protein secondary structure prediction. It was created using cascading various types of
classifiers using neural networks and linear discrimination. Melvin et al. (Melvin et al.,
2008) introduced a combination of KNN classifier with an SVM classifier for protein

structure prediction using sequence information. The KNN classifier was trained using
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global sequence information, also named full coverage. The SVM was trained with the use
of local sequence information. Wang et al. (Wang et al., 2006) made the use of stacked
generalisation for the prediction of membrane protein types. An SVM and a KNN have
been used and correspond to the base classifiers. A decision tree was used for the
combination of the base classifiers. The Ensemble technique was looked at for the protein-
protein interaction problem. Lately, Deng et al. (Deng et al., 2009) made the use of an
ensemble algorithm using weighted voting strategy and bootstrap resampling. The tricky
part of this learning task corresponds to the imbalance of the data classes because of the
lack of positive training examples. The authors found that the ensemble could reduce the
imbalanced problem and significantly increase prediction performance. Ensemble methods
have been used in various new studies that explain genetic networks. Wu et al. (Wu et al.,
2010) suggested using a relevance vector machine (RVM) based ensemble in the prediction
of human functional genetic networks out of multiple sources of data. The ensemble
appears to be effective even with large missing values. The applications of ensemble
methods in bioinformatics that have been described so far are not complete, but the main
topics have been discussed. Ensemble methods are beneficial in general. It’s flexible, and
there are multiple ways to create and adjust them. The use of ensemble techniques for old
and new biological problems will likely be the focus in the coming years. There is much
promise around the ensemble method. Various extensions have been suggested. The
following section focuses on multiple extensions that can be used to achieve better
prediction.

An easy method to use SVM as part of the ensemble framework is applying the bagging
procedure with the base classifier SVM. Caragea et al. (Caragea et al., 2007) took this
approach. A bagging ensemble with the base classifier of SVM was used for glycosylation
site prediction. The results showed that the SVM ensemble's performance suppressed both
the single SVM and the balanced when they trained each base classifier with a re-sampling
of the balanced training set. Guan et al. (Guan et al., 2008) used a bagging procedure to
create an ensemble of SVMs in a gene function prediction problem. The ensemble of SVMs
always performs better than the single SVM classifier around gene ontology term

recognition., and robotics. Peng (Peng, 2006) looked at the concept of over-generating and
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selecting an appropriate subset of base classifiers. The bootstrap sampling method and the
utilisation of a base classifier such as the SVM are used to create multiple training sets.
There is more stability with the SVM for small perturbation of the training samples than
the decision tree. If base classifiers need to be diversified, using a clustering-based base
classifier selection procedure can ensure that the accuracy of base classifiers is strong even
though they disagree with each other. When comparing a single SVM classifier to the
ensemble of bagging and boosting, Peng concluded that the best results could be obtained
with a clustering-based SVM ensemble. Gordon et al. (Gordon et al., 2006) suggested an
approach to an ensemble where SVM has a different kernel and are combined for
transcription start sites prediction. The approach defined by Gordon et al. gave a new way
to create an SVMs ensemble. This could be very helpful for problems with heterogeneous
data sources and feature types. It was looked at if an improvement was possible when
creating a meta ensemble, an ensemble of ensembles. Dettling (Dettling 2004) looked at it
and proposed a combination of bagging and boosting algorithms for microarray data
classification. It is also called BagBoosting. It was thought that enabling ensemble has a
low bias; however, the variance is high, and the bagging ensemble has lower variance and
no changed bias. BagBoosting demonstrated that it could improve prediction compared to
bagging and boosting alone. It is also very efficient compared to various SVM or k- NN
classifiers. Guan et al. (Guan et al., 2008) suggested three different SVMs ensembles as
base classifiers and are further combined as a meta-ensemble of SVMs in the use of gene
function prediction. The final prediction of genes was obtained from selecting the best
performing classifier based on each gene ontology term. Liu and Xu (Liu and Xu, 2009)
looked at another option of creating meta-ensembles. The genetic programming approach
was the basis for their ensemble system. Their experimentation showed that their system
performed better than various other evolutionary-based algorithms. Some other methods
attempted to look for the diversity of the base classifier with the use of heterogeneous
classification algorithms. Bhanot et al. (Bhanot et al.,2006) used a combination of ANN,
SVM, Weighted Voting, k NN, decision trees and logistic regression in mass spectrometry
data classification. Kedarisetti et al. (Kedarisetti et al., 2006) used an ensemble for protein

structural class prediction. A set of fifteen classifiers was combined in the paper from
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Hassan et al. (Hassan et al., 2009). They were rule-based classifiers including k-NN and
decision trees and function-based classifiers including SVM and neural networks. Their
ensemble was applied to three microarray datasets to find a small number of highly
differentially expressed genes. For microarray analysis, Yang et al. (Yang et al., 2010a)
suggested a multi-filter enhanced genetic ensemble system. The system combines various
classifiers and filtering algorithms with a genetic algorithm. Yang et al. (Yang et al., 2010b)
used the genetic ensemble system for gene-gene interaction identification from Genome-
Wide Association studies. Data-level perturbation can be combined with different
classification algorithms to produce a meta-ensemble of classifiers. It could increase the
overall diversity and provide higher classification accuracy. Figure 15 illustrates this type
of ensemble method. For (a), classification algorithms have been trained using the same
training set. For (b), classification algorithms have been prepared using different

perturbations on the training set.
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Figure 16 Schematic illustration of an ensemble using different classification

Source: Pengyi, Y., Yee, H.Y., Zhou, B.B. and Zomaya, A.Y. (2010)

Other approaches for the creation of ensembles are possible. Liu et al. (Liu et al., 2004)
introduced a new ensemble of neural networks. It uses three different feature

selection/extraction methods mixed with bootstrapping to provide diverse base classifiers.
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They indicated that diverse base classifiers could also be achieved by including different
feature generating algorithms that offer various gene ranking lists. Koziol et al. (Koziol et
al., 2009) used the same concept similar. Amaratunga et al. (Amaratunga et al., 2008)
created a random forests variant named enriched random forest. It weighs the importance
of features when selecting splitting nodes. It enhanced the random forests algorithm for the
very high-dimensional dataset. That modification on the random forests showed very
encouraging results, especially when the dimension of the microarray data is significant
and the number of the discriminative genes is small. Solution-aggregating motif finder was
presented by Yanover et al. (Yanover et al., 2009). It is a statistical ensemble method.
Their proposed method was based on Markov Random Field with the Best max-marginal
first algorithm (Yanover et al., 2004), which provides the M top-scoring solutions.
Armananzas et al. (Armananzas et al., 2008) suggested a hierarchy of Bayesian network
classifiers to detect gene interactions from microarray data. Robles et al. (Robles et al.,
2004) used a Bayesian network to combine multiple classifiers for the use of protein
secondary structure prediction. Hu et al. (Hu et al., 2006) and Wijaya et al. (Wijaya et al.,
2008) suggested combining the outputs of multiple motif finder algorithms to improve the

final prediction result.

3.5 Summary

This chapter focused on providing an overview and description of machine learning
algorithms often used in research and their applications. Machine learning has been used
in data mining, computer vision, natural language processing, medical diagnostics, DNA
sequence sequencing, and robotics. This chapter started with a description and applications
of neural networks. It discussed instance-based learning algorithms such as KNN, kernel-
based algorithms such as SVM and ensemble learning. Artificial Neural networks can be
used to model complex relationships between inputs and outputs or to find patterns in data.
The k-nearest neighbors (KNN) can be used to solve both classification and regression
problems. It is one of the most used learning algorithms. It is based on feature similarity.

SVM is one of the best choices for high-performance algorithms. Some use-cases of SVM
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include face detection, handwriting detection and bioinformatics. Ensemble methods use
multiple learning algorithms to obtain better predictive performance than could be obtained
from any of the constituent learning algorithms alone. Due to growing computational power
in recent years allowing to train larger ensemble learning in a short period, the number of
applications of ensemble learning has grown increasingly. Some current applications
include computer security such as classification of malware codes or anomalies detection

or applications in remote sensing such as land cover mapping or change detection.
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4. Datasets and data preparation

Several databases are available and are repositories for the structures and sequences of

transmembrane proteins.

4.1 Existing datasets

Orientations of Proteins in Membranes (OPM) database (Lomize, Lomize, Pogozheva and
Mosberg, 2006) include a list of transmembrane, peripheral and monotopic proteins
extracted from the Protein Data Bank (PDB). With the database, it is possible to analyse or
search membrane proteins based on various parameters such as structural classification,
destination membrane or the numbers of TM segments, to name a few.

PDB TM is a protein data bank of transmembrane proteins (Tusnady, Dosztanyi and
Simon, 2005a). As of March 18, 2016, it contains 2745 transmembrane proteins (2394
alpha and 336 betas). The PDB_TM database was created by scanning all PDB entries with
the TMDET algorithm (Tusnady, Dosztanyi and Simon, 2005b).

Membrane Protein Bioinformatics Research Group at the Institute of Enzymology.
CGDB is a database of membrane proteins/lipid interactions by coarse-grained molecular
dynamics simulations. The lipid environment is a factor that affects membrane protein
functions and stability. Chetwynd et al. developed a computation approach to predict
membrane protein/lipid interactions (Chetwynd, Scott, Mokra and Sansom, 2008).

MPDB is a membrane protein database that contains various information concerning the
structures and functions of membrane proteins and peptides. Data is derived from the PDB
and other databases, and it includes integral, anchored, and peripheral membrane proteins
and peptides. X-ray diffraction, nuclear magnetic resonance, electron diffractions and cryo-
electron microscopy are used for the basis of the structures. (Raman, Cherezov and Caffrey,
2006). It contains 1095 unique entries (285 unique proteins/peptides and 155 unique
protein families).

The team at Stephen White laboratory work mostly on biophysics issues concerning the

folding and stability of membrane proteins (The Stephen White Laboratory at UC Irvine,
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2016). They have few available resources, including the ‘Membrane Proteins of Known
3D Structure’.

Other databases available from the laboratory include the Membrane Protein Explorer
(MPEXx). MPEXx is a tool that uses hydropathy plots to analyse the topology and features of
membrane proteins.

MPtopo is also a curated database available as part of the Stephen White laboratory at UC
Irvine. The verification of topologies is achieved using crystallography, gene fusion,
antibody, and mutagenesis studies (Jayasinghe, Hristova and White, 2001). The server is
accessible, and users can query sequences with an SQL-based search engine. MPtopo
contains a total of 165 proteins with 949 transmembrane segments.

TOPDB (Topology data bank of Transmembrane Proteins) contains a comprehensive list
of transmembrane proteins with topology information (Tusnady, Kalméar and Simon,
2008). It has 4190 transmembrane proteins obtained from the literature and public
databases available on the internet. The database is available at: http://topdb.enzim.hu
OMPdb is a database that contains beta-barrel outer membrane proteins from Gram-
negative bacteria. It is the most complete and comprehensive collection of integral beta-
barrel outer membrane proteins (Tsirigos, Bagos and Hamodrakas, 2011). As of April 20,
2016, the database contains 372,536 proteins entries with 93 families based on the
structural and functional criteria.

OMPdb (simulations) is a database of outer membrane protein simulations. It contains
summaries from molecular dynamic simulations of around 20 transmembrane beta-barrel
proteins. There are also indications of lipid contacts. Dr Syma Khalid currently maintains
the database, and work is supported by Dr Kathryn Scott, Dr Peter J. Bond, and Anthony
Ivetac.

TMBB-DB is a transmembrane beta-barrel database developed and maintained by the lab
of William Wimley (Freeman and Wimley, 2012). It is an ensemble of the predictions
obtained using the Freeman-Wimley algorithm, which was shown to be among the most
accurate predictor of TMBBs. N-terminal export signal peptide predictions made by the

SignalP server are also included.
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TCDB (Transport Classification Database) is a curated, relational database containing
sequence, classification, structural-functional and evolutionary information about transport
systems from various living organisms (Saier, Tran and Barabote, 2006). It is possible to
look for proteins that belong to a specific porin family. There are 81 different families.
UniProt Knowledgebase (UniProtKB) is a non-redundant database automatically annotated
and manually curated by experts. It is possible to search for the origin of all data as the
information is provided with the source. There are more than 120 external databases to
which UnitProtKB is cross-referenced, and there are releases every four weeks. More than
68 million entries in UniProtKB as of release 2016 09 of October 5, 2016, with 552 259
entries in Swiss-Prot and 67 940 995 entries in TTEMBL. Records in Swiss-Prot have been
manually annotated, and documents in TTEMBL are awaiting manual annotation.

The Protein Data Bank archive (PDB) has been used since 1971. It has much information
regarding the 3D structures of proteins, nucleic acids, and complex assemblies. The
Worldwide PDB is the organisation that makes sure that the PDB remains free and publicly
available. TM proteins available in the PDB are identified using the mpstruc database of
Stephen White, UC Irvin, sequence clustering and data derived from UniProt. A membrane
protein browser is available, and as of 12 Novembre 2021, the data bank contains 12726

beta-barrel structures. An example of structures found in PDB is represented in figure 17.
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¥ Mainly Beta (2) - [ 471533 Structures ]

» Ribbon (2.10) - [ 20714 Structures |

» Single Sheet (2.20) - [ 1052 Structures |

» Roll (2.30) - [ 4451 Structures |

v Beta Barrel (2.40) - [ 12726 Structures ]

» Thrombin, subunit H (2.40.10) - [ 3202 Structures |

Proto-oncogene - Oncogene Product P14tcl1 (2.40.15) - [ 5 Structures |
Plasminogen Kringle 4 (2.40.20) - [ 107 Structures |
Elongation Factor Tu (Ef-tu); domain 3 (2.40.30) - [ 1043 Structures ]
M1 Pyruvate Kinase; Domain 3 (2.40.33) - [ 74 Structures ]
Lyase, Ornithine Decarboxylase; Chain A, domain 1 (2.40.37) - [ 127 Structures ]
Barwin-like endoglucanases (2.40.40) - [ 269 Structures |
OB fold (Dihydrolipoamide Acetyitransferase, E2P) (2.40.50) - [ 2487 Structures |
Cathepsin D, subunit A; domain 1 (2.40.70) - [ 2267 Structures ]
Cyclophilin (2.40.100) - [ 377 Structures ]
Butyryl-CoA Dehydrogenase, subunit A; domain 2 (2.40.110) - [ 132 Structures |
Lipocalin (2.40.128) - [ 1404 Structures ]
Ribosomal Protein L14 (2.40.150) - [ 133 Structures ]
Green Fluorescent Protein (2.40.155) - [ 637 Structures |
Porin (2.40.160) - [ 319 Structures |
Maltoporin; Chain A (2.40.170) - [ 68 Structures ]
Catalase Hpll, Chain A, domain 1 (2.40.180) - [ 736 Structures ]
Telomere-binding Protein Beta Subunit; Chain B (2.40.200) - [ 74 Structures ]
Intramolecular trans-sialidase; domain 3 (2.40.220) - [ 73 Structures ]
Outer membrane phospholipase (ompla); Chain C (2.40.230) - [ 10 Structures |
Ribosomal Protein L25; Chain P (2.40.240) - [ 105 Structures |
Polyomavirus Enhancer Binding Protein 2; Chain: A; (2.40.250) - [ 16 Structures ]
Sortase; Chain: A; (2.40.260) - [ 57 Structures |
Dna-directed Rna Polymerase li 140kd Polypeptide; Chain: B; Domain 6 (2.40.270) - [ 7184 Structures ]
Small Protein B; Chain: A; (2.40.280) - [ 5 Structures |

v VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV Vv Vv Vv Vv v v

Figure 17 RCSB-PDB hierarchical classification of protein domain structures
Source: RCSB Protein Data Bank (2021)
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4.2 BOCTOPUSZ2 dataset

The BOCTOPUS?2 dataset has been used and implemented in MATLAB. The dataset was
used for the training and testing of the BOCTOPUS?2 tool that is used for TMB topology

prediction (Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). It is available as

supplementary information of the paper and the URL for the BOCTOPUS?2 software.

1. Software of BOCTOPUS2 on the github:

https://bitbucket.org/sikander_hayat/boctopus2_newdataset

2. The whole package of BOCTOPUS2 in one zip file.

boctopus2_newset_hhblits.zip (134 B)

README for the BOCTOPUS2 package

Supplementary information of the paper

boctopus2 dataset (42 proteins): boctopus2_crossvalidation_dataset.xIsx
Sequences and their annotation used for training/testing boctopus2: boctopus2_dataset_sequenceannotation.txt
Sequences of the discriminating dataset:

o Positive_dataset.fasta

o Negative dataset.fasta

Cross-validated boctopus2 performance (protein wise results for topology prediction):
boctopus2_filter0.3_proteinwise_crossvalidated_results.xlsx

Cross-validated boctopus2 performance at different thresholds (protein wise results for topology prediction):
proteinwise_prediction_results_at_different_filter.xlsx

boctopus2_predictedtopologies.zip
predictedtopologies_othermethods.zip

predictedtopologies_comparison.zip

Figure 18 BOCTOPUS 2: Improved topology prediction of transmembrane beta-barrel

proteins

Source: Topcons.net (2021)

The BOCTOPUS2 dataset consists of 42 TMB sequences represented in table 1.TMB

proteins are identified by their corresponding crossvalidation_setid, protein data bank ID

(PDB_ID), UniProt ID (UNIPROT ID), superfamily classes(superfamily) and barrel

region (barrel region). TMB proteins include nucleoside-specific channel-forming Tsx

(UniProt ID: TSX ECOLI, PDB ID:1TLY_A), which is part of the mpstruc database

represented in figure 19. The 42 TMB sequences are culled at 30% sequence identity using
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the PISCES server (Wang and Dunbrack, 2003) and are divided into ten subsets for cross-
validation.

To ensure no homology information is used, all proteins belonging to the same super-
family are put into the same cross-validation group. Membrane boundaries and super-
family classification are obtained from the OPM database (Lomize, Lomize, Pogozheva
and Mosberg, 2006). Residues in the transmembrane strands are labelled as pore-facing (p)
and lipid-facing(l) based on their side-chain orientation relative to the barrel centre. This
can be observed in the file boctopus2 dataset sequenceannotation.txt. In the file, (o)

corresponds to outer-loop and (i) corresponds to inner-loop.

IMD_ECOLI_sequence

>F

MSYLN HIRKHRLAGFFVRLVVAC; SSADLYFNPRFL PGTYRVI PCLTRAQLASMGL L DVGQORLNLTIPQAFMS
NRARGYIPPELWDPGINAGLL I NLQSGLNI INTWLERDIIPLRSRLTL TQGDIFDGINFRGAQLASDDNML THGL VTIKQNGYDI 1
NDIYAAGNSGDLQVTI I L F LHGLPA NF RFLYNKSL IoL NFADTTYSRMN
GYNIETQDGVIOQ! v LTVTQOLGRTSTLYL. 0 NTAFEDT] VS, NGRMTNLAGVYGTLLEDNNL!

TGYATL IKQL TLGQPLNDTVVL TRGAIVRAEFKARVGIKLLMTLTHNNKPLPFGAMVTSESSQSSGIVADNG
QVYLSGMPL LTOLSAECR

>FIMD_ECOLI_observed_topology

>TSX_ECOLI_sequence

MKKTLLAAGAVLALSSSET YHTRFGPQIRNDTYL DF 1 IEPRFSIDKLTNTDL FKEWYFANNY 1 DI PMSLSMNVY
IKYFVPITDLWGGOL DDSGNAINGIKTRTNNSIASSHILAL EL VGYNF

>TSX_ECOLI_observed_topology
4344343393394443334334434433344411iLPLPLPLPL PLPLPLPLPiiiLPLPLPLPLL PLPLPLPiiiiiiiiiiiiiiiPLPLPLPLPLO0000000OOOPLPLPLPLPLLIii LPLPLPLP
LP0000000000000000LPLPLPLPLPLI iiiii LPLPLPLPL PLPLPLPLiiLPLPLPLPL PLPLPLPLPL
>QBGNN6_ECOLX_sequence
MIKIARTAVTLGLFSSL RNDLAWL THLSLSTWPLSQEETARALKKAKPSYSSEQUVLARINQRLSALKADFR 'DOPGTPQ L 1

I 11 TFSPIQSLELGASRI SNFWDGL QLAGFDFKFKLEPTLGWPVSF LPSANMFL
661 IYKDGYYQQGYP! GKVEL Y 1 P KGIQL % IEIPFSL
>QBGNN6_ECOLX_observed_topology
$44333349999993999993393939999393493999999333443 4439933993399439443999449933993399439444394495 LPLPLPL PLPLPLPLLiLPLPLPLPL0OOO00000000OPLPLLPLPLPLLI LPL
PLPLL PPPLLLPLiii ii PLPLPiiiiiiLPLPL PLPiiiiiiiiiiLPLP P
LPLPLPLiiiiiPLPLPLPL PLPLPLiiiiiiPLPLPL PLPLPLPLiiiLPLPLPLPL PLPLPLPLii
>PA1_ECOLI_sequence
MRTLQGWLLPVFMLPMAVYAQEAT 11 FTLYPYDTNYLIY NKEAL QLSLAFPLWRGILGPNSVL ‘RETNYEPQLFL

I K DA KGG LSYPI YNF NDLF

>PA1_ECOLI_observed_topology

PLPLPLPLiiiiiiiiiiiPPLPLPLPLPooO

Figure 19 boctopus2_dataset sequenceannotation.txt

Source: Topcons.net (2021)
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crossvalidation

Table 1 BOCTOPUS?2 dataset

Source: Topcons.net (2021)

setid PDB_ID UNIPROT_ID superfamily : barrel_region
1 4Q35_A LPTD_SHIFL 1.3.28 : 223-760
1 1TLY_A TSX_ECOLI 1.3.13 ! 9-272
2 2MPR_A LAMB_SALTY 1.3.18 : 1-427
2 3EMN_X VDAC1_MOUSE 1.3.22 ! 26-283
3 3RFZ_B FIMD_ECOLI 13.21 ! 135-660
3 2YNK_A Q8GNN6_ECOLX 1.3.27 ! 89-477
4 3GP6_A PAGP_ECOLI 1.3.04 : 20-161
4 3FID_A Q8ZPT3_SALTY 1.3.09 ! 1-296
5 3RBH_A ALGE_PSEAE 13.19 : 40-490
5 1QD5_A PA1_ECOLI 13.12 : 38-269
5 3SYB_A QSHVS0_PSEAE 1.3.19 ! 43-459
6 4C00_A TAMA_ECOLI 13.17 : 266-577
6 3NJT_A FHAC_BORPE 1.3.17 : 211-554
6 4K3B_A QS5FSW8_NEIG1 13.17 ! 424-792
6 2X4M_A COLY_YERPE 1.3.07 ! 2-292
7 4GEY_A ASVZA8_PSEP1 13.16 : 26-421
7 204V_A PORP_PSEAE 13.16 : 27-411
7 3PRN_A PORI_RHOBL 13.16 : 2-289
7 3POX_A OMPF_ECOLI 13.16 : 1-340
7 3A25_A MA4GGR4_NEIME 1.3.16 ! 1-341
8 4E1T_A INVA_YERPS 13.11 : 146-373
8 3SU_A ESPP_ECO57 13.11 : 1033-1300
8 1UYN_X Q8GKS5_NEIME 13.11 : 818-1084
8 3KVN_A ESTA_PSEAE 13.11 : 347-622
8 AMEE_A AIDA_ECOLX 13.11 ! 1004-1266
9 2XSK_A OMPG_ECOLI 1.3.15 ! 3-280
] 1FEP_A FEPA_ECOLI 1.3.20 ! 153-724
9 1KMO_A FECA_ECOLI 1.3.20 ! 224-741
S 3CSL_A Q7SAD2_SERMA 1.3.20 ! 242-865
9 21AH_A FPVA_PSEAE 1.3.20 . 278-815
9 3DWO_X QSHVI6_PSEAE 13.14 : 44-443
9 4AIP_A Q51162_NEIME 1.3.20 1 185-742
9 3V89_A TBP1_NEIMB 1.3.20 ! 188-915
10 4FUV_A FOQP73_ACIBD 1.3.06 : 13-225
10 2ERV_A PAGL_PSEAE 1.3.05 : 1-150
10 3DZM_A Q72JD8_THET2 1.3.06 : 3-207
10 2MLH_A OPAH_NEIGO 1.3.02 ! 1-238
10 1K24_A Q51227_NEIME 1.3.08 ! 5-253
10 3QRA_A Q8D0Z7_YERPE 1.3.01 : 26-182
10 2KOL_A OMPA_KLEPN 1.3.01 : 19-191
O T T B AR ] Q51486 PSEAI | LR0G, o Lo POATS
10 2X27_X QSHWW1_PSEAE 1.3.03 ! 1-210
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4.3 TOPDB dataset

The TOPDB dataset will also be used for the implementation after trying the
BOCTOPUS2 dataset. TOPDB entries are available at the Topology Data Bank of
Transmembrane Proteins web server.

Topology Data Bank of Transmembrane Proteins
Topology, Structure and Prediction.

Database revision: (4190 entries, 75211 topology data) Quick search: [N

Menu

. Home Download

» Documents XML files

~ Download Description Download

» Search All TOPDB entries in one xml file topdb all

» Statistics Alpha bitopic TOPDB entries in one xml file  topdb ab

» Contact Alpha polytopic TOPDB entries in one xml file topdb ap

» Related servers Beta barrel TOPDB entries in one xmi file  topdb bp

Database status = MRIOpOc)

Database revision: Description Download

Revision date: 01/01/70 All TOPDB entries in one file topdb all

Entries: 4190 Alpha bitopic TOPDB entries in one file  topdb ab

I‘I’:::’:lera;omns: 75;;; Alpha polytopic TOPDB entries in one file topdb ap

Beta bamel proteins: 123 Beta barrel TOPDB entries in one file topdb bp

PubMed links: 4270

PDB links: 12816 Sequ

a:::::"nm 68;122 Description Download
All TOPDB entries in one file topdb all
Alpha bitopic TOPDB entries in one file  topdb ab
Alpha polytopic TOPDB entries in one file topdb ap
Beta barrel TOPDB entries in one file topdb bp

Figure 20 Topology Data Bank of Transmembrane Proteins Topology, Structure and
Prediction

Source: Enzim. hu. (2014)

The beta-barrel TOPDB entries can be downloaded directly from the website and are
available at: http://topdb.enzim.hu/?m=download&mid=2. The topdb_bp.txt file contains
123 TMB sequences larger than the BOCTOPUS2 dataset.

A representation of the file’s content is found in the following picture.
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L O G e e e E 08000 ee e et eeseteestsetsessisitsttsissisistieistisisesstsisutstsntsssttsiseseisiosistsetststisisetsishssssissisististseistsetsisissssisssesssisissssistisssisd
>BP000B6
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>BP00339
EISLNGYGRFGLQYVEDRGVGLEDTIISSRLRINIVGTTETDQGVTFGAKLRMQWDDGDAFAGT AGNAAQFWTS YNGV TVSVGNVD TAFDSVALTYDS EMGYEASSF GDAQSS FFAYNSKYDASGALDNYNGI AVTYSTSGVNLYLSYVDPDQTVDSSLVTEEFGIAADWSNDMISLAAAYTTDAGGTVDNDTAFVGAAYKFNDAGTVGLNWY
DNGLSTAGDQVTLYGNYAFGATTVRAYVSDIDRAGADTAYGIGADYQFAEGVKVSGSVQSGFANETVADVGVRFDF
ITIIIMMMMMMO0000000000000000MMMMMMMMM I 111 11 11 TIMMMMMMMO0000000000MMMMMMMMI 111 IMMMMMmmmmnmmmmmmmmmnamnmmmmn00000000000000000000000000MMHMM L T 11 IMMMMHO00000000000000000HMMMM I T 1T IMMMMMO0000000000000MMMMMI T1 TT TTIMMMMOO
00000000000MMMMMI T T T I TIMMMH0000000000000MMMMM I T 11 TTIMMMMO00000000000MMMMI T
>BP0O345
MMKRNILAVIVPALLVAGTANAAETYNKDGNKVDLYGKAVGLHYF SKGNGENSYGGNGDMTYARLGFKGETQINSDLTGYGQWEYNFQGNNSEGADAQTGNKTRLAF AGLKYADVGS FDYGRNYGVVYDAL GY TDMLPEFGGDTAYSDDFFVGRVGGVATYRNSNF FGLVDGLNFAVQYL GKNERDTARRSNGDGVGGSTSYEYEGF GIVGAY
GAADRTNLQEAQPLGNGKKAEQWATGLKYDANNTYLAANYGETRNATPTTNKFTNTSGFANKTQDVLLVAQYQFDF GLRPSIAYTKSKAKDVEGIGDVDLVNYFEVGATYY FNKNMSTYVDYTINQIDSDNKLGVGSDDTVAVGIVYQF
XO0C0OONKXKXT T TLTTITTTIMMMMMMMM000000000000000000MMMMHMMM T T 1 T 11 T1 L THMMMMMMMO00000000000000HMMMMMMMI L1 T T THMMMMMMmmmmammmmmammmmmmamnmmnamm0000000MMMMMMI 111111 LTHMMMMHO000000000000000000MMMMM LT LIMMMMIMO

Figure 21 Top_bp.txt
Source: Enzim.hu. (2014)
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Table 2 Sample of 15 TMBs selected out of 123 TMBs available in TOPDB database
Source: Enzim. hu. (2014)

ID Description Organism
BP00056 Outer membrane usher protein  Escherichia coli

faeD precursor

BP00086 Maltoporin precursor Escherichia coli

BP00115 Outer membrane protein A Escherichia coli
precursor

BP00124 Outer membrane pore protein  Escherichia coli
E precursor

BP00193 Major outer membrane protein  Neisseria gonorrhoeae
P.IA precursor, PIA

BP00272 Major outer membrane protein ~ Neisseria gonorrhoeae
P.IB precursor, PIB

BP00273 Major outer membrane protein ~ Neisseria meningitidis
P, PIA serogroup B

BP00274 Outer membrane protein class  Neisseria meningitidis
2

BP00310 Sucrose porin precursor Salmonella

typhimurium

BP00320 Alpha-hemolysin  precursor  Staphylococcus
(Alpha-toxin) (Alpha-HL) aureus

BP00339 Porin Rhodobacter blasticus

BP00345 Outer membrane protein F  Escherichia coli
precursor (Porin ompF) (Outer
membrane protein 1A) (Outer
membrane protein [A) (Outer
membrane protein B)
Ferrichrome-iron receptor  Escherichia coli
precursor (Ferric hydroxamate
uptake) (Ferric hydroxamate
receptor)

BP00359 Outer membrane porin protein  Delftia acidovorans
32 precursor (OMP32)

BP00364 Outer membrane protein tolC  Escherichia coli

precursor
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4.4 Data preparation

4.4.1 Data collection

Data were collected from the BOCTOPUS2 dataset. The list of TMB proteins is
represented in table 1. It was the dataset used to train the BOCTOPUS?2 server as described
in the paper of Hayat et al. (Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). The original
file boctopus2 dataset sequenceannotation.txt include all TMB proteins sequences and
observed topologies. The sequence is represented in the FASTA format. The FASTA
format is commonly used in bioinformatics, and it is a text-based format for representing
peptide sequences or nucleotide sequences. A single-letter code corresponds to a single
amino acid. M stands for methionine, F for Phenylalanine, for example. The name FASTA
originates from the FASTA software package, a DNA and protein sequence alignment
software package. There are many different file formats used in bioinformatics. The most
common file formats used in sequencing analysis include SAM/BAM format, VCF format,
Wig format, BED format or  GTF/GFF3 format. Data  within
boctopus2 dataset sequenceannotation.txt was divided into two separate files. The first
file,  boctopus2Sequence.txt, took only the FASTA  sequences from
boctopus2 dataset sequenceannotation.txt and adjusted the file and lines numbers using

the text editor Sublime Text.
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>FIMD_ECOLI.all
MSYLNLRLYQRNTQCLHIRKHRLAGFFVRLVVACAFAAQAPLSSADLYFNPRFLADDPQAVADLSRFENGQELPPGTYRVDIYLNNGYMATRDVTFNTGDSEQGIVPCLTRAQLASMGLNTASVAGMNLLADDACVPLTTMVQDATAHLDVGQQRLNLTIPQAFMSNRARGY IPPELWDPGINAGLLNYNFSGNSVQNRIGGNSHYAYLNLQS
GLNIGAWRLRDNTTWSYNSSDRSSGSKNKWQHINTWLERDITPLRSRLTLGDGYTQGDIFDGINFRGAQLASDDNMLPDSQRGFAPVIHGIARGTAQUTIKQNGYDIYNSTVPPGPFTINDIYAAGNSGDLQVTIKEADGSTQIFTVPYSSVPLLQREGHTRYS ITAGEYRSGNAQQEKTRFFQSTLLHGLPAGNT IYGGTQLADRYRAFNFG
TGKNMGALGALSVDMTQANSTLPDDSQHDGQSVRFLYNKSLNESGTNIQLVGYRYSTSGYFNFADTTYSRMNGYNIETQDGV IQVKPKFTDYYNLAYNKRGKLQLTVTQQLGRTS TLYLSGSHQTYWGTSNVDEQFQAGLNTAFEDINWTLSYSLTKNAWQKGRDQMLALNVNIPF SHWLRSDSKSQWRHASAS Y SMSHDLNGRMTNLAGVYG
TLLEDNNLSYSVQTGYAGGGDGNSGSTGYATLNYRGGYGNANIGYSHSDDIKQLYYGVSGGVLAHANGVTLGQPLNDTVVLVKAPGAKDAKVENQTGVRTDWRGYAVLPYATEYRENRVALDTNTLADNVDLDNAVANVVPTRGATVRAEFKARVGIKLLMTLTHNNKPL PFGAMVTSESSQSSGIVADNGQVYLSGMPLAGKVQVKWGEEEN
AHCVANYQLPPESQQQLLTQLSAECR

>TSX_ECOLT.all
MKKTLLAAGAVLALSSSFTVNAAENDKPQYLSDWWHQSVNVVGSYHTRFGPQIRNDTYLEYEAF AKKDWFDFYGYADAPVFF GGNSDAKG IWNHGSPL FMETEPRFS DKL TNTDLSFGPFKEWY FANNY TYDMGRNKDGRQS TWYMGLGTDIDTGLPMSLSMNYYAKYQWONY GAANENEWDGYRFKIKYFVPTTDLWGGQLSYIGFTNFDW
GSDLGDDSGNAINGIKTRTNNSTASSHILALNYDHWHYSVVARYWHDGGQWNDDAELNFGNGNFNVRS TGWGGYLVVGYNF

>Q8GNN6_ECOLX.all

MIKIARTAVTLGLFSSLGAQAYAAGLVVNDNDLRNDLAWLSDRGVIHLSLS TWPLSQEETARALKKAKPSYSSEQVVLARINQRLSALKADFRVTGYTSTDQPGTPQGF GQTQPADNSL GLAFNNSGEWWDVHLQGNVE GGERISNGSRFNANGAY GAVKFWNQWL SFGQVPQWWGPG YEGSLTRGDAMRPMTGFLMQRAEQAAPETWWLRWY
GPWQYQISASQMNQYNAVPHAKT IGGRFTFSPIQSLELGASRIMQWGGKGRPESL SNFWDGLTGKONTAANDPNEPGNQLAGFDFKFKLEPTLGWPVSFYGQMIGEDESGFLPSANMFLGGIEGHHGHGKDAVNWYL EAHDTRTNMSRTNYSY THHIYKDGYYQQGYPLGDAMGGDGQLVAGKVEL TTEDNQRWS TRLVYAKVNPENQS INKA
FPHADTLKGIQLGHSGDVYQSVRLNTSLWY TNANNSDSDDVGASAGIETPFSL

>PA1_ECOLI.all

MRTLQGWLLPVFMLPMAVYAQEATVKEVHDAPAVRGS ITANMLQEHDNPFTLYPYDTNYLIYTQTSDLNKEATASYDWAENARKDEVKFQLSLAFPLWRGILGPNSVLGASYTQKSHWQLSNSEESSPFRETNYEPQLFLGFATDYRFAGWTLRDVEMGYNHDSNGRSDPTSRSWNRL Y TRLMAENGNWLVEVKPWYVVGNTDDNPDITKYMG
YYQLKIGYHLGDAVLSAKGQYNWNTGYGGAELGLSYPITKHVRLYTQVYSGYGESL IDYNFNQTRVGVGVMLNDLF

>INVA_YERPS.all
MVFQPISEFLLIRNAGMSMYFNKIISFNIISRIVICIFLICGMFMAGASEKYDANAPQQVQPYSVSSSAFENLHPNNEMESS INPFSASDTERNAATIDRANKEQETEAVNKMIS TGARLAAS GRASDVAHSMVGDAVNQE IKQWLNRF GTAQVNLNFDKNFSLKESSLDWLAPWYDSAS FLFF SQLGIRNKDSRNTLNLGVGIRTLENGWLY
GLNTFYDNDLTGHNHRIGLGAEAWTDYLQLAANGYFRLNGWHS SRDF SDYKERPATGGDLRANAYL PALPQLGGKLMYEQYTGERVALFGKDNLQRNPYAVTAGINYTPVPLLTVGVDQRMGKSSKHETQWNL QMNYRL GESFQSQLSPSAVAGTRLLAESRYNLVDRNNNIVLEYQKQQUVKLTLSPATISGLPGQVYQVNAQVQGASAVRE
IVWSDAELTAAGGTLTPLSTTQFNLVLPPYKRTAQVSRVTDDLTANFYSLSALAVDHQGNRSNSFTLSVTVQQPQLTLTAAVIGDGAPANGKTATTVEFTVADFEGKPLAGQEVVITTNNGALPNKI TEKTDANGVARTAL TNTTDGVTVVTAEVEGQRQSVDTHFVKGT IAADKSTLAAVPTS TTADGLMASTITLELKDTYGDPQAGANVA
FDTTLGNMGVITDHNDGTYSAPLTSTTLGVATVTVKVDGAAFSVPSVTVNFTADPIPDAGRSSFTVSTPDILADGTMSSTLSFVPVDKNGHF ISGMQGLSFTQNGVPVSISPITEQPDSYTATVVGNTAGDVT ITPQUDTLILSTLQKKISLFPVPTLTGILVNGONFATDKGFPKTIFKNATFQLOMDNDVANNTQYEWSSSFTPNVSVNDQ
GQVTITYQTYSEVAVTAKSKKFPSYSVSYRFYPNRWIYDGGTSLVSSLEASRQCQGSDMSAVLESSRATNGTRAPDGTLWGEWGS LTAYSSDWQSGEYWVKKTSTDF ETMNMDTGALVQGPAYLAFPLCALAT

>ESTA_PSEAE.all

MIRMALKPLVAACLLASLSTAPQAAPSPYSTLVVFGDSLSDAGQFPDPAGPAGSTSRFTNRVGPTYQNGS GETFGPTAPMLLGNQLGIAPGDLAASTSPVNAQQGIADGNNWAVGGYRTDQIYDS ITAANGSLIERDNTLLRSRDGYLVDRARQGLGADPNALYYI TGGGNDFLQGRILNDVQAQQAAGRLVDSVQALQQAGARYIVVWLLPD
LGLTPATFGGPLQPFASQLSGTFNAEL TAQLSQAGANVIPLNIPLLLKEGMANPASFGLAADQNLTGTCFSGNGCTMNPTYGINGS TPDPSKLLFNDSVHPTITGQRLIADYTYSLLSAPWELTLLPEMAHGTLRAYQDELRS QWQADWENWONVGQWRGFVGGGGQRLD FDSQDSAASGDGNGYNLTLGGS YRTDEAWRAGVAAGF YRQKLE
AGAKDSDYRMNSYMASAFVQYQENRWWADAAL TGGYLDYDDLKRKFAL GGGERSEKGDTNGHLWAF SARL GYDIAQQADSPWHLSPFVSADYARVEVDGYSEKGASATALDYDDQKRSSKRLGAGLQGKYAFGSDTQLFAEYAHEREYEDDTQDLTMSLNSL PGNRFTLEGY TPQDHLNRVSLGFSQKLAPELSLRGGYNWRKGEDDTQQSVS
LALSLDF

>TAMA_ECOLI.all

MRYIRQLCCVSLLCLSGSAVAANVRLQVEGLSGQLEKNVRAQLST TESDEVTPDRRFRARVDDATREGLKALGYVQPTIEFDLRPPPKKGRQVL IAKVTPGVPVLIGGTDVVLRGGARTDKDYLKLLDTRPAIGTVLNQGDYENFKKSLTS IALRKGYFDSEFTKAQLGIALGLHKAFWDIDYNSGERYRFGHVTFEGSQTRDEYLONLVPFK
EGDEYESKDLAELNRRLSATGWFNSVVVAPQFDKARETKVLPLTGVVSPRTENTIETGVGYSTDVGPRVKATWKKPWIMNSYGHSLTTS TS ISAPEQTLDF SYKMPLLKNPLEQYYLVQGGFKRTDLNDTESDSTTLVASRYWDLSSGWQRAINLRWSLDHFTQGET TNTTMLFYPGVMISRTRSRGGLMPTHGDSQRYSIDYSNTAWGSDVDF
SVFQAQNVWIRTLYDRHRFVTRGTLGWIETGDFDKVPPDLRFFAGGDRSIRGYKYKSTAPKYANGDLKGASKLITGSLEYQYNVTGKWWGAVFVDSGEAVSDIRRSDFKTGTGVGVRWESPVGPIKLDFAVPVADKDEHGLQFYIGLGPEL

>MAGGR4_NETME.all
MASMTGGQQMGRDLQVTLYGTIKAGVEVSRVKDAGTYKAQGGKSKTATQTADFGSKIGFKGQEDL GNGMKATWQLEQKASTAGTNS GHGNRQSF IGLKGGFGTVRAGNLNTVLKDSGDNVNAWESGSNTEDVL GLGTIGRVESRETSVRYDSPVFAGFSGSVQYVPRONANDVDKYKHTKSSRESYHAGLKYENAGFFGQYAGS FAKYADLNT
DAERVAVNTANAHPVKDYQVHRVVAGYDANDLYVSVAGQYEAAKNNEVGS TKGKKHEQTQVAATAAYRFGNVTPRVSYAHGFKAKVNGVKDANYQYDQVIVGADYDF SKRTSALVSAGHLKQGKGAGKVEQTASMVGLRHKF

>QOHWW1_PSEAE.all
MRKSWLTASLLALTVASPFAAADIQGHKAGDFITRGGFATVDPDDSSSDIKLDGAKQRGTKATVDSDTQLGLTFTYMFADKWGVEL VAATPFNHQVDVKGLGPGLDGKLADIKQLPPTLLLQYYPMGGTNSAFQPYGGL GVNYTTFFDEDLASNRKAQGFSSMKLQDSWGLAGEL GFDYMLNEHAL FNMAVWYMDIDTKAS INGPSALGVNKT
KVDVDVDPWVYMIGFGYKF

>Q9HVJ6_PSEAE.all

MPLLCALTVGGLFGTSQAQAGGFMVPTTNTAGWGRAMAGGSLFPNDPSAAFNNPAAMAF IDKRIAQLTVNYADIDIKYNGDAYDYQGNPMTGGYQDGPGTPELGTNDGGQAGF GAWL PTGFLVVPINDRFAFGLSQVVPHGMRS TWDPNWKGRDFAVD TKTETIGLTGSLSFKVNDNFSLGAGVIIQRTSGFVSQNLDLYASAANSPGMGGIP
FPASNSSALMRVKVDNTSPGFFAGAVWKPTDRDTLGFAYHAKIRNKLKGHYNLYDHDGGL TEGATEGGTPGLAYPGLDLRMGASASARLD IPAYASLDWVHQFNDRL SLGASATWTEWSSFQDLTLKSHGNTIVS IPYTYRNTWTLAVGGDYKVTDQWTMRAGVAYDQTP THNATRDPRI PDGDRY FASLGAGYRFQSMPEL STDAAYSRQFV.
KEVPLKTVNQDRLGGGRLDGRATSKGQVFSLSATYDF

>051227_NEIME.all

MKKTVFTCAMIALTGTAAAAQELQTANEF TVHTDLSSISSTRAFLKEKHKAAKHIGVRADIPFDANQGIRLEAGFGRSKKNT INLETDENKL GKTKNVKLPTGVPENRIDLYTGYTYTQTLSDSLNFRVGAGLGFESSKDS IKTTKHTLHS SRQSWLAKVHADL LSQLGNGHY INPWSEVKFDLNSRYKLNTGVTNLKKDINQKTNGWGFG!
ANIGKKLGESASTEAGPFYKQRTYKESGEFSVTTKSGDVSLTIPKTSIREYGLRVGIKF

>051486_PSEAI.all

MKALKTLFIATALLGSAAGVQAADNFVGLTWGETSNNIQKSKSLNRNLNSPNLDKVIDNTGTWGIRAGQQFEQGRY YATYENISDTSSGNKLRQQNLLGSYDAFLPTGDNNTKLFGGATLGLVKLEQDGKGFKRDSDVGYAAGLQAGILQELSKNASTEGGYRYLRTNAS TEMTPHGGNKLGSLDLHSSSQF YLGANYKF
>PAGL_PSEAE.all

MKKLLPLAVLAALSSVHVASAQAADVSAAVGATGQSGHTYRLGLSWDWDKSWHQTS TGRLTGYWDAGY TYWEGGDEGAGKHSLSFAPVFVYEFAGDSIKPFIEAGIGVAAFSGTRVGDQNLGS SLNFEDRIGAGLKFANGQSVGVRATHYSNAGLKQPNDGIESYSLFYKIPT

>OMPA_KLEPN.all
MKATFVLNAAPKDNTWYAGGKLGWSQYHDTGFYGNGFQNNNGPTRNDQLGAGAF GGYQUNPYL GFEMGYDWLGRMAYKGSVDNGAFKAQGVQLTAKLGYPTTDDLDIYTRLGGMVWRADSKGNYASTGVSRSEHDTGVSPVFAGGVEWAVTRD TATRLEYQWVNNIGDAGTVGTRPDNGMLSLGVS YRFGQEDAAPVVAPAPAPAPEVATKHF
TLKSDVLFNFNKATLKPEGQQALDQLYTQLSNMDPKDGSAVVLGYTDRIGSEAYNQQLSEKRAQSVVDYLVAKGIPAGKTSARGMGESNPVTGNTCONVKARAAL TDCLAPDRRVETEVKGYKEVVTQPQA

>FPVA_PSEAE.all
MPAPHGLSPLSKAFLMRRAFQRRILPHSLAMALSLPLAGYVQAQEVEFDIPPQALGSALQEFGRQADIQVLYRPEEVRNKRSSATKGKLEPNQATTEL LRGTGASVDFQGNAT TISVAEAADSSVDLGATMITSNQLGTITEDSGSYTPGT IATATRLVLTPRETPQS ITVVTRQNMDDF GLNNIDDVMRHTPGITVSAYDTDRNNYYARGFS
INNFQYDGIPSTARNVGYSAGNTLSDMAT YDRVEVLKGATGLLTGAGSLGATINLIRKKPTHEFKGHVEL GAGSWDNYRSELDVSGPLTESGNVRGRAVAAYQDKHS FMDHYERKTSVYYGILEFDLNPDTMLTVGADYQDNDPKGS GWSGSF PLFDS QGNRNDVSRS FNNGAKWS SWEQY TRTVFANLEHNFANGWVGKVQLDHKINGYHAP
LGATMGDWPAPDNSAKTVAQKYTGETKSNSLDIYLTGPFQFLGREHELVVGTSASFSHWEGKSYWNLRNYDNTTDDF INWDGDIGKPDWGTPSQYIDDKTRQLGS YMTARFNVTDDLNL FLGGRVVDYRVTGLNPTIRESGRF IPYVGAVYDLNDTYSVYASYTDI FMPQDSWYRDSSNKLLEPDEGONYEIGIKGEYLDGRLNTSLAYFETH
EENRAEEDALYNSKPTNPATTYAYKGIKAKTKGYEAETSGELAPGHQUQAGYTHKI TRDDSGKKVS TWEPQDQLSLYTSYKFKGALDKLTVGGGARWQGKSWQHVYNNPRSRWEKFSQEDYWLVDLMARY QI TDKLSASVNVNNVFDKTYYTNIGFYTSASYGDPRNLMFSTRWDF

>LAMB_SALTY.all

MMITLRKLPLAVAVAAGVMSAQAMAVDFHGYARSGIGNTGSGGEQQCFQATGAQSKYRL GNECETYAELKLGQEVWKEGDKSFYFDTNVAYSVNQQNDWESTDPAFREANVQGKNL IEWLPGS TIWAGKRFYQRHDVHMIDFYYWDISGPGAGTENIDLGFGKL SLAATRSTEAGGSY TFSSQNIYDEVKDTANDVFDVRLAGLQTNPDGVLE
LGVDYGRANTTDGYKLADGASKDGWMF TAEHTQSMLKGYNKFVVQYATDAMTTQGKGQARGSDGSSSFTEEL SDGTKINYANKVINNNGNMWRILDHGAT SLGDKWDLMYVGHYQNTDWDNNL GTEWWTVGVRPMYKWTPIMS TLLEVGYDNVKSQQTGDRNNQYKI TLAQQHQAGDS TWSRPATRIFATYAKWDEKWGY IKDGDNISRYAAA
TNSGISTNSRGDSDEWTFGAQMETWW

>ALGE_PSEAE.all

MNSSRSVNPRPSFAPRALSLATALLLGAPAFAANSGEAPKNFGLDVKITGESENDRDLGTAPGGTLNDIGIDLRPWAFGQWGDWSAYFMGQAVAATDT IETDTLQSDTDDGNNSRNDGREPDKSYLAAREFWVDYAGLTAYPGEHLRFGRQRLREDSGQWQD TNIEALNWSFETTLLNAHAGVAQRFSEYRTDLDELAPEDKDRTHVFGDIST
QWAPHHRIGVRIHHADDSGHLRRPGEEVDNLDKTYTGQLTWLGIEATGDAYNYRSSMPLNYWASATWL TGDRONLTTTTVDDRRIATGKQSGDVNAFGVDL GLRWNIDEQWKAGVGY ARGS GGGKDGEEQFQQTGLESNRSNFTGTRSRVHRF GEAFRGEL SNLQAATL FGSWQLREDYDASLVYHKFWRVDDDSDIGTSGINAALQPGEKDT
GQELDLVVTKYFKQGLLPASMSQYVDEPSAL IRFRGGLFKPGDAYGPGTDS TMHRAFVDF IWRF

>Q9HVS@_PSEAE.all
MMRNQRVTSATLGLALLAASAPGWAADEQENPPAPDNPSYAAEVQSTPSVAKPTKGQAGATGLVEGQSLTLTTRNFYSRENMKDSF TFRIPKAGGGSQRIHQRNAWVQGTVLKYSSGYTQGTVGFGFDVAAFNETAL ERGKGRIGGGGNRTL ANSDGEAL GEWSKL GVANIRLRASNTEFKAGRFLVNTPVFSYIDNRALPSSFTGFAVTSEE
LDNLSLQAGSFRKVSPRTGSGDEDMTTEYGTRQVKGDRLNYLGGNYKPLDGLEISLYGSHFQDVWNQYYL GVTHDIGDLENGIALRTAFNGYHTGD TGAREAGY IDNDTWSLAFTLGHRAHAL TLAYQQVDGNEY FDYVHETSAT FLANSMLADYNSPNEKSAQIRYETDWSYYGVPGLSTGVWYVKGHDIDGTHYDGDRNGAYGNYAEVRAQ
DGEKHHELGLMAAYKVONGPIKDSTFKLTYMMHKASQNQIDGSVNELRLVSTFPFNLL

Figure 22 boctopus2Sequence.txt
Source: Enzim.hu. (2014)

boctopus2Labels.txt is the second file used as input for the deep feedforward neural
network. This file was created from the observed topologies data in the file
boctopus2 dataset sequenceannotation.txt.

Pore-facing (p) and lipid-facing(l) labels were manually replaced with M to have an i, o,

M profile labels for each sequence.
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>FIMD_ECOLI.all
3333379930849093983388999399983983839933983983999839939398399939398339999833983993939839889983393999934999399999899939399399999939399398399939993993999939939999399393993393939933933943313311311331iMMMMMMMMMMMO000000000000000MMMMM
MMMMM IMMMMMMMMO00000000000000000MMMMMMM 1,111 1.1 IMMMMMMMM000000000000MMMMM 1111 111111133113411331431134133313393431339433933393939333943943313313331931131193113115IMMMMMMMMO000000000000MMMMMMMMM i1 1iMMMMMMMMO0000OMMMMM
MMM1i111iiMMMMMMM0000000000000MMMMMMMMMM i 111 iMMMMMMMMMO000000000000000000000000000000000000000000000MMMMMMMMM 11 1 1 IMMMMMMMO000000000 CMMMMMMMMMM 1 IMMMMMMMMO00000000000MMMMMMMM 11111111111111111iMMMMMMO000COMMMMMMMMM
MiiiiiiMMMMMMMMO0000000000MMMMMMMM1iiiiMMMMMMO00000OMMMMMMMMMMiii1ii111i11i11133133113419939839838398338339333939398338389993393939934399398399839993939933983993393999339939933993393939933939399339939933993393839433933143
414433943993993399399393943

>TSX_ECOLI.all

4343334439843439394331939433144113 IMMMMMMMMMMO0000000000MMMMMMMMMIM i 1 IMMMMMMMMMMO000000000000000000MMMMMMMMM 11 1111111111 1 1 iMMMMMMMMMMO000000000OMMMMMMMMMMM. 1 1 iMMMMMMMMMM00 000000000000 00MMMMMMMMMMMA 11 1 1 1 IMMMMMIMMMo0
00000000000000000000000MMMMMMMMMM 1 iMMMMMMMMMO0000000000000000000000000MMMMMMMMMMM

>QBGNNG_ECOLX.all

434430430099 949999 94499939 993943319311511141 13 IMMMMMMMMO00000000000000000MMMMMMMMIMM IMMMMMMMMMO 0000000000 OMMMMMMMMMMMM iMMMMMMMMMO0 00000000000000000000MMMMMMMMM 1 111111111
1iMMMMMMM000000000000000MMMMMMM 1 1 1 1 IMMMMMM00000000000000000000000000000000000000MMMMM 111111 11 1 IMMMMMMMM0000000000000MMMMMMMMMA 1.1 1 IMMMMMMMMMO0000000000000000000000000000000000000MMMMMMMM 1 1.1 1 IMMMMMMM0 0000000000000
0000000 0MMMMMMMMMM 1 iMMMMMMMMMO 00000000 00MMMMMMMMMM i

>PA1_ECOLI.all
uuxuxuuuuuuuuuxuunuuuuuuxuuunumm\w«:uuaouunoaooaanauuaaouwmwnmmxxnumﬂmwmﬁnuaouunoaooaanenmnﬂmmnunuxm«umﬂnooaaououuaommmﬂnu1mﬂmmnaaoaooaownuuwa
OMMMMMMMMM i IMMMMMMMMMO000000 OMMMMMMMMMMM 1 iMMMMMMMMMO 00000000000 00MMMMMMM;i i

>INVA_YERPS.all

41430 4 39433183313183113 5 iMMMMMMMMO000000 OMMMMMMMMMM 1111 1. iMMMMMMMMMO 00 0OMMMMMMMMMM i 1 1 iMMM
MMMMMMMO0000000MMMMMMMMMMM i MMMMMMMMMO0000000000000000000MMMMMMMM 1.1 111 1 1 IMMMMMMO 000000000000000000 OMMMMMMMMM i 1.1.1.1 IMMMMMMO0000000OMMMMMMMMM 11113111111 14113113d1131133113d18331331333183113318d9883133313d118313313d

e e e e L e e L e e L e L e R e e L e L e e L L L L L e e L e L ECE EEE e ELEEECEEREEEELEEEELEEEEEEECEEEEELECEEEEELELELLEY
>ESTA_PSEAE.all
144389380300800 808000 3000000800003 8301

00000000000MMMMMMMMMMM 1 1. iMMMMMMMMMM0000000000000000000000000000MMMMMMMMMM 11111 11 IMMMMMMMMMMMO000000000000000000000000000MMMMMMMMMM 11 1 IMMMMMMMMMMO00000000000000000000000000000000MMMMMMMMM 111 1 iMMMMMMMMMMO0000000MMM

>TAMA_ECOLT.all

A4 99

44414494949939499399439994994949939998393943939431311IMMMMMMMO00000OMMMMMMMM 1111111 IMMMMMMMOO00OOMMMMMMMM 1111111 11 IMMMMMMMMO00000000 OMMMMMMMMMM, 111 1 IMMMMMMMMM00000000000000MMMMMMMMMMM 111111111 IMMMMMMMMMO0000000000
MMMMMMMMMM1 111111 IMMMMMMMMMM0000000000000000000000000000000000000000000MMMMMMMMMMM 1 11 1 IMMMMMMMMMMMO00000000 00MMMMMMMMM; 111 1 IMMMMMMM00 000000 OMMMMMMMM1 11

>MAGGR4_NEIME.all

1111111311111 iMMMMMMMMMMMMMO0000000000000000000MMMMMMMMMMMMMM 111111 1 iMMMMMMMM000000000000 OMMMMMMM 1  IMMMMMMMO000000000000000000000000000000000000MMMMMMMMMM.L IMMMMMMMMMO0 0000000000000000HMMMMMMMM L 1 MMMMMMMMO00000000
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Figure 23 boctopus2Labels.txt
Source: Enzim.hu. (2014)

For the topbp dataset, the file available on the server was also divided into two files.

The data file was manually curated. The observed topology represented with an X
corresponds to the signal peptide. For the implementations, the signal peptide was ignored.
The process of curation was like the BOCTOPUS?2 dataset. The topdb_bp.txt was divided
into two separate files TOPBPLabels.txt and TOPBPSequence.txt.
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GTYGVSLSRNNSMKPGNLGYTPVFSGIANGPSRVTLTQNGRLLHSEMVPAGPFS ITDVPLYTSGDVTMKITGEDGRDEVONFPLSVMAGQLSPGQHEF SVAAGLPDDDSDLKGGVFAAS YGYGLDGLTLRAGGVFNQDWQGASAGVVAGL GYLGAVSADGAYATAKYRDGSHSGNKVOL SWSKQLE TTNTGLRVSWSRQSEEYEGHSSFDPTE
LWSQSNHGRRTKDEWNAGISQPVGGLFSLSVSGWQRSYYPASMTGSYRYSDDNGKETGITGSLSTQIKGYSLNL GWSGSRNSRGENNWSASASVSVPFTLFDRRYSSSASVSTSKGGGTGFSTGVSGSLNDRF SYGLGGGRDGDGGTSS YLNASYSGDRAYLNGVLNHSQSGGTSGSVSVSGSVLAVPAAKDTMFSRTTGDTVAVVNVKDTPG
VKVTSGDGQTDSDGNLVVPLNSYDWNTVT IDTGTLPLSTELTNTSQKVVPTDKAVVMMPFDALKVKRYLLQVKQRDGEFVPGGTWARDSKNTPLGFVANNGVLMINTVDAPGDITLGQCRIPAARLQDTEKLQEITCE
>BP00086
VDFHGYARSGIGHTGSGGEQQCFQTTGAQSKYRLGNECETYAELKLGQEVWKEGDKSFYFDTNVAYSVAQQNDHEATDPAFREANVQGKNLT EWLPGS TIWAGKRFYQRHDVHMIDF Y YWDISGPGAGLENIDVGF GKLSLAATRSSEAGGSSSFASNNIYDY TNETANDVFDVRLAQME INPGGTLEL GVDYGRANLRONYRLVDGASKDGH
LFTAEHTQSVLKGFNKFVVQYATDSMTSQGKGLSQGSGVAFDNEKFAYNINNNGHMLRTLDHGATSMGDNWDMMYVGHYQDINWDNDNGTKWWTVGIRPMYKWTP IMSTVMET GYDNVE SQRTGDKNNQYKITLAQQWQAGDS TWSRPATRVFATY AKWDEKWGYDYTGNADNNANF GKAVPAD FNGGSF GRGDSDEWTF GAQME TWW
>BPOO115

KDNTWYTGAKLGWSQYHDTGF INNNGPTHENQLGAGAFGGYQVNP YV GFEMGYDWLGRMPYKGSVENGAYKAQGVQLTAKLGYPITDDLDIY TRLGGMVWRAD TKSNVYGKNHDTGVSPVFAGGVEYATTPET ATRLEYQWTNNIGDAHTIGTRPDNGMLSLGVSYRFGQGEAAPVVAPAPAPAPEVQTKHF TLKSDVLFNFNKATLKPEG
QAALDOLYSQLSNLDPKDGSVVVLGYTDRIGSDAYNQGLSERRAQSVVDYLISKGIPADKISARGMGESNPVTGNT CONVKQRAAL TDCLAPDRRVEIEVKGIKDVVTQPQA
>BP00124
AETYNKDGNKLDVYGKVKAMHYMSDNASKDGDQSY IRFGFKGETQINDQLTGYGRWEAEF AGNKAE SDTAQQKTRLAF AGLKYKDL GSFDYGRNLGALYDVEAWTDMFPEF GGDSSAQTDNFMTKRASGLATYRNTDF FGVIDGLNLTLQYQGKNENRDVKKONGDGF GTSLTYDF GGSDFATSGAYTNSDRTNEQNLQSRGTGKRAEAWATG
LKYDANNIYLATFYSETRKMTPITGGF ANKTONFEAVAQYQFDFGLRPSLGYVL SKGKDIEGIGDEDL VNYIDVGATYYFNKNMSAFVDYKINQLDSDNKLNINNDDIVAVGHTYQF
>BP00193
DVTLYGTIKAGVETSRSVAHHGAQADRVKTATEIADL GSKIGFKGQEDL GNGLKATWQLEQKAYVSGTDTGHGNRQSFIGLKGGFGKVRVGRLNSVLKDTGGFNPWEGKSYYL GLSNIAQPEERHVSVRYDSPEFAGFRAVQYVPNDNS GKNHSESYHAGFNYKNSGF FVQYAGFYKRHSYTTEKHQVHRLVGGYDHDALYASVAVQQQDAKL
TWRNDNSHNSQTEVAATAAYRFGNVTPRVSYAHGFKGSVYDADNDNTYDQVVVGAEYDF SKRTSALVSAGWLQRGKGTEKFVATVGGVGLRHKF
>BP00272
DVTLYGATKAGVQTYRSVEHTDGKVSKVETGSETADFGSKIGFKGQEDL GNGLKAVWQLEQGASVAGTNTGHGNKQSFVGLKGGF GTIRAGSLNSPLKNTDANVNAWES GKFTGNVL ETSGMAKREHRYLSVRYDSPEF AGF SGSVQYAPKDNSGSNGES YHVGLNYQNSGF FAQYAGLF QRYGEGTKKTEYEHQUYSTPSLFVEKLQVHRLY.
‘GGYDNNALYVSVAAQQQDAKLYGARRANSHNSQTEVAATAAYRFGNVTPRVSYAHGFKGTVDSADHDNTYDQVVVGAEYDF SKRTSALVSAGHLQEGKGADKIVSTASAVVLRHKF
>BP00273
DVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVTKAKSRIRTKISDF GSFIGFKGSEDLGDGLKAVWQLEQDVSVAGGGATQWGNRESF IGLAGEFGTLRAGRVANQFDDASQATDPHDSNNDVASQLGI FKRHDDMPVSVRYDSPEFSGF SGSVQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLNYKNGGF
AGNYAFKYARHANVGRNAFEL FLIGSGSDQAKGTDPLKNHQVHRL TGGYEEGGLNLALAAQLDL SENGDKTKNS TTETAATASYRFGNAVPRISYAHGFDF ERGKKGENTSYDQI TAGVDYDFSKRTSATVS GAWLKRNTGIGNYTQINAASVGLRHKF
>BP00274
T e I
'VKDYQVHRVVAGYDANDLYVSVAGQYEAAKNNEVGSTKGKKHEQTQVAATAAYRFGNVTPRVSYAHGFKAKVNGVKDANY QYDQVIVGADYDF SKRTSALVSAGWLKQGKGAGKVEQTASHVGLRH!
>BPOO31!
QTDISTIEARLNALEKRLQEAENRAQTAENRAGAAEKKVQQL TAQQQKNGNSTQEVAQRTARLEKKADDKSGFEFHGYARS GV IMNDS GASTKS GAY I TPAGETGGATGRLGNQADTYVEMNL EHKQTLDNGATTRFKVMVADGQTS YNDWTASTSDLNVRQAF VELGNL PTFAGPFKGS TLWAGKRFDRONFD THWIDSDVVFLAGTGGGIY
DVKWNDGLRSNFSLYGRNFGDIDDSSNSVONYIL TMNHFAGPLQMMVSGLRAKDNDERKDSNGNLAKGDAANTGVHAL LGLHNDSFYGLRDGSSKTAL LYGHGLGAEVKGIGSDGALRPGADTWRIASYGTTPLSENWSVAPAMLAQRSKDRYADGDS YQWATFNLRL TQATNQNFALAYEGSYQYMDLKPEGYNDRQAVNGSFYKLTFAPTF
e

ADSDINIKTGTTDI(‘-SNWVKTGDLVTYDKENGNNKKVFVSFII)DKNMKKLLVlRTKGTIAGDVRWSEEG‘NKSGLAHPSAFKVI)LQLPDNEVAQISDWPWIS[DTKEVNSTLTV!}HIGN‘ITGDDTEKlGGLlGANVSIGNTLKWOPDFKTILESPTDKKVCMKVIRN‘!VNQNH(‘.PVDRDSWPWGMOLFHKTMSHKMDNFLDP
NKASSLLSSGFSPDFATVITMDRKASKQQTNIDVIYERVRDDYQLHWTS TNWKGTNTKDKWTDRSSERYKIDWEKEEMTN

>BP00339
EISLNGYGRFGLQYVEDRGVGLEDTIISSRLRINIVGTTETDQGYTFGAKLRMQWDDGDAFAGTAGNAAQFWTS YNGV TVSVGNVDTAFDSVALTYDSEMGYEASSFGDAQSS FFAYNSKYDASGALDNYNGI AVTYSTSGVNLYLSYVDPDQTVDSSLVTEEFGI AADWSNDMISLAAAYTTDAGGIVDNDTAFVGAAYKFNDAGTVGLNWY
DNGLSTAGDQVTLYGNYAFGATTVRAYVSDIDRAGADTAYGIGADYQFAEGVKVSGSVQSGFANETVADVGVRFOF

>BP00345

AETYNKDGNKVDLYGKAVGLHYFSKGNGENS YGGNGDMTYARLGFKGETQINSDLTGYGQWE YNFQGNNSEGADAQTGNKTRLAFAGLKYADVGSFDYGRNYGVVYDAL GY TOMLPEFGGDTAYSDDF FVGRVGGVATYRNSNFFGLVDGLNFAVQYLGKNERDTARRSNGDGVGGS ISYEYEGFGIVGAYGAADRTNLQEAQPLGNGKKAEQ
WATGLKYDANNIYLAANYGETRNATPITNKFTNTSGFANKTQDVLLVAQYQFDFGLRPSTAYTKSKAKDVEGIGDVDLVNYFEVGATYYFNKNMSTYVDY TINQIDSDNKLGVGSDDTVAVGIVYQF

>BPO0346

AAVEPKEDTITVTAAPAPQESAWGPAATIAARQSATGTKTDTPIQKVPQSISVVTAEEMALHQPKSVKEALSYTPGVSVGTRGASNTYDHLI IRGFAAEGQS QNNYLNGLKLQGNFYNDAVIDPYMLERAE IMRGPVSVLYGKSSPGGLLNMVSKRPTTEPLKEVQFKAGTDSLFQTGFDFSDSLDDDGVYS YRLTGLARSANAQQKGSEEQR
'YATAPAFTWRPDDKTNFTFLSYFQNEPETGYYGWLPKEGTVEPLPNGKRLPTDFNEGAKNNTYSRNEKMVGYSFDHEFNDTFTVRQONLRFAENKTSGNSVYGYGYCSDPANAYSKQCAALAPADKGHYLARKYVVDDEKL QNFSVDTQLQSKFATGDIDHTLLTGVDFMRMRND INAWFGYDDSVPLLNLYNPVNTDFDFNAKDPANSGPYRT
LNKQKQTGVYVQDQAQWDKVLVTLGGRYDHADQESLNRVAGTTDKRDDKQF TWRGGVNYLFDNGVTPYFSYSES FEPSSQVGKDGNIFAPSKGKQYEVGVKYVPEDRPIVVTGAVYNL TKTNNLMADPEGSFF SVEGGE TRARGVETEAKAAL SASVNVVGS YTYTDAEYTTDTTYKGNTPAQVPKHMASLWADYTFFDGPLSGLTLGTGGRY
‘TGSSYGDPANSFKVGSYTVVDALVRYDLARVGMAGSNVALHVNNLFDREYVASCFNTYGCFWGAERQUVATATFRF

>BPO0359

QSSVTLFGIVDTNVAYVNKDAAGDSRYGLGTSGASTSRLGLRGTEDL GGGLKAGFWLEGE TFGDDGNASGFNFKRRSTVSLSGNFGEVRL GRDLVPTSQKLTSYDLFSATGIGPFMGFRNWAAGQGADDNGTRANNL IS YY TPNFGGFNAGF GYAFDEKQTIGTADSVGRYIGGYVAYDNGPLSASLGLAQQKTAVGGLATDRDEITLGASYN
FGVAKLSGLLQQTKFKRDIGGDIKTNSYMLGASAPVGGVGEVKLQYALYDQKAIDSKAHQITLGYVHNLSKRTALYGNLAFLKNKDASTLGLQAKGVYAGGVQAGESQTGVQVGIRHAF

>BPO036:
ENLMQVYQQARLSNPELRKSAADRDAAFEKINEARSPLLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRAL TLQEKAAGIQDVTYQTDQQTLILNTATAY FNVLNAIDVLSYTQAQKEAT YRQLDQTTQRFNVGLVAITDVONARAQYDTVLANELTARNNLDNAVEQLRQITGNYYPELAALNVENFKTDKPQPVNALL
KEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGISDTSYSGSKTRGAAGTQYDDSNMGONKVGLSFSLPTYQGGHVNSQVKQAQYNFVGASEQLESAHRSVVQTVRSS FNNINASTSS INAYKQAVVSAQSSLDAMEAGY SVGTRTIVDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTN
PENVAPQTPEQNATADGYAPDSPAPVVQQTSARTTTSNGHNPF

>BPO0374

QEPTDTPVSHDDTIVVTAAEGNLQAPGYSTITADE IRKNPVARDVSKI IRTHPGVNLTGNSTSGQRGNNRQIDIRGMGPENTLIL IDGKPVS SRNSVRQGHRGERDTRGDTSWVPPEMIERTEVLRGPAAARY GNGAAGGYVN T TKKGSGEWHGSWDAY FNAPEHKEEGATKRTNFSLTGPLGDEFSFRLYGNLDKTQADAWDINQGHQSAR
AGTYATTLPAGREGVINKDINGVVRWDFAPLQSLELEAGYSRQGNLYAGDTQNTNSDSYTRSKYGDETNRLYRGNYAL THNGGWDNGYTTSNWVQYEHTRNSRIPEGLAGGTEGKFNEKATQDFVDIDLDDVMLHSEVNLPIDFLVNQTLTLGTEWNQQRMKDLSSNTQALTGTNTGGAIDGVS TTDRSPYSKAEIFSLFAENNMEL TOSTIV
‘TPGLRFDHHSIVGNNWSPALNISQGLGDDFTLKMGIARAYKAPSLYQTNPNYILYSKGQGCYASAGGCYLQGNDDLKAETS INKETGLEFKRDGWLAGVTWF RNDYRNKIEAGYVAVGQNAVGTDLYQWDNVPKAVVEGLEGSLNVPVSETVMWTNNI TYMLKS ENKTTGDRLS TTPEYTLNSTLSWQAREDLSMQTTFTWYGKQQPKKYNYK
GQPAVGPETKEISPYSIVGLSATWDVTKNVSLTGGVDNLFDKRLWRAGNAQTTGDLAGANYTAGAGAY TYNEPGRTWYMSVNTHF

>BPO0376

QEATVKEVHDAPAVRGS I TANMLQEHDNPFTLYPYDTNYLIYTQTSDLNKEATASYDWAENARKDEVKFQLSLAFPLWRGILGPNSVLGASYTQKSWHQL SNSEESSPFRETNYEPQLFLGFATDYRFAGWTLRDVEMGYNHDSNGRSDPTSRSHNRLY TRLMAENGNWLVEVKPWYVVGNTDDNPDI TKYMGY YQLKTGYHLGDAVLSAKGQ
YNWNTGYGGAELGLSYPITKHVRLYTQVYSGYGESLIDYNFNQTRVGVGVMLNDLF

>BP00382

STETLSFTPDNINADISLGTLSGKTKERVYLAEEGGRKVSQLDWKFNNAAT TKGAINWDLMPQI ST GAAGHT TLGSRGGNMVDQDWMDSSNPGTWTDESRHPDTQLNYANEFDLNIKGHLLNEPNYRLGLMAGYQESRY SFTARGGSY IYSSEEGFRDDIGS FPNGERATGYKQRFKMPY IGLTGS YRYEDFEL GGTFKYSGHVESSDNDEHY
DPGKRITYRSKVKDONYYSVAVNAGYYVTPNAKVYVEGAWNRVTNKKGNTSLYDHNNNTSDY SKNGAGIENYNF ITTAGLKYTF

>BP00384
AETYNKDGNKLDLFGKVDGLHYFSDDKGSDGDQTYMRIGFKGETQUNDQLTGYGQWEYQIQGNQTEGSNDSWTRVAFAGLKFADAGSFDYGRNYGVTYDVTSWTDVLPEFGGDTYGADNFMQQRGNGYATYRNTDFFGLVDGLDFALQYQGKNGSVSGENTNGRSLLNNGDGYGGSLTYATGEGF SVGGATTTSKRTADQNNTANARLYGNG
DRATVYTGGLKYDANNIYLAAQYSQTYNATRFGTSNGSNPSTSYGFANKAQNFEVVAQYQFDFGLRPSVAYLQSKGKDISNGYGASYGDQDIVKYVDVGATYYFNKNMSTYVDYKINLLDKNDFTRDAGINTODIVALGLVYQF
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Figure 24 TOPBPSequence.txt
Source: Enzim.hu. (2014)
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Figure 25 TOPBPLabels.txt
Source: Enzim.hu. (2014)
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4.4.2 Data preprocessing

44.2.1 Boctopus2 structure array

A dataset needs to be created and formatted for MATLAB to train the deep feedforward
neural network. A 1x42 structure array with three fields (header, sequence, topology) has

been created for the boctopus2dataset.mat.

| allSeq |
1x42 struct with 3 fields

. Header [ Sequence Topology

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =
.

[ESTA PSEAEAIT [ 1x646 uints
10
1
Y s1as6 peaall [Ixzooums |
Y PACL PSEAEAl [1xa73uints [ MMMMMMMMoooooMMMMMMMNMiii
14 .
15 ,... ....................................................................
16 .
RYACE pSeacall  [ixas0uins [

Y Qorvso pSeAeall [xasduins [
Y Fepa ECOLLAl [xvdbuints U
B rech ecoLialr  [ixzauims i
B Fiac sowvealr  [ixssauins |
B over EcoLialr |Dxiezuims [ .
23 iiMMMMMMMMo00000000000000000000000000000000...
24 i iiiiiiii...

1
2
3
4
s N N T S T
6
7
8
9

Figure 26 boctopus2dataset.m
42 corresponds to the 42 TMB sequences. ‘header’ field corresponds to the annotation of

a given protein sequence, ‘sequence’ corresponds to the protein sequence and ‘topology’

corresponds to the predicted topology.

84



4.4.2.2 Topbp structure array

Similarly, a 1x123structure array with three fields (header, sequence, topology) has been

created for the Topdb dataset named topbpdataset.m

®% Variables - allSeq
| | allSeq [

1x123 struct with 3 fields

Fields [} Header 7 Sequence [[] Topology

PR 700056 (1777 uint8 /W
N 700055 | 1721 uinié _[1IIMMUMMYNOO000000000000000000000000ONMMMNMITIIIMUMMMMOG...| |
BN 7001151325 uinta_[111IMMMMYMOO00000000000000000000MNMMYMIIMMNNMMNO000000000... | |
PR 0012|1330 uintsI11IVMMMYNMMOO00000000000MMNMMMNMIIIMMNMMYNMOO000000000.. | |
BN 0015|1307 it [11IMMMMMNO0000000000000000000000MMMHNMMMITIIIMUMMMMNNMO0O... |
FN 7002 7> | 1325 s IIMNMMMYHO00000000000000000000000MMMMNHMMIITIIIMMNMMNYOO.| |
EN 002751373 s IINMMMMYHNO0000000000000000000000000000000000000000MMMHNM... ||
N 0027|1341 s TIMMHMMMMYNO0000000000000000000000000MMMMM MM TMMNIMY...| |
PSRN 7003 10| 453 s [T MUMMMMYNO0000000000000000000... ||
SN 700320 | 1-253 uints_000000000000000000000000000000000000000000000000000000000000. |
PR 700335 1259 uints [ 1IIMMIMMIO0000000000000000MMNNMMMYNIIIIMNMMNOOO00000000M... | |
PR 70035 |1:340 incs_[1IIIINMMMYNMMOO0000000000000000MMNNMMMMIIIMMMMYNM000000..| |
SERN 7003|1715 incs_[IIIIIIIIIVMMMMYNMMMMMMYMVMINO00000000000000000. | |
VRN 7003551352 ints [ 111IMNMMMINMMOO0000000M MMM MMM |
RN 700351171 uincs [ IIIIIIIIIMMMMMMYMMVMYNO0000000MMMMMMMYNMMITIIII..| |
SERMN 700371724 uints [ IIIIIIMNMMMMYNMMMMMMYMMMYIO000000000000000000000... |
SRR 7003751269 uincs [ IIIIIIIIIMYNMMMIMMO0000000000000000000000MMMMMHNMIIT.. | |
SERMN 700351257 uints [ IIIIIMNMVMYNMIO00000000000000000000000M MMMV | |
SERN 570035 |1+357 uints_[IIIIIMMMMYNMOO00000000000MMMYNMIIIIMMYNMMMNO0000000000..| |
ETN 57003551253 s 11111MNMVMMMMYNIO0000000MMNMMMYNMMMITIIMNMVMYNMO00000000... | |
ETIN 700402 |17+ uins [T MMM |
FTMN 700721 | 1162 uints _IIIIIIIIVMMMVMYNMOO00000000000000000MMMMMIIIIIIMNMMO0000... | |
SEMMN 57002+ | 1x727 uinid _[I1IMMVMMNMOO000000000000000000000000ONMMNMITIMHMMMMOO..| |
YR 5700431 | 1x595 winis IV MMM NMMIMMMMYHNO00000000000000000000000.. |

Figure 27 topbpdataset. mat.

To create the structure array for the datasets, a file named comput was written in MATLAB.

It is represented in figure 28.
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clear; clc

fid = fopen('boctopus2Sequence.txt');
Cl = textscan(fid, '%s %s',6 'delimiter','\n');
fclose(fid);

fid fopen('boctopus2Labels.txt');
C2 = textscan(fid, '%s %s', 'delimiter','\n');
fclose(fid);
allSeq=I[1];
N = length(C1{1});
for k=1:N

headerLine = C1{1}{k}(2:end);

if (isempty(headerLine))

continue;

end
sequenceLine = C1{2}{k};
if (isempty(sequenceLine))

continue;
end
topologyLine = C2{2}{k};
if (isempty(topologyLine))

continue;
end
currentInd = length(allSeq)+1;
allSeq(currentInd).Header =headerLine;
allSeq(currentInd).Sequence = aa2int(sequencelLine);
allSeq(currentInd).Topology = topologyLine;

end

savedState = rng;
save Boctopus2dataset allSeq savedState

Figure 28 Comput file
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4.4.3 Data transformation

4.4.3.1 Binarisation of the inputs and targets

The function binarizelnputs makes the binarisation of the inputs.

function allSeq = binarizeInputs(allSeq,W)

for i =
seq

:numel(allSeq)
double(allSeq(i).Sequence);

zeros(39xW,size(win,2));

= 1l:size(win, 2)
index = 39%(@:W-1)' + win(:,k); % input array for each position| k
myP(index, k) = 1;

myP
for

1
win = hankel(seq(1:W),seq(W:end));
k

end
allSeq(i).P = myP;

Figure 29 Binarizelnputs.m

In the above code, all the possible subsequences corresponding to a sliding window of size
W are determined by creating a Hankel matrix for each protein sequence.

Twenty binary bits are the most common distributed encoding method. Each amino acid is
represented by a unique 20-bit binary string that consists of ‘0’ and one ‘1°. Table 3
represents 20-bits encoding for 20 different amino acids. Conversion of the amino acids
sequences into real numbers is necessary to obtain numerical input vectors. In a study,
ANNSs trained with 20-binary-bit encoding produced the highest classification rate and
AUC, therefore superior robustness. They observed a minor effect on the classification rate
and AUC when either altering the bit length or binary input data (From 5-bits to 20-bits)

or increasing the hidden layer nodes after a certain level or both.
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Table 3 Best classification rate and area under the ROC curve on different binary

encoding

Source: Singh, S., Singh, M. (2007)

Encoding Name|Classification Rate (%)|Area Under The Curve (AUC)
Five Binary 87.17 0.9302
Nine Binary 89.28 09373

Sixteen Binary 88.08 0.9323

Twenty Binary 89.96 0.9381

When binary encoding is used, no Physico-chemical properties are taken into
consideration. Previous studies also suggest that the addition of Physico-chemical
properties does not always increase neural network performances (Brusic, Rudy and
Harrison, 1995). Many beta-barrel consists of alternating hydrophobic and hydrophilic side
chains. It would not be helpful to apply simple hydrophobic scales for the topology
prediction of TMB; therefore, this approach is not considered in this paper. Various bits

encoding has been used as part of the computation.

The function binarizeTargets makes the binarisation of the targets and is represented below.
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function allSeq = binarizeTargets(allSeq,W)
cr = ceil(W/2); % central residue position
% === binarization of the targets
for i = 1:numel(allSeq)
str = double(allSeq(i).Topology); % current topology
win hankel(str(1:W),str(W:end)); % all possible sliding windows

myT = false(3,size(win,2));

myT(1,:) (win(cr,:) == double('i'))|(win(cr,:) double('I'));
myT(2,:) (win(cr,:) == double('m')) |(win(cr,:) double('M'));
myT(3,:) (win(cr,:) == double('o'))|(win(cr,:) double('0'));
allSeq(i).TNet = myT;

myTSingle = zeros(1,size(win,2));
myTSingle(win(cr,: double('i'))
myTSingle(win(cr,: double('M'))
myTSingle(win(cr,: double('o'))
myTSingle(win(cr,: double('I"'))
myTSingle(win(cr,: double('m'))
myTSingle(win(cr,: double('0"'))
allSeq(i).TSingle = myTSingle;

Figure 30 BinarizeTargets.m
The matrix |[TNet| represents array targets for the neural network (1 ->[1 0 0], 2 -> [0, 1,

0], 3 > [0 0 1]). The matrix [TSingle| contains just class (1,2,3).
(Izviv,2:vM|,3:v v)

4.4.3.2 Input and target matrices construction

Once the input and target matrices are defined for each sequence, an input matrix [P|, a
target matrix |TNet|, representing the encoding for all the sequences fed into the network,

are created. The matrix |TSingle| is used as a target for all other types of classifiers.
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% === construct input and target matrices
P = double([allSeq.P]); % input matrix

TNet = double([allSeq.TNet]l); % target matrix
TSingle = [allSeq.TSinglel'; % target matrix

Figure 31 Construct input and target matrices

4.5 Summary

This chapter presented the list of datasets available and the data preparation techniques
used for the implementations. Many transmembrane proteins databases serve as
repositories for the sequences and structures of transmembrane proteins. Some databases
such as OPM, PDB TM contain orientations predictions of the protein relative to the
membrane based on water-lipid transfer energy minimisation or hydrophobicity/structural
feature analysis. OPM provides N-terminus localisation information. TOPDB was selected
for the implementations. It includes TM proteins of unknown 3D structures whose
topologies have been experimentally validated using low-resolution techniques such as
gene fusion, antibody, and mutagenesis studies. BOCTOPUS 2 dataset was also selected,
and it contains 42 proteins. This chapter also discussed the data preparation steps and
techniques used for the implementations. Data preparation is the process of cleaning and
transforming raw data before processing and analysis. This step was necessary for the
implementations, and it involved reformatting data, making minor corrections to data and
combing files. It was a lengthy process, but it was essential to put data in context and turn

it into insights and eliminate bias resulting from poor data quality.
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5. Implementation of ANN, KNN, and SVM

This chapter describes the implementations of ANN, KNN and SVM in MATLAB.

5.1 Implementation of ANN
5.1.1 Model building and training

A neural network with one input layer, one hidden layer, and one output layer is defined in
the current architecture. The input layer encodes a sliding window in each input amino acid
sequence, and a prediction is made on the structural state of the central residue in the
window. A window of size 17 is chosen as a start. It is based on the statistical correlation
between the secondary structure of a given residue position and the eight residues on either
side of the prediction point. Each window position is encoded using a binary array of size
20, having one element for each amino acid type. In each group of 20 inputs, the element
corresponding to the amino acid type in the given position is set to 1, while all other inputs
are set to 0. Thus, the input layer consists of R = 17x20 input units, i.e., 17 groups of 20
inputs.

The output layer has three units. The individual unit corresponds to each topology. A binary
scheme is used for encoding. The topologies localisations of all combinations in the sliding
window are obtained to create the target matrix. The next step is to review the position in
the centre of each window and the corresponding topology localisation using binary
encoding as 1 0 0 (Outside: extracellular), 0 1 0 (Bacterial outer membrane) and 0 0
I(Inside: Periplasmic space). nntraintool opens the neural network training GUI. This
function can be called to make the training GUI visible before training has occurred, after
training if the window has been closed. It shows a representation of the layers of the

network.
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o0 Neural Network Training (nntraintool)

Neural Network

Hidden Output

Output

70 3

Algorithms

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg)
Performance: Sum Squared Error (sse)
Calculations: MEX

Progress
Epoch: ol 30 iterations | 1000
Time: | 0:00:16 |
Performance: 1.37e+04 [ 9.45e+03 | 0.00
Gradient: 2.67e+04 1.00e-06
Validation Checks: 0 | 0 | 6
Plots
Performance (plotperform)
Training State (plottrainstate)
Error Histogram (ploterrhist)
Confusion (plotconfusion)
Receiver Operating Characteristic (plotroc)
Plot Interval: ; 1 epochs

@ Training neural network..

! @ Stop Training | 0 Cancel
| —

Figure 32 Neural network training GUI

The function trainWithNeural is created and used to train the model.
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function [trainInd, valInd, testInd, net] = trainWithNeural(input,output,..
hsize,transferFcn,withRandonWeights)
if(nargin < 3)
hsize = 5;
end
if (nargin < 4)
transferFcn = 'logsig’;
end
if (nargin < 5)
withRandonWeights = false;
end
%set up neural network of size
net = patternnet(hsize);
net.performFcn = 'mse';
net.trainFcn = 'trainscg';
% === use the parameters as transfer function for hidden layer
net.layers{1}.transferFcn = transferFcn;
if(withRandonWeights)
% === assign random values in the range -.1 and .1 to the weights
net.IW{1} = -.1 + (.1 + .1) .* rand(size(net.IW{1}));
net.LW{2} = -.1 + (.1 + .1) .* rand(size(net.LW{2}));
end
% === train the network
[net,tr] = train(net,input,output);
trainInd = tr.testInd;
vallnd = tr.vallnd;
testInd = tr.testInd;
net.trainParam
numWeightsAndBiases | length(getx(net))
nntraintool('close') % close Neural Network Training Tool
% === plot validation checks and gradient
figure;
plottrainstate(tr);

Fﬁgure33 Function trainwithNeural

The function predictWithNeural returns probabilities of element being assigned to a

particular class and the output is in the form of numbers 1,2,3 (1 ="1,2="M', 3 ='0").

bLopspT(TfA = 0!
ongbng(opaeLaeqcowbrer(3*:)~=9)
ongbng(op2eLaeqcowbrer(s®

ongbng(op2eraeqcowbrer (1 :)=0)
ongbng = s6L02(2756(0'S) T)?
op26LAeqcowbrer = cowber(p)?
0 = 2Tw(vef TUbNL) !
B LnucgTou [ongbng® brLopapTrTLA] = bregTcemTLpUeniaf(ues® Tubng)

Figure 34 Function predictwithNeural
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The function assessPerformance is used to display performance in the form of ROC
curves, confusion matrix and bar charts. Plotconfusion (targets, outputs) generates
a confusion matrix for the target and output data. Plotroc (targets, outputs) plots the
receiver operating characteristic for each output class. Bar (x, y) creates a bar graph. The

main function used for the KNN implementation in MATLAB is named UseClassifiers.m.

function assessPerformance(probability,target,name)

figure;

plotconfusion(target,probability);

title(['Confusion matrix performance for algorithm ' namel);
figure;

plotroc(target,probability);

title(['Roc-curve for algorithm ' namel);

outObsr = compet(probability);
observed_I = (outObsr(1,:)~=0);
observed_M = (outObsr(2,:)~=0);
observed_0 = (outObsr(3,:)~=0);

target_I (target(1,:)~=0);
target_M = (target(2,:)~=0);
target_0 = (target(3,:)~=0);

% === compute fraction of correct predictions when a given state is obsgerved
pcObs(1) = sum(observed_I & target_I)/sum (target_I); % state I
pcObs(2) = sum(observed_M & target_M)/sum (target_M); % state M
pcObs(3) = sum(observed_0 & target_0)/sum (target_0); % state 0

% === compute fraction of correct predictions when a given state is predicted
pcPred(1) = sum(observed_I & target_I)/sum (observed_I); % state
pcPred(2) = sum(observed_M & target_M)/sum (observed_M); % state
pcPred(3) = sum(observed_0 & target_0)/sum (observed_0); % state

% === compare quality indices of prediction

e g-H

bar([pcObs' pcPred'] * 100);

ylabel('Correctly predicted positions (%)');

set (gca, 'XTickLabel',{'I';'0';'M'});

legend({'Observed', 'Predicted'});

title(['Quality indices performance for algorithm ' namel);

Figure 35 Function assessPerformance
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5.1.2 Hyperparameters tuning

Various training algorithms have been used with the computation to evaluate prediction
accuracy. Window size, bits encoding, transfer function, hidden layer size, training
function, performance function and data division are all parameters that have been

modified. All results can be found in Appendix A.

The neural network allows to set the following parameters:
" hsize — the size of the hidden layer
" transferFcn - transfer function for hidden layer
* withRandonWeights — whether there is a need to initialise network with random

weights.

5.1.2.1 Hidden layer

TMB topology prediction can be classified as a pattern recognition problem. The network
will be trained to recognise the topology of the residue in the centre of the sliding window
based on other residues discovered in the sliding window. patternnet is used to create a
pattern recognition neural network, and hsize corresponds to the size of the hidden layer.
Various hidden layer sizes have been used during this computing from 2 to 1000. The
accuracy of prediction is summarised in Appendix A.

Neural Network

Hidden Output
Input Output
P L = ‘ P
-y b s
1989 = | - —_ 3

70 3

Figure 36 Representation of the neural network
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5.1.2.2 Transfer function

During the implementation, various transfer functions have been used. Examples include

Log-Sigmoid function and Tan-Sigmoid function. A transfer function, such as 1ogsig,
allows the signals received from the input layer to be transformed in each hidden. The
output signal generated will be between 0 and 1. The neural can adjust the weights so that
the error between the desired and observed is at the minimum. The log-sigmoidal function

is represented in figure 37.

i

a = logsig(n)

Figure 37 Log-sigmoid transfer function

Source: Srinivasu, G., Rao, R.N., Nandy, T.K. and Bhattacharjee, A. (2012)

A Log-Sigmoid function, which is also known as logistic function, is given by the

following formula:

o(t) = —— (5.1.1)

[ corresponds to the slope parameter. The sigmoid is like the step function; however, there
is the addition of a region of uncertainty. Sigmoid functions are like the input-output
relationships of biological neurons. Their derivatives are also easy to calculate, which helps
calculate the weight updates for certain training algorithms. The derivative when =1 is

given by:
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290 — G(B[1 - a(t)] (5.1.2)

at

When f # 1, usic(B,t) = the derivative is given by:

1
1+ e—Bt’

e = Blo(B,0[1— o (B, 0] (5.1.3)

dt

Another transfer function was used during the implementation of the ANN. It is named
Hyperbolic tangent sigmoid transfer function. Tansig(N) takes one input and returns each
element of N squashed between -1 and 1. Tansig is named after the hyperbolic tangent,

which has the same shape. It is represented in figure 38.

a = tansig(n)

Figure 38 Tan-sigmoid transfer function

Source: Srinivasu, G., Rao, R.N., Nandy, T.K. and Bhattacharjee, A. (2012)

5.1.2.3 Training algorithms

Various training algorithms have been used with the computation to evaluate prediction
accuracy. A summary of the results with multiple training algorithms is found in Appendix

A. A list of all training algorithms used is listed in table 4.
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Table 4 Training algorithms used

R

Trainscg (scaled conjugate gradient) is the default training algorithm available in
MATLAB. The training sequences are fed to the deep neural network, at each training
cycle, through the sliding window described earlier, and this is done one residue at a time.
SCG (Scaled Conjugate Gradient) (Meller, 1993) corresponds to a supervised learning
algorithm for feed-forward neural networks. It is a member of the class of conjugate
gradient methods (CGM). SCG is faster than standard backpropagation and other CGMs
(Mgller, 1993). The network training function Trainrp updates weight and bias values
based on the resilient backpropagation algorithm. The network training function Traincgb
updates weight and bias values based on the conjugate gradient backpropagation with
Powell-Beale restarts. As part of all conjugate gradient algorithms, there is a periodic reset
of the search direction to the negative of the gradient. The standard reset point corresponds
when the number of iterations equals the number of network parameters (weights/biases).
Other reset techniques can improve the efficiency of training. One method has been
suggested by Powell (Powell, 1977) based on a previous technique described in Beale paper
(Beale, 1972). The conjugate gradient backpropagation updates the weight and bias values
with Fletcher-Reeves updates (Fletcher and Reeves, 1964) in the traincgf training
function. Weight and bias values are updated according to the conjugate gradient

backpropagation with Polak-Ribiére updates in traincgp. Traincgp has comparable
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performance to traincgf. In the trainoss training function, weight and bias values are
updated based on the one-step secant method. The performance of various algorithms was
evaluated in a recent article (Sharma et al., 2016) using small datasets with multiple
dimensionalities. Their article indicated that KNN (k-nearest neighbors), SVM (support
vector machines) and linear discriminant are the algorithms when using small datasets. A
representation of the AUC and accuracies can be found in figure 39. Based on this study,

it was decided to implement KNN and SVM classifiers for the topology prediction of TMB

proteins.
Feature | Dataset Decision Tree SVM KNN Linear Ensemble
set size D Discriminant
AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | Accuracy
~ w 0.98 |98.3 1.00 |90.8 096 | 903 1.00 | 90.8 1.00 | 985
2 Yy [og7 a3 1.00 [91.7 098 | 913 100 | 913 1.00_| 96.0
0 0.97 | 945 1.00 | 925 097 [92.0 1.00 | 925 1.00 | 98.0
o 099 |97.3 1.00 |90.0 097 [903 1.00 | 90.8 1.00 | 98.8
18 (7, 097 |943 1.00 [91.6 098 |91.6 1.00 | 913 1.00 |975
20 097 955 1.00_|92.0 094 [o15 1.00_| 92.0 1.00 | 985
" e 0.98 | 90.3 1.00 [90.3 0.99 |90.8 1.00 | 905 1.00 | 96.0
2 [V 0.99 | 90.6 1.00_|92.0 099 o916 0.99 | 916 099 |98.3
om0 0.98 | 925 100 |925 098 |[92.0 1.00 | 92.0 098 |945
o 0.99 | 93.0 0.99 |93.0 099 |[935 0.99 | 905 099 | 975
6 o 0.99 | 92.6 1.00 |93.0 1.00 | 95.6 0.99 | 913 1.00 | 98.0
"0 0.96 | 93.0 1.00_ | 94.0 099 [945 1.00 | 94.0 0.81 | 92.0
Figure 39 AUC & Predictive Accuracy Value
Source: Sharma, S., Sharma, V. (2016)
5.1.2.4 Data division

Overfitting is a recurrent problem that occurs when the neural network is trained. This
happens when the model is complex and the size of the training data is too small. There is
memorisation of the network's training examples, but there is no generalisation. Early
stopping is one of the methods to ensure generalisation. This default value in MATLAB
for early stopping is a maximum of 6 iterations. In the early stopping method, data division
creates three different sets. The first set is referred to as the training set. An ensemble of

examples is used to learn, and the network weights are updated. The second set is the
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validation set, which is mostly used for tuning the model’s parameters. During the initial
training phase, the validation error habitually decreases (as well as the training set error).
The error on the validation set typically starts to rise when the network begins overfitting
the data. The network weights and biases are saved when the validation set error reaches
its minimum. The third set is referred to as the test set. It is used to confirm the predictive
power of the network. Four functions are available in MATLAB for data division. The first
one is dividerand. It will divide the data randomly. The second one is divideblock. It
will divide the data into contiguous blocks. The third one is divideint. The data will be
divided using an interleaved selection. The last one is divideind. Data division happens
automatically during the training of the network. Data is divided into three sets: the training
set, validation set, and testing set. Various division functions were used, and the results
were evaluated. When dividerand is used, the data is divided into three sets randomly.
The division parameter net.divideParam.trainRatio, net.divideParam.valRatio,
and net.divideParam.testRatio are used. This is the default setting. The ratio that is
used by default is 0.7/0.15/0.15. It corresponds to the ratio for training, testing and
validation. Other types of partitioning can be used when modifying net.divideFcn.
Parameters of the division function are stored and can be modified with the property:
net.divideParam. When using the function train, by default, the data is randomly divided
so that 70% of the samples are assigned to the training set, 15% to the validation set, and
15% to the test set. Figures 40,41, and 42 show the structural assignments in the training,
validation and test datasets used for this network where ‘I’ corresponds to inner-loop, ‘O’
corresponds to outer-loop, and ‘M’ corresponds to membrane lipid-facing and membrane

pore-facing.
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Structural assignments in training data set ; ANN with 70 hidden neurons

54%

Figure 40 Structural assignment in the training data set
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Structural assignments in validation data set ; ANN with 70 hidden neurons

54%

Figure 41 Structural assignment in the validation data set
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Structural assignments in testing data set ; ANN with 70 hidden neurons

53%

Figure 42 Structural assignment in the testing data set

The topology of the residues in the three subsets is similar when comparing pie charts in
figures 40, 41 and 42. There is a measure of error for neural network training between
computed outputs and desired target outputs of the training data. Mean Squared Error is a
common measure. The mean squared error (MSE) of an estimator calculates the average
of the squares of the “errors” in statistics. Error is the difference between what is estimated
and the estimator. MSE corresponds to a risk function based on the expected value of the
squared error loss. However, some research results (Golik, Doetsch & Ney, 2013) suggest
using a different measure, called cross-entropy error, as it is sometimes preferable to using
mean squared error. As discussed earlier, there is monitoring the error on the validation
during the training phase. Training, validation, and test errors are displayed with the

function plotperform.

103



Conditions are defined in the net.trainParam, and when they are met, the training stops.
For example, the number of epochs greater than 200 can be a condition. Figure 43
represents the various functions parameters of trainscg, which was used for this project.

Other training functions have been used.

Function Parameters for 'trainscg’

Show Training Window Feedback showWindow:
Show Command Line Feedback showCommandLine:
Command Line Frequency show:
Maximum Epochs epochs:
Maximum Training Time time:

Performance Goal goal:
Minimum Gradient min_grad:
Maximum Validation Checks max fail:

Sigma sigma:
Lambda lambda:

numWeightsAndBiases =

56307

Figure 43 net.trainParam function results

For example, in the training considered, the training process stops when the validation error
increases for a specified number of iterations (6) or the maximum number of allowed
iterations is reached (1000). Validation checks represent the number of successive
iterations that the validation performance fails to decrease. Figure 44 illustrates the
magnitude of the gradient. Figure 45 represents the number of iterations. It can be seen
clearly that validation checks=6 at epoch 158, and the training stops automatically. When
the training has obtained a minimum performance, the gradient will be small when the
gradient is less than 1e-6. For this project, the validation checks (>6) triggered the training
to stop.
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Figure 45 validation checks

The magnitude of the gradient can be adjusted by changing the parameter

net.trainParam.min grad. The criterion of validation checks can be modified by

changing the parameter net.trainParam.max fail. Finally, stopping the training

manually by clicking ‘stop training’ in the training window is also possible.

5.1.3 Performance evaluation

Confusion matrix

In machine learning, a confusion matrix, also known as a contingency table or an error

matrix, is a specific table layout that allows visualisation of the performance of an
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algorithm, typically a supervised learning one (in unsupervised learning, it is usually called
a matching matrix). Each column of the matrix represents the instances in a predicted class,
while each row represents the instances in an actual class.

A review of the confusion matrix is needed to analyse the network response. It is essential
to consider the outputs of the trained network and compare them with the expected results,
also referred to as targets. In the training tool window, there is a button that permits
displaying the confusion matrix. The confusion matrix is represented in figure 46. The
diagonal cells show the number of residue positions correctly classified for each topology
class. The off-diagonal cells show the number of residue positions that were misclassified.
The diagonal cells correspond to observations that are correctly classified. The number of
words and the percentage of the total number of observations is shown in each cell. The
column on the far right of the plot shows the percentages of all the examples predicted to
belong to each class that are correctly and incorrectly classified. These metrics are often
called the precision (or positive predictive value) and false discovery rate. The row at the
bottom of the plot shows the percentages of all the examples belonging to each class that
are correctly and incorrectly classified. These metrics are called the recall (or true positive
rate) and false-negative rate. The cell in the bottom right of the plot shows the overall

accuracy.
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Confusion matrix performance for algorithm ; ANN with 70 hidden neurons
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Figure 46 Confusion matrix
5.1.3.2 Receiver operating characteristic curve

The Receiver Operating Characteristic (ROC) curve can also be looked at. It is a plot of
the true positive rate (sensitivity) versus the false-positive rate (1 — specificity). True
positive rate is also known as sensitivity in biomedical engineering. Sensitivity corresponds

to the proportion of actual positives that are correctly identified. False-positive corresponds
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to fall-out. Fall-out is related to the specificity and equals to 1 - specificity. The ROC curve
represents the sensitivity as a function of the fall-out. A perfect predictor would be
described at 100% sensitivity. The overall accuracy is better when the ROC curve is close

to the upper left corner (100% sensitivity, 100% specificity).

Roc-curve for algorithm ; ANN with 70 hidden neurons
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Figure 47 Receiver Operating Characteristics curve
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5.1.3.3 Prediction quality indices

The topology prediction is evaluated in detail by calculating prediction quality indices
represented in figure 48. They indicate how well a particular state is predicted and whether
overprediction or underprediction has occurred. The index pcobs (s) was defined for state
S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the
number of residues observed in state S. Similarly, the index pcpred(s) for state S was
defined as the number of residues correctly predicted in state S, divided by the number of

residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.

90 Quality indi performance for algorithm ; ANN with 70 hidden neurons
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Figure 48 Quality indices of prediction
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5.2 Implementation of KNN

Some elements used for the implementation of the ANN can be reused to implement a
KNN (k-nearest neighbors) classifier. The dataset(s) and binarisation of the inputs used
will be the same. The datasets used will be the same datasets used with the ANN
implementation. The BOCTOPUS2 and TOPDB datasets will be curated and used for

implementation.

5.2.1 Model building and training

The classifier uses the fitcknn function. fitcknn is part of the statistics toolbox. Fitcknn
(_, Name, Value) creates a model with other options specified with one or more name-
value pair arguments. The tie-breaking algorithm, distance metric of observation weights
can be identified. Name-value pair arguments are represented as Name, Value arguments
separated by a comma. Name is the argument name. Value is the corresponding value
argument. The name must be within single quotes. An example is:
‘NumNeighbors', 15, 'NSMethod', 'exhaustive','Distance','euclidean’ speciﬁes a
classifier for fifteen-nearest neighbors using the nearest neighbor search method and the
Euclidean metric. Several model parameters can be modified, and there will be a first
review on ‘BreakTies', 'NSMethod' and 'NumNeighbors' that have been used as a basis for
creating the k-nearest neighbors in MATLAB. 'BreakTies' corresponds to the tie-breaking
algorithm. The default value is 'smallest’, but values can be 'nearest' or 'random'. predict
method uses the tie-breaking algorithm. There are three ways to break a tie for a k-nearest
neighbors classifier. The smallest index among tied groups is used with 'smallest’. The
nearest neighbor among tied groups is used with 'nearest'. A random tiebreaker among tied
groups is used with 'random'. 'random' is like flipping a coin and deciding positive/negative
for example. There is a tie when various classes have the same number of nearest points
among the k nearest neighbors. 'BreakTies', 'nearest' is an example of the syntax used in

the code. Ties happen when there is the same number of votes for two different classes in
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the set of nearest neighbors. In binary classification, it can occur if k is even. Changing to
an odd value (such as 3 or 5) in binary cases is possible, but it does not help for multi-class.
Missing values need to be dealt with when using nearest neighbors. An attribute has usually
values in the data. Missing values happen when a testing instance does not have an
attribute. Missing values are problematic for nearest neighbors. There is no trick, like for
naive Bayes nearest neighbors classifier or for decision tree that helps to deal with missing
values. Here, it is necessary to do something. It is required to fill in the missing values;
otherwise the model can’t compute distance. A reasonable choice can be to choose the

mean (average) value of the attribute across the dataset.

The function trainwithKNN is created and used to train the model.

%, 'CategoricalPredictors', 'all’
model = fitcknn(input,output, 'BreakTies', 'random', 'NSmethod', 'exhaustive', 'NumNeighbors', k);

Tfunction model = trainWithKNN(input,output,k)

end

Figure 49 Function trainwithKNN

The function predictWithKNN returns probabilities of element being assigned to a

particular class and the output is in the form of numbers 1,2,3 (1 ="1,2="M', 3 ='0").

function [output, probability] = predictWithKNN(model, input)
[~, score] = predict(model, input);
probability = score';
observedComplet = compet(probability);
output = zeros(size(input,2),1);

output(observedComplet(1,:)~=0) 1;
output(observedComplet(2,:)~=0) = 2;
output(observedComplet(3,:)~=0) =

Figure 50 Function predictwithKNN
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A model parameter that was discussed earlier is the tie-breaking algorithm. Another model
parameter that needs to be considered is 'NsMethod' corresponds to the Nearest neighbor
search method. The nearest neighbor search method is coded as pair consisting of
'NsMethod' and 'kdtree' or 'exhaustive'. The default value is 'kdtree'. A kd-tree is created,
and find the nearest neighbors when the value 'kdtree' is used. The distance metric must be
'euclidean', 'cityblock’, 'chebychev' or 'minkowski'in order for 'kdtree'to be valid. The
exhaustive search algorithm is used with 'exhaustive'. There is a computation of the
distance values from all points in X to each point in Y to find the nearest neighbors. An
example of the syntax for this parameter is 'NSMethod', 'exhaustive'. (Mathworks, 2016). A

k-d tree is built from training data. An example of a kd-tree is represented in figure 51.
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Figure 51 Scheme of a KD-Tree Search algorithm
Source: Kraus, P. and Dzwinel, W. (2012)

In a k-d tree, a data structure is built and organises the dataset as a tree. To find the nearest
neighbors to the query point, it is necessary to navigate down the tree to the region that will
hopefully contain most of the nearest neighbors for the testing point. The algorithm works
by picking a random attribute, and for that attribute, it finds the median. It uses that median
to split the dataset. It will divide it evenly with half the data points on one side and half of
the data points on the other side. The procedure is repeated at other iterations using a
different random attribute. The procedure is repeated until it ends up with a predetermined
number of points left in each branch of the tree. Once you know the number of points that

will be, you know how deep the tree is. At each level, the dataset is split in half, and because
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the median is selected, it is split exactly in half. The dataset gets twice a small with every
step. The previous figure states that the classifier stops when there are 2 or 3 nodes in each
leaf, and figure 51 represents the final cutting of the space into regions. The data structure
is then used for finding nearest neighbors to testing queries. In this example, for finding
the nearest neighbors for a new point (7,4), the region containing (7,4) is selected, and a
comparison to all points in the region is done. This technique can easily miss real nearest
neighbors. 'NumNeighbors' is another model parameter used to create the k-nearest
neighbors classifier in MATLAB in this paper. When the number of neighbors is changed
to 3 or 4, the model will classify using the third or fourth nearest neighbors. K=2 has been
selected to start the process. Values will be modified later to obtain better results and
optimise the classifier. k will affect the algorithm’s performance a lot, and it is discussed
using an example in another section of this research.

So far, the trainwithkNN function has been discussed. PredictwithKNN function will
return probabilities of the element being assigned to the class and the output in the form of
numbers 1,2,3 (1= ‘1’, 2="M’, 3="0’) based on the trained-nearest neighbor classification
model. The classifier uses the predict function available in MATLAB. The syntax is as
follow: [output, probability] = predictwithKNN (model, input). As discussed
earlier, a k-nearest neighbors classification model is defined as a Model and specified as a
ClassificationKNN model object returned by fitcKNN. Input corresponds to the predictor
data to be classified.

The function assessPerformance is used to display performance in the form of ROC

curves, confusion matrix and bar charts.

5.2.2 Hyperparameters tuning

The k-NN model uses a k value=2 as a first implementation. Variations in the k values will
be used to evaluate the performance of k-NN, and all results are summarised in Appendix
B. Multiple parameters of a KNN are modifiable. NumNeighbors is one of the properties
of a KNN that has been modified. This positive number corresponds to the number of

nearest neighbors in X, which is a numeric matrix of unstandardised predictor value. One
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predictor (variable) is represented by each column of X. One observation is represented by
each row. For example, changing the neighborhood size to 6 means that the model classifies
using the six nearest neighbors. A single nearest neighbor is the default k-nearest neighbors
classifier. Using more than one neighbor is better NSMethod and BreakTies are other

properties of a KNN that have been modified.

The implementation used in MATLAB for this project runs 1-18 using the ‘exhaustive’
nearest neighbors search method, BreakTies, ‘random’ and varied data division for
training. The syntax is as follow in the trainwithknN.m file. Runs 19-33 use a k-d tree
search method with various distance metrics. The Tie-breaking algorithm remains the same
(random) as the one used in runs 1-18. ‘euclidean’ corresponds to the Euclidean distance.
‘cityblock’ corresponds to the City block distance, ‘minkowski’ is the Minkoswki
distance. 2 is the default exponent. ‘chebyshev’ corresponds to the Chevychev distance

(maximum coordinate difference).

For runs 34-52, the tie-breaking algorithm has been modified. All runs used for far were
based on a random tie-breaking algorithm. The tie-breaking algorithm has been changed to
'smallest' Or 'nearest'. ‘BreakTies’ applies when ‘includeTies’ 1is false.
‘includeTies’ is a flag that can be true or false. It is false by default. When it is set to
‘true’, the model considers all nearest neighbors with a distance equal to the kth smallest
distance in the output arguments. If it is false, then the model chooses the observation with
the smallest index among the observations that have the same distance from a query point.
‘Bucketsize’ can also be modified. It corresponds to the maximum data points in node.50
is the default. It is used only when ‘NsMethod’ is ‘kdtree’. The code corresponds to s a
pair of ‘Bucketsize’ and a positive integer value separated by a comma. An example is
‘Bucketsize’, 40. ‘exponent’ is the Minkowski distance exponent, and it can be added
to one of the sub-parameters of a KNN. It is only applicable when ‘Distance’ is specified

as ‘minkoswki’.
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Starting from run 53, all the runs use the dataset ToPBPdataset.mat. Parameters are

adjusted similarly to the runs 1-52, and results can be found in Appendix B.

5.2.3 Performance evaluation

With the implementation of KNN, plots are also provided to evaluate the performance of
the KNN classifier. Plots include a confusion matrix, Receiver Operating Characteristic
(ROC) curve and chart with predicted and observed positions. The description of the plots

and interpretation of results have been already defined in the previous chapter.

5.2.3.1 Confusion matrix

The confusion matrix is represented in figure 52. The best overall accuracy is 71.8%. The
diagonal cells show the number of residue positions correctly classified for each topology
class. The off-diagonal cells show the number of residue positions that were misclassified.
The diagonal cells correspond to observations that are correctly classified. The number of
observations and the percentage of the total number of observations is shown in each cell.
The column on the far right of the plot shows the percentages of all the examples predicted
to belong to each class that are correctly and incorrectly classified. These metrics are often
called the precision (or positive predictive value) and false discovery rate. The row at the
bottom of the plot shows the percentages of all the examples belonging to each class that
are correctly and incorrectly classified. These metrics are called the recall (or true positive
rate) and false-negative rate. The cell in the bottom right of the plot shows the overall

accuracy.
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Confusion matrix performance for algorithm ; KNN with 8 neighbors
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Figure 52 Confusion matrix
5.2.3.2 Receiver operating characteristic curve

The Receiver Operating Characteristic (ROC) curve can also be looked at. It is a plot of
the true positive rate (sensitivity) versus the false positive rate (1 — specificity). True
positive rate is also known as sensitivity in biomedical engineering. Sensitivity corresponds
to the proportion of actual positives that are correctly identified. False-positive corresponds
to fall-out. Fall-out is related to the specificity and equals to 1 - specificity. The ROC curve
represents the sensitivity as a function of the fall-out. A perfect predictor would be
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described at 100% sensitivity. When the ROC curve is close to the upper left corner (100%

sensitivity, 100% specificity), the overall accuracy is better.

Roc-curve for algorithm ; KNN with 8 neighbors
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Figure 53 ROC curve

5.2.3.3 Prediction quality indices

The topology prediction is evaluated in detail by calculating prediction quality indices

represented in figure 54. They indicate how well a particular state is predicted and whether
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overprediction or underprediction has occurred. The index pcobs (S) was defined for state
S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the
number of residues observed in state S. Similarly, the index pcpred (s) for state S was
defined as the number of residues correctly predicted in state S, divided by the number of
residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.

. Quality indices performance for algorithm ; KNN with 8 neighbors
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Figure 54 Quality indices
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5.3 Implementation of SVM

This section describes the implementation of SVM in MATLAB.

5.3.1 Model building and training

The function templatesvM is used to create the support vector machine template.
t=templateSVM (Name, Value) generates a template that has possibilities of extra options
specified by one of the multiple name-value pair arguments. For example, the box
constraint, the kernel function, can be set. Whether there is a standardisation of the
predictors or not can also be specified. All unspecified options appear empty if t, is
displayed in the command window. Empty options will be replaced with the corresponding
default values at the training phase. The display of t can be accessed with a code, and the

results of the show are also represented in figure 55.
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Command Window

>> t = templateSVM('SaveSupportVectors',false, 'KernelFunction', 'Linear"')
t =
Fit template for classification SVM.

Alpha: [@x1 double]

BoxConstraint: []
CacheSize: []
CachingMethod: ''
ClipAlphas: []
DeltaGradientTolerance: []
Epsilon: []
GapTolerance: []
KKTTolerance: []
IterationLimit: []

KernelFunction: ‘linear’
KernelScale: []
KernelOffset: []
KernelPolynomialOrder: []
NumPrint: []
Nu: []
OutlierFraction: []
RemoveDuplicates: []
ShrinkagePeriod: []
Solver: "'
StandardizeData: []
SaveSupportVectors: 0
VerbosityLevel: []
Version: 2

Method: 'SVM'
Type: ‘classification’

Figure 55 Display of t from the command window

The function trainwithsvM is created and used to train the model.
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function model = trainWithSVM(input,output,kernel)
out_id = unique(output);
n = zeros(1, length(out_id));
for i=1:1length(out_id)
n(i) = nnz(output == out_id(i));

end
maxN = max(n);
for i=1:1length(out_id)
nS = maxN - n(i);
allbData = find(output == out_id(i));

ind = randsample(length(allData),min(nS, length(allData)));
input = [input; input(allData(ind),:)];
output = [output; output(allData(ind))];
end
t = templateSVM('SaveSupportVectors','on', 'KernelFunction',kernel);
model = fitcecoc(input,output, 'FitPosterior',true,...
‘Learners',t);

Figure 56 function trainwithsvM

The function predictWithKNN returns probabilities of element being assigned to a

particular class and the output is in the form of numbers 1,2,3 (1 ="1,2="M', 3 ='0").

function [output, probability] = predictWithSVM(model, input)
[~, score]l = predict(model, input);
probability = score';
observedComplet = compet(probability);
output = zeros(size(input,2),1);

output(observedComplet(1,:)~=0) 1%
output(observedComplet(2,:)~=0) -
output(observedComplet(3,:)~=0)

Figure 57 function predictWithKNN

An ECOC model is created by the function fitecoc( , Name, Vvalue) (fit multiclass
models for support vector machines or other classifiers). It is for multiclass SVMs. ECOC
stands for Error-Correcting Output Code. Generalising SVMs to deal with multiclass
problems is one of the important research activities in machine learning. The usual practice

is to divide a multiclass problem into various two-class problems and then associate them
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to obtain a classification in multiple classes. Error-Correcting Output Code is one of the
most used combination ways (Dietterich and Bakiri, 1995), called ECOC SVMs. ECOC is
an ensemble method mostly used in classification problems with various classes. The idea
to deal with a multi-class problem is to divide the problem into multiple smaller
classification tasks called class binarisation. Two-class problems can have a solution with
the use of binary classifiers. The results will be added together to solve the original
multiclass problem. Various approaches in class binarisation are one-versus-one, one-
versus-all, and error-correcting output codes (Dietterich and Bakiri, 1995). There is
division in the multiclass problem into a series of binary problems in one-versus-all. For
each class, a binary classifier is trained to make a difference between the classes patterns
and the remaining classes patterns. A classifier is trained for each possible pair of classes
when the one-versus-one approach is used. Voting or committee procedure is used to give
a final classification prediction. When multiclass problem is divided into various binary
problems, it represents the concept of the ECOC framework. A two meta-class problem is
used to train each classifier. Each meta-class has a few combinations of the original classes.
There are two main stages in the ECOC method: encoding and decoding. Encoding is
designing the code matrix (a discrete decomposition matrix) in each problem. A codeword
corresponds to a row of the codematrix. Each class is represented by multiple bits. Each bit
can identify the membership of the class to a classifier (Escalera, Pujol and Radeva, 2009).
For each class, a codeword of length n can be created. Each bit of the code represents the
response of a given dichotomised (coded by +1, -1, according to their class set membership)
(Escalera, Radeva & Pujol, 2008). The final classification decision is obtained in the
decoding phase-out of the outputs of binary classifiers. When using an unlabelled test
sample, each binary classifier can choose from the two metaclasses used during the
training. There is a comparison of the vector to each class codeword of the matrix. There
is an assignment of the test sample to the class with the closest codeword based on some
distance measure. This binary strategy was suggested in various research papers and
showed good results. A third symbol was added to the coding matrix by Allwein et al.
(Allwein, Schapire, Singer, 2000), and it improves the representability of the ECOC

technique. The elements that are part of the coding matrix is taken from {-1, 0, +1} with
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this new symbol. Classes with zero values are not taken into consideration for that
dichotomised. Figure 58 is an illustration of various ECOC designs. (a) represents one-

versus-all, (b) one-versus-one, (c¢) dense random, and (d) sparse random ECOC designs.
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Figure 58 ECOC designs
Source: Escalera, S., Tax, D.M.J., Pujol, O., Radeva, P. and Duin, R.P.W. (2008)

+1 corresponds to the white regions. The black regions correspond to -1. Zero corresponds
to the grey regions. In this example, there is the codification of four. A codeword for each

class representing the rows of the coding matrix is generated. Each of the columns
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represents a binary problem. +1 positions correspond to the classes for the first group of a
classifier. -1 positions of the column are the classes of the second group of a classifier. For
this problem, there are six binary problems. A reduction of the bias and variance errors of
the base classifiers are demonstrated with an ECOC ensemble (Kong and Dietterich, 1995),
(Windeatt and Ghaderi, 2003). A comparison of different approaches for multiclass
classification SVM problems has been described by Hsu and Lin (Hsu and Lin, 2002). The
comparison includes oneversus-one, one-versus-all, and a DAG SVM. Based on their
results, one-versus-one method is better than other approaches. Only ten datasets were used
for this comparison. Two of those ten datasets have more than seven classes. Garcia-
Pedrajas et al. (Garcia-Pedrajas and Ortiz-Boyer 2011) wrote and critically assessed the
three basic multiclass methods. From the results, ECOC and one-versus-one have the best
performances. Support vectors and the labels and the estimated a coefficients are found in
'saveSupportVectors' that corresponds to properties of the resulting model. They are
specified as a pair consisting of 'saveSupportvectors' with true or false separated by a
comma. The model that results when 'saveSupportvectors'is true will save the support
vectors in the Supportvectors property and save their labels in the
SupportVectorsLabels property. The estimated o coefficients are held in the Alpha
property of the SVM leaners. The model that results when 'savesupportvectors'is false
and 'KernelFunction'is 'Linear' does not save the support vectors or the related estimates.
If you want to reduce memory consumption by compact SVM classifiers, it is necessary to
have a specification of 'saveSupportvectors'. The Gram matrix is computed by
'KernelFunction'. It is specified as a pair that consists of 'KernelFunction'and
'gaussian' or 'rbf', 'linear' or 'polynomial' and are separated by a comma. The Gram
matrix also named the Gramian matrix, is a linear algebra term. With a set V of m vectors,
the Gram matrix corresponds to m-by-m matrix of all possible inner products of V.A Gram
matrix is formed by the algorithm using the predictor matrix columns for nonlinear SVM.
The inner product of the predictors is replaced by the dual formalisation with the elements
obtained from the Gram matrix also named the ‘kernel trick’. 'gaussian' or 'rbf' isthe
default for one-class '1inear' 1is the default for two-classes learning. Suppose G (x5, x.)

is element (j, k) of the Gram matrix, where x5 and x. are p-dimensional vectors
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representing observations j and k in X. Table 5 describe the supported kernel function

names and their functional forms.

Table 5 Supported Kernel function names and their functional forms

Kernel Function Name Description Formula

Gaussian or Radial Basis Function (RBF)

2
G(.\'j.rk)—exp Hlx:,—xk “)

‘gaussian’ or ‘rbf’
kernel, default for one-class learning

Linear kernel, default for two-class learning G(-x:,--"k)*.x; Xk

Polynomial kernel. Use ‘PolynomialOrder’, ¢ o S oo 5]
‘polynomial’ Glxpxp=(1+xxp)
to specify polynomial kernel of order ¢

'polynomial' corresponds to the polynomial kernel. The 'Polynomialorder’, p is equal
to a polynomial kernel of order p. Transforming scores to posterior probabilities is also
called ‘Fitposterior'. It is specified as a pair that consists of 'FitPosterior' and true (1)
or false (0) separated by a comma. It will transform binary-learner classification scores into
posterior probabilities when 'FitPosterior' is true. Posterior probabilities can be obtained
by using predict. Fitecoc does not support fitting posterior probabilities when the binary
learners (Learners) correspond to linear classification models implementing SVM. Logistic
regression is needed to obtain posterior probabilities for linear classification models.
Binary learner templates are defined as a pair that consists of 'Learners' and a character
vector, cell vector of template objects or template objects. In this implementation, the
'Learners' corresponds to a template object. Each binary learner is trained following the
options that are stored. The template object has been created using templatesvM. So far,
the trainwithsvM function has been discussed. PredictwithsvM function will return
probabilities of the element assigned to the class and the output in numbers 1,2,3 (1= ‘1’,
2="M’, 3="0’) based on the trained support vector machine model. The classifier uses the
predict function available in MATLAB. The syntax is as follow: [output, probability]

= predictWithSVM (model, input).
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5.3.2 Hyperparameters tuning

Several SVM parameters are modifiable. 'saveSupportvectors' and 'KernelFunction'
are among those. 'saveSupportvectors' can be 'true' or 'false' and 'KernelFunction'
can be 'linear', 'rbf' or polynomial.'BoxConstraints'is another modifiable parameter.
For one-class learning, the value is set to 1. An example of syntax is 'BoxConstraints',100.
This parameter can supervise the maximum penalty that is imposed on margin-violating
observations. It is preventing overfitting, also referred to as regularisation. Increasing the
value of this parameter will make the SVM classifier have fewer support vectors, and the
training is longer. Few runs have been executed with box constraints ranging from 1 to
1000. 'cachesize'is a modifiable parameter. When 'cachesize'is set to 'maximal', it keeps
enough memory to hold the entire m-by-m Gram matrix discussed earlier. When
'Cachesize' is a positive scalar, it keeps CacheSize megabytes of memory for the
classifier’s training. For large problems, it is recommended to use enough cache size. The
default value is 1000. An example of the written code used is: 'Cachesize', maximal'.’
IterationLimit'is another parameter that is modifiable. It corresponds to the maximal
number of numerical optimisation iterations. 'TterationLimit'is characterised as the
pair consisting of 'IterationLimit' and a positive integer. It returns a model that is
trained even if the optimisation routine does not converge. Mdl.ConvergenceInfo does
contain convergence details. The optimisation is slowed down when the iteration limit is
very low or very high. When the iteration limit is too tight, the algorithm spends too much
time doing optimisation of the dual variables of a single example

'ClipAlphas' is another parameter that can be modifiable. It is written as 'ClipAlphas’
and ‘true' or 'false'. If 'false', the software is not modifying the alpha coefficients
during the optimisation. 'Clipalphas' can affect SMO and ISDA convergence.
'Solver' isanother parameter that can be changed. It is specified as the comma-separated
as 'Solver' and either 'Ispa' or 'vigp' or 'sMo'. The default is '1spar' if
'OutlierFraction' is set to a positive value and in the case of two-class learning. It will

be 'smo' otherwise. 'sMo' refers to Sequential Minimal Optimization (Fan, Chen and.
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Lin, 2005). SMO was discussed earlier. Working set selection is decisive in decomposition
methods when support vector machines are trained. Fan et al. introduced a new technique
for working set selection. It is for SMO-type decomposition methods. It will use a second
order information to obtain fast convergence. Experimentations used by Fan et al. indicate
that the method they suggested is more rapid than current selection methods that use first-
order information. '1spa" refers to Iterative Single Data Algorithm (Kecman, Huang and
Vogt, 2005). SMO is the most popular approach for solving SVM problems. It performs a
series of two-point optimisations. ISDA updates one Lagrange multiplier with each
iteration. ISDA is often conducted without the bias term b with a small positive constant
as the kernel function. Dropping b drops the sum constraint in the dual equation. This
allows updating one Lagrange multiplier in each iteration, making it easier than SMO to
remove outliers. The simulation results from Kecman et al. indicated that models produced
by ISDAs, either with the bias term b or without it, are equivalent to standard SMO based
algorithms concerning the generalisation performance. With the use of an appropriate k
value, ISDAs will perform faster than the standard SMO algorithms when it is large scale
classification problems because ISDAs are more straightforward, and there is a decrease in
the number of support vectors chosen after the inclusion of an explicit bias b. The
conclusion was that ISDAs are great tools when there is a need to solve large scale SVMs
problems containing large training datasets. It is faster and provides the same generalisation
results as the standard SMO algorithms. ISDA for two-class classification can have an
extension to the multiclass problem. This approach will decrease the complexity of
computation, and it requires simple iterative procedures that involve matrix addition and
multiplication. There is also a guarantee of convergence of the algorithm (Kecman, Huang
and Vogt, 2005). Few runs were performed with the use of the ISDA algorithm. To use the
ISDA algorithm, 'outlierFraction' needs to be defined. 'outlierFraction' is the
proportion of outliers in the data used for training. It is written as 'OutlierFraction'
and a numeric scalar ranging from 0 and 1.

SVMs can be affected by outliers, and methods have been developed to mitigate the effects
of outliers on SVMs. Some researchers have used schemes that identify possible outliers,

assigning a confidence value that indicates how likely a point is believed to be an outlier.
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In implementing this, researchers have developed the ideas of fuzzy SVMs and weighted
SVMs (Lin and Wang, 2004), (Lin and Wang, 2002), (Suykens, De Brabanter, Lukas and
Vandewalle, 2002), (Tsujinishi and Abe, 2003), (Wang and Chiang, 2007). Lin et al. results
show that the generalisation error on fuzzy SVMs is comparable to other methods on the
benchmark dataset. Suykens et al. discuss LS-SVM (Least Squares SVMs).LS-SVMs is a
version of an SVM that include equality and not inequality constraints. Tsujinishi et al.
referred to fuzzy LS-SVMs that can resolve unclassifiable regions for multiclass problems.
They indicated that, with the use of benchmark datasets, the performance of fuzzy LS-
SVMs is like fuzzy SVMs.

Fuzzy SVMs with the average operator did not show superior performance. Wang et al.
introduced a text categorisation system to solve the multi-class categorisation problem. It
was composed of two modules: The processing module and the classifying module. They
concluded that the OAA-FSVM (One-Against-All Fuzzy SVM) method had outperformed
OAA-SVM for the multiclass text categorisation problem. Some of these studies show only
incremental improvements over the standard SVM method. Some further discussion would
be to evaluate to what degree outliers affect SVM models, how much SVM models can be
improved in ideal and real-world situations, or what methods can be used to deal with
outliers. The last solver to discuss is the 'L1QP". 'L1QP'is using quadprog to implement L1
soft-margin minimisation by quadratic programming. This option requires an Optimization
Toolbox license. L1QP uses a generalised algorithm for QP problems. SMO is a specialised
algorithm for SVMs. The optimisation toolbox was not purchased as part of the MATLAB
license, and L1QP was not used during the implementation. Genetic algorithm and pattern
search solvers support algorithmic customisation with the optimisation toolbox.
'DeltaGradientTolerance' is another parameter that can be modified. It is written as a
pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.
'DeltaGradientTolerance' is equivalent to the tolerance for the gradient difference
between upper and lower violators obtained by SMO or ISDA. If
'DeltaGradientTolerance' is 0, then MATLAB will not use patience for the gradient
difference to check the optimisation convergence. When the solver is SMO, the defaults

are le-3. When the solver is ISDA, the default is 0. Tolerance specifies the maximum
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gradient of the quadratic function used to compute support vectors. Training is terminated
when the rise of the optimises function is less than or equal to the tolerance value.
Typically, there is no need to change the default value. 'GapTolerance' is another
parameter that can be modified. It is written as a pair consisting of 'GapTolerance' with
a nonnegative scalar. It is equivalent to the feasibility gap tolerance that SMO or ISDA
obtains. When the value is equal to 0, then MATLAB does not use the feasibility gap
tolerance when checking for optimisation convergence. 'KernelOffset' is another
parameter that can be modified. It is written as a pair consisting of 'KernelOffset' with
a nonnegative scalar.thoseMATLAB will add 'kerneloffset’ to each element of the
Gram matrix. If the solver is SMO, the default value is 0. It’s 0.1 if the solver is ISDA. The
offset parameter is sometimes called ‘bias’ in classification tasks, and its intuitive
understanding does not have to do with what kind of kernel is used. It is used to compensate
for feature vectors not centred around 0. For example, you can have some feature vector x
whose parameters are always negative. The set of weights w used in the SVM (for instance
linear), will perhaps transform the features into the range [0,1] so they will always be
negative. Those elements that belong to class 1 fall in the range [0,0.5], and those from
class 2 fall into the range [0.5,1]. The SVM uses 0 as the threshold breakpoint to classify
into a class. If greater than 0, it is an element of class 1 and if less than 0, it is an element
of class -1. But in this case, all the elements will be classified into class 2. However, with
a bias of 0.5 (in the linear case), they will be classified correctly. This geometric
interpretation does not work for more complex kernels, but this idea is the same: the bias
term attempts to compensate for features not centred around 0. If the features are centred
around zero, the bias term is not always needed. 'KernelScale' is another parameter that
can be modified. Gamma (), also named Kernelscale in MATLAB, controls overfitting
in SVM. It is written as a pair consisting of 'Kernelscale' with a positive scalar or 'auto'.
MATLAB will divide all elements of the predictor matrix X by the value of 'Kernelscale'.
If the solver is SMO, it will apply the appropriate kernel norm to compute the Gram matrix.
If it is written 'auto', MATLAB will select a relevant scale factor using a heuristic
procedure.; The heuristic procedure will be using subsampling; therefore, estimates can

vary from one call to another. To obtain the same results, setting a random number using
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rmg before the training is mandatory. rng corresponds to control random number
generation. 'KKTTolerance' is another parameter that can be modified. It is written as a pair
consisting of 'KKkTTolerance' and a positive scalar. KkTTolerance is equivalent to
Karush-KuhnTucker complementary conditions violation tolerance. In SVM, the KKT

complementary conditions are:

aj[yjf(xj) -1+ fj] =0
fj(C— aj) —0 (5.3.1)

If 'kKkTTolerance' equals 0, then MATLAB will not use the KKT complementary
violation tolerance to check for optimisation convergence. If the solver is SMO, the default
value is 0; otherwise, le-3 is the solver is ISDA. Karush-Kuhn-Tucker complementary
conditions have an essential role in the use of constrained optimisation. KKT conditions
come from Harold W. Kuhn and Albert W. Tucker.

The first published the conditions in 1951 (Kuhn and Tucker, 1951). 'Nu' is another
parameter that can be modified. It is written as a pair consisting of 'Nu' with a positive
scalar. 'Nu' is between 0 and 1. It corresponds to the v parameter for one-class learning.
Setting. It is used for one-class learning, but the implementation is a multi-class learning
problem. The value was changed to 0.25. No changes in the accuracy were observed.
'Numprint'is another parameter that can be modified. It is written as a pair consisting of
'Numprint' with a nonnegative integer. It corresponds to the number of iterations between
optimisation diagnostic message output. If ‘Verbose',1 and 'Numprint', Numprint are used,
then MATLAB will display all optimisation diagnostic messages from SMO and ISDA
every Numprint iteration in the command window. 'Verbose' is another parameter that can
be modified. It is written as a pair consisting of 'verbose' with either 0,1, or 2. It
corresponds to the verbosity level. It controls the amount of optimisation information that
MATLAB will display in the command window and save as the structure
Mdl.ConvergenceInfo. History. MATLAB will not display or save convergence

information if the value is set at 0 (default). MATLAB will display diagnostic messages
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and save convergence criteria for every Numprint iteration if the value is 1. Figure 59
represents the diagnostic message and convergence criteria displayed in the command

window during the implementation with Numprint',500 and 'Verbose',1.

| |
| Iteration | Set | Set Size | Feasibility | Delta | KKT | Number of | Objective | Constraint |
| | | | Gap | Gradient | Violation | Supp. Vec. | | Violation |
| |
| 0 |active| 14800 | 9.993248e-01 | 2. o0 | 1. 00 | 0| o. 00 | o. 20 |
| 500 |active| 14800 | 9.355600e-01 | 2.309971e+00 | 1.154986e+00 | 1000 | -9.202919e+01 | 0.000000e+00 |
| 1000 |active| 14800 | 8.688824e-01 | 2.315949e+00 | 1.157974e+00 | 2000 | -1.849356e+02 | 0.000000e+00 |
| 1500 |active| 14800 | 7.988291e-01 | 2.286592e+00 | 1.143296e+00 | 3000 | -2.776710e+02 | ©.000000e+00 |
| 2000 |active| 14800 | 7.251355e-01 | 2.320851e+00 | 1.160426e+00 | 4000 | -3.690798e+02 | ©0.000000e+00 |
| 2500 |active| 14800 | 6.496625e-01 | 2.235411e+00 | 1.117706e+00 | 5000 | -4.585198e+02 | 0.000000e+00 |
| 3000 |active| 14800 | 5.644663e-01 | 2.120454e+00 | 1.060227e+00 | 6000 | -5.444557e+02 | 0.000000e+00 |
| 3500 |active| 14800 | 4.646479e-01 | 1.991475e+00 | 9.957376e-01 | 7000 | -6.258216e+02 | 0.000000e+00 |
| 4000 |active| 14800 | 3.216934e-01 | 1.739744e+00 | 8.698720e-01 | 8000 | -6.986203e+02 | 0.000000e+00 |
| 4500 |active| 14800 | 1.237848e-01 | 1.208115e+00 | 6.040576e-01 | 8964 | -7.524211e+02 | ©0.000000e+00 |
| 5000 |active| 14800 | 3.337884e-02 | 6.659248e-01 | 3.335321e-01 | 9672 | -7.786736e+02 | ©0.000000e+00 |
| 5500 |active| 14800 | 1.166938e-02 | 3.091949e-01 | 1.557638e-01 | 10086 | -7.842116e+02 | 2.775558e-17 |
| 6000 |active| 14800 | 4.955390e-03 | 1.470528e-01 | 7.399327e-02 | 10324 | -7.855202e+02 | 1.387779%e-17 |
| 6500 |active| 14800 | 2.102279e-03 | 7.165418e-02 | 3.670209e-02 | 10446 | -7.858457e+02 | 6.591949%e-17 |
| 7000 |active| 14800 | 9.746865e-04 | 3.517029e-02 | 1.811141e-02 | 10532 | -7.859218e+02 | 1.118897e-16 |
| 7500 |active| 14800 | 4.746576e-04 | 1.601269e-02 | 8.122401e-03 | 10555 | -7.859391e+02 | 6.505213e-17 |
| 8000 |active| 14800 | 2.318619e-04 | 8.181559e-03 | 4.098492e-03 | 10577 | -7.859433e+02 | 1.524388e-16 |
| 8500 |active| 14800 | 1.190942e-04 | 4.146357e-03 | 2.116380e-03 | 10586 | -7.859444e+02 | 1.508125e-16 |
| 9000 |active| 14800 | 6.211132e-05 | 2.107004e-03 | 1.058361e-03 | 10590 | -7.859446e+02 | 1.870249e-16 |
| 9500 |active| 14800 | 3.194004e-05 | 1.145601e-03 | 5.922064e-04 | 10594 | -7.859447e+02 | 2.001708e-16 |
| |
| Iteration | Set | Set Size | Feasibility | Delta | KKT | Number of | Objective | Constraint |
| | | | Gap | Gradient | Violation | Supp. Vec. | | Violation |
| |
| 9538 |active| 14800 | 3.046667e-05 | 9.919931e-04 | 4.964695e-04 | 10594 | -7.859447e+02 | 2.222886e-16 |
£ Exiting Active Set upon convergence due to DeltaGradient.

Figure 59 Diagnostic message and convergence criteria

MATLAB will display diagnostic messages and save convergence criteria at every iteration
if the value is set a 2. 'PolynomialOrder' is another parameter that can be modified. It is
written as a pair consisting of 'PolynomialOrder' and a positive integer. It corresponds
to the polynomial kernel function order. The default value is 3. For this implementation,
various kernel functions have been used. The most efficient was the polynomial kernel with
polynomial order 3. It corresponds to the literature findings related to the efficiency of
kernel functions in multi-class SVM (Rajendran & Kalpana, 2011). The polynomial kernel
is often used with SVMs or kernelised models. It represents the similarity of vectors
(training sample) in a feature space over polynomials of the original variables, allowing
learning of non-linear models. The polynomial kernel looks not exclusively at the given
features of input samples to determine their similarity, but it also looks at combinations of
these. For regression analysis, the combinations refer to interaction features. The feature

space of a polynomial kernel equals that of polynomial regression but without the
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combinatorial blow-up in the number of parameters to be learned. The features correspond
to logical conjunctions of input features when the input features are binary-valued

(Booleans) (Goldberg and Elhadad, 2008).

Figure 60 Illustration of the mapping ¢
Source: Wikipedia Contributors (2019)

Figure 60 represents a set of samples in the input space on the left. On the right, it means
the same sample in the feature space where the polynomial Kernel K (x, y) (for some values
of the parameters ¢ and d) is the inner product. The hyperplane learned in feature space by
an SVM is an ellipse in the input space. For degree-d polynomials, the polynomial kernel
is defined as:

K(x, y) = (x*y + )% (5.3.2)

where x and y are vectors in the input space, i.e., vectors of features computed from training
or test samples and ¢ > 0 is a free parameter trading off the influence of higher-order versus
lower order terms in the polynomial. As a kernel, K corresponds to an inner product in a
feature space based on some mapping Figure 60 represents a set of samples in the input
space on the left. On the right, it represents the same sample in the feature space where the

polynomial Kernel K(x, y) (for some values of the parameters j).

K(,y) ={px), p(¥)) (5.3.3)

The nature of ¢ can be seen from an example. Let d=2, so it corresponds to the special case

of the quadratic kernel. After using the multinomial theorem and regroupingK (x,y) =
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Gy +0)? =X, D)D) + 2, };11(\/2_951'951')(\/2_%)’1') +
e1(y2ex) (2cy;) + c? (5.3.4)

From this, it follows that the feature map is given by:

X2, e, X2\ 2K X1y e ] 22X Xy,
p(x) = ( 2%y 1Xp—2s ) ) (5.3.5)

V2%0 1%, ey 22520,/ 2C%, sy 20X, €

The order of polynomial in mathematics refers also to the degree of a polynomial, that is,
the largest exponent (for a univariate polynomial) or sum of exponents (for a multivariate
polynomial) in any of its monomials (Dos Santos and Gomes, 2002).

The following names are given to polynomials according to their degree. Degree 0
corresponds to non-zero constant, degree 1 is linear, degree 2 is quadratic, degree 3 is cubic,
degree 4 is quartic and so on. In general, SVM works well on small datasets. A recent study
evaluated the performance of SVMs with linear, quadratic, and cubic kernels in the
problem of recognising 3D objects from 2D views. The paper indicates that the degree of
the polynomial order plays a minor role in the results.

'ShrinkagePeriod' is another parameter that can be modified. It is written as a pair
consisting of 'ShrinkagePeriod' with a nonnegative integer. It corresponds to the
number of iterations between the movement of observations from active to inactive set.
MATLAB will not shrink the active set if it has a value of 0. Convergence can be speeded
up with shrinking when the support vector set is much smaller than the amount of data in
the training dataset. 1000 is a suggested starting point. 'Standardize' is another parameter
that can be modified. It is written as a pair consisting of 'Standardize' and 'true' or
'false'. It corresponds to a flag to standardise the predictor data. MATLAB will centre and
scale each column of the predictor data (x) by the weighted column mean and standard
deviation if set as 'true'. The software will not standardise the data contained in the dummy

variable columns and generated for categorical predictors. MATLAB will train the
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classifier using the standardised predictor matrix if it is set as 'true'., The unstandardised
data will be stored in the classifier property x. For the function fitecoc, 'Cost' is another
parameter that can be modified. It is written as a pair consisting of 'Cost' and a square
matrix or structure. It corresponds to the misclassification cost. All runs executed for SVM

classifiers can be found in Appendix C.

5.3.3 Performance evaluation

5.3.3.1 Confusion matrix

The confusion matrix is represented in figure 61. The diagonal cells show the number of
residue positions correctly classified for each topology class. The off-diagonal cells show
the number of residue positions that were misclassified. The diagonal cells correspond to
observations that are correctly classified. The number of observations and the percentage
of the total number of observations is shown in each cell. The column on the far right of
the plot shows the percentages of all the examples predicted to belong to each class that
are correctly and incorrectly classified. These metrics are often called the precision (or
positive predictive value) and false discovery rate. The row at the bottom of the plot shows
the percentages of all the examples belonging to each class that are correctly and incorrectly
classified. These metrics are called the recall (or true positive rate) and false-negative rate.
The cell in the bottom right of the plot shows the overall accuracy. The best overall

accuracy is 64.8%.
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Confusion matrix performance for algorithm ; SVM with polynomial kernel

1 2183 527 1274 54.8%
11.6% 2.8% 6.8% 45.2%
2 433 2223 943 61.8%
2.3% 11.8% 5.0% 38.2%
1]
7]
ko
o
5
g
3
o
3 1844 1588 7787 69.4%
9.8% 8.4% 41.4% 30.6%
48.9% 51.2% 77.8% 64.8%
51.1% 48.8% 22.2% 35.2%
N v L
Target Class
Figure 61 Confusion matrix for SVM classifier
5.3.3.2 Receiver operating characteristic curve

The Receiver Operating Characteristic (ROC) curve can also be looked at and is
represented in figure 62. It is a plot of the true positive rate (sensitivity) versus the false
positive rate (1 — specificity). True positive rate is also known as sensitivity in biomedical
engineering. Sensitivity corresponds to the proportion of actual positives that are correctly
identified. False-positive corresponds to fall-out. Fall-out is related to the specificity and
equals to 1 - specificity. The ROC curve represents the sensitivity as a function of the fall-

out. A perfect predictor would be described at 100% sensitivity. When the ROC curve is
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close to the upper left corner (100% sensitivity, 100% specificity), the overall accuracy is

better.
g Roc-curve for algorithm ; SVM with polynomial kernel
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Figure 62 ROC curve for SVM classifier
5.3.3.3 Prediction quality indices

The topology prediction is evaluated in detail by calculating prediction quality indices
represented in figure 63. They indicate how well a particular state is predicted and whether
overprediction or underprediction has occurred. The index pcobs (s) was defined for state
S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the

number of residues observed in state S. Similarly, the index pcpred(s) for state S was
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defined as the number of residues correctly predicted in state S, divided by the number of

residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.

80 Quality indices performance for algorithm ; SVM with polynomial kernel
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Figure 63 Quality indices of prediction for SVM classifier

5.4 Comparison of results

The best overall accuracy for ANN is 64.5%, including a TMB topology prediction of 69%.
The best overall accuracy for KNN is 71.8%, including a TMB topology prediction of
72.3%. The best overall accuracy for SVM is 64.8%, including a TMB topology prediction
of 69.4%. A general difference between KNN and SVM is that SVM cares for outliers
better than KNN. Neural networks need large training data compared to KNN to achieve

sufficient accuracy. Also, neural networks need many hyperparameters tuning compared
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to KNN. KNN is an easy and simple machine learning model, and there are few parameters
to tune. The value k needs to be wisely selected. A value of 8 provided the best results in
the implementations. For ANN, the training function had an essential impact on results and
the scaled conjugate gradient backpropagation provided the best results. SVM provided

better accuracy than ANN when a polynomial kernel was used.

5.5 Summary

This chapter presented the implementations of an ANN, KNN and SVM in MATLAB using
the Boctopus2 dataset and TopBP dataset. Models were built and trained in MATLAB. For
all models, hyperparameters have been tuned, and the performance of each model was
evaluated with the use of confusion matrices, ROC curves and bar charts. To maximise the
performance and confirm the precision, fine-tuning the hyper-parameters was necessary.
The problem of TMB topology was looked at as a pattern recognition problem as the neural
network was trained to recognise the topology of the central residue most likely to occur
when specific residues in the given window are observed. At each training cycle, the
training sequences were presented to the network through the sliding window one residue
at a time. For the KNN implementation, the classifier used the £fitcknn function. Fitcknn
created a model, and the tie-breaking algorithm, distance metric and number of neighbors
were specified and modified. For the SVM implementation, the function templatesvM was
used to create the support vector machine. Multiple parameters were changed, such as the
box constraint or the kernel function. To analyse the model’s responses, the confusion
matrix was examined by considering the outputs of the models and comparing them to the
expected results. The ROC curve was also used, and it corresponds to a plot of the true
positive rate (sensitivity) versus the false positive rate (1-specificity). The topology
prediction accuracy was finally evaluated by calculating prediction quality indices. They
indicate how well a particular topology is predicted and whether overprediction or

underprediction has occurred.
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6. Implementation of cascading classifier

This chapter presents the implementation of the cascading classifier in MATLAB.

6.1 Model building and training

The model consists of two levels. Several selected models will be trained at the first level.
The chosen algorithms (KNN, SVM or ANN) are trained to predict the values of the class
as it was before. In case two or more classifiers are selected, a second level SVM classifier
is trained to anticipate the value of the class based on the probability predicted by those
two or more models at the first level. This is a cascading classifier as the output of the first
layer corresponds to the input of the second layer. If only one model is initially selected at
the first level, the second layer classifier will not be trained. The main function used for
the cascading classifier implementation in MATLAB is named UseClassifiers.m. Part of

the code used for the implementation in MATLAB is defined in figure 64.

cliicy
close all;

PARAMETERS
% sliding window size:
W = 55;
% set of methods if parameter is set to @ it will not be used in the classilffier combination
% you can select single method, 2 methods or even all 3 methods:
useKNN = 1;
useSVM 0;
useNN = 0;

%$determine whether a combination will be used

isMultilayerModel = (sum([useKNN useSVM useNN])>1);

% SVM kernel:
SVM_Kernel = 'polynomial’;

% SVM kernel on second layer:

SVM_Kernel2 = 'polynomial';

% number of neighbors in KNN:
KNN_NumNeighbors = 18 H

% NN parameters:

NN_HSize = 51; % number of hidden neurons
NN_TransferFcn = 'logsig';

Figure 64 Part of UseClassifiers.m for cascading classifier
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The model allows the use of a single method, two or even three methods. usekNN =1 or 0,
useSVM = 1 or 0 and useNN = 1 or 0 are the list of parameters. If a parameter is equal to
0, it will not be used in the cascading classifier. All combinations are possible except for
combinations when they are equal to 0. If only they are set to 1, the application will work
as one classifier. The selected classifier (equals 1) will be trained and show the results. If
at least two parameters are set to 1, several classifiers will be trained and then combined
by one more probability classifier. The code used for creating and training the neural

network at the first level is represented in figure 65.

if useNN
%$Creating and training the Neural Network
name = [name '; ' sprintf('deep neural net with %d hidden neurons',NN_HSize)];
[~, ~, ~, net] =...
trainwWithNeural(PTrain, TNetTrain, NN_HSize,NN_TransferFcn);
[outputFinal, probabilityNet] = predictWithNeural(net, PVal);% data for| validation stage
probabilitiesValidation = [probabilitiesValidation;probabilityNet];
if (isMultilayerModel)
[~, probabilityNet] = predictWithNeural(net, PTrain2);
probabilitiesTrain = [probabilitiesTrain; probabilityNet]; % data fpr 2nd level
end
end

if useKNN
%Creating and training knn classifier
name = [name '; ' 'KNN with ' num2str(KNN_NumNeighbors) ' neighbours'];
modelKNN = trainWithKNN(PTrain', TSingleTrain, KNN_NumNeighbors);

[outputFinal, probabilityKNN] = predictWithKNN(modelKNN, Pval');
probabilitiesValidation = [probabilitiesValidation;probabilityKNN];
if (isMultilayerModel)
[~, probabilityKNN] = predictWithSVM(modelKNN, PTrain2');
probabilitiesTrain = [probabilitiesTrain; probabilityKNN]; % data fpr 2nd level
end

end

if useSVM
%Creating and training SVM model
name = [name '; ' 'SVM with' SVM_Kernel 'kernel'];
modelSVM = trainWithSVM(PTrain', TSingleTrain, SVM_Kernel);
[outputFinal, probabilitySVM] = predictWithSVM(modelSVM, PvVal');% data [for validation stage
probabilitiesValidation = [probabilitiesValidation;probabilitySVM];
if (isMultilayerModel)
[~, probabilitySVM] = predictWithSVM(modelSVM, PTrain2');
probabilitiesTrain = [probabilitiesTrain; probabilitySVM]; % data fpr 2nd level

end

Figure 65 Useclassifiers.m

When multiple classifiers are chosen, a second level SVM will be trained. The code used

for that and the final performance assessment is represented below.
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if sum([useKNN useSVM useNN])>1 % multiple classifiers are chosen, 2nd levell SVM will be trained
name = [name ' and SVM with ' SVM_Kernel2 ' kernel on 2nd level'];
modelSVM2 = trainWithSVM(probabilitiesTrain',TSingleTrain2,SVM_Kernel2)|;
[outputFinal, probabilityFinal] = predictWithSVM(modelSVM2, probabilitiesValidation');
else % single method
probabilityFinal = probabilitiesValidation;
end

$final performance accessment

assessPerformance(probabilityFinal, TNetVal, name);

%distribution of different parts of training and validation data
plotTrainingValidationStructure(TSingle,trainingSetInd, trainingSetInd2,validationSetInd,name);

Figure 66 Creating and training the SVM classifier at layer 2

6.2 Hyperparameters tuning

The model has four different basic configurations:
= Configuration 1: Layer 1(KNN=1, SVM=1, ANN=1)/Layer 2 (SVM)
= Configuration 2: Layer 1(KNN=0, SVM=1, ANN=1)/Layer 2 (SVM)
= Configuration 3: Layer 1(KNN=1, SVM=0, ANN=1)/Layer 2 (SVM)
= Configuration 4: Layer [(KNN=1, SVM=1, ANN=0)/Layer 2 (SVM)

The model allows the use of a single method, two or even three methods. KNN =1 or 0,
SVM =1 or 0, and ANN =1 or 0 are the list of parameters. If a parameter is equal to 0, it
will not be used in the cascading classifier. All combinations are possible except for
combinations when they are equal to 0. If only one of them is set to 1, the application will
work as one classifier. The selected classifier (equals 1) will be trained and show the results.
If at least two parameters are set to 1, several classifiers will be trained and then combined
by one more probability classifier. When multiple classifiers are chosen, a second level
SVM will be trained. The parameters of each machine learning algorithm can be modified.

Appendix D summarises all the runs executed.

6.2.1 Performance evaluation
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The best results are obtained when KNN, SVM and ANN are used at layer 1 and SVM at
layer 2. Multiple runs have been executed in MATLAB using different parameters
configurations. Various ratio combinations such as 50:50, 60:40, 70:30, 75:25 and 80:20
have been used to split training and testing data in tsPartl. Best results for the cascading
classifier were obtained using a split with 80% of data used for training and 20% used for
testing in tsPartl and 42% in tsPart2. Best results are obtained with parameters configured
to a window size of 65, bits encodings of 50, Hidden layer size of 50, 1ogsig transfer
function, scaled conjugate gradient for the training function, ‘sum’ Performance Function
and ‘Dividerand’ data division for the ANN part of the cascading classifier and k-value
of 8, exhaustive nearest neighbors search method, random tie-breaking algorithm for the
KNN part of the cascading classifier. For the SVM part of the cascading classifier, a
polynomial kernel function, ‘saveSupportvectors’ is equivalent to ‘true’ have been used
as well as default values for the box constraint, cache size, Solver, tolerance to gradient
difference, feasibility gap tolerance, Maximal number of optimisation iterations, kernel
offset parameter, kernel scale, Karush-Kuhn-Tucker complementarity conditions violation
tolerance, v parameter for one-class learning, number of iterations between optimisation
diagnostic message output, expected proportion of outliers in training data, Polynomial
kernel function order, number of iterations between the movement of observations from
active to inactive set, flag to standardise predictor data and verbosity level. It is interesting
to note that an increase in the amount of data does produce better results. Two runs were
executed using the same parameters with different datasets available: TopBP Dataset
(1x123) and BOCTOPUS?2 Dataset (1x42).

The best overall accuracy obtained is 76.3%, including a TMB topology prediction of
83.1%. The accuracy of 83.1% is for one scenario combination where layer one includes
SVM, KNN and ANN, and layer two include SVM when using the TopBP Dataset. For the
ANN, during the implementation, the training process stops when the maximum validation
failures are above six, or the maximum number of allowed iterations is reached (1000).
Figure 67 represents the variation in gradient coefficient concerning the number of epochs

at and the final value of the gradient at epoch 138.
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Gradient = 1443.6851, at epoch 138

Figure 67 Magnitude of gradient

The parameter for the minimum gradient min grad was set to 1e-06 and was not reached
during the implementation.
For this project, the validation checks triggered the training to stop. Figure 68 represents

the validation checks. MATLAB automatically stopped the training after six fails in a row.

6 1 1 I 1 1 I ’
5 o
ar % H
E
33 ¥ -
>
2+ K & L L L BN B B
1F ¥ 40040 20 ¢ 0 \AEL . IALLR L.
3 LR A UG R A Sttt —
0 20 40 60 80 100 120
138 Epochs

Figure 68 Validation checks

The data division is an automatic process that happens when the network is trained. During
the implementation, the composition of the residues in three subsets is comparable, as seen

in figures 69,70 and 71.
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54%

Figure 69 Topology assignments in the training data set

54%

Figure 70 Topology assignments in the validation data set
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54%

Figure 71 Topology assignments in the testing data set

6.2.1.1 Confusion matrix

The TMB topology prediction accuracy is 83.1%. Figure 72 represents the confusion
matrices for the cascading classifier. The diagonal cells show the number of residue
positions correctly classified for each topology class. The off-diagonal cells show the
number of residue positions that were misclassified. The diagonal cells correspond to
observations that are correctly classified. The number of observations and the percentage
of the total number of observations is shown in each cell. The column on the far right of
the plot shows the percentages of all the examples predicted to belong to each class that
are correctly and incorrectly classified. These metrics are often called the precision (or
positive predictive value) and false discovery rate. The row at the bottom of the plot shows
the percentages of all the examples belonging to each class that are correctly and incorrectly
classified. These metrics are called the recall (or true positive rate) and false-negative rate.
The cell in the bottom right of the plot shows the overall accuracy.
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Confusion Matrix

Output Class

1 2 3
Target Class

Figure 72 Confusion Matrix

6.2.1.2 Receiver operating characteristic curve

The receiver operating characteristic for each output class is plotted with plotroc (targets,
outputs) and is represented in figure 73. When the curve goes to the left and top edges of
the plot, the classification is better. The sensitivity measures the proportion of actual

positives that are correctly identified as such. The false positive is also known as the fall-
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out. The fall-out is closely related to the specificity and is equal to (1 - specificity). Figure

73 represents the ROC curves for the cascading classifier.
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Figure 73 ROC curve

6.2.1.3 Prediction quality indices

The topology prediction is evaluated in detail by calculating prediction quality indices

represented in figure 74. They indicate how well a particular state is predicted and whether
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overprediction or underprediction has occurred. The index pcobs (s) was defined for state
S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the
number of residues observed in state S. Similarly, the index pcpred (s) for state S was
defined as the number of residues correctly predicted in state S, divided by the number of
residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.
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6.3 Summary

Chapter 6 focused on the cascading classifier implementation. Data division for the
cascading classifier was defined by the model. Data division was based on two parameters

corresponding to the fraction of the first level training set and the second-level training set.
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The model consisted of two levels. Several selected models were trained at the first level.
The selected algorithms (KNN, SVM or DNN) were trained to predict the values of the
class. In case two or more classifiers were selected, a second level SVM classifier was
trained to predict the value of the class based on the probability predicted by those two or
more models at the first level. The model allowed to use a single method, two methods or
even three methods. KNN =1 or 0, SVM = 1 or 0, and DNN = 1 or 0 are the list of
parameters.. All combinations were possible except for combinations when they were equal
to zero. If only one of them was set to one, the application worked as one classifier. If at
least two parameters were set to one, several classifiers were trained and then combined by
one more probability classifier. When multiple classifiers were chosen, a second level SVM
was trained. The model had four different basic configurations. The parameters of each
machine learning algorithm were modified. Multiple runs were executed in MATLAB
using different parameters configurations. Best results are obtained with parameters
configured to a window size of 55, hidden layer size of 55, log sigmoid transfer function,
scaled conjugate gradient for the training function, Mean squared normalised error
performance function and data division into three sets using random indices for the ANN
part of the cascading classifier. k-value of eleven, exhaustive nearest neighbour search
method, the random tie-breaking algorithm provided the best results for the KNN part of
the cascading classifier. For the SVM part of the cascading classifier, a polynomial kernel
function provided the best results. Overall, by constructing and using various machine-
learning frameworks as part of the cascading classifier, a system has been developed and

could predict the TMB topologies with significant robustness compared to other classifiers.
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7. Discussion of findings

7.1 Implications

Chapter 5 discusses the artificial neural network implementation in MATLAB. The best
overall accuracy when using the ANN-based approach is 63.4%. Putting efforts into finding
an excellent neural network architecture will likely lead to better prediction accuracy.
Training procedures are also of importance. One way to improve the performance, also
applicable to other modern nonlinear machine learning techniques, is to improve data
quality. The quality of models is generally constrained by the quality of the training data.
You want the best data you can get for the problem. It is also good to have more data. The
issue with TMB proteins is that there are limited datasets available, so a challenge of this
project was trying to get the best accuracy while using small datasets. Deep learning usually
gets better with more data. More data does not always help, but it can help. The
performance of the artificial neural network was improved by checking for overfitting. It
is essential to ensure that the neural network does not overfit. Overfitting refers to the state
when the model memorises values from the training data instead of learning from those
training data. When the model receives data that was never seen before, the model cannot
perform well on them. Few techniques were used to avoid overfitting, including early
stopping. It precipitates the deep neural network training, leading to a reduction in error in
the test set. Checking for overfitting was one way to improve the performance of the deep
neural network. Hyperparameters tuning was another way.

Hyperparameters are values that must be initialised to the network. Examples include the
number of layers in the neural network, the activation function used, the training function
or the performance function. Each neural network has a set of hyperparameters that can
generate the best accuracy. There is no specific method for identifying the best collection
of hyperparameters. It is mainly achieved with trial and error. Best practices can be used
for some hyperparameters. For performance function, cross-entropy is preferred for
classification, while mean squared error is one of the best choices for regression. The
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nonlinear functional inputs to the outputs are mapped with activation functions. They are
essential, and choosing the proper activation function helps the model learn better. Log
sigmoid function have been proven to provide the best accuracy for the implementation.

The training function trainscg, which corresponds to the scaled conjugate gradient
backpropagation, has been proven to provide the best accuracy for the implementation. It

offers faster training with excellent test efficiency.

Chapter 5 also describes the implementation of the KNN in MATLAB. The best overall
accuracy when using KNN based approach is 71.8%. The K-Nearest neighbors algorithm,
KNN for short, is a classic machine learning algorithm that is often overlooked by deep
learning. KNN is a supervised machine learning algorithm that is simple to implement yet
can make robust classifications. One of the most significant advantages of KNN is that it
is a lazy learner. It means that the model requires no training and get right to the classifying
data. For the classification of some given data point, p, a KNN model compares first p to
every other point available in its database using some distance metric. A distance metric is,
for example, the Euclidean distance. It is a simple function that takes two points and returns
the distance between them. Thus, it can be assumed that two points with a smaller distance
between them are more similar than two points with a larger distance between them. This
is the general idea behind KNN. k is some arbitrary value selected (usually between 3—11)
that tells the model how many most similar points to p it should consider when classifying
p. The model will then take those k most similar values and use a voting technique to
classify p. With KNN, there is no explicit training phase, or it is very minimal. This also
means that the training phase is fast. Lack of generalisation means that KNN keeps all the
training data. All (or most) the training data is needed during the testing phase, to be more
exact. Most KNN models use Euclidean or Manhattan distance as the go-to distance metric.
These metrics are simple and perform well in a wide variety of situations. The Euclidean
distance has been proven to provide the best accuracy for the implementation. It is the
default distance metric in MATLAB when not specified. KNN performs much better if all
the data have the same scale. KNN works well with a small number of input variables (p)

but struggles when inputs are very large. In case of a tremendous value of k, it may be
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possible to include points from other classes in the neighborhood. In the case of the too-
small value of k, the algorithm is very sensitive to noise. A value of k=8 has been proven
to provide the best accuracy for the implementation. The optimal value for k was not chosen
by cross-validation but rather by experimentation.

Chapter 5 also refers to the implementation of SVM in MATLAB. The best overall
accuracy when using SVM based approach is 64.8%. Support Vector machines, so-called
SVM, is supervised learning algorithm. It is used for classification and regression
problems. It is usually used for smaller datasets. SVM is based on the idea of finding a
hyperplane that best separates the features into different domains. The idea of SVM is to
come up with an optimal hyperplane that will classify the different classes. The points
closest to the hyperplane are called the support vectors points, and the distance of the
vectors from the hyperplane are called the margins. The farther the support vector points
are from the hyperplane; the higher is the probability of correctly classifying the points in
their respective region or classes. There are a few advantages for SVMs. They are effective
in the higher dimensions. It is the best algorithm when classes are separable. The
hyperplane is affected by only the support vectors; thus, outliers have less impact. SVM is
suited for extreme case binary classification. There are also a few disadvantages. A larger
dataset requires a large amount of time to process. They do not perform well in case of
overlapped classes, and selecting the appropriate kernel can be tricky. SVMs were initially
designed for binary classification. The multi-class classification problem was decomposed
into a series of binary problems such that the standard SVM can be directly applied. The
implementation of SVM in MATLAB used t= templatesvM () and fitecoc functions.
fitcecoc function from the Statistics and Machine Learning Toolbox™ was used to create
a multiclass classifier using binary SVMs. fitcecoc uses K (K — 1)/2 binary support vector
machine (SVM) models using the one-versus-one coding design, where K is the number of
unique class labels (levels). fitcecoc combines multiple binary learners using a coding
design. By default, fitcecoc applies the one-versus-one design, which specifies training
binary learners based on observations from all combinations of pairs of classes. For

example, in a problem with ten classes, fitcecoc must train 45 binary SVM models.
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Parameters of the SVM have been tuned to improve the performance. Parameter C
represents the error penalty for misclassification for SVM. It maintains the trade-off
between smoother hyperplane and misclassifications. Some misclassifications are allowed
to avoid overfitting the classifier. The parameter C that trades how much misclassification
of isolated points modifies the decision boundary is defined as 'BoxConstraint'. This
parameter is specified as a numeric value and has been changed. A strategy for
BoxConstraint 1S to try a geometric sequence of the box constraint parameter. For
example, choose 11 values, from 1e-5 to 1e5, by a factor of 10. Increasing BoxConstraint
might decrease the number of support vectors and might increase training time. Making the
SVM a soft border algorithm considerably reduces the training time.

A unique strength of an SVM is the use of kernel function to map the data into a higher
dimensional feature space. In training SVM, kernels and their parameters have a vital role
in classification accuracy. Therefore, a suitable kernel design and parameters should be
used for SVM training. Various kernels were used. The most efficient kernel was the
polynomial kernel with polynomial order 3. It is aligned with the findings of the literature
on this topic. The polynomial degree parameter controls the flexibility of the decision

boundary. Higher degree kernels yield a more flexible decision boundary.

It was discussed earlier about overfitting in KNN. For SVM, to avoid overfitting, a soft
Margin needs to be chosen instead of a hard one. For example, some data points can enter
the margin intentionally so that the classifier doesn’t overfit the training sample. Gamma
() is an important parameter, and it controls overfitting in SVM. Gamma is not technically
an SVM hyperparameter. It is a parameter of the Kernel. Gamma (y) is referred to as
‘KernelScale’ in MATLAB. The higher the gamma, the higher the hyperplane tries to
match the training data. Therefore, choosing an optimal gamma to avoid overfitting and
underfitting is the key. Increasing gamma leads to overfitting as the classifier tries to fit the
training data perfectly. Various Kernelscale have been used, and the best results are
obtained with Kernelscale=10. Error penalty (Parameter C/ BoxConstraint), kernel
(Kernel) and regularisation (Gamma/ kernelScale) are the most important

hyperparameters that have been modified for the SVM.
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Chapter 6 finally discusses the implementation of a cascading classifier in MATLAB.
There’s been increasing use of ensemble learning methods in recent research in
computational biology. Ensemble learning combines multiple learning algorithms to
improve the overall prediction accuracy. It is one of the most promising solutions for many
biological problems. Cascading is a specific case of ensemble learning. It is based on the
concatenation of several classifiers using the information provided from the output of a
given classifier as additional information for the next classifier in the cascade. The model
consisted of two levels. Several selected models were trained at the first level. The selected
algorithms (KNN, SVM or ANN) were trained to predict the values of the class. In case
two or more classifiers were selected, a second level SVM classifier was trained to predict
the value of the class based on the probability predicted by those two or more models at
the first level. This is a cascading classifier as the output of the first layer corresponds to
the input of the second layer. If only one model is initially selected at the first level, the
second layer classifier was not trained. The model allowed to use a single method, two
methods or even three methods. KNN =1 or 0, SVM =1 or 0, and ANN = 1 or 0 were the
list of parameters to select to create a specific cascading classifier. If a parameter were
equal to 0, it would not be used in the cascading classifier. Optimisation of the cascading
classifier was mostly obtained by optimising each machine learning algorithm used and by
starting using the parameters that gave the best results for each machine learning algorithm.
The best overall accuracy when using the cascading classifier approach was 76.3%,
including a TMB topology prediction of 83.1%. The accuracy of 83.1% is for one scenario
combination where layer one includes SVM, KNN and ANN, and layer two include SVM.
Many important biological processes, such as cell signalling, transport of membrane-
impermeable molecules, cell-cell communication, and cell recognition and adhesion, are
mediated by membrane proteins. The methodology evaluated and created as part of this
dissertation could be applied to any TMB proteins and could potentially help identify new
targets for antibiotics, vaccines, or antimicrobials. The application of the cascading
classifier to TMB topology prediction has been published in two recent papers (Kazemian

et al., 2018) and (Kazemian et al., 2020).
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7.2 Limitations

One limitation of this research is that only small datasets have been used. In recent years,
machine learning techniques have changed the world. It is easier nowadays to perform a
variety of complex tasks much easier. Deep learning models can be more successful with
a large amount of training data. ResNet (He et al., 2016) represents an architecture for
image classification. It won the best place at the classification competition ILSVRC in
2015. ResNet has a deep and complex architecture, and it has been trained with about 1.2
million images. In the industry and academia, it is well agreed that different algorithms can
perform almost the same when there is enough data for a given problem. It is essential to
understand that the extensive data need to have meaningful information for the model to
learn from that. Although machine learning techniques require less data than deep learning,
extensive data similarly impacts performance. The cascading classifier presented as part of
this research could have been evaluated using larger datasets. It is especially critical when
the cascading classifier uses artificial neural networks as part of the architecture.

The datasets used in this research are small since there are only a few TMB proteins.
However, SVM performs better with larger datasets and using larger datasets could have
potentially increased accuracy. Sordo and Zeng (Sordo and Zeng 2005) investigated the
dependency between the sample sizes and classification accuracies of three different
classification techniques: Naive Bayes, Decision Trees and Support Vector Machines.
They used a set of 8500 text excerpts extracted automatically from narrative reports from
the Brigham & Women’s Hospital, Boston, USA. Their results confirm a correlation
between the size of the training set and the classification. The algorithms perform well with
small datasets. When the number of cases increases, Support Vector Machines and decision

trees increases performance.

Another limitation to this research is that only binary encoding techniques have been used.
Amino acid encoding plays a fundamental role in the final success of machine-learning-
based protein structure and function prediction methods. Amino acid encoding (Different

from the protein sequence encoding) can be utilised in both residue-level and sequence-
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level prediction of protein properties using combinations of different algorithms. The
methods can be grouped into five categories based on the information sources and
information extraction methods. It includes binary encoding, physicochemical properties
encoding, evolution-based encoding, structure-based encoding, and machine-learning
encoding.

Binary encoding is a directly encoding way that transforms each amino acid into a
20dimensional elementary unit vector (Chauhan, Rao, and Raghava, 2013). The Alanine
[A], for example, maybe be encoded into (10000000000000000000) and Cysteine into
(01000000000000000000). A peptide sequence of amino acid residues corresponds equally
to an n*20-dimensional sparse representation. The binary encoding reflects the information
on types and positions of residues in the protein sequence (Gnad, Ren, Choudhary, Cox,
and Mann, 2010) (Huang and Li, 2017). A binary representation can be equally recovered
into the corresponding amino acid sequence. Conversion of amino acid sequences into real
numbers to get numerical input vectors is critical for constructing models. In practice, 20
binary bits are the most common distributed encoding method, in which each amino acid
is represented by a unique 20-bit binary string consisting of nineteen Os and one 1, since
there are 20 amino acids (Qian and Sejnowski,1988), (Yang and Chou,2004). Bose et al.
(Bose, Subrata K., et al. 2007) result also suggested that 20-bit binary encodings can
achieve a higher classification accuracy and robustness compared with 5-bit and 9-bit
encodings, indicating that the use of simple physicochemical parameters may not increase
the robustness of the system more so than the binary encodings. In the sliding window
method, a window becomes one training pattern for predicting the topology of the residue
at the centre of the window. Information about local interactions among neighboring
residues is embedded in each training pattern. The feature value of each amino acid residue
in a window represents each residue's weights (costs) in a pattern.

Physicochemical properties encoding techniques have been discussed in this research, but
it was not considered. Physicochemical property such as the hydrophobicity of amino acid
seems to have an essential role in the organisation of the self-assembly of proteins. Apart
from hydrophobicity properties, the codon diversity and the size of amino acids can be used

as features. The codon diversity of amino acids corresponds to the number of codons
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coding for the amino acid. The size of the amino acids reflects their molecular volume.
Regarding physicochemical properties encodings, the variety of properties and the
extraction methodologies are essential factors in building a valuable encoding.

Structure-based amino acid encoding methods, which can be named statistical-based
methods, can encode amino acids using the structure-related statistical potentials using the
inter-residue contact energies (Tanaka and Scheraga, 1976). They have not been considered
in this research. Structure-based encoding methods had application in protein secondary
structure prediction and protein fold recognition. The structural potential of amino acids,
linked to the protein structure and function, is reflected by those encodings. More and more
proteins have known form, and the use of structure-based encodings is becoming very
useful. For protein function prediction, encodings reflecting function potentials are helpful.

This critical topic looks at function-based encoding methods that could be further explored.
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8. Conclusion and future research directions

This research answered the following questions: What are the best machine learning
techniques for the topology prediction of TMB proteins? How can the prediction for the
topology prediction of TMB proteins be improved?

The research approach has been classified as an experimental study in evaluating multiple
machine learning approaches, including artificial neural network, KNN, SVM and
cascading classifier for the topology prediction of TMB proteins. A procedure has been
intentionally introduced. Results and outcomes have been observed and discussed. The
approach involved a controlled and systematic procedure in minimising error and bias.
Another critical element related to this experiment is the use of random assignment. An
artificial neural network, a KNN, SVMs and a cascading classifier have been created and
implemented in MATLAB. The boctopus2 dataset (Hayat, Peters, Shu, Tsirigos and
Elofsson, 2016) and TOPDB dataset (Tusnady, Kalmar and Simon, 2008) have been used.
The performances of the various machine learning techniques have been evaluated. This
research dealt with the prediction of TMB topologies, one of the most significant problems
in structural molecular biology. Using a cascading classifier such as the one developed as

part of the thesis is recommended for TMB topology prediction.

It is also essential to discuss the merits and shortcomings of this research thesis. When
using the experimental research defined in this thesis, specific hyperparameters have been
isolated, and therefore it was possible to determine if a potential outcome is viable. Each
hyperparameter was controlled independently or in different combinations to study what
possible outcomes were available for the theory. This provided an advantage in the ability
to find accurate results. The research offered specific conclusions. Because experimental
research provides such a high level of control, it produced specific and relevant results with
consistency. It was possible to determine success or failure, making it possible to
understand the validity of the models developed in a much shorter amount of time than
other verification methods. The research thesis allows for its duplication if others control

the same hyperparameters. This helps to promote the validity of the models. The
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manipulation of variables enables any researcher to look at various cause-and-effect
relationships produced by the models. It allows researchers to look deeper into the
possibilities, indicating how the different variable relationships can provide unique
benefits. Experimental research requires unique levels of variable control, and there is a
high risk of experiencing a human error during the study. An error could eliminate the
validity of the experiment. The research needed to isolate various variables and conduct
testing on it. This process was lengthy and required a lot of research and preparation,
primarily for data preparation. This would not be very convenient if the methodology were
used in an industrial environment.

The use of larger datasets is one of the possible directions for future research. A recent
article (Ajiboye et al., 2015) evaluated the effect of the sizes of datasets on the predictive
model with the use of supervised machine learning. The authors examined the predictive
model's capability to generalise a particular dataset size when simulated with new untrained
input. The article discusses the experiment using three different sizes of data and the
MATLAB program to create predictive models to determine if the size of data influences
the model accuracy. The measurement of the simulated output of each model has been
executed using the Mean Absolute Error (MAE). Comparisons have been made. The article
indicates that the quantity of data used for training must represent the entire sets and be
sufficient to span through the input space. The simulation of the three network models
indicated that the learning model using the largest training sets appears to be the most
accurate and delivers better and more stable results consistently.

Before starting to understand how more data improves the performance of a model, it is
essential to understand bias and variance—considering a dataset including a quadratic
relationship between independent and dependent variables and that the genuine relationship
is not known and approximated linearly. In that situation, a significant difference between
the prediction of the model and the actual observed data will be seen. The difference that
happens between the observed value and the predicted value is named bias. Those models
are considered to have less power and represent underfitting. In the example chosen, when
approximating the relationship as cubic or higher powers, there is a case of high variance.

Variance can be defined as the difference in performance on the training set compared to
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the test set. One issue regarding high variance is that models fit the training data well, but
they do not generalise well on datasets out of training. Validation and test set are therefore
critical when building the models. The goal is usually to minimise variance and bias, for
example, making a model that fits the training data well and a model that can generalise
well on test data and validation data. Lots of techniques are available to achieve this.
Training with many data is one of the ways to accomplish this goal. Brain and Webb (Brain
and Webb, 2000) looked at the impact of the size of datasets on variance and bias for
classification problems. Their observation is that variance will decrease as the training
dataset size increases. No comments were provided on the bias.

Statistical methods used to estimate the dataset size requirements and the classification of
microarray data using learning curves are suggested in an article written by Mukherjee et
al. (Mukherjee et al., 2003). The article pays particular attention to using the existing
classification results to estimate dataset size requirements for future classification
experiments. The study evaluated the increase in accuracy and significance of classifiers
built with additional data. The paper concluded that the subsampling procedure gives more
accurate estimates of the quantiles of the true error of a classifier as the number of

subsamples increases.

Future work for this paper could be extended using various encoding techniques. A recent
article by Jing et al. (Jing, Dong, Hong, and Lu, 2019) provides a detailed assessment of
the different amino acids encoding techniques available. Their study indicates that the
evolution-based position-dependent encoding method PSSM offers the best performance.
Structure-based and machine-learning encoding methods provide the potential for further
application, especially the neural network-based distributed representation of amino acids.
Evolution-based encoding could be considered for future research. Evolution-based
encoding methods extract evolutionary information of residues from sequence alignments
or phylogenetic trees to represent amino acids. It uses mainly the amino acids substitution
probability. Those methods can be divided into two main groups based on the position
relevance: There are position-independent methods, such as the Point Accepted Mutation

(PAM) matrix and the BLOSUM matrix. There are also position-dependent methods. The
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position-independent methods encode amino acids wusing the fixed encodings
independently of the amino acid position in the sequence and the amino acid composition
of the series. For the position-dependent methods, amino acids are encoded at different
positions using different encodings, even if the amino acid types are the same. PSMM
(Position-Specific Scoring Matrix) is a prevalent encoding method. Position-Specific
Scoring Matrix (PSSM) used the position-specific scoring matrix that has been provided
by PSI-BLAST (Kim and Park, 2003). Individual profiles reflect detailed conservation of
amino acids in a family of homologous proteins in this coding. This approach was used
first by Jones (Jones,1999) to predict protein secondary structure using a neural network.
Based on the author results, PSI-BLAST is a highly efficient sequence query method. This
is due to three different aspects. First, the alignments used by PSI-BLAST are based on
pairwise local alignments. A previous study written by Salamov and Solovyev (Salamov
and Solovyev, 1997) indicated that the prediction accuracy could be increased when using
reliable local assignments. Secondly, based on the iterated profiles, the sensitivity of PSI-
BLAST has been increased. Thirdly, authors have been using various automatic multiple
sequence alignments. Among all the alignments used, the PSI-BLAST alignments were the
best performer.

Machine learning encoding could be considered for future research. It is very different from
manual encoding techniques and cannot be compared. Amino acid encodings are learned
from the protein sequence or structure data by machine learning based encodings
techniques with the use of machine learning techniques such as artificial neural networks.
To reduce the complexity of the model, the neural networks share weight for twenty amino
acids. The input layer is the original encoding of the target amino acid. It can be one-hot
encoding or physicochemical encoding, for example. The output layer is the original
encoding of the related amino acids. The new encoding of the target amino acid,
represented by the hidden layer, has a reduced dimension compared to the original
encoding. The concept of learning-based amino acids encodings was introduced by Riis
and Krogh (Riis and Krogh, 1996). They used a 20x3 weight sharing neural network to
learn a 3-dimensional real numbers representation of 20 amino acids from the one-hot

encoding to reduce the redundancy of one-hot encoding. For human signal peptide cleavage
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sites recognition, Jagla and Schuchhardt (Jagla and Schuchhardt, 2000) applied later the
weight sharing artificial neural network to learn a 2-dimensional encoding of amino acids.
Various new machine-learning-based encoding methods have been suggested referencing
distributed word representation in natural language processing. The machine-learning
encoding methods have great potential in future studies. Amino acid encoding is an open
problem, and encoding methods are based on an artificially defined basis. For example,
researchers have observed physicochemical properties encodings are constructed from
protein fold-related properties. It will inevitably bring some unknown deviations. Those
artificial deviations can be avoided by automatically learning the amino acid from
biological data. Natural languages and protein sequences have similarities. Protein
sequences can be looked at as sentences. The amino acid or polypeptide chain can be seen
as words in languages. The term distributed representation has obtained more outstanding
performances in natural language processing tasks. Protein sequences could also improve
when using the distributed representations of amino acid or n-gram amino acids. Recent
studies have indicated the potential of amino acid distributed representations in protein
family classification, protein functional properties prediction and disordered protein
identification. Most of these methods look at the ngram amino acid distributed
representations and cannot be directly used for the residue-level properties prediction.

More research is needed on the residue-level distributed representations of amino acids.
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Appendix A

Accuracy (%) Window Size | Bits encoding Transfer Hldde.n layer Traln!ng Performance Fcn Data division Dataset used
functon size function
64.5 53 20 logsig 70 trainscg sum squared error |Dividerand TopBPdataset
63.1 54 20 logsig 70 trainscg sum squared error |Dividerand TopBPdataset
64.3 52 20 logsig 70 trainscg sum squared error [Dividerand TopBPdataset
63.8 52 20 logsig 68 trainscg sum squared error [Dividerand Boctopus?2
62.3 54 20 logsig 70 trainscg crossentropy Dividerand Boctopus?2
63.7 54 20 logsig 68 trainscg sum squared error |Dividerand Boctopus2
60.9 51 20 logsig 72 trainscg sum squared error |Dividerand Boctopus2
64.5 53 20 logsig 70 trainscg sum squared error [Dividerand Boctopus?2
64.5 53 20 tansig 70 trainscg sum squared error | Dividerand Boctopus2
Sum absolute error .
53.2 53 20 logsig 70 trainscg performance function |0V 0erand | TopBPdataset
Mean squared
normalized error Dividerand TopBPdataset
64 53 20 logsig 70 trainscg performance function
Mean absolute error | . .
. . . Dividerand TopBPdataset
53.2 53 20 logsig 70 trainscg performance function
63.8 53 20 logsig 70 traincgp sum squared error |Dividerand TopBPdataset
58.6 53 20 logsig 70 traincgb sum squared error |Dividerand TopBPdataset
53.4 50 20 logsig 70 trainrp sum squared error |Dividerand TopBPdataset
62.9 79 20 logsig 70 trainscg sum squared error |Dividerand TopBPdataset
54.6 80 20 logsig 70 trainscg sum squared error |Dividerand TopBPdataset
60.2 20 20 logsig 70 trainscg sum squared error | Dividerand TopBPdataset
33.1 70 20 logsig 70 traingdx sum squared error |Dividerand TopBPdataset
45.9 20 20 logsig 70 traingdx sum squared error |Dividerand TopBPdataset
53.2 53 20 logsig 70 traindgx sum squared error |Dividerand TopBPdataset
48.5 53 20 logsig 70 traincgf sum squared error |Dividerand TopBPdataset
63 53 20 logsig 73 trainscg sum squared error | Dividerand TopBPdataset
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Appendix B

Nearest Neighbor

Maximum data

Accuracy 0[SV sy [earen merioa T ELE e et v hode |G neson e oianee | [menent | [oate anision
(Nsmethod) (Bucketsize)

46.2 2 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2
a8.6 a cxhaustive random n/a n/a n/a n/a 75% for training Boct
518 B exhaustive random n/a n/a n/a n/a 79% for training Boct
51.9 16 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2
53.3 32 exhaustive random n/a n/a n/a n/a 79% for training Boct
52.2 64 exhaustive random n/a n/a n/a n/a Boct 2
50.5 128 exhaustive random n/a n/a n/a n/a Boct
48.5 256 exhaustive random n/a n/a n/a n/a Boct
as5.8 512 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2
243 1024 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2
53.1 a2 exhaustive random n/a n/a n/a n/a 79% for training Boct
533 25 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2
52.8 29 exhaustive random n/a n/a n/a n/a 70% for training Boct
51.7 29 exhaustive random n/a n/a n/a n/a 60% for training B 2
53.6 29 exhaustive random n/a n/a n/a n/a 85% for training Boct
53.1 29 exhaustive random n/a n/a n/a n/a 90% for training Boct
52.9 29 exhaustive random n/a n/a n/a n/a Boct 2 85.2-1;27.1-0; 30.2-M
53.6 29 kdtree random n/a n/a lidean n/a 85% for training Boct 11;28.4-0;30.5-M
52.5 64 kdtree random n/a n/a lidean n/a 85% for training Boct ;21.30;27.1M
51.4 128 kdtree random n/a n/a lidean n/a Boct 94.2-1; 14.5-0; 21.8-M
491 256 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 96.7-1;,7.8.0; 16.4-M
53.1 29 kdtree random n/a n/a lidean n/a 90% for training Boctopus2 85.7-1; 25.9-0; 30.6-M
52.8 29 kdtree random n/a n/a lidean n/a 70% for training Boct 83.9-1; 26.6-0; 30.8-M
53.6 29 kdtree random n/a n/a cityblock n/a 85% for training Boctopus2 85.1-1; 28.4-0; 30.5-M
52.9 6a kdtree random n/a n/a cityblock n/a 85% for training Boct 2 89.9-1; 21.3-0; 27.1-M
51.4 128 kdtree random n/a n/a cityblock n/a 85% for training t 94.2-1;14.5-0; 21.8-M
53.6 29 kdtree random n/a n/a minkoswki 2|85% for training Boctopus2
52.9 64 kdtree random n/a n/a minkoswki 2|85% for training Boct
51.4 128 kdtree random n/a n/a minkoswki 2|85% for training Boct
43.3 29 kdtree random n/a n/a chebychev n/a 85% for training Boct
433 64 kdtree random n/a n/a chebychev n/a 85% for training Boct
a3.3 128 kdtree random n/a n/a chebychev n/a 85% for training Boct
53.6 29 kdtree smallest n/a n/a euclidean n/a 85% for training Boctopus2 .5-M
52.9 64 kdtree smallest n/a n/a lidean n/a 85% for training Boctopus2 1m
51.4 128 kdtree smallest n/a n/a lidean n/a training Boct ERV]
53.6 29 kdtree nearest n/a n/a lidean n/a Boct 2 5-M
52.9 64 kdtree nearest n/a n/a lidean n/a Boct am
51.4 128 kdtree nearest n/a n/a lidean n/a Boct ;14.50;21.8 M
52.7 29 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 ;20.9-0;25.0-M
51.8 64 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 5-m
8.3 128 exhaustive n/a n/a true. n/a n/a 85% for training Boct
52.7 29 kdtree n/a n/a true. lidean n/a Boct 2
52.7 29 dtree n/a a0]true. lidean n/a Boct
52.7 29 dtree n/a 80| true. lidean n/a 85% for training Boct
52.7 29 dtree n/a 580]true. euclidean n/a 85% for training Boctopus2
52.7 29 dtree n/a 580]true. minkoswki 2[85% for training Boctopus2
52.7 29 dtree n/a 10[true. minkoswki 2[85% for training Boctopus2
53.6 29 kdtree random 10|n/a minkoswki 2 Boct 2
53.6 29 kdtree random 100|n/a minkoswki 2[85% for training Boct
53.6 29 kdtree random 100|n/a minkoswki 3[85% for training Boct
53.6 29 kdtree random 100|n/a Boct 85.1-1; 28.4-0; 30.5-M
63.4 2 exhaustive random n/a n/a n/a TopBPdataset 76.8-1; 65.5-0; 56.4-M
66.9 a exhaustive random n/a n/a n/a TopBPdataset
67.4 8 exhaustive random n/a n/a n/a TopBPdataset
66.7 16 exhaustive random n/a n/a n/a TopBPdataset
64.1 32 exhaustive random n/a n/a n/a TopBPdataset
60.3 64 exhaustive random n/a n/a n/a TopBPdataset x 18.9-0; 98.1-M
67.6 8 exhaustive random n/a n/a n/a 90% for training TopBPdataset 49.71; 54.1.0; 81.2-M
68.6 8 exhaustive random n/a n/a n/a 95% for training TopBPdataset
69.7 8 exhaustive random n/a n/a n/a 57% for training TopBPdataset ;47.80;
71.8 8 exhaustive random n/a n/a n/a 99% for training TopBPdataset ; 56.5-0; 83.8-M
66.6 8 exhaustive random n/a n/a n/a 80% for training TopBPdataset 53.2.0;80.6-M
67.6 8 kdtree random n/a n/a euclidean n/a 50% for training TopBPdataset 49.91;54.1.0;81.2.M
66.7 16 kdtree random n/a n/a lidean n/a TopBPdataset 38.5-1;43.7-0; 89.0-M
67.6 8 kdtree random n/a n/a cityblock n/a TopBPdataset 54.1.0;81.2-Mm
67.6 8 kdtree random n/a n/a minkoswki TopBPdataset
54.7 8 kdtree random n/a n/a chebychev n/a TopBPdataset
67.6 8 exhaustive smallest n/a n/a n/a n/a 50% for training TopBPdataset 54.1-0,81.2M
67.6 8 exhaustive nearest n/a n/a n/a n/a 90% for training TopBPdataset 54.1.0;81.2-M
66.8 8 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset ; 43.7-0; 89.9-M
63.1 16 exhaustive n/a n/a true. n/a n/a 50% for training TopBPdataset 30.4-0;94.a-m
60.8 32 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset ;21.8-0; 97.6-M
66.8 8 kdtree n/a a0]true. lidean n/a 50% for TopBPdataset ; 43.7-0; 89.9-M
66.8 8 kdtree n/a 80| true. lidean n/a 90% for TopBPdataset 43.7-0; 89.9m
66.8 8 kdtree n/a 10[true. minkoswki 2[90% for tra TopBPdataset ;43.7-0; 89.9-M
66.8 8 kdtree n/a 20]true. minkoswki 8[90% for training TopBPdataset 43.7-0; 89.9-M
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Appendix C

Number of
Number of Expected o
Store support X Karush-Kuhn-Tucker . . iterations between
Kernel . . Tolerance for - Maximal number of ) iterations between [proportion of Polynomial kernel Flag to standardize
) vectors, their [abels Flagtoclipalpha| o Feasibility gap X  |Kernel offset Kernel scale vparameter | movement of .
function(Ker . Box constraint Cache size Optimization routing [gradient difference numerical optimization N optimization outliers in training |function order predictor Verbosity level
Accuracy (%) . [and « coefficients . ) coefficients . tolerance X parameter(Kernel0|parameter conditions violation |for one-class | . X observations from X Dataset
nelFunctio (BoxConstraint) |(CacheSize) . (Solver) (DeltaGradientT iterations diagnostic data (PolynonialOr " |data(Standardi ((Verbose)
(SaveSupportVec (CLipAlphas) (6apTolerance) . ffset) (KernelScale) [tolerance learning (Nu) . active to inactive
n) olerance) (IterationLimit) message output |(OutlierFract (der) z6)
tors) (KKTTolerance) . . set
(NumPrint) ion) X
(ShrinkasePer.
60.1 linear ) 1(default) 1000(default) | true(default) SMO|default) 0.001 0(default) 1eb(default) 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0[default) ) 0(default) Boctopus2
60.1 linear true 1(default) 1000(default) | true(default) SMO(default)  |0.001(SMO default) 0(default) Leb(default) 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0{default) | It) 0(default) Boctopus2
33 tbf true 1(default) 1000(default) | true(default) SMO(default) | 0.001(SMO default) | 0(default) Tef(default) 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0[default) | It) 0(default) Boctopus2
39 linear true 1(default) 10000 true(default) SMO(default)  |0.001(SMO default) 0(default) 100 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0{default) Ise(default) 0(default) Boctopus2
398 linear true 1(default) 10000 true(default) SMO(default) | 0.001(SMO default) 0(default) 1000 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0{default) 0(default) Boctopus2
412 linear true 1(default) 10000 true(default) SMO(default) | 0.001(SMO default) 0(default) 10000 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0{default) 0(default) Boctopus2
39 linear true 1(default) 500 true(default) SMO(default) | 0.001(SMO default) 0(default) 100 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0{default) ) 0(default) Boctopus2
385 linear true 1(default) 500 true(default) SMO(default) | 0.001(SMO default) 0(default) 500 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0(default) ) 0(default) Boctopus2
60.2 linear true 1(default) true{default) SMO(default) | 0.001(SMO default) | Odefault) 100000 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0[default) ) 0(default) Boctopus2
407 linear true 100 true{default) SMO(default) | 0.001(SMO default) | O(default) 100000 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0[default) ) 0(default) Boctopus2
60.2 linear true 05 1000(default) | true(default) SMO(default) | 0.001(SMO default) | Odefault) 100000 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0[default) ) 0(default) Boctopus2
60.5 linear true 0.1 1000(default) |~ true(default) SMO(default) | 0.001(SMO default) | O(default) 100000 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0[default) ) 0(default) Boctopus2
584 linear true 0.001 1000(default) | true(default) SMO(default) | 0.001(SMO default) | O(default) 100000 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0[default) ) 0(default) Boctopus2
60.5 linear true 0.1 1000(default] false SMO(default)  |0.001(SMO default) | O{default] 100000 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0[default) ) 0(default) Boctopus2
604 linear true 0.1 1000{default false 1SDA 0(ISDA default) 0(default) 100000 0.1(default for ISDA)| ~ 1{default) | le-3 (default for ISDA) | 0.5(default) | 1000(default) 005 nfa 0[default) | It) 0(default) Boctopus2
59.8 linear true 0.1 1000(default false 1SDA 0(ISDA default) 0default) 100000 0.1(default for ISDA) | 1(default) | 1e-3 (default for ISDA) | 0.5(default) | 1000(default) 0.95 nfa 0[default) Ise(default) 0(default) Boctopus2
) linear true 0.1 false SMO(default) 0.01 0(default) 100000 0 (default for SMO) | 1(default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0[default) Ise(default) 0(default) Boctopus2
32 linear true 01 false SMO(default) 00001 0(default) 100000 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0(default) 0(default) Boctopus2
54 linear true 01 false SMO(default) | 0.001(SMO default) 05 100000 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0{default) 0(default) Boctopus2
32 linear true 01 false SMO(default) | 0.001(SMO default) 0(default) 100000 05 1(default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0{default) ) 0(default) Boctopus2
603 linear true 01 false SMO(default) | 0.001(SMO default) 0(default) 100000 0 (default for SMO) 05 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0(default) ) 0(default) Boctopus2
62.1 polynomial true 01 false SMO(default) | 0.001(SMO default) | O(default) 100000 0 (default for SMO) 05 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) 3(default) 0[default) ) 0(default) Boctopus2
625 polynomial true 0.1 1000(default) false SMO(default) | 0.001(SMO default) | O(default) 100000 0 (default for SMO) 095 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) 3(default) 0[default) ) 0(default) Boctopus2
626 polynomial true 0.1 1000(default) false SMO(default) | 0.001(SMO default) | O(default) 100000 0 (default for SMO) 5 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) 3(default) 0[default) ) 0(default) Boctopus2
599 polynomial true 0.1 1000(default) false SMO(default)  |0.001(SMO default) | O(default) 100000 25 10 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) 3(default) 0[default) ) 0(default) Boctopus2
599 polynomial true 0.1 1000(default) false SMO(default)  |0.001(SMO default) | O(default) 100000 0 (default for SMO) 10 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) 3(default) 0[default) ) 0(default) Boctopus2
62.1 polynomial true 0.1 1000(default) false SMO(default) [ 0.001(SMO default) | O(default) 100000 0 (default for SMO) auto 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) 3(default) 0[default) ) 0(default) Boctopus2
625 polynomial true 0.1 1000(default) false 1SDA 0[ISDA default) 0(default) 100000 0.1(default for ISDA) 095 1e-3 (default for ISDA) | 0.5(cefault) | 1000(default) 0(default) 3(default) 0[default) | It) 0(default) Boctopus2
4.1 polynomial true 0.1 1000(default) false SMO(default)  |0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 10 0.5(default) | 1000(default) 0(default) 3(default) 0{default) | It) 0(default) Boctopus2
626 polynomial true 0.1 1000(default) false SMO(default)  |0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 0.5(default) | 1000(default) 0(default) 3(default) 0{default) | It) 0(default) Boctopus2
626 polynomial true 01 1000(default) false SMO(default)  |0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 025 1000(default) 0(default) 3(default) 0{default) | It) 0(default) Boctopus2
626 polynomial true 01 1000(default) false SMO(default)  |0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 3(default) 0{default) | It) 0(default) Boctopus2
626 polynomial true 01 1000{default) false SMO(default)  |0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 3(default) 0[default) | It) 1 Boctopus2
648 polynomial true 01 1000(default) false SMO(default)  [0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 5 0{default) Ise(default) 0(default) Boctopus2
58.1 polynomial true 01 1000{default) false SMO(default)  |0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 15 0[default) Ise(default) 0(default) Boctopus2
638 polynomial true 01 false SMO(default) | 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 5 1000 Ise(default) 0(default) Boctopus2
52 polynomial true 01 false SMO(default) | 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 5 1000 true 0(default) Boctopus2
638 polynomial true 01 false SMO(default) | 0.001(SMO default) 0(default) 1500000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 5 0(default) 0(default) Boctopus2
638 polynomial true 01 false SMO(default) | 0.001(SMO default) 0(default) 2000000 0 (default for SMO) 5 000001 0.5(default) 500 0(default) 5 0{default) ) 0(default) Boctopus2
28 linear ) 1(default) true(default) SMO(default) | 0.001(SMO default) 0(default) 100 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) |  1000(default) 0(default) nfa 0{default) ) 0(default) TopBPdataset
477 linear ) 1(default) true(default) SMO(default) | 0.001(SMO default) 0(default) 1000 0 (default for SMO) | 1{default) 0 (default for SMO) | 0.5(default) | 1000(default) 0(default) nfa 0{default) ) 0(default) TopBPdataset
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Appendix D

Configurations:
1:Layer 1(KNN=1,5VM=1,DNN=1)/Layer 2 (SVM)
2:Layer 1(KNN=0,SVM=1,DNN=1)/Layer 2 (SVM) | Confi ion3 | confi 3 | confi ion 3 | Confi ion 3 | confi ion 3| Confi ion3 | c 3| c 3 | c 4| « 4 | config 1 c 1| c 2 | c 1| c 1
3:Layer 1(KNN=1,SVM=0,DNN=1)/Layer 2 (SVM)
ayer 1(KNN=1,5VM=1,DNN=0)/Layer 2 (SVM)
pataset TopBPDataset | TopBPDataset | TopBPDataset | TopBPDataset | TopBPDataset | TopBPDataset | TopBPDataset | TopBPDataset | TopBPDataset TopBPDataset TopBPDataset | Boctopus2dataset | TopBPDataset | TopBPDataset | TopBPDataset
tspartl 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.75 08
tspart2 0.6 0.9 075 0.3s 0.25 0.4 0.a5 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42
Overall accuracy 61.2 a9.a 531 65.2 64.5 66.1 65.4 66.2 72.8 71.9 731 63.6 72.8 74.6 75.2
KernelFunction
SaveSupportvectors TRUE TRUE TRUE TRUE TRUE TRUE TRUE
BoxConstraint 1(default) 0.1 1(default) 1(default) 1(default) 1(default) 1(default)
Cachesize 1000(default) 1000(default) 1000(default) 1000(default) ) ) )
ClipaAlphas true(default) FALSE
solver SMO(default) SMO(default) SMO(default) SMO(default) SMO(default) | SMO(default) SMO(default)
DeltaGradientTolerance
GapTolerance O(default) o(default) O(default)
IterationLimit 1e6(default) 100000 1
KernelOffset o o o o o o o
KernelScale 1(default) B 1(default) 1(default) 1(default) 1(default) (default)
KKTTolerance o 0.00001 o o o o o
Nu 0.5(default) 0.5(default) 0.5(default) 0.5(default) o o. o.
NumPrint 1000(default) 500
outlierFraction O(default) O(default) O(default) O(default) O(default) O(default) O(default)
PolynemialOrder 3 (default) s 3 (default) 3 (default) 3 (default) 3 (default) 3 (default)
ShrinkagePeri o(default) O(default) O(default) O(default) o(default) O(default) O(default)
Standardize
verbose
NumNeighbors 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Nsmethod
BreakTies random random random random random random random random random random random random random random random
Bucketsize n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
IncludeTies n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
pistance n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Exponent n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Window Size 65 65 65 65 65 65 65 65 65 65 65 65 65
Bits encoding 50 50 50 50 50 50 50 50 50 50 50 50 50
Transfer functon logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig
Hidden layer size 50 50 50 50 50 50 50 50 50 50 50 50 50
Training function trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg
sum squarred | sum squarred | sum squarred | sum squarred | sum squarred | sum squarred | sum squarred | sum squarred sum squarred | sum squarred | sum squarred
Performance Function sum squarred error | sum squarred error
error error error error error error error error error error error
pata division Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand
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