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Abstract  
  

The research topic for this PhD thesis focuses on the topology prediction of beta-barrel 

transmembrane proteins. Transmembrane proteins adopt various conformations that are 

about the functions that they provide. The two most predominant classes are alpha-helix 

bundles and beta-barrel transmembrane proteins. Alpha-helix proteins are present in larger 

numbers than beta-barrel transmembrane proteins in structure databases. Therefore, there 

is a need to find computational tools that can predict and detect the structure of beta-barrel 

transmembrane proteins. Transmembrane proteins are used for active transport across the 

membrane or signal transduction. Knowing the importance of their roles, it becomes 

essential to understand the structures of the proteins. Transmembrane proteins are also a 

significant focus for new drug discovery. Transmembrane beta-barrel proteins play critical 

roles in the translocation machinery, pore formation, membrane anchoring, and ion 

exchange. In bioinformatics, many years of research have been spent on the topology 

prediction of transmembrane alpha-helices. The efforts to TMB (transmembrane beta-

barrel) proteins topology prediction have been overshadowed, and the prediction accuracy 

could be improved with further research. Various methodologies have been developed in 

the past to predict TMB proteins topology. Methods developed in the literature that are 

available include turn identification, hydrophobicity profiles, rule-based prediction, HMM 

(Hidden Markov model), ANN (Artificial Neural Networks), radial basis function 

networks, or combinations of methods. The use of cascading classifier has never been fully 

explored. This research presents and evaluates approaches such as ANN (Artificial Neural 

Networks), KNN (K-Nearest Neighbors, SVM (Support Vector Machines), and a novel 

approach to TMB topology prediction with the use of a cascading classifier. Computer 
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simulations have been implemented in MATLAB, and the results have been evaluated. 

Data were collected from various datasets and pre-processed for each machine learning 

technique. A deep neural network was built with an input layer, hidden layers, and an 

output. Optimisation of the cascading classifier was mainly obtained by optimising each 

machine learning algorithm used and by starting using the parameters that gave the best 

results for each machine learning algorithm. The cascading classifier results show that the 

proposed methodology predicts transmembrane beta-barrel proteins topologies with high 

accuracy for randomly selected proteins. Using the cascading classifier approach, the best 

overall accuracy is 76.3%, with a precision of 0.831 and recall or probability of detection 

of 0.799 for TMB topology prediction. The accuracy of 76.3% is achieved using a two-

layers cascading classifier.  By constructing and using various machine-learning 

frameworks, systems were developed to analyse the TMB topologies with significant 

robustness. We have presented several experimental findings that may be useful for future 

research. Using the cascading classifier, we used a novel approach for the topology 

prediction of TMB proteins.  
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1. Introduction  
 

Proteins are macromolecules or large biological molecules that consist of one or more long 

chains of amino residues. Protein secondary structure is the specific geometric shape 

caused by inter-molecular and intra-molecular hydrogen bonding of amide groups 

(Elmhurst College, 2003). There’s been much research on alpha-helix membrane proteins. 

There are a few reasons for this. Alpha-helices contain an easily recognisable pattern of 

highly hydrophobic consecutive sequences, and rules such as the ‘positive-inside rule’ (von 

Heijne, 1992) can be applied. The positive-inside rule is a simple rule that defines how 

proteins insert and orient in membranes. Positive charges stay in the cytoplasm. Another 

reason, as explained earlier, is the profusion of alpha-helical membranes proteins 

(compared to beta-barrel transmembrane proteins) in entire genomes, and the same applies 

to datasets of proteins with experimentally solved structures in 3D.  

There are significant improvements in the methods used to determine protein structures. 

The number of proteins with known structures at the atomic level still corresponds to a 

minimal fraction of known sequences (around 1%). There has been progress in technology 

used to understand the functions and structures of membrane proteins. For TMB proteins 

topology prediction, various techniques have been used. However, some areas are not fully 

explored. For example, the use of k-nearest neighbors for TMB topology prediction has 

not yet been implemented and evaluated. A complete comparison between k-nearest 

neighbors classifiers, support vector machine and deep neural network has not been 

evaluated. In a recent paper, Heffernan et al. (Heffernan, Paliwal, Lyons, Dehzangi, 

Sharma, Wang, Sattar, Yang and  

Zhou, 2015) obtained an 82% prediction accuracy using a deep learning neural network. 

Recurrent neural networks provide successful results when applied to secondary structure 

prediction (Pollastri, Przybylski, Rost, Baldi, 2002), (Daniel, 2003). The use of Deep 

learning towards transmembrane beta-barrel topology prediction could provide a 

significant advance in this field.  
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1.1 Motivation		
 

The prediction of secondary structure helps to define the 3D structure of proteins, but  

100% single residue accuracy is not the goal. There are a few reasons why the accuracy of 

100% has not been achieved so far. There are uncertainties and errors in the Protein Data 

Bank (PDB), and some regions are classified as disordered instead of ordered in the PDB. 

This leads to noisy data. Also, prediction errors can originate from a rigid secondary 

structure definition without considering differences (Magnan and Baldi, 2014).  

 

One of the most critical goals in bioinformatics is accurately predicting protein secondary 

structures. It is essential in the design of drugs or novel enzymes. The location of beta-

barrel transmembrane proteins is in the outer membranes of gram-negative bacteria, outer 

membranes of mitochondria or chloroplasts. They have critical functions such as passive 

nutrient intake ion-transport. Accurate predictions of secondary and tertiary structures of 

transmembrane proteins are therefore needed. Effective antibacterial drugs are developed 

with a good knowledge of the 3D structures of transmembrane beta-barrels.  

 

Efforts related to beta-barrel topology prediction have been overshadowed, and there could 

be an improvement in prediction accuracy. Recent studies focus on alpha-helix 

transmembrane regions prediction using an SVM- genetic algorithm (Kazemian et al., 

2013) or adaptive neural fuzzy inference system (Kazemian et al., 2014), for example. A 

recent paper embarks upon a NN (Neural Network) technique and its comparison with 

hybrid-two-level NN-SVM (Support Vector Machines) methodology to classify inter-class 

and intra-class transitions to predict the number and range of beta membrane-spanning 

regions (Kazemian et al., 2016). The computer simulation results demonstrate a significant 

impact and a superior performance of NN-SVM tests with a five residue overlap for signal 

protein over NN with and without redundant proteins for predicting transmembrane beta-

barrel spanning regions.  Recent studies focus on alpha-helix transmembrane regions 

prediction with the use of SVM- genetic algorithm (Kazemian et al., 2013) or adaptive 

neural fuzzy inference system (Kazemian et al., 2014). This PhD thesis aims to evaluate 
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what prediction methods and techniques have been used so far and find new approaches 

and strategies that would improve the prediction accuracy results obtained from this 

implementation could represent an essential advancement in the prediction of the topology 

of beta-barrel transmembrane proteins with the use of a computer simulation. Deep 

learning is a rapidly evolving field, and a significant advance in bioinformatics could be 

provided while using those algorithms as part of the thesis. The most common deep 

learning architectures are convolutional deep neural networks. Transmembrane beta-barrel 

proteins datasets are usually small. The performance of multiple algorithms was evaluated 

in a recent article (Sharma et al., 2016) using small datasets with various dimensionalities. 

Their report indicated that KNN (k-nearest neighbors), SVM (Support vector machines) 

and linear discriminant is the best algorithms when using small datasets. Some of those 

models will be implemented as part of the thesis. The PhD thesis will include a 

comprehensive evaluation and comparison of the various machine learning applications. 

The results obtained from this paper will be applied and utilised to develop and improve a 

complete scientific website referenced as the ‘transmembrane and signal peptide topology 

prediction web server’. The objective of this server is to contribute to knowledge and 

understanding in the field of transmembrane proteins, signal peptides and machine learning 

algorithms through the development of an integrated software suite. The server includes 

already an ensemble of artificial intelligence techniques such as artificial neural networks, 

fuzzy inference systems, genetic algorithms, hidden Markov models and support vector 

machines. Predicting beta-barrels, alpha-helices, and signal peptides in one website is 

unprecedented, and the site will compete with the only few world-renowned websites, such 

as TMHMM 2.0 (Krogh, Larsson, von Heijne & Sonnhammer, 2001), DAS (Cserzo, 

Wallin, Simon, von Heijne and Elofsson, 1997), MEMSAT (Jones, Taylor & Thornton, 

1994) and SOSUI (Hirokawa, Boon-Chieng and Mitaku, 1998).  

 

  
1.2 Research	Hypotheses		
 

The key research questions, which are the basis of this research, are: 
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1. Which machine learning technique is the most appropriate and has the best 

predictive accuracy for the application of TMB topology prediction? 

2. What model could be built to improve current predictions models available today? 

 

This study will therefore need to address the following research questions:  

  

● TMB topology prediction is a saturated research area, and current models available 

have low accuracy. What factors limit the improvement of prediction accuracy? 

  
● How to develop a novel model that can combine multiple machine learning 

techniques? What architecture is the most appropriate? 

  
● How can the model be optimised to improve TMB topology prediction accuracy?  

  
● Can the proposed model add a significant contribution of knowledge to the topic 

and be helpful in fields such as medicine? 

  
  

1.3 Aim	and	Objectives		
 

This research aims to evaluate the performance of selected machine learning techniques in 

predicting TMB topologies and compare them. The goal of the prediction is to provide the 

topology of beta-barrel within a protein or protein family and more specifically, 

transmembrane proteins. The thesis aims at generating new knowledge in the field of 

bioinformatics. Proteins are vital parts of many biological processes. Prediction methods 

are of great importance for membrane proteins and are very helpful in drug discovery. If 

there is a need to design new drugs, cure diseases, then it is necessary to understand the 

actual molecular structure that drugs bind to and then better and improved drugs can be 

developed. It is hoped that the research project will develop new understandings in the field 

of machine learning. 
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The main objectives are:   

 

1. Review the various types of machine learning techniques and existing algorithms 

that could be applied for beta-barrel TM topology prediction.  

 
2. Review the various types of proteins, protein structures, and general aspects.  

 

3. Use an appropriate methodology to collect, prepare and encode data using various 

datasets.  

 

4. Develop ANN, KNN, SVM and cascading classifier models. 

 
5. Evaluate the performances of the proposed methods, analyse, and compare the 

results. 

 
 

 
1.4 Research	methodology	and	design	
 

This chapter examines the research methodology adopted in this thesis. It first defines the 

philosophy that supports the approach taken with the research, discussing the use of a 

positivism posture to study and the consequent choice of the exploratory, constructive, and 

experimental approaches used. Hussey et al. (Hussey & Hussey, 1997) discuss 

methodology and method. The writers define the methodology as the overall approach to 

the research process encompassing a body of methods and define a method as the various 

techniques of collecting and/or analysing data. Mason (2002) describes the concept of 

methodological strategy, indicating that a particular method can be part of the strategy. The 

approach here includes all aspects of the research process under the overall methodology. 

The research design and the methods used, the data collection method chosen, and the 

means of analysis are all considered part of the methodology and are defined in the 

following sections.  
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The methodology combines exploratory, constructive, and experimental methods. The 

exploratory method aims to gain insights and familiarity with the topic of TMB topology 

prediction. Multiple methods have been used to effectively conduct the proposed research 

and test the model sets and machine learning techniques used. To ensure good research 

design, it is also necessary to evaluate the data sources to make sure that they will help 

answer research questions most effectively. The constructive method is used for building 

the models. The experimental method is used for testing the models and tuning the 

hyperparameters.  

 

1.4.1 	Research	philosophy	
 

A positivism approach was adopted in this research. As a philosophy, positivism adheres 

to the view that only knowledge based on facts gained through measurements, for example, 

is trustworthy. In positivism studies, the role of the researcher is limited to data 

collection and interpretation objectively. In studies such as this thesis, research findings 

are observable and quantifiable. There is often a distinction regarding research 

philosophies between positivism and interpretivism (Bryman & Bell, 2007). In positivism, 

the purpose of research is a scientific explanation. Researchers who work from this 

perspective explains in quantitative terms how variables interact, shape events, and cause 

outcomes. They often develop and test these explanations in experimental studies. This 

framework maintains that reliable knowledge is based on direct observation or 

manipulation of natural phenomena through empirical and experimental means (Lincoln & 

Guba, 2000; Neuman, 2003). 

 
  

1.4.2 Exploratory	Method		
 

The exploratory method aims to look for patterns, ideas, or hypotheses. It helps determine 

the best research design, data collection method, selection of datasets and machine learning 

techniques. It relies on secondary research, such as reviewing available literature and 

datasets used. 
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1.4.2.1 TMB datasets  
 

A high-quality data set is used for training and validation purposes when constructing any 

prediction. An extensive literature review is performed on the list of datasets used in recent 

models and the list of available datasets that are available. Errors in databases are not 

infrequent, and adding them is an element of noise. While such noise is often well tolerated 

by machine learning, the problem is more significant in smaller data sets such as the one 

used for TMB topology prediction. 

 

1.4.2.2 Machine learning models   
 

The initial literature review is used to find the various machine learning approaches used 

to predict beta-barrel membrane proteins topology. Machine learning approaches prevail 

over hydrophobicity methods due to their statistical formulation. There are few machine 

learning-based beta-barrel TM topology predictors available based on ANN, HMM, SVM 

or a combination of those machine learning techniques. An extensive literature review is 

performed on the accuracy of the various methods described in various journals and 

articles. 

 

1.4.3 Constructive	Method		
 

This computing environment and computing language are selected. Models are 

implemented in MATLAB. The models are continually learning and adapting to new data. 

Hyperparameters for all algorithms are modified.  

 

1.4.3.1 Machine learning models development  
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This activity identifies the various functions in MATLAB used to create the models. It 

defines the encoding techniques that are used. The architectures of the models are described 

and implemented. 

 

1.4.3.2 Machine learning models optimisation 
 

This activity has the goal of improving performance. It assesses which model is the most 

accurate for TMB topology prediction. Hyperparameters for ANN, KNN, SVM and 

cascading classifier are modified. 

 

1.4.4 Experimental	Method		
 

This method proves that the models created generate a better TMB topology prediction 

accuracy. The data are collected from various online transmembrane beta-barrel datasets. 

The activities include testing the models. Multiple runs are executed, and results are 

provided. The analysis of results is evaluated with the use of performance graphs. 

  

1.5 Thesis	structure	
 

To report the findings of the research in detail, the remainder of the thesis is organised as 

follows:   

● Chapter 2 presents the literature review. Multiple research papers have been 

evaluated and analysed in the context of TMB topology prediction. The available 

current tools, existing research, methodologies, and limitations have been described 

in this chapter.  

  

● Chapter 3 provides some theories and concepts related to machine learning 

algorithms such as SVM, ANN, KNN and ensemble methods.  
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● Chapter 4 presents the various datasets of transmembrane proteins that are available 

and the techniques used for data preparation.  

  

● Chapter 5 presents the implementation of ANN, KNN and SVM models in 

MATLAB. Modification to the hyperparameters has been described. Results of the 

implementations have been provided.  

 

● Chapter 6 presents the implementation of a cascading classifier in MATLAB. 

Modification to the hyperparameters has been described. Results of the 

implementations and runs have been provided.  

 

● Chapter 7 provides the discussion of findings.  

 

● Chapter 8 provides the conclusion of the thesis, describes the achievements and 

contributions, and discusses future research.     
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2. Literature Review  
 

This chapter presents a review of publications in areas of transmembrane strand proteins. 

It gives an overview of what has been achieved and used methods. Progress has been shown 

for the past several decades, and still, the accuracy is modest 

 

2.1 History	and	development	of	prediction	methods		
 

Three types of computational problems are related to transmembrane beta-barrel. 

Transmembrane beta-barrel detection and discrimination (from other proteins) is the first 

type. Transmembrane topology prediction and transmembrane beta-contacts prediction are 

the second and third types. Machine learning can be applied to all these activities.  

In the 1950s, Pauling et al. (Pauling and Corey, 1951) looked at creating alpha-helix and 

beta-strand local conformations. Chou and Fasman developed the Chou-Fasman method in 

1974 described in two different papers (Chou and Fasman, 1974a) and (Chou and Fasman, 

1974b). Early prediction methods were developed using a simple analysis of how amino 

acids are distributed in beta-strands (and alpha-helices). Chou et al. statistical method is 

based on amino acids propensities defined as natural inclinations or tendencies to belong 

to a given secondary structure. The propensity of a position is calculated using an average 

of 5 residues (for a strand) surrounding each position rather than a position-by-position 

analysis. However, this method is limited due to low accuracy, unreliable parameters, and 

over prediction. Some methods used for the discrimination of transmembrane strand 

proteins and identification of membrane-spanning β-strand segments are described in the 

following paragraphs. 

  
2.1.1 Discrimination	of	transmembrane	strand	proteins	
 

Outer membrane proteins (OMPs), also known as a β-barrel membrane or transmembrane 

strand proteins, perform various functions, such as mediating nonspecific, passive 

transport of ions and small molecules, selectively allowing the passage 

of molecules such as maltose and sucrose. The success rate of discriminating β-barrel 
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membrane proteins from other proteins is significantly lower than that of α-

helical membrane proteins. Multiple methods have been proposed for determining OMPs. 

These methods are based on hydrophobicity, sequence alignment, neural networks, 

HMMs, conformational parameters, statistical methods, nearest neighbor 

algorithms, SVMs, and machine learning techniques. 

 

2.1.1.1 Hidden	Markov	Models	
 

HMM-B2TMR is based on HMM to predict beta-barrel transmembrane proteins topology 

(Martelli, Fariselli, Krogh and Casadio, 2002). The novelty in this method is the 

development of a specific input that is based on multiple sequence alignment. The 

prediction accuracy is 83% in a jackknife test. A non-redundant dataset of 12 OMPs is used 

for training and testing. Fariselli et al. developed a later version. They introduced a 

decoding algorithm called the posterior-Viterbi algorithm (Fariselli, Martelli and Casadio, 

2005). A decoding algorithm is needed when HMMs predict a given feature. Fariselli et al. 

used the previously HMM developed by Martelli et al. to test their decoding algorithm. 

Profiles from PSI-BLAST are used for inputs (Altschul, Madden, Schaffer, Zhang, Zhang, 

Miller and Lipman, 1997).  

PRED-TMBB is a server based on HMM (Bagos, Liakopoulos, Spyropoulos and 

Hamodrakas, 2004a). A non-redundant dataset of 14 OMPs was used for the training. A 

training set that is constituted of 16 non-homologous OMPs (Bagos, Liakopoulos, 

Spyropoulos and Hamodrakas, 2004b) was used later in the model for retraining. The 

training follows the conditional maximum likelihood method. Single sequences are used 

as input. The Viterbi algorithm, N-best algorithm, or posterior decoding, in addition to the 

dynamic programming algorithm, are also used (Bagos, Liakopoulos, Spyropoulos and 

Hamodrakas, 2004a). The user can select one of the three different decoding options.  

ProfTMB is based on HMM (Bigelow, Petrey, Liu, Przybylski, Rost, 2004). In the original 

paper, the impact of using different profiles on ProfTMB accuracy was not evaluated. The 

method described in the latest paper (Bigelow and Rost, 2006) reached an overall four-

state accuracy as high as 86%. The algorithm is mainly based on HMM-B2TMR with some 
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modifications, like having four states for each residue defined as up-strand, down-strand, 

periplasmic-loop, and outer-loop (Bigelow and Rost, 2006). The C++ source code can be 

downloaded and compiled by the users, and the original training data or a modification of 

it can be used with PROFtmb.  

BETA-TM is a predictor based on HMM (Ahn, Yoo and Park, 2003). The Baum-Welch 

algorithm with a dataset of 11 non-homologous proteins is used for training. The Viterbi 

algorithm is used for decoding.  

TMB-HMM is also an HMM-based topology predictor. The residues in the transmembrane 

can be predicted as exposed to the membrane versus hidden in the protein structure (Singh, 

N., Goodman, Walter, Helms, and Hayat, 2011). The residues that do not belong to beta-

barrel strands but are in the transmembrane region can also be predicted. TMB-HMM uses 

frequency profiles obtained from MSAs as input. It has been trained on a dataset of 19 

TMBs. It has a three-state prediction accuracy of 72%. The predictor was trained on a 

relatively small training dataset, but it is expected that the accuracy will improve once more 

3D structures of TMBs become available.  

 

2.1.1.2 Radial	basis	function	networks	with	PSSM	profiles	
 

 

Radial basis function networks have been suggested to predict the number of beta-barrel 

strands and membrane-spanning regions in beta-barrel OMPs (Ou, Chen and Gromiha, 

2010). In radial basis function networks, the hidden units perform the computation. To 

define the topology of beta-barrel OMPs, it is essential to predict accurately the number of 

beta-strands present in OMPs. This prediction is also important to determine the correct 

assignment of strands in the membrane. Ou et al. created a protocol to predict the number 

of beta-strand in OMPs. If there are more than 590 residues in the proteins, proteins will 

be predicted as having 22 beta-strands. If there are less than 200 residues in the proteins, 

proteins will be predicted as having 8 beta-strands. If the sequence length is 200500 

residues, a radial basis function network is used simultaneously with amino acid 

compositions such as Alanine, Aspartic acid, histidine, Tyrosine, and Valine to predict 
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10,12,14,16 and 18 beta-strands, respectively (Ou, Chen and Gromiha, 2010). A cross-

validation accuracy of 96.4% is achieved for the correct prediction on the beta-strands 

number. For the prediction of membrane-spanning regions, residues in transmembrane 

beta-strands are identified using a radial basis function network that has been trained with 

PSSM profiles (obtained from PSI-BLAST). With this method, there is a reduction in over-

prediction and under-prediction.  

Over-prediction and under-prediction are significant problems in transmembrane strands 

prediction. The method has an accuracy of 87%. Figure 1 represents the use of PSSM 

profiles as features in the radial basis function network as described in the Ou et al. paper. 

The PSSM profiles are generated from PSI-BLAST (Altschul, Madden, Schaffer, Zhang, 

Zhang, Miller and Lipman, 1997). A 15x20 matrix is generated using a window size of 15. 

It is used as an input for the radial basis function network.  
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Figure 1 Using PSSM profiles in radial basis function network 

Source: Ou, Y. Y., Chen, S. A and Gromiha, M. M. (2010) 

 

2.1.1.3 Nearest	neighbor	algorithm	
 

Amino acid composition is one of the parameters, which can be used to identify β-

barrel membrane proteins (Gromiha, 2005). Garrow et al. (2005) used the amino acid co

mposition and proposed a modified k-nearest neighbor algorithm, TMB-HUNT, to classify 

the proteins into transmembrane β-barrel (TMB) and non- TMB. This method showed an 

accuracy of 92.5% using weighted amino acids and evolutionary information.  
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2.1.2 Identification	of	membrane-spanning	β-strand	segments	
 

2.1.2.1 Turn	elimination	method	
 

Another approach used to predict and identify segments causing polypeptides to reverse 

their direction is called turn identification and developed by Paul and Rosenbusch (Paul 

and Rosenbusch, 1985). With the removal of beta-turns and the selection of a length of 6 

residues for a strand, they predicted transmembrane beta-strands. 

 

2.1.2.2 Hydrophobicity	profiles	
 

In biochemistry, an amphipathic molecule can interact on one side with nonpolar or 

hydrophobic molecules and on the other side with polar or hydrophilic molecules. Beta-

sheets are often amphipathic and fold into the rest of the protein to protect the hydrophobic 

sidechains from water environments. Vogel and Jähnig developed a method for predicting 

transmembrane beta-strands, and the method is based on the amphipathic characteristic of 

beta-strands (Vogel and Jähnig, 1986). Jähnig (Jähnig, 1990) indicated that hydrophobicity 

analysis could be sufficient to predict amphiphilic alpha-helices and beta-strands proteins 

that cross both sides of a membrane (Gromiha, 2010). Welte et al. (Welte, Weiss, Nestel, 

Weckesser, Schiltz and Schulz, 1991) and Cowan et al. (Cowan and Schirmer, 1992) also 

proposed a method based on the physicochemical properties of amino acids for the 

prediction of transmembrane beta-barrel proteins. In 1993, Schirmer et al. applied the 

algorithm of Kyte and Doolittle (Kyte and Doolittle, 1982) to identify transmembrane 

proteins (Schirmer and Cowan, 1993). The Kyte and Doolittle algorithm (Kyte and 

Doolittle, 1982) determines the mean hydrophobicity within a sliding window. Gromiha et 

al. (Gromiha and Ponnuswamy, 1993) have used amino acid hydrophobic properties to 

predict beta-strands. The method introduces two characteristics: It is not dependent only 

on the amphipathic character of a sequence segment while identifying it as a 

transmembrane strand. The method can predict strands in varying lengths. This method has 



 

  
  

  

30 

an accuracy of 76% for predicting transmembrane beta-strands when used with porin from 

Rhodobacter capsulatus.  

 

2.1.2.3 Rule-based	prediction	
 

Gromiha et al. (Gromiha, Majumdar and Ponnuswamy, 1997) suggest predicting 

transmembrane beta-strands using a rule-based approach. This is an important class of 

methods. The predictor will use the statistical properties of amino acids. There are primary 

rules and secondary rules. Rules consider hydrophobicity of amino acids or amphipathicity 

of beta-strand segments, for example. (Gromiha, Majumdar and Ponnuswamy, 1997). This 

method has a prediction accuracy of 82% for all the bacterial porins evaluated. A 

disadvantage of this approach is that training sets based on are limited. Also, when there is 

no similarity between the sequences and the proteins of the training set, it is more difficult 

to obtain the structural characteristics of the bacterial OMPs. This method is used as part 

of the software package named BioSuite (The NMITLI-BioSuite Team, 2007) used in 

bioinformatics.  

 

2.1.2.4 Artificial	neural	networks	
 

The first method, proposed by Diederichs et al., is using a neural network to predict the 

topology of bacterial OMPs. The neural network is like other neural networks used, such 

as Holley et al. (Holley and Karplus, 1998); however, they use a smaller input window and 

one output unit (Diederichs, Freigang, Umhau, Zeth and Breed, 1998). A dataset containing 

seven bacterial porins was first used for the training, but a new dataset included some new 

solved (non-porins) structures for retraining. The name of the server is OM_Topo_predict. 

The server was not available at the time this research was conducted.  

The use of neural networks for the prediction of transmembrane beta-barrel in OMPs was 

suggested by Gromiha, Ahmad and Suwa. The method uses single sequence information 

as input. The neural network comprises three layers (Gromiha, Ahmad and Suwa, 2004). 

TMBETA-NET is a predictor for identifying beta-strand proteins that cross both sides of a 

membrane. It used a neural network. Empirical rules are included to remove not likely 
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predictions of transmembrane strands, such as a strand with three residues (Gromiha, 

Ahmad and Suwa, 2005). The predictor is, therefore, more precise. It achieves a prediction 

accuracy of 73% for membrane-spanning beta-strands. Applications of TMBETA-NET are 

shown in figure 2. The figure represents the stretch of amino acid residues in the 

transmembrane strand for OmpA using an amino acid sequence as input. There is height 

membrane-spanning beta-strands segments in OmpA, as represented below.  

 
Figure 2 OmpA-Stretch of predicted amino acids residues in membrane-spanning beta-

strands using TMBETA-NET 
Source: Gromiha, M.M., Ahmad, S. and Suwa, M. (2005) 

 

2.1.2.5 Combination	of	methods	
 

B2TMPRED is a predictor that combines dynamic programming (Jacoboni, Martelli,  

Fariselli, De Pinto and Casadio, 2001) and a neural network. Sequence profiles derived 

from PSI-BLAST (Altschul, Madden, Schaffer, Zhang, Zhang, Miller and Lipman, 1997) 

are used as inputs. The method is trained using a dataset of 11 OMPs. Dynamic 

programming is used to identify the location of the TM strands. The discrimination of 

membrane beta-strands from extramembrane regions is achieved by creating and training 

a feed-forward neural network.  

Secondary structure prediction accuracy is as high as 78%. The predictor is available at:  

http://gpcr.biocomp.unibo.it/cgi/predictors/outer/pred_outercgi.cgi  
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TBBpred is a predictor that combines neural networks and support vector machines (Natt, 

Kaur, Raghava, 2004). The neural network part of the predictor uses evolutionary 

information derived from multiple alignments. The support vector machines module uses 

physicochemical properties. One of the methods alone can be selected by the user, but the 

authors indicate that combining the methods (81.8%) will significantly improve the 

prediction accuracy.  

ConBBPred is a web server that combines individual predictors to a single consensus 

prediction. Bagos et al. compared the performance of different methods for predicting beta-

barrel OMPs topology using a non-redundant dataset of 20 beta-barrel OMPs (Bagos, 

Liakopoulos and Hamodrakas, 2005). They indicated that methods based on HMM are the 

best predictors. When only transmembrane beta-barrel domains are used, predictors 

achieve better results. The consensus prediction method is also using a dynamic 

programming algorithm.  

Zou et al. present a model that combines HMM and genetic algorithms (Zou, Wang, Wang, 

and Hu, 2010). When designing HMM-based methods, the algorithms used for parameter 

estimation and decoding are essential. The Baum-Welch algorithm is often selected for the 

training of HMM for the prediction of TMB. Zou et al. use a genetic algorithm for training 

and the posterior-Viterbi algorithm for decoding. The dataset includes 33 TMBs. It is one 

of the largest datasets used so far in the literature. Zou et al. indicate that their method 

achieves better results than all other methods for topology prediction.  

 

2.1.2.6 Recursive	neural	networks	
 

TMBpro suite is a three-stage method for transmembrane beta-barrel topology prediction, 

beta-contacts, and tertiary structure prediction. A 1D-recursive Neural Network (1D- 

RNN) and dynamic programming refinement are used (Randall, Cheng, Sweredoski and 

Baldi, 2008). Recurrent neural networks are recursive neural networks with a particular 

structure. Recursive neural networks operate on any hierarchical structure, while recurrent 

neural networks operate on the linear progression of time. According to Q2 (84.2%) and 

MCC (0.720), TMBproSS outperforms PRED-TMBB. TMBpro-SS is a secondary 
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structure predictor, TMBpro-CON is a beta-contacts predictor, and TMBpro-3D is a 

tertiary structure predictor.  

 

2.2 Literature	review	on	BOCTOPUS	methods	
 

 

2.2.1 BOCTOPUS1	method	
 

BOCTOPUS is a recent method that has been used for the prediction of transmembrane 

beta-barrel topologies is (Hayat and Elofsson, 2012). Support vector machines have been 

utilised to predict the local structural preferences for a residue. An HMM model has been 

used for the topology model for proteins. The architecture of BOCTOPUS is represented 

in figure 3.  

 
Figure  3 OmpA-Stretch of predicted BOCTOPUS pipeline 

Source: Hayat, S. and Elofsson, A. (2012) 
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PSI-BLAST provides the PSSM for a given sequence (Altschul, Madden, Schaffer, Zhang, 

Zhang, Miller and Lipman, 1997). The prediction of the residue-level preference for each 

amino acid is obtained with three SVMs. The preference can be I, M or O. HMM uses an 

‘IOM’ profile acquired to predict the topology. The Viterbi algorithm is used to obtain the 

final topology. I correspond to the inner loop, O outer loop and M transmembrane beta-

strand.  

 

2.2.2 BOCTOPUS2	method	
 

Hayat et al. developed BOCTOPUS2 in 2016. It is an updated version of BOCTOPUS 

(Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). This method can identify Barrel domains 

and topologies and predict residues’ orientation in transmembrane beta-strands (Hayat, 

Peters, Shu, Tsirigos and Elofsson, 2016). The prediction accuracy is 69%. It is an increase 

of 10% in comparison to BOCTOPUS. BOCTOPUS2 is trained on 42 full Uniprot 

sequences with a known 3D structure. It consists of two stages. The prediction of per-

residue location (referred to as inner-loop, outer-loop, membrane lipid-facing and 

membrane pore-facing) is achieved using four SVMs in the first stage, and an HMM 

predicts the overall topology in the second stage (Hayat, Peters, Shu, Tsirigos and Elofsson, 

2016). Regarding the k-nearest neighbors algorithm, it has not been used for the prediction 

of TMB topologies prediction. TMB-Hunt (Garrow, Agnew and Westhead, 2005) is a web 

server that uses k-nearest neighbors only to discriminate between non-TMB proteins and 

TMB proteins based on the composition of amino acids. This is a different problem than 

predicting TMB topologies.  

  

 

 

2.3 Summary		
 

The literature review critically analysed published academic literature, mainly peer-

reviewed papers and books, on TMB topology prediction. It was possible to present an 

overview of the current knowledge gained from previous work. When discussing each 
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relevant piece of literature, the review highlighted the gaps and strengths and weaknesses 

of a particular study, paper, or book. The review of the literature review helps to have a 

clear understanding of what has been published in the subject area of research. Critical 

theories in the field of TMB topology prediction have been evaluated. Leading research 

groups and authors in the field and their essential contributions to the research topic have 

been identified. A clear understanding of the research gap helped redefine the PhD research 

questions. 
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3. Machine learning algorithms  
 

This chapter provides a description and overview of the three essential types of neural 

networks that form the basis for most models in deep learning. K-nearest neigbhors 

algorithms, Support Vector machines and ensemble methods. Some general guidelines for 

the practical methodology involved in designing, building, training, and configuring a deep 

neural network will be presented and some of the current applications of deep learning. 

3.1 Neural	Networks			
 

3.1.1 Artificial	neural	networks	
 

Artificial Neural Network, or ANN, is a group of multiple neurons at each layer. ANN is 

also known as a Feed-Forward Neural network because inputs are processed only in the 

forward direction. Figure 4 represents a schematic diagram of a backpropagation training 

algorithm and a typical neuron model. 

 

 
Figure 4 Schematic diagram of backpropagation training algorithm and typical neuron 

model 
Source: Kim, S.E. and Seo, I.W. (2015) 
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ANN consists of 3 layers (Input, Hidden and Output). The input layer accepts the inputs, 

the hidden layer processes the inputs, and the output layer produces the result. Essentially, 

each layer tries to learn certain weights. A single perceptron (or neuron) can be imagined 

as a Logistic Regression. ANN can solve tabular data, image data, or text data problems.  

Artificial Neural networks can learn any nonlinear function. Hence, these networks are 

popularly known as Universal Function Approximators. ANNs can learn weights that map 

any input to the output. 

One of the main reasons behind universal approximation is the activation function. 

Activation functions introduce nonlinear properties to the network. This helps the network 

learn any complex relationship between input and output. One common problem in all 

these neural networks is the Vanishing and Exploding Gradient. This problem is associated 

with the backpropagation algorithm. The weights of a neural network are updated through 

this backpropagation algorithm by finding the gradients.  So, in the case of a very deep 

neural network (network with many hidden layers), the gradient vanishes or explodes as it 

propagates backwards, which leads to vanishing and exploding gradient.  

A recent article (LeCun, Bengio and Hinton, 2015) indicates that deep neural networks 

outperform conventional methods in the areas of speech recognition or visual object 

detection. The ideal features for protein structure prediction problems have not been 

identified yet. DNSS is a predictor for secondary structure using deeper neural networks 

(Spencer, Eickholt, and Cheng, 2015). The prediction accuracy is 80.7%. It is essential to 

indicate that this predictor and other papers referring to predictors using deep neural 

networks refer to TMB topology prediction.  

 

Feed-forward neural networks are called feedforward as the information flows through the 

function that is evaluated from x, through the intermediate computations used to define the 

function and finally to the output y. This is called forward propagation. There are no 

feedback connections in which outputs of the model are fed back into itself. When feedback 

connections are included in feedforward networks, they are called recurrent neural 
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networks, discussed later in the paragraph. Feedforward neural networks are essential to 

machine learning practitioners, and they are used in many commercial applications. 

Feedforward networks are called networks because they are usually represented by many 

different functions. These chain structures are the most often used structures of neural 

networks. The overall length of the chain gives the depth of the model. From this 

terminology, the term ‘deep learning’ comes from. Hinton et al. define a deep neural 

network as a feed-forward artificial neural network with more than one layer of hidden 

units between the inputs and outputs (Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior et 

al., 2012). The learning algorithm must decide how to use those layers to produce the 

desired output, but the training data does not tell what each layer should do. Finally, these 

networks are called neural as they are derived from neuroscience models. Each unit in 

hidden layers is like a neuron as it receives an input from many other units and computes 

its activation value. Feed-forward networks are not models of brain function but are 

designed to achieve statistical generalization.   Deep feedforward neural networks have full 

potential and can be applied to various tasks. Advancements in optimisation to improve 

the algorithms and model design are expected to perform further.   

 

3.1.1.1 Regularisation	
 

Regularisation refers to any modification that can be done to a learning algorithm that will 

reduce the generalisation error. The training error will not be reduced. Regularisation 

strategies for deep models will be covered in this paragraph. Those strategies can also be 

used for models that can be utilised as a part of deep learning models. Dataset augmentation 

is one strategy that can be used. If machine learning is trained on more data, it will 

generalise better. In practical cases, there is a limitation on the amount of data, especially 

in the situation of beta-barrel proteins. One way to circumvent this problem has been the 

creation of artificial data and adding this data to the training set. This approach is notably 

easier for classification problems such as object recognition and efficient for speech 

recognition problems (Jaitly and Hinton, 2013). It is not readily applicable to other tasks 

such as pattern recognition. Data augmentation also includes noise in the input (Sietsma 
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and Dow, 1991); however, deep neural networks are not effective when noise is added. 

Improvement of the robustness of deep neural networks can be performed by using random 

noise applied to their inputs during training (Tang and Eliasmith, 2010). If the magnitude 

of the noise is meticulously tuned, the process can be very efficient (Poole et al., 2014). 

Therefore, it is essential to consider if the dataset augmentation has been applied when 

comparing machine learning benchmark results. Dataset augmentation constructed 

manually can often significantly reduce the generalisation error of machine learning 

techniques. If a comparison of the performance of one machine learning technique to 

another one is needed, the use of controlled experiments is recommended. Another strategy 

that has been used is to add noise to the weights as described in this paper (Jim et al., 1996; 

Graves, 2011) with recurrent neural networks. A recent article (Luo and Yang, 2014) 

studied the effect of introducing different noise into different components of different types 

of deep learning neural networks. They observed that a reasonable amount and a reasonable 

magnitude of noise could improve the model's accuracy and convergence rate when 

introduced into a deep learning model. The noise was added to the gradient descent 

component of Logistic Regression into weights between layers for Multi-layer Logistic 

Regression. During a noise-free training process of the model, weights between layers are 

transmitted and updated without any loss of information or variances. However, during a 

noise added training process, weights between layers are subject to some variation. Lastly, 

the noise was added into the feature mapping component of a Convolutional Neural 

Network.  

Regularisation also includes the technique of early stopping. No changes are needed to the 

primary training process, the definition of the function, or the ensemble of parameter values 

that are allowed. It does not incur damages to the learning dynamics. It can be with other 

regularisation strategies and on its own. A validation set is required for early stopping. It 

signifies that some training data is not injected into the model. The computational cost of 

the training process is also reduced with early stopping. A generalisation can be reduced 

by combining multiple models (Breiman, 1994). This technique is called bagging 

(bootstrap aggregating), part of a large approach called model averaging. This technique is 

also referred to as the ensemble method. The different models will habitually not make all 
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the same errors on the test set, which is why this model works. It involves constructing 

different datasets. It is extremely powerful for reducing generalisation errors.  

 

3.1.1.2 Gradient-based	optimisation	
 

Optimisation consists of minimising or maximising a function by finding the best value of 

an argument. The optimisation is included in most deep learning algorithms. The objective 

function (or criterion) represents the function that needs to be minimised or maximised. 

When minimised, it is called the cost function (or loss function/error function). The term 

differs depending on machine learning publications. Figure 5. represents the gradient 

descent technique.  

 
 

Figure 5 Gradient descent 
Source: Srihari, S. (n.d.) 

 

There is "(#) = $	which is the function, and "′(#)the derivative. x and y are real numbers. 

Minimising a function using the derivative is helpful as it tells how to modify x to make a 
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slight improvement in y. When moving x in the opposite sign of the derivative, "(#) can 

be reduced. This is also named the gradient descent. When "(#) = 0, this corresponds to 

critical points (also called stationary points). When "(#) is lower than all adjacent points, 

it’s called the local minimum. At this point, "(#)  cannot be decreased anymore. When "(#) 

is higher than all adjacent points, it’s called the local maximum. At this point, "(#) cannot 

be increased by making small steps. Saddle points correspond to critical points that are 

neither maxima nor minima. The global minimum is a point that corresponds to the 

absolute lowest value of "(#). When flat regions are surrounding saddle points or when 

many local minima are not optimal, optimisation of the function is performed in the 

practical use of deep learning. Steepest descent corresponds to the discrete analogue of 

gradient descent. Hill climbing is an approach like steepest descent that is used with large 

discrete problems (Russel and Norvig, 2003).  

 

3.1.2 Recurrent	neural	networks	
 

It was discussed earlier in the previous section that feedforward neural networks have 

connections that do not form cycles. Recurrent neural networks (RNNs) are obtained when 

cyclical connections are allowed. Elman networks (Elman, 1990), Jordan networks 

(Jordan, 1990), time-delay neural networks (Lang et al., 1990) and echo state networks 

(Jaeger, 2001) are varieties of RNNs. Recurrent neural networks (RNNs) processes 

sequential data. Information about what has been calculated so far can be memorised in 

RNN. The limitation is that they can look back only a few steps. Recurrent connections are 

a way to bind inputs to the current or previous system states. Figure 6 represents a simple 

RNN with a unique self-connected hidden layer.  
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Figure 6 Recurrent neural networks structure. 
Source: Li, Wang, Zhang, Xin, and Liu (2019) 

 

More sophisticated types of RNNs have been developed over the years. Two RNNs stacked 

on top of each other create a bidirectional RNN. Based on the hidden state of both RNNs, 

the computation of the output can occur. Deep bidirectional RNNs are like bidirectional 

RNNs and give a higher learning capacity, but large training data is needed. LSTM 

networks are to RNNs regarding the architecture, but the hidden state is computed 

differently. Cells is another name for memory in LSTMs. The decision to keep or erase 

information is determined by these cells. The input, current memory and previous state are 

then combined by those cells. For more descriptions on recurrent neural networks, please 

refer to the textbook of Graves (Graves, 2012). RNN captures the sequential information 

present in the input data, i.e., the dependency between the words in the text while making 

predictions. RNNs share the parameters across different time steps. This is popularly 

known as Parameter Sharing. This results in fewer parameters to train and decreases the 

computational cost. 

Deep RNNs (RNNs with many time steps) also suffer from the vanishing and exploding 

gradient problem, a common problem in all the different types of neural networks. 
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3.1.3 Convolution	neural	networks	
 

Convolutional neural networks (CNNs) are also called convolutional networks. They are a 

neural network that works with grid-like input data and time-series data (1d grid). Time 

series means taking samples at regular time intervals. CNNs also work with image data (2-

d grid). The variations in images cannot be considered with algorithms such as KNN. 

Convolutional neural networks architecture consists of three main layers: the convolutional 

layer, the pooling layer, and the fully connected layer. The convolutional layer is the core 

building block. For example, one image becomes a stack of filtered images in the 

convolutional layer using images. Pooling in the pooling layer is the process of shrinking 

the image stack. It is necessary to pick a window size, a stride, walk to window across the 

filtered images and from each window, the maximum value is taken. It is used for 

dimensionality reduction. This helps limit both the memory and processing requirement 

for running a CNN. The fully connected layer is the last layer, and it can classify data 

samples. Every value gets a vote.  AlexNet is a solution that won the IMAGENET 

Challenge in 2012 using deep convolutional neural networks. IMAGENET is a challenge 

for evaluating algorithms for object detection or localisation and image classification from 

images and videos. AlexNet gave substantially better results than previous methods 

(Krizhevsky, Sutskever and Hinton, 2012). Figure 7 represents the AlexNet architecture. 

AlexNet consists of eight learning layers. It has five convolutional layers and three fully 

connected layers. The output of the final fully-connected layers is a softmax regression 

which converts the weights to probability distributions of the given 1000 classes. CNN 

learns the filters automatically without mentioning them explicitly. These filters help 

extract the right and relevant features from the input data. CNN also follows the concept 

of parameter sharing.  
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Figure 7 AlexNet CNN architecture 

Source: Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) 

3.1.4 Applications	
 

To apply deep learning techniques successfully, a good knowledge of algorithms is not 

sufficient. A reputable machine learning practitioner must select an algorithm based on a 

specific application. There is also a need to monitor and respond appropriately to feedback 

observed during the experiments. The machine learning system will therefore be able to be 

improved. Gathering more data, increasing/decreasing the model capacity, improving 

inferences in a technique or debugging are important decisions that need to be performed. 

All those tasks are time-consuming, and it is essential to decide earlier what action to take. 

Recommendations can be adapted from Andrew Ng lecture at Stanford University (Ng, 

2015). They determine the model’s goals or what error metric/error metric target value to 

choose is part of standard recommendations. Those parameters should be selected 

depending on the problem that the application is trying to solve. Establishing an end-to-

end working plan as early as possible in a project is also essential. Performance bottlenecks 

need to be determined, and the practitioner should diagnose which components are 

performing better or worse than expected. The practitioner should decide if it is due to 
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overfitting, under-fitting, or a defect in the data. A final recommendation is the ability to 

make incremental changes. This can include gathering new data, adjusting parameters, or 

changing algorithms. 

To give a few examples, deep learning can resolve problems in computer vision, speech 

recognition or natural language processing (NLP). Designing algorithms that can perform 

various tasks is one goal of deep learning, but specialisation is usually needed. Charges 

related to computer vision require modelling many input features (pixels). Tasks in NLP 

require modelling many possible values (as inputs features) corresponding to words in the 

vocabulary. Big data analytics is one of the recent applications of deep learning. Many 

private and public organisations have started to collect large amounts of information 

specific to their domains that can be useful to solve problems. It can be seen particularly in 

national intelligence, cyber security, marketing, fraud detection or medical informatics. 

Deep learning can analyse and learn large amounts of unsupervised data, useful in big data 

analytics. In Big data analytics, raw data is often unlabelled and un-categorized 

(Najafabadi, Villanustre, Khoshgoftaar, Seliya and Muharemagic, 2015). Najafabadi et 

al.’s paper cover the latest deep learning applications and the challenges in big data 

analytics. Nowadays, many companies provide deep learning solutions across various 

applications. The latest companies include Affectiva, Gridspace, Ditto Labs, Nervana, 

Deep Genomics, Indico, Deep Instinct, Clarifai, Ibidon, Enlitic, Metamind, Ripjar, 

MarianaIQ.  

  

3.2 K-Nearest	Neighbors		
 

3.2.1 General	concept	
 

K-nearest neighbors algorithms are the most accessible algorithms to understand. 

Neighbors-based classification is classified as instance-based learning. Classification is 

obtained based on a majority vote of the nearest neighbors of each point. The data class of 

the point queried is obtained based on the data class with the most representatives within 

the nearest neighbors of that point. KNN is used for both classification and regression 

problems. An example of a KNN classifier is represented in figure 8 (Ajanki, 2007).  
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Figure 8 Example of k-nearest neighbors classifier 
Source: Ajanki, A. (2007) 

 

This is a KNN classifier with k=3 (solid line) and k=5 (dotted circle line). There are red 

and blue known samples and a green unknown sample. The samples are placed in a two-

dimensional feature space. Each feature is one dimension to classify the unknown sample 

as red or blue; the classifier uses a distance function to find the k-nearest neighbors of the 

unknown sample. It can then predict the label of the green sample by finding the majority 

of red or blue labels among the k-nearest neighbors. In this example, when k=3, the 

unknown sample is predicted as red and when k=5, it is predicted to be blue.  

 

3.2.2 Distance	function	
   

The distance function is an essential element of KNN algorithms. The performance of the 

KNN algorithm can depend significantly on the distance function. The most popular 

distance function is the Euclidian distance function. It is not used for categorical data. For 

categorical data, Hamming distance function is used. The euclidian distance can be 

generalised to a Minkowski distance (p-norm). For p=2, it corresponds to the Euclidian 

distance. For p=1, it corresponds to Manhattan distance. By changing values of p, it is 
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possible to obtain an all family of distance functions with properties that are very different 

from the Euclidian distance.  

 

3.2.3 Advantages	and	disadvantages	
 

With nearest neighbors, there is no assumption. The only thing that is assumed is proximity. 

Similar instances should have similar class values or similar targets for regression. 

Assumptions are implied by the distance function. It’s a non-parametric approach. In a 

sense, it lets the data speak for itself. There is nothing to infer from the data except k or 

possibly D. It is easy to update in an online setting by adding a new item to the training set. 

Cover and Hart (Cover & Hart, 1967) were able to show in the large sample case that the 

probability of error of a 1-nearest neighbors classifier is less than twice the Bayes error 

rate. Their paper also indicates that the error probability of the KNN rule monotonically 

decreases in k to the Bayes error probability showing the versatility of the family of KNN 

rules. Another advantage is that KNN is particularly well suited for multi-modal classes 

and applications in which an object can have many class labels. On the downside, it is 

necessary to handle missing data by filling in or creating a unique distance. It is sensitive 

to class outliers (mislabelled training instances). It is also sensitive to many irrelevant 

attributes (affect distance adds noise to the distance function). It is like Naïve Bayes in this 

case and not like decision trees. Decision trees will ignore irrelevant attributes. This 

algorithm is not learning anything, and it is just storing all the training instances and then 

comparing them at the testing time. It means that there is a need for space/storage to keep 

all training examples and time to compute the distance to all examples. If the number of 

training examples increases, the system will become slower and slower. Expense is testing, 

not training time. It is a problem as it is better to have large training sets to make reasonable 

and accurate estimates. 
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3.3 Support	Vector	Machines				
 

3.3.1 History	of	SVMs	
 

Support Vector Machine is a supervised learning technique used for classification and 

regression problems. It was first introduced in a 1992 article (Boser et al., 1992) in which 

the author presented a training algorithm. The margin was maximised between the decision 

boundary and the training patterns. SVMs were put into practical application as Large 

Margin Classifiers. Vladimir Vapnik et al. (Vapnik, 1999) discussed the Statistical 

Learning Theory about SVM. The statistical learning theory discusses the problem of 

choosing desired functions based on empirical data. Structural Risk Minimization (SRM) 

is the basis of SVMs. It was introduced by Vapnik et al. SVMs became successful within 

handwritten digit recognition (Bottou et al., 199The article compares the performance of 

multiple classifiers algorithms using handwritten digits from a standard database 1.1% test 

error rate was discovered using SVM. This is the same error rate of a carefully constructed 

neural network that they refer to as LeNet4. With SVMs, the number of training samples 

is not impacting the results (Jonsson et al., 2002). When most neural networks compare the 

empirical risk minimisation principle, better results are obtained. (Juwei Lu et al., 2001). 

For the estimation of how various features modify classification results and identifying the 

one that is important in planning, SVMs can be helpful. This is in addition to classification. 

SVMs have been successfully utilised in face detection, image detection, speech 

recognition or prediction.  Bankruptcy prediction is an example. There are other uses (Byun 

et al., 2003).  

 

3.3.2 SVM	concept	
 

The goal of SVMs is to minimise an upper bound of the generalisation error by maximising 

the margin between the data and the separating hyperplane (Amaris and Wu, 1999). Neural 

networks minimise the empirical training error. Empirical Risk Minimization (ERM) 

corresponds to standard learning approaches to reduce error on the training dataset. A 

neural network is a typical example of an ERM. As described earlier, the basis for SVM is 
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Structural Risk Minimization (SRM). SRM minimises an upper bound on the expected 

risk. ERM minimises the error on the training data. SVMs can generalise well because of 

this difference, and it’s the goal to achieve in statistical learning. There is no 

overgeneralisation with SVM (Mitchell, 1997).  

 

3.3.2.1 Support	Vector	Machines:	The	linearly	separable	case			
 

The hyperplane which corresponds to a decision plane is what’s behind SVMs. The 

positive class (+1) and the negative class (-1) are separated with the largest margin. The 

latest is associated with the Vapnik-Chervonenkis (VC) dimension of an SVM. The VC 

dimension quantifies the capacity (expressive power, complexity, flexibility, or richness) 

of a space of functions that a statistical classification algorithm can learn. It corresponds to 

the cardinality of the largest set of points that the algorithm has shattered. When two classes 

are linearly separable, finding a hyperplane that gives the smallest generalisation error 

compared to all the possible hyperplanes is not necessary. This hyperplane is the 

hyperplane with the maximum margin of separation between the two classes. The sum of 

the distances from the hyperplane to the closest data points of the two classes corresponds 

to the margin. Support Vectors (SVs) refer to as the closest points. The solid line represents 

the optimal separating hyperplane in figure 9. The linear separable case is also referred to 

as the linear hard-margin classifier.  

 

 
 

Figure 9 Linear separating hyperplane: Separable case 
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Source: Burges, C.J.C. (1998) 

 

3.3.2.2 Support	Vector	Machines:	The	linearly	non-separable	case			
 

With data used in practical applications, the separation between the two classes is 

incomplete, but a hyperplane can still be defined. The hyperplane maximises the margin 

of the training data. Positive slack variables in the constraints make this possible. In an 

optimisation formed to equality, when a slack variable is an added problem, inequality 

constraint is trans. The non-separable case is also referred to as the linear soft-margin 

classifier and is represented in figure 10.  

 
Figure 10 Linear separating hyperplane:  Non-separable case 

Source: Kumar, S. and Apparao, M. (2017) 

 

3.3.2.3 Nonlinear	Support	Vector	Machines			
 

Nonlinear decision surfaces modifications are mandatory in classification problems when 

a linear classifier is used (Tay and Cao,2002). If the linear decision surface does not exist, 

the data is mapped to a higher-dimensional space. It is also called the feature space, where 

the separating decision surface can be found. In figure 11, the generalised optimal 

separating hyperplane is represented and constructed in the high dimensional feature space.  



 

  
  

  

51 

 
Figure 11 Input space and feature space 

Source:  Cheng, C.-T., Feng, Z.-K., Niu, W.-J. and Liao, S.-L. (2015) 

 

Computational learning theory makes use of Cover’s theorem. When nonlinear 

transformation and a high enough dimensionality of the feature space is present, there is a 

transformation of the input space into a new feature space. The patterns are linearly 

separable with high probability in this feature space (Haykin, 2009). The nonlinear 

transformation is obtained with the so-called kernel functions.  

Kernel substitution is a way to obtain nonlinear algorithms from algorithms that had 

previously a restriction on handling linear separable datasets (Campbell, 2000). Using 

implicit kernels permit bypassing the curse of dimensionality (Vapnik,1999).  Various 

learning machines are built based on different kernel functions and create different 

hyperplanes in the feature space.   

 

3.3.2.4 Quadratic	programming	problem	of	SVMs			
 

Quadratic programming is a type of mathematical optimisation problem. Quadratic 

programming is the problem of finding a vector x that minimises a quadratic function, 

possibly subject to linear constraints. 

In the previous paragraph that discussed the linearly separable case, it was defined that the 

optimal separating hyperplane is achieved with the minimisation of an equation under a 
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specific constraint to separate the training data correctly. The optimisation goal used in the 

equation is quadratic. The constraints are linear. Based on this constrained optimisation 

problem, there is a possibility to create another problem. It’s called the dual problem. 

Duality is sometimes called the duality principle. It refers to optimisation problems that 

can be observed from two different perspectives that correspond to the first problem and 

the dual problem. The dual problem solution leads to a lower bound to the primal problem 

or minimisation solution. The dual problem is also named the Lagrangian dual problem. 

Oher dual problems can be used, such as the Fenchel dual problem or the Wolfe dual 

problem.  The dual problem can be formulated using the Lagrange multipliers: With the 

available training sample, find the Lagrange multipliers that maximise the objective 

function subject to specific constraints. The objective function that needs to be maximised 

in the situation of non-separable problems in the dual problem is almost equivalent to the 

case for the separable problems. The difference is that the constraints in the separable case 

are switched with more stringent constraints in the non-separable case.   

There are several suggestions regarding the algorithms that can solve the dual problems. 

QP algorithms that were used traditionally (Schölkopf, Burges and Smola, 1999), (Smola 

and Schölkopf, 2004) are not the most appropriate when problems are significant for few 

reasons (Keerthi, Shevade, Bhattacharyya and Murthy2001) because the kernel matrix 

must be computed and stored in memory. The consequence is that a large memory is 

needed. Methods used include the Cholesky decomposition of a large submatrix of the 

kernel matrix.  

Finally, coding these algorithms is very difficult, especially for practitioners developing 

their SVM classifier implementation. Some methods can get rid of some or sometimes all 

the problems defined earlier. A whole new set of QP problems was suggested by Osuna et 

al. (Osuna, Freund and Girosit, 1997). A series of smaller QP sub-problems creates the 

significant QP problem. One example that violates the Karush-Kuhn-Tucker (KKT) 

conditions must be added to the examples for the previous sub-problem. In mathematical 

optimisation, first-order necessary conditions (KKT conditions) are conditions so that a 

solution in nonlinear programming is optimal, including the satisfaction of some regularity 

conditions. A sequence of QP sub-problems will be guaranteed to converge when there is 
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the addition of a least one violator all the time (Osuna, Freund and Girosit, 1997An 

optimisation new training algorithm named Sequential Minimal Optimization was 

proposed by Platt (Platt 1998). It solves the SVM QP problem rapidly without the need for 

extra matrix storage and the use of numerical QP optimisation steps. SMO divides the QP 

problem into multiple QP sub-problems using Osuna’s theorem. Two Lagrange multipliers 

are chosen by the SMO to optimise at each step jointly. After finding the optimal values 

for these multipliers, SVMs are updated to indicate the new optimal values. Numerical QP 

optimisation is avoided as the two Lagrange multipliers are solved analytically. Extra 

matrix storage is not needed; therefore, the memory of a personal computer is sufficient 

for significant SVM training problems (Platt, 1998). Using a single threshold in Platt’s 

SMO algorithm can lead to confusion and inefficiency, as Keerthi et al. (Keerthi, Shevade, 

Bhattacharyya and Murthy, 2001) pointed out. Using clues taken from the KKT conditions 

and applied to the dual problem, two threshold parameters are used to generate changes of 

SMO. The basic SVMs for two-class problems initially separated the binary classes (k=2) 

with a maximised margin criterion (Cortes and Vapnik, 1995).  

However, real-world problems often require discrimination for more than two categories. 

Multi-class pattern recognition has a wide range of applications, including optical character 

recognition (Mori and Suen, 1995), intrusion detection (Khan, Awad and Thuraisingham, 

2007), speech recognition (Ganapathiraju, Hamaker, Picone, 2004) and bioinformatics 

(Baldi and Pollastri, 2002).  In practice, the multi-class classification problems (k>2) are 

commonly decomposed into a series of binary problems such that the standard SVM can 

be directly applied.  

Two representative ensemble schemes are one-versus-rest (Vapnik, 1998), (Bin, Yong and 

ShaoWei, 2000) and one-versus-one (Kreßel,1999). Both one-versus-rest and one-versus-

one are special cases of the Error-Correcting Output Codes (ECOC) (Dietterich and Bakiri, 

1995), which decomposes the multi-class problem into a predefined set of binary problems. 

Multi-class SVMs are discussed in the following sub-chapters.  

 

3.3.2.5 Multi-class	SVMs:	One	to	others	
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One to others SVM is the method1 described in the article published by Bin et al. (Bin, 

Yong, and Shao-Wei, 2000). The first labelled samples can be classified by SVM1 and the 

ith labelled ones by SVM. For the in-class problem (n>2), SVM classifiers are referred as 

SVMi, i=1,2,…n.  

3.3.2.6 Multi-class	SVMs:	Pairwise	SVMs	
 

Pairwise SVM is the method2 described in the article published by Bin et al. (Bin, Yong, 

and Shao-Wei, 2000) and is also mentioned in the article published by Kreßel (Kreßel, 

1999). Trees correspond to the arrangement for pairwise classifiers. An SVM is represented 

by each tree node. Pontil et al. (Pontil and Verri 1998) suggested a bottom-up tree to 

recognise 3D objects. It was also applied to face recognition (Guo, Li and Chan, 2000), 

(Guo, Li and Chan, 2001). A recent publication discusses the top-down tree structure (Platt, 

Cristianini and Shawe-Taylor, 1999). The performance of the two strategies with 

classification problems is not analysed theoretically (Heisele, Ho, Wu and Poggio, 2003). 

New experimentation on people recognition indicates identical performances for 

classification for both strategies (Nakajima, Pontil and Poggio, 2000). Figure 12 represents 

examples of tree structures of multiclass SVMs.  

 
Figure 12 Multi-class SVMs: Tree structure 

Source: Byun, H., Lee, S. W. (2003) 
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3.3.3 Applications	of	Support	Vector	Machines	
 

It was discussed earlier that beta-barrel membrane topology prediction is considered a 

pattern recognition problem. In this section, a discussion on some of the use of SVMs for 

pattern recognition problems is addressed. Face detection, verification and authentication 

are very popular in biometric, access control, identity authentication, or surveillance in 

general. Much current research is performed for those applications using different methods. 

Reliable performance is challenging to achieve. Identical facial configurations can be 

observed with some persons due to minimal variations in the light intensity, makeup on 

faces, different poses, and facial expression. Using a pair of glasses or having moustaches 

can make it harder to recognise faces (Wang, Chua and Ho, 2002). Osuna et al introduced 

frontal face detection (Osuna, Freund and Girosit, 1997). A 19x19 window scan input 

images and an SVM is trained with a new decomposition algorithm and 2nd-degree 

polynomial kernel function. Global optimality can be guaranteed.  Kumar et al. (Kumar 

and Poggio 2000) have used the Osuna et al. algorithm to track real-time faces. The 

algorithm’s speed was improved by Romdhani et al. (Romdhani, Schokopf, and Blake, 

2001) using a method that includes reduced support vectors. They are derived from support 

vectors. The improvement of face detection performance was obtained with majority 

voting as described in the paper written by Bassiou et al. (Bassiou, Kotropoulos, Kosmidis 

and Pitas, 2001). For face recognition and authentication, it comes to two different 

problems to solve. In face recognition problems, a face is used as a test, and multiple 

references faces are within a database. The algorithm tries to find the most significant 

number of similar reference faces to the test face. A face for test and a face for reference 

are used in face authentication problems. The algorithm needs to decide if the face for the 

test is the same as the face used for reference.  

Object detection and recognition have the objective of finding and tracking people on the 

move. Applications include surveillance or traffic control. A system using SVM was 

suggested by Pittore et al. It can detect the presence of people on the move from an image 

sequence (Pittore, Basso and Verri, 1999).  
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Handwritten character/digit recognition is also another application of SVMs. SVMs have 

better performances than any other learning algorithms. There are problems with 

handwriting recognition as considerable variability and distortions of patterns. Two 

different feature families (statistical and structural) with an SVM classifier have been used 

by Gorgevik et al. for handwritten digit recognition (Gorgevik, Cakmakov and Radevski, 

2001). Single SVM classifiers have better performance than rule-based reasoning applied 

to two separate classifiers. A vision-based handwritten digit recognition system using an 

SVM classifier has been created by Teow et al. (Teow and Loe, 2002).  SVM classifiers 

have been utilised in Chinese check recognition systems, and Bin et al. (Bin, Yong, and 

Shao-Wei, 2000) demonstrated that SVM possesses better generalisation ability than other 

classifiers.   

Speaker and speech recognition is another application of SVMs, and they have been used 

with different datasets. The standard thresholding rule was replaced with SVMs for speaker 

verification decision, acceptance, or rejection (Bengio and Mariethoz, 2001). There is a 

significant improvement in performance with text-independent tasks. The normalisation of 

polynomial kernel within SVMs was proposed by Wan et al. (Wan and Campbell, 2000).  

Content-based image retrieval is another application of SVM. It can be used for a digital 

library or a multimedia database. A distance-from-boundary for retrieving the texture 

image was suggested by Guo et al. (Guo, Li and Chan, 2001). SVM can provide the 

boundaries between classes.   

In bioinformatics, significant applications include identifying proteins functions, gene 

functions and microarray classification. Identifying protein function includes secondary 

structure prediction, identification of binding sites, sub-nuclear localisation of proteins, 

subcellular localisation, protein-protein interaction prediction, prediction of protein 

disorder, identification of gene function includes promoter prediction, prediction of tissue-

specific localisation of genes, prediction of DNA methylation sites and DNA hot spots 

prediction. Microarray classifications include leukaemia prediction, colon cancer 

prediction and prediction of several genetic disorders. Data fusion which corresponds to 

heterogeneous biological data is bringing more attention. The human genome is almost 

entirely sequenced. Given a specific gene, there is a possibility to know the protein it 
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encodes, to understand how similar that protein is compared to other proteins, how mRNA 

expression levels are associated, the frequency of known or inferred transcription factor 

binding sites that can be found in this gene’s upstream region or to know the identities of 

multiple proteins that have an interference with the gene’s protein product. Pavlidis et al. 

(Pavlidis, Weston, Cai and Noble, 2002) demonstrated the application of the SVM learning 

algorithm to understand cellular function at the molecular level by grouping information 

from disparate types of genomic data. SVMs were trained to recognise the function 

category of yeast genes using an ensemble of microarray gene expression data and 

phylogenetic profiles. Data are fixed-length, real-valued vectors in both types and a third-

degree polynomial kernel have been used. There is a comparison between the three 

different techniques for combining those two data types. The comparison is represented in 

figure 13.  

  

 
Figure 13 Three methods for learning from heterogeneous data using SVM 

Source: William Stafford Noble (2017) 

 

Two data types are linked together to generate a specific set of input vectors for early 

integration. The kernel values are being calculated separately for each data set and then 

calculated with a sum in intermediate integration. The SVM trains each data type. The 
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discriminant values are obtained with a sum in late integration. This paper also presents 

heuristic techniques regarding scaling factors in the application for each kernel function.  

 

3.3.4 Limitations	of	Support	Vector	Machines	
 

Kernels have a significant impact on SVM performances. An explanation of the relation 

between the standard regularisation theory and the SVM kernel method was given by 

Smola et al. (Smola, 1998). Amari et al. (Amari and Wu, 1999) suggested a kernel having 

a modification based on information-geometric consideration of the structure of the 

Riemannian geometry induced. The suggestion had the objective to increase performance.   

Sizes of the training and testing phases are also significant. When massive datasets that can 

include millions of support vectors are used in the training phase, there is a problem that 

has not been solved (Burges, 1998). A modification of the SMO (Platt, 1998) was proposed 

to solve the training problem.  

Another complex problem can be related to controlling the selection of Support Vectors. If 

patterns that need to be classified are non-separable and the training data are noisy, there 

is often a problem. Removing known errors from the data before training or removing them 

after training will not produce the same optimal hyperplane. It’s because the errors are 

necessary for penalising non-separability (Haykin, 1998). Limitations of SVM will also be 

discussed while interpreting results from the MATLAB implementation.  

Some elements used to implement an ANN and KNN can be reused to implement an SVM 

classifier. The datasets, binarisation of the inputs/outputs, construction of the input and 

target matrices, data division and assessPerformance function used previously will be 

similar.  

 

3.4 Ensemble	methods	
	
Ensemble’s methods use various machine learning algorithms to obtain better predictive 

performance than the learning algorithms alone. It is not the same as statistical ensemble 

used in statistical mechanics. Statistical ensembles are most of the time infinite. Machine 

learning ensembles consist of a concrete finite set of alternative models. It has been decided 
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to use an ensemble method as part of this paper to improve the predictive performance. 

Cascading is a unique model of ensemble learning that is based on the concatenation of 

several classifiers. It uses all information collected from the output from a given classifier 

and use it as input for the next classifier in the cascade. Compared to voting or stacking 

ensembles with multi-expert systems, cascading is multistage.   

3.4.1 General	concept	
 

An ensemble is a supervised learning algorithm. It is trained and then will be used to make 

predictions. The trained ensemble represents a single hypothesis. Ensembles can be 

represented by having more flexibility in the functions they can represent.  This flexibility 

can lead to overfitting of the training data. The ensemble techniques such as bagging tend 

to reduce problems that correlate with the overfitting of the training data. Ensembles can 

provide excellent results when there is diversity among the models (Kuncheva and 

Whitaker, 2003) (Sollich and Krogh, 1996). Most ensemble techniques look to include 

variety among the models they are combining. (Brown, Wyatt, Harris, and Yao, 2005).  

 

The number of component classifiers for an ensemble impacts the accuracy of prediction. 

Few studies have been addressing this issue. For online ensemble classifiers, it’s even more 

critical to determine the ensemble size, volume, and velocity of significant data streams. 

Statistical tests have been used to get the correct number of components. A new theoretical 

framework suggests that an ideal number of component classifiers for an ensemble can be 

found. The framework is named “The law of diminishing returns in ensemble 

construction”. This framework indicates that the highest accuracy can be achieved using 

the same number of independent component classifiers as class labels (Bonab and Can, 

2016).  

 

Classification ensembles can be found in the Statistics and Machine learning Toolbox 

(Mathworks, 2017). It includes boosting, random forest, bagging, random subspace and 

ECOC ensembles for multiclass learning.  
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3.4.2 Types	of	ensembles	
 

 

3.4.2.1 Voting	and	averaging	based	ensemble	methods	
 

Voting is one of the simplest ways of combining the predictions from multiple machine 

learning algorithms. Voting has been used mostly for classification, and averaging has been 

used for regression. Creating multiple classification/regression models using training 

datasets is the first step for both approaches. Each base model will be created using various 

splits of the same training dataset and same algorithm. It can also be created using the same 

dataset with different algorithms. Every model makes a prediction, all called a vote, for 

each test instance. The final output prediction is the one that receives more than 50% of 

the votes in majority voting. If none of the predictions gets more than 50% of the votes, it 

can be concluded that the ensemble method cannot make a stable prediction for this 

instance. There is a possibility to try the most voted prediction as to the final prediction, 

and it’s named ‘plurality voting’ in some papers. Weighted voting is another option that 

can be used. In majority voting, each model will have the same rights. In weighted voting, 

it’s possible to emphasise one or more models. The prediction of the better models is 

counted multiple times in weighted voting. Finding an appropriate set of weights is up to 

the person performing the task. The average predictions will be calculated for every 

instance of the test dataset in the simple averaging method. Most of the time, this method 

will decrease overfitting and will create a smoother regression model. The weighted 

average is the last method available and corresponds to a modified version of simple 

averaging. The average is calculated from the multiplication of the prediction of each 

model by the weight.  

 

3.4.2.2 Bootstrap	aggregating	(bagging)	
 

Bootstrap aggregating is also named bagging, is composed of each model in the ensemble 

vote with equal weight. In bagging, training is done on each model in the ensemble using 

a subset of the training dataset selected randomly. The first step involves the creation of 



 

  
  

  

61 

multiple models. The models will be generated using an identical algorithm with random 

sub-samples of the dataset. These sub-samples are selected randomly from the original 

dataset using the bootstrap sampling method. Each sub-sample will be created 

independently from the other. The training and generation can be executed at the same 

time. The bagging technique is used in the random forest algorithm.   

3.4.2.3 Boosting	
 

Boosting defines a group of algorithms that can convert weak models to strong models. 

Boosting is building an ensemble and will train each model with the same dataset. The 

weights of instances will be modified and adjusted following the error of the last prediction. 

The models are then obliged to focus on the complex instances. Boosting is a sequential 

method, and parallel operations will not be used compared to bagging where it’s possible. 

Adaboost is a popular boosting method algorithm. The Gödel prize was won by the creators 

of Adaboost. It can be executed simultaneously with multiples other learning algorithms to 

improve performance. The output of the different learning algorithms, also named weak 

learners, will be grouped into a weighted sum. That sum represents the final output of the 

boosted classifier. AdaBoost can be adapted, meaning that subsequent weak learners are 

slightly modified in favour of those instances that were not classified correctly by previous 

classifiers. AdaBoost is also sensitive to noisy data and outliers. In some situations, it will 

be less sensitive to the overfitting problem than other learning algorithms. Individual 

learners can be weak; however, if their performance is slightly better than random guessing, 

the final model will converge to a strong learner. Each learning algorithm will tend to fit 

specific problem types more than others and have various parameters and configurations 

to be modified before obtaining optimal performance on a dataset. AdaBoost, including 

decision trees as weak learners, is often considered the best out-of-the-box classifier (Kégl, 

2013). When it is used in conjunction with decision tree learning. The information obtained 

at each stage about the relative 'hardness' of each training sample is put into the tree 

algorithm. Later trees will tend to focus on harder-to-classify samples.  

 

3.4.2.4 Multi-stage	method	cascading	
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Cascading is a multistage method. Associated with each learner is confidence &5 such that 

it can be said that '5 is confident of its output and can be used if &5 > θj (the threshold). 

Confidence corresponds to misclassifications and the instances for which the posterior is 

not high enough. The idea is that an early simple classifier handles most instances, and a 

more complex classifier is used only for a small percentage, so it does not significantly 

increase the overall complexity. A Multi-stage Deep Classifier Cascades (MDCC) is 

represented in Figure 14 to address some challenges in the open world recognition scenario. 

Open world learning (OWL) is also known as open-world recognition, classification, 

or open-world AI. It is getting increasingly important as the learning agent is 

increasingly working in or facing the real-world open and dynamic environment. The core 

of open-world learning or open-world AI is about recognising unknowns and learning them 

so that the AI agent will become more and more knowledgeable. 

 

 
 

Figure 14 Architecture of Multi-stage Deep Classifier Cascades and model details of (a) root 
node and (b) leaf nodes 

 
Source: Guo, X., Alipour-Fanid, A., Wu, L., Purohit, H., Chen, X., Zeng, K. and Zhao, L. (2019) 

    

The first cascading classifier was a face detector. This classifier needed to be quick as it 

was implemented on cameras and phones with low-power CPUs (Viola and Jones, 2001). 

The term cascading classifier has been used in statistics to define a model with various 

stages. For example, a classifier such as k-means will use a vector of features and generate 
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outputs for each possible classification result the probability that the vector belongs to the 

class. This can be mainly used to decide; however, cascading classifiers utilise the output 

as the input to another model, which corresponds to another stage. This will be useful for 

models that have highly combinatorial or counting, which cannot be fitted without looking 

at the interaction terms. The successive stage can gradually make an approximation of the 

combinatorial nature of the classification or add interaction terms in classification 

algorithms.  

 

3.4.2.5 Stacking	
 

Stacking is an ensemble learning technique to combine multiple classification models via 

a meta-classifier. The individual classification models are trained based on the complete 

training set; then, the meta-classifier is fitted based on the outputs -- meta-features -- of the 

individual classification models in the ensemble. The meta-classifier can either be trained 

on the predicted class labels or probabilities from the ensemble 

 

 
Figure 15 Stacking 

Source: Tama, A.B., Rhee, K.H., (2017) 

 

Tama et L. conducted a comparative experiment using different ensemble approaches, 

including stacking, in a recent paper. To prove classifier ensemble can perform on intrusion 

detection, they considered two real public datasets, e.g., network-based intrusion detection, 
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namely NSL-KDD dataset (Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A, 2009). 

and 802.11 network-based intrusion detection, namely GPRS dataset (Vilela, D.W.F.L., 

Ferreira, E.W.T., Shinoda, A.A., de Souza Araujo, N.V., de Oliveira, R. and Nascimento, 

V.E.,2014). Among classifier ensembles, stacking is a powerful method for IDS since it 

yields the best performance in terms of accuracy, precision, and F1. 

 

 

 

 

3.4.3 Applications	of	ensembles	methods	
 

There have been various applications of ensemble learning in bioinformatics.  Some 

examples include the classification of gene expression microarray data and MS-based 

proteomics data. Gene-gene interaction and identification using single nucleotide 

polymorphism (SNPs) data taken from Genome-Wide Association studies is another 

example. Prediction of regulatory elements from DNA and protein sequences is a third 

example. Ensemble methods can be applied to other bioinformatics problems apart from 

the three main areas listed earlier. For gene function prediction, a meta-ensemble based on 

SVM was suggested (Guan et al., 2008). It has three base classifiers. The prediction is 

achieved by selecting the best performance of the three for each gene ontology term. Shen 

and Chou (Shen and Chou 2006) created nine sets of features for an ensemble used to 

recognise protein folding. The features taken from the protein sequences included 

secondary structure, polarizability, hydrophobicity, polarity, Van de Waals volume, and 

various dimensions of pseudo-amino acid composition. KNN base classifiers have been 

trained with the use of different feature sets. They have been put together as part of a 

weighted voting manner. Ouali et al. (Ouali and King 2000) designed a classifier used for 

protein secondary structure prediction. It was created using cascading various types of 

classifiers using neural networks and linear discrimination. Melvin et al. (Melvin et al., 

2008) introduced a combination of KNN classifier with an SVM classifier for protein 

structure prediction using sequence information. The KNN classifier was trained using 
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global sequence information, also named full coverage. The SVM was trained with the use 

of local sequence information. Wang et al. (Wang et al., 2006) made the use of stacked 

generalisation for the prediction of membrane protein types. An SVM and a KNN have 

been used and correspond to the base classifiers. A decision tree was used for the 

combination of the base classifiers. The Ensemble technique was looked at for the protein-

protein interaction problem. Lately, Deng et al. (Deng et al., 2009) made the use of an 

ensemble algorithm using weighted voting strategy and bootstrap resampling. The tricky 

part of this learning task corresponds to the imbalance of the data classes because of the 

lack of positive training examples. The authors found that the ensemble could reduce the 

imbalanced problem and significantly increase prediction performance. Ensemble methods 

have been used in various new studies that explain genetic networks. Wu et al. (Wu et al., 

2010) suggested using a relevance vector machine (RVM) based ensemble in the prediction 

of human functional genetic networks out of multiple sources of data. The ensemble 

appears to be effective even with large missing values. The applications of ensemble 

methods in bioinformatics that have been described so far are not complete, but the main 

topics have been discussed. Ensemble methods are beneficial in general.  It’s flexible, and 

there are multiple ways to create and adjust them. The use of ensemble techniques for old 

and new biological problems will likely be the focus in the coming years. There is much 

promise around the ensemble method. Various extensions have been suggested. The 

following section focuses on multiple extensions that can be used to achieve better 

prediction.  

An easy method to use SVM as part of the ensemble framework is applying the bagging 

procedure with the base classifier SVM. Caragea et al. (Caragea et al., 2007) took this 

approach. A bagging ensemble with the base classifier of SVM was used for glycosylation 

site prediction. The results showed that the SVM ensemble's performance suppressed both 

the single SVM and the balanced when they trained each base classifier with a re-sampling 

of the balanced training set. Guan et al. (Guan et al., 2008) used a bagging procedure to 

create an ensemble of SVMs in a gene function prediction problem. The ensemble of SVMs 

always performs better than the single SVM classifier around gene ontology term 

recognition., and robotics. Peng (Peng, 2006) looked at the concept of over-generating and 
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selecting an appropriate subset of base classifiers. The bootstrap sampling method and the 

utilisation of a base classifier such as the SVM are used to create multiple training sets. 

There is more stability with the SVM for small perturbation of the training samples than 

the decision tree. If base classifiers need to be diversified, using a clustering-based base 

classifier selection procedure can ensure that the accuracy of base classifiers is strong even 

though they disagree with each other. When comparing a single SVM classifier to the 

ensemble of bagging and boosting, Peng concluded that the best results could be obtained 

with a clustering-based SVM ensemble. Gordon et al. (Gordon et al., 2006) suggested an 

approach to an ensemble where SVM has a different kernel and are combined for 

transcription start sites prediction. The approach defined by Gordon et al. gave a new way 

to create an SVMs ensemble. This could be very helpful for problems with heterogeneous 

data sources and feature types. It was looked at if an improvement was possible when 

creating a meta ensemble, an ensemble of ensembles. Dettling (Dettling 2004) looked at it 

and proposed a combination of bagging and boosting algorithms for microarray data 

classification. It is also called BagBoosting. It was thought that enabling ensemble has a 

low bias; however, the variance is high, and the bagging ensemble has lower variance and 

no changed bias. BagBoosting demonstrated that it could improve prediction compared to 

bagging and boosting alone. It is also very efficient compared to various SVM or k- NN 

classifiers.  Guan et al. (Guan et al., 2008) suggested three different SVMs ensembles as 

base classifiers and are further combined as a meta-ensemble of SVMs in the use of gene 

function prediction. The final prediction of genes was obtained from selecting the best 

performing classifier based on each gene ontology term. Liu and Xu (Liu and Xu, 2009) 

looked at another option of creating meta-ensembles. The genetic programming approach 

was the basis for their ensemble system. Their experimentation showed that their system 

performed better than various other evolutionary-based algorithms. Some other methods 

attempted to look for the diversity of the base classifier with the use of heterogeneous 

classification algorithms. Bhanot et al. (Bhanot et al.,2006) used a combination of ANN, 

SVM, Weighted Voting, k NN, decision trees and logistic regression in mass spectrometry 

data classification. Kedarisetti et al. (Kedarisetti et al., 2006) used an ensemble for protein 

structural class prediction. A set of fifteen classifiers was combined in the paper from 



 

  
  

  

67 

Hassan et al. (Hassan et al., 2009). They were rule-based classifiers including k-NN and 

decision trees and function-based classifiers including SVM and neural networks. Their 

ensemble was applied to three microarray datasets to find a small number of highly 

differentially expressed genes. For microarray analysis, Yang et al. (Yang et al., 2010a) 

suggested a multi-filter enhanced genetic ensemble system. The system combines various 

classifiers and filtering algorithms with a genetic algorithm. Yang et al. (Yang et al., 2010b) 

used the genetic ensemble system for gene-gene interaction identification from Genome-

Wide Association studies. Data-level perturbation can be combined with different 

classification algorithms to produce a meta-ensemble of classifiers. It could increase the 

overall diversity and provide higher classification accuracy. Figure 15 illustrates this type 

of ensemble method. For (a), classification algorithms have been trained using the same 

training set. For (b), classification algorithms have been prepared using different 

perturbations on the training set.  

 

 
Figure 16 Schematic illustration of an ensemble using different classification 

Source: Pengyi, Y., Yee, H.Y., Zhou, B.B. and Zomaya, A.Y. (2010) 

 

Other approaches for the creation of ensembles are possible. Liu et al. (Liu et al., 2004) 

introduced a new ensemble of neural networks. It uses three different feature 

selection/extraction methods mixed with bootstrapping to provide diverse base classifiers. 
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They indicated that diverse base classifiers could also be achieved by including different 

feature generating algorithms that offer various gene ranking lists. Koziol et al. (Koziol et 

al., 2009) used the same concept similar.  Amaratunga et al. (Amaratunga et al., 2008) 

created a random forests variant named enriched random forest. It weighs the importance 

of features when selecting splitting nodes. It enhanced the random forests algorithm for the 

very high-dimensional dataset. That modification on the random forests showed very 

encouraging results, especially when the dimension of the microarray data is significant 

and the number of the discriminative genes is small. Solution-aggregating motif finder was 

presented by Yanover et al.  (Yanover et al., 2009). It is a statistical ensemble method. 

Their proposed method was based on Markov Random Field with the Best max-marginal 

first algorithm (Yanover et al., 2004), which provides the M top-scoring solutions. 

Armananzas et al.  (Armananzas et al., 2008) suggested a hierarchy of Bayesian network 

classifiers to detect gene interactions from microarray data. Robles et al. (Robles et al., 

2004) used a Bayesian network to combine multiple classifiers for the use of protein 

secondary structure prediction. Hu et al. (Hu et al., 2006) and Wijaya et al. (Wijaya et al., 

2008) suggested combining the outputs of multiple motif finder algorithms to improve the 

final prediction result.   

 
3.5 Summary	
	
   
This chapter focused on providing an overview and description of machine learning 

algorithms often used in research and their applications. Machine learning has been used 

in data mining, computer vision, natural language processing, medical diagnostics, DNA 

sequence sequencing, and robotics. This chapter started with a description and applications 

of neural networks. It discussed instance-based learning algorithms such as KNN, kernel-

based algorithms such as SVM and ensemble learning. Artificial Neural networks can be 

used to model complex relationships between inputs and outputs or to find patterns in data. 

The k-nearest neighbors (KNN) can be used to solve both classification and regression 

problems. It is one of the most used learning algorithms. It is based on feature similarity. 

SVM is one of the best choices for high-performance algorithms. Some use-cases of SVM 
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include face detection, handwriting detection and bioinformatics. Ensemble methods use 

multiple learning algorithms to obtain better predictive performance than could be obtained 

from any of the constituent learning algorithms alone. Due to growing computational power 

in recent years allowing to train larger ensemble learning in a short period, the number of 

applications of ensemble learning has grown increasingly. Some current applications 

include computer security such as classification of malware codes or anomalies detection 

or applications in remote sensing such as land cover mapping or change detection.  
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4. Datasets and data preparation 
 

Several databases are available and are repositories for the structures and sequences of 

transmembrane proteins. 

 

4.1 Existing	datasets		
 

Orientations of Proteins in Membranes (OPM) database (Lomize, Lomize, Pogozheva and 

Mosberg, 2006) include a list of transmembrane, peripheral and monotopic proteins 

extracted from the Protein Data Bank (PDB). With the database, it is possible to analyse or 

search membrane proteins based on various parameters such as structural classification, 

destination membrane or the numbers of TM segments, to name a few.  

PDB_TM is a protein data bank of transmembrane proteins (Tusnady, Dosztanyi and  

Simon, 2005a). As of March 18, 2016, it contains 2745 transmembrane proteins (2394 

alpha and 336 betas). The PDB_TM database was created by scanning all PDB entries with 

the TMDET algorithm (Tusnady, Dosztanyi and Simon, 2005b).  

Membrane Protein Bioinformatics Research Group at the Institute of Enzymology.  

CGDB is a database of membrane proteins/lipid interactions by coarse-grained molecular 

dynamics simulations. The lipid environment is a factor that affects membrane protein 

functions and stability. Chetwynd et al. developed a computation approach to predict 

membrane protein/lipid interactions (Chetwynd, Scott, Mokra and Sansom, 2008).  

MPDB is a membrane protein database that contains various information concerning the 

structures and functions of membrane proteins and peptides. Data is derived from the PDB 

and other databases, and it includes integral, anchored, and peripheral membrane proteins 

and peptides. X-ray diffraction, nuclear magnetic resonance, electron diffractions and cryo-

electron microscopy are used for the basis of the structures. (Raman, Cherezov and Caffrey, 

2006). It contains 1095 unique entries (285 unique proteins/peptides and 155 unique 

protein families).  

The team at Stephen White laboratory work mostly on biophysics issues concerning the 

folding and stability of membrane proteins (The Stephen White Laboratory at UC Irvine, 
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2016). They have few available resources, including the ‘Membrane Proteins of Known 

3D Structure’. 

Other databases available from the laboratory include the Membrane Protein Explorer 

(MPEx). MPEx is a tool that uses hydropathy plots to analyse the topology and features of 

membrane proteins.  

MPtopo is also a curated database available as part of the Stephen White laboratory at UC 

Irvine. The verification of topologies is achieved using crystallography, gene fusion, 

antibody, and mutagenesis studies (Jayasinghe, Hristova and White, 2001). The server is 

accessible, and users can query sequences with an SQL-based search engine. MPtopo 

contains a total of 165 proteins with 949 transmembrane segments.  

TOPDB (Topology data bank of Transmembrane Proteins) contains a comprehensive list 

of transmembrane proteins with topology information (Tusnady, Kalmár and Simon, 

2008). It has 4190 transmembrane proteins obtained from the literature and public 

databases available on the internet. The database is available at: http://topdb.enzim.hu  

OMPdb is a database that contains beta-barrel outer membrane proteins from Gram-

negative bacteria. It is the most complete and comprehensive collection of integral beta-

barrel outer membrane proteins (Tsirigos, Bagos and Hamodrakas, 2011). As of April 20, 

2016, the database contains 372,536 proteins entries with 93 families based on the 

structural and functional criteria.  

OMPdb (simulations) is a database of outer membrane protein simulations. It contains 

summaries from molecular dynamic simulations of around 20 transmembrane beta-barrel 

proteins. There are also indications of lipid contacts. Dr Syma Khalid currently maintains 

the database, and work is supported by Dr Kathryn Scott, Dr Peter J. Bond, and Anthony 

Ivetac.  

TMBB-DB is a transmembrane beta-barrel database developed and maintained by the lab 

of William Wimley (Freeman and Wimley, 2012). It is an ensemble of the predictions 

obtained using the Freeman-Wimley algorithm, which was shown to be among the most 

accurate predictor of TMBBs. N-terminal export signal peptide predictions made by the 

SignalP server are also included.  
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TCDB (Transport Classification Database) is a curated, relational database containing 

sequence, classification, structural-functional and evolutionary information about transport 

systems from various living organisms (Saier, Tran and Barabote, 2006). It is possible to 

look for proteins that belong to a specific porin family. There are 81 different families.  

UniProt Knowledgebase (UniProtKB) is a non-redundant database automatically annotated 

and manually curated by experts. It is possible to search for the origin of all data as the 

information is provided with the source. There are more than 120 external databases to 

which UnitProtKB is cross-referenced, and there are releases every four weeks. More than 

68 million entries in UniProtKB as of release 2016_09 of October 5, 2016, with 552 259 

entries in Swiss-Prot and 67 940 995 entries in TrEMBL. Records in Swiss-Prot have been 

manually annotated, and documents in TrEMBL are awaiting manual annotation.   

The Protein Data Bank archive (PDB) has been used since 1971. It has much information 

regarding the 3D structures of proteins, nucleic acids, and complex assemblies. The 

Worldwide PDB is the organisation that makes sure that the PDB remains free and publicly 

available. TM proteins available in the PDB are identified using the mpstruc database of 

Stephen White, UC Irvin, sequence clustering and data derived from UniProt. A membrane 

protein browser is available, and as of 12 Novembre 2021, the data bank contains 12726 

beta-barrel structures. An example of structures found in PDB is represented in figure 17. 
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Figure 17 RCSB-PDB hierarchical classification of protein domain structures 

Source: RCSB Protein Data Bank (2021) 
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4.2 BOCTOPUS2	dataset				
 

The BOCTOPUS2 dataset has been used and implemented in MATLAB. The dataset was 

used for the training and testing of the BOCTOPUS2 tool that is used for TMB topology 

prediction (Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). It is available as 

supplementary information of the paper and the URL for the BOCTOPUS2 software. 

 

 
Figure 18 BOCTOPUS 2: Improved topology prediction of transmembrane beta-barrel 

proteins 
Source: Topcons.net (2021) 

 

The BOCTOPUS2 dataset consists of 42 TMB sequences represented in table 1.TMB 

proteins are identified by their corresponding crossvalidation_setid, protein data bank ID 

(PDB_ID), UniProt ID (UNIPROT_ID), superfamily classes(superfamily) and barrel 

region (barrel_region). TMB proteins include nucleoside-specific channel-forming Tsx 

(UniProt ID: TSX_ECOLI, PDB ID:1TLY_A), which is part of the mpstruc database 

represented in figure 19. The 42 TMB sequences are culled at 30% sequence identity using 



 

  
  

  

75 

the PISCES server (Wang and Dunbrack, 2003) and are divided into ten subsets for cross-

validation. 

To ensure no homology information is used, all proteins belonging to the same super-

family are put into the same cross-validation group. Membrane boundaries and super-

family classification are obtained from the OPM database (Lomize, Lomize, Pogozheva 

and Mosberg, 2006). Residues in the transmembrane strands are labelled as pore-facing (p) 

and lipid-facing(l) based on their side-chain orientation relative to the barrel centre. This 

can be observed in the file boctopus2_dataset_sequenceannotation.txt. In the file, (o) 

corresponds to outer-loop and (i) corresponds to inner-loop.  

 

 

Figure 19 boctopus2_dataset_sequenceannotation.txt 
Source: Topcons.net (2021) 
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Table 1 BOCTOPUS2 dataset 
Source: Topcons.net (2021) 
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4.3 TOPDB	dataset			
 

The TOPDB dataset will also be used for the implementation after trying the  

BOCTOPUS2 dataset. TOPDB entries are available at the Topology Data Bank of  

Transmembrane Proteins web server.  

 
Figure 20 Topology Data Bank of Transmembrane Proteins Topology, Structure and 

Prediction 

Source: Enzim. hu. (2014) 

 

The beta-barrel TOPDB entries can be downloaded directly from the website and are 

available at: http://topdb.enzim.hu/?m=download&mid=2. The topdb_bp.txt file contains 

123 TMB sequences larger than the BOCTOPUS2 dataset.  

A representation of the file’s content is found in the following picture.  
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Figure 21 Top_bp.txt 

Source: Enzim.hu. (2014) 
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Table 2 Sample of 15 TMBs selected out of 123 TMBs available in TOPDB database  
Source: Enzim. hu. (2014) 
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4.4 Data	preparation			
 

4.4.1 Data	collection	
 

Data were collected from the BOCTOPUS2 dataset. The list of TMB proteins is 

represented in table 1. It was the dataset used to train the BOCTOPUS2 server as described 

in the paper of Hayat et al. (Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). The original 

file boctopus2_dataset_sequenceannotation.txt include all TMB proteins sequences and 

observed topologies. The sequence is represented in the FASTA format. The FASTA 

format is commonly used in bioinformatics, and it is a text-based format for representing 

peptide sequences or nucleotide sequences. A single-letter code corresponds to a single 

amino acid. M stands for methionine, F for Phenylalanine, for example. The name FASTA 

originates from the FASTA software package, a DNA and protein sequence alignment 

software package. There are many different file formats used in bioinformatics. The most 

common file formats used in sequencing analysis include SAM/BAM format, VCF format, 

Wig format, BED format or GTF/GFF3 format. Data within 

boctopus2_dataset_sequenceannotation.txt was divided into two separate files. The first 

file, boctopus2Sequence.txt, took only the FASTA sequences from 

boctopus2_dataset_sequenceannotation.txt and adjusted the file and lines numbers using 

the text editor Sublime Text. 
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Figure 22 boctopus2Sequence.txt 

Source: Enzim.hu. (2014) 

 

boctopus2Labels.txt is the second file used as input for the deep feedforward neural 

network. This file was created from the observed topologies data in the file 

boctopus2_dataset_sequenceannotation.txt.  

Pore-facing (p) and lipid-facing(l) labels were manually replaced with M to have an i, o, 

M profile labels for each sequence.  
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Figure 23 boctopus2Labels.txt 

Source: Enzim.hu. (2014) 

 

For the topbp dataset, the file available on the server was also divided into two files. 

The data file was manually curated. The observed topology represented with an X 

corresponds to the signal peptide. For the implementations, the signal peptide was ignored. 

The process of curation was like the BOCTOPUS2 dataset. The topdb_bp.txt was divided 

into two separate files TOPBPLabels.txt and TOPBPSequence.txt.  
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Figure 24 TOPBPSequence.txt 

Source: Enzim.hu. (2014) 

 

 
Figure 25 TOPBPLabels.txt 

Source: Enzim.hu. (2014) 
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4.4.2 Data	preprocessing	
 

4.4.2.1 Boctopus2	structure	array			
 

A dataset needs to be created and formatted for MATLAB to train the deep feedforward 

neural network. A 1x42 structure array with three fields (header, sequence, topology) has 

been created for the boctopus2dataset.mat.  

 

 
Figure 26 boctopus2dataset.m 

 

42 corresponds to the 42 TMB sequences. ‘header’ field corresponds to the annotation of 

a given protein sequence, ‘sequence’ corresponds to the protein sequence and ‘topology’ 

corresponds to the predicted topology. 
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4.4.2.2 Topbp	structure	array			
 

Similarly, a 1x123structure array with three fields (header, sequence, topology) has been 

created for the Topdb dataset named topbpdataset.m  

 

 
Figure 27 topbpdataset. mat. 

 

To create the structure array for the datasets, a file named comput was written in MATLAB. 

It is represented in figure 28. 
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Figure 28 Comput file 
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4.4.3 Data	transformation	
 

4.4.3.1 Binarisation	of	the	inputs	and	targets	
 

The function binarizeInputs makes the binarisation of the inputs. 

 

 
Figure 29 BinarizeInputs.m 

 

In the above code, all the possible subsequences corresponding to a sliding window of size 

W are determined by creating a Hankel matrix for each protein sequence. 

Twenty binary bits are the most common distributed encoding method. Each amino acid is 

represented by a unique 20-bit binary string that consists of ‘0’ and one ‘1’. Table 3 

represents 20-bits encoding for 20 different amino acids. Conversion of the amino acids 

sequences into real numbers is necessary to obtain numerical input vectors. In a study, 

ANNs trained with 20-binary-bit encoding produced the highest classification rate and 

AUC, therefore superior robustness. They observed a minor effect on the classification rate 

and AUC when either altering the bit length or binary input data (From 5-bits to 20-bits) 

or increasing the hidden layer nodes after a certain level or both. 
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Table 3 Best classification rate and area under the ROC curve on different binary 

encoding 

Source: Singh, S., Singh, M. (2007) 

 

 
 

 

When binary encoding is used, no Physico-chemical properties are taken into 

consideration. Previous studies also suggest that the addition of Physico-chemical 

properties does not always increase neural network performances (Brusic, Rudy and 

Harrison, 1995). Many beta-barrel consists of alternating hydrophobic and hydrophilic side 

chains. It would not be helpful to apply simple hydrophobic scales for the topology 

prediction of TMB; therefore, this approach is not considered in this paper. Various bits 

encoding has been used as part of the computation. 

 

The function binarizeTargets makes the binarisation of the targets and is represented below. 
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Figure 30 BinarizeTargets.m 

 

The matrix |TNet| represents array targets for the neural network (1 -> [1 0 0], 2 -> [0, 1, 

0], 3 -> [0 0 1]). The matrix |TSingle| contains just class (1,2,3). 

(1 = 'i', 2 = 'M', 3 = 'o') 

 

 

4.4.3.2 Input	and	target	matrices	construction	
 

 

Once the input and target matrices are defined for each sequence, an input matrix |P|, a 

target matrix |TNet|, representing the encoding for all the sequences fed into the network, 

are created. The matrix |TSingle| is used as a target for all other types of classifiers. 
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Figure 31 Construct input and target matrices 

 

 

4.5 Summary		
 

This chapter presented the list of datasets available and the data preparation techniques 

used for the implementations. Many transmembrane proteins databases serve as 

repositories for the sequences and structures of transmembrane proteins. Some databases 

such as OPM, PDB_TM contain orientations predictions of the protein relative to the 

membrane based on water-lipid transfer energy minimisation or hydrophobicity/structural 

feature analysis. OPM provides N-terminus localisation information. TOPDB was selected 

for the implementations. It includes TM proteins of unknown 3D structures whose 

topologies have been experimentally validated using low-resolution techniques such as 

gene fusion, antibody, and mutagenesis studies. BOCTOPUS 2 dataset was also selected, 

and it contains 42 proteins. This chapter also discussed the data preparation steps and 

techniques used for the implementations. Data preparation is the process of cleaning and 

transforming raw data before processing and analysis. This step was necessary for the 

implementations, and it involved reformatting data, making minor corrections to data and 

combing files. It was a lengthy process, but it was essential to put data in context and turn 

it into insights and eliminate bias resulting from poor data quality. 
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5. Implementation of ANN, KNN, and SVM  
 

This chapter describes the implementations of ANN, KNN and SVM in MATLAB. 

 

5.1 	Implementation	of	ANN		
 

5.1.1 Model	building	and	training	
 

A neural network with one input layer, one hidden layer, and one output layer is defined in 

the current architecture. The input layer encodes a sliding window in each input amino acid 

sequence, and a prediction is made on the structural state of the central residue in the 

window. A window of size 17 is chosen as a start. It is based on the statistical correlation 

between the secondary structure of a given residue position and the eight residues on either 

side of the prediction point. Each window position is encoded using a binary array of size 

20, having one element for each amino acid type. In each group of 20 inputs, the element 

corresponding to the amino acid type in the given position is set to 1, while all other inputs 

are set to 0. Thus, the input layer consists of R = 17x20 input units, i.e., 17 groups of 20 

inputs.  

The output layer has three units. The individual unit corresponds to each topology. A binary 

scheme is used for encoding. The topologies localisations of all combinations in the sliding 

window are obtained to create the target matrix. The next step is to review the position in 

the centre of each window and the corresponding topology localisation using binary 

encoding as 1 0 0 (Outside: extracellular), 0 1 0 (Bacterial outer membrane) and 0 0 

1(Inside: Periplasmic space). nntraintool opens the neural network training GUI. This 

function can be called to make the training GUI visible before training has occurred, after 

training if the window has been closed. It shows a representation of the layers of the 

network. 
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Figure 32 Neural network training GUI 

 

The function trainWithNeural is created and used to train the model. 
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Figure 33 Function trainWithNeural 

 

The function predictWithNeural returns probabilities of element being assigned to a 

particular class and the output is in the form of numbers 1,2,3 (1 = 'i', 2 = 'M', 3 = 'o').  

 

 
Figure 34 Function predictWithNeural 
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The function assessPerformance is used to display performance in the form of ROC 

curves, confusion matrix and bar charts. Plotconfusion (targets, outputs) generates 

a confusion matrix for the target and output data. Plotroc (targets, outputs) plots the 

receiver operating characteristic for each output class. Bar (x, y) creates a bar graph. The 

main function used for the KNN implementation in MATLAB is named UseClassifiers.m. 

 

 
Figure 35 Function assessPerformance 
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5.1.2 Hyperparameters	tuning	
 

Various training algorithms have been used with the computation to evaluate prediction 

accuracy. Window size, bits encoding, transfer function, hidden layer size, training 

function, performance function and data division are all parameters that have been 

modified. All results can be found in Appendix A. 

 

The neural network allows to set the following parameters: 

§ hSize – the size of the hidden layer 

§ transferFcn - transfer function for hidden layer 

§ withRandonWeights – whether there is a need to initialise network with random  

weights. 

 

5.1.2.1 Hidden	layer	
 

TMB topology prediction can be classified as a pattern recognition problem. The network 

will be trained to recognise the topology of the residue in the centre of the sliding window 

based on other residues discovered in the sliding window. patternnet is used to create a 

pattern recognition neural network, and hsize corresponds to the size of the hidden layer. 

Various hidden layer sizes have been used during this computing from 2 to 1000. The 

accuracy of prediction is summarised in Appendix A. 

 
Figure 36 Representation of the neural network 
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5.1.2.2 Transfer	function	
 

During the implementation, various transfer functions have been used. Examples include  

Log-Sigmoid function and Tan-Sigmoid function. A transfer function, such as logsig, 

allows the signals received from the input layer to be transformed in each hidden. The 

output signal generated will be between 0 and 1. The neural can adjust the weights so that 

the error between the desired and observed is at the minimum. The log-sigmoidal function 

is represented in figure 37. 

 

 
Figure 37 Log-sigmoid transfer function 

Source: Srinivasu, G., Rao, R.N., Nandy, T.K. and Bhattacharjee, A. (2012) 

 

 

A Log-Sigmoid function, which is also known as logistic function, is given by the 

following formula: 

((*) = !
!"#!"#           (5.1.1) 

 

b corresponds to the slope parameter. The sigmoid is like the step function; however, there 

is the addition of a region of uncertainty. Sigmoid functions are like the input-output 

relationships of biological neurons. Their derivatives are also easy to calculate, which helps 

calculate the weight updates for certain training algorithms. The derivative when b=1 is 

given by: 
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$%(')
$' = ((*)[1 − ((*)]         (5.1.2) 

 

When b ¹ 1, usi((1, *) = 	 !
!"	#!"# , the derivative is given by: 

 
$%(*,')
$' = 1[((1, *)[1 − ((1, *)]]        (5.1.3) 

 

 

 

Another transfer function was used during the implementation of the ANN. It is named 

Hyperbolic tangent sigmoid transfer function. Tansig(N) takes one input and returns each 

element of N squashed between -1 and 1. Tansig is named after the hyperbolic tangent, 

which has the same shape. It is represented in figure 38. 

 

 
Figure 38 Tan-sigmoid transfer function 

Source: Srinivasu, G., Rao, R.N., Nandy, T.K. and Bhattacharjee, A. (2012) 

 

 

5.1.2.3 Training	algorithms	
 

Various training algorithms have been used with the computation to evaluate prediction 

accuracy. A summary of the results with multiple training algorithms is found in Appendix 

A. A list of all training algorithms used is listed in table 4.  
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Table 4 Training algorithms used   

 
 

Trainscg (scaled conjugate gradient) is the default training algorithm available in 

MATLAB. The training sequences are fed to the deep neural network, at each training 

cycle, through the sliding window described earlier, and this is done one residue at a time. 

SCG (Scaled Conjugate Gradient) (Møller, 1993) corresponds to a supervised learning 

algorithm for feed-forward neural networks. It is a member of the class of conjugate 

gradient methods (CGM). SCG is faster than standard backpropagation and other CGMs 

(Møller, 1993). The network training function Trainrp updates weight and bias values 

based on the resilient backpropagation algorithm. The network training function Traincgb 

updates weight and bias values based on the conjugate gradient backpropagation with 

Powell-Beale restarts. As part of all conjugate gradient algorithms, there is a periodic reset 

of the search direction to the negative of the gradient. The standard reset point corresponds 

when the number of iterations equals the number of network parameters (weights/biases). 

Other reset techniques can improve the efficiency of training. One method has been 

suggested by Powell (Powell, 1977) based on a previous technique described in Beale paper 

(Beale, 1972). The conjugate gradient backpropagation updates the weight and bias values 

with Fletcher-Reeves updates (Fletcher and Reeves, 1964) in the traincgf training 

function. Weight and bias values are updated according to the conjugate gradient 

backpropagation with Polak-Ribiére updates in traincgp. Traincgp has comparable 
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performance to traincgf. In the trainoss training function, weight and bias values are 

updated based on the one-step secant method. The performance of various algorithms was 

evaluated in a recent article (Sharma et al., 2016) using small datasets with multiple 

dimensionalities. Their article indicated that KNN (k-nearest neighbors), SVM (support 

vector machines) and linear discriminant are the algorithms when using small datasets. A 

representation of the AUC and accuracies can be found in figure 39. Based on this study, 

it was decided to implement KNN and SVM classifiers for the topology prediction of TMB 

proteins. 

 

 
Figure 39 AUC & Predictive Accuracy Value 

Source: Sharma, S., Sharma, V. (2016) 

 

5.1.2.4 Data	division	
 

Overfitting is a recurrent problem that occurs when the neural network is trained. This 

happens when the model is complex and the size of the training data is too small. There is 

memorisation of the network's training examples, but there is no generalisation. Early 

stopping is one of the methods to ensure generalisation. This default value in MATLAB 

for early stopping is a maximum of 6 iterations. In the early stopping method, data division 

creates three different sets. The first set is referred to as the training set. An ensemble of 

examples is used to learn, and the network weights are updated. The second set is the 
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validation set, which is mostly used for tuning the model’s parameters. During the initial 

training phase, the validation error habitually decreases (as well as the training set error). 

The error on the validation set typically starts to rise when the network begins overfitting 

the data. The network weights and biases are saved when the validation set error reaches 

its minimum. The third set is referred to as the test set. It is used to confirm the predictive 

power of the network. Four functions are available in MATLAB for data division. The first 

one is dividerand. It will divide the data randomly. The second one is divideblock. It 

will divide the data into contiguous blocks. The third one is divideint. The data will be 

divided using an interleaved selection. The last one is divideind. Data division happens 

automatically during the training of the network. Data is divided into three sets: the training 

set, validation set, and testing set. Various division functions were used, and the results 

were evaluated. When dividerand is used, the data is divided into three sets randomly. 

The division parameter net.divideParam.trainRatio, net.divideParam.valRatio, 

and net.divideParam.testRatio are used. This is the default setting. The ratio that is 

used by default is 0.7/0.15/0.15. It corresponds to the ratio for training, testing and 

validation. Other types of partitioning can be used when modifying net.divideFcn. 

Parameters of the division function are stored and can be modified with the property: 

net.divideParam. When using the function train, by default, the data is randomly divided 

so that 70% of the samples are assigned to the training set, 15% to the validation set, and 

15% to the test set. Figures 40,41, and 42 show the structural assignments in the training, 

validation and test datasets used for this network where ‘I’ corresponds to inner-loop, ‘O’ 

corresponds to outer-loop, and ‘M’ corresponds to membrane lipid-facing and membrane 

pore-facing. 
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Figure 40 Structural assignment in the training data set 
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Figure 41 Structural assignment in the validation data set 
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Figure 42 Structural assignment in the testing data set 

 

The topology of the residues in the three subsets is similar when comparing pie charts in 

figures 40, 41 and 42. There is a measure of error for neural network training between 

computed outputs and desired target outputs of the training data. Mean Squared Error is a 

common measure. The mean squared error (MSE) of an estimator calculates the average 

of the squares of the “errors” in statistics. Error is the difference between what is estimated 

and the estimator. MSE corresponds to a risk function based on the expected value of the 

squared error loss. However, some research results (Golik, Doetsch & Ney, 2013) suggest 

using a different measure, called cross-entropy error, as it is sometimes preferable to using 

mean squared error. As discussed earlier, there is monitoring the error on the validation 

during the training phase. Training, validation, and test errors are displayed with the 

function plotperform.  
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Conditions are defined in the net.trainParam, and when they are met, the training stops. 

For example, the number of epochs greater than 200 can be a condition. Figure 43 

represents the various functions parameters of trainscg, which was used for this project. 

Other training functions have been used. 

 
Figure 43 net.trainParam function results 

 

For example, in the training considered, the training process stops when the validation error 

increases for a specified number of iterations (6) or the maximum number of allowed 

iterations is reached (1000). Validation checks represent the number of successive 

iterations that the validation performance fails to decrease. Figure 44 illustrates the 

magnitude of the gradient. Figure 45 represents the number of iterations. It can be seen 

clearly that validation checks=6 at epoch 158, and the training stops automatically.  When 

the training has obtained a minimum performance, the gradient will be small when the 

gradient is less than 1e-6. For this project, the validation checks (>6) triggered the training 

to stop. 
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Figure 44 Gradient 

 

 
Figure 45 validation checks 

 

The magnitude of the gradient can be adjusted by changing the parameter 

net.trainParam.min_grad. The criterion of validation checks can be modified by 

changing the parameter net.trainParam.max_fail. Finally, stopping the training 

manually by clicking ‘stop training’ in the training window is also possible. 

 

5.1.3 Performance	evaluation	
 

5.1.3.1 Confusion	matrix		
 

 

In machine learning, a confusion matrix, also known as a contingency table or an error 

matrix, is a specific table layout that allows visualisation of the performance of an 
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algorithm, typically a supervised learning one (in unsupervised learning, it is usually called 

a matching matrix). Each column of the matrix represents the instances in a predicted class, 

while each row represents the instances in an actual class.  

A review of the confusion matrix is needed to analyse the network response. It is essential 

to consider the outputs of the trained network and compare them with the expected results, 

also referred to as targets. In the training tool window, there is a button that permits 

displaying the confusion matrix. The confusion matrix is represented in figure 46. The 

diagonal cells show the number of residue positions correctly classified for each topology 

class. The off-diagonal cells show the number of residue positions that were misclassified. 

The diagonal cells correspond to observations that are correctly classified. The number of 

words and the percentage of the total number of observations is shown in each cell. The 

column on the far right of the plot shows the percentages of all the examples predicted to 

belong to each class that are correctly and incorrectly classified. These metrics are often 

called the precision (or positive predictive value) and false discovery rate. The row at the 

bottom of the plot shows the percentages of all the examples belonging to each class that 

are correctly and incorrectly classified. These metrics are called the recall (or true positive 

rate) and false-negative rate. The cell in the bottom right of the plot shows the overall 

accuracy. 
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Figure 46 Confusion matrix 

 

 

 

 

5.1.3.2 Receiver	operating	characteristic	curve	
 

 

The Receiver Operating Characteristic (ROC) curve can also be looked at. It is a plot of 

the true positive rate (sensitivity) versus the false-positive rate (1 – specificity). True 

positive rate is also known as sensitivity in biomedical engineering. Sensitivity corresponds 

to the proportion of actual positives that are correctly identified. False-positive corresponds 
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to fall-out. Fall-out is related to the specificity and equals to 1 - specificity. The ROC curve 

represents the sensitivity as a function of the fall-out. A perfect predictor would be 

described at 100% sensitivity. The overall accuracy is better when the ROC curve is close 

to the upper left corner (100% sensitivity, 100% specificity).  

 

 
Figure 47 Receiver Operating Characteristics curve 
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5.1.3.3 Prediction	quality	indices	
 

The topology prediction is evaluated in detail by calculating prediction quality indices 

represented in figure 48. They indicate how well a particular state is predicted and whether 

overprediction or underprediction has occurred. The index pcObs(S) was defined for state 

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the 

number of residues observed in state S. Similarly, the index pcPred(S) for state S was 

defined as the number of residues correctly predicted in state S, divided by the number of 

residues predicted in state S. These quality indices are useful for the interpretation of the 

prediction accuracy. 

 

 
Figure 48 Quality indices of prediction 
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5.2 Implementation	of	KNN	

 

Some elements used for the implementation of the ANN can be reused to implement a 

KNN (k-nearest neighbors) classifier. The dataset(s) and binarisation of the inputs used 

will be the same. The datasets used will be the same datasets used with the ANN 

implementation. The BOCTOPUS2 and TOPDB datasets will be curated and used for 

implementation. 

 

5.2.1 Model	building	and	training	
 

 

The classifier uses the fitcknn function. fitcknn is part of the statistics toolbox. Fitcknn 

(_, Name, Value) creates a model with other options specified with one or more name-

value pair arguments. The tie-breaking algorithm, distance metric of observation weights 

can be identified. Name-value pair arguments are represented as Name, Value arguments 

separated by a comma. Name is the argument name. Value is the corresponding value 

argument. The name must be within single quotes. An example is: 

‘NumNeighbors',15,'NSMethod','exhaustive','Distance','euclidean’ specifies a 

classifier for fifteen-nearest neighbors using the nearest neighbor search method and the 

Euclidean metric. Several model parameters can be modified, and there will be a first 

review on ‘BreakTies', 'NSMethod' and 'NumNeighbors' that have been used as a basis for 

creating the k-nearest neighbors in MATLAB. 'BreakTies' corresponds to the tie-breaking 

algorithm. The default value is 'smallest’, but values can be 'nearest' or 'random'. predict 

method uses the tie-breaking algorithm. There are three ways to break a tie for a k-nearest 

neighbors classifier. The smallest index among tied groups is used with 'smallest'. The 

nearest neighbor among tied groups is used with 'nearest'. A random tiebreaker among tied 

groups is used with 'random'. 'random' is like flipping a coin and deciding positive/negative 

for example. There is a tie when various classes have the same number of nearest points 

among the k nearest neighbors. 'BreakTies', 'nearest' is an example of the syntax used in 

the code. Ties happen when there is the same number of votes for two different classes in 
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the set of nearest neighbors. In binary classification, it can occur if k is even. Changing to 

an odd value (such as 3 or 5) in binary cases is possible, but it does not help for multi-class. 

Missing values need to be dealt with when using nearest neighbors. An attribute has usually 

values in the data. Missing values happen when a testing instance does not have an 

attribute. Missing values are problematic for nearest neighbors. There is no trick, like for 

naive Bayes nearest neighbors classifier or for decision tree that helps to deal with missing 

values. Here, it is necessary to do something. It is required to fill in the missing values; 

otherwise the model can’t compute distance. A reasonable choice can be to choose the 

mean (average) value of the attribute across the dataset.  

 

The function trainWithKNN is created and used to train the model. 

 

 
Figure 49 Function trainWithKNN 

 

The function predictWithKNN returns probabilities of element being assigned to a 

particular class and the output is in the form of numbers 1,2,3 (1 = 'i', 2 = 'M', 3 = 'o'). 

 

 
Figure 50 Function predictWithKNN 
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A model parameter that was discussed earlier is the tie-breaking algorithm. Another model 

parameter that needs to be considered is 'NSMethod' corresponds to the Nearest neighbor 

search method. The nearest neighbor search method is coded as pair consisting of 

'NSMethod' and 'kdtree' or 'exhaustive'. The default value is 'kdtree'. A kd-tree is created, 

and find the nearest neighbors when the value 'kdtree' is used. The distance metric must be 

'euclidean', 'cityblock', 'chebychev' or 'minkowski'in order for 'kdtree' to be valid. The 

exhaustive search algorithm is used with 'exhaustive'. There is a computation of the 

distance values from all points in X to each point in Y to find the nearest neighbors. An 

example of the syntax for this parameter is 'NSMethod', 'exhaustive'. (Mathworks, 2016). A 

k-d tree is built from training data. An example of a kd-tree is represented in figure 51.  

 
 

Figure 51 Scheme of a KD-Tree Search algorithm 
Source: Kraus, P. and Dzwinel, W. (2012) 

 

In a k-d tree, a data structure is built and organises the dataset as a tree. To find the nearest 

neighbors to the query point, it is necessary to navigate down the tree to the region that will 

hopefully contain most of the nearest neighbors for the testing point. The algorithm works 

by picking a random attribute, and for that attribute, it finds the median. It uses that median 

to split the dataset. It will divide it evenly with half the data points on one side and half of 

the data points on the other side. The procedure is repeated at other iterations using a 

different random attribute. The procedure is repeated until it ends up with a predetermined 

number of points left in each branch of the tree. Once you know the number of points that 

will be, you know how deep the tree is. At each level, the dataset is split in half, and because 
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the median is selected, it is split exactly in half. The dataset gets twice a small with every 

step. The previous figure states that the classifier stops when there are 2 or 3 nodes in each 

leaf, and figure 51 represents the final cutting of the space into regions. The data structure 

is then used for finding nearest neighbors to testing queries. In this example, for finding 

the nearest neighbors for a new point (7,4), the region containing (7,4) is selected, and a 

comparison to all points in the region is done. This technique can easily miss real nearest 

neighbors. 'NumNeighbors' is another model parameter used to create the k-nearest 

neighbors classifier in MATLAB in this paper. When the number of neighbors is changed 

to 3 or 4, the model will classify using the third or fourth nearest neighbors. K=2 has been 

selected to start the process. Values will be modified later to obtain better results and 

optimise the classifier. k will affect the algorithm’s performance a lot, and it is discussed 

using an example in another section of this research.  

So far, the trainwithKNN function has been discussed. PredictwithKNN function will 

return probabilities of the element being assigned to the class and the output in the form of 

numbers 1,2,3 (1= ‘i’, 2=’M’, 3=’o’) based on the trained-nearest neighbor classification 

model. The classifier uses the predict function available in MATLAB. The syntax is as 

follow: [output, probability] = predictwithKNN (model, input). As discussed 

earlier, a k-nearest neighbors classification model is defined as a Model and specified as a 

ClassificationKNN model object returned by fitcKNN. Input corresponds to the predictor 

data to be classified.  

The function assessPerformance is used to display performance in the form of ROC 

curves, confusion matrix and bar charts. 

 

5.2.2 Hyperparameters	tuning	
 

The k-NN model uses a k value=2 as a first implementation. Variations in the k values will 

be used to evaluate the performance of k-NN, and all results are summarised in Appendix 

B. Multiple parameters of a KNN are modifiable. NumNeighbors is one of the properties 

of a KNN that has been modified. This positive number corresponds to the number of 

nearest neighbors in X, which is a numeric matrix of unstandardised predictor value. One 
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predictor (variable) is represented by each column of X. One observation is represented by 

each row. For example, changing the neighborhood size to 6 means that the model classifies 

using the six nearest neighbors. A single nearest neighbor is the default k-nearest neighbors 

classifier. Using more than one neighbor is better NSMethod and BreakTies are other 

properties of a KNN that have been modified.  

 

The implementation used in MATLAB for this project runs 1-18 using the ‘exhaustive’ 

nearest neighbors search method, BreakTies, ‘random’ and varied data division for 

training. The syntax is as follow in the trainWithKNN.m file. Runs 19-33 use a k-d tree 

search method with various distance metrics. The Tie-breaking algorithm remains the same 

(random) as the one used in runs 1-18. ‘euclidean’ corresponds to the Euclidean distance. 

‘cityblock’ corresponds to the City block distance, ‘minkowski’ is the Minkoswki 

distance. 2 is the default exponent. ‘chebyshev’ corresponds to the Chevychev distance 

(maximum coordinate difference).  

 

For runs 34-52, the tie-breaking algorithm has been modified. All runs used for far were 

based on a random tie-breaking algorithm. The tie-breaking algorithm has been changed to 

'smallest' or 'nearest'. ‘BreakTies’ applies when ‘includeTies’ is false. 

‘includeTies’ is a flag that can be true or false. It is false by default. When it is set to 

‘true’, the model considers all nearest neighbors with a distance equal to the kth smallest 

distance in the output arguments. If it is false, then the model chooses the observation with 

the smallest index among the observations that have the same distance from a query point. 

‘Bucketsize’ can also be modified. It corresponds to the maximum data points in node.50 

is the default. It is used only when ‘NSMethod’ is ‘kdtree’. The code corresponds to s a 

pair of ‘Bucketsize’ and a positive integer value separated by a comma. An example is 

‘Bucketsize’,40. ‘exponent’ is the Minkowski distance exponent, and it can be added 

to one of the sub-parameters of a KNN. It is only applicable when ‘Distance’ is specified 

as ‘minkoswki’.  
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Starting from run 53, all the runs use the dataset TOPBPdataset.mat. Parameters are 

adjusted similarly to the runs 1-52, and results can be found in Appendix B.  

 

 

5.2.3 Performance	evaluation		
 

With the implementation of KNN, plots are also provided to evaluate the performance of 

the KNN classifier. Plots include a confusion matrix, Receiver Operating Characteristic 

(ROC) curve and chart with predicted and observed positions. The description of the plots 

and interpretation of results have been already defined in the previous chapter. 

 

5.2.3.1 Confusion	matrix		
 

The confusion matrix is represented in figure 52. The best overall accuracy is 71.8%. The 

diagonal cells show the number of residue positions correctly classified for each topology 

class. The off-diagonal cells show the number of residue positions that were misclassified. 

The diagonal cells correspond to observations that are correctly classified. The number of 

observations and the percentage of the total number of observations is shown in each cell. 

The column on the far right of the plot shows the percentages of all the examples predicted 

to belong to each class that are correctly and incorrectly classified. These metrics are often 

called the precision (or positive predictive value) and false discovery rate. The row at the 

bottom of the plot shows the percentages of all the examples belonging to each class that 

are correctly and incorrectly classified. These metrics are called the recall (or true positive 

rate) and false-negative rate. The cell in the bottom right of the plot shows the overall 

accuracy. 
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Figure 52 Confusion matrix 

 

 

5.2.3.2 Receiver	operating	characteristic	curve	
 

The Receiver Operating Characteristic (ROC) curve can also be looked at. It is a plot of 

the true positive rate (sensitivity) versus the false positive rate (1 – specificity). True 

positive rate is also known as sensitivity in biomedical engineering. Sensitivity corresponds 

to the proportion of actual positives that are correctly identified. False-positive corresponds 

to fall-out. Fall-out is related to the specificity and equals to 1 - specificity. The ROC curve 

represents the sensitivity as a function of the fall-out. A perfect predictor would be 
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described at 100% sensitivity. When the ROC curve is close to the upper left corner (100% 

sensitivity, 100% specificity), the overall accuracy is better.  

 

 
 

Figure 53 ROC curve 

5.2.3.3 Prediction	quality	indices	
 

The topology prediction is evaluated in detail by calculating prediction quality indices 

represented in figure 54. They indicate how well a particular state is predicted and whether 
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overprediction or underprediction has occurred. The index pcObs(S) was defined for state 

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the 

number of residues observed in state S. Similarly, the index pcPred(S) for state S was 

defined as the number of residues correctly predicted in state S, divided by the number of 

residues predicted in state S. These quality indices are useful for the interpretation of the 

prediction accuracy. 

 

 
 

Figure 54 Quality indices 
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5.3 Implementation	of	SVM		
 

This section describes the implementation of SVM in MATLAB. 

 

5.3.1 Model	building	and	training	
 

 

The function templateSVM is used to create the support vector machine template.  

t=templateSVM (Name, Value) generates a template that has possibilities of extra options 

specified by one of the multiple name-value pair arguments. For example, the box 

constraint, the kernel function, can be set. Whether there is a standardisation of the 

predictors or not can also be specified.  All unspecified options appear empty if t, is 

displayed in the command window. Empty options will be replaced with the corresponding 

default values at the training phase. The display of t can be accessed with a code, and the 

results of the show are also represented in figure 55. 
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Figure 55 Display of t from the command window 

 

 

 

 

The function trainWithSVM is created and used to train the model. 
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Figure 56 function trainWithSVM 

 

The function predictWithKNN returns probabilities of element being assigned to a 

particular class and the output is in the form of numbers 1,2,3 (1 = 'i', 2 = 'M', 3 = 'o'). 

 

 
Figure 57 function predictWithKNN 

 

An ECOC model is created by the function fitecoc(_, Name, Value) (fit multiclass 

models for support vector machines or other classifiers). It is for multiclass SVMs. ECOC 

stands for Error-Correcting Output Code. Generalising SVMs to deal with multiclass 

problems is one of the important research activities in machine learning. The usual practice 

is to divide a multiclass problem into various two-class problems and then associate them 
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to obtain a classification in multiple classes. Error-Correcting Output Code is one of the 

most used combination ways (Dietterich and Bakiri, 1995), called ECOC SVMs. ECOC is 

an ensemble method mostly used in classification problems with various classes. The idea 

to deal with a multi-class problem is to divide the problem into multiple smaller 

classification tasks called class binarisation. Two-class problems can have a solution with 

the use of binary classifiers. The results will be added together to solve the original 

multiclass problem. Various approaches in class binarisation are one-versus-one, one-

versus-all, and error-correcting output codes (Dietterich and Bakiri, 1995). There is 

division in the multiclass problem into a series of binary problems in one-versus-all. For 

each class, a binary classifier is trained to make a difference between the classes patterns 

and the remaining classes patterns. A classifier is trained for each possible pair of classes 

when the one-versus-one approach is used. Voting or committee procedure is used to give 

a final classification prediction. When multiclass problem is divided into various binary 

problems, it represents the concept of the ECOC framework. A two meta-class problem is 

used to train each classifier. Each meta-class has a few combinations of the original classes. 

There are two main stages in the ECOC method: encoding and decoding. Encoding is 

designing the code matrix (a discrete decomposition matrix) in each problem. A codeword 

corresponds to a row of the codematrix. Each class is represented by multiple bits. Each bit 

can identify the membership of the class to a classifier (Escalera, Pujol and Radeva, 2009). 

For each class, a codeword of length n can be created. Each bit of the code represents the 

response of a given dichotomised (coded by +1, -1, according to their class set membership) 

(Escalera, Radeva & Pujol, 2008). The final classification decision is obtained in the 

decoding phase-out of the outputs of binary classifiers. When using an unlabelled test 

sample, each binary classifier can choose from the two metaclasses used during the 

training. There is a comparison of the vector to each class codeword of the matrix. There 

is an assignment of the test sample to the class with the closest codeword based on some 

distance measure. This binary strategy was suggested in various research papers and 

showed good results. A third symbol was added to the coding matrix by Allwein et al. 

(Allwein, Schapire, Singer, 2000), and it improves the representability of the ECOC 

technique. The elements that are part of the coding matrix is taken from {-1, 0, +1} with 
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this new symbol. Classes with zero values are not taken into consideration for that 

dichotomised. Figure 58 is an illustration of various ECOC designs. (a) represents one-

versus-all, (b) one-versus-one, (c) dense random, and (d) sparse random ECOC designs. 

 

 
 

Figure 58 ECOC designs 

Source: Escalera, S., Tax, D.M.J., Pujol, O., Radeva, P. and Duin, R.P.W. (2008) 

 

+1 corresponds to the white regions. The black regions correspond to -1. Zero corresponds 

to the grey regions. In this example, there is the codification of four. A codeword for each 

class representing the rows of the coding matrix is generated. Each of the columns 
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represents a binary problem. +1 positions correspond to the classes for the first group of a 

classifier. -1 positions of the column are the classes of the second group of a classifier. For 

this problem, there are six binary problems. A reduction of the bias and variance errors of 

the base classifiers are demonstrated with an ECOC ensemble (Kong and Dietterich, 1995), 

(Windeatt and Ghaderi, 2003). A comparison of different approaches for multiclass 

classification SVM problems has been described by Hsu and Lin (Hsu and Lin, 2002). The 

comparison includes oneversus-one, one-versus-all, and a DAG SVM. Based on their 

results, one-versus-one method is better than other approaches. Only ten datasets were used 

for this comparison. Two of those ten datasets have more than seven classes. García-

Pedrajas et al.  (García-Pedrajas and Ortiz-Boyer 2011) wrote and critically assessed the 

three basic multiclass methods. From the results, ECOC and one-versus-one have the best 

performances. Support vectors and the labels and the estimated α coefficients are found in 

'SaveSupportVectors' that corresponds to properties of the resulting model. They are 

specified as a pair consisting of 'SaveSupportVectors' with true or false separated by a 

comma. The model that results when 'SaveSupportVectors' is true will save the support 

vectors in the SupportVectors property and save their labels in the 

SupportVectorsLabels property. The estimated α coefficients are held in the Alpha 

property of the SVM leaners. The model that results when 'SaveSupportVectors' is false 

and 'KernelFunction' is 'Linear' does not save the support vectors or the related estimates.  

If you want to reduce memory consumption by compact SVM classifiers, it is necessary to 

have a specification of 'SaveSupportVectors'. The Gram matrix is computed by 

'KernelFunction'. It is specified as a pair that consists of 'KernelFunction'and 

'gaussian' or 'rbf', 'linear' or 'polynomial' and are separated by a comma. The Gram 

matrix also named the Gramian matrix, is a linear algebra term. With a set V of m vectors, 

the Gram matrix corresponds to m-by-m matrix of all possible inner products of V.A Gram 

matrix is formed by the algorithm using the predictor matrix columns for nonlinear SVM. 

The inner product of the predictors is replaced by the dual formalisation with the elements 

obtained from the Gram matrix also named the ‘kernel trick’. 'gaussian' or 'rbf' is the 

default for one-class 'linear' is the default for two-classes learning. Suppose 3 (#5, #.) 

is element (4, 5) of the Gram matrix, where #5 and #. are p-dimensional vectors 
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representing observations j and k in X. Table 5 describe the supported kernel function 

names and their functional forms. 

 

Table 5 Supported Kernel function names and their functional forms  

 

 
 

 'polynomial' corresponds to the polynomial kernel. The 'PolynomialOrder’, p is equal 

to a polynomial kernel of order p. Transforming scores to posterior probabilities is also 

called ‘FitPosterior'. It is specified as a pair that consists of 'FitPosterior' and true (1) 

or false (0) separated by a comma. It will transform binary-learner classification scores into 

posterior probabilities when 'FitPosterior' is true. Posterior probabilities can be obtained 

by using predict. Fitecoc does not support fitting posterior probabilities when the binary 

learners (Learners) correspond to linear classification models implementing SVM. Logistic 

regression is needed to obtain posterior probabilities for linear classification models. 

Binary learner templates are defined as a pair that consists of 'Learners' and a character 

vector, cell vector of template objects or template objects. In this implementation, the 

'Learners' corresponds to a template object. Each binary learner is trained following the 

options that are stored. The template object has been created using templateSVM. So far, 

the trainWithSVM function has been discussed. PredictWithSVM function will return 

probabilities of the element assigned to the class and the output in numbers 1,2,3 (1= ‘i’, 

2=’M’, 3=’o’) based on the trained support vector machine model. The classifier uses the 

predict function available in MATLAB. The syntax is as follow: [output, probability] 
= predictWithSVM (model, input). 
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5.3.2 Hyperparameters	tuning	
 

Several SVM parameters are modifiable. 'SaveSupportVectors' and 'KernelFunction' 

are among those. 'SaveSupportVectors' can be 'true' or 'false' and 'KernelFunction' 

can be 'linear', 'rbf' or polynomial.'BoxConstraints' is another modifiable parameter. 

For one-class learning, the value is set to 1. An example of syntax is 'BoxConstraints',100. 

This parameter can supervise the maximum penalty that is imposed on margin-violating 

observations. It is preventing overfitting, also referred to as regularisation. Increasing the 

value of this parameter will make the SVM classifier have fewer support vectors, and the 

training is longer. Few runs have been executed with box constraints ranging from 1 to 

1000. 'CacheSize'is a modifiable parameter. When 'CacheSize' is set to 'maximal', it keeps 

enough memory to hold the entire m-by-m Gram matrix discussed earlier. When 

'CacheSize' is a positive scalar, it keeps CacheSize megabytes of memory for the 

classifier’s training. For large problems, it is recommended to use enough cache size. The 

default value is 1000. An example of the written code used is: 'CacheSize', 'maximal'.' 

IterationLimit'is another parameter that is modifiable. It corresponds to the maximal 

number of numerical optimisation iterations. 'IterationLimit'is characterised as the 

pair consisting of 'IterationLimit' and a positive integer. It returns a model that is 

trained even if the optimisation routine does not converge. Mdl.ConvergenceInfo does 

contain convergence details. The optimisation is slowed down when the iteration limit is 

very low or very high. When the iteration limit is too tight, the algorithm spends too much 

time doing optimisation of the dual variables of a single example 

'ClipAlphas' is another parameter that can be modifiable. It is written as 'ClipAlphas' 

and ‘true' or 'false'. If 'false', the software is not modifying the alpha coefficients 

during the optimisation. 'ClipAlphas' can affect SMO and ISDA convergence. 

'Solver' is another parameter that can be changed. It is specified as the comma-separated 

as 'Solver' and either 'ISDA' or 'L1QP' or 'SMO'. The default is 'ISDA' if   

'OutlierFraction' is set to a positive value and in the case of two-class learning. It will 

be 'SMO' otherwise. 'SMO' refers to Sequential Minimal Optimization (Fan, Chen and. 
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Lin, 2005). SMO was discussed earlier. Working set selection is decisive in decomposition 

methods when support vector machines are trained. Fan et al. introduced a new technique 

for working set selection. It is for SMO-type decomposition methods. It will use a second 

order information to obtain fast convergence. Experimentations used by Fan et al. indicate 

that the method they suggested is more rapid than current selection methods that use first-

order information. 'ISDA' refers to Iterative Single Data Algorithm (Kecman, Huang and 

Vogt, 2005). SMO is the most popular approach for solving SVM problems. It performs a 

series of two-point optimisations. ISDA updates one Lagrange multiplier with each 

iteration. ISDA is often conducted without the bias term b with a small positive constant 

as the kernel function. Dropping b drops the sum constraint in the dual equation. This 

allows updating one Lagrange multiplier in each iteration, making it easier than SMO to 

remove outliers. The simulation results from Kecman et al. indicated that models produced 

by ISDAs, either with the bias term b or without it, are equivalent to standard SMO based 

algorithms concerning the generalisation performance. With the use of an appropriate k 

value, ISDAs will perform faster than the standard SMO algorithms when it is large scale 

classification problems because ISDAs are more straightforward, and there is a decrease in 

the number of support vectors chosen after the inclusion of an explicit bias b. The 

conclusion was that ISDAs are great tools when there is a need to solve large scale SVMs 

problems containing large training datasets. It is faster and provides the same generalisation 

results as the standard SMO algorithms. ISDA for two-class classification can have an 

extension to the multiclass problem. This approach will decrease the complexity of 

computation, and it requires simple iterative procedures that involve matrix addition and 

multiplication. There is also a guarantee of convergence of the algorithm (Kecman, Huang 

and Vogt, 2005). Few runs were performed with the use of the ISDA algorithm. To use the 

ISDA algorithm, 'OutlierFraction' needs to be defined. 'OutlierFraction' is the 

proportion of outliers in the data used for training. It is written as 'OutlierFraction' 

and a numeric scalar ranging from 0 and 1. 

SVMs can be affected by outliers, and methods have been developed to mitigate the effects 

of outliers on SVMs. Some researchers have used schemes that identify possible outliers, 

assigning a confidence value that indicates how likely a point is believed to be an outlier. 
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In implementing this, researchers have developed the ideas of fuzzy SVMs and weighted 

SVMs (Lin and Wang, 2004), (Lin and Wang, 2002), (Suykens, De Brabanter, Lukas and 

Vandewalle, 2002), (Tsujinishi and Abe, 2003), (Wang and Chiang, 2007). Lin et al. results 

show that the generalisation error on fuzzy SVMs is comparable to other methods on the 

benchmark dataset. Suykens et al. discuss LS-SVM (Least Squares SVMs).LS-SVMs is a 

version of an SVM that include equality and not inequality constraints. Tsujinishi et al. 

referred to fuzzy LS-SVMs that can resolve unclassifiable regions for multiclass problems. 

They indicated that, with the use of benchmark datasets, the performance of fuzzy LS-

SVMs is like fuzzy SVMs. 

Fuzzy SVMs with the average operator did not show superior performance. Wang et al. 

introduced a text categorisation system to solve the multi-class categorisation problem. It 

was composed of two modules: The processing module and the classifying module. They 

concluded that the OAA-FSVM (One-Against-All Fuzzy SVM) method had outperformed 

OAA-SVM for the multiclass text categorisation problem. Some of these studies show only 

incremental improvements over the standard SVM method. Some further discussion would 

be to evaluate to what degree outliers affect SVM models, how much SVM models can be 

improved in ideal and real-world situations, or what methods can be used to deal with 

outliers. The last solver to discuss is the 'L1QP'. 'L1QP'is using quadprog to implement L1 

soft-margin minimisation by quadratic programming. This option requires an Optimization 

Toolbox license. L1QP uses a generalised algorithm for QP problems. SMO is a specialised 

algorithm for SVMs. The optimisation toolbox was not purchased as part of the MATLAB 

license, and L1QP was not used during the implementation. Genetic algorithm and pattern 

search solvers support algorithmic customisation with the optimisation toolbox. 

'DeltaGradientTolerance' is another parameter that can be modified. It is written as a 

pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar. 

'DeltaGradientTolerance' is equivalent to the tolerance for the gradient difference 

between upper and lower violators obtained by SMO or ISDA. If 

'DeltaGradientTolerance' is 0, then MATLAB will not use patience for the gradient 

difference to check the optimisation convergence. When the solver is SMO, the defaults 

are 1e-3. When the solver is ISDA, the default is 0. Tolerance specifies the maximum 
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gradient of the quadratic function used to compute support vectors. Training is terminated 

when the rise of the optimises function is less than or equal to the tolerance value. 

Typically, there is no need to change the default value. 'GapTolerance' is another 

parameter that can be modified. It is written as a pair consisting of 'GapTolerance' with 

a nonnegative scalar. It is equivalent to the feasibility gap tolerance that SMO or ISDA 

obtains. When the value is equal to 0, then MATLAB does not use the feasibility gap 

tolerance when checking for optimisation convergence. 'KernelOffset' is another 

parameter that can be modified. It is written as a pair consisting of 'KernelOffset' with 

a nonnegative scalar.thoseMATLAB will add 'KernelOffset’ to each element of the 

Gram matrix. If the solver is SMO, the default value is 0. It’s 0.1 if the solver is ISDA. The 

offset parameter is sometimes called ‘bias’ in classification tasks, and its intuitive 

understanding does not have to do with what kind of kernel is used. It is used to compensate 

for feature vectors not centred around 0. For example, you can have some feature vector x 

whose parameters are always negative. The set of weights w used in the SVM (for instance 

linear), will perhaps transform the features into the range [0,1] so they will always be 

negative. Those elements that belong to class 1 fall in the range [0,0.5], and those from 

class 2 fall into the range [0.5,1]. The SVM uses 0 as the threshold breakpoint to classify 

into a class. If greater than 0, it is an element of class 1 and if less than 0, it is an element 

of class -1. But in this case, all the elements will be classified into class 2. However, with 

a bias of 0.5 (in the linear case), they will be classified correctly. This geometric 

interpretation does not work for more complex kernels, but this idea is the same: the bias 

term attempts to compensate for features not centred around 0. If the features are centred 

around zero, the bias term is not always needed. 'KernelScale' is another parameter that 

can be modified. Gamma (γ), also named KernelScale in MATLAB, controls overfitting 

in SVM. It is written as a pair consisting of 'KernelScale' with a positive scalar or 'auto'. 

MATLAB will divide all elements of the predictor matrix X by the value of 'KernelScale'. 

If the solver is SMO, it will apply the appropriate kernel norm to compute the Gram matrix. 

If it is written 'auto', MATLAB will select a relevant scale factor using a heuristic 

procedure.; The heuristic procedure will be using subsampling; therefore, estimates can 

vary from one call to another. To obtain the same results, setting a random number using 
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rng before the training is mandatory. rng corresponds to control random number 

generation. 'KKTTolerance' is another parameter that can be modified. It is written as a pair 

consisting of 'KKTTolerance' and a positive scalar. KKTTolerance is equivalent to 

Karush-KuhnTucker complementary conditions violation tolerance. In SVM, the KKT 

complementary conditions are: 

 

!!["!#($!) − 1 + (!] = 0
(!(+ − !!) = 0         (5.3.1) 

 

 

If 'KKTTolerance' equals 0, then MATLAB will not use the KKT complementary 

violation tolerance to check for optimisation convergence. If the solver is SMO, the default 

value is 0; otherwise, 1e-3 is the solver is ISDA. Karush-Kuhn-Tucker complementary 

conditions have an essential role in the use of constrained optimisation. KKT conditions 

come from Harold W. Kuhn and Albert W. Tucker. 

The first published the conditions in 1951 (Kuhn and Tucker, 1951). 'Nu' is another 

parameter that can be modified. It is written as a pair consisting of 'Nu' with a positive 

scalar. 'Nu' is between 0 and 1. It corresponds to the v parameter for one-class learning. 

Setting. It is used for one-class learning, but the implementation is a multi-class learning 

problem. The value was changed to 0.25. No changes in the accuracy were observed. 

'Numprint' is another parameter that can be modified. It is written as a pair consisting of 

'Numprint' with a nonnegative integer. It corresponds to the number of iterations between 

optimisation diagnostic message output. If ‘Verbose',1 and 'Numprint', Numprint are used, 

then MATLAB will display all optimisation diagnostic messages from SMO and ISDA 

every Numprint iteration in the command window. 'Verbose' is another parameter that can 

be modified. It is written as a pair consisting of 'Verbose' with either 0,1, or 2.  It 

corresponds to the verbosity level. It controls the amount of optimisation information that 

MATLAB will display in the command window and save as the structure 

Mdl.ConvergenceInfo. History. MATLAB will not display or save convergence 

information if the value is set at 0 (default). MATLAB will display diagnostic messages 
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and save convergence criteria for every Numprint iteration if the value is 1. Figure 59 

represents the diagnostic message and convergence criteria displayed in the command 

window during the implementation with 'Numprint',500 and 'Verbose',1. 

 

 
Figure 59 Diagnostic message and convergence criteria 

 

MATLAB will display diagnostic messages and save convergence criteria at every iteration 

if the value is set a 2. 'PolynomialOrder' is another parameter that can be modified. It is 

written as a pair consisting of 'PolynomialOrder' and a positive integer. It corresponds 

to the polynomial kernel function order. The default value is 3. For this implementation, 

various kernel functions have been used. The most efficient was the polynomial kernel with 

polynomial order 3. It corresponds to the literature findings related to the efficiency of 

kernel functions in multi-class SVM (Rajendran & Kalpana, 2011).  The polynomial kernel 

is often used with SVMs or kernelised models. It represents the similarity of vectors 

(training sample) in a feature space over polynomials of the original variables, allowing 

learning of non-linear models. The polynomial kernel looks not exclusively at the given 

features of input samples to determine their similarity, but it also looks at combinations of 

these. For regression analysis, the combinations refer to interaction features. The feature 

space of a polynomial kernel equals that of polynomial regression but without the 
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combinatorial blow-up in the number of parameters to be learned. The features correspond 

to logical conjunctions of input features when the input features are binary-valued 

(Booleans) (Goldberg and Elhadad, 2008). 

 
Figure 60 Illustration of the mapping ! 

                      Source: Wikipedia Contributors (2019) 

 

Figure 60 represents a set of samples in the input space on the left. On the right, it means 

the same sample in the feature space where the polynomial Kernel 6 (#, $) (for some values 

of the parameters c and d) is the inner product. The hyperplane learned in feature space by 

an SVM is an ellipse in the input space. For degree-d polynomials, the polynomial kernel 

is defined as: 

 6(#,	$)	=	(#4$	+	8)%               (5.3.2)  
 

where #	and $ are vectors in the input space, i.e., vectors of features computed from training 

or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus 

lower order terms in the polynomial. As a kernel, 6 corresponds to an inner product in a 

feature space based on some mapping Figure 60 represents a set of samples in the input 

space on the left. On the right, it represents the same sample in the feature space where the 

polynomial Kernel 6(#, $) (for some values of the parameters j). 

 

 6(#,	$)	=	〈!(#),	!($)〉              (5.3.3)  
 

The nature of ! can be seen from an example. Let d=2, so it corresponds to the special case 

of the quadratic kernel. After using the multinomial theorem and regrouping6(#, $) =
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(∑ #,$,-
,.! + 8)/ = ∑ (#,/-

,.! )($,/) + ∑ ∑ (<2#,,0!
1.!

-
,./ #1)><2$,$1? +

∑ (<28#,-
,.! )(28$,) + 8/       (5.3.4) 

 

From this, it follows that the feature map is given by: 

 

!(#) = 	 〈
#-/, … , #!/, <2#-#-0!, … , <2#-#!,

<2#-0!#-0/, … ,
<2#-0!#!, … ,<2#/#!, <28#-, … ,<28#!, 8

〉   (5.3.5) 

 
 

The order of polynomial in mathematics refers also to the degree of a polynomial, that is, 

the largest exponent (for a univariate polynomial) or sum of exponents (for a multivariate 

polynomial) in any of its monomials (Dos Santos and Gomes, 2002). 

The following names are given to polynomials according to their degree. Degree 0 

corresponds to non-zero constant, degree 1 is linear, degree 2 is quadratic, degree 3 is cubic, 

degree 4 is quartic and so on. In general, SVM works well on small datasets. A recent study 

evaluated the performance of SVMs with linear, quadratic, and cubic kernels in the 

problem of recognising 3D objects from 2D views. The paper indicates that the degree of 

the polynomial order plays a minor role in the results. 

'ShrinkagePeriod' is another parameter that can be modified. It is written as a pair 

consisting of 'ShrinkagePeriod' with a nonnegative integer. It corresponds to the 

number of iterations between the movement of observations from active to inactive set. 

MATLAB will not shrink the active set if it has a value of 0. Convergence can be speeded 

up with shrinking when the support vector set is much smaller than the amount of data in 

the training dataset. 1000 is a suggested starting point. 'Standardize' is another parameter 

that can be modified. It is written as a pair consisting of 'Standardize' and 'true' or 

'false'. It corresponds to a flag to standardise the predictor data. MATLAB will centre and 

scale each column of the predictor data (x) by the weighted column mean and standard 

deviation if set as 'true'. The software will not standardise the data contained in the dummy 

variable columns and generated for categorical predictors. MATLAB will train the 
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classifier using the standardised predictor matrix if it is set as 'true'., The unstandardised 

data will be stored in the classifier property x. For the function fitecoc, 'Cost' is another 

parameter that can be modified. It is written as a pair consisting of 'Cost' and a square 

matrix or structure. It corresponds to the misclassification cost. All runs executed for SVM 

classifiers can be found in Appendix C. 

 

5.3.3 Performance	evaluation		
 

5.3.3.1 Confusion	matrix		
 

The confusion matrix is represented in figure 61. The diagonal cells show the number of 

residue positions correctly classified for each topology class. The off-diagonal cells show 

the number of residue positions that were misclassified. The diagonal cells correspond to 

observations that are correctly classified. The number of observations and the percentage 

of the total number of observations is shown in each cell. The column on the far right of 

the plot shows the percentages of all the examples predicted to belong to each class that 

are correctly and incorrectly classified. These metrics are often called the precision (or 

positive predictive value) and false discovery rate. The row at the bottom of the plot shows 

the percentages of all the examples belonging to each class that are correctly and incorrectly 

classified. These metrics are called the recall (or true positive rate) and false-negative rate. 

The cell in the bottom right of the plot shows the overall accuracy. The best overall 

accuracy is 64.8%. 
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Figure 61 Confusion matrix for SVM classifier 

 

 

5.3.3.2 Receiver	operating	characteristic	curve	
 

The Receiver Operating Characteristic (ROC) curve can also be looked at and is 

represented in figure 62. It is a plot of the true positive rate (sensitivity) versus the false 

positive rate (1 – specificity). True positive rate is also known as sensitivity in biomedical 

engineering. Sensitivity corresponds to the proportion of actual positives that are correctly 

identified. False-positive corresponds to fall-out. Fall-out is related to the specificity and 

equals to 1 - specificity. The ROC curve represents the sensitivity as a function of the fall-

out. A perfect predictor would be described at 100% sensitivity. When the ROC curve is 
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close to the upper left corner (100% sensitivity, 100% specificity), the overall accuracy is 

better.  

 

 
Figure 62 ROC curve for SVM classifier 

 

 

5.3.3.3 Prediction	quality	indices	
 

The topology prediction is evaluated in detail by calculating prediction quality indices 

represented in figure 63. They indicate how well a particular state is predicted and whether 

overprediction or underprediction has occurred. The index pcObs(S) was defined for state 

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the 

number of residues observed in state S. Similarly, the index pcPred(S) for state S was 
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defined as the number of residues correctly predicted in state S, divided by the number of 

residues predicted in state S. These quality indices are useful for the interpretation of the 

prediction accuracy. 

	
 

 
Figure 63 Quality indices of prediction for SVM classifier 

 

 

 

5.4 Comparison	of	results		
 

The best overall accuracy for ANN is 64.5%, including a TMB topology prediction of 69%. 

The best overall accuracy for KNN is 71.8%, including a TMB topology prediction of 

72.3%. The best overall accuracy for SVM is 64.8%, including a TMB topology prediction 

of 69.4%. A general difference between KNN and SVM is that SVM cares for outliers 

better than KNN. Neural networks need large training data compared to KNN to achieve 

sufficient accuracy. Also, neural networks need many hyperparameters tuning compared 
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to KNN. KNN is an easy and simple machine learning model, and there are few parameters 

to tune. The value k needs to be wisely selected. A value of 8 provided the best results in 

the implementations. For ANN, the training function had an essential impact on results and 

the scaled conjugate gradient backpropagation provided the best results. SVM provided 

better accuracy than ANN when a polynomial kernel was used. 

 

5.5 Summary		
 

This chapter presented the implementations of an ANN, KNN and SVM in MATLAB using 

the Boctopus2 dataset and TopBP dataset. Models were built and trained in MATLAB. For 

all models, hyperparameters have been tuned, and the performance of each model was 

evaluated with the use of confusion matrices, ROC curves and bar charts. To maximise the 

performance and confirm the precision, fine-tuning the hyper-parameters was necessary. 

The problem of TMB topology was looked at as a pattern recognition problem as the neural 

network was trained to recognise the topology of the central residue most likely to occur 

when specific residues in the given window are observed. At each training cycle, the 

training sequences were presented to the network through the sliding window one residue 

at a time. For the KNN implementation, the classifier used the fitcknn function. Fitcknn 

created a model, and the tie-breaking algorithm, distance metric and number of neighbors 

were specified and modified. For the SVM implementation, the function templateSVM was 

used to create the support vector machine. Multiple parameters were changed, such as the 

box constraint or the kernel function. To analyse the model’s responses, the confusion 

matrix was examined by considering the outputs of the models and comparing them to the 

expected results. The ROC curve was also used, and it corresponds to a plot of the true 

positive rate (sensitivity) versus the false positive rate (1-specificity). The topology 

prediction accuracy was finally evaluated by calculating prediction quality indices. They 

indicate how well a particular topology is predicted and whether overprediction or 

underprediction has occurred. 
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6. Implementation of cascading classifier 
 

This chapter presents the implementation of the cascading classifier in MATLAB.  

6.1 Model	building	and	training	
 

 

The model consists of two levels. Several selected models will be trained at the first level. 

The chosen algorithms (KNN, SVM or ANN) are trained to predict the values of the class 

as it was before. In case two or more classifiers are selected, a second level SVM classifier 

is trained to anticipate the value of the class based on the probability predicted by those 

two or more models at the first level. This is a cascading classifier as the output of the first 

layer corresponds to the input of the second layer. If only one model is initially selected at 

the first level, the second layer classifier will not be trained. The main function used for 

the cascading classifier implementation in MATLAB is named UseClassifiers.m. Part of 

the code used for the implementation in MATLAB is defined in figure 64.  

 

 
Figure 64 Part of UseClassifiers.m for cascading classifier 
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The model allows the use of a single method, two or even three methods. useKNN =1 or 0, 

useSVM = 1 or 0 and useNN = 1 or 0 are the list of parameters. If a parameter is equal to 

0, it will not be used in the cascading classifier. All combinations are possible except for 

combinations when they are equal to 0. If only they are set to 1, the application will work 

as one classifier. The selected classifier (equals 1) will be trained and show the results. If 

at least two parameters are set to 1, several classifiers will be trained and then combined 

by one more probability classifier. The code used for creating and training the neural 

network at the first level is represented in figure 65.  

 

 
Figure 65 Useclassifiers.m 

 

When multiple classifiers are chosen, a second level SVM will be trained. The code used 

for that and the final performance assessment is represented below. 
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Figure 66 Creating and training the SVM classifier at layer 2 

 

6.2 Hyperparameters	tuning	
		
The model has four different basic configurations: 

§ Configuration 1: Layer 1(KNN=1, SVM=1, ANN=1)/Layer 2 (SVM) 

§ Configuration 2: Layer 1(KNN=0, SVM=1, ANN=1)/Layer 2 (SVM) 

§ Configuration 3: Layer 1(KNN=1, SVM=0, ANN=1)/Layer 2 (SVM) 

§ Configuration 4:  Layer 1(KNN=1, SVM=1, ANN=0)/Layer 2 (SVM) 

 

The model allows the use of a single method, two or even three methods. KNN =1 or 0, 

SVM = 1 or 0, and ANN = 1 or 0 are the list of parameters. If a parameter is equal to 0, it 

will not be used in the cascading classifier. All combinations are possible except for 

combinations when they are equal to 0. If only one of them is set to 1, the application will 

work as one classifier. The selected classifier (equals 1) will be trained and show the results. 

If at least two parameters are set to 1, several classifiers will be trained and then combined 

by one more probability classifier. When multiple classifiers are chosen, a second level 

SVM will be trained. The parameters of each machine learning algorithm can be modified. 

Appendix D summarises all the runs executed. 

 

 

6.2.1 	Performance	evaluation		
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The best results are obtained when KNN, SVM and ANN are used at layer 1 and SVM at 

layer 2.  Multiple runs have been executed in MATLAB using different parameters 

configurations. Various ratio combinations such as 50:50, 60:40, 70:30, 75:25 and 80:20 

have been used to split training and testing data in tsPart1.  Best results for the cascading 

classifier were obtained using a split with 80% of data used for training and 20% used for 

testing in tsPart1 and 42% in tsPart2. Best results are obtained with parameters configured 

to a window size of 65, bits encodings of 50, Hidden layer size of 50, logsig transfer 

function, scaled conjugate gradient for the training function, ‘Sum’ Performance Function 

and ‘Dividerand’ data division for the ANN part of the cascading classifier and k-value 

of 8, exhaustive nearest neighbors search method, random tie-breaking algorithm for the 

KNN part of the cascading classifier. For the SVM part of the cascading classifier, a 

polynomial kernel function, ‘SaveSupportVectors’ is equivalent to ‘true’ have been used 

as well as default values for the box constraint, cache size, Solver, tolerance to gradient 

difference, feasibility gap tolerance, Maximal number of optimisation iterations, kernel 

offset parameter, kernel scale, Karush-Kuhn-Tucker complementarity conditions violation 

tolerance, v parameter for one-class learning, number of iterations between optimisation 

diagnostic message output, expected proportion of outliers in training data, Polynomial 

kernel function order, number of iterations between the movement of observations from 

active to inactive set, flag to standardise predictor data and verbosity level. It is interesting 

to note that an increase in the amount of data does produce better results. Two runs were 

executed using the same parameters with different datasets available: TopBP Dataset 

(1x123) and BOCTOPUS2 Dataset (1x42). 

The best overall accuracy obtained is 76.3%, including a TMB topology prediction of  

83.1%. The accuracy of 83.1% is for one scenario combination where layer one includes 

SVM, KNN and ANN, and layer two include SVM when using the TopBP Dataset. For the 

ANN, during the implementation, the training process stops when the maximum validation 

failures are above six, or the maximum number of allowed iterations is reached (1000).  

Figure 67 represents the variation in gradient coefficient concerning the number of epochs 

at and the final value of the gradient at epoch 138. 
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Figure 67 Magnitude of gradient 

 

The parameter for the minimum gradient min_grad was set to 1e-06 and was not reached 

during the implementation. 

For this project, the validation checks triggered the training to stop. Figure 68 represents 

the validation checks. MATLAB automatically stopped the training after six fails in a row.  

 

 
Figure 68 Validation checks 

 

The data division is an automatic process that happens when the network is trained. During 

the implementation, the composition of the residues in three subsets is comparable, as seen 

in figures 69,70 and 71. 
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Figure 69 Topology assignments in the training data set 

 

 
Figure 70 Topology assignments in the validation data set 
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Figure 71 Topology assignments in the testing data set 

 

 

 

6.2.1.1 Confusion	matrix		
 

The TMB topology prediction accuracy is 83.1%. Figure 72 represents the confusion 

matrices for the cascading classifier. The diagonal cells show the number of residue 

positions correctly classified for each topology class. The off-diagonal cells show the 

number of residue positions that were misclassified. The diagonal cells correspond to 

observations that are correctly classified. The number of observations and the percentage 

of the total number of observations is shown in each cell. The column on the far right of 

the plot shows the percentages of all the examples predicted to belong to each class that 

are correctly and incorrectly classified. These metrics are often called the precision (or 

positive predictive value) and false discovery rate. The row at the bottom of the plot shows 

the percentages of all the examples belonging to each class that are correctly and incorrectly 

classified. These metrics are called the recall (or true positive rate) and false-negative rate. 

The cell in the bottom right of the plot shows the overall accuracy. 
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Figure 72 Confusion Matrix 

 

6.2.1.2 Receiver	operating	characteristic	curve	
 

The receiver operating characteristic for each output class is plotted with Plotroc (targets, 

outputs) and is represented in figure 73. When the curve goes to the left and top edges of 

the plot, the classification is better. The sensitivity measures the proportion of actual 

positives that are correctly identified as such. The false positive is also known as the fall-
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out. The fall-out is closely related to the specificity and is equal to (1 - specificity). Figure 

73 represents the ROC curves for the cascading classifier. 

 

 
Figure 73 ROC curve 

 

6.2.1.3 Prediction	quality	indices		
 
The topology prediction is evaluated in detail by calculating prediction quality indices 

represented in figure 74. They indicate how well a particular state is predicted and whether 
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overprediction or underprediction has occurred. The index pcObs(S) was defined for state 

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the 

number of residues observed in state S. Similarly, the index pcPred(S) for state S was 

defined as the number of residues correctly predicted in state S, divided by the number of 

residues predicted in state S. These quality indices are useful for the interpretation of the 

prediction accuracy. 

 

 
Figure 74 Quality indices performance 

 

6.3 Summary		
 

 

Chapter 6 focused on the cascading classifier implementation. Data division for the 

cascading classifier was defined by the model. Data division was based on two parameters 

corresponding to the fraction of the first level training set and the second-level training set. 
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The model consisted of two levels. Several selected models were trained at the first level. 

The selected algorithms (KNN, SVM or DNN) were trained to predict the values of the 

class. In case two or more classifiers were selected, a second level SVM classifier was 

trained to predict the value of the class based on the probability predicted by those two or 

more models at the first level. The model allowed to use a single method, two methods or 

even three methods. KNN =1 or 0, SVM = 1 or 0, and DNN = 1 or 0 are the list of 

parameters.. All combinations were possible except for combinations when they were equal 

to zero. If only one of them was set to one, the application worked as one classifier. If at 

least two parameters were set to one, several classifiers were trained and then combined by 

one more probability classifier. When multiple classifiers were chosen, a second level SVM 

was trained. The model had four different basic configurations. The parameters of each 

machine learning algorithm were modified. Multiple runs were executed in MATLAB 

using different parameters configurations. Best results are obtained with parameters 

configured to a window size of 55, hidden layer size of 55, log sigmoid transfer function, 

scaled conjugate gradient for the training function, Mean squared normalised error 

performance function and data division into three sets using random indices for the ANN 

part of the cascading classifier. k-value of eleven, exhaustive nearest neighbour search 

method, the random tie-breaking algorithm provided the best results for the KNN part of 

the cascading classifier. For the SVM part of the cascading classifier, a polynomial kernel 

function provided the best results. Overall, by constructing and using various machine-

learning frameworks as part of the cascading classifier, a system has been developed and 

could predict the TMB topologies with significant robustness compared to other classifiers. 
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7. Discussion of findings  
  
 

7.1 Implications		
 

Chapter 5 discusses the artificial neural network implementation in MATLAB. The best 

overall accuracy when using the ANN-based approach is 63.4%. Putting efforts into finding 

an excellent neural network architecture will likely lead to better prediction accuracy. 

Training procedures are also of importance. One way to improve the performance, also 

applicable to other modern nonlinear machine learning techniques, is to improve data 

quality. The quality of models is generally constrained by the quality of the training data. 

You want the best data you can get for the problem. It is also good to have more data. The 

issue with TMB proteins is that there are limited datasets available, so a challenge of this 

project was trying to get the best accuracy while using small datasets. Deep learning usually 

gets better with more data. More data does not always help, but it can help. The 

performance of the artificial neural network was improved by checking for overfitting. It 

is essential to ensure that the neural network does not overfit. Overfitting refers to the state 

when the model memorises values from the training data instead of learning from those 

training data. When the model receives data that was never seen before, the model cannot 

perform well on them. Few techniques were used to avoid overfitting, including early 

stopping. It precipitates the deep neural network training, leading to a reduction in error in 

the test set. Checking for overfitting was one way to improve the performance of the deep 

neural network. Hyperparameters tuning was another way. 

Hyperparameters are values that must be initialised to the network. Examples include the 

number of layers in the neural network, the activation function used, the training function 

or the performance function. Each neural network has a set of hyperparameters that can 

generate the best accuracy. There is no specific method for identifying the best collection 

of hyperparameters. It is mainly achieved with trial and error. Best practices can be used 

for some hyperparameters. For performance function, cross-entropy is preferred for 

classification, while mean squared error is one of the best choices for regression. The 
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nonlinear functional inputs to the outputs are mapped with activation functions. They are 

essential, and choosing the proper activation function helps the model learn better. Log 

sigmoid function have been proven to provide the best accuracy for the implementation. 

The training function trainscg, which corresponds to the scaled conjugate gradient 

backpropagation, has been proven to provide the best accuracy for the implementation. It 

offers faster training with excellent test efficiency. 

 

Chapter 5 also describes the implementation of the KNN in MATLAB. The best overall 

accuracy when using KNN based approach is 71.8%. The K-Nearest neighbors algorithm, 

KNN for short, is a classic machine learning algorithm that is often overlooked by deep 

learning. KNN is a supervised machine learning algorithm that is simple to implement yet 

can make robust classifications. One of the most significant advantages of KNN is that it 

is a lazy learner. It means that the model requires no training and get right to the classifying 

data. For the classification of some given data point, p, a KNN model compares first p to 

every other point available in its database using some distance metric. A distance metric is, 

for example, the Euclidean distance. It is a simple function that takes two points and returns 

the distance between them. Thus, it can be assumed that two points with a smaller distance 

between them are more similar than two points with a larger distance between them. This 

is the general idea behind KNN. k is some arbitrary value selected (usually between 3–11) 

that tells the model how many most similar points to p it should consider when classifying 

p. The model will then take those k most similar values and use a voting technique to 

classify p. With KNN, there is no explicit training phase, or it is very minimal. This also 

means that the training phase is fast. Lack of generalisation means that KNN keeps all the 

training data. All (or most) the training data is needed during the testing phase, to be more 

exact. Most KNN models use Euclidean or Manhattan distance as the go-to distance metric. 

These metrics are simple and perform well in a wide variety of situations. The Euclidean 

distance has been proven to provide the best accuracy for the implementation. It is the 

default distance metric in MATLAB when not specified. KNN performs much better if all 

the data have the same scale. KNN works well with a small number of input variables (p) 

but struggles when inputs are very large. In case of a tremendous value of k, it may be 
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possible to include points from other classes in the neighborhood. In the case of the too-

small value of k, the algorithm is very sensitive to noise. A value of k=8 has been proven 

to provide the best accuracy for the implementation. The optimal value for k was not chosen 

by cross-validation but rather by experimentation. 

Chapter 5 also refers to the implementation of SVM in MATLAB. The best overall 

accuracy when using SVM based approach is 64.8%. Support Vector machines, so-called 

SVM, is supervised learning algorithm. It is used for classification and regression 

problems. It is usually used for smaller datasets. SVM is based on the idea of finding a 

hyperplane that best separates the features into different domains. The idea of SVM is to 

come up with an optimal hyperplane that will classify the different classes. The points 

closest to the hyperplane are called the support vectors points, and the distance of the 

vectors from the hyperplane are called the margins. The farther the support vector points 

are from the hyperplane; the higher is the probability of correctly classifying the points in 

their respective region or classes. There are a few advantages for SVMs. They are effective 

in the higher dimensions. It is the best algorithm when classes are separable. The 

hyperplane is affected by only the support vectors; thus, outliers have less impact. SVM is 

suited for extreme case binary classification. There are also a few disadvantages. A larger 

dataset requires a large amount of time to process. They do not perform well in case of 

overlapped classes, and selecting the appropriate kernel can be tricky. SVMs were initially 

designed for binary classification. The multi-class classification problem was decomposed 

into a series of binary problems such that the standard SVM can be directly applied. The 

implementation of SVM in MATLAB used t= templateSVM () and fitecoc functions. 

fitcecoc function from the Statistics and Machine Learning Toolbox™ was used to create 

a multiclass classifier using binary SVMs. fitcecoc uses K (K – 1)/2 binary support vector 

machine (SVM) models using the one-versus-one coding design, where K is the number of 

unique class labels (levels). fitcecoc combines multiple binary learners using a coding 

design. By default, fitcecoc applies the one-versus-one design, which specifies training 

binary learners based on observations from all combinations of pairs of classes. For 

example, in a problem with ten classes, fitcecoc must train 45 binary SVM models. 
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Parameters of the SVM have been tuned to improve the performance. Parameter C 

represents the error penalty for misclassification for SVM. It maintains the trade-off 

between smoother hyperplane and misclassifications. Some misclassifications are allowed 

to avoid overfitting the classifier. The parameter C that trades how much misclassification 

of isolated points modifies the decision boundary is defined as 'BoxConstraint'. This 

parameter is specified as a numeric value and has been changed. A strategy for 

BoxConstraint is to try a geometric sequence of the box constraint parameter. For 

example, choose 11 values, from 1e-5 to 1e5, by a factor of 10. Increasing BoxConstraint 

might decrease the number of support vectors and might increase training time. Making the 

SVM a soft border algorithm considerably reduces the training time. 

A unique strength of an SVM is the use of kernel function to map the data into a higher 

dimensional feature space. In training SVM, kernels and their parameters have a vital role 

in classification accuracy. Therefore, a suitable kernel design and parameters should be 

used for SVM training. Various kernels were used. The most efficient kernel was the 

polynomial kernel with polynomial order 3. It is aligned with the findings of the literature 

on this topic. The polynomial degree parameter controls the flexibility of the decision 

boundary. Higher degree kernels yield a more flexible decision boundary. 

 

It was discussed earlier about overfitting in KNN. For SVM, to avoid overfitting, a soft 

Margin needs to be chosen instead of a hard one. For example, some data points can enter 

the margin intentionally so that the classifier doesn’t overfit the training sample. Gamma 

(γ) is an important parameter, and it controls overfitting in SVM. Gamma is not technically 

an SVM hyperparameter. It is a parameter of the Kernel. Gamma (γ) is referred to as 

‘KernelScale’ in MATLAB. The higher the gamma, the higher the hyperplane tries to 

match the training data. Therefore, choosing an optimal gamma to avoid overfitting and 

underfitting is the key. Increasing gamma leads to overfitting as the classifier tries to fit the 

training data perfectly. Various Kernelscale have been used, and the best results are 

obtained with KernelScale=10. Error penalty (Parameter C/ BoxConstraint), kernel 

(Kernel) and regularisation (Gamma/ kernelScale) are the most important 

hyperparameters that have been modified for the SVM.  
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Chapter 6 finally discusses the implementation of a cascading classifier in MATLAB. 

There’s been increasing use of ensemble learning methods in recent research in 

computational biology. Ensemble learning combines multiple learning algorithms to 

improve the overall prediction accuracy. It is one of the most promising solutions for many 

biological problems. Cascading is a specific case of ensemble learning. It is based on the 

concatenation of several classifiers using the information provided from the output of a 

given classifier as additional information for the next classifier in the cascade. The model 

consisted of two levels. Several selected models were trained at the first level. The selected 

algorithms (KNN, SVM or ANN) were trained to predict the values of the class. In case 

two or more classifiers were selected, a second level SVM classifier was trained to predict 

the value of the class based on the probability predicted by those two or more models at 

the first level. This is a cascading classifier as the output of the first layer corresponds to 

the input of the second layer. If only one model is initially selected at the first level, the 

second layer classifier was not trained. The model allowed to use a single method, two 

methods or even three methods. KNN =1 or 0, SVM = 1 or 0, and ANN = 1 or 0 were the 

list of parameters to select to create a specific cascading classifier. If a parameter were 

equal to 0, it would not be used in the cascading classifier. Optimisation of the cascading 

classifier was mostly obtained by optimising each machine learning algorithm used and by 

starting using the parameters that gave the best results for each machine learning algorithm. 

The best overall accuracy when using the cascading classifier approach was 76.3%, 

including a TMB topology prediction of 83.1%. The accuracy of 83.1% is for one scenario 

combination where layer one includes SVM, KNN and ANN, and layer two include SVM.  

Many important biological processes, such as cell signalling, transport of membrane-

impermeable molecules, cell-cell communication, and cell recognition and adhesion, are 

mediated by membrane proteins. The methodology evaluated and created as part of this 

dissertation could be applied to any TMB proteins and could potentially help identify new 

targets for antibiotics, vaccines, or antimicrobials. The application of the cascading 

classifier to TMB topology prediction has been published in two recent papers (Kazemian 

et al., 2018) and (Kazemian et al., 2020). 
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7.2 Limitations		
 

 One limitation of this research is that only small datasets have been used. In recent years, 

machine learning techniques have changed the world. It is easier nowadays to perform a 

variety of complex tasks much easier. Deep learning models can be more successful with 

a large amount of training data. ResNet (He et al., 2016) represents an architecture for 

image classification. It won the best place at the classification competition ILSVRC in 

2015. ResNet has a deep and complex architecture, and it has been trained with about 1.2 

million images. In the industry and academia, it is well agreed that different algorithms can 

perform almost the same when there is enough data for a given problem. It is essential to 

understand that the extensive data need to have meaningful information for the model to 

learn from that. Although machine learning techniques require less data than deep learning, 

extensive data similarly impacts performance. The cascading classifier presented as part of 

this research could have been evaluated using larger datasets. It is especially critical when 

the cascading classifier uses artificial neural networks as part of the architecture. 

The datasets used in this research are small since there are only a few TMB proteins. 

However, SVM performs better with larger datasets and using larger datasets could have 

potentially increased accuracy. Sordo and Zeng (Sordo and Zeng 2005) investigated the 

dependency between the sample sizes and classification accuracies of three different 

classification techniques: Naïve Bayes, Decision Trees and Support Vector Machines. 

They used a set of 8500 text excerpts extracted automatically from narrative reports from 

the Brigham & Women’s Hospital, Boston, USA. Their results confirm a correlation 

between the size of the training set and the classification. The algorithms perform well with 

small datasets. When the number of cases increases, Support Vector Machines and decision 

trees increases performance. 

 

Another limitation to this research is that only binary encoding techniques have been used. 

Amino acid encoding plays a fundamental role in the final success of machine-learning-

based protein structure and function prediction methods. Amino acid encoding (Different 

from the protein sequence encoding) can be utilised in both residue-level and sequence-
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level prediction of protein properties using combinations of different algorithms. The 

methods can be grouped into five categories based on the information sources and 

information extraction methods. It includes binary encoding, physicochemical properties 

encoding, evolution-based encoding, structure-based encoding, and machine-learning 

encoding. 

Binary encoding is a directly encoding way that transforms each amino acid into a 

20dimensional elementary unit vector (Chauhan, Rao, and Raghava, 2013). The Alanine 

[A], for example, maybe be encoded into (10000000000000000000) and Cysteine into 

(01000000000000000000). A peptide sequence of amino acid residues corresponds equally 

to an n*20-dimensional sparse representation. The binary encoding reflects the information 

on types and positions of residues in the protein sequence (Gnad, Ren, Choudhary, Cox, 

and Mann, 2010) (Huang and Li, 2017). A binary representation can be equally recovered 

into the corresponding amino acid sequence. Conversion of amino acid sequences into real 

numbers to get numerical input vectors is critical for constructing models. In practice, 20 

binary bits are the most common distributed encoding method, in which each amino acid 

is represented by a unique 20-bit binary string consisting of nineteen 0s and one 1, since 

there are 20 amino acids (Qian and Sejnowski,1988), (Yang and Chou,2004). Bose et al. 

(Bose, Subrata K., et al. 2007) result also suggested that 20-bit binary encodings can 

achieve a higher classification accuracy and robustness compared with 5-bit and 9-bit 

encodings, indicating that the use of simple physicochemical parameters may not increase 

the robustness of the system more so than the binary encodings. In the sliding window 

method, a window becomes one training pattern for predicting the topology of the residue 

at the centre of the window. Information about local interactions among neighboring 

residues is embedded in each training pattern. The feature value of each amino acid residue 

in a window represents each residue's weights (costs) in a pattern. 

Physicochemical properties encoding techniques have been discussed in this research, but 

it was not considered. Physicochemical property such as the hydrophobicity of amino acid 

seems to have an essential role in the organisation of the self-assembly of proteins. Apart 

from hydrophobicity properties, the codon diversity and the size of amino acids can be used 

as features. The codon diversity of amino acids corresponds to the number of codons 
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coding for the amino acid. The size of the amino acids reflects their molecular volume. 

Regarding physicochemical properties encodings, the variety of properties and the 

extraction methodologies are essential factors in building a valuable encoding. 

Structure-based amino acid encoding methods, which can be named statistical-based 

methods, can encode amino acids using the structure-related statistical potentials using the 

inter-residue contact energies (Tanaka and Scheraga, 1976). They have not been considered 

in this research. Structure-based encoding methods had application in protein secondary 

structure prediction and protein fold recognition. The structural potential of amino acids, 

linked to the protein structure and function, is reflected by those encodings. More and more 

proteins have known form, and the use of structure-based encodings is becoming very 

useful. For protein function prediction, encodings reflecting function potentials are helpful. 

This critical topic looks at function-based encoding methods that could be further explored. 
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8. Conclusion and future research directions 
 

This research answered the following questions: What are the best machine learning 

techniques for the topology prediction of TMB proteins? How can the prediction for the 

topology prediction of TMB proteins be improved? 

The research approach has been classified as an experimental study in evaluating multiple 

machine learning approaches, including artificial neural network, KNN, SVM and 

cascading classifier for the topology prediction of TMB proteins. A procedure has been 

intentionally introduced. Results and outcomes have been observed and discussed. The 

approach involved a controlled and systematic procedure in minimising error and bias. 

Another critical element related to this experiment is the use of random assignment. An 

artificial neural network, a KNN, SVMs and a cascading classifier have been created and 

implemented in MATLAB. The boctopus2 dataset (Hayat, Peters, Shu, Tsirigos and 

Elofsson, 2016) and TOPDB dataset (Tusnady, Kalmár and Simon, 2008) have been used. 

The performances of the various machine learning techniques have been evaluated. This 

research dealt with the prediction of TMB topologies, one of the most significant problems 

in structural molecular biology. Using a cascading classifier such as the one developed as 

part of the thesis is recommended for TMB topology prediction. 

 

It is also essential to discuss the merits and shortcomings of this research thesis. When 

using the experimental research defined in this thesis, specific hyperparameters have been 

isolated, and therefore it was possible to determine if a potential outcome is viable. Each 

hyperparameter was controlled independently or in different combinations to study what 

possible outcomes were available for the theory. This provided an advantage in the ability 

to find accurate results. The research offered specific conclusions. Because experimental 

research provides such a high level of control, it produced specific and relevant results with 

consistency. It was possible to determine success or failure, making it possible to 

understand the validity of the models developed in a much shorter amount of time than 

other verification methods. The research thesis allows for its duplication if others control 

the same hyperparameters. This helps to promote the validity of the models. The 



 

  
  

  

160 

manipulation of variables enables any researcher to look at various cause-and-effect 

relationships produced by the models. It allows researchers to look deeper into the 

possibilities, indicating how the different variable relationships can provide unique 

benefits. Experimental research requires unique levels of variable control, and there is a 

high risk of experiencing a human error during the study. An error could eliminate the 

validity of the experiment. The research needed to isolate various variables and conduct 

testing on it. This process was lengthy and required a lot of research and preparation, 

primarily for data preparation. This would not be very convenient if the methodology were 

used in an industrial environment.  

The use of larger datasets is one of the possible directions for future research. A recent 

article (Ajiboye et al., 2015) evaluated the effect of the sizes of datasets on the predictive 

model with the use of supervised machine learning. The authors examined the predictive 

model's capability to generalise a particular dataset size when simulated with new untrained 

input. The article discusses the experiment using three different sizes of data and the 

MATLAB program to create predictive models to determine if the size of data influences 

the model accuracy. The measurement of the simulated output of each model has been 

executed using the Mean Absolute Error (MAE). Comparisons have been made. The article 

indicates that the quantity of data used for training must represent the entire sets and be 

sufficient to span through the input space. The simulation of the three network models 

indicated that the learning model using the largest training sets appears to be the most 

accurate and delivers better and more stable results consistently. 

Before starting to understand how more data improves the performance of a model, it is 

essential to understand bias and variance—considering a dataset including a quadratic 

relationship between independent and dependent variables and that the genuine relationship 

is not known and approximated linearly. In that situation, a significant difference between 

the prediction of the model and the actual observed data will be seen. The difference that 

happens between the observed value and the predicted value is named bias. Those models 

are considered to have less power and represent underfitting. In the example chosen, when 

approximating the relationship as cubic or higher powers, there is a case of high variance. 

Variance can be defined as the difference in performance on the training set compared to 
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the test set. One issue regarding high variance is that models fit the training data well, but 

they do not generalise well on datasets out of training. Validation and test set are therefore 

critical when building the models.  The goal is usually to minimise variance and bias, for 

example, making a model that fits the training data well and a model that can generalise 

well on test data and validation data. Lots of techniques are available to achieve this. 

Training with many data is one of the ways to accomplish this goal. Brain and Webb (Brain 

and Webb, 2000) looked at the impact of the size of datasets on variance and bias for 

classification problems. Their observation is that variance will decrease as the training 

dataset size increases. No comments were provided on the bias. 

Statistical methods used to estimate the dataset size requirements and the classification of 

microarray data using learning curves are suggested in an article written by Mukherjee et 

al. (Mukherjee et al., 2003). The article pays particular attention to using the existing 

classification results to estimate dataset size requirements for future classification 

experiments. The study evaluated the increase in accuracy and significance of classifiers 

built with additional data. The paper concluded that the subsampling procedure gives more 

accurate estimates of the quantiles of the true error of a classifier as the number of 

subsamples increases. 

 

Future work for this paper could be extended using various encoding techniques. A recent 

article by Jing et al. (Jing, Dong, Hong, and Lu, 2019) provides a detailed assessment of 

the different amino acids encoding techniques available. Their study indicates that the 

evolution-based position-dependent encoding method PSSM offers the best performance. 

Structure-based and machine-learning encoding methods provide the potential for further 

application, especially the neural network-based distributed representation of amino acids. 

Evolution-based encoding could be considered for future research. Evolution-based 

encoding methods extract evolutionary information of residues from sequence alignments 

or phylogenetic trees to represent amino acids. It uses mainly the amino acids substitution 

probability. Those methods can be divided into two main groups based on the position 

relevance: There are position-independent methods, such as the Point Accepted Mutation 

(PAM) matrix and the BLOSUM matrix. There are also position-dependent methods. The 
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position-independent methods encode amino acids using the fixed encodings 

independently of the amino acid position in the sequence and the amino acid composition 

of the series. For the position-dependent methods, amino acids are encoded at different 

positions using different encodings, even if the amino acid types are the same. PSMM 

(Position-Specific Scoring Matrix) is a prevalent encoding method. Position-Specific 

Scoring Matrix (PSSM) used the position-specific scoring matrix that has been provided 

by PSI-BLAST (Kim and Park, 2003). Individual profiles reflect detailed conservation of 

amino acids in a family of homologous proteins in this coding. This approach was used 

first by Jones (Jones,1999) to predict protein secondary structure using a neural network. 

Based on the author results, PSI-BLAST is a highly efficient sequence query method. This 

is due to three different aspects. First, the alignments used by PSI-BLAST are based on 

pairwise local alignments. A previous study written by Salamov and Solovyev (Salamov 

and Solovyev, 1997) indicated that the prediction accuracy could be increased when using 

reliable local assignments. Secondly, based on the iterated profiles, the sensitivity of PSI-

BLAST has been increased. Thirdly, authors have been using various automatic multiple 

sequence alignments. Among all the alignments used, the PSI-BLAST alignments were the 

best performer. 

Machine learning encoding could be considered for future research. It is very different from 

manual encoding techniques and cannot be compared. Amino acid encodings are learned 

from the protein sequence or structure data by machine learning based encodings 

techniques with the use of machine learning techniques such as artificial neural networks. 

To reduce the complexity of the model, the neural networks share weight for twenty amino 

acids. The input layer is the original encoding of the target amino acid. It can be one-hot 

encoding or physicochemical encoding, for example. The output layer is the original 

encoding of the related amino acids. The new encoding of the target amino acid, 

represented by the hidden layer, has a reduced dimension compared to the original 

encoding. The concept of learning-based amino acids encodings was introduced by Riis 

and Krogh (Riis and Krogh, 1996). They used a 20x3 weight sharing neural network to 

learn a 3-dimensional real numbers representation of 20 amino acids from the one-hot 

encoding to reduce the redundancy of one-hot encoding. For human signal peptide cleavage 
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sites recognition, Jagla and Schuchhardt (Jagla and Schuchhardt, 2000) applied later the 

weight sharing artificial neural network to learn a 2-dimensional encoding of amino acids. 

Various new machine-learning-based encoding methods have been suggested referencing 

distributed word representation in natural language processing. The machine-learning 

encoding methods have great potential in future studies. Amino acid encoding is an open 

problem, and encoding methods are based on an artificially defined basis. For example, 

researchers have observed physicochemical properties encodings are constructed from 

protein fold-related properties. It will inevitably bring some unknown deviations. Those 

artificial deviations can be avoided by automatically learning the amino acid from 

biological data. Natural languages and protein sequences have similarities. Protein 

sequences can be looked at as sentences. The amino acid or polypeptide chain can be seen 

as words in languages. The term distributed representation has obtained more outstanding 

performances in natural language processing tasks. Protein sequences could also improve 

when using the distributed representations of amino acid or n-gram amino acids. Recent 

studies have indicated the potential of amino acid distributed representations in protein 

family classification, protein functional properties prediction and disordered protein 

identification. Most of these methods look at the ngram amino acid distributed 

representations and cannot be directly used for the residue-level properties prediction. 

More research is needed on the residue-level distributed representations of amino acids.
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Appendix A  
	

	
	

Accuracy (%) Window Size Bits encoding
Transfer 
functon

Hidden layer 
size

Training 
function

Performance Fcn Data division Dataset used

64.5 53 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
63.1 54 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
64.3 52 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
63.8 52 20 logsig 68 trainscg sum squared error Dividerand Boctopus2
62.3 54 20 logsig 70 trainscg crossentropy Dividerand Boctopus2
63.7 54 20 logsig 68 trainscg sum squared error Dividerand Boctopus2
60.9 51 20 logsig 72 trainscg sum squared error Dividerand Boctopus2
64.5 53 20 logsig 70 trainscg sum squared error Dividerand Boctopus2
64.5 53 20 tansig 70 trainscg sum squared error Dividerand Boctopus2

53.2 53 20 logsig 70 trainscg
Sum absolute error 

performance function
Dividerand TopBPdataset

64 53 20 logsig 70 trainscg

Mean squared 
normalized error 

performance function
Dividerand TopBPdataset

53.2 53 20 logsig 70 trainscg
Mean absolute error 

performance function
Dividerand TopBPdataset

63.8 53 20 logsig 70 traincgp sum squared error Dividerand TopBPdataset
58.6 53 20 logsig 70 traincgb sum squared error Dividerand TopBPdataset
53.4 50 20 logsig 70 trainrp sum squared error Dividerand TopBPdataset
62.9 79 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
54.6 80 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
60.2 20 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
33.1 70 20 logsig 70 traingdx sum squared error Dividerand TopBPdataset
45.9 20 20 logsig 70 traingdx sum squared error Dividerand TopBPdataset
53.2 53 20 logsig 70 traindgx sum squared error Dividerand TopBPdataset
48.5 53 20 logsig 70 traincgf sum squared error Dividerand TopBPdataset
63 53 20 logsig 73 trainscg sum squared error Dividerand TopBPdataset
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Appendix B 
	

	

Accuracy (%)
K Value 
(NumNeighbors)

Nearest Neighbor 
search method 
(Nsmethod)

Tie-breaking algorithm 
(BreakTies)

Maximum data 
points in node 
(Bucketsize)

Tie inclusion flag 
(IncludeTies)

Distance 
(Distance)

Exponent 
(Exponent)

Data division Dataset used

Comments

46.2 2 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 77.4-I; 32.0-O; 15.1-M
48.6 4 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 71.9-I; 33.0-O; 29.7-M
51.8 8 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 76.3-I; 33.3-O; 32.0-M
51.9 16 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 79.1-I; 29.7-O; 32.5-M
53.3 32 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 85.6-I; 26.7-O; 30.4-M
52.2 64 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 89.4-I; 20.7-O; 26.7-M
50.5 128 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 94.2-I; 13.0-O; 20.9-M
48.5 256 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 96.5-I; 7.6-O; 15.6-M
45.8 512 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 98.8-I; 2.6-O; 8.2-M
44.3 1024 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 99.6-I; 0.4-O; 4.0-M
53.1 42 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 87.4-I; 23.3-O; 30.1-M
53.3 29 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 84.6-I; 27.6-O; 31.4-M
52.8 29 exhaustive random n/a n/a n/a n/a 70% for training Boctopus2 83.9-I; 26.6-O; 30.8-M
51.7 29 exhaustive random n/a n/a n/a n/a 60% for training Boctopus2 83.2-I; 25.7-O; 29.5-M
53.6 29 exhaustive random n/a n/a n/a n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.1 29 exhaustive random n/a n/a n/a n/a 90% for training Boctopus2 85.7-I; 25.9-O; 30.6-M
52.9 29 exhaustive random n/a n/a n/a n/a 87% for training Boctopus2 85.2-I; 27.1-O; 30.2-M
53.6 29 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
49.1 256 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 96.7-I; 7.8-O; 16.4-M

53.1 29 kdtree random n/a n/a euclidean n/a 90% for training Boctopus2 85.7-I; 25.9-O; 30.6-M
52.8 29 kdtree random n/a n/a euclidean n/a 70% for training Boctopus2 83.9-I; 26.6-O; 30.8-M

53.6 29 kdtree random n/a n/a cityblock n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M

52.9 64 kdtree random n/a n/a cityblock n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M

51.4 128 kdtree random n/a n/a cityblock n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M

53.6 29 kdtree random n/a n/a minkoswki 2 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree random n/a n/a minkoswki 2 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree random n/a n/a minkoswki 2 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
43.3 29 kdtree random n/a n/a chebychev n/a 85% for training Boctopus2 100-I; 0-O; 0-M
43.3 64 kdtree random n/a n/a chebychev n/a 85% for training Boctopus2 100-I; 0-O; 0-M

43.3 128 kdtree random n/a n/a chebychev n/a 85% for training Boctopus2 100-I; 0-O; 0-M

53.6 29 kdtree smallest n/a n/a euclidean n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree smallest n/a n/a euclidean n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree smallest n/a n/a euclidean n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
53.6 29 kdtree nearest n/a n/a euclidean n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree nearest n/a n/a euclidean n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree nearest n/a n/a euclidean n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
52.7 29 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
51.8 64 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 93.6-I; 16.5-O; 22.5-M
48.3 128 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 97.0-I; 8.3-O; 13.3-M
52.7 29 kdtree n/a n/a true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 40 true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 80 true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 580 true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 580 true. minkoswki 2 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 10 true. minkoswki 2 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
53.6 29 kdtree random 10 n/a minkoswki 2 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.6 29 kdtree random 100 n/a minkoswki 2 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.6 29 kdtree random 100 n/a minkoswki 3 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.6 29 kdtree random 100 n/a minkoswki 30 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
63.4 2 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 76.8-I; 65.5-O; 56.4-M
66.9 4 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 59.7-I; 60.8-O; 72.7-M
67.4 8 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 49.7-I; 54.2-O; 80.8-M
66.7 16 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 37.2-I; 43.5-O; 89.5-M
64.1 32 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 25.8-I; 32.5-O; 94.4-M
60.3 64 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 14.4-I; 18.9-O; 98.1-M
67.6 8 exhaustive random n/a n/a n/a n/a 90% for training TopBPdataset 49.7-I; 54.1-O; 81.2-M
68.6 8 exhaustive random n/a n/a n/a n/a 95% for training TopBPdataset 52.9-I; 54.8-O; 81.5-M
69.7 8 exhaustive random n/a n/a n/a n/a 97% for training TopBPdataset 52.5-I; 47.8-O; 87.0-M
71.8 8 exhaustive random n/a n/a n/a n/a 99% for training TopBPdataset 57.7-I; 56.5-O; 83.8-M
66.6 8 exhaustive random n/a n/a n/a n/a 80% for training TopBPdataset 47.9-I; 53.2-O; 80.6-M
67.6 8 kdtree random n/a n/a euclidean n/a 90% for training TopBPdataset 49.9-I; 54.1-O; 81.2-M
66.7 16 kdtree random n/a n/a euclidean n/a 90% for training TopBPdataset 38.5-I; 43.7-O; 89.0-M
67.6 8 kdtree random n/a n/a cityblock n/a 90% for training TopBPdataset 49.9-I; 54.1-O; 81.2-M
67.6 8 kdtree random n/a n/a minkoswki 2 90% for training TopBPdataset 49.9-I; 54.1-O; 81.2-M
54.7 8 kdtree random n/a n/a chebychev n/a 90% for training TopBPdataset 2.3-I; 2.7-O; 100-M
67.6 8 exhaustive smallest n/a n/a n/a n/a 90% for training TopBPdataset 49.7-I; 54.1-O; 81.2-M
67.6 8 exhaustive nearest n/a n/a n/a n/a 90% for training TopBPdataset 49.7-I; 54.1-O; 81.2-M
66.8 8 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
63.1 16 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset 24.0-I; 30.4-O; 94.4-M
60.8 32 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset 15.5-I; 21.8-O; 97.6-M
66.8 8 kdtree n/a 40 true. euclidean n/a 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
66.8 8 kdtree n/a 80 true. euclidean n/a 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
66.8 8 kdtree n/a 10 true. minkoswki 2 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
66.8 8 kdtree n/a 20 true. minkoswki 8 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
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Appendix C 
	

	
	

Accuracy (%)

Kernel 
function(Ker
nelFunctio
n) 

Store support 
vectors, their labels 
and  α coefficients 
(SaveSupportVec
tors)

Box constraint 
(BoxConstraint)

Cache size 
(CacheSize)

Flag to clip alpha 
coefficients 
(ClipAlphas)

Optimization routing 
(Solver)

Tolerance for 
gradient difference 
(DeltaGradientT
olerance)

Feasibility gap 
tolerance 
(GapTolerance)

 Maximal number of 
numerical optimization 
iterations 
(IterationLimit)

Kernel offset 
parameter(KernelO
ffset)

Kernel scale 
parameter 
(KernelScale)

Karush-Kuhn-Tucker 
complementarity 
conditions violation 
tolerance 
(KKTTolerance)

ν parameter 
for one-class 
learning (Nu)

Number of 
iterations between 
optimization 
diagnostic 
message output 
(NumPrint)

Expected 
proportion of 
outliers in training 
data 
(OutlierFract
ion)

Polynomial kernel 
function order 
(PolynomialOr
der)

Number of 
iterations between 
movement of 
observations from 
active to inactive 
set 
(ShrinkagePer

Flag to standardize 
predictor 
data(Standardi
ze)

Verbosity level 
(Verbose)

Dataset

60.1 linear false(default) 1(default) 1000(default) true(default) SMO(default) 0.001 0(default) 1e6(default) 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
60.1 linear true_ 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 1e6(default) 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
43.3 rbf true_ 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 1e6(default) 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
39 linear true_ 1(default) 10000 true(default) SMO(default) 0.001(SMO default) 0(default) 100 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

39.8 linear true_ 1(default) 10000 true(default) SMO(default) 0.001(SMO default) 0(default) 1000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

41.2 linear true_ 1(default) 10000 true(default) SMO(default) 0.001(SMO default) 0(default) 10000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

39 linear true_ 1(default) 500 true(default) SMO(default) 0.001(SMO default) 0(default) 100 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

38.5 linear true_ 1(default) 500 true(default) SMO(default) 0.001(SMO default) 0(default) 500 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.2 linear true_ 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

40.7 linear true_ 100 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.2 linear true_ 0.5 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.5 linear true_ 0.1 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

58.4 linear true_ 0.001 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.5 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
60.4 linear true_ 0.1 1000(default) false_ ISDA 0(ISDA default) 0(default) 100000 0 .1(default for ISDA) 1(default) 1e-3 (default for ISDA) 0.5(default) 1000(default) 0.05 n/a 0(default) false(default) 0(default) Boctopus2
59.8 linear true_ 0.1 1000(default) false_ ISDA 0(ISDA default) 0(default) 100000 0 .1(default for ISDA) 1(default) 1e-3 (default for ISDA) 0.5(default) 1000(default) 0.95 n/a 0(default) false(default) 0(default) Boctopus2

25 linear true_ 0.1 1000(default) false_ SMO(default) 0.01 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

43.2 linear true_ 0.1 1000(default) false_ SMO(default) 0.0001 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

54 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0.5 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

43.2 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0.5 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.3 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 0.5 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

62.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 0.5 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.5 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 0.95 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

59.9 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 2.5 10 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

59.9 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 10 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) auto 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.5 polynomial true_ 0.1 1000(default) false_ ISDA 0(ISDA default) 0(default) 100000 0 .1(default for ISDA) 0.95 1e-3 (default for ISDA) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

44.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 10 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.25 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 3(default) 0(default) false(default) 1 Boctopus2

64.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 0(default) false(default) 0(default) Boctopus2

58.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 15 0(default) false(default) 0(default) Boctopus2

63.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 1000 false(default) 0(default) Boctopus2

52 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 1000 true_ 0(default) Boctopus2

63.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 1500000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 0(default) false(default) 0(default) Boctopus2

63.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 2000000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 0(default) false(default) 0(default) Boctopus2

48 linear false(default) 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) TopBPdataset

47.7 linear false(default) 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 1000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) TopBPdataset
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                       Configurations:
1:Layer 1(KNN=1,SVM=1,DNN=1)/Layer 2 (SVM)
2:Layer 1(KNN=0,SVM=1,DNN=1)/Layer 2 (SVM)
3:Layer 1(KNN=1,SVM=0,DNN=1)/Layer 2 (SVM)
4:Layer 1(KNN=1,SVM=1,DNN=0)/Layer 2 (SVM)

Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 4 Configuration 4 Configuration 1 Configuration 1 Configuration 2 Configuration 1 Configuration 1

Dataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset Boctopus2dataset TopBPDataset TopBPDataset TopBPDataset

 tspart1 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.75 0.8

 tspart2 0.6 0.9 0.75 0.35 0.25 0.4 0.45 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Overall accuracy 61.2 49.4 53.1 65.2 64.5 66.1 65.4 66.2 72.8 71.9 73.1 63.6 72.8 74.6 75.2

KernelFunction polynomial polynomial polynomial polynomial polynomial polynomial polynomial

 SaveSupportVectors TRUE TRUE TRUE TRUE TRUE TRUE TRUE

BoxConstraint 1(default) 0.1 1(default) 1(default) 1(default) 1(default) 1(default)

CacheSize 1000(default) 1000(default) 1000(default) 1000(default) 1000(default) 1000(default) 1000(default)

ClipAlphas true(default) FALSE true(default) true(default) true(default) true(default) true(default)

Solver SMO(default) SMO(default) SMO(default) SMO(default) SMO(default) SMO(default) SMO(default)

 DeltaGradientTolerance 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default)

 GapTolerance 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

 IterationLimit 1e6(default) 100000 1e6(default) 1e6(default) 1e6(default) 1e6(default) 1e6(default)

KernelOffset 0 0 0 0 0 0 0

 KernelScale 1(default) 5 1(default) 1(default) 1(default) 1(default) 1(default)

KKTTolerance 0 0.00001 0 0 0 0 0

Nu 0.5(default) 0.5(default) 0.5(default) 0.5(default) 0.5(default) 0.5(default) 0.5(default)

 NumPrint 1000(default) 500 1000(default) 1000(default) 1000(default) 1000(default) 1000(default)

 OutlierFraction 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

 PolynomialOrder 3 (default) 5 3 (default) 3 (default) 3 (default) 3 (default) 3 (default) 

 ShrinkagePeriod 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

Standardize false(default) false(default) false(default) false(default) false(default) false(default) false(default)

 Verbose 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

 NumNeighbors 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Nsmethod exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive

 BreakTies random random random random random random random random random random random random random random random

 Bucketsize n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

 IncludeTies n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

 Distance n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

 Exponent n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Window Size 65 65 65 65 65 65 65 65 65 65 65 65 65

Bits encoding 50 50 50 50 50 50 50 50 50 50 50 50 50

Transfer functon logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig

Hidden layer size 50 50 50 50 50 50 50 50 50 50 50 50 50

Training function trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg

Performance Function
sum squarred 

error
sum squarred 

error
sum squarred 

error
sum squarred 

error
sum squarred 

error
sum squarred 

error
sum squarred 

error
sum squarred 

error
sum squarred error sum squarred error

sum squarred 
error

sum squarred 
error

sum squarred 
error

Data division Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand


