

MACHINE LEARNING APPLICATIONS
FOR THE TOPOLOGY PREDICTION

OF TRANSMEMBRANE BETA-BARREL
PROTEINS

A dissertation submitted for the degree of
Doctor of Philosophy

School of Computing and Digital Media

London Metropolitan University

Cédric Maxime Grimaldi
January 2022

1

Acknowledgement

I want to acknowledge all those who had confidence in me and allowed me to accomplish

this PhD thesis.

First, my thanks go to Professor Hassan Kazemian, my lead supervisor of studies. Without

his valuable support, input, encouragement, and confidence in me, this work would not

have been achievable. I also would like to thank my second supervisor, Dr Kenneth White,

for his patience, guidance, and support. I want to thank all the School of Computing and

Digital Media research colleagues at London Metropolitan University for their valuable

comments and suggestions throughout this work.

Finally, I would like to thank my family for their support and patience.

2

Abstract

The research topic for this PhD thesis focuses on the topology prediction of beta-barrel

transmembrane proteins. Transmembrane proteins adopt various conformations that are

about the functions that they provide. The two most predominant classes are alpha-helix

bundles and beta-barrel transmembrane proteins. Alpha-helix proteins are present in larger

numbers than beta-barrel transmembrane proteins in structure databases. Therefore, there

is a need to find computational tools that can predict and detect the structure of beta-barrel

transmembrane proteins. Transmembrane proteins are used for active transport across the

membrane or signal transduction. Knowing the importance of their roles, it becomes

essential to understand the structures of the proteins. Transmembrane proteins are also a

significant focus for new drug discovery. Transmembrane beta-barrel proteins play critical

roles in the translocation machinery, pore formation, membrane anchoring, and ion

exchange. In bioinformatics, many years of research have been spent on the topology

prediction of transmembrane alpha-helices. The efforts to TMB (transmembrane beta-

barrel) proteins topology prediction have been overshadowed, and the prediction accuracy

could be improved with further research. Various methodologies have been developed in

the past to predict TMB proteins topology. Methods developed in the literature that are

available include turn identification, hydrophobicity profiles, rule-based prediction, HMM

(Hidden Markov model), ANN (Artificial Neural Networks), radial basis function

networks, or combinations of methods. The use of cascading classifier has never been fully

explored. This research presents and evaluates approaches such as ANN (Artificial Neural

Networks), KNN (K-Nearest Neighbors, SVM (Support Vector Machines), and a novel

approach to TMB topology prediction with the use of a cascading classifier. Computer

3

simulations have been implemented in MATLAB, and the results have been evaluated.

Data were collected from various datasets and pre-processed for each machine learning

technique. A deep neural network was built with an input layer, hidden layers, and an

output. Optimisation of the cascading classifier was mainly obtained by optimising each

machine learning algorithm used and by starting using the parameters that gave the best

results for each machine learning algorithm. The cascading classifier results show that the

proposed methodology predicts transmembrane beta-barrel proteins topologies with high

accuracy for randomly selected proteins. Using the cascading classifier approach, the best

overall accuracy is 76.3%, with a precision of 0.831 and recall or probability of detection

of 0.799 for TMB topology prediction. The accuracy of 76.3% is achieved using a two-

layers cascading classifier. By constructing and using various machine-learning

frameworks, systems were developed to analyse the TMB topologies with significant

robustness. We have presented several experimental findings that may be useful for future

research. Using the cascading classifier, we used a novel approach for the topology

prediction of TMB proteins.

4

Author Related Publications

§ Kazemian, H., Yusuf, S.A., White, K., and Grimaldi, C.M (2016), NN approach

and its comparison with NN-SVM to beta-barrel prediction, Expert Systems

with Applications 61:203–214

§ Kazemian, H. and Grimaldi, C.M. (2020), Cascading classifier application for

topology prediction of transmembrane beta-barrel proteins, Journal of

Bioinformatics and Computational Biology, Vol.18, No. 3

5

Table of Contents
Acknowledgement .. 1
Abstract .. 2
Author Related Publications ... 4
1. Introduction .. 15

1.1 Motivation .. 16
1.2 Research Hypotheses .. 17
1.3 Aim and Objectives .. 18
1.4 Research methodology and design ... 19

1.4.1 Research philosophy ... 20
1.4.2 Exploratory Method .. 20

1.4.2.1 TMB datasets .. 21

1.4.2.2 Machine learning models ... 21

1.4.3 Constructive Method .. 21
1.4.3.1 Machine learning models development ... 21

1.4.3.2 Machine learning models optimisation .. 22
1.4.4 Experimental Method ... 22

1.5 Thesis structure ... 22
2. Literature Review ... 24

2.1 History and development of prediction methods .. 24
2.1.1 Discrimination of transmembrane strand proteins .. 24

2.1.1.1 Hidden Markov Models .. 25

2.1.1.2 Radial basis function networks with PSSM profiles 26

2.1.1.3 Nearest neighbor algorithm .. 28

2.1.2 Identification of membrane-spanning β-strand segments 29
2.1.2.1 Turn elimination method .. 29

2.1.2.2 Hydrophobicity profiles .. 29

2.1.2.3 Rule-based prediction ... 30

2.1.2.4 Artificial neural networks ... 30

2.1.2.5 Combination of methods .. 31

2.1.2.6 Recursive neural networks .. 32

2.2 Literature review on BOCTOPUS methods ... 33

6

2.2.1 BOCTOPUS1 method .. 33
2.2.2 BOCTOPUS2 method .. 34

2.3 Summary ... 34
3. Machine learning algorithms .. 36

3.1 Neural Networks ... 36
3.1.1 Artificial neural networks ... 36

3.1.1.1 Regularisation ... 38

3.1.1.2 Gradient-based optimisation ... 40

3.1.2 Recurrent neural networks .. 41
3.1.3 Convolution neural networks .. 43
3.1.4 Applications .. 44

3.2 K-Nearest Neighbors .. 45
3.2.1 General concept .. 45
3.2.2 Distance function .. 46
3.2.3 Advantages and disadvantages ... 47

3.3 Support Vector Machines ... 48
3.3.1 History of SVMs ... 48
3.3.2 SVM concept .. 48

3.3.2.1 Support Vector Machines: The linearly separable case 49

3.3.2.2 Support Vector Machines: The linearly non-separable case 50

3.3.2.3 Nonlinear Support Vector Machines .. 50

3.3.2.4 Quadratic programming problem of SVMs .. 51

3.3.2.5 Multi-class SVMs: One to others ... 53

3.3.2.6 Multi-class SVMs: Pairwise SVMs .. 54

3.3.3 Applications of Support Vector Machines ... 55
3.3.4 Limitations of Support Vector Machines ... 58

3.4 Ensemble methods .. 58
3.4.1 General concept .. 59
3.4.2 Types of ensembles .. 60

3.4.2.1 Voting and averaging based ensemble methods ... 60

3.4.2.2 Bootstrap aggregating (bagging) .. 60

3.4.2.3 Boosting .. 61

7

3.4.2.4 Multi-stage method cascading .. 61

3.4.2.5 Stacking .. 63
3.4.3 Applications of ensembles methods ... 64

3.5 Summary ... 68
4. Datasets and data preparation ... 70

4.1 Existing datasets ... 70
4.2 BOCTOPUS2 dataset ... 74
4.3 TOPDB dataset ... 77
4.4 Data preparation ... 80

4.4.1 Data collection .. 80
4.4.2 Data preprocessing ... 84

4.4.2.1 Boctopus2 structure array ... 84

4.4.2.2 Topbp structure array .. 85

4.4.3 Data transformation .. 87
4.4.3.1 Binarisation of the inputs and targets ... 87

4.4.3.2 Input and target matrices construction .. 89
4.5 Summary ... 90

5. Implementation of ANN, KNN, and SVM .. 91
5.1 Implementation of ANN ... 91

5.1.1 Model building and training ... 91
5.1.2 Hyperparameters tuning ... 95

5.1.2.1 Hidden layer ... 95

5.1.2.2 Transfer function .. 96

5.1.2.3 Training algorithms .. 97

5.1.2.4 Data division ... 99

5.1.3 Performance evaluation .. 105
5.1.3.1 Confusion matrix .. 105

5.1.3.2 Receiver operating characteristic curve .. 107

5.1.3.3 Prediction quality indices ... 109

5.2 Implementation of KNN ... 110
5.2.1 Model building and training ... 110
5.2.2 Hyperparameters tuning ... 113

8

5.2.3 Performance evaluation .. 115
5.2.3.1 Confusion matrix .. 115

5.2.3.2 Receiver operating characteristic curve .. 116

5.2.3.3 Prediction quality indices ... 117

5.3 Implementation of SVM ... 119
5.3.1 Model building and training ... 119
5.3.2 Hyperparameters tuning ... 126
5.3.3 Performance evaluation .. 134

5.3.3.1 Confusion matrix .. 134

5.3.3.2 Receiver operating characteristic curve .. 135

5.3.3.3 Prediction quality indices ... 136

5.4 Comparison of results ... 137
5.5 Summary ... 138

6. Implementation of cascading classifier .. 140
6.1 Model building and training ... 140
6.2 Hyperparameters tuning ... 142

6.2.1 Performance evaluation .. 142
6.2.1.1 Confusion matrix .. 146

6.2.1.2 Receiver operating characteristic curve .. 147

6.2.1.3 Prediction quality indices ... 148
6.3 Summary ... 149

7. Discussion of findings .. 151
7.1 Implications .. 151
7.2 Limitations .. 156

8. Conclusion and future research directions ... 159
References .. 164
Appendix A .. 191
Appendix B .. 192
Appendix C .. 193
Appendix D .. 194

9

List of Tables

Table 1 BOCTOPUS2 dataset .. 76

Table 2 Sample of 15 TMBs selected out of 123 TMBs available in TOPDB database 79

Table 3 Best classification rate and area under the ROC curve on different binary encoding

 .. 88

Table 4 Training algorithms used ... 98

Table 5 Supported Kernel function names and their functional forms 125

10

List of Figures

Figure 1 Using PSSM profiles in radial basis function network .. 28

Figure 2 OmpA-Stretch of predicted amino acids residues in membrane-spanning beta-

strands using TMBETA-NET ... 31

Figure 3 OmpA-Stretch of predicted BOCTOPUS pipeline ... 33

Figure 4 Schematic diagram of backpropagation training algorithm and typical neuron

model .. 36

Figure 5 Gradient descent ... 40

Figure 6 Recurrent neural networks structure. .. 42

Figure 7 AlexNet CNN architecture ... 44

Figure 8 Example of k-nearest neighbors classifier .. 46

Figure 9 Linear separating hyperplane: Separable case .. 49

Figure 10 Linear separating hyperplane: Non-separable case ... 50

Figure 11 Input space and feature space ... 51

Figure 12 Multi-class SVMs: Tree structure .. 54

Figure 13 Three methods for learning from heterogeneous data using SVM 57

Figure 14 Architecture of Multi-stage Deep Classifier Cascades and model details of (a)

root node and (b) leaf nodes ... 62

Figure 15 Stacking .. 63

Figure 16 Schematic illustration of an ensemble using different classification 67

Figure 17 RCSB-PDB hierarchical classification of protein domain structures 73

Figure 18 BOCTOPUS 2: Improved topology prediction of transmembrane beta-barrel

proteins ... 74

Figure 19 boctopus2_dataset_sequenceannotation.txt .. 75

Figure 20 Topology Data Bank of Transmembrane Proteins Topology, Structure and

Prediction .. 77

Figure 21 Top_bp.txt .. 78

Figure 22 boctopus2Sequence.txt ... 81

Figure 23 boctopus2Labels.txt .. 82

11

Figure 24 TOPBPSequence.txt ... 83

Figure 25 TOPBPLabels.txt .. 83

Figure 26 boctopus2dataset.m .. 84

Figure 27 topbpdataset. mat. ... 85

Figure 28 Comput file ... 86

Figure 29 BinarizeInputs.m .. 87

Figure 30 BinarizeTargets.m .. 89

Figure 31 Construct input and target matrices .. 90

Figure 32 Neural network training GUI ... 92

Figure 33 Function trainWithNeural ... 93

Figure 34 Function predictWithNeural .. 93

Figure 35 Function assessPerformance .. 94

Figure 36 Representation of the neural network ... 95

Figure 37 Log-sigmoid transfer function .. 96

Figure 38 Tan-sigmoid transfer function .. 97

Figure 39 AUC & Predictive Accuracy Value ... 99

Figure 40 Structural assignment in the training data set ... 101

Figure 41 Structural assignment in the validation data set ... 102

Figure 42 Structural assignment in the testing data set .. 103

Figure 43 net.trainParam function results ... 104

Figure 44 Gradient .. 105

Figure 45 validation checks .. 105

Figure 46 Confusion matrix .. 107

Figure 47 Receiver Operating Characteristics curve .. 108

Figure 48 Quality indices of prediction .. 109

Figure 49 Function trainWithKNN .. 111

Figure 50 Function predictWithKNN ... 111

Figure 51 Scheme of a KD-Tree Search algorithm .. 112

Figure 52 Confusion matrix .. 116

Figure 53 ROC curve .. 117

12

Figure 54 Quality indices .. 118

Figure 55 Display of t from the command window .. 120

Figure 56 function trainWithSVM ... 121

Figure 57 function predictWithKNN .. 121

Figure 58 ECOC designs .. 123

Figure 59 Diagnostic message and convergence criteria .. 131

Figure 60 Illustration of the mapping ! ... 132

Figure 61 Confusion matrix for SVM classifier ... 135

Figure 62 ROC curve for SVM classifier ... 136

Figure 63 Quality indices of prediction for SVM classifier ... 137

Figure 64 Part of UseClassifiers.m for cascading classifier ... 140

Figure 65 Useclassifiers.m .. 141

Figure 66 Creating and training the SVM classifier at layer 2 ... 142

Figure 67 Magnitude of gradient .. 144

Figure 68 Validation checks ... 144

Figure 69 Topology assignments in the training data set ... 145

Figure 70 Topology assignments in the validation data set .. 145

Figure 71 Topology assignments in the testing data set ... 146

Figure 72 Confusion Matrix ... 147

Figure 73 ROC curve .. 148

Figure 74 Quality indices performance .. 149

13

List of Acronyms

BAM Binary Alignment/Map
BED Browser Extensible Data
CNN Convolutional Neural Network

DAG Directed Acyclic Graph
DAS Dense Alignment Surface
DLDA Diagonal linear Discriminant Analysis

ECOC Error-Correcting Output Code
ERM Empirical Risk Minimization
FSVM Fuzzy SVM

GTF Gene Transfer Format
HMM Hidden-Markov Models
ISDA Iterative Single Data Algorithm

KKT Karush-Kuhn-Tucker
KNN k-nearest neighbor
LS-SVM Least Squares SVM

MAE Mean Absolute Error
MATLAB Matrix Laboratory

MEMSAT MEMbrane protein Structure And Topology
NLP Natural Language Processing
OAA-SVM One-Against-All SVM

OMPs Outer Membrane Proteins
PAM Point Accepted Mutation
PDB Protein Data Bank

PSSM Position-Specific Scoring Matrix
RBF Radial Basis Function
RNNs Recurrent Neural Networks

ROC Receiver operating characteristic
RVM Relevance vector machine
SAM Sequence Alignment/Map

SMO Sequential Minimal Optimization
SNP Single nucleotide polymorphism
SRM Structural Risk Minimization

SVM Support Vector Machines
TMB Transmembrane beta-barrel
TMHMM Transmembrane Helices; Hidden Markov Model

TOPDB Topology Data Bank of Transmembrane Proteins

14

VC
dimension

Vapnik Chervonenkis dimension

VCF Variant Call Format
WIG Wiggle

15

1. Introduction

Proteins are macromolecules or large biological molecules that consist of one or more long

chains of amino residues. Protein secondary structure is the specific geometric shape

caused by inter-molecular and intra-molecular hydrogen bonding of amide groups

(Elmhurst College, 2003). There’s been much research on alpha-helix membrane proteins.

There are a few reasons for this. Alpha-helices contain an easily recognisable pattern of

highly hydrophobic consecutive sequences, and rules such as the ‘positive-inside rule’ (von

Heijne, 1992) can be applied. The positive-inside rule is a simple rule that defines how

proteins insert and orient in membranes. Positive charges stay in the cytoplasm. Another

reason, as explained earlier, is the profusion of alpha-helical membranes proteins

(compared to beta-barrel transmembrane proteins) in entire genomes, and the same applies

to datasets of proteins with experimentally solved structures in 3D.

There are significant improvements in the methods used to determine protein structures.

The number of proteins with known structures at the atomic level still corresponds to a

minimal fraction of known sequences (around 1%). There has been progress in technology

used to understand the functions and structures of membrane proteins. For TMB proteins

topology prediction, various techniques have been used. However, some areas are not fully

explored. For example, the use of k-nearest neighbors for TMB topology prediction has

not yet been implemented and evaluated. A complete comparison between k-nearest

neighbors classifiers, support vector machine and deep neural network has not been

evaluated. In a recent paper, Heffernan et al. (Heffernan, Paliwal, Lyons, Dehzangi,

Sharma, Wang, Sattar, Yang and

Zhou, 2015) obtained an 82% prediction accuracy using a deep learning neural network.

Recurrent neural networks provide successful results when applied to secondary structure

prediction (Pollastri, Przybylski, Rost, Baldi, 2002), (Daniel, 2003). The use of Deep

learning towards transmembrane beta-barrel topology prediction could provide a

significant advance in this field.

16

1.1 Motivation		

The prediction of secondary structure helps to define the 3D structure of proteins, but

100% single residue accuracy is not the goal. There are a few reasons why the accuracy of

100% has not been achieved so far. There are uncertainties and errors in the Protein Data

Bank (PDB), and some regions are classified as disordered instead of ordered in the PDB.

This leads to noisy data. Also, prediction errors can originate from a rigid secondary

structure definition without considering differences (Magnan and Baldi, 2014).

One of the most critical goals in bioinformatics is accurately predicting protein secondary

structures. It is essential in the design of drugs or novel enzymes. The location of beta-

barrel transmembrane proteins is in the outer membranes of gram-negative bacteria, outer

membranes of mitochondria or chloroplasts. They have critical functions such as passive

nutrient intake ion-transport. Accurate predictions of secondary and tertiary structures of

transmembrane proteins are therefore needed. Effective antibacterial drugs are developed

with a good knowledge of the 3D structures of transmembrane beta-barrels.

Efforts related to beta-barrel topology prediction have been overshadowed, and there could

be an improvement in prediction accuracy. Recent studies focus on alpha-helix

transmembrane regions prediction using an SVM- genetic algorithm (Kazemian et al.,

2013) or adaptive neural fuzzy inference system (Kazemian et al., 2014), for example. A

recent paper embarks upon a NN (Neural Network) technique and its comparison with

hybrid-two-level NN-SVM (Support Vector Machines) methodology to classify inter-class

and intra-class transitions to predict the number and range of beta membrane-spanning

regions (Kazemian et al., 2016). The computer simulation results demonstrate a significant

impact and a superior performance of NN-SVM tests with a five residue overlap for signal

protein over NN with and without redundant proteins for predicting transmembrane beta-

barrel spanning regions. Recent studies focus on alpha-helix transmembrane regions

prediction with the use of SVM- genetic algorithm (Kazemian et al., 2013) or adaptive

neural fuzzy inference system (Kazemian et al., 2014). This PhD thesis aims to evaluate

17

what prediction methods and techniques have been used so far and find new approaches

and strategies that would improve the prediction accuracy results obtained from this

implementation could represent an essential advancement in the prediction of the topology

of beta-barrel transmembrane proteins with the use of a computer simulation. Deep

learning is a rapidly evolving field, and a significant advance in bioinformatics could be

provided while using those algorithms as part of the thesis. The most common deep

learning architectures are convolutional deep neural networks. Transmembrane beta-barrel

proteins datasets are usually small. The performance of multiple algorithms was evaluated

in a recent article (Sharma et al., 2016) using small datasets with various dimensionalities.

Their report indicated that KNN (k-nearest neighbors), SVM (Support vector machines)

and linear discriminant is the best algorithms when using small datasets. Some of those

models will be implemented as part of the thesis. The PhD thesis will include a

comprehensive evaluation and comparison of the various machine learning applications.

The results obtained from this paper will be applied and utilised to develop and improve a

complete scientific website referenced as the ‘transmembrane and signal peptide topology

prediction web server’. The objective of this server is to contribute to knowledge and

understanding in the field of transmembrane proteins, signal peptides and machine learning

algorithms through the development of an integrated software suite. The server includes

already an ensemble of artificial intelligence techniques such as artificial neural networks,

fuzzy inference systems, genetic algorithms, hidden Markov models and support vector

machines. Predicting beta-barrels, alpha-helices, and signal peptides in one website is

unprecedented, and the site will compete with the only few world-renowned websites, such

as TMHMM 2.0 (Krogh, Larsson, von Heijne & Sonnhammer, 2001), DAS (Cserzo,

Wallin, Simon, von Heijne and Elofsson, 1997), MEMSAT (Jones, Taylor & Thornton,

1994) and SOSUI (Hirokawa, Boon-Chieng and Mitaku, 1998).

1.2 Research	Hypotheses		

The key research questions, which are the basis of this research, are:

18

1. Which machine learning technique is the most appropriate and has the best

predictive accuracy for the application of TMB topology prediction?

2. What model could be built to improve current predictions models available today?

This study will therefore need to address the following research questions:

● TMB topology prediction is a saturated research area, and current models available

have low accuracy. What factors limit the improvement of prediction accuracy?

● How to develop a novel model that can combine multiple machine learning

techniques? What architecture is the most appropriate?

● How can the model be optimised to improve TMB topology prediction accuracy?

● Can the proposed model add a significant contribution of knowledge to the topic

and be helpful in fields such as medicine?

1.3 Aim	and	Objectives		

This research aims to evaluate the performance of selected machine learning techniques in

predicting TMB topologies and compare them. The goal of the prediction is to provide the

topology of beta-barrel within a protein or protein family and more specifically,

transmembrane proteins. The thesis aims at generating new knowledge in the field of

bioinformatics. Proteins are vital parts of many biological processes. Prediction methods

are of great importance for membrane proteins and are very helpful in drug discovery. If

there is a need to design new drugs, cure diseases, then it is necessary to understand the

actual molecular structure that drugs bind to and then better and improved drugs can be

developed. It is hoped that the research project will develop new understandings in the field

of machine learning.

19

The main objectives are:

1. Review the various types of machine learning techniques and existing algorithms

that could be applied for beta-barrel TM topology prediction.

2. Review the various types of proteins, protein structures, and general aspects.

3. Use an appropriate methodology to collect, prepare and encode data using various

datasets.

4. Develop ANN, KNN, SVM and cascading classifier models.

5. Evaluate the performances of the proposed methods, analyse, and compare the

results.

1.4 Research	methodology	and	design	

This chapter examines the research methodology adopted in this thesis. It first defines the

philosophy that supports the approach taken with the research, discussing the use of a

positivism posture to study and the consequent choice of the exploratory, constructive, and

experimental approaches used. Hussey et al. (Hussey & Hussey, 1997) discuss

methodology and method. The writers define the methodology as the overall approach to

the research process encompassing a body of methods and define a method as the various

techniques of collecting and/or analysing data. Mason (2002) describes the concept of

methodological strategy, indicating that a particular method can be part of the strategy. The

approach here includes all aspects of the research process under the overall methodology.

The research design and the methods used, the data collection method chosen, and the

means of analysis are all considered part of the methodology and are defined in the

following sections.

20

The methodology combines exploratory, constructive, and experimental methods. The

exploratory method aims to gain insights and familiarity with the topic of TMB topology

prediction. Multiple methods have been used to effectively conduct the proposed research

and test the model sets and machine learning techniques used. To ensure good research

design, it is also necessary to evaluate the data sources to make sure that they will help

answer research questions most effectively. The constructive method is used for building

the models. The experimental method is used for testing the models and tuning the

hyperparameters.

1.4.1 	Research	philosophy	

A positivism approach was adopted in this research. As a philosophy, positivism adheres

to the view that only knowledge based on facts gained through measurements, for example,

is trustworthy. In positivism studies, the role of the researcher is limited to data

collection and interpretation objectively. In studies such as this thesis, research findings

are observable and quantifiable. There is often a distinction regarding research

philosophies between positivism and interpretivism (Bryman & Bell, 2007). In positivism,

the purpose of research is a scientific explanation. Researchers who work from this

perspective explains in quantitative terms how variables interact, shape events, and cause

outcomes. They often develop and test these explanations in experimental studies. This

framework maintains that reliable knowledge is based on direct observation or

manipulation of natural phenomena through empirical and experimental means (Lincoln &

Guba, 2000; Neuman, 2003).

1.4.2 Exploratory	Method		

The exploratory method aims to look for patterns, ideas, or hypotheses. It helps determine

the best research design, data collection method, selection of datasets and machine learning

techniques. It relies on secondary research, such as reviewing available literature and

datasets used.

21

1.4.2.1 TMB datasets

A high-quality data set is used for training and validation purposes when constructing any

prediction. An extensive literature review is performed on the list of datasets used in recent

models and the list of available datasets that are available. Errors in databases are not

infrequent, and adding them is an element of noise. While such noise is often well tolerated

by machine learning, the problem is more significant in smaller data sets such as the one

used for TMB topology prediction.

1.4.2.2 Machine learning models

The initial literature review is used to find the various machine learning approaches used

to predict beta-barrel membrane proteins topology. Machine learning approaches prevail

over hydrophobicity methods due to their statistical formulation. There are few machine

learning-based beta-barrel TM topology predictors available based on ANN, HMM, SVM

or a combination of those machine learning techniques. An extensive literature review is

performed on the accuracy of the various methods described in various journals and

articles.

1.4.3 Constructive	Method		

This computing environment and computing language are selected. Models are

implemented in MATLAB. The models are continually learning and adapting to new data.

Hyperparameters for all algorithms are modified.

1.4.3.1 Machine learning models development

22

This activity identifies the various functions in MATLAB used to create the models. It

defines the encoding techniques that are used. The architectures of the models are described

and implemented.

1.4.3.2 Machine learning models optimisation

This activity has the goal of improving performance. It assesses which model is the most

accurate for TMB topology prediction. Hyperparameters for ANN, KNN, SVM and

cascading classifier are modified.

1.4.4 Experimental	Method		

This method proves that the models created generate a better TMB topology prediction

accuracy. The data are collected from various online transmembrane beta-barrel datasets.

The activities include testing the models. Multiple runs are executed, and results are

provided. The analysis of results is evaluated with the use of performance graphs.

1.5 Thesis	structure	

To report the findings of the research in detail, the remainder of the thesis is organised as

follows:

● Chapter 2 presents the literature review. Multiple research papers have been

evaluated and analysed in the context of TMB topology prediction. The available

current tools, existing research, methodologies, and limitations have been described

in this chapter.

● Chapter 3 provides some theories and concepts related to machine learning

algorithms such as SVM, ANN, KNN and ensemble methods.

23

● Chapter 4 presents the various datasets of transmembrane proteins that are available

and the techniques used for data preparation.

● Chapter 5 presents the implementation of ANN, KNN and SVM models in

MATLAB. Modification to the hyperparameters has been described. Results of the

implementations have been provided.

● Chapter 6 presents the implementation of a cascading classifier in MATLAB.

Modification to the hyperparameters has been described. Results of the

implementations and runs have been provided.

● Chapter 7 provides the discussion of findings.

● Chapter 8 provides the conclusion of the thesis, describes the achievements and

contributions, and discusses future research.

24

2. Literature Review

This chapter presents a review of publications in areas of transmembrane strand proteins.

It gives an overview of what has been achieved and used methods. Progress has been shown

for the past several decades, and still, the accuracy is modest

2.1 History	and	development	of	prediction	methods		

Three types of computational problems are related to transmembrane beta-barrel.

Transmembrane beta-barrel detection and discrimination (from other proteins) is the first

type. Transmembrane topology prediction and transmembrane beta-contacts prediction are

the second and third types. Machine learning can be applied to all these activities.

In the 1950s, Pauling et al. (Pauling and Corey, 1951) looked at creating alpha-helix and

beta-strand local conformations. Chou and Fasman developed the Chou-Fasman method in

1974 described in two different papers (Chou and Fasman, 1974a) and (Chou and Fasman,

1974b). Early prediction methods were developed using a simple analysis of how amino

acids are distributed in beta-strands (and alpha-helices). Chou et al. statistical method is

based on amino acids propensities defined as natural inclinations or tendencies to belong

to a given secondary structure. The propensity of a position is calculated using an average

of 5 residues (for a strand) surrounding each position rather than a position-by-position

analysis. However, this method is limited due to low accuracy, unreliable parameters, and

over prediction. Some methods used for the discrimination of transmembrane strand

proteins and identification of membrane-spanning β-strand segments are described in the

following paragraphs.

2.1.1 Discrimination	of	transmembrane	strand	proteins	

Outer membrane proteins (OMPs), also known as a β-barrel membrane or transmembrane

strand proteins, perform various functions, such as mediating nonspecific, passive

transport of ions and small molecules, selectively allowing the passage

of molecules such as maltose and sucrose. The success rate of discriminating β-barrel

25

membrane proteins from other proteins is significantly lower than that of α-

helical membrane proteins. Multiple methods have been proposed for determining OMPs.

These methods are based on hydrophobicity, sequence alignment, neural networks,

HMMs, conformational parameters, statistical methods, nearest neighbor

algorithms, SVMs, and machine learning techniques.

2.1.1.1 Hidden	Markov	Models	

HMM-B2TMR is based on HMM to predict beta-barrel transmembrane proteins topology

(Martelli, Fariselli, Krogh and Casadio, 2002). The novelty in this method is the

development of a specific input that is based on multiple sequence alignment. The

prediction accuracy is 83% in a jackknife test. A non-redundant dataset of 12 OMPs is used

for training and testing. Fariselli et al. developed a later version. They introduced a

decoding algorithm called the posterior-Viterbi algorithm (Fariselli, Martelli and Casadio,

2005). A decoding algorithm is needed when HMMs predict a given feature. Fariselli et al.

used the previously HMM developed by Martelli et al. to test their decoding algorithm.

Profiles from PSI-BLAST are used for inputs (Altschul, Madden, Schaffer, Zhang, Zhang,

Miller and Lipman, 1997).

PRED-TMBB is a server based on HMM (Bagos, Liakopoulos, Spyropoulos and

Hamodrakas, 2004a). A non-redundant dataset of 14 OMPs was used for the training. A

training set that is constituted of 16 non-homologous OMPs (Bagos, Liakopoulos,

Spyropoulos and Hamodrakas, 2004b) was used later in the model for retraining. The

training follows the conditional maximum likelihood method. Single sequences are used

as input. The Viterbi algorithm, N-best algorithm, or posterior decoding, in addition to the

dynamic programming algorithm, are also used (Bagos, Liakopoulos, Spyropoulos and

Hamodrakas, 2004a). The user can select one of the three different decoding options.

ProfTMB is based on HMM (Bigelow, Petrey, Liu, Przybylski, Rost, 2004). In the original

paper, the impact of using different profiles on ProfTMB accuracy was not evaluated. The

method described in the latest paper (Bigelow and Rost, 2006) reached an overall four-

state accuracy as high as 86%. The algorithm is mainly based on HMM-B2TMR with some

26

modifications, like having four states for each residue defined as up-strand, down-strand,

periplasmic-loop, and outer-loop (Bigelow and Rost, 2006). The C++ source code can be

downloaded and compiled by the users, and the original training data or a modification of

it can be used with PROFtmb.

BETA-TM is a predictor based on HMM (Ahn, Yoo and Park, 2003). The Baum-Welch

algorithm with a dataset of 11 non-homologous proteins is used for training. The Viterbi

algorithm is used for decoding.

TMB-HMM is also an HMM-based topology predictor. The residues in the transmembrane

can be predicted as exposed to the membrane versus hidden in the protein structure (Singh,

N., Goodman, Walter, Helms, and Hayat, 2011). The residues that do not belong to beta-

barrel strands but are in the transmembrane region can also be predicted. TMB-HMM uses

frequency profiles obtained from MSAs as input. It has been trained on a dataset of 19

TMBs. It has a three-state prediction accuracy of 72%. The predictor was trained on a

relatively small training dataset, but it is expected that the accuracy will improve once more

3D structures of TMBs become available.

2.1.1.2 Radial	basis	function	networks	with	PSSM	profiles	

Radial basis function networks have been suggested to predict the number of beta-barrel

strands and membrane-spanning regions in beta-barrel OMPs (Ou, Chen and Gromiha,

2010). In radial basis function networks, the hidden units perform the computation. To

define the topology of beta-barrel OMPs, it is essential to predict accurately the number of

beta-strands present in OMPs. This prediction is also important to determine the correct

assignment of strands in the membrane. Ou et al. created a protocol to predict the number

of beta-strand in OMPs. If there are more than 590 residues in the proteins, proteins will

be predicted as having 22 beta-strands. If there are less than 200 residues in the proteins,

proteins will be predicted as having 8 beta-strands. If the sequence length is 200500

residues, a radial basis function network is used simultaneously with amino acid

compositions such as Alanine, Aspartic acid, histidine, Tyrosine, and Valine to predict

27

10,12,14,16 and 18 beta-strands, respectively (Ou, Chen and Gromiha, 2010). A cross-

validation accuracy of 96.4% is achieved for the correct prediction on the beta-strands

number. For the prediction of membrane-spanning regions, residues in transmembrane

beta-strands are identified using a radial basis function network that has been trained with

PSSM profiles (obtained from PSI-BLAST). With this method, there is a reduction in over-

prediction and under-prediction.

Over-prediction and under-prediction are significant problems in transmembrane strands

prediction. The method has an accuracy of 87%. Figure 1 represents the use of PSSM

profiles as features in the radial basis function network as described in the Ou et al. paper.

The PSSM profiles are generated from PSI-BLAST (Altschul, Madden, Schaffer, Zhang,

Zhang, Miller and Lipman, 1997). A 15x20 matrix is generated using a window size of 15.

It is used as an input for the radial basis function network.

28

Figure 1 Using PSSM profiles in radial basis function network

Source: Ou, Y. Y., Chen, S. A and Gromiha, M. M. (2010)

2.1.1.3 Nearest	neighbor	algorithm	

Amino acid composition is one of the parameters, which can be used to identify β-

barrel membrane proteins (Gromiha, 2005). Garrow et al. (2005) used the amino acid co

mposition and proposed a modified k-nearest neighbor algorithm, TMB-HUNT, to classify

the proteins into transmembrane β-barrel (TMB) and non- TMB. This method showed an

accuracy of 92.5% using weighted amino acids and evolutionary information.

29

2.1.2 Identification	of	membrane-spanning	β-strand	segments	

2.1.2.1 Turn	elimination	method	

Another approach used to predict and identify segments causing polypeptides to reverse

their direction is called turn identification and developed by Paul and Rosenbusch (Paul

and Rosenbusch, 1985). With the removal of beta-turns and the selection of a length of 6

residues for a strand, they predicted transmembrane beta-strands.

2.1.2.2 Hydrophobicity	profiles	

In biochemistry, an amphipathic molecule can interact on one side with nonpolar or

hydrophobic molecules and on the other side with polar or hydrophilic molecules. Beta-

sheets are often amphipathic and fold into the rest of the protein to protect the hydrophobic

sidechains from water environments. Vogel and Jähnig developed a method for predicting

transmembrane beta-strands, and the method is based on the amphipathic characteristic of

beta-strands (Vogel and Jähnig, 1986). Jähnig (Jähnig, 1990) indicated that hydrophobicity

analysis could be sufficient to predict amphiphilic alpha-helices and beta-strands proteins

that cross both sides of a membrane (Gromiha, 2010). Welte et al. (Welte, Weiss, Nestel,

Weckesser, Schiltz and Schulz, 1991) and Cowan et al. (Cowan and Schirmer, 1992) also

proposed a method based on the physicochemical properties of amino acids for the

prediction of transmembrane beta-barrel proteins. In 1993, Schirmer et al. applied the

algorithm of Kyte and Doolittle (Kyte and Doolittle, 1982) to identify transmembrane

proteins (Schirmer and Cowan, 1993). The Kyte and Doolittle algorithm (Kyte and

Doolittle, 1982) determines the mean hydrophobicity within a sliding window. Gromiha et

al. (Gromiha and Ponnuswamy, 1993) have used amino acid hydrophobic properties to

predict beta-strands. The method introduces two characteristics: It is not dependent only

on the amphipathic character of a sequence segment while identifying it as a

transmembrane strand. The method can predict strands in varying lengths. This method has

30

an accuracy of 76% for predicting transmembrane beta-strands when used with porin from

Rhodobacter capsulatus.

2.1.2.3 Rule-based	prediction	

Gromiha et al. (Gromiha, Majumdar and Ponnuswamy, 1997) suggest predicting

transmembrane beta-strands using a rule-based approach. This is an important class of

methods. The predictor will use the statistical properties of amino acids. There are primary

rules and secondary rules. Rules consider hydrophobicity of amino acids or amphipathicity

of beta-strand segments, for example. (Gromiha, Majumdar and Ponnuswamy, 1997). This

method has a prediction accuracy of 82% for all the bacterial porins evaluated. A

disadvantage of this approach is that training sets based on are limited. Also, when there is

no similarity between the sequences and the proteins of the training set, it is more difficult

to obtain the structural characteristics of the bacterial OMPs. This method is used as part

of the software package named BioSuite (The NMITLI-BioSuite Team, 2007) used in

bioinformatics.

2.1.2.4 Artificial	neural	networks	

The first method, proposed by Diederichs et al., is using a neural network to predict the

topology of bacterial OMPs. The neural network is like other neural networks used, such

as Holley et al. (Holley and Karplus, 1998); however, they use a smaller input window and

one output unit (Diederichs, Freigang, Umhau, Zeth and Breed, 1998). A dataset containing

seven bacterial porins was first used for the training, but a new dataset included some new

solved (non-porins) structures for retraining. The name of the server is OM_Topo_predict.

The server was not available at the time this research was conducted.

The use of neural networks for the prediction of transmembrane beta-barrel in OMPs was

suggested by Gromiha, Ahmad and Suwa. The method uses single sequence information

as input. The neural network comprises three layers (Gromiha, Ahmad and Suwa, 2004).

TMBETA-NET is a predictor for identifying beta-strand proteins that cross both sides of a

membrane. It used a neural network. Empirical rules are included to remove not likely

31

predictions of transmembrane strands, such as a strand with three residues (Gromiha,

Ahmad and Suwa, 2005). The predictor is, therefore, more precise. It achieves a prediction

accuracy of 73% for membrane-spanning beta-strands. Applications of TMBETA-NET are

shown in figure 2. The figure represents the stretch of amino acid residues in the

transmembrane strand for OmpA using an amino acid sequence as input. There is height

membrane-spanning beta-strands segments in OmpA, as represented below.

Figure 2 OmpA-Stretch of predicted amino acids residues in membrane-spanning beta-

strands using TMBETA-NET
Source: Gromiha, M.M., Ahmad, S. and Suwa, M. (2005)

2.1.2.5 Combination	of	methods	

B2TMPRED is a predictor that combines dynamic programming (Jacoboni, Martelli,

Fariselli, De Pinto and Casadio, 2001) and a neural network. Sequence profiles derived

from PSI-BLAST (Altschul, Madden, Schaffer, Zhang, Zhang, Miller and Lipman, 1997)

are used as inputs. The method is trained using a dataset of 11 OMPs. Dynamic

programming is used to identify the location of the TM strands. The discrimination of

membrane beta-strands from extramembrane regions is achieved by creating and training

a feed-forward neural network.

Secondary structure prediction accuracy is as high as 78%. The predictor is available at:

http://gpcr.biocomp.unibo.it/cgi/predictors/outer/pred_outercgi.cgi

32

TBBpred is a predictor that combines neural networks and support vector machines (Natt,

Kaur, Raghava, 2004). The neural network part of the predictor uses evolutionary

information derived from multiple alignments. The support vector machines module uses

physicochemical properties. One of the methods alone can be selected by the user, but the

authors indicate that combining the methods (81.8%) will significantly improve the

prediction accuracy.

ConBBPred is a web server that combines individual predictors to a single consensus

prediction. Bagos et al. compared the performance of different methods for predicting beta-

barrel OMPs topology using a non-redundant dataset of 20 beta-barrel OMPs (Bagos,

Liakopoulos and Hamodrakas, 2005). They indicated that methods based on HMM are the

best predictors. When only transmembrane beta-barrel domains are used, predictors

achieve better results. The consensus prediction method is also using a dynamic

programming algorithm.

Zou et al. present a model that combines HMM and genetic algorithms (Zou, Wang, Wang,

and Hu, 2010). When designing HMM-based methods, the algorithms used for parameter

estimation and decoding are essential. The Baum-Welch algorithm is often selected for the

training of HMM for the prediction of TMB. Zou et al. use a genetic algorithm for training

and the posterior-Viterbi algorithm for decoding. The dataset includes 33 TMBs. It is one

of the largest datasets used so far in the literature. Zou et al. indicate that their method

achieves better results than all other methods for topology prediction.

2.1.2.6 Recursive	neural	networks	

TMBpro suite is a three-stage method for transmembrane beta-barrel topology prediction,

beta-contacts, and tertiary structure prediction. A 1D-recursive Neural Network (1D-

RNN) and dynamic programming refinement are used (Randall, Cheng, Sweredoski and

Baldi, 2008). Recurrent neural networks are recursive neural networks with a particular

structure. Recursive neural networks operate on any hierarchical structure, while recurrent

neural networks operate on the linear progression of time. According to Q2 (84.2%) and

MCC (0.720), TMBproSS outperforms PRED-TMBB. TMBpro-SS is a secondary

33

structure predictor, TMBpro-CON is a beta-contacts predictor, and TMBpro-3D is a

tertiary structure predictor.

2.2 Literature	review	on	BOCTOPUS	methods	

2.2.1 BOCTOPUS1	method	

BOCTOPUS is a recent method that has been used for the prediction of transmembrane

beta-barrel topologies is (Hayat and Elofsson, 2012). Support vector machines have been

utilised to predict the local structural preferences for a residue. An HMM model has been

used for the topology model for proteins. The architecture of BOCTOPUS is represented

in figure 3.

Figure 3 OmpA-Stretch of predicted BOCTOPUS pipeline

Source: Hayat, S. and Elofsson, A. (2012)

34

PSI-BLAST provides the PSSM for a given sequence (Altschul, Madden, Schaffer, Zhang,

Zhang, Miller and Lipman, 1997). The prediction of the residue-level preference for each

amino acid is obtained with three SVMs. The preference can be I, M or O. HMM uses an

‘IOM’ profile acquired to predict the topology. The Viterbi algorithm is used to obtain the

final topology. I correspond to the inner loop, O outer loop and M transmembrane beta-

strand.

2.2.2 BOCTOPUS2	method	

Hayat et al. developed BOCTOPUS2 in 2016. It is an updated version of BOCTOPUS

(Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). This method can identify Barrel domains

and topologies and predict residues’ orientation in transmembrane beta-strands (Hayat,

Peters, Shu, Tsirigos and Elofsson, 2016). The prediction accuracy is 69%. It is an increase

of 10% in comparison to BOCTOPUS. BOCTOPUS2 is trained on 42 full Uniprot

sequences with a known 3D structure. It consists of two stages. The prediction of per-

residue location (referred to as inner-loop, outer-loop, membrane lipid-facing and

membrane pore-facing) is achieved using four SVMs in the first stage, and an HMM

predicts the overall topology in the second stage (Hayat, Peters, Shu, Tsirigos and Elofsson,

2016). Regarding the k-nearest neighbors algorithm, it has not been used for the prediction

of TMB topologies prediction. TMB-Hunt (Garrow, Agnew and Westhead, 2005) is a web

server that uses k-nearest neighbors only to discriminate between non-TMB proteins and

TMB proteins based on the composition of amino acids. This is a different problem than

predicting TMB topologies.

2.3 Summary		

The literature review critically analysed published academic literature, mainly peer-

reviewed papers and books, on TMB topology prediction. It was possible to present an

overview of the current knowledge gained from previous work. When discussing each

35

relevant piece of literature, the review highlighted the gaps and strengths and weaknesses

of a particular study, paper, or book. The review of the literature review helps to have a

clear understanding of what has been published in the subject area of research. Critical

theories in the field of TMB topology prediction have been evaluated. Leading research

groups and authors in the field and their essential contributions to the research topic have

been identified. A clear understanding of the research gap helped redefine the PhD research

questions.

36

3. Machine learning algorithms

This chapter provides a description and overview of the three essential types of neural

networks that form the basis for most models in deep learning. K-nearest neigbhors

algorithms, Support Vector machines and ensemble methods. Some general guidelines for

the practical methodology involved in designing, building, training, and configuring a deep

neural network will be presented and some of the current applications of deep learning.

3.1 Neural	Networks			

3.1.1 Artificial	neural	networks	

Artificial Neural Network, or ANN, is a group of multiple neurons at each layer. ANN is

also known as a Feed-Forward Neural network because inputs are processed only in the

forward direction. Figure 4 represents a schematic diagram of a backpropagation training

algorithm and a typical neuron model.

Figure 4 Schematic diagram of backpropagation training algorithm and typical neuron

model
Source: Kim, S.E. and Seo, I.W. (2015)

37

ANN consists of 3 layers (Input, Hidden and Output). The input layer accepts the inputs,

the hidden layer processes the inputs, and the output layer produces the result. Essentially,

each layer tries to learn certain weights. A single perceptron (or neuron) can be imagined

as a Logistic Regression. ANN can solve tabular data, image data, or text data problems.

Artificial Neural networks can learn any nonlinear function. Hence, these networks are

popularly known as Universal Function Approximators. ANNs can learn weights that map

any input to the output.

One of the main reasons behind universal approximation is the activation function.

Activation functions introduce nonlinear properties to the network. This helps the network

learn any complex relationship between input and output. One common problem in all

these neural networks is the Vanishing and Exploding Gradient. This problem is associated

with the backpropagation algorithm. The weights of a neural network are updated through

this backpropagation algorithm by finding the gradients. So, in the case of a very deep

neural network (network with many hidden layers), the gradient vanishes or explodes as it

propagates backwards, which leads to vanishing and exploding gradient.

A recent article (LeCun, Bengio and Hinton, 2015) indicates that deep neural networks

outperform conventional methods in the areas of speech recognition or visual object

detection. The ideal features for protein structure prediction problems have not been

identified yet. DNSS is a predictor for secondary structure using deeper neural networks

(Spencer, Eickholt, and Cheng, 2015). The prediction accuracy is 80.7%. It is essential to

indicate that this predictor and other papers referring to predictors using deep neural

networks refer to TMB topology prediction.

Feed-forward neural networks are called feedforward as the information flows through the

function that is evaluated from x, through the intermediate computations used to define the

function and finally to the output y. This is called forward propagation. There are no

feedback connections in which outputs of the model are fed back into itself. When feedback

connections are included in feedforward networks, they are called recurrent neural

38

networks, discussed later in the paragraph. Feedforward neural networks are essential to

machine learning practitioners, and they are used in many commercial applications.

Feedforward networks are called networks because they are usually represented by many

different functions. These chain structures are the most often used structures of neural

networks. The overall length of the chain gives the depth of the model. From this

terminology, the term ‘deep learning’ comes from. Hinton et al. define a deep neural

network as a feed-forward artificial neural network with more than one layer of hidden

units between the inputs and outputs (Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior et

al., 2012). The learning algorithm must decide how to use those layers to produce the

desired output, but the training data does not tell what each layer should do. Finally, these

networks are called neural as they are derived from neuroscience models. Each unit in

hidden layers is like a neuron as it receives an input from many other units and computes

its activation value. Feed-forward networks are not models of brain function but are

designed to achieve statistical generalization. Deep feedforward neural networks have full

potential and can be applied to various tasks. Advancements in optimisation to improve

the algorithms and model design are expected to perform further.

3.1.1.1 Regularisation	

Regularisation refers to any modification that can be done to a learning algorithm that will

reduce the generalisation error. The training error will not be reduced. Regularisation

strategies for deep models will be covered in this paragraph. Those strategies can also be

used for models that can be utilised as a part of deep learning models. Dataset augmentation

is one strategy that can be used. If machine learning is trained on more data, it will

generalise better. In practical cases, there is a limitation on the amount of data, especially

in the situation of beta-barrel proteins. One way to circumvent this problem has been the

creation of artificial data and adding this data to the training set. This approach is notably

easier for classification problems such as object recognition and efficient for speech

recognition problems (Jaitly and Hinton, 2013). It is not readily applicable to other tasks

such as pattern recognition. Data augmentation also includes noise in the input (Sietsma

39

and Dow, 1991); however, deep neural networks are not effective when noise is added.

Improvement of the robustness of deep neural networks can be performed by using random

noise applied to their inputs during training (Tang and Eliasmith, 2010). If the magnitude

of the noise is meticulously tuned, the process can be very efficient (Poole et al., 2014).

Therefore, it is essential to consider if the dataset augmentation has been applied when

comparing machine learning benchmark results. Dataset augmentation constructed

manually can often significantly reduce the generalisation error of machine learning

techniques. If a comparison of the performance of one machine learning technique to

another one is needed, the use of controlled experiments is recommended. Another strategy

that has been used is to add noise to the weights as described in this paper (Jim et al., 1996;

Graves, 2011) with recurrent neural networks. A recent article (Luo and Yang, 2014)

studied the effect of introducing different noise into different components of different types

of deep learning neural networks. They observed that a reasonable amount and a reasonable

magnitude of noise could improve the model's accuracy and convergence rate when

introduced into a deep learning model. The noise was added to the gradient descent

component of Logistic Regression into weights between layers for Multi-layer Logistic

Regression. During a noise-free training process of the model, weights between layers are

transmitted and updated without any loss of information or variances. However, during a

noise added training process, weights between layers are subject to some variation. Lastly,

the noise was added into the feature mapping component of a Convolutional Neural

Network.

Regularisation also includes the technique of early stopping. No changes are needed to the

primary training process, the definition of the function, or the ensemble of parameter values

that are allowed. It does not incur damages to the learning dynamics. It can be with other

regularisation strategies and on its own. A validation set is required for early stopping. It

signifies that some training data is not injected into the model. The computational cost of

the training process is also reduced with early stopping. A generalisation can be reduced

by combining multiple models (Breiman, 1994). This technique is called bagging

(bootstrap aggregating), part of a large approach called model averaging. This technique is

also referred to as the ensemble method. The different models will habitually not make all

40

the same errors on the test set, which is why this model works. It involves constructing

different datasets. It is extremely powerful for reducing generalisation errors.

3.1.1.2 Gradient-based	optimisation	

Optimisation consists of minimising or maximising a function by finding the best value of

an argument. The optimisation is included in most deep learning algorithms. The objective

function (or criterion) represents the function that needs to be minimised or maximised.

When minimised, it is called the cost function (or loss function/error function). The term

differs depending on machine learning publications. Figure 5. represents the gradient

descent technique.

Figure 5 Gradient descent
Source: Srihari, S. (n.d.)

There is "(#) = $	which is the function, and "′(#)the derivative. x and y are real numbers.

Minimising a function using the derivative is helpful as it tells how to modify x to make a

41

slight improvement in y. When moving x in the opposite sign of the derivative, "(#) can

be reduced. This is also named the gradient descent. When "(#) = 0, this corresponds to

critical points (also called stationary points). When "(#) is lower than all adjacent points,

it’s called the local minimum. At this point, "(#) cannot be decreased anymore. When "(#)

is higher than all adjacent points, it’s called the local maximum. At this point, "(#) cannot

be increased by making small steps. Saddle points correspond to critical points that are

neither maxima nor minima. The global minimum is a point that corresponds to the

absolute lowest value of "(#). When flat regions are surrounding saddle points or when

many local minima are not optimal, optimisation of the function is performed in the

practical use of deep learning. Steepest descent corresponds to the discrete analogue of

gradient descent. Hill climbing is an approach like steepest descent that is used with large

discrete problems (Russel and Norvig, 2003).

3.1.2 Recurrent	neural	networks	

It was discussed earlier in the previous section that feedforward neural networks have

connections that do not form cycles. Recurrent neural networks (RNNs) are obtained when

cyclical connections are allowed. Elman networks (Elman, 1990), Jordan networks

(Jordan, 1990), time-delay neural networks (Lang et al., 1990) and echo state networks

(Jaeger, 2001) are varieties of RNNs. Recurrent neural networks (RNNs) processes

sequential data. Information about what has been calculated so far can be memorised in

RNN. The limitation is that they can look back only a few steps. Recurrent connections are

a way to bind inputs to the current or previous system states. Figure 6 represents a simple

RNN with a unique self-connected hidden layer.

42

Figure 6 Recurrent neural networks structure.
Source: Li, Wang, Zhang, Xin, and Liu (2019)

More sophisticated types of RNNs have been developed over the years. Two RNNs stacked

on top of each other create a bidirectional RNN. Based on the hidden state of both RNNs,

the computation of the output can occur. Deep bidirectional RNNs are like bidirectional

RNNs and give a higher learning capacity, but large training data is needed. LSTM

networks are to RNNs regarding the architecture, but the hidden state is computed

differently. Cells is another name for memory in LSTMs. The decision to keep or erase

information is determined by these cells. The input, current memory and previous state are

then combined by those cells. For more descriptions on recurrent neural networks, please

refer to the textbook of Graves (Graves, 2012). RNN captures the sequential information

present in the input data, i.e., the dependency between the words in the text while making

predictions. RNNs share the parameters across different time steps. This is popularly

known as Parameter Sharing. This results in fewer parameters to train and decreases the

computational cost.

Deep RNNs (RNNs with many time steps) also suffer from the vanishing and exploding

gradient problem, a common problem in all the different types of neural networks.

43

3.1.3 Convolution	neural	networks	

Convolutional neural networks (CNNs) are also called convolutional networks. They are a

neural network that works with grid-like input data and time-series data (1d grid). Time

series means taking samples at regular time intervals. CNNs also work with image data (2-

d grid). The variations in images cannot be considered with algorithms such as KNN.

Convolutional neural networks architecture consists of three main layers: the convolutional

layer, the pooling layer, and the fully connected layer. The convolutional layer is the core

building block. For example, one image becomes a stack of filtered images in the

convolutional layer using images. Pooling in the pooling layer is the process of shrinking

the image stack. It is necessary to pick a window size, a stride, walk to window across the

filtered images and from each window, the maximum value is taken. It is used for

dimensionality reduction. This helps limit both the memory and processing requirement

for running a CNN. The fully connected layer is the last layer, and it can classify data

samples. Every value gets a vote. AlexNet is a solution that won the IMAGENET

Challenge in 2012 using deep convolutional neural networks. IMAGENET is a challenge

for evaluating algorithms for object detection or localisation and image classification from

images and videos. AlexNet gave substantially better results than previous methods

(Krizhevsky, Sutskever and Hinton, 2012). Figure 7 represents the AlexNet architecture.

AlexNet consists of eight learning layers. It has five convolutional layers and three fully

connected layers. The output of the final fully-connected layers is a softmax regression

which converts the weights to probability distributions of the given 1000 classes. CNN

learns the filters automatically without mentioning them explicitly. These filters help

extract the right and relevant features from the input data. CNN also follows the concept

of parameter sharing.

44

Figure 7 AlexNet CNN architecture

Source: Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017)

3.1.4 Applications	

To apply deep learning techniques successfully, a good knowledge of algorithms is not

sufficient. A reputable machine learning practitioner must select an algorithm based on a

specific application. There is also a need to monitor and respond appropriately to feedback

observed during the experiments. The machine learning system will therefore be able to be

improved. Gathering more data, increasing/decreasing the model capacity, improving

inferences in a technique or debugging are important decisions that need to be performed.

All those tasks are time-consuming, and it is essential to decide earlier what action to take.

Recommendations can be adapted from Andrew Ng lecture at Stanford University (Ng,

2015). They determine the model’s goals or what error metric/error metric target value to

choose is part of standard recommendations. Those parameters should be selected

depending on the problem that the application is trying to solve. Establishing an end-to-

end working plan as early as possible in a project is also essential. Performance bottlenecks

need to be determined, and the practitioner should diagnose which components are

performing better or worse than expected. The practitioner should decide if it is due to

45

overfitting, under-fitting, or a defect in the data. A final recommendation is the ability to

make incremental changes. This can include gathering new data, adjusting parameters, or

changing algorithms.

To give a few examples, deep learning can resolve problems in computer vision, speech

recognition or natural language processing (NLP). Designing algorithms that can perform

various tasks is one goal of deep learning, but specialisation is usually needed. Charges

related to computer vision require modelling many input features (pixels). Tasks in NLP

require modelling many possible values (as inputs features) corresponding to words in the

vocabulary. Big data analytics is one of the recent applications of deep learning. Many

private and public organisations have started to collect large amounts of information

specific to their domains that can be useful to solve problems. It can be seen particularly in

national intelligence, cyber security, marketing, fraud detection or medical informatics.

Deep learning can analyse and learn large amounts of unsupervised data, useful in big data

analytics. In Big data analytics, raw data is often unlabelled and un-categorized

(Najafabadi, Villanustre, Khoshgoftaar, Seliya and Muharemagic, 2015). Najafabadi et

al.’s paper cover the latest deep learning applications and the challenges in big data

analytics. Nowadays, many companies provide deep learning solutions across various

applications. The latest companies include Affectiva, Gridspace, Ditto Labs, Nervana,

Deep Genomics, Indico, Deep Instinct, Clarifai, Ibidon, Enlitic, Metamind, Ripjar,

MarianaIQ.

3.2 K-Nearest	Neighbors		

3.2.1 General	concept	

K-nearest neighbors algorithms are the most accessible algorithms to understand.

Neighbors-based classification is classified as instance-based learning. Classification is

obtained based on a majority vote of the nearest neighbors of each point. The data class of

the point queried is obtained based on the data class with the most representatives within

the nearest neighbors of that point. KNN is used for both classification and regression

problems. An example of a KNN classifier is represented in figure 8 (Ajanki, 2007).

46

Figure 8 Example of k-nearest neighbors classifier
Source: Ajanki, A. (2007)

This is a KNN classifier with k=3 (solid line) and k=5 (dotted circle line). There are red

and blue known samples and a green unknown sample. The samples are placed in a two-

dimensional feature space. Each feature is one dimension to classify the unknown sample

as red or blue; the classifier uses a distance function to find the k-nearest neighbors of the

unknown sample. It can then predict the label of the green sample by finding the majority

of red or blue labels among the k-nearest neighbors. In this example, when k=3, the

unknown sample is predicted as red and when k=5, it is predicted to be blue.

3.2.2 Distance	function	

The distance function is an essential element of KNN algorithms. The performance of the

KNN algorithm can depend significantly on the distance function. The most popular

distance function is the Euclidian distance function. It is not used for categorical data. For

categorical data, Hamming distance function is used. The euclidian distance can be

generalised to a Minkowski distance (p-norm). For p=2, it corresponds to the Euclidian

distance. For p=1, it corresponds to Manhattan distance. By changing values of p, it is

47

possible to obtain an all family of distance functions with properties that are very different

from the Euclidian distance.

3.2.3 Advantages	and	disadvantages	

With nearest neighbors, there is no assumption. The only thing that is assumed is proximity.

Similar instances should have similar class values or similar targets for regression.

Assumptions are implied by the distance function. It’s a non-parametric approach. In a

sense, it lets the data speak for itself. There is nothing to infer from the data except k or

possibly D. It is easy to update in an online setting by adding a new item to the training set.

Cover and Hart (Cover & Hart, 1967) were able to show in the large sample case that the

probability of error of a 1-nearest neighbors classifier is less than twice the Bayes error

rate. Their paper also indicates that the error probability of the KNN rule monotonically

decreases in k to the Bayes error probability showing the versatility of the family of KNN

rules. Another advantage is that KNN is particularly well suited for multi-modal classes

and applications in which an object can have many class labels. On the downside, it is

necessary to handle missing data by filling in or creating a unique distance. It is sensitive

to class outliers (mislabelled training instances). It is also sensitive to many irrelevant

attributes (affect distance adds noise to the distance function). It is like Naïve Bayes in this

case and not like decision trees. Decision trees will ignore irrelevant attributes. This

algorithm is not learning anything, and it is just storing all the training instances and then

comparing them at the testing time. It means that there is a need for space/storage to keep

all training examples and time to compute the distance to all examples. If the number of

training examples increases, the system will become slower and slower. Expense is testing,

not training time. It is a problem as it is better to have large training sets to make reasonable

and accurate estimates.

48

3.3 Support	Vector	Machines				

3.3.1 History	of	SVMs	

Support Vector Machine is a supervised learning technique used for classification and

regression problems. It was first introduced in a 1992 article (Boser et al., 1992) in which

the author presented a training algorithm. The margin was maximised between the decision

boundary and the training patterns. SVMs were put into practical application as Large

Margin Classifiers. Vladimir Vapnik et al. (Vapnik, 1999) discussed the Statistical

Learning Theory about SVM. The statistical learning theory discusses the problem of

choosing desired functions based on empirical data. Structural Risk Minimization (SRM)

is the basis of SVMs. It was introduced by Vapnik et al. SVMs became successful within

handwritten digit recognition (Bottou et al., 199The article compares the performance of

multiple classifiers algorithms using handwritten digits from a standard database 1.1% test

error rate was discovered using SVM. This is the same error rate of a carefully constructed

neural network that they refer to as LeNet4. With SVMs, the number of training samples

is not impacting the results (Jonsson et al., 2002). When most neural networks compare the

empirical risk minimisation principle, better results are obtained. (Juwei Lu et al., 2001).

For the estimation of how various features modify classification results and identifying the

one that is important in planning, SVMs can be helpful. This is in addition to classification.

SVMs have been successfully utilised in face detection, image detection, speech

recognition or prediction. Bankruptcy prediction is an example. There are other uses (Byun

et al., 2003).

3.3.2 SVM	concept	

The goal of SVMs is to minimise an upper bound of the generalisation error by maximising

the margin between the data and the separating hyperplane (Amaris and Wu, 1999). Neural

networks minimise the empirical training error. Empirical Risk Minimization (ERM)

corresponds to standard learning approaches to reduce error on the training dataset. A

neural network is a typical example of an ERM. As described earlier, the basis for SVM is

49

Structural Risk Minimization (SRM). SRM minimises an upper bound on the expected

risk. ERM minimises the error on the training data. SVMs can generalise well because of

this difference, and it’s the goal to achieve in statistical learning. There is no

overgeneralisation with SVM (Mitchell, 1997).

3.3.2.1 Support	Vector	Machines:	The	linearly	separable	case			

The hyperplane which corresponds to a decision plane is what’s behind SVMs. The

positive class (+1) and the negative class (-1) are separated with the largest margin. The

latest is associated with the Vapnik-Chervonenkis (VC) dimension of an SVM. The VC

dimension quantifies the capacity (expressive power, complexity, flexibility, or richness)

of a space of functions that a statistical classification algorithm can learn. It corresponds to

the cardinality of the largest set of points that the algorithm has shattered. When two classes

are linearly separable, finding a hyperplane that gives the smallest generalisation error

compared to all the possible hyperplanes is not necessary. This hyperplane is the

hyperplane with the maximum margin of separation between the two classes. The sum of

the distances from the hyperplane to the closest data points of the two classes corresponds

to the margin. Support Vectors (SVs) refer to as the closest points. The solid line represents

the optimal separating hyperplane in figure 9. The linear separable case is also referred to

as the linear hard-margin classifier.

Figure 9 Linear separating hyperplane: Separable case

50

Source: Burges, C.J.C. (1998)

3.3.2.2 Support	Vector	Machines:	The	linearly	non-separable	case			

With data used in practical applications, the separation between the two classes is

incomplete, but a hyperplane can still be defined. The hyperplane maximises the margin

of the training data. Positive slack variables in the constraints make this possible. In an

optimisation formed to equality, when a slack variable is an added problem, inequality

constraint is trans. The non-separable case is also referred to as the linear soft-margin

classifier and is represented in figure 10.

Figure 10 Linear separating hyperplane: Non-separable case

Source: Kumar, S. and Apparao, M. (2017)

3.3.2.3 Nonlinear	Support	Vector	Machines			

Nonlinear decision surfaces modifications are mandatory in classification problems when

a linear classifier is used (Tay and Cao,2002). If the linear decision surface does not exist,

the data is mapped to a higher-dimensional space. It is also called the feature space, where

the separating decision surface can be found. In figure 11, the generalised optimal

separating hyperplane is represented and constructed in the high dimensional feature space.

51

Figure 11 Input space and feature space

Source: Cheng, C.-T., Feng, Z.-K., Niu, W.-J. and Liao, S.-L. (2015)

Computational learning theory makes use of Cover’s theorem. When nonlinear

transformation and a high enough dimensionality of the feature space is present, there is a

transformation of the input space into a new feature space. The patterns are linearly

separable with high probability in this feature space (Haykin, 2009). The nonlinear

transformation is obtained with the so-called kernel functions.

Kernel substitution is a way to obtain nonlinear algorithms from algorithms that had

previously a restriction on handling linear separable datasets (Campbell, 2000). Using

implicit kernels permit bypassing the curse of dimensionality (Vapnik,1999). Various

learning machines are built based on different kernel functions and create different

hyperplanes in the feature space.

3.3.2.4 Quadratic	programming	problem	of	SVMs			

Quadratic programming is a type of mathematical optimisation problem. Quadratic

programming is the problem of finding a vector x that minimises a quadratic function,

possibly subject to linear constraints.

In the previous paragraph that discussed the linearly separable case, it was defined that the

optimal separating hyperplane is achieved with the minimisation of an equation under a

52

specific constraint to separate the training data correctly. The optimisation goal used in the

equation is quadratic. The constraints are linear. Based on this constrained optimisation

problem, there is a possibility to create another problem. It’s called the dual problem.

Duality is sometimes called the duality principle. It refers to optimisation problems that

can be observed from two different perspectives that correspond to the first problem and

the dual problem. The dual problem solution leads to a lower bound to the primal problem

or minimisation solution. The dual problem is also named the Lagrangian dual problem.

Oher dual problems can be used, such as the Fenchel dual problem or the Wolfe dual

problem. The dual problem can be formulated using the Lagrange multipliers: With the

available training sample, find the Lagrange multipliers that maximise the objective

function subject to specific constraints. The objective function that needs to be maximised

in the situation of non-separable problems in the dual problem is almost equivalent to the

case for the separable problems. The difference is that the constraints in the separable case

are switched with more stringent constraints in the non-separable case.

There are several suggestions regarding the algorithms that can solve the dual problems.

QP algorithms that were used traditionally (Schölkopf, Burges and Smola, 1999), (Smola

and Schölkopf, 2004) are not the most appropriate when problems are significant for few

reasons (Keerthi, Shevade, Bhattacharyya and Murthy2001) because the kernel matrix

must be computed and stored in memory. The consequence is that a large memory is

needed. Methods used include the Cholesky decomposition of a large submatrix of the

kernel matrix.

Finally, coding these algorithms is very difficult, especially for practitioners developing

their SVM classifier implementation. Some methods can get rid of some or sometimes all

the problems defined earlier. A whole new set of QP problems was suggested by Osuna et

al. (Osuna, Freund and Girosit, 1997). A series of smaller QP sub-problems creates the

significant QP problem. One example that violates the Karush-Kuhn-Tucker (KKT)

conditions must be added to the examples for the previous sub-problem. In mathematical

optimisation, first-order necessary conditions (KKT conditions) are conditions so that a

solution in nonlinear programming is optimal, including the satisfaction of some regularity

conditions. A sequence of QP sub-problems will be guaranteed to converge when there is

53

the addition of a least one violator all the time (Osuna, Freund and Girosit, 1997An

optimisation new training algorithm named Sequential Minimal Optimization was

proposed by Platt (Platt 1998). It solves the SVM QP problem rapidly without the need for

extra matrix storage and the use of numerical QP optimisation steps. SMO divides the QP

problem into multiple QP sub-problems using Osuna’s theorem. Two Lagrange multipliers

are chosen by the SMO to optimise at each step jointly. After finding the optimal values

for these multipliers, SVMs are updated to indicate the new optimal values. Numerical QP

optimisation is avoided as the two Lagrange multipliers are solved analytically. Extra

matrix storage is not needed; therefore, the memory of a personal computer is sufficient

for significant SVM training problems (Platt, 1998). Using a single threshold in Platt’s

SMO algorithm can lead to confusion and inefficiency, as Keerthi et al. (Keerthi, Shevade,

Bhattacharyya and Murthy, 2001) pointed out. Using clues taken from the KKT conditions

and applied to the dual problem, two threshold parameters are used to generate changes of

SMO. The basic SVMs for two-class problems initially separated the binary classes (k=2)

with a maximised margin criterion (Cortes and Vapnik, 1995).

However, real-world problems often require discrimination for more than two categories.

Multi-class pattern recognition has a wide range of applications, including optical character

recognition (Mori and Suen, 1995), intrusion detection (Khan, Awad and Thuraisingham,

2007), speech recognition (Ganapathiraju, Hamaker, Picone, 2004) and bioinformatics

(Baldi and Pollastri, 2002). In practice, the multi-class classification problems (k>2) are

commonly decomposed into a series of binary problems such that the standard SVM can

be directly applied.

Two representative ensemble schemes are one-versus-rest (Vapnik, 1998), (Bin, Yong and

ShaoWei, 2000) and one-versus-one (Kreßel,1999). Both one-versus-rest and one-versus-

one are special cases of the Error-Correcting Output Codes (ECOC) (Dietterich and Bakiri,

1995), which decomposes the multi-class problem into a predefined set of binary problems.

Multi-class SVMs are discussed in the following sub-chapters.

3.3.2.5 Multi-class	SVMs:	One	to	others	

54

One to others SVM is the method1 described in the article published by Bin et al. (Bin,

Yong, and Shao-Wei, 2000). The first labelled samples can be classified by SVM1 and the

ith labelled ones by SVM. For the in-class problem (n>2), SVM classifiers are referred as

SVMi, i=1,2,…n.

3.3.2.6 Multi-class	SVMs:	Pairwise	SVMs	

Pairwise SVM is the method2 described in the article published by Bin et al. (Bin, Yong,

and Shao-Wei, 2000) and is also mentioned in the article published by Kreßel (Kreßel,

1999). Trees correspond to the arrangement for pairwise classifiers. An SVM is represented

by each tree node. Pontil et al. (Pontil and Verri 1998) suggested a bottom-up tree to

recognise 3D objects. It was also applied to face recognition (Guo, Li and Chan, 2000),

(Guo, Li and Chan, 2001). A recent publication discusses the top-down tree structure (Platt,

Cristianini and Shawe-Taylor, 1999). The performance of the two strategies with

classification problems is not analysed theoretically (Heisele, Ho, Wu and Poggio, 2003).

New experimentation on people recognition indicates identical performances for

classification for both strategies (Nakajima, Pontil and Poggio, 2000). Figure 12 represents

examples of tree structures of multiclass SVMs.

Figure 12 Multi-class SVMs: Tree structure

Source: Byun, H., Lee, S. W. (2003)

55

3.3.3 Applications	of	Support	Vector	Machines	

It was discussed earlier that beta-barrel membrane topology prediction is considered a

pattern recognition problem. In this section, a discussion on some of the use of SVMs for

pattern recognition problems is addressed. Face detection, verification and authentication

are very popular in biometric, access control, identity authentication, or surveillance in

general. Much current research is performed for those applications using different methods.

Reliable performance is challenging to achieve. Identical facial configurations can be

observed with some persons due to minimal variations in the light intensity, makeup on

faces, different poses, and facial expression. Using a pair of glasses or having moustaches

can make it harder to recognise faces (Wang, Chua and Ho, 2002). Osuna et al introduced

frontal face detection (Osuna, Freund and Girosit, 1997). A 19x19 window scan input

images and an SVM is trained with a new decomposition algorithm and 2nd-degree

polynomial kernel function. Global optimality can be guaranteed. Kumar et al. (Kumar

and Poggio 2000) have used the Osuna et al. algorithm to track real-time faces. The

algorithm’s speed was improved by Romdhani et al. (Romdhani, Schokopf, and Blake,

2001) using a method that includes reduced support vectors. They are derived from support

vectors. The improvement of face detection performance was obtained with majority

voting as described in the paper written by Bassiou et al. (Bassiou, Kotropoulos, Kosmidis

and Pitas, 2001). For face recognition and authentication, it comes to two different

problems to solve. In face recognition problems, a face is used as a test, and multiple

references faces are within a database. The algorithm tries to find the most significant

number of similar reference faces to the test face. A face for test and a face for reference

are used in face authentication problems. The algorithm needs to decide if the face for the

test is the same as the face used for reference.

Object detection and recognition have the objective of finding and tracking people on the

move. Applications include surveillance or traffic control. A system using SVM was

suggested by Pittore et al. It can detect the presence of people on the move from an image

sequence (Pittore, Basso and Verri, 1999).

56

Handwritten character/digit recognition is also another application of SVMs. SVMs have

better performances than any other learning algorithms. There are problems with

handwriting recognition as considerable variability and distortions of patterns. Two

different feature families (statistical and structural) with an SVM classifier have been used

by Gorgevik et al. for handwritten digit recognition (Gorgevik, Cakmakov and Radevski,

2001). Single SVM classifiers have better performance than rule-based reasoning applied

to two separate classifiers. A vision-based handwritten digit recognition system using an

SVM classifier has been created by Teow et al. (Teow and Loe, 2002). SVM classifiers

have been utilised in Chinese check recognition systems, and Bin et al. (Bin, Yong, and

Shao-Wei, 2000) demonstrated that SVM possesses better generalisation ability than other

classifiers.

Speaker and speech recognition is another application of SVMs, and they have been used

with different datasets. The standard thresholding rule was replaced with SVMs for speaker

verification decision, acceptance, or rejection (Bengio and Mariethoz, 2001). There is a

significant improvement in performance with text-independent tasks. The normalisation of

polynomial kernel within SVMs was proposed by Wan et al. (Wan and Campbell, 2000).

Content-based image retrieval is another application of SVM. It can be used for a digital

library or a multimedia database. A distance-from-boundary for retrieving the texture

image was suggested by Guo et al. (Guo, Li and Chan, 2001). SVM can provide the

boundaries between classes.

In bioinformatics, significant applications include identifying proteins functions, gene

functions and microarray classification. Identifying protein function includes secondary

structure prediction, identification of binding sites, sub-nuclear localisation of proteins,

subcellular localisation, protein-protein interaction prediction, prediction of protein

disorder, identification of gene function includes promoter prediction, prediction of tissue-

specific localisation of genes, prediction of DNA methylation sites and DNA hot spots

prediction. Microarray classifications include leukaemia prediction, colon cancer

prediction and prediction of several genetic disorders. Data fusion which corresponds to

heterogeneous biological data is bringing more attention. The human genome is almost

entirely sequenced. Given a specific gene, there is a possibility to know the protein it

57

encodes, to understand how similar that protein is compared to other proteins, how mRNA

expression levels are associated, the frequency of known or inferred transcription factor

binding sites that can be found in this gene’s upstream region or to know the identities of

multiple proteins that have an interference with the gene’s protein product. Pavlidis et al.

(Pavlidis, Weston, Cai and Noble, 2002) demonstrated the application of the SVM learning

algorithm to understand cellular function at the molecular level by grouping information

from disparate types of genomic data. SVMs were trained to recognise the function

category of yeast genes using an ensemble of microarray gene expression data and

phylogenetic profiles. Data are fixed-length, real-valued vectors in both types and a third-

degree polynomial kernel have been used. There is a comparison between the three

different techniques for combining those two data types. The comparison is represented in

figure 13.

Figure 13 Three methods for learning from heterogeneous data using SVM

Source: William Stafford Noble (2017)

Two data types are linked together to generate a specific set of input vectors for early

integration. The kernel values are being calculated separately for each data set and then

calculated with a sum in intermediate integration. The SVM trains each data type. The

58

discriminant values are obtained with a sum in late integration. This paper also presents

heuristic techniques regarding scaling factors in the application for each kernel function.

3.3.4 Limitations	of	Support	Vector	Machines	

Kernels have a significant impact on SVM performances. An explanation of the relation

between the standard regularisation theory and the SVM kernel method was given by

Smola et al. (Smola, 1998). Amari et al. (Amari and Wu, 1999) suggested a kernel having

a modification based on information-geometric consideration of the structure of the

Riemannian geometry induced. The suggestion had the objective to increase performance.

Sizes of the training and testing phases are also significant. When massive datasets that can

include millions of support vectors are used in the training phase, there is a problem that

has not been solved (Burges, 1998). A modification of the SMO (Platt, 1998) was proposed

to solve the training problem.

Another complex problem can be related to controlling the selection of Support Vectors. If

patterns that need to be classified are non-separable and the training data are noisy, there

is often a problem. Removing known errors from the data before training or removing them

after training will not produce the same optimal hyperplane. It’s because the errors are

necessary for penalising non-separability (Haykin, 1998). Limitations of SVM will also be

discussed while interpreting results from the MATLAB implementation.

Some elements used to implement an ANN and KNN can be reused to implement an SVM

classifier. The datasets, binarisation of the inputs/outputs, construction of the input and

target matrices, data division and assessPerformance function used previously will be

similar.

3.4 Ensemble	methods	
	
Ensemble’s methods use various machine learning algorithms to obtain better predictive

performance than the learning algorithms alone. It is not the same as statistical ensemble

used in statistical mechanics. Statistical ensembles are most of the time infinite. Machine

learning ensembles consist of a concrete finite set of alternative models. It has been decided

59

to use an ensemble method as part of this paper to improve the predictive performance.

Cascading is a unique model of ensemble learning that is based on the concatenation of

several classifiers. It uses all information collected from the output from a given classifier

and use it as input for the next classifier in the cascade. Compared to voting or stacking

ensembles with multi-expert systems, cascading is multistage.

3.4.1 General	concept	

An ensemble is a supervised learning algorithm. It is trained and then will be used to make

predictions. The trained ensemble represents a single hypothesis. Ensembles can be

represented by having more flexibility in the functions they can represent. This flexibility

can lead to overfitting of the training data. The ensemble techniques such as bagging tend

to reduce problems that correlate with the overfitting of the training data. Ensembles can

provide excellent results when there is diversity among the models (Kuncheva and

Whitaker, 2003) (Sollich and Krogh, 1996). Most ensemble techniques look to include

variety among the models they are combining. (Brown, Wyatt, Harris, and Yao, 2005).

The number of component classifiers for an ensemble impacts the accuracy of prediction.

Few studies have been addressing this issue. For online ensemble classifiers, it’s even more

critical to determine the ensemble size, volume, and velocity of significant data streams.

Statistical tests have been used to get the correct number of components. A new theoretical

framework suggests that an ideal number of component classifiers for an ensemble can be

found. The framework is named “The law of diminishing returns in ensemble

construction”. This framework indicates that the highest accuracy can be achieved using

the same number of independent component classifiers as class labels (Bonab and Can,

2016).

Classification ensembles can be found in the Statistics and Machine learning Toolbox

(Mathworks, 2017). It includes boosting, random forest, bagging, random subspace and

ECOC ensembles for multiclass learning.

60

3.4.2 Types	of	ensembles	

3.4.2.1 Voting	and	averaging	based	ensemble	methods	

Voting is one of the simplest ways of combining the predictions from multiple machine

learning algorithms. Voting has been used mostly for classification, and averaging has been

used for regression. Creating multiple classification/regression models using training

datasets is the first step for both approaches. Each base model will be created using various

splits of the same training dataset and same algorithm. It can also be created using the same

dataset with different algorithms. Every model makes a prediction, all called a vote, for

each test instance. The final output prediction is the one that receives more than 50% of

the votes in majority voting. If none of the predictions gets more than 50% of the votes, it

can be concluded that the ensemble method cannot make a stable prediction for this

instance. There is a possibility to try the most voted prediction as to the final prediction,

and it’s named ‘plurality voting’ in some papers. Weighted voting is another option that

can be used. In majority voting, each model will have the same rights. In weighted voting,

it’s possible to emphasise one or more models. The prediction of the better models is

counted multiple times in weighted voting. Finding an appropriate set of weights is up to

the person performing the task. The average predictions will be calculated for every

instance of the test dataset in the simple averaging method. Most of the time, this method

will decrease overfitting and will create a smoother regression model. The weighted

average is the last method available and corresponds to a modified version of simple

averaging. The average is calculated from the multiplication of the prediction of each

model by the weight.

3.4.2.2 Bootstrap	aggregating	(bagging)	

Bootstrap aggregating is also named bagging, is composed of each model in the ensemble

vote with equal weight. In bagging, training is done on each model in the ensemble using

a subset of the training dataset selected randomly. The first step involves the creation of

61

multiple models. The models will be generated using an identical algorithm with random

sub-samples of the dataset. These sub-samples are selected randomly from the original

dataset using the bootstrap sampling method. Each sub-sample will be created

independently from the other. The training and generation can be executed at the same

time. The bagging technique is used in the random forest algorithm.

3.4.2.3 Boosting	

Boosting defines a group of algorithms that can convert weak models to strong models.

Boosting is building an ensemble and will train each model with the same dataset. The

weights of instances will be modified and adjusted following the error of the last prediction.

The models are then obliged to focus on the complex instances. Boosting is a sequential

method, and parallel operations will not be used compared to bagging where it’s possible.

Adaboost is a popular boosting method algorithm. The Gödel prize was won by the creators

of Adaboost. It can be executed simultaneously with multiples other learning algorithms to

improve performance. The output of the different learning algorithms, also named weak

learners, will be grouped into a weighted sum. That sum represents the final output of the

boosted classifier. AdaBoost can be adapted, meaning that subsequent weak learners are

slightly modified in favour of those instances that were not classified correctly by previous

classifiers. AdaBoost is also sensitive to noisy data and outliers. In some situations, it will

be less sensitive to the overfitting problem than other learning algorithms. Individual

learners can be weak; however, if their performance is slightly better than random guessing,

the final model will converge to a strong learner. Each learning algorithm will tend to fit

specific problem types more than others and have various parameters and configurations

to be modified before obtaining optimal performance on a dataset. AdaBoost, including

decision trees as weak learners, is often considered the best out-of-the-box classifier (Kégl,

2013). When it is used in conjunction with decision tree learning. The information obtained

at each stage about the relative 'hardness' of each training sample is put into the tree

algorithm. Later trees will tend to focus on harder-to-classify samples.

3.4.2.4 Multi-stage	method	cascading	

62

Cascading is a multistage method. Associated with each learner is confidence &5 such that

it can be said that '5 is confident of its output and can be used if &5 > θj (the threshold).

Confidence corresponds to misclassifications and the instances for which the posterior is

not high enough. The idea is that an early simple classifier handles most instances, and a

more complex classifier is used only for a small percentage, so it does not significantly

increase the overall complexity. A Multi-stage Deep Classifier Cascades (MDCC) is

represented in Figure 14 to address some challenges in the open world recognition scenario.

Open world learning (OWL) is also known as open-world recognition, classification,

or open-world AI. It is getting increasingly important as the learning agent is

increasingly working in or facing the real-world open and dynamic environment. The core

of open-world learning or open-world AI is about recognising unknowns and learning them

so that the AI agent will become more and more knowledgeable.

Figure 14 Architecture of Multi-stage Deep Classifier Cascades and model details of (a) root
node and (b) leaf nodes

Source: Guo, X., Alipour-Fanid, A., Wu, L., Purohit, H., Chen, X., Zeng, K. and Zhao, L. (2019)

The first cascading classifier was a face detector. This classifier needed to be quick as it

was implemented on cameras and phones with low-power CPUs (Viola and Jones, 2001).

The term cascading classifier has been used in statistics to define a model with various

stages. For example, a classifier such as k-means will use a vector of features and generate

63

outputs for each possible classification result the probability that the vector belongs to the

class. This can be mainly used to decide; however, cascading classifiers utilise the output

as the input to another model, which corresponds to another stage. This will be useful for

models that have highly combinatorial or counting, which cannot be fitted without looking

at the interaction terms. The successive stage can gradually make an approximation of the

combinatorial nature of the classification or add interaction terms in classification

algorithms.

3.4.2.5 Stacking	

Stacking is an ensemble learning technique to combine multiple classification models via

a meta-classifier. The individual classification models are trained based on the complete

training set; then, the meta-classifier is fitted based on the outputs -- meta-features -- of the

individual classification models in the ensemble. The meta-classifier can either be trained

on the predicted class labels or probabilities from the ensemble

Figure 15 Stacking

Source: Tama, A.B., Rhee, K.H., (2017)

Tama et L. conducted a comparative experiment using different ensemble approaches,

including stacking, in a recent paper. To prove classifier ensemble can perform on intrusion

detection, they considered two real public datasets, e.g., network-based intrusion detection,

64

namely NSL-KDD dataset (Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A, 2009).

and 802.11 network-based intrusion detection, namely GPRS dataset (Vilela, D.W.F.L.,

Ferreira, E.W.T., Shinoda, A.A., de Souza Araujo, N.V., de Oliveira, R. and Nascimento,

V.E.,2014). Among classifier ensembles, stacking is a powerful method for IDS since it

yields the best performance in terms of accuracy, precision, and F1.

3.4.3 Applications	of	ensembles	methods	

There have been various applications of ensemble learning in bioinformatics. Some

examples include the classification of gene expression microarray data and MS-based

proteomics data. Gene-gene interaction and identification using single nucleotide

polymorphism (SNPs) data taken from Genome-Wide Association studies is another

example. Prediction of regulatory elements from DNA and protein sequences is a third

example. Ensemble methods can be applied to other bioinformatics problems apart from

the three main areas listed earlier. For gene function prediction, a meta-ensemble based on

SVM was suggested (Guan et al., 2008). It has three base classifiers. The prediction is

achieved by selecting the best performance of the three for each gene ontology term. Shen

and Chou (Shen and Chou 2006) created nine sets of features for an ensemble used to

recognise protein folding. The features taken from the protein sequences included

secondary structure, polarizability, hydrophobicity, polarity, Van de Waals volume, and

various dimensions of pseudo-amino acid composition. KNN base classifiers have been

trained with the use of different feature sets. They have been put together as part of a

weighted voting manner. Ouali et al. (Ouali and King 2000) designed a classifier used for

protein secondary structure prediction. It was created using cascading various types of

classifiers using neural networks and linear discrimination. Melvin et al. (Melvin et al.,

2008) introduced a combination of KNN classifier with an SVM classifier for protein

structure prediction using sequence information. The KNN classifier was trained using

65

global sequence information, also named full coverage. The SVM was trained with the use

of local sequence information. Wang et al. (Wang et al., 2006) made the use of stacked

generalisation for the prediction of membrane protein types. An SVM and a KNN have

been used and correspond to the base classifiers. A decision tree was used for the

combination of the base classifiers. The Ensemble technique was looked at for the protein-

protein interaction problem. Lately, Deng et al. (Deng et al., 2009) made the use of an

ensemble algorithm using weighted voting strategy and bootstrap resampling. The tricky

part of this learning task corresponds to the imbalance of the data classes because of the

lack of positive training examples. The authors found that the ensemble could reduce the

imbalanced problem and significantly increase prediction performance. Ensemble methods

have been used in various new studies that explain genetic networks. Wu et al. (Wu et al.,

2010) suggested using a relevance vector machine (RVM) based ensemble in the prediction

of human functional genetic networks out of multiple sources of data. The ensemble

appears to be effective even with large missing values. The applications of ensemble

methods in bioinformatics that have been described so far are not complete, but the main

topics have been discussed. Ensemble methods are beneficial in general. It’s flexible, and

there are multiple ways to create and adjust them. The use of ensemble techniques for old

and new biological problems will likely be the focus in the coming years. There is much

promise around the ensemble method. Various extensions have been suggested. The

following section focuses on multiple extensions that can be used to achieve better

prediction.

An easy method to use SVM as part of the ensemble framework is applying the bagging

procedure with the base classifier SVM. Caragea et al. (Caragea et al., 2007) took this

approach. A bagging ensemble with the base classifier of SVM was used for glycosylation

site prediction. The results showed that the SVM ensemble's performance suppressed both

the single SVM and the balanced when they trained each base classifier with a re-sampling

of the balanced training set. Guan et al. (Guan et al., 2008) used a bagging procedure to

create an ensemble of SVMs in a gene function prediction problem. The ensemble of SVMs

always performs better than the single SVM classifier around gene ontology term

recognition., and robotics. Peng (Peng, 2006) looked at the concept of over-generating and

66

selecting an appropriate subset of base classifiers. The bootstrap sampling method and the

utilisation of a base classifier such as the SVM are used to create multiple training sets.

There is more stability with the SVM for small perturbation of the training samples than

the decision tree. If base classifiers need to be diversified, using a clustering-based base

classifier selection procedure can ensure that the accuracy of base classifiers is strong even

though they disagree with each other. When comparing a single SVM classifier to the

ensemble of bagging and boosting, Peng concluded that the best results could be obtained

with a clustering-based SVM ensemble. Gordon et al. (Gordon et al., 2006) suggested an

approach to an ensemble where SVM has a different kernel and are combined for

transcription start sites prediction. The approach defined by Gordon et al. gave a new way

to create an SVMs ensemble. This could be very helpful for problems with heterogeneous

data sources and feature types. It was looked at if an improvement was possible when

creating a meta ensemble, an ensemble of ensembles. Dettling (Dettling 2004) looked at it

and proposed a combination of bagging and boosting algorithms for microarray data

classification. It is also called BagBoosting. It was thought that enabling ensemble has a

low bias; however, the variance is high, and the bagging ensemble has lower variance and

no changed bias. BagBoosting demonstrated that it could improve prediction compared to

bagging and boosting alone. It is also very efficient compared to various SVM or k- NN

classifiers. Guan et al. (Guan et al., 2008) suggested three different SVMs ensembles as

base classifiers and are further combined as a meta-ensemble of SVMs in the use of gene

function prediction. The final prediction of genes was obtained from selecting the best

performing classifier based on each gene ontology term. Liu and Xu (Liu and Xu, 2009)

looked at another option of creating meta-ensembles. The genetic programming approach

was the basis for their ensemble system. Their experimentation showed that their system

performed better than various other evolutionary-based algorithms. Some other methods

attempted to look for the diversity of the base classifier with the use of heterogeneous

classification algorithms. Bhanot et al. (Bhanot et al.,2006) used a combination of ANN,

SVM, Weighted Voting, k NN, decision trees and logistic regression in mass spectrometry

data classification. Kedarisetti et al. (Kedarisetti et al., 2006) used an ensemble for protein

structural class prediction. A set of fifteen classifiers was combined in the paper from

67

Hassan et al. (Hassan et al., 2009). They were rule-based classifiers including k-NN and

decision trees and function-based classifiers including SVM and neural networks. Their

ensemble was applied to three microarray datasets to find a small number of highly

differentially expressed genes. For microarray analysis, Yang et al. (Yang et al., 2010a)

suggested a multi-filter enhanced genetic ensemble system. The system combines various

classifiers and filtering algorithms with a genetic algorithm. Yang et al. (Yang et al., 2010b)

used the genetic ensemble system for gene-gene interaction identification from Genome-

Wide Association studies. Data-level perturbation can be combined with different

classification algorithms to produce a meta-ensemble of classifiers. It could increase the

overall diversity and provide higher classification accuracy. Figure 15 illustrates this type

of ensemble method. For (a), classification algorithms have been trained using the same

training set. For (b), classification algorithms have been prepared using different

perturbations on the training set.

Figure 16 Schematic illustration of an ensemble using different classification

Source: Pengyi, Y., Yee, H.Y., Zhou, B.B. and Zomaya, A.Y. (2010)

Other approaches for the creation of ensembles are possible. Liu et al. (Liu et al., 2004)

introduced a new ensemble of neural networks. It uses three different feature

selection/extraction methods mixed with bootstrapping to provide diverse base classifiers.

68

They indicated that diverse base classifiers could also be achieved by including different

feature generating algorithms that offer various gene ranking lists. Koziol et al. (Koziol et

al., 2009) used the same concept similar. Amaratunga et al. (Amaratunga et al., 2008)

created a random forests variant named enriched random forest. It weighs the importance

of features when selecting splitting nodes. It enhanced the random forests algorithm for the

very high-dimensional dataset. That modification on the random forests showed very

encouraging results, especially when the dimension of the microarray data is significant

and the number of the discriminative genes is small. Solution-aggregating motif finder was

presented by Yanover et al. (Yanover et al., 2009). It is a statistical ensemble method.

Their proposed method was based on Markov Random Field with the Best max-marginal

first algorithm (Yanover et al., 2004), which provides the M top-scoring solutions.

Armananzas et al. (Armananzas et al., 2008) suggested a hierarchy of Bayesian network

classifiers to detect gene interactions from microarray data. Robles et al. (Robles et al.,

2004) used a Bayesian network to combine multiple classifiers for the use of protein

secondary structure prediction. Hu et al. (Hu et al., 2006) and Wijaya et al. (Wijaya et al.,

2008) suggested combining the outputs of multiple motif finder algorithms to improve the

final prediction result.

3.5 Summary	
	

This chapter focused on providing an overview and description of machine learning

algorithms often used in research and their applications. Machine learning has been used

in data mining, computer vision, natural language processing, medical diagnostics, DNA

sequence sequencing, and robotics. This chapter started with a description and applications

of neural networks. It discussed instance-based learning algorithms such as KNN, kernel-

based algorithms such as SVM and ensemble learning. Artificial Neural networks can be

used to model complex relationships between inputs and outputs or to find patterns in data.

The k-nearest neighbors (KNN) can be used to solve both classification and regression

problems. It is one of the most used learning algorithms. It is based on feature similarity.

SVM is one of the best choices for high-performance algorithms. Some use-cases of SVM

69

include face detection, handwriting detection and bioinformatics. Ensemble methods use

multiple learning algorithms to obtain better predictive performance than could be obtained

from any of the constituent learning algorithms alone. Due to growing computational power

in recent years allowing to train larger ensemble learning in a short period, the number of

applications of ensemble learning has grown increasingly. Some current applications

include computer security such as classification of malware codes or anomalies detection

or applications in remote sensing such as land cover mapping or change detection.

70

4. Datasets and data preparation

Several databases are available and are repositories for the structures and sequences of

transmembrane proteins.

4.1 Existing	datasets		

Orientations of Proteins in Membranes (OPM) database (Lomize, Lomize, Pogozheva and

Mosberg, 2006) include a list of transmembrane, peripheral and monotopic proteins

extracted from the Protein Data Bank (PDB). With the database, it is possible to analyse or

search membrane proteins based on various parameters such as structural classification,

destination membrane or the numbers of TM segments, to name a few.

PDB_TM is a protein data bank of transmembrane proteins (Tusnady, Dosztanyi and

Simon, 2005a). As of March 18, 2016, it contains 2745 transmembrane proteins (2394

alpha and 336 betas). The PDB_TM database was created by scanning all PDB entries with

the TMDET algorithm (Tusnady, Dosztanyi and Simon, 2005b).

Membrane Protein Bioinformatics Research Group at the Institute of Enzymology.

CGDB is a database of membrane proteins/lipid interactions by coarse-grained molecular

dynamics simulations. The lipid environment is a factor that affects membrane protein

functions and stability. Chetwynd et al. developed a computation approach to predict

membrane protein/lipid interactions (Chetwynd, Scott, Mokra and Sansom, 2008).

MPDB is a membrane protein database that contains various information concerning the

structures and functions of membrane proteins and peptides. Data is derived from the PDB

and other databases, and it includes integral, anchored, and peripheral membrane proteins

and peptides. X-ray diffraction, nuclear magnetic resonance, electron diffractions and cryo-

electron microscopy are used for the basis of the structures. (Raman, Cherezov and Caffrey,

2006). It contains 1095 unique entries (285 unique proteins/peptides and 155 unique

protein families).

The team at Stephen White laboratory work mostly on biophysics issues concerning the

folding and stability of membrane proteins (The Stephen White Laboratory at UC Irvine,

71

2016). They have few available resources, including the ‘Membrane Proteins of Known

3D Structure’.

Other databases available from the laboratory include the Membrane Protein Explorer

(MPEx). MPEx is a tool that uses hydropathy plots to analyse the topology and features of

membrane proteins.

MPtopo is also a curated database available as part of the Stephen White laboratory at UC

Irvine. The verification of topologies is achieved using crystallography, gene fusion,

antibody, and mutagenesis studies (Jayasinghe, Hristova and White, 2001). The server is

accessible, and users can query sequences with an SQL-based search engine. MPtopo

contains a total of 165 proteins with 949 transmembrane segments.

TOPDB (Topology data bank of Transmembrane Proteins) contains a comprehensive list

of transmembrane proteins with topology information (Tusnady, Kalmár and Simon,

2008). It has 4190 transmembrane proteins obtained from the literature and public

databases available on the internet. The database is available at: http://topdb.enzim.hu

OMPdb is a database that contains beta-barrel outer membrane proteins from Gram-

negative bacteria. It is the most complete and comprehensive collection of integral beta-

barrel outer membrane proteins (Tsirigos, Bagos and Hamodrakas, 2011). As of April 20,

2016, the database contains 372,536 proteins entries with 93 families based on the

structural and functional criteria.

OMPdb (simulations) is a database of outer membrane protein simulations. It contains

summaries from molecular dynamic simulations of around 20 transmembrane beta-barrel

proteins. There are also indications of lipid contacts. Dr Syma Khalid currently maintains

the database, and work is supported by Dr Kathryn Scott, Dr Peter J. Bond, and Anthony

Ivetac.

TMBB-DB is a transmembrane beta-barrel database developed and maintained by the lab

of William Wimley (Freeman and Wimley, 2012). It is an ensemble of the predictions

obtained using the Freeman-Wimley algorithm, which was shown to be among the most

accurate predictor of TMBBs. N-terminal export signal peptide predictions made by the

SignalP server are also included.

72

TCDB (Transport Classification Database) is a curated, relational database containing

sequence, classification, structural-functional and evolutionary information about transport

systems from various living organisms (Saier, Tran and Barabote, 2006). It is possible to

look for proteins that belong to a specific porin family. There are 81 different families.

UniProt Knowledgebase (UniProtKB) is a non-redundant database automatically annotated

and manually curated by experts. It is possible to search for the origin of all data as the

information is provided with the source. There are more than 120 external databases to

which UnitProtKB is cross-referenced, and there are releases every four weeks. More than

68 million entries in UniProtKB as of release 2016_09 of October 5, 2016, with 552 259

entries in Swiss-Prot and 67 940 995 entries in TrEMBL. Records in Swiss-Prot have been

manually annotated, and documents in TrEMBL are awaiting manual annotation.

The Protein Data Bank archive (PDB) has been used since 1971. It has much information

regarding the 3D structures of proteins, nucleic acids, and complex assemblies. The

Worldwide PDB is the organisation that makes sure that the PDB remains free and publicly

available. TM proteins available in the PDB are identified using the mpstruc database of

Stephen White, UC Irvin, sequence clustering and data derived from UniProt. A membrane

protein browser is available, and as of 12 Novembre 2021, the data bank contains 12726

beta-barrel structures. An example of structures found in PDB is represented in figure 17.

73

Figure 17 RCSB-PDB hierarchical classification of protein domain structures

Source: RCSB Protein Data Bank (2021)

74

4.2 BOCTOPUS2	dataset				

The BOCTOPUS2 dataset has been used and implemented in MATLAB. The dataset was

used for the training and testing of the BOCTOPUS2 tool that is used for TMB topology

prediction (Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). It is available as

supplementary information of the paper and the URL for the BOCTOPUS2 software.

Figure 18 BOCTOPUS 2: Improved topology prediction of transmembrane beta-barrel

proteins
Source: Topcons.net (2021)

The BOCTOPUS2 dataset consists of 42 TMB sequences represented in table 1.TMB

proteins are identified by their corresponding crossvalidation_setid, protein data bank ID

(PDB_ID), UniProt ID (UNIPROT_ID), superfamily classes(superfamily) and barrel

region (barrel_region). TMB proteins include nucleoside-specific channel-forming Tsx

(UniProt ID: TSX_ECOLI, PDB ID:1TLY_A), which is part of the mpstruc database

represented in figure 19. The 42 TMB sequences are culled at 30% sequence identity using

75

the PISCES server (Wang and Dunbrack, 2003) and are divided into ten subsets for cross-

validation.

To ensure no homology information is used, all proteins belonging to the same super-

family are put into the same cross-validation group. Membrane boundaries and super-

family classification are obtained from the OPM database (Lomize, Lomize, Pogozheva

and Mosberg, 2006). Residues in the transmembrane strands are labelled as pore-facing (p)

and lipid-facing(l) based on their side-chain orientation relative to the barrel centre. This

can be observed in the file boctopus2_dataset_sequenceannotation.txt. In the file, (o)

corresponds to outer-loop and (i) corresponds to inner-loop.

Figure 19 boctopus2_dataset_sequenceannotation.txt
Source: Topcons.net (2021)

76

Table 1 BOCTOPUS2 dataset
Source: Topcons.net (2021)

77

4.3 TOPDB	dataset			

The TOPDB dataset will also be used for the implementation after trying the

BOCTOPUS2 dataset. TOPDB entries are available at the Topology Data Bank of

Transmembrane Proteins web server.

Figure 20 Topology Data Bank of Transmembrane Proteins Topology, Structure and

Prediction

Source: Enzim. hu. (2014)

The beta-barrel TOPDB entries can be downloaded directly from the website and are

available at: http://topdb.enzim.hu/?m=download&mid=2. The topdb_bp.txt file contains

123 TMB sequences larger than the BOCTOPUS2 dataset.

A representation of the file’s content is found in the following picture.

78

Figure 21 Top_bp.txt

Source: Enzim.hu. (2014)

79

Table 2 Sample of 15 TMBs selected out of 123 TMBs available in TOPDB database
Source: Enzim. hu. (2014)

80

4.4 Data	preparation			

4.4.1 Data	collection	

Data were collected from the BOCTOPUS2 dataset. The list of TMB proteins is

represented in table 1. It was the dataset used to train the BOCTOPUS2 server as described

in the paper of Hayat et al. (Hayat, Peters, Shu, Tsirigos and Elofsson, 2016). The original

file boctopus2_dataset_sequenceannotation.txt include all TMB proteins sequences and

observed topologies. The sequence is represented in the FASTA format. The FASTA

format is commonly used in bioinformatics, and it is a text-based format for representing

peptide sequences or nucleotide sequences. A single-letter code corresponds to a single

amino acid. M stands for methionine, F for Phenylalanine, for example. The name FASTA

originates from the FASTA software package, a DNA and protein sequence alignment

software package. There are many different file formats used in bioinformatics. The most

common file formats used in sequencing analysis include SAM/BAM format, VCF format,

Wig format, BED format or GTF/GFF3 format. Data within

boctopus2_dataset_sequenceannotation.txt was divided into two separate files. The first

file, boctopus2Sequence.txt, took only the FASTA sequences from

boctopus2_dataset_sequenceannotation.txt and adjusted the file and lines numbers using

the text editor Sublime Text.

81

Figure 22 boctopus2Sequence.txt

Source: Enzim.hu. (2014)

boctopus2Labels.txt is the second file used as input for the deep feedforward neural

network. This file was created from the observed topologies data in the file

boctopus2_dataset_sequenceannotation.txt.

Pore-facing (p) and lipid-facing(l) labels were manually replaced with M to have an i, o,

M profile labels for each sequence.

82

Figure 23 boctopus2Labels.txt

Source: Enzim.hu. (2014)

For the topbp dataset, the file available on the server was also divided into two files.

The data file was manually curated. The observed topology represented with an X

corresponds to the signal peptide. For the implementations, the signal peptide was ignored.

The process of curation was like the BOCTOPUS2 dataset. The topdb_bp.txt was divided

into two separate files TOPBPLabels.txt and TOPBPSequence.txt.

83

Figure 24 TOPBPSequence.txt

Source: Enzim.hu. (2014)

Figure 25 TOPBPLabels.txt

Source: Enzim.hu. (2014)

84

4.4.2 Data	preprocessing	

4.4.2.1 Boctopus2	structure	array			

A dataset needs to be created and formatted for MATLAB to train the deep feedforward

neural network. A 1x42 structure array with three fields (header, sequence, topology) has

been created for the boctopus2dataset.mat.

Figure 26 boctopus2dataset.m

42 corresponds to the 42 TMB sequences. ‘header’ field corresponds to the annotation of

a given protein sequence, ‘sequence’ corresponds to the protein sequence and ‘topology’

corresponds to the predicted topology.

85

4.4.2.2 Topbp	structure	array			

Similarly, a 1x123structure array with three fields (header, sequence, topology) has been

created for the Topdb dataset named topbpdataset.m

Figure 27 topbpdataset. mat.

To create the structure array for the datasets, a file named comput was written in MATLAB.

It is represented in figure 28.

86

Figure 28 Comput file

87

4.4.3 Data	transformation	

4.4.3.1 Binarisation	of	the	inputs	and	targets	

The function binarizeInputs makes the binarisation of the inputs.

Figure 29 BinarizeInputs.m

In the above code, all the possible subsequences corresponding to a sliding window of size

W are determined by creating a Hankel matrix for each protein sequence.

Twenty binary bits are the most common distributed encoding method. Each amino acid is

represented by a unique 20-bit binary string that consists of ‘0’ and one ‘1’. Table 3

represents 20-bits encoding for 20 different amino acids. Conversion of the amino acids

sequences into real numbers is necessary to obtain numerical input vectors. In a study,

ANNs trained with 20-binary-bit encoding produced the highest classification rate and

AUC, therefore superior robustness. They observed a minor effect on the classification rate

and AUC when either altering the bit length or binary input data (From 5-bits to 20-bits)

or increasing the hidden layer nodes after a certain level or both.

88

Table 3 Best classification rate and area under the ROC curve on different binary

encoding

Source: Singh, S., Singh, M. (2007)

When binary encoding is used, no Physico-chemical properties are taken into

consideration. Previous studies also suggest that the addition of Physico-chemical

properties does not always increase neural network performances (Brusic, Rudy and

Harrison, 1995). Many beta-barrel consists of alternating hydrophobic and hydrophilic side

chains. It would not be helpful to apply simple hydrophobic scales for the topology

prediction of TMB; therefore, this approach is not considered in this paper. Various bits

encoding has been used as part of the computation.

The function binarizeTargets makes the binarisation of the targets and is represented below.

89

Figure 30 BinarizeTargets.m

The matrix |TNet| represents array targets for the neural network (1 -> [1 0 0], 2 -> [0, 1,

0], 3 -> [0 0 1]). The matrix |TSingle| contains just class (1,2,3).

(1 = 'i', 2 = 'M', 3 = 'o')

4.4.3.2 Input	and	target	matrices	construction	

Once the input and target matrices are defined for each sequence, an input matrix |P|, a

target matrix |TNet|, representing the encoding for all the sequences fed into the network,

are created. The matrix |TSingle| is used as a target for all other types of classifiers.

90

Figure 31 Construct input and target matrices

4.5 Summary		

This chapter presented the list of datasets available and the data preparation techniques

used for the implementations. Many transmembrane proteins databases serve as

repositories for the sequences and structures of transmembrane proteins. Some databases

such as OPM, PDB_TM contain orientations predictions of the protein relative to the

membrane based on water-lipid transfer energy minimisation or hydrophobicity/structural

feature analysis. OPM provides N-terminus localisation information. TOPDB was selected

for the implementations. It includes TM proteins of unknown 3D structures whose

topologies have been experimentally validated using low-resolution techniques such as

gene fusion, antibody, and mutagenesis studies. BOCTOPUS 2 dataset was also selected,

and it contains 42 proteins. This chapter also discussed the data preparation steps and

techniques used for the implementations. Data preparation is the process of cleaning and

transforming raw data before processing and analysis. This step was necessary for the

implementations, and it involved reformatting data, making minor corrections to data and

combing files. It was a lengthy process, but it was essential to put data in context and turn

it into insights and eliminate bias resulting from poor data quality.

91

5. Implementation of ANN, KNN, and SVM

This chapter describes the implementations of ANN, KNN and SVM in MATLAB.

5.1 	Implementation	of	ANN		

5.1.1 Model	building	and	training	

A neural network with one input layer, one hidden layer, and one output layer is defined in

the current architecture. The input layer encodes a sliding window in each input amino acid

sequence, and a prediction is made on the structural state of the central residue in the

window. A window of size 17 is chosen as a start. It is based on the statistical correlation

between the secondary structure of a given residue position and the eight residues on either

side of the prediction point. Each window position is encoded using a binary array of size

20, having one element for each amino acid type. In each group of 20 inputs, the element

corresponding to the amino acid type in the given position is set to 1, while all other inputs

are set to 0. Thus, the input layer consists of R = 17x20 input units, i.e., 17 groups of 20

inputs.

The output layer has three units. The individual unit corresponds to each topology. A binary

scheme is used for encoding. The topologies localisations of all combinations in the sliding

window are obtained to create the target matrix. The next step is to review the position in

the centre of each window and the corresponding topology localisation using binary

encoding as 1 0 0 (Outside: extracellular), 0 1 0 (Bacterial outer membrane) and 0 0

1(Inside: Periplasmic space). nntraintool opens the neural network training GUI. This

function can be called to make the training GUI visible before training has occurred, after

training if the window has been closed. It shows a representation of the layers of the

network.

92

Figure 32 Neural network training GUI

The function trainWithNeural is created and used to train the model.

93

Figure 33 Function trainWithNeural

The function predictWithNeural returns probabilities of element being assigned to a

particular class and the output is in the form of numbers 1,2,3 (1 = 'i', 2 = 'M', 3 = 'o').

Figure 34 Function predictWithNeural

94

The function assessPerformance is used to display performance in the form of ROC

curves, confusion matrix and bar charts. Plotconfusion (targets, outputs) generates

a confusion matrix for the target and output data. Plotroc (targets, outputs) plots the

receiver operating characteristic for each output class. Bar (x, y) creates a bar graph. The

main function used for the KNN implementation in MATLAB is named UseClassifiers.m.

Figure 35 Function assessPerformance

95

5.1.2 Hyperparameters	tuning	

Various training algorithms have been used with the computation to evaluate prediction

accuracy. Window size, bits encoding, transfer function, hidden layer size, training

function, performance function and data division are all parameters that have been

modified. All results can be found in Appendix A.

The neural network allows to set the following parameters:

§ hSize – the size of the hidden layer

§ transferFcn - transfer function for hidden layer

§ withRandonWeights – whether there is a need to initialise network with random

weights.

5.1.2.1 Hidden	layer	

TMB topology prediction can be classified as a pattern recognition problem. The network

will be trained to recognise the topology of the residue in the centre of the sliding window

based on other residues discovered in the sliding window. patternnet is used to create a

pattern recognition neural network, and hsize corresponds to the size of the hidden layer.

Various hidden layer sizes have been used during this computing from 2 to 1000. The

accuracy of prediction is summarised in Appendix A.

Figure 36 Representation of the neural network

96

5.1.2.2 Transfer	function	

During the implementation, various transfer functions have been used. Examples include

Log-Sigmoid function and Tan-Sigmoid function. A transfer function, such as logsig,

allows the signals received from the input layer to be transformed in each hidden. The

output signal generated will be between 0 and 1. The neural can adjust the weights so that

the error between the desired and observed is at the minimum. The log-sigmoidal function

is represented in figure 37.

Figure 37 Log-sigmoid transfer function

Source: Srinivasu, G., Rao, R.N., Nandy, T.K. and Bhattacharjee, A. (2012)

A Log-Sigmoid function, which is also known as logistic function, is given by the

following formula:

((*) = !
!"#!"# (5.1.1)

b corresponds to the slope parameter. The sigmoid is like the step function; however, there

is the addition of a region of uncertainty. Sigmoid functions are like the input-output

relationships of biological neurons. Their derivatives are also easy to calculate, which helps

calculate the weight updates for certain training algorithms. The derivative when b=1 is

given by:

97

$%(')
$' = ((*)[1 − ((*)] (5.1.2)

When b ¹ 1, usi((1, *) = 	 !
!"	#!"# , the derivative is given by:

$%(*,')
$' = 1[((1, *)[1 − ((1, *)]] (5.1.3)

Another transfer function was used during the implementation of the ANN. It is named

Hyperbolic tangent sigmoid transfer function. Tansig(N) takes one input and returns each

element of N squashed between -1 and 1. Tansig is named after the hyperbolic tangent,

which has the same shape. It is represented in figure 38.

Figure 38 Tan-sigmoid transfer function

Source: Srinivasu, G., Rao, R.N., Nandy, T.K. and Bhattacharjee, A. (2012)

5.1.2.3 Training	algorithms	

Various training algorithms have been used with the computation to evaluate prediction

accuracy. A summary of the results with multiple training algorithms is found in Appendix

A. A list of all training algorithms used is listed in table 4.

98

Table 4 Training algorithms used

Trainscg (scaled conjugate gradient) is the default training algorithm available in

MATLAB. The training sequences are fed to the deep neural network, at each training

cycle, through the sliding window described earlier, and this is done one residue at a time.

SCG (Scaled Conjugate Gradient) (Møller, 1993) corresponds to a supervised learning

algorithm for feed-forward neural networks. It is a member of the class of conjugate

gradient methods (CGM). SCG is faster than standard backpropagation and other CGMs

(Møller, 1993). The network training function Trainrp updates weight and bias values

based on the resilient backpropagation algorithm. The network training function Traincgb

updates weight and bias values based on the conjugate gradient backpropagation with

Powell-Beale restarts. As part of all conjugate gradient algorithms, there is a periodic reset

of the search direction to the negative of the gradient. The standard reset point corresponds

when the number of iterations equals the number of network parameters (weights/biases).

Other reset techniques can improve the efficiency of training. One method has been

suggested by Powell (Powell, 1977) based on a previous technique described in Beale paper

(Beale, 1972). The conjugate gradient backpropagation updates the weight and bias values

with Fletcher-Reeves updates (Fletcher and Reeves, 1964) in the traincgf training

function. Weight and bias values are updated according to the conjugate gradient

backpropagation with Polak-Ribiére updates in traincgp. Traincgp has comparable

99

performance to traincgf. In the trainoss training function, weight and bias values are

updated based on the one-step secant method. The performance of various algorithms was

evaluated in a recent article (Sharma et al., 2016) using small datasets with multiple

dimensionalities. Their article indicated that KNN (k-nearest neighbors), SVM (support

vector machines) and linear discriminant are the algorithms when using small datasets. A

representation of the AUC and accuracies can be found in figure 39. Based on this study,

it was decided to implement KNN and SVM classifiers for the topology prediction of TMB

proteins.

Figure 39 AUC & Predictive Accuracy Value

Source: Sharma, S., Sharma, V. (2016)

5.1.2.4 Data	division	

Overfitting is a recurrent problem that occurs when the neural network is trained. This

happens when the model is complex and the size of the training data is too small. There is

memorisation of the network's training examples, but there is no generalisation. Early

stopping is one of the methods to ensure generalisation. This default value in MATLAB

for early stopping is a maximum of 6 iterations. In the early stopping method, data division

creates three different sets. The first set is referred to as the training set. An ensemble of

examples is used to learn, and the network weights are updated. The second set is the

100

validation set, which is mostly used for tuning the model’s parameters. During the initial

training phase, the validation error habitually decreases (as well as the training set error).

The error on the validation set typically starts to rise when the network begins overfitting

the data. The network weights and biases are saved when the validation set error reaches

its minimum. The third set is referred to as the test set. It is used to confirm the predictive

power of the network. Four functions are available in MATLAB for data division. The first

one is dividerand. It will divide the data randomly. The second one is divideblock. It

will divide the data into contiguous blocks. The third one is divideint. The data will be

divided using an interleaved selection. The last one is divideind. Data division happens

automatically during the training of the network. Data is divided into three sets: the training

set, validation set, and testing set. Various division functions were used, and the results

were evaluated. When dividerand is used, the data is divided into three sets randomly.

The division parameter net.divideParam.trainRatio, net.divideParam.valRatio,

and net.divideParam.testRatio are used. This is the default setting. The ratio that is

used by default is 0.7/0.15/0.15. It corresponds to the ratio for training, testing and

validation. Other types of partitioning can be used when modifying net.divideFcn.

Parameters of the division function are stored and can be modified with the property:

net.divideParam. When using the function train, by default, the data is randomly divided

so that 70% of the samples are assigned to the training set, 15% to the validation set, and

15% to the test set. Figures 40,41, and 42 show the structural assignments in the training,

validation and test datasets used for this network where ‘I’ corresponds to inner-loop, ‘O’

corresponds to outer-loop, and ‘M’ corresponds to membrane lipid-facing and membrane

pore-facing.

101

Figure 40 Structural assignment in the training data set

102

Figure 41 Structural assignment in the validation data set

103

Figure 42 Structural assignment in the testing data set

The topology of the residues in the three subsets is similar when comparing pie charts in

figures 40, 41 and 42. There is a measure of error for neural network training between

computed outputs and desired target outputs of the training data. Mean Squared Error is a

common measure. The mean squared error (MSE) of an estimator calculates the average

of the squares of the “errors” in statistics. Error is the difference between what is estimated

and the estimator. MSE corresponds to a risk function based on the expected value of the

squared error loss. However, some research results (Golik, Doetsch & Ney, 2013) suggest

using a different measure, called cross-entropy error, as it is sometimes preferable to using

mean squared error. As discussed earlier, there is monitoring the error on the validation

during the training phase. Training, validation, and test errors are displayed with the

function plotperform.

104

Conditions are defined in the net.trainParam, and when they are met, the training stops.

For example, the number of epochs greater than 200 can be a condition. Figure 43

represents the various functions parameters of trainscg, which was used for this project.

Other training functions have been used.

Figure 43 net.trainParam function results

For example, in the training considered, the training process stops when the validation error

increases for a specified number of iterations (6) or the maximum number of allowed

iterations is reached (1000). Validation checks represent the number of successive

iterations that the validation performance fails to decrease. Figure 44 illustrates the

magnitude of the gradient. Figure 45 represents the number of iterations. It can be seen

clearly that validation checks=6 at epoch 158, and the training stops automatically. When

the training has obtained a minimum performance, the gradient will be small when the

gradient is less than 1e-6. For this project, the validation checks (>6) triggered the training

to stop.

105

Figure 44 Gradient

Figure 45 validation checks

The magnitude of the gradient can be adjusted by changing the parameter

net.trainParam.min_grad. The criterion of validation checks can be modified by

changing the parameter net.trainParam.max_fail. Finally, stopping the training

manually by clicking ‘stop training’ in the training window is also possible.

5.1.3 Performance	evaluation	

5.1.3.1 Confusion	matrix		

In machine learning, a confusion matrix, also known as a contingency table or an error

matrix, is a specific table layout that allows visualisation of the performance of an

106

algorithm, typically a supervised learning one (in unsupervised learning, it is usually called

a matching matrix). Each column of the matrix represents the instances in a predicted class,

while each row represents the instances in an actual class.

A review of the confusion matrix is needed to analyse the network response. It is essential

to consider the outputs of the trained network and compare them with the expected results,

also referred to as targets. In the training tool window, there is a button that permits

displaying the confusion matrix. The confusion matrix is represented in figure 46. The

diagonal cells show the number of residue positions correctly classified for each topology

class. The off-diagonal cells show the number of residue positions that were misclassified.

The diagonal cells correspond to observations that are correctly classified. The number of

words and the percentage of the total number of observations is shown in each cell. The

column on the far right of the plot shows the percentages of all the examples predicted to

belong to each class that are correctly and incorrectly classified. These metrics are often

called the precision (or positive predictive value) and false discovery rate. The row at the

bottom of the plot shows the percentages of all the examples belonging to each class that

are correctly and incorrectly classified. These metrics are called the recall (or true positive

rate) and false-negative rate. The cell in the bottom right of the plot shows the overall

accuracy.

107

Figure 46 Confusion matrix

5.1.3.2 Receiver	operating	characteristic	curve	

The Receiver Operating Characteristic (ROC) curve can also be looked at. It is a plot of

the true positive rate (sensitivity) versus the false-positive rate (1 – specificity). True

positive rate is also known as sensitivity in biomedical engineering. Sensitivity corresponds

to the proportion of actual positives that are correctly identified. False-positive corresponds

108

to fall-out. Fall-out is related to the specificity and equals to 1 - specificity. The ROC curve

represents the sensitivity as a function of the fall-out. A perfect predictor would be

described at 100% sensitivity. The overall accuracy is better when the ROC curve is close

to the upper left corner (100% sensitivity, 100% specificity).

Figure 47 Receiver Operating Characteristics curve

109

5.1.3.3 Prediction	quality	indices	

The topology prediction is evaluated in detail by calculating prediction quality indices

represented in figure 48. They indicate how well a particular state is predicted and whether

overprediction or underprediction has occurred. The index pcObs(S) was defined for state

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the

number of residues observed in state S. Similarly, the index pcPred(S) for state S was

defined as the number of residues correctly predicted in state S, divided by the number of

residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.

Figure 48 Quality indices of prediction

110

5.2 Implementation	of	KNN	

Some elements used for the implementation of the ANN can be reused to implement a

KNN (k-nearest neighbors) classifier. The dataset(s) and binarisation of the inputs used

will be the same. The datasets used will be the same datasets used with the ANN

implementation. The BOCTOPUS2 and TOPDB datasets will be curated and used for

implementation.

5.2.1 Model	building	and	training	

The classifier uses the fitcknn function. fitcknn is part of the statistics toolbox. Fitcknn

(_, Name, Value) creates a model with other options specified with one or more name-

value pair arguments. The tie-breaking algorithm, distance metric of observation weights

can be identified. Name-value pair arguments are represented as Name, Value arguments

separated by a comma. Name is the argument name. Value is the corresponding value

argument. The name must be within single quotes. An example is:

‘NumNeighbors',15,'NSMethod','exhaustive','Distance','euclidean’ specifies a

classifier for fifteen-nearest neighbors using the nearest neighbor search method and the

Euclidean metric. Several model parameters can be modified, and there will be a first

review on ‘BreakTies', 'NSMethod' and 'NumNeighbors' that have been used as a basis for

creating the k-nearest neighbors in MATLAB. 'BreakTies' corresponds to the tie-breaking

algorithm. The default value is 'smallest’, but values can be 'nearest' or 'random'. predict

method uses the tie-breaking algorithm. There are three ways to break a tie for a k-nearest

neighbors classifier. The smallest index among tied groups is used with 'smallest'. The

nearest neighbor among tied groups is used with 'nearest'. A random tiebreaker among tied

groups is used with 'random'. 'random' is like flipping a coin and deciding positive/negative

for example. There is a tie when various classes have the same number of nearest points

among the k nearest neighbors. 'BreakTies', 'nearest' is an example of the syntax used in

the code. Ties happen when there is the same number of votes for two different classes in

111

the set of nearest neighbors. In binary classification, it can occur if k is even. Changing to

an odd value (such as 3 or 5) in binary cases is possible, but it does not help for multi-class.

Missing values need to be dealt with when using nearest neighbors. An attribute has usually

values in the data. Missing values happen when a testing instance does not have an

attribute. Missing values are problematic for nearest neighbors. There is no trick, like for

naive Bayes nearest neighbors classifier or for decision tree that helps to deal with missing

values. Here, it is necessary to do something. It is required to fill in the missing values;

otherwise the model can’t compute distance. A reasonable choice can be to choose the

mean (average) value of the attribute across the dataset.

The function trainWithKNN is created and used to train the model.

Figure 49 Function trainWithKNN

The function predictWithKNN returns probabilities of element being assigned to a

particular class and the output is in the form of numbers 1,2,3 (1 = 'i', 2 = 'M', 3 = 'o').

Figure 50 Function predictWithKNN

112

A model parameter that was discussed earlier is the tie-breaking algorithm. Another model

parameter that needs to be considered is 'NSMethod' corresponds to the Nearest neighbor

search method. The nearest neighbor search method is coded as pair consisting of

'NSMethod' and 'kdtree' or 'exhaustive'. The default value is 'kdtree'. A kd-tree is created,

and find the nearest neighbors when the value 'kdtree' is used. The distance metric must be

'euclidean', 'cityblock', 'chebychev' or 'minkowski'in order for 'kdtree' to be valid. The

exhaustive search algorithm is used with 'exhaustive'. There is a computation of the

distance values from all points in X to each point in Y to find the nearest neighbors. An

example of the syntax for this parameter is 'NSMethod', 'exhaustive'. (Mathworks, 2016). A

k-d tree is built from training data. An example of a kd-tree is represented in figure 51.

Figure 51 Scheme of a KD-Tree Search algorithm
Source: Kraus, P. and Dzwinel, W. (2012)

In a k-d tree, a data structure is built and organises the dataset as a tree. To find the nearest

neighbors to the query point, it is necessary to navigate down the tree to the region that will

hopefully contain most of the nearest neighbors for the testing point. The algorithm works

by picking a random attribute, and for that attribute, it finds the median. It uses that median

to split the dataset. It will divide it evenly with half the data points on one side and half of

the data points on the other side. The procedure is repeated at other iterations using a

different random attribute. The procedure is repeated until it ends up with a predetermined

number of points left in each branch of the tree. Once you know the number of points that

will be, you know how deep the tree is. At each level, the dataset is split in half, and because

113

the median is selected, it is split exactly in half. The dataset gets twice a small with every

step. The previous figure states that the classifier stops when there are 2 or 3 nodes in each

leaf, and figure 51 represents the final cutting of the space into regions. The data structure

is then used for finding nearest neighbors to testing queries. In this example, for finding

the nearest neighbors for a new point (7,4), the region containing (7,4) is selected, and a

comparison to all points in the region is done. This technique can easily miss real nearest

neighbors. 'NumNeighbors' is another model parameter used to create the k-nearest

neighbors classifier in MATLAB in this paper. When the number of neighbors is changed

to 3 or 4, the model will classify using the third or fourth nearest neighbors. K=2 has been

selected to start the process. Values will be modified later to obtain better results and

optimise the classifier. k will affect the algorithm’s performance a lot, and it is discussed

using an example in another section of this research.

So far, the trainwithKNN function has been discussed. PredictwithKNN function will

return probabilities of the element being assigned to the class and the output in the form of

numbers 1,2,3 (1= ‘i’, 2=’M’, 3=’o’) based on the trained-nearest neighbor classification

model. The classifier uses the predict function available in MATLAB. The syntax is as

follow: [output, probability] = predictwithKNN (model, input). As discussed

earlier, a k-nearest neighbors classification model is defined as a Model and specified as a

ClassificationKNN model object returned by fitcKNN. Input corresponds to the predictor

data to be classified.

The function assessPerformance is used to display performance in the form of ROC

curves, confusion matrix and bar charts.

5.2.2 Hyperparameters	tuning	

The k-NN model uses a k value=2 as a first implementation. Variations in the k values will

be used to evaluate the performance of k-NN, and all results are summarised in Appendix

B. Multiple parameters of a KNN are modifiable. NumNeighbors is one of the properties

of a KNN that has been modified. This positive number corresponds to the number of

nearest neighbors in X, which is a numeric matrix of unstandardised predictor value. One

114

predictor (variable) is represented by each column of X. One observation is represented by

each row. For example, changing the neighborhood size to 6 means that the model classifies

using the six nearest neighbors. A single nearest neighbor is the default k-nearest neighbors

classifier. Using more than one neighbor is better NSMethod and BreakTies are other

properties of a KNN that have been modified.

The implementation used in MATLAB for this project runs 1-18 using the ‘exhaustive’

nearest neighbors search method, BreakTies, ‘random’ and varied data division for

training. The syntax is as follow in the trainWithKNN.m file. Runs 19-33 use a k-d tree

search method with various distance metrics. The Tie-breaking algorithm remains the same

(random) as the one used in runs 1-18. ‘euclidean’ corresponds to the Euclidean distance.

‘cityblock’ corresponds to the City block distance, ‘minkowski’ is the Minkoswki

distance. 2 is the default exponent. ‘chebyshev’ corresponds to the Chevychev distance

(maximum coordinate difference).

For runs 34-52, the tie-breaking algorithm has been modified. All runs used for far were

based on a random tie-breaking algorithm. The tie-breaking algorithm has been changed to

'smallest' or 'nearest'. ‘BreakTies’ applies when ‘includeTies’ is false.

‘includeTies’ is a flag that can be true or false. It is false by default. When it is set to

‘true’, the model considers all nearest neighbors with a distance equal to the kth smallest

distance in the output arguments. If it is false, then the model chooses the observation with

the smallest index among the observations that have the same distance from a query point.

‘Bucketsize’ can also be modified. It corresponds to the maximum data points in node.50

is the default. It is used only when ‘NSMethod’ is ‘kdtree’. The code corresponds to s a

pair of ‘Bucketsize’ and a positive integer value separated by a comma. An example is

‘Bucketsize’,40. ‘exponent’ is the Minkowski distance exponent, and it can be added

to one of the sub-parameters of a KNN. It is only applicable when ‘Distance’ is specified

as ‘minkoswki’.

115

Starting from run 53, all the runs use the dataset TOPBPdataset.mat. Parameters are

adjusted similarly to the runs 1-52, and results can be found in Appendix B.

5.2.3 Performance	evaluation		

With the implementation of KNN, plots are also provided to evaluate the performance of

the KNN classifier. Plots include a confusion matrix, Receiver Operating Characteristic

(ROC) curve and chart with predicted and observed positions. The description of the plots

and interpretation of results have been already defined in the previous chapter.

5.2.3.1 Confusion	matrix		

The confusion matrix is represented in figure 52. The best overall accuracy is 71.8%. The

diagonal cells show the number of residue positions correctly classified for each topology

class. The off-diagonal cells show the number of residue positions that were misclassified.

The diagonal cells correspond to observations that are correctly classified. The number of

observations and the percentage of the total number of observations is shown in each cell.

The column on the far right of the plot shows the percentages of all the examples predicted

to belong to each class that are correctly and incorrectly classified. These metrics are often

called the precision (or positive predictive value) and false discovery rate. The row at the

bottom of the plot shows the percentages of all the examples belonging to each class that

are correctly and incorrectly classified. These metrics are called the recall (or true positive

rate) and false-negative rate. The cell in the bottom right of the plot shows the overall

accuracy.

116

Figure 52 Confusion matrix

5.2.3.2 Receiver	operating	characteristic	curve	

The Receiver Operating Characteristic (ROC) curve can also be looked at. It is a plot of

the true positive rate (sensitivity) versus the false positive rate (1 – specificity). True

positive rate is also known as sensitivity in biomedical engineering. Sensitivity corresponds

to the proportion of actual positives that are correctly identified. False-positive corresponds

to fall-out. Fall-out is related to the specificity and equals to 1 - specificity. The ROC curve

represents the sensitivity as a function of the fall-out. A perfect predictor would be

117

described at 100% sensitivity. When the ROC curve is close to the upper left corner (100%

sensitivity, 100% specificity), the overall accuracy is better.

Figure 53 ROC curve

5.2.3.3 Prediction	quality	indices	

The topology prediction is evaluated in detail by calculating prediction quality indices

represented in figure 54. They indicate how well a particular state is predicted and whether

118

overprediction or underprediction has occurred. The index pcObs(S) was defined for state

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the

number of residues observed in state S. Similarly, the index pcPred(S) for state S was

defined as the number of residues correctly predicted in state S, divided by the number of

residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.

Figure 54 Quality indices

119

5.3 Implementation	of	SVM		

This section describes the implementation of SVM in MATLAB.

5.3.1 Model	building	and	training	

The function templateSVM is used to create the support vector machine template.

t=templateSVM (Name, Value) generates a template that has possibilities of extra options

specified by one of the multiple name-value pair arguments. For example, the box

constraint, the kernel function, can be set. Whether there is a standardisation of the

predictors or not can also be specified. All unspecified options appear empty if t, is

displayed in the command window. Empty options will be replaced with the corresponding

default values at the training phase. The display of t can be accessed with a code, and the

results of the show are also represented in figure 55.

120

Figure 55 Display of t from the command window

The function trainWithSVM is created and used to train the model.

121

Figure 56 function trainWithSVM

The function predictWithKNN returns probabilities of element being assigned to a

particular class and the output is in the form of numbers 1,2,3 (1 = 'i', 2 = 'M', 3 = 'o').

Figure 57 function predictWithKNN

An ECOC model is created by the function fitecoc(_, Name, Value) (fit multiclass

models for support vector machines or other classifiers). It is for multiclass SVMs. ECOC

stands for Error-Correcting Output Code. Generalising SVMs to deal with multiclass

problems is one of the important research activities in machine learning. The usual practice

is to divide a multiclass problem into various two-class problems and then associate them

122

to obtain a classification in multiple classes. Error-Correcting Output Code is one of the

most used combination ways (Dietterich and Bakiri, 1995), called ECOC SVMs. ECOC is

an ensemble method mostly used in classification problems with various classes. The idea

to deal with a multi-class problem is to divide the problem into multiple smaller

classification tasks called class binarisation. Two-class problems can have a solution with

the use of binary classifiers. The results will be added together to solve the original

multiclass problem. Various approaches in class binarisation are one-versus-one, one-

versus-all, and error-correcting output codes (Dietterich and Bakiri, 1995). There is

division in the multiclass problem into a series of binary problems in one-versus-all. For

each class, a binary classifier is trained to make a difference between the classes patterns

and the remaining classes patterns. A classifier is trained for each possible pair of classes

when the one-versus-one approach is used. Voting or committee procedure is used to give

a final classification prediction. When multiclass problem is divided into various binary

problems, it represents the concept of the ECOC framework. A two meta-class problem is

used to train each classifier. Each meta-class has a few combinations of the original classes.

There are two main stages in the ECOC method: encoding and decoding. Encoding is

designing the code matrix (a discrete decomposition matrix) in each problem. A codeword

corresponds to a row of the codematrix. Each class is represented by multiple bits. Each bit

can identify the membership of the class to a classifier (Escalera, Pujol and Radeva, 2009).

For each class, a codeword of length n can be created. Each bit of the code represents the

response of a given dichotomised (coded by +1, -1, according to their class set membership)

(Escalera, Radeva & Pujol, 2008). The final classification decision is obtained in the

decoding phase-out of the outputs of binary classifiers. When using an unlabelled test

sample, each binary classifier can choose from the two metaclasses used during the

training. There is a comparison of the vector to each class codeword of the matrix. There

is an assignment of the test sample to the class with the closest codeword based on some

distance measure. This binary strategy was suggested in various research papers and

showed good results. A third symbol was added to the coding matrix by Allwein et al.

(Allwein, Schapire, Singer, 2000), and it improves the representability of the ECOC

technique. The elements that are part of the coding matrix is taken from {-1, 0, +1} with

123

this new symbol. Classes with zero values are not taken into consideration for that

dichotomised. Figure 58 is an illustration of various ECOC designs. (a) represents one-

versus-all, (b) one-versus-one, (c) dense random, and (d) sparse random ECOC designs.

Figure 58 ECOC designs

Source: Escalera, S., Tax, D.M.J., Pujol, O., Radeva, P. and Duin, R.P.W. (2008)

+1 corresponds to the white regions. The black regions correspond to -1. Zero corresponds

to the grey regions. In this example, there is the codification of four. A codeword for each

class representing the rows of the coding matrix is generated. Each of the columns

124

represents a binary problem. +1 positions correspond to the classes for the first group of a

classifier. -1 positions of the column are the classes of the second group of a classifier. For

this problem, there are six binary problems. A reduction of the bias and variance errors of

the base classifiers are demonstrated with an ECOC ensemble (Kong and Dietterich, 1995),

(Windeatt and Ghaderi, 2003). A comparison of different approaches for multiclass

classification SVM problems has been described by Hsu and Lin (Hsu and Lin, 2002). The

comparison includes oneversus-one, one-versus-all, and a DAG SVM. Based on their

results, one-versus-one method is better than other approaches. Only ten datasets were used

for this comparison. Two of those ten datasets have more than seven classes. García-

Pedrajas et al. (García-Pedrajas and Ortiz-Boyer 2011) wrote and critically assessed the

three basic multiclass methods. From the results, ECOC and one-versus-one have the best

performances. Support vectors and the labels and the estimated α coefficients are found in

'SaveSupportVectors' that corresponds to properties of the resulting model. They are

specified as a pair consisting of 'SaveSupportVectors' with true or false separated by a

comma. The model that results when 'SaveSupportVectors' is true will save the support

vectors in the SupportVectors property and save their labels in the

SupportVectorsLabels property. The estimated α coefficients are held in the Alpha

property of the SVM leaners. The model that results when 'SaveSupportVectors' is false

and 'KernelFunction' is 'Linear' does not save the support vectors or the related estimates.

If you want to reduce memory consumption by compact SVM classifiers, it is necessary to

have a specification of 'SaveSupportVectors'. The Gram matrix is computed by

'KernelFunction'. It is specified as a pair that consists of 'KernelFunction'and

'gaussian' or 'rbf', 'linear' or 'polynomial' and are separated by a comma. The Gram

matrix also named the Gramian matrix, is a linear algebra term. With a set V of m vectors,

the Gram matrix corresponds to m-by-m matrix of all possible inner products of V.A Gram

matrix is formed by the algorithm using the predictor matrix columns for nonlinear SVM.

The inner product of the predictors is replaced by the dual formalisation with the elements

obtained from the Gram matrix also named the ‘kernel trick’. 'gaussian' or 'rbf' is the

default for one-class 'linear' is the default for two-classes learning. Suppose 3 (#5, #.)

is element (4, 5) of the Gram matrix, where #5 and #. are p-dimensional vectors

125

representing observations j and k in X. Table 5 describe the supported kernel function

names and their functional forms.

Table 5 Supported Kernel function names and their functional forms

 'polynomial' corresponds to the polynomial kernel. The 'PolynomialOrder’, p is equal

to a polynomial kernel of order p. Transforming scores to posterior probabilities is also

called ‘FitPosterior'. It is specified as a pair that consists of 'FitPosterior' and true (1)

or false (0) separated by a comma. It will transform binary-learner classification scores into

posterior probabilities when 'FitPosterior' is true. Posterior probabilities can be obtained

by using predict. Fitecoc does not support fitting posterior probabilities when the binary

learners (Learners) correspond to linear classification models implementing SVM. Logistic

regression is needed to obtain posterior probabilities for linear classification models.

Binary learner templates are defined as a pair that consists of 'Learners' and a character

vector, cell vector of template objects or template objects. In this implementation, the

'Learners' corresponds to a template object. Each binary learner is trained following the

options that are stored. The template object has been created using templateSVM. So far,

the trainWithSVM function has been discussed. PredictWithSVM function will return

probabilities of the element assigned to the class and the output in numbers 1,2,3 (1= ‘i’,

2=’M’, 3=’o’) based on the trained support vector machine model. The classifier uses the

predict function available in MATLAB. The syntax is as follow: [output, probability]
= predictWithSVM (model, input).

126

5.3.2 Hyperparameters	tuning	

Several SVM parameters are modifiable. 'SaveSupportVectors' and 'KernelFunction'

are among those. 'SaveSupportVectors' can be 'true' or 'false' and 'KernelFunction'

can be 'linear', 'rbf' or polynomial.'BoxConstraints' is another modifiable parameter.

For one-class learning, the value is set to 1. An example of syntax is 'BoxConstraints',100.

This parameter can supervise the maximum penalty that is imposed on margin-violating

observations. It is preventing overfitting, also referred to as regularisation. Increasing the

value of this parameter will make the SVM classifier have fewer support vectors, and the

training is longer. Few runs have been executed with box constraints ranging from 1 to

1000. 'CacheSize'is a modifiable parameter. When 'CacheSize' is set to 'maximal', it keeps

enough memory to hold the entire m-by-m Gram matrix discussed earlier. When

'CacheSize' is a positive scalar, it keeps CacheSize megabytes of memory for the

classifier’s training. For large problems, it is recommended to use enough cache size. The

default value is 1000. An example of the written code used is: 'CacheSize', 'maximal'.'

IterationLimit'is another parameter that is modifiable. It corresponds to the maximal

number of numerical optimisation iterations. 'IterationLimit'is characterised as the

pair consisting of 'IterationLimit' and a positive integer. It returns a model that is

trained even if the optimisation routine does not converge. Mdl.ConvergenceInfo does

contain convergence details. The optimisation is slowed down when the iteration limit is

very low or very high. When the iteration limit is too tight, the algorithm spends too much

time doing optimisation of the dual variables of a single example

'ClipAlphas' is another parameter that can be modifiable. It is written as 'ClipAlphas'

and ‘true' or 'false'. If 'false', the software is not modifying the alpha coefficients

during the optimisation. 'ClipAlphas' can affect SMO and ISDA convergence.

'Solver' is another parameter that can be changed. It is specified as the comma-separated

as 'Solver' and either 'ISDA' or 'L1QP' or 'SMO'. The default is 'ISDA' if

'OutlierFraction' is set to a positive value and in the case of two-class learning. It will

be 'SMO' otherwise. 'SMO' refers to Sequential Minimal Optimization (Fan, Chen and.

127

Lin, 2005). SMO was discussed earlier. Working set selection is decisive in decomposition

methods when support vector machines are trained. Fan et al. introduced a new technique

for working set selection. It is for SMO-type decomposition methods. It will use a second

order information to obtain fast convergence. Experimentations used by Fan et al. indicate

that the method they suggested is more rapid than current selection methods that use first-

order information. 'ISDA' refers to Iterative Single Data Algorithm (Kecman, Huang and

Vogt, 2005). SMO is the most popular approach for solving SVM problems. It performs a

series of two-point optimisations. ISDA updates one Lagrange multiplier with each

iteration. ISDA is often conducted without the bias term b with a small positive constant

as the kernel function. Dropping b drops the sum constraint in the dual equation. This

allows updating one Lagrange multiplier in each iteration, making it easier than SMO to

remove outliers. The simulation results from Kecman et al. indicated that models produced

by ISDAs, either with the bias term b or without it, are equivalent to standard SMO based

algorithms concerning the generalisation performance. With the use of an appropriate k

value, ISDAs will perform faster than the standard SMO algorithms when it is large scale

classification problems because ISDAs are more straightforward, and there is a decrease in

the number of support vectors chosen after the inclusion of an explicit bias b. The

conclusion was that ISDAs are great tools when there is a need to solve large scale SVMs

problems containing large training datasets. It is faster and provides the same generalisation

results as the standard SMO algorithms. ISDA for two-class classification can have an

extension to the multiclass problem. This approach will decrease the complexity of

computation, and it requires simple iterative procedures that involve matrix addition and

multiplication. There is also a guarantee of convergence of the algorithm (Kecman, Huang

and Vogt, 2005). Few runs were performed with the use of the ISDA algorithm. To use the

ISDA algorithm, 'OutlierFraction' needs to be defined. 'OutlierFraction' is the

proportion of outliers in the data used for training. It is written as 'OutlierFraction'

and a numeric scalar ranging from 0 and 1.

SVMs can be affected by outliers, and methods have been developed to mitigate the effects

of outliers on SVMs. Some researchers have used schemes that identify possible outliers,

assigning a confidence value that indicates how likely a point is believed to be an outlier.

128

In implementing this, researchers have developed the ideas of fuzzy SVMs and weighted

SVMs (Lin and Wang, 2004), (Lin and Wang, 2002), (Suykens, De Brabanter, Lukas and

Vandewalle, 2002), (Tsujinishi and Abe, 2003), (Wang and Chiang, 2007). Lin et al. results

show that the generalisation error on fuzzy SVMs is comparable to other methods on the

benchmark dataset. Suykens et al. discuss LS-SVM (Least Squares SVMs).LS-SVMs is a

version of an SVM that include equality and not inequality constraints. Tsujinishi et al.

referred to fuzzy LS-SVMs that can resolve unclassifiable regions for multiclass problems.

They indicated that, with the use of benchmark datasets, the performance of fuzzy LS-

SVMs is like fuzzy SVMs.

Fuzzy SVMs with the average operator did not show superior performance. Wang et al.

introduced a text categorisation system to solve the multi-class categorisation problem. It

was composed of two modules: The processing module and the classifying module. They

concluded that the OAA-FSVM (One-Against-All Fuzzy SVM) method had outperformed

OAA-SVM for the multiclass text categorisation problem. Some of these studies show only

incremental improvements over the standard SVM method. Some further discussion would

be to evaluate to what degree outliers affect SVM models, how much SVM models can be

improved in ideal and real-world situations, or what methods can be used to deal with

outliers. The last solver to discuss is the 'L1QP'. 'L1QP'is using quadprog to implement L1

soft-margin minimisation by quadratic programming. This option requires an Optimization

Toolbox license. L1QP uses a generalised algorithm for QP problems. SMO is a specialised

algorithm for SVMs. The optimisation toolbox was not purchased as part of the MATLAB

license, and L1QP was not used during the implementation. Genetic algorithm and pattern

search solvers support algorithmic customisation with the optimisation toolbox.

'DeltaGradientTolerance' is another parameter that can be modified. It is written as a

pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

'DeltaGradientTolerance' is equivalent to the tolerance for the gradient difference

between upper and lower violators obtained by SMO or ISDA. If

'DeltaGradientTolerance' is 0, then MATLAB will not use patience for the gradient

difference to check the optimisation convergence. When the solver is SMO, the defaults

are 1e-3. When the solver is ISDA, the default is 0. Tolerance specifies the maximum

129

gradient of the quadratic function used to compute support vectors. Training is terminated

when the rise of the optimises function is less than or equal to the tolerance value.

Typically, there is no need to change the default value. 'GapTolerance' is another

parameter that can be modified. It is written as a pair consisting of 'GapTolerance' with

a nonnegative scalar. It is equivalent to the feasibility gap tolerance that SMO or ISDA

obtains. When the value is equal to 0, then MATLAB does not use the feasibility gap

tolerance when checking for optimisation convergence. 'KernelOffset' is another

parameter that can be modified. It is written as a pair consisting of 'KernelOffset' with

a nonnegative scalar.thoseMATLAB will add 'KernelOffset’ to each element of the

Gram matrix. If the solver is SMO, the default value is 0. It’s 0.1 if the solver is ISDA. The

offset parameter is sometimes called ‘bias’ in classification tasks, and its intuitive

understanding does not have to do with what kind of kernel is used. It is used to compensate

for feature vectors not centred around 0. For example, you can have some feature vector x

whose parameters are always negative. The set of weights w used in the SVM (for instance

linear), will perhaps transform the features into the range [0,1] so they will always be

negative. Those elements that belong to class 1 fall in the range [0,0.5], and those from

class 2 fall into the range [0.5,1]. The SVM uses 0 as the threshold breakpoint to classify

into a class. If greater than 0, it is an element of class 1 and if less than 0, it is an element

of class -1. But in this case, all the elements will be classified into class 2. However, with

a bias of 0.5 (in the linear case), they will be classified correctly. This geometric

interpretation does not work for more complex kernels, but this idea is the same: the bias

term attempts to compensate for features not centred around 0. If the features are centred

around zero, the bias term is not always needed. 'KernelScale' is another parameter that

can be modified. Gamma (γ), also named KernelScale in MATLAB, controls overfitting

in SVM. It is written as a pair consisting of 'KernelScale' with a positive scalar or 'auto'.

MATLAB will divide all elements of the predictor matrix X by the value of 'KernelScale'.

If the solver is SMO, it will apply the appropriate kernel norm to compute the Gram matrix.

If it is written 'auto', MATLAB will select a relevant scale factor using a heuristic

procedure.; The heuristic procedure will be using subsampling; therefore, estimates can

vary from one call to another. To obtain the same results, setting a random number using

130

rng before the training is mandatory. rng corresponds to control random number

generation. 'KKTTolerance' is another parameter that can be modified. It is written as a pair

consisting of 'KKTTolerance' and a positive scalar. KKTTolerance is equivalent to

Karush-KuhnTucker complementary conditions violation tolerance. In SVM, the KKT

complementary conditions are:

!!["!#($!) − 1 + (!] = 0
(!(+ − !!) = 0 (5.3.1)

If 'KKTTolerance' equals 0, then MATLAB will not use the KKT complementary

violation tolerance to check for optimisation convergence. If the solver is SMO, the default

value is 0; otherwise, 1e-3 is the solver is ISDA. Karush-Kuhn-Tucker complementary

conditions have an essential role in the use of constrained optimisation. KKT conditions

come from Harold W. Kuhn and Albert W. Tucker.

The first published the conditions in 1951 (Kuhn and Tucker, 1951). 'Nu' is another

parameter that can be modified. It is written as a pair consisting of 'Nu' with a positive

scalar. 'Nu' is between 0 and 1. It corresponds to the v parameter for one-class learning.

Setting. It is used for one-class learning, but the implementation is a multi-class learning

problem. The value was changed to 0.25. No changes in the accuracy were observed.

'Numprint' is another parameter that can be modified. It is written as a pair consisting of

'Numprint' with a nonnegative integer. It corresponds to the number of iterations between

optimisation diagnostic message output. If ‘Verbose',1 and 'Numprint', Numprint are used,

then MATLAB will display all optimisation diagnostic messages from SMO and ISDA

every Numprint iteration in the command window. 'Verbose' is another parameter that can

be modified. It is written as a pair consisting of 'Verbose' with either 0,1, or 2. It

corresponds to the verbosity level. It controls the amount of optimisation information that

MATLAB will display in the command window and save as the structure

Mdl.ConvergenceInfo. History. MATLAB will not display or save convergence

information if the value is set at 0 (default). MATLAB will display diagnostic messages

131

and save convergence criteria for every Numprint iteration if the value is 1. Figure 59

represents the diagnostic message and convergence criteria displayed in the command

window during the implementation with 'Numprint',500 and 'Verbose',1.

Figure 59 Diagnostic message and convergence criteria

MATLAB will display diagnostic messages and save convergence criteria at every iteration

if the value is set a 2. 'PolynomialOrder' is another parameter that can be modified. It is

written as a pair consisting of 'PolynomialOrder' and a positive integer. It corresponds

to the polynomial kernel function order. The default value is 3. For this implementation,

various kernel functions have been used. The most efficient was the polynomial kernel with

polynomial order 3. It corresponds to the literature findings related to the efficiency of

kernel functions in multi-class SVM (Rajendran & Kalpana, 2011). The polynomial kernel

is often used with SVMs or kernelised models. It represents the similarity of vectors

(training sample) in a feature space over polynomials of the original variables, allowing

learning of non-linear models. The polynomial kernel looks not exclusively at the given

features of input samples to determine their similarity, but it also looks at combinations of

these. For regression analysis, the combinations refer to interaction features. The feature

space of a polynomial kernel equals that of polynomial regression but without the

132

combinatorial blow-up in the number of parameters to be learned. The features correspond

to logical conjunctions of input features when the input features are binary-valued

(Booleans) (Goldberg and Elhadad, 2008).

Figure 60 Illustration of the mapping !

 Source: Wikipedia Contributors (2019)

Figure 60 represents a set of samples in the input space on the left. On the right, it means

the same sample in the feature space where the polynomial Kernel 6 (#, $) (for some values

of the parameters c and d) is the inner product. The hyperplane learned in feature space by

an SVM is an ellipse in the input space. For degree-d polynomials, the polynomial kernel

is defined as:

 6(#,	$)	=	(#4$	+	8)% (5.3.2)

where #	and $ are vectors in the input space, i.e., vectors of features computed from training

or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus

lower order terms in the polynomial. As a kernel, 6 corresponds to an inner product in a

feature space based on some mapping Figure 60 represents a set of samples in the input

space on the left. On the right, it represents the same sample in the feature space where the

polynomial Kernel 6(#, $) (for some values of the parameters j).

 6(#,	$)	=	〈!(#),	!($)〉 (5.3.3)

The nature of ! can be seen from an example. Let d=2, so it corresponds to the special case

of the quadratic kernel. After using the multinomial theorem and regrouping6(#, $) =

133

(∑ #,$,-
,.! + 8)/ = ∑ (#,/-

,.!)($,/) + ∑ ∑ (<2#,,0!
1.!

-
,./ #1)><2$,$1? +

∑ (<28#,-
,.!)(28$,) + 8/ (5.3.4)

From this, it follows that the feature map is given by:

!(#) = 	 〈
#-/, … , #!/, <2#-#-0!, … , <2#-#!,

<2#-0!#-0/, … ,
<2#-0!#!, … ,<2#/#!, <28#-, … ,<28#!, 8

〉 (5.3.5)

The order of polynomial in mathematics refers also to the degree of a polynomial, that is,

the largest exponent (for a univariate polynomial) or sum of exponents (for a multivariate

polynomial) in any of its monomials (Dos Santos and Gomes, 2002).

The following names are given to polynomials according to their degree. Degree 0

corresponds to non-zero constant, degree 1 is linear, degree 2 is quadratic, degree 3 is cubic,

degree 4 is quartic and so on. In general, SVM works well on small datasets. A recent study

evaluated the performance of SVMs with linear, quadratic, and cubic kernels in the

problem of recognising 3D objects from 2D views. The paper indicates that the degree of

the polynomial order plays a minor role in the results.

'ShrinkagePeriod' is another parameter that can be modified. It is written as a pair

consisting of 'ShrinkagePeriod' with a nonnegative integer. It corresponds to the

number of iterations between the movement of observations from active to inactive set.

MATLAB will not shrink the active set if it has a value of 0. Convergence can be speeded

up with shrinking when the support vector set is much smaller than the amount of data in

the training dataset. 1000 is a suggested starting point. 'Standardize' is another parameter

that can be modified. It is written as a pair consisting of 'Standardize' and 'true' or

'false'. It corresponds to a flag to standardise the predictor data. MATLAB will centre and

scale each column of the predictor data (x) by the weighted column mean and standard

deviation if set as 'true'. The software will not standardise the data contained in the dummy

variable columns and generated for categorical predictors. MATLAB will train the

134

classifier using the standardised predictor matrix if it is set as 'true'., The unstandardised

data will be stored in the classifier property x. For the function fitecoc, 'Cost' is another

parameter that can be modified. It is written as a pair consisting of 'Cost' and a square

matrix or structure. It corresponds to the misclassification cost. All runs executed for SVM

classifiers can be found in Appendix C.

5.3.3 Performance	evaluation		

5.3.3.1 Confusion	matrix		

The confusion matrix is represented in figure 61. The diagonal cells show the number of

residue positions correctly classified for each topology class. The off-diagonal cells show

the number of residue positions that were misclassified. The diagonal cells correspond to

observations that are correctly classified. The number of observations and the percentage

of the total number of observations is shown in each cell. The column on the far right of

the plot shows the percentages of all the examples predicted to belong to each class that

are correctly and incorrectly classified. These metrics are often called the precision (or

positive predictive value) and false discovery rate. The row at the bottom of the plot shows

the percentages of all the examples belonging to each class that are correctly and incorrectly

classified. These metrics are called the recall (or true positive rate) and false-negative rate.

The cell in the bottom right of the plot shows the overall accuracy. The best overall

accuracy is 64.8%.

135

Figure 61 Confusion matrix for SVM classifier

5.3.3.2 Receiver	operating	characteristic	curve	

The Receiver Operating Characteristic (ROC) curve can also be looked at and is

represented in figure 62. It is a plot of the true positive rate (sensitivity) versus the false

positive rate (1 – specificity). True positive rate is also known as sensitivity in biomedical

engineering. Sensitivity corresponds to the proportion of actual positives that are correctly

identified. False-positive corresponds to fall-out. Fall-out is related to the specificity and

equals to 1 - specificity. The ROC curve represents the sensitivity as a function of the fall-

out. A perfect predictor would be described at 100% sensitivity. When the ROC curve is

136

close to the upper left corner (100% sensitivity, 100% specificity), the overall accuracy is

better.

Figure 62 ROC curve for SVM classifier

5.3.3.3 Prediction	quality	indices	

The topology prediction is evaluated in detail by calculating prediction quality indices

represented in figure 63. They indicate how well a particular state is predicted and whether

overprediction or underprediction has occurred. The index pcObs(S) was defined for state

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the

number of residues observed in state S. Similarly, the index pcPred(S) for state S was

137

defined as the number of residues correctly predicted in state S, divided by the number of

residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.

	

Figure 63 Quality indices of prediction for SVM classifier

5.4 Comparison	of	results		

The best overall accuracy for ANN is 64.5%, including a TMB topology prediction of 69%.

The best overall accuracy for KNN is 71.8%, including a TMB topology prediction of

72.3%. The best overall accuracy for SVM is 64.8%, including a TMB topology prediction

of 69.4%. A general difference between KNN and SVM is that SVM cares for outliers

better than KNN. Neural networks need large training data compared to KNN to achieve

sufficient accuracy. Also, neural networks need many hyperparameters tuning compared

138

to KNN. KNN is an easy and simple machine learning model, and there are few parameters

to tune. The value k needs to be wisely selected. A value of 8 provided the best results in

the implementations. For ANN, the training function had an essential impact on results and

the scaled conjugate gradient backpropagation provided the best results. SVM provided

better accuracy than ANN when a polynomial kernel was used.

5.5 Summary		

This chapter presented the implementations of an ANN, KNN and SVM in MATLAB using

the Boctopus2 dataset and TopBP dataset. Models were built and trained in MATLAB. For

all models, hyperparameters have been tuned, and the performance of each model was

evaluated with the use of confusion matrices, ROC curves and bar charts. To maximise the

performance and confirm the precision, fine-tuning the hyper-parameters was necessary.

The problem of TMB topology was looked at as a pattern recognition problem as the neural

network was trained to recognise the topology of the central residue most likely to occur

when specific residues in the given window are observed. At each training cycle, the

training sequences were presented to the network through the sliding window one residue

at a time. For the KNN implementation, the classifier used the fitcknn function. Fitcknn

created a model, and the tie-breaking algorithm, distance metric and number of neighbors

were specified and modified. For the SVM implementation, the function templateSVM was

used to create the support vector machine. Multiple parameters were changed, such as the

box constraint or the kernel function. To analyse the model’s responses, the confusion

matrix was examined by considering the outputs of the models and comparing them to the

expected results. The ROC curve was also used, and it corresponds to a plot of the true

positive rate (sensitivity) versus the false positive rate (1-specificity). The topology

prediction accuracy was finally evaluated by calculating prediction quality indices. They

indicate how well a particular topology is predicted and whether overprediction or

underprediction has occurred.

139

140

6. Implementation of cascading classifier

This chapter presents the implementation of the cascading classifier in MATLAB.

6.1 Model	building	and	training	

The model consists of two levels. Several selected models will be trained at the first level.

The chosen algorithms (KNN, SVM or ANN) are trained to predict the values of the class

as it was before. In case two or more classifiers are selected, a second level SVM classifier

is trained to anticipate the value of the class based on the probability predicted by those

two or more models at the first level. This is a cascading classifier as the output of the first

layer corresponds to the input of the second layer. If only one model is initially selected at

the first level, the second layer classifier will not be trained. The main function used for

the cascading classifier implementation in MATLAB is named UseClassifiers.m. Part of

the code used for the implementation in MATLAB is defined in figure 64.

Figure 64 Part of UseClassifiers.m for cascading classifier

141

The model allows the use of a single method, two or even three methods. useKNN =1 or 0,

useSVM = 1 or 0 and useNN = 1 or 0 are the list of parameters. If a parameter is equal to

0, it will not be used in the cascading classifier. All combinations are possible except for

combinations when they are equal to 0. If only they are set to 1, the application will work

as one classifier. The selected classifier (equals 1) will be trained and show the results. If

at least two parameters are set to 1, several classifiers will be trained and then combined

by one more probability classifier. The code used for creating and training the neural

network at the first level is represented in figure 65.

Figure 65 Useclassifiers.m

When multiple classifiers are chosen, a second level SVM will be trained. The code used

for that and the final performance assessment is represented below.

142

Figure 66 Creating and training the SVM classifier at layer 2

6.2 Hyperparameters	tuning	
		
The model has four different basic configurations:

§ Configuration 1: Layer 1(KNN=1, SVM=1, ANN=1)/Layer 2 (SVM)

§ Configuration 2: Layer 1(KNN=0, SVM=1, ANN=1)/Layer 2 (SVM)

§ Configuration 3: Layer 1(KNN=1, SVM=0, ANN=1)/Layer 2 (SVM)

§ Configuration 4: Layer 1(KNN=1, SVM=1, ANN=0)/Layer 2 (SVM)

The model allows the use of a single method, two or even three methods. KNN =1 or 0,

SVM = 1 or 0, and ANN = 1 or 0 are the list of parameters. If a parameter is equal to 0, it

will not be used in the cascading classifier. All combinations are possible except for

combinations when they are equal to 0. If only one of them is set to 1, the application will

work as one classifier. The selected classifier (equals 1) will be trained and show the results.

If at least two parameters are set to 1, several classifiers will be trained and then combined

by one more probability classifier. When multiple classifiers are chosen, a second level

SVM will be trained. The parameters of each machine learning algorithm can be modified.

Appendix D summarises all the runs executed.

6.2.1 	Performance	evaluation		

143

The best results are obtained when KNN, SVM and ANN are used at layer 1 and SVM at

layer 2. Multiple runs have been executed in MATLAB using different parameters

configurations. Various ratio combinations such as 50:50, 60:40, 70:30, 75:25 and 80:20

have been used to split training and testing data in tsPart1. Best results for the cascading

classifier were obtained using a split with 80% of data used for training and 20% used for

testing in tsPart1 and 42% in tsPart2. Best results are obtained with parameters configured

to a window size of 65, bits encodings of 50, Hidden layer size of 50, logsig transfer

function, scaled conjugate gradient for the training function, ‘Sum’ Performance Function

and ‘Dividerand’ data division for the ANN part of the cascading classifier and k-value

of 8, exhaustive nearest neighbors search method, random tie-breaking algorithm for the

KNN part of the cascading classifier. For the SVM part of the cascading classifier, a

polynomial kernel function, ‘SaveSupportVectors’ is equivalent to ‘true’ have been used

as well as default values for the box constraint, cache size, Solver, tolerance to gradient

difference, feasibility gap tolerance, Maximal number of optimisation iterations, kernel

offset parameter, kernel scale, Karush-Kuhn-Tucker complementarity conditions violation

tolerance, v parameter for one-class learning, number of iterations between optimisation

diagnostic message output, expected proportion of outliers in training data, Polynomial

kernel function order, number of iterations between the movement of observations from

active to inactive set, flag to standardise predictor data and verbosity level. It is interesting

to note that an increase in the amount of data does produce better results. Two runs were

executed using the same parameters with different datasets available: TopBP Dataset

(1x123) and BOCTOPUS2 Dataset (1x42).

The best overall accuracy obtained is 76.3%, including a TMB topology prediction of

83.1%. The accuracy of 83.1% is for one scenario combination where layer one includes

SVM, KNN and ANN, and layer two include SVM when using the TopBP Dataset. For the

ANN, during the implementation, the training process stops when the maximum validation

failures are above six, or the maximum number of allowed iterations is reached (1000).

Figure 67 represents the variation in gradient coefficient concerning the number of epochs

at and the final value of the gradient at epoch 138.

144

Figure 67 Magnitude of gradient

The parameter for the minimum gradient min_grad was set to 1e-06 and was not reached

during the implementation.

For this project, the validation checks triggered the training to stop. Figure 68 represents

the validation checks. MATLAB automatically stopped the training after six fails in a row.

Figure 68 Validation checks

The data division is an automatic process that happens when the network is trained. During

the implementation, the composition of the residues in three subsets is comparable, as seen

in figures 69,70 and 71.

145

Figure 69 Topology assignments in the training data set

Figure 70 Topology assignments in the validation data set

146

Figure 71 Topology assignments in the testing data set

6.2.1.1 Confusion	matrix		

The TMB topology prediction accuracy is 83.1%. Figure 72 represents the confusion

matrices for the cascading classifier. The diagonal cells show the number of residue

positions correctly classified for each topology class. The off-diagonal cells show the

number of residue positions that were misclassified. The diagonal cells correspond to

observations that are correctly classified. The number of observations and the percentage

of the total number of observations is shown in each cell. The column on the far right of

the plot shows the percentages of all the examples predicted to belong to each class that

are correctly and incorrectly classified. These metrics are often called the precision (or

positive predictive value) and false discovery rate. The row at the bottom of the plot shows

the percentages of all the examples belonging to each class that are correctly and incorrectly

classified. These metrics are called the recall (or true positive rate) and false-negative rate.

The cell in the bottom right of the plot shows the overall accuracy.

147

Figure 72 Confusion Matrix

6.2.1.2 Receiver	operating	characteristic	curve	

The receiver operating characteristic for each output class is plotted with Plotroc (targets,

outputs) and is represented in figure 73. When the curve goes to the left and top edges of

the plot, the classification is better. The sensitivity measures the proportion of actual

positives that are correctly identified as such. The false positive is also known as the fall-

148

out. The fall-out is closely related to the specificity and is equal to (1 - specificity). Figure

73 represents the ROC curves for the cascading classifier.

Figure 73 ROC curve

6.2.1.3 Prediction	quality	indices		

The topology prediction is evaluated in detail by calculating prediction quality indices

represented in figure 74. They indicate how well a particular state is predicted and whether

149

overprediction or underprediction has occurred. The index pcObs(S) was defined for state

S (S = {I, O, M}) as the number of residues correctly predicted in state S, divided by the

number of residues observed in state S. Similarly, the index pcPred(S) for state S was

defined as the number of residues correctly predicted in state S, divided by the number of

residues predicted in state S. These quality indices are useful for the interpretation of the

prediction accuracy.

Figure 74 Quality indices performance

6.3 Summary		

Chapter 6 focused on the cascading classifier implementation. Data division for the

cascading classifier was defined by the model. Data division was based on two parameters

corresponding to the fraction of the first level training set and the second-level training set.

150

The model consisted of two levels. Several selected models were trained at the first level.

The selected algorithms (KNN, SVM or DNN) were trained to predict the values of the

class. In case two or more classifiers were selected, a second level SVM classifier was

trained to predict the value of the class based on the probability predicted by those two or

more models at the first level. The model allowed to use a single method, two methods or

even three methods. KNN =1 or 0, SVM = 1 or 0, and DNN = 1 or 0 are the list of

parameters.. All combinations were possible except for combinations when they were equal

to zero. If only one of them was set to one, the application worked as one classifier. If at

least two parameters were set to one, several classifiers were trained and then combined by

one more probability classifier. When multiple classifiers were chosen, a second level SVM

was trained. The model had four different basic configurations. The parameters of each

machine learning algorithm were modified. Multiple runs were executed in MATLAB

using different parameters configurations. Best results are obtained with parameters

configured to a window size of 55, hidden layer size of 55, log sigmoid transfer function,

scaled conjugate gradient for the training function, Mean squared normalised error

performance function and data division into three sets using random indices for the ANN

part of the cascading classifier. k-value of eleven, exhaustive nearest neighbour search

method, the random tie-breaking algorithm provided the best results for the KNN part of

the cascading classifier. For the SVM part of the cascading classifier, a polynomial kernel

function provided the best results. Overall, by constructing and using various machine-

learning frameworks as part of the cascading classifier, a system has been developed and

could predict the TMB topologies with significant robustness compared to other classifiers.

151

7. Discussion of findings

7.1 Implications		

Chapter 5 discusses the artificial neural network implementation in MATLAB. The best

overall accuracy when using the ANN-based approach is 63.4%. Putting efforts into finding

an excellent neural network architecture will likely lead to better prediction accuracy.

Training procedures are also of importance. One way to improve the performance, also

applicable to other modern nonlinear machine learning techniques, is to improve data

quality. The quality of models is generally constrained by the quality of the training data.

You want the best data you can get for the problem. It is also good to have more data. The

issue with TMB proteins is that there are limited datasets available, so a challenge of this

project was trying to get the best accuracy while using small datasets. Deep learning usually

gets better with more data. More data does not always help, but it can help. The

performance of the artificial neural network was improved by checking for overfitting. It

is essential to ensure that the neural network does not overfit. Overfitting refers to the state

when the model memorises values from the training data instead of learning from those

training data. When the model receives data that was never seen before, the model cannot

perform well on them. Few techniques were used to avoid overfitting, including early

stopping. It precipitates the deep neural network training, leading to a reduction in error in

the test set. Checking for overfitting was one way to improve the performance of the deep

neural network. Hyperparameters tuning was another way.

Hyperparameters are values that must be initialised to the network. Examples include the

number of layers in the neural network, the activation function used, the training function

or the performance function. Each neural network has a set of hyperparameters that can

generate the best accuracy. There is no specific method for identifying the best collection

of hyperparameters. It is mainly achieved with trial and error. Best practices can be used

for some hyperparameters. For performance function, cross-entropy is preferred for

classification, while mean squared error is one of the best choices for regression. The

152

nonlinear functional inputs to the outputs are mapped with activation functions. They are

essential, and choosing the proper activation function helps the model learn better. Log

sigmoid function have been proven to provide the best accuracy for the implementation.

The training function trainscg, which corresponds to the scaled conjugate gradient

backpropagation, has been proven to provide the best accuracy for the implementation. It

offers faster training with excellent test efficiency.

Chapter 5 also describes the implementation of the KNN in MATLAB. The best overall

accuracy when using KNN based approach is 71.8%. The K-Nearest neighbors algorithm,

KNN for short, is a classic machine learning algorithm that is often overlooked by deep

learning. KNN is a supervised machine learning algorithm that is simple to implement yet

can make robust classifications. One of the most significant advantages of KNN is that it

is a lazy learner. It means that the model requires no training and get right to the classifying

data. For the classification of some given data point, p, a KNN model compares first p to

every other point available in its database using some distance metric. A distance metric is,

for example, the Euclidean distance. It is a simple function that takes two points and returns

the distance between them. Thus, it can be assumed that two points with a smaller distance

between them are more similar than two points with a larger distance between them. This

is the general idea behind KNN. k is some arbitrary value selected (usually between 3–11)

that tells the model how many most similar points to p it should consider when classifying

p. The model will then take those k most similar values and use a voting technique to

classify p. With KNN, there is no explicit training phase, or it is very minimal. This also

means that the training phase is fast. Lack of generalisation means that KNN keeps all the

training data. All (or most) the training data is needed during the testing phase, to be more

exact. Most KNN models use Euclidean or Manhattan distance as the go-to distance metric.

These metrics are simple and perform well in a wide variety of situations. The Euclidean

distance has been proven to provide the best accuracy for the implementation. It is the

default distance metric in MATLAB when not specified. KNN performs much better if all

the data have the same scale. KNN works well with a small number of input variables (p)

but struggles when inputs are very large. In case of a tremendous value of k, it may be

153

possible to include points from other classes in the neighborhood. In the case of the too-

small value of k, the algorithm is very sensitive to noise. A value of k=8 has been proven

to provide the best accuracy for the implementation. The optimal value for k was not chosen

by cross-validation but rather by experimentation.

Chapter 5 also refers to the implementation of SVM in MATLAB. The best overall

accuracy when using SVM based approach is 64.8%. Support Vector machines, so-called

SVM, is supervised learning algorithm. It is used for classification and regression

problems. It is usually used for smaller datasets. SVM is based on the idea of finding a

hyperplane that best separates the features into different domains. The idea of SVM is to

come up with an optimal hyperplane that will classify the different classes. The points

closest to the hyperplane are called the support vectors points, and the distance of the

vectors from the hyperplane are called the margins. The farther the support vector points

are from the hyperplane; the higher is the probability of correctly classifying the points in

their respective region or classes. There are a few advantages for SVMs. They are effective

in the higher dimensions. It is the best algorithm when classes are separable. The

hyperplane is affected by only the support vectors; thus, outliers have less impact. SVM is

suited for extreme case binary classification. There are also a few disadvantages. A larger

dataset requires a large amount of time to process. They do not perform well in case of

overlapped classes, and selecting the appropriate kernel can be tricky. SVMs were initially

designed for binary classification. The multi-class classification problem was decomposed

into a series of binary problems such that the standard SVM can be directly applied. The

implementation of SVM in MATLAB used t= templateSVM () and fitecoc functions.

fitcecoc function from the Statistics and Machine Learning Toolbox™ was used to create

a multiclass classifier using binary SVMs. fitcecoc uses K (K – 1)/2 binary support vector

machine (SVM) models using the one-versus-one coding design, where K is the number of

unique class labels (levels). fitcecoc combines multiple binary learners using a coding

design. By default, fitcecoc applies the one-versus-one design, which specifies training

binary learners based on observations from all combinations of pairs of classes. For

example, in a problem with ten classes, fitcecoc must train 45 binary SVM models.

154

Parameters of the SVM have been tuned to improve the performance. Parameter C

represents the error penalty for misclassification for SVM. It maintains the trade-off

between smoother hyperplane and misclassifications. Some misclassifications are allowed

to avoid overfitting the classifier. The parameter C that trades how much misclassification

of isolated points modifies the decision boundary is defined as 'BoxConstraint'. This

parameter is specified as a numeric value and has been changed. A strategy for

BoxConstraint is to try a geometric sequence of the box constraint parameter. For

example, choose 11 values, from 1e-5 to 1e5, by a factor of 10. Increasing BoxConstraint

might decrease the number of support vectors and might increase training time. Making the

SVM a soft border algorithm considerably reduces the training time.

A unique strength of an SVM is the use of kernel function to map the data into a higher

dimensional feature space. In training SVM, kernels and their parameters have a vital role

in classification accuracy. Therefore, a suitable kernel design and parameters should be

used for SVM training. Various kernels were used. The most efficient kernel was the

polynomial kernel with polynomial order 3. It is aligned with the findings of the literature

on this topic. The polynomial degree parameter controls the flexibility of the decision

boundary. Higher degree kernels yield a more flexible decision boundary.

It was discussed earlier about overfitting in KNN. For SVM, to avoid overfitting, a soft

Margin needs to be chosen instead of a hard one. For example, some data points can enter

the margin intentionally so that the classifier doesn’t overfit the training sample. Gamma

(γ) is an important parameter, and it controls overfitting in SVM. Gamma is not technically

an SVM hyperparameter. It is a parameter of the Kernel. Gamma (γ) is referred to as

‘KernelScale’ in MATLAB. The higher the gamma, the higher the hyperplane tries to

match the training data. Therefore, choosing an optimal gamma to avoid overfitting and

underfitting is the key. Increasing gamma leads to overfitting as the classifier tries to fit the

training data perfectly. Various Kernelscale have been used, and the best results are

obtained with KernelScale=10. Error penalty (Parameter C/ BoxConstraint), kernel

(Kernel) and regularisation (Gamma/ kernelScale) are the most important

hyperparameters that have been modified for the SVM.

155

Chapter 6 finally discusses the implementation of a cascading classifier in MATLAB.

There’s been increasing use of ensemble learning methods in recent research in

computational biology. Ensemble learning combines multiple learning algorithms to

improve the overall prediction accuracy. It is one of the most promising solutions for many

biological problems. Cascading is a specific case of ensemble learning. It is based on the

concatenation of several classifiers using the information provided from the output of a

given classifier as additional information for the next classifier in the cascade. The model

consisted of two levels. Several selected models were trained at the first level. The selected

algorithms (KNN, SVM or ANN) were trained to predict the values of the class. In case

two or more classifiers were selected, a second level SVM classifier was trained to predict

the value of the class based on the probability predicted by those two or more models at

the first level. This is a cascading classifier as the output of the first layer corresponds to

the input of the second layer. If only one model is initially selected at the first level, the

second layer classifier was not trained. The model allowed to use a single method, two

methods or even three methods. KNN =1 or 0, SVM = 1 or 0, and ANN = 1 or 0 were the

list of parameters to select to create a specific cascading classifier. If a parameter were

equal to 0, it would not be used in the cascading classifier. Optimisation of the cascading

classifier was mostly obtained by optimising each machine learning algorithm used and by

starting using the parameters that gave the best results for each machine learning algorithm.

The best overall accuracy when using the cascading classifier approach was 76.3%,

including a TMB topology prediction of 83.1%. The accuracy of 83.1% is for one scenario

combination where layer one includes SVM, KNN and ANN, and layer two include SVM.

Many important biological processes, such as cell signalling, transport of membrane-

impermeable molecules, cell-cell communication, and cell recognition and adhesion, are

mediated by membrane proteins. The methodology evaluated and created as part of this

dissertation could be applied to any TMB proteins and could potentially help identify new

targets for antibiotics, vaccines, or antimicrobials. The application of the cascading

classifier to TMB topology prediction has been published in two recent papers (Kazemian

et al., 2018) and (Kazemian et al., 2020).

156

7.2 Limitations		

 One limitation of this research is that only small datasets have been used. In recent years,

machine learning techniques have changed the world. It is easier nowadays to perform a

variety of complex tasks much easier. Deep learning models can be more successful with

a large amount of training data. ResNet (He et al., 2016) represents an architecture for

image classification. It won the best place at the classification competition ILSVRC in

2015. ResNet has a deep and complex architecture, and it has been trained with about 1.2

million images. In the industry and academia, it is well agreed that different algorithms can

perform almost the same when there is enough data for a given problem. It is essential to

understand that the extensive data need to have meaningful information for the model to

learn from that. Although machine learning techniques require less data than deep learning,

extensive data similarly impacts performance. The cascading classifier presented as part of

this research could have been evaluated using larger datasets. It is especially critical when

the cascading classifier uses artificial neural networks as part of the architecture.

The datasets used in this research are small since there are only a few TMB proteins.

However, SVM performs better with larger datasets and using larger datasets could have

potentially increased accuracy. Sordo and Zeng (Sordo and Zeng 2005) investigated the

dependency between the sample sizes and classification accuracies of three different

classification techniques: Naïve Bayes, Decision Trees and Support Vector Machines.

They used a set of 8500 text excerpts extracted automatically from narrative reports from

the Brigham & Women’s Hospital, Boston, USA. Their results confirm a correlation

between the size of the training set and the classification. The algorithms perform well with

small datasets. When the number of cases increases, Support Vector Machines and decision

trees increases performance.

Another limitation to this research is that only binary encoding techniques have been used.

Amino acid encoding plays a fundamental role in the final success of machine-learning-

based protein structure and function prediction methods. Amino acid encoding (Different

from the protein sequence encoding) can be utilised in both residue-level and sequence-

157

level prediction of protein properties using combinations of different algorithms. The

methods can be grouped into five categories based on the information sources and

information extraction methods. It includes binary encoding, physicochemical properties

encoding, evolution-based encoding, structure-based encoding, and machine-learning

encoding.

Binary encoding is a directly encoding way that transforms each amino acid into a

20dimensional elementary unit vector (Chauhan, Rao, and Raghava, 2013). The Alanine

[A], for example, maybe be encoded into (10000000000000000000) and Cysteine into

(01000000000000000000). A peptide sequence of amino acid residues corresponds equally

to an n*20-dimensional sparse representation. The binary encoding reflects the information

on types and positions of residues in the protein sequence (Gnad, Ren, Choudhary, Cox,

and Mann, 2010) (Huang and Li, 2017). A binary representation can be equally recovered

into the corresponding amino acid sequence. Conversion of amino acid sequences into real

numbers to get numerical input vectors is critical for constructing models. In practice, 20

binary bits are the most common distributed encoding method, in which each amino acid

is represented by a unique 20-bit binary string consisting of nineteen 0s and one 1, since

there are 20 amino acids (Qian and Sejnowski,1988), (Yang and Chou,2004). Bose et al.

(Bose, Subrata K., et al. 2007) result also suggested that 20-bit binary encodings can

achieve a higher classification accuracy and robustness compared with 5-bit and 9-bit

encodings, indicating that the use of simple physicochemical parameters may not increase

the robustness of the system more so than the binary encodings. In the sliding window

method, a window becomes one training pattern for predicting the topology of the residue

at the centre of the window. Information about local interactions among neighboring

residues is embedded in each training pattern. The feature value of each amino acid residue

in a window represents each residue's weights (costs) in a pattern.

Physicochemical properties encoding techniques have been discussed in this research, but

it was not considered. Physicochemical property such as the hydrophobicity of amino acid

seems to have an essential role in the organisation of the self-assembly of proteins. Apart

from hydrophobicity properties, the codon diversity and the size of amino acids can be used

as features. The codon diversity of amino acids corresponds to the number of codons

158

coding for the amino acid. The size of the amino acids reflects their molecular volume.

Regarding physicochemical properties encodings, the variety of properties and the

extraction methodologies are essential factors in building a valuable encoding.

Structure-based amino acid encoding methods, which can be named statistical-based

methods, can encode amino acids using the structure-related statistical potentials using the

inter-residue contact energies (Tanaka and Scheraga, 1976). They have not been considered

in this research. Structure-based encoding methods had application in protein secondary

structure prediction and protein fold recognition. The structural potential of amino acids,

linked to the protein structure and function, is reflected by those encodings. More and more

proteins have known form, and the use of structure-based encodings is becoming very

useful. For protein function prediction, encodings reflecting function potentials are helpful.

This critical topic looks at function-based encoding methods that could be further explored.

159

8. Conclusion and future research directions

This research answered the following questions: What are the best machine learning

techniques for the topology prediction of TMB proteins? How can the prediction for the

topology prediction of TMB proteins be improved?

The research approach has been classified as an experimental study in evaluating multiple

machine learning approaches, including artificial neural network, KNN, SVM and

cascading classifier for the topology prediction of TMB proteins. A procedure has been

intentionally introduced. Results and outcomes have been observed and discussed. The

approach involved a controlled and systematic procedure in minimising error and bias.

Another critical element related to this experiment is the use of random assignment. An

artificial neural network, a KNN, SVMs and a cascading classifier have been created and

implemented in MATLAB. The boctopus2 dataset (Hayat, Peters, Shu, Tsirigos and

Elofsson, 2016) and TOPDB dataset (Tusnady, Kalmár and Simon, 2008) have been used.

The performances of the various machine learning techniques have been evaluated. This

research dealt with the prediction of TMB topologies, one of the most significant problems

in structural molecular biology. Using a cascading classifier such as the one developed as

part of the thesis is recommended for TMB topology prediction.

It is also essential to discuss the merits and shortcomings of this research thesis. When

using the experimental research defined in this thesis, specific hyperparameters have been

isolated, and therefore it was possible to determine if a potential outcome is viable. Each

hyperparameter was controlled independently or in different combinations to study what

possible outcomes were available for the theory. This provided an advantage in the ability

to find accurate results. The research offered specific conclusions. Because experimental

research provides such a high level of control, it produced specific and relevant results with

consistency. It was possible to determine success or failure, making it possible to

understand the validity of the models developed in a much shorter amount of time than

other verification methods. The research thesis allows for its duplication if others control

the same hyperparameters. This helps to promote the validity of the models. The

160

manipulation of variables enables any researcher to look at various cause-and-effect

relationships produced by the models. It allows researchers to look deeper into the

possibilities, indicating how the different variable relationships can provide unique

benefits. Experimental research requires unique levels of variable control, and there is a

high risk of experiencing a human error during the study. An error could eliminate the

validity of the experiment. The research needed to isolate various variables and conduct

testing on it. This process was lengthy and required a lot of research and preparation,

primarily for data preparation. This would not be very convenient if the methodology were

used in an industrial environment.

The use of larger datasets is one of the possible directions for future research. A recent

article (Ajiboye et al., 2015) evaluated the effect of the sizes of datasets on the predictive

model with the use of supervised machine learning. The authors examined the predictive

model's capability to generalise a particular dataset size when simulated with new untrained

input. The article discusses the experiment using three different sizes of data and the

MATLAB program to create predictive models to determine if the size of data influences

the model accuracy. The measurement of the simulated output of each model has been

executed using the Mean Absolute Error (MAE). Comparisons have been made. The article

indicates that the quantity of data used for training must represent the entire sets and be

sufficient to span through the input space. The simulation of the three network models

indicated that the learning model using the largest training sets appears to be the most

accurate and delivers better and more stable results consistently.

Before starting to understand how more data improves the performance of a model, it is

essential to understand bias and variance—considering a dataset including a quadratic

relationship between independent and dependent variables and that the genuine relationship

is not known and approximated linearly. In that situation, a significant difference between

the prediction of the model and the actual observed data will be seen. The difference that

happens between the observed value and the predicted value is named bias. Those models

are considered to have less power and represent underfitting. In the example chosen, when

approximating the relationship as cubic or higher powers, there is a case of high variance.

Variance can be defined as the difference in performance on the training set compared to

161

the test set. One issue regarding high variance is that models fit the training data well, but

they do not generalise well on datasets out of training. Validation and test set are therefore

critical when building the models. The goal is usually to minimise variance and bias, for

example, making a model that fits the training data well and a model that can generalise

well on test data and validation data. Lots of techniques are available to achieve this.

Training with many data is one of the ways to accomplish this goal. Brain and Webb (Brain

and Webb, 2000) looked at the impact of the size of datasets on variance and bias for

classification problems. Their observation is that variance will decrease as the training

dataset size increases. No comments were provided on the bias.

Statistical methods used to estimate the dataset size requirements and the classification of

microarray data using learning curves are suggested in an article written by Mukherjee et

al. (Mukherjee et al., 2003). The article pays particular attention to using the existing

classification results to estimate dataset size requirements for future classification

experiments. The study evaluated the increase in accuracy and significance of classifiers

built with additional data. The paper concluded that the subsampling procedure gives more

accurate estimates of the quantiles of the true error of a classifier as the number of

subsamples increases.

Future work for this paper could be extended using various encoding techniques. A recent

article by Jing et al. (Jing, Dong, Hong, and Lu, 2019) provides a detailed assessment of

the different amino acids encoding techniques available. Their study indicates that the

evolution-based position-dependent encoding method PSSM offers the best performance.

Structure-based and machine-learning encoding methods provide the potential for further

application, especially the neural network-based distributed representation of amino acids.

Evolution-based encoding could be considered for future research. Evolution-based

encoding methods extract evolutionary information of residues from sequence alignments

or phylogenetic trees to represent amino acids. It uses mainly the amino acids substitution

probability. Those methods can be divided into two main groups based on the position

relevance: There are position-independent methods, such as the Point Accepted Mutation

(PAM) matrix and the BLOSUM matrix. There are also position-dependent methods. The

162

position-independent methods encode amino acids using the fixed encodings

independently of the amino acid position in the sequence and the amino acid composition

of the series. For the position-dependent methods, amino acids are encoded at different

positions using different encodings, even if the amino acid types are the same. PSMM

(Position-Specific Scoring Matrix) is a prevalent encoding method. Position-Specific

Scoring Matrix (PSSM) used the position-specific scoring matrix that has been provided

by PSI-BLAST (Kim and Park, 2003). Individual profiles reflect detailed conservation of

amino acids in a family of homologous proteins in this coding. This approach was used

first by Jones (Jones,1999) to predict protein secondary structure using a neural network.

Based on the author results, PSI-BLAST is a highly efficient sequence query method. This

is due to three different aspects. First, the alignments used by PSI-BLAST are based on

pairwise local alignments. A previous study written by Salamov and Solovyev (Salamov

and Solovyev, 1997) indicated that the prediction accuracy could be increased when using

reliable local assignments. Secondly, based on the iterated profiles, the sensitivity of PSI-

BLAST has been increased. Thirdly, authors have been using various automatic multiple

sequence alignments. Among all the alignments used, the PSI-BLAST alignments were the

best performer.

Machine learning encoding could be considered for future research. It is very different from

manual encoding techniques and cannot be compared. Amino acid encodings are learned

from the protein sequence or structure data by machine learning based encodings

techniques with the use of machine learning techniques such as artificial neural networks.

To reduce the complexity of the model, the neural networks share weight for twenty amino

acids. The input layer is the original encoding of the target amino acid. It can be one-hot

encoding or physicochemical encoding, for example. The output layer is the original

encoding of the related amino acids. The new encoding of the target amino acid,

represented by the hidden layer, has a reduced dimension compared to the original

encoding. The concept of learning-based amino acids encodings was introduced by Riis

and Krogh (Riis and Krogh, 1996). They used a 20x3 weight sharing neural network to

learn a 3-dimensional real numbers representation of 20 amino acids from the one-hot

encoding to reduce the redundancy of one-hot encoding. For human signal peptide cleavage

163

sites recognition, Jagla and Schuchhardt (Jagla and Schuchhardt, 2000) applied later the

weight sharing artificial neural network to learn a 2-dimensional encoding of amino acids.

Various new machine-learning-based encoding methods have been suggested referencing

distributed word representation in natural language processing. The machine-learning

encoding methods have great potential in future studies. Amino acid encoding is an open

problem, and encoding methods are based on an artificially defined basis. For example,

researchers have observed physicochemical properties encodings are constructed from

protein fold-related properties. It will inevitably bring some unknown deviations. Those

artificial deviations can be avoided by automatically learning the amino acid from

biological data. Natural languages and protein sequences have similarities. Protein

sequences can be looked at as sentences. The amino acid or polypeptide chain can be seen

as words in languages. The term distributed representation has obtained more outstanding

performances in natural language processing tasks. Protein sequences could also improve

when using the distributed representations of amino acid or n-gram amino acids. Recent

studies have indicated the potential of amino acid distributed representations in protein

family classification, protein functional properties prediction and disordered protein

identification. Most of these methods look at the ngram amino acid distributed

representations and cannot be directly used for the residue-level properties prediction.

More research is needed on the residue-level distributed representations of amino acids.

164

References

Ajanki, A. (2007). Example of k-nearest neighbors classification. [Online]. Available

at: http://commons.wikimedia.org/wiki/File:KnnClassification.svg. [Accessed 13 Oct.

2016].

Ajiboye, A. R., Abdullah-Arshah, R., and Hongwu, Q. Evaluating the effect of dataset

size on predictive model using supervised learning technique. 2015

Ahn, C. S., Yoo, S. J., Park, H. S. (2003). Prediction for beta-barrel Transmembrane

Protein region using HMM. Journal of the Korea Information Science Society, 30, 802–

804.

Allwein, E. L., Schapire, R.E and Singer, Y. (2000). Reducing Multiclass to Binary: A

Unifying Approach for Margin Classifiers. Journal of Machine Learning Research,

1,113–141.

Amaratunga D., Cabrera J., Lee Y. (2008). Enriched random forests. Bioinformatics.

24, 2010– 2014.

Amari, S. and Wu, S. (1999). Improving support vector machine classifiers by

modifying kernel functions. Proceedings of International Conference on Neural

Networks, 12, 783-789.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, I. H., Zhang, Z., Miller, W., and

Lipman, D. I. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein

database search programs. Nucleic Acids Research, 25, 3389 3402.

Armananzas R., Inza I., Larranaga P. (2008). Detecting reliable gene interactions by a

hierarchy of Bayesian network classifiers. Computer Methods and Programs in

Biomedicine. 91,110–121.

165

Bagos, P. G, Liakopoulos, T. D, Spyropoulos I. C, Hamodrakas S. J. (2004a). A Hidden

Markov Model method can predict and discriminate beta-barrel outer membrane

proteins. BMC Bioinformatics, 5, 29

Bagos, P. G, Liakopoulos, T. D, Spyropoulos I. C, Hamodrakas S. J. (2004b). PRED-

TMBB: a web server for predicting the topology of beta-barrel outer membrane

proteins. Nucleic Acids Research, 32, W400-W404.

Bagos, P. G., Liakopoulos, T. D. and Hamodrakas, S. J. (2005). Evaluation of Methods

for Predicting the Topology of Beta-Barrel Outer Membrane Proteins and a Consensus

Prediction Method. BMC Bioinformatics, 6, 7.

Baldi, P., Pollastri, G. (2002) A machine-learning strategy for protein analysis. IEEE

Intell. Syst. 17(2), 28–35

Bassiou, N., Kotropoulos, C., Kosmidis, T. and Pitas, I. (2001). Frontal Face Detection

Using Support Vector Machines and Back-Propagation Neural Networks. Proceedings

2001 International Conference on Image Processing,1,1026–1029 BCA Chemistry

[Online]. Available at: https://bcachemistry.wordpress.com/tag/spider-silk/

[Accessed 07 Mar. 2016]

Beale, E.M.L. (1972). A derivation of conjugate gradients. Numerical methods for

nonlinear optimisation. (Ed. D. A. H. Jacobs), Academic Press, London.

Bengio, S., and Mariethoz, J. (2001). Learning the Decision Function for Speaker

Verification. 2001 IEEE International Conference on Acoustics, Speech, and Signal

Processing. Proceedings, 1, 425–428.

Bhanot G, Alexe G, Venkataraghavan B, Levine AJ. (2006). A robust meta-

classification strategy for cancer detection from MS data. Proteomics.6, 592–604.

166

Bigelow, H. R., Petrey D. S., Liu J., Przybylski, D., Rost, B. (2004). Predicting

transmembrane beta-barrels in proteomes. Nucleic Acids Research, 32, 2566–2577

Bigelow, H., and Rost, B. (2006). PROFtmb: A Web Server for Predicting Bacterial

Transmembrane Beta Barrel Proteins. Nucleic Acids Research, 34, W186–188.

Bin, Z., Yong, L. and Shao-Wei, X. (2000). Support Vector Machine and Its

Application in Handwritten Numeral Recognition. Proceedings 15th International

Conference on Pattern Recognition. ICPR-2000, 2,720–723

Bonab, H.R. and Can, F. (2016). A Theoretical Framework on the Ideal Number of

Classifiers for Online Ensembles in Data Streams.” In Proceedings of the 25th ACM

International Conference on Information and Knowledge Management, 2053–56.

CIKM ’16. New York, NY, USA: ACM

Bose, Subrata K., et al. "Use of Artificial Neural Networks and Effects of

Amino Acid Encodings in the Membrane Protein Prediction Problem." Progress

in Pattern Recognition (2007): 37.

Boser, B. E., Guyon, I. and Vapnik, V. (1992). A Training Algorithm for Optimal

Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational

Learning Theory,144152, ACM Press, Pittsburgh

Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Jackel, L.D, LeCun, Y.

(1994). Comparison of Classifier Methods: A Case Study in Handwritten Digit

Recognition. In Proceedings of the 12th IAPR International Conference on Pattern

Recognition, Vol. 3 - Conference C: Signal Processing, 2, 77–82

Brain, D. and Webb, G. On the Effect of Data Set Size on Bias and Variance in

Classification Learning Proceedings of the Fourth Australian Knowledge Acquisition

Workshop, Jun. 2000

167

Breiman, L. (1994). Bagging predictors. Machine Learning, 24, 123–140

Brown, G., Wyatt, J., Harris, R. and Yao, X. (2005). Diversity creation methods: a

survey and categorisation., Information Fusion, 6, 5-20.

Bryman, A. & Bell, E. (2007). Business Research Methods, 2nd edition. Oxford

University Press.

Brusic V., Rudy G., and Harrison L.C. (1995). Prediction of MHC binding peptides

using artificial neural networks. Complexity International volume 2, ISSN 1320-0682.

Burges, C.C. (1998). A tutorial on support vector machines for pattern recognition.

Proceedings of International Conference on Data Mining and Knowledge Discovery,

2,121-167.

Burges, C.J.C. (1998) A Tutorial on Support Vector Machines for Pattern Recognition.

Data Mining and Knowledge Discovery, 2, 121-167.

Byun, H., Lee, S. W. (2003). Applications of support vector machines for pattern

recognition: a survey. Pattern recognition with support vector machines. Lecture Notes

in Computer Science, 2388, 571–591

Campbell, I.C.G. (2000). An introduction to kernel methods In R. J. Howlett, & L. C.

Jain (Eds.), Radial Basis Function Networks: Design and Applications,155-192,

Springer-Verlag, Berlin.

Caragea, C., Sinapov, J., Silvescu, A., Dobbs, D. and Honavar, V. (2007).

Glycosylation Site Prediction Using Ensembles of Support Vector Machine Classifiers.

BMC Bioinformatics 8, 438.

Chauhan, J. S., Rao, A., and Raghava, G. P. S. “In silico Platform for Prediction of N-

, O- and CGlycosites in Eukaryotic Protein Sequences,” PLOS ONE, vol. 8, no. 6, p.

e67008, Jun. 2013.

168

Cheng, C.-T., Feng, Z.-K., Niu, W.-J. and Liao, S.-L. (2015). Heuristic Methods for

Reservoir Monthly Inflow Forecasting: A Case Study of Xinfengjiang Reservoir in

Pearl River, China. Water, [online] 7(12), pp.4477–4495.

Chetwynd, A. P., Scott, K. A., Mokrab, Y. & Sansom, M. S. P. (2008). CGDB:

a database of membrane protein/lipid interactions by coarse-grained molecular

dynamics simulations. Molecular Membrane Biology, 25, 662–9.

Chou, P. Y. and Fasman, G. D. (1974a). Conformational parameters for amino acids in

helical, b-sheet, and random coil regions calculated from proteins. Biochemistry, 13,

211-221.

Chou, P. Y. and Fasman, G. D. (1974b). Prediction of protein conformation.

Biochemistry, 13, 222–245

Cortes, C., Vapnik, V. (1995). Support vector networks. Mach. Learn. 20(3), 273–297

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. Information

Theory, IEEE Transactions on information theory, 1,21–27.

Cowan, S. W., Schirmer, T. (1992). Crystal Structures Explain Functional Properties

of Two E. Coli Porins. Nature, 358, 727-733.

Cserzo, M., Wallin, E., Simon, I., von Heijne, G. and Elofsson, A. (1997). Prediction

of transmembrane alpha-helices in prokaryotic membrane proteins: the Dense

Alignment Surface method. Protein Engineering, 10, 673-676

Daniel, A. (2003). Prediction of Protein Secondary Structure using Long Short-Term

Memory. Technical report, Halmstad University, 1-35.

Deng, L., Guan, J., Dong, Q. and Zhou, S. (2009). Prediction of Protein-Protein

Interaction Sites Using an Ensemble Method.” BMC Bioinformatics, 10, 426.

169

Dettling M. (2004). BagBoosting for tumor classification with gene expression data.

Bioinformatics. 20,3583–3593

Diederichs, K., Freigang, J., Umhau, S., Zeth, K. and Breed, J. (1998). Prediction by a

neural network of outer membrane beta-strand protein topology. Protein Science, 7,

2413–2420.

Dietterich, T.G., and Bakiri, G. (1995). Solving Multiclass Learning Problems via

ErrorCorrecting Output Codes. Journal of Artificial Intelligence Research, 2, 263–286.

Dos Santos, E.M. and Gomes, H. M. (2002). A Comparative Study of Polynomial

Kernel SVM Applied to Appearance-Based Object Recognition. Proceedings of the

First International Workshop on Pattern Recognition with Support Vector Machines,

p.408-418.

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14,179–211

Elmhurst College-Secondary Protein-Structure [Online]. Available at:

http://elmhurst.edu/~chm/vchembook/566secprotein.html [Accessed 07 Mar 2016].

Enzim.hu. (2014). TOPDB. [online] Available at: http:/topdb.enzim.hu [Accessed 12

Nov. 2021].

Escalera, S., Tax, D.M.J., Pujol, O., Radeva, P. and Duin, R.P.W. (2008). Subclass

Problem-Dependent Design for Error-Correcting Output Codes. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol.30(6), pp.1041–1054

Escalera, S., Pujol, O. and Radeva, P. (2009). Separability of Ternary Codes for Sparse

Designs of Error-Correcting Output Codes. Pattern Recognition Letters 30, 285–297.

170

Escalera, S., Radeva, P., & Pujol, O. (2008). Coding and decoding design of ECOCs

for multiclass pattern and object recognition. Universitat Autònoma de Barcelona.

Fan, R. E., Chen, P.H. and. Lin, C. J. (2005). Working set selection using second order

information for training support vector machines. Journal of Machine Learning

Research, 6,1889–1918

Fariselli, P., Martelli, P. L. and Casadio, R. (2005). A New Decoding Algorithm for

Hidden Markov Models Improves the Prediction of the Topology of All-Beta

Membrane Proteins. BMC Bioinformatics 6, 4.

Fletcher, R., and Reeves, C.M. (1964). Function minimization by conjugate gradients.

Computer Journal, 7, 149-160.

Freeman, T. C. and Wimley, W. C. (2012). TMBB-DB: A Transmembrane Β-Barrel

Proteome Database. Bioinformatics (Oxford, England) 28, 2425–2430.

Ganapathiraju, A., Hamaker, J., Picone, J. (2004). Applications of support vector

machines to speech recognition. IEEE Trans. Signal Process. 52(8), 2348–2355

Garrow, A. G., Agnew, A. and Westhead, D. R. (2005). TMB-Hunt: A Web Server to

Screen Sequence Sets for Transmembrane Beta-Barrel Proteins. Nucleic Acids

Research, 33, W188–92

Gnad, F., Ren, S., Choudhary, C., Cox, J. and Mann, M. “Predicting post-translational

lysine acetylation using support vector machines,” Bioinformatics, vol. 26, no. 13, pp.

1666–1668, Jul. 2010

Goldberg, Y., Elhadad, M. (2008). SplitSVM: fast, space-efficient, non-heuristic,

polynomial kernel computation for NLP applications. Proceedings of the 46th Annual

Meeting of the Association for Computational Linguistics on Human Language

Technologies: Short Papers.

171

Golik, P., Doetsch, P., Ney, H., 2013. Cross-entropy vs squared error training: a

theoretical and experimental comparison, In Interspeech-2013, 1756-1760.

Gordon, J. J., Towsey, M. W., Hogan, J. M., Mathews, S. A. and Timms, P. (2006).

Improved Prediction of Bacterial Transcription Start Sites. Bioinformatics, 22, 142–

148.

Gorgevik, D., Cakmakov, D. and Radevski, V. (2001). Handwritten Digit Recognition

by Combining Support Vector Machines Using Rule-Based Reasoning. Proceedings of

the 23rd International Conference on Information Technology Interfaces,1, 139–144

Graves, A. (2011). Practical variational inference for neural networks. Neural

Information Processing Systems Conference, 2011

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.

Studies in Computational Intelligence. Springer

Gromiha, M. M. and Ponnuswamy, P. K. (1993). Prediction of transmembrane beta-

strands from hydrophobic characteristics of proteins. International Journal of Peptide

and Protein Research, 42, 420–31.

Gromiha, M. M., Majumdar, R., Ponnuswamy, P. K. (1997). Identification of

membrane-spanning beta strands in bacterial porins. Protein Engineering,10, 497–500.

Gromiha, M. M., Ahmad, S., Suwa, M. (2004). Neural network-based prediction of

transmembrane beta-strand segments in outer membrane proteins. Journal of

computational chemistry, 25, 762–767.

Gromiha, M. M., Ahmad, S., and Suwa, M. (2005). TMBETA-NET: Discrimination

and Prediction of Membrane Spanning Beta-Strands in Outer Membrane Proteins.

Nucleic Acids Research, 33, W164–167.

172

Gromiha, M. M. (2010). Protein Bioinformatics: From Sequence to Function.

Academic Press.

Guan Y., Myers C.L, Hess D.C, Barutcuoglu Z., Caudy A.A, Troyanskaya O. (2008).

Predicting Gene Function in a Hierarchical Context with an Ensemble of Classifiers.

Genome Biology, 9 Suppl 1

Guo, G., Li, S. Z. and Chan, K. (2000). Face Recognition by Support Vector Machines.

Proceedings Fourth IEEE International Conference on Automatic Face and Gesture

Recognition (Cat. No. PR00580), 196–201.

Guo, G., Li, S. Z. and Chan, K. (2001). Support vector machines for face recognition.

Journal of Image and Vision Computing,19, 631-638

Guo, X., Alipour-Fanid, A., Wu, L., Purohit, H., Chen, X., Zeng, K. and Zhao, L.

(2019). Multi-stage Deep Classifier Cascades for Open World

Recognition. Proceedings of the 28th ACM International Conference on Information

and Knowledge Management

Gutschoven, B., and Verlinde, P. (2000). Multi-Modal Identity Verification Using

Support Vector Machines (SVM). Proceedings of the Third International Conference

on Information Fusion, 2

Hassan M.R., Hossain M.M., Bailey J., Macintyre G., Ho J., Ramamohanarao K.

(2009). A voting approach to identify a small number of highly predictive genes using

multiple classifiers. BMC Bioinformatics.10, S19.

Hayat, S. and Elofsson, A. (2012). BOCTOPUS: improved topology prediction of

transmembrane β-barrel proteins. Bioinformatics, 28, 516–522.

173

Hayat, S., Peters, C., Shu, N., Tsirigos, K. D. and Elofsson, A. (2016). Inclusion of

Dyad-Repeat Pattern Improves Topology Prediction of Transmembrane Β-Barrel

Proteins. Bioinformatics (Oxford, England), 32.

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2nd ed. Upper

Saddle River, NJ, USA: Prentice Hall PTR.

Haykin, S. (2009). Neural Networks and Learning Machines Third Edition. Upper

Saddle River, New Jersey: Pearson Education Inc., 232–236.

He, K. Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image Recognition,

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,

pp. 770–778

Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., Wang, J., Sattar, A.,

Yang, Y., and Zhou, Y. (2015). Improving Prediction of Secondary Structure, Local

Backbone Angles, and Solvent Accessible Surface Area of Proteins by Iterative Deep

Learning. Scientific Reports, 5, 11476.

Heisele, B., Ho, P., Wu, J. and Poggio, T. (2003). Face Recognition: Component-Based

Versus Global Approaches. Computer Vision and Image Understanding. 91, 6–21.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.R., Jaitly, N., Senior, A. et al.

(2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The

Shared Views of Four Research Groups. IEEE Signal Processing Magazine 29, 82–97.

Hirokawa, T., Boon-Chieng, S. and Mitaku, S. (1998). SOSUI: classification and

secondary structure prediction system for membrane proteins. Bioinformatics, 14, 378–

379.

Holley, L.H. and Karplus, M. (1989). Protein secondary structure prediction with a

neural network. Proceedings of the National Academy of Sciences, 86, 152-156.

174

Hsu, C.W., and Lin, C.J. (2002). A Comparison of Methods for Multiclass Support

Vector Machines. IEEE Transactions on Neural Networks 13, 415–425.

Hu J., Yang Y.D., Kihara D. (2006). EMD: an ensemble algorithm for discovering

regulatory motifs in DNA sequences. BMC Bioinformatics. 7, 342.

Huang, G., and Li, J. “Feature Extractions for Computationally Predicting Protein

Post- Translational Modifications,” Current Bioinformatics, vol. 12, Jul. 2017.

Hussey, J. and Hussey, R. (1997) Business Research: A Practical Guide for

Undergraduate and Postgraduate Students. Macmillan, London.

Jacoboni, I., Martelli, P. L., Fariselli, P., De Pinto, V. and Casadio, R. (2001).

Prediction of the transmembrane regions of beta-barrel membrane proteins with a

neural network-based predictor. Protein Science, 10, 779–787.

Jaeger, H. (2001). The “Echo State” Approach to Analysing and Training Recurrent

Neural Networks. Technical Report GMD Report 148, German National Research

Center for Information Technology.

Jagla, B. and Schuchhardt, J. “Adaptive encoding neural networks for the recognition

of human signal peptide cleavage sites,” Bioinformatics, vol. 16, no. 3, pp. 245–250,

Mar. 2000.

Jähnig, F. (1990). Structure Predictions of Membrane Proteins Are Not That Bad.”

Trends in Biochemical Sciences 15, 93–95.

Jaitly, N. and Hinton, G. E. (2013). Vocal tract length perturbation (VTLP)

improves speech recognition. 30th International Conference on Machine Learning

(ICML 2013)

175

Jayasinghe, S., Hristova, K. & White, S.H. (2001). MPtopo: A database of

membrane protein topology. Protein Science, 10, 455–458

Jim, K.-C., Giles, C. L., and Horne, B. G. (1996). An analysis of noise in

recurrent neural networks: convergence and generalization. IEEE Transactions

on Neural Networks, 7, 1424–1438

Jing, X., Dong, Q., Hong, D. C., and R. Lu, “Amino acid encoding methods for protein

sequences: a comprehensive review and assessment,” IEEE/ACM Trans Comput Biol

Bioinform, Apr. 2019.

Jones, D. T., Taylor, W. R. & Thornton, J. M. (1994). A model recognition approach

to the prediction of all-helical membrane protein structure and topology. Biochemistry,

33, 3038–49.

Jones, D. T. “Protein secondary structure prediction based on position-specific scoring

matrices,” J. Mol. Biol., vol. 292, no. 2, pp. 195–202, Sep. 1999.

Jonsson, K., Kittler, J., Matas, Y. P. (2002). Support Vector Machines for face

authentication. Image and Vision Computing, 20, 369–375

Jordan, M.I. (1990). Attractor dynamics and parallelism in a connectionist sequential

machine pages 112–127. IEEE Press.

Juwei Lu, K., Plataniotis, N., Venetsanopoulos, A. N. (2001). Face recognition using

feature optimization and ν-support vector learning. Neural Networks for Signal

Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop

(IEEE Cat. No.01TH8584), 373-382.

Kabsch, W., and Sander, C., ‘How good are predictions of protein secondary

structure?’, FEBS Letters, 155(2):179-82, 1983.

176

Kazemian HB, White K, Palmer-Brown D, Applications of evolutionary SVM to

prediction of membrane alpha-helices, Expert Systems with Applications 40:3412–342,

2013.

Kazemian H, Yusuf SA, An ANFIS approach to transmembrane protein prediction.

IEEE World Congress on Computational Intelligence (IEEE WCCI 2014), IEEE

International Conference on Fuzzy Systems, Beijing China, pp.1360-1365, 2014.

Kazemian H.B, Yusuf S.A, White K (2014), Signal peptide discrimination and

cleavage site identification using SVM and NN, Computers in Biology and Medicine

45:98–110

Kazemian H, Yusuf S.A, White K, and Grimaldi C.M (2016), NN approach and its

comparison with NN-SVM to beta-barrel prediction, Expert Systems with Applications

61:203–214

Kazemian H and Grimaldi C.M (2018), Cascading classifier application for topology

prediction of TMB proteins. SSCI 2018: 1049-1055

Kazemian H and Grimaldi C.M (2020), Cascading classifier application for topology

prediction of transmembrane beta-barrel proteins, Journal of Bioinformatics and

Computational Biology, Vol.18, No. 3

Kecman V., Huang, T. M., and Vogt. M. (2005). Iterative Single Data Algorithm for

Training Kernel Machines from Huge Data Sets: Theory and Performance. Support

Vector Machines: Theory and Applications. Edited by Lipo Wang, 255–274. Berlin:

Springer-Verlag

Kedarisetti K.D, Kurgan L, Dick S. (2006). Classifier ensembles for protein structural

class prediction with varying homology. Biochemical and Biophysical Research

Communications. 348, 981–988.

177

Kégl, B. (2013). The Return of AdaBoost.MH: Multi-Class Hamming Trees.

arXiv:1312.6086 [cs], (preprint)

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C. and Murthy, K. R. K. (2001).

Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural

Computing 13, 637–49.

Khan, L., Awad, M., Thuraisingham, B. (2007) A new intrusion detection system using

support vector machines and hierarchical clustering. VLDB J. 16(4), 507–521

Kim, H. and Park, H. (2003). Protein secondary structure prediction based on an

improved support vector machines approach,” Protein Eng., vol. 16, no. 8, pp. 553–

560.

Kim, S.E. and Seo, I.W. (2015). Artificial Neural Network ensemble modeling with

conjunctive data clustering for water quality prediction in rivers. Journal of Hydro-

environment Research, Volume 9(3), pp.325–339.

Koziol J.A., Feng A.C., Jia Z, Wang Y., Goodison S., McClelland M., et al. (2009).

The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis.

Bioinformatics.25, 54– 60.

Kong, E.B. and Dietterich, T.G. (1995). Error-Correcting Output Coding Corrects Bias

and Variance. Proceedings of the Twelfth International Conference on Machine

Learning, 313–321. Morgan Kaufmann.

Kraus, P. and Dzwinel, W. (2012). Nearest neighbor search by using Partial KD-tree

method. Theoretical and Applied Informatics, Vol. 20, No. 3, pp.149–165

Kreßel, U. (1999). Advances in Kernel Methods. Edited by Bernhard Schölkopf,

Christopher J. C. Burges, and Alexander J. Smola, 255–68. Cambridge, MA, USA:

MIT Press,

178

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017). ImageNet classification with

deep convolutional neural networks. Communications of the ACM, 60(6), pp.84–90

Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. (2001). Predicting

transmembrane protein topology with a hidden Markov model: application to complete

genomes. Journal of Molecular Biology, 305, 567–80.

Kumar, S. and Apparao, M. (2017). A NOVEL APPROACH TO WAVELET-BASED

FAULT CLASSIFICATION AND DETECTION FOR A TRANSMISSION LINE

USING ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR

MACHINE. Original Article Journal of Electrical and Electronics Engineering

(JEEE), Vol.7, pp.1–14.

Kumar, V. P., and Poggio, T. (2000). Learning-Based Approach to Real Time Tracking

and Analysis of Faces. Proceedings Fourth IEEE International Conference on

Automatic Face and Gesture Recognition (Cat. No. PR00580), 96–101

Kuhn, H. W., and Tucker, A. W. (1951). Nonlinear programming. Proceedings of 2nd

Berkeley Symposium. Berkeley: University of California Press. 481–492

Kuncheva, L.I. and Whitaker, C.J. (2003). Measures of Diversity in Classifier

Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning 51,

2

Kyte, J., and Doolittle, R. F. (1982). A Simple Method for Displaying the Hydropathic

Character of a Protein. Journal of Molecular Biology,157,105–32.

Lang, K.J., Waibel, A.H., and Hinton, G.E. (1990). A Time-delay Neural Network

Architecture for Isolated Word Recognition. Neural Networks, 3, 23–43.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep Learning. Nature, 521, 436–44.

179

Li, Wang, Zhang, Xin, and Liu (2019). Recurrent Neural Networks Based Photovoltaic

Power Forecasting Approach. Energies, Vol. 12(13), p.2538.

Lin, C. F. and Wang, S. D. (2004). Training algorithms for fuzzy support vector

machines with noisy data. Pattern Recognition Letters, 25, 1647-1656

Lin, C. F. and Wang, S. D. (2002) Fuzzy support vector machines. IEEE Transactions

on Neural Networks 13, 464-471

Liu K.H, Xu C.G. (2009). A genetic programming-based approach to the classification

of multiclass microarray datasets. Bioinformatics. 25,331–337.

Liu B., Cui Q., Jiang, T., Ma S. (2004). A combinational feature selection and ensemble

neural network method for classification of gene expression data. BMC

Bioinformatics.5, 136.

Lincoln, Y.S. & Guba, E.G. (2000), “Paradigmatic controversies, contradictions, and

emerging influences”. In N. Denzin and Y. Lincoln (eds.), Handbook of Qualitative

Research (2nd ed., pp. 163-188). Thousand Oaks, CA: Sage

Lomize, M. A., Lomize, A. L., Pogozheva, I. D. & Mosberg, H. I. (2006). OPM:

orientations of proteins in membranes database. Bioinformatics, 22, 623–5

Luo, Y. and Yang, F. (2014). Deep learning with noise.

https://pdfs.semanticscholar.org/d79b/a428e1cf1b8aa5d320a93166315bb30b4765.pdf

Magnan, C. N. and Baldi, P. (2014). SSpro/ACCpro 5: Almost Perfect Prediction of

Protein Secondary Structure and Relative Solvent Accessibility Using Profiles,

Machine Learning and Structural Similarity. Bioinformatics, 30, 2592–2597.

Martelli, P. L., Fariselli, P., Krogh, A. and Casadio, R. (2002). A sequence-profile-

based HMM for predicting and discriminating beta barrel membrane proteins.

Bioinformatics, 18, S46–53.

180

Mason, J. (2002) Qualitative Researching. 2nd Edition, Sage Publications, London

Mathworks (2016). Machine Learning with MATLAB. [Online] Available at:

http://www.mathworks.com/solutions/machine-learning/ [Accessed 19 June. 2016].

Mathworks (2017). Classification ensembles. [Online] Available at:

http://www.mathworks.com/ /help/stats/classification-ensembles.html [Accessed 20

Aug. 2017].

Melvin, I., Weston, J., Leslie, C.S and Noble, W.S. (2008). Combining Classifiers for

Improved Classification of Proteins from Sequence or Structure. BMC Bioinformatics,

9, 389

Mitchell, M. (1997). Machine Learning, McGraw-Hill Computer science series.

Møller, M. F., “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.”

Neural Networks 6, no. 4 (1993): 525–33

Mori, S., Suen, C., Yamamoto, K. (1995). Historical review of OCR research and

development, pp.244–273. IEEE Computer Society Press, Los Alamitos

Mukherjee, S., Tamayo, P., Rogers, S., Rifkin, R., Engle, A., Campbell, C., Mesirov,

J. P. 2003. Estimating dataset size requirements for classifying DNA microarray data.

Journal of Computational Biology, 10(2), 119-142

Najafabadi, M.M, Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R. and

Muharemagic, E. (2015). Deep Learning Applications and Challenges in Big Data

Analytics.” Journal of Big Data, 2, 1

Nakajima, C., Pontil, M. and Poggio, T. (2000). People Recognition and Pose

Estimation in Image Sequences. Proceedings of the IEEE-INNS-ENNS International

181

Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New

Challenges and Perspectives for the New Millennium, 4, 189–194.

Natt, N. K., Kaur, H., Raghava, G. P. (2004). Prediction of transmembrane regions of

beta-barrel proteins using ANN- and SVM-based methods. Proteins, 56, 11–18.

Neuman, W.L. (2003), “Social Research Methods: Qualitative and Quantitative

Approaches” (5th ed.). Boston: Allyn and Bacon

Ng, A. (2015) Advice for applying machine learning. [Online]. Available at:

https://see.stanford.edu/materials/aimlcs229/ML-advice.pdf

 [Accessed 16 Jul. 2016]

Osuna, E., Freund, R. and Girosit, F. (1997). Training Support Vector Machines: An

Application to Face Detection. Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 130–36.

Ou, Y. Y., Chen, S. A and Gromiha, M. M. (2010). Prediction of Membrane Spanning

Segments and Topology in Beta-Barrel Membrane Proteins at Better Accuracy.

Journal of Computational Chemistry 31, 217–223.

Ouali, M., and King, R. D. (2000). Cascaded Multiple Classifiers for Secondary

Structure Prediction.” Protein Science: A Publication of the Protein Society 9, 6, 1162–

76.

Paul, C., and Rosenbusch, J. P. (1985). Folding Patterns of Porin and

Bacteriorhodopsin. The EMBO Journal, 4, 1593–97.

Pauling, L., and Corey, R. B. (1951). The Pleated Sheet, a New Layer Configuration of

Polypeptide Chains.” Proceedings of the National Academy of Sciences of the United

States of America, 37, 251–56.

182

Pengyi, Y., Yee, H.Y., Zhou, B.B. and Zomaya, A.Y. (2010). A Review of Ensemble

Methods in Bioinformatics. Current Bioinformatics, Vol. 5(4), pp.296–308

Pavlidis, P., Weston, J., Cai, J. and Noble, W.S. (2002). Learning Gene Functional

Classifications from Multiple Data Types. Journal of Computational Biology: A

Journal of Computational Molecular Cell Biology 9, 401–411.

Peng, Y. (2006) A Novel Ensemble Machine Learning for Robust Microarray Data

Classification.” Computers in Biology and Medicine 36, 553–573.

García-Pedrajas, N. and Ortiz-Boyer, D. (2011). An Empirical Study of Binary

Classifier Fusion Methods for Multiclass Classification. Information. Fusion 12, 111–

130.

Pittore, M., Basso, C. and Verri, A. (1999). Representing and Recognizing Visual

Dynamic Events with Support Vector Machines. Proceedings 10th International

Conference on Image Analysis and Processing, 18–23.

Platt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training

Support Vector Machines. Microsoft Research,

https://www.microsoft.com/enus/research/publication/sequential-minimal-

optimization-a-fast-algorithm-for-training-supportvector-machines/.

Pollastri, G., Przybylski, D., Rost, B. and Baldi, P. (2002). Improving the Prediction of

Protein Secondary Structure in Three and Eight Classes Using Recurrent Neural

Networks and Profiles. Proteins: Structure, Function, and Bioinformatics, 47, 228–

235.

Platt, J.C., Cristianini, N. and Shawe-Taylor, J. (1999). Large Margin DAGs for

Multiclass Classification. Proceedings of the 12th International Conference on Neural

Information Processing Systems, 547–53. NIPS’99. Cambridge, MA, USA: MIT Press.

183

Pontil, M., and Verri, A. (1998). Support Vector Machines for 3D Object Recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 637–46.

Poole, B., Sohl-Dickstein, J., and Ganguli, S. (2014). Analyzing noise in

autoencoders and deep networks. Cornell University Library, arXiv:1406.1831

Powell, M.J.D. (1977). Restart procedures for the conjugate gradient method.

Mathematical Programming, 12, 241–254.

Qian, N. and Sejnowski, T. J. “Predicting the secondary structure of globular proteins

using neural network models,” J. Mol. Biol., vol. 202, no. 4, pp. 865–884, Aug. 1988.

Rajendran, S.& Kalpana, B. (2011). Identifying Efficient Kernel Function in Multiclass

Support Vector Machines. International Journal of Computer Applications, 28, 18-23

Raman, P., Cherezov, V. & Caffrey, M. (2006). The Membrane Protein Data Bank.

Cellular and Molecular Life Sciences, 63, 36–51

Randall, A., Cheng, J., Sweredoski, M., and Baldi, P. (2008). TMBpro: Secondary

Structure, ΒContact and Tertiary Structure Prediction of Transmembrane Β-Barrel

Proteins. Bioinformatics, 24, 513–20.

RCSB Protein Data Bank (2021). RCSB PDB. [online] Rcsb.org. Available at:

https://www.rcsb.org/search/browse/cath [Accessed 12 Nov. 2021].

Riis, S. K. and Krogh, A. “Improving prediction of protein secondary structure using

structured neural networks and multiple sequence alignments,” J. Comput. Biol., vol.

3, no. 1, pp. 163–183, 1996.

Robles V., Larranaga P., Pena J.M., Menasalvas E., Perez M.S., Herve, V., et al. (2004).

Bayesian network multi-classifiers for protein secondary structure prediction. Artificial

Intelligence in Medicine. 31, 117–136.

184

Romdhani, S., Schokopf, B. and Blake, A. (2001) Computationally efficient face

detection. Proceedings of International Conference Computer Vision, 2, 695-700.

Russel, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition

Saier, M. H., Tran, C. V. and Barabote, R. D (2006). TCDB: The Transporter

Classification Database for Membrane Transport Protein Analyses and Information.

Nucleic Acids Research 34, D181–186.

Salamov, A. A. and Solovyev, V. V. “Protein secondary structure prediction using

local alignments,” J. Mol. Biol., vol. 268, no. 1, pp. 31–36, Apr. 1997.

Schirmer, T. and Cowan, S. W. (1993). Prediction of membrane-spanning beta-strands

and its application to maltoporin. Protein Science, 2, 1361–3.

Schölkopf, B., Burges, C.J.C., and Smola, A.J. (1999). Advances in Kernel Methods:

Support Vector Learning. Cambridge, MA, USA: MIT Press.

Sharma, S., Sharma, V. (2016). Performance of Various Machine Learning Classifiers on
Small Datasets with Varying Dimensionalities. Circulation in Computer Science, 1, 30-35.

Shen, H.B., and Chou, K.C. (2006). Ensemble Classifier for Protein Fold Pattern

Recognition. Bioinformatics 22, 14, 1717–1722

Sietsma, J. and Dow, R. (1991). Creating artificial neural networks that generalize.

Neural Networks, 4, 67–79

Singh, S., Singh, M. (2007). Progress in Pattern Recognition. Springer London

Singh, N., Goodman, A., Walter, P., Helms, V., and Hayat, S. (2011). TMB-HMM: A

frequency profile based hmm for predicting the topology of transmembrane beta-barrel

185

proteins and the exposure status of transmembrane residues. Biochimica et Biophysica

Acta (BBA)-Proteins & Proteomics, 1814, 664–670.

Smola, A. J. and Schölkopf, B. (2004). A Tutorial on Support Vector Regression.

Statistics and Computing, 3,199–222.

Smola, AJ., Schölkopf, B. and Müller, K.R. (1998). The Connection between

Regularization Operators and Support Vector Kernels. Neural Networks: The Official

Journal of the International Neural Network Society 11, 637–49.

Sollich, P. and Krogh, A. (1996). Learning with Ensembles: How Overfitting Can Be

Useful. In Advances in Neural Information Processing Systems 8, edited by Touretzky,

D.S, Mozer, M.C and Hasselmo, M.E, 190–96. MIT Press.

Sordo, M. and Zeng, Q. On Sample Size and Classification Accuracy: A Performance

Comparison. Biological and Medical Data Analysis, 2005, pp. 193–201.

Spencer, M., Eickholt, J. and Cheng, J. (2015). A Deep Learning Network Approach

to Ab Initio Protein Secondary Structure Prediction. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 12, 103–112.

Srihari, S. (n.d.). Deep Learning Srihari 1 Gradient-based Optimization. [online]

Available at: https://cedar.buffalo.edu/~srihari/CSE676/4.2%20Gradient-

based%20Optimization.pdf [Accessed 11 Nov. 2021].

Srinivasu, G., Rao, R.N., Nandy, T.K. and Bhattacharjee, A. (2012). Artificial Neural

Network Approach for Prediction of Titanium Alloy Stress-Strain Curve. Procedia

Engineering, Vol. 38, pp.3709–3714.

Suykens, J. A. K., De Brabanter, J., Lukas, L., and Vandewalle, J. (2002). Weighted

least squares support vector machines: robustness and sparse approximation.

Neurocomputing 48, 85105

186

Tama, A.B., Rhee, K.H., (2017). An extensive empirical evaluation of classifier

ensembles for intrusion detection task. Computer Systems Science and Engineering.

32. 149-158.

Tanaka, S. and Scheraga, H. A. “Medium- and Long-Range Interaction Parameters

between Amino Acids for Predicting Three-Dimensional Structures of Proteins,”

Macromolecules, vol. 9, no. 6, pp. 945–950, Nov. 1976

Tang, Y. and Eliasmith, C. (2010). Deep networks for robust visual recognition.

Proceedings of the 27th International Conference on Machine Learning, June

21-24, 2010, Haifa, Israel

Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A. (2009). A detailed

analysis of the KDD CUP 99 data set. 2009 IEEE Symposium on Computational

Intelligence for Security and Defense Applications

Tay, F., and Cao, L.J. (2002). Modified support vector machines in financial time series

forecasting, Neurocomputing, 48, 847-861

Teow, L.N., and Loe, K.F. (2002). Robust Vision-Based Features and Classification

Schemes for off-Line Handwritten Digit Recognition. Pattern Recognition, 35, 2355–

2364.

The NMITLI-BioSuite Team. (2007). BioSuite: A comprehensive bioinformatics

software package (A unique industry–academia collaboration). Current Science, 92, 1.

The Stephen White Laboratory at UC Irvine, Department of Physiology and

Biophysics, School of Medicine, University of California at Irvine [Online]. Available

at: http://blanco.biomol.uci.edu/index.shtml [Accessed 03 May. 2016]

187

Topcons.net. (2021). BOCTOPUS2: transmembrane beta-barrel topology prediction.

[online] Available at: https://b2.topcons.net/pred/download/ [Accessed 12 Nov. 2021].

Tsirigos, K. D, Bagos, P. G. and Hamodrakas, S. J. (2011). OMPdb: A database of ß-

barrel outer membrane proteins from Gram negative bacteria. Nucleic Acids Research,

39, D324-D331

Tsujinishi, D., and Abe, S. (2003). Fuzzy least squares support vector machines for

multiclass problems. Neural Networks, 16, 785-792. Advances in Neural Networks

Research: IJCNN 2003.

Tusnady, G. E., Dosztanyi, Z. & Simon, I. (2005a). PDB TM: Selection and membrane

localization of transmembrane proteins in the protein data bank. Nucleic Acids

Research, 33, D275–D278.

Tusnady, G. E., Dosztanyi, Z. & Simon, I. (2005b). TMDET: web server

for detecting transmembrane regions of proteins by using their 3D

coordinates. Bioinformatics, 21, 1276–7.

Tusnady, G. E, Kalmár, L. & Simon, I. (2008). TOPDB: Topology Data Bank of

Transmembrane Proteins. Nucleic Acids Research,36, D234-D239.

Vapnik, V. (1998) Statistical Learning Theory. Wiley, New York

Vapnik, V. (1999). The Nature of Statistical Learning Theory. 2nd edition, Springer.

Vilela, D.W.F.L., Ferreira, E.W.T., Shinoda, A.A., de Souza Araujo, N.V., de Oliveira,

R. and Nascimento, V.E. (2014). A dataset for evaluating intrusion detection systems

in IEEE 802.11 wireless networks. 2014 IEEE Colombian Conference on

Communications and Computing (COLCOM).

188

Viola, P., and Jones, M. (2001) Rapid Object Detection Using a Boosted Cascade of

Simple Features

Vogel, H. and Jahnig, F. (1986). Models for the structure of outer-membrane proteins

of Escherichia coli derived from raman spectroscopy and prediction methods. Journal

of Molecular Biology, 6, 191–199.

Von Heijne, G. (1992), Membrane protein structure prediction. Hydrophobicity

analysis and the positive-inside rule. J Mol Biol,225.487–494.

Wan, V., and Campbell, W. M. (2000). Support Vector Machines for Speaker

Verification and Identification. Neural Networks for Signal Processing X. Proceedings

of the 2000 IEEE Signal Processing Society Workshop, 2, 775–784

Wang, G. and Dunbrack, R. L. (2003). PISCES: A Protein Sequence Culling Server.

Bioinformatics, 19, 1589–1591.

Wang, S.Q., Yang, J., and Chou, K.C. (2006). Using Stacked Generalization to Predict

Membrane Protein Types Based on Pseudo-Amino Acid Composition. Journal of

Theoretical Biology 242, 4, 941–46.

Wang, T. Y., and Chiang, H. M. (2007). Fuzzy support vector machine for multi-class

text categorization. Information Processing and Management, 43, 914-929.

Wang, Y., Chua, C.S. and Ho, Y.K. (2002). Facial Feature Detection and Face

Recognition from 2D and 3D Images. Pattern Recognition Letters 23,10, 1191–1202.

Welte, W., Weiss, M. S., Nestel, U., Weckesser, J., Schiltz, E. and Schulz, G. E. (1991).

Prediction of the General Structure of OmpF and PhoE from the Sequence and

Structure of Porin from Rhodobacter Capsulatus. Orientation of Porin in the

Membrane. Biochimica Et Biophysica Acta 1080, 271–74.

189

Wijaya E., Yiu S.M/, Son N.T., Kanagasabai R., Sung W.K. (2008). MotifVoter: a

novel ensemble method for fine-grained integration of generic motif finders.

Bioinformatics. 24, 2288– 2295.

Wikipedia Contributors (2019). Polynomial kernel. [online] Wikipedia. Available at:

https://en.wikipedia.org/wiki/Polynomial_kernel [Accessed 11 Nov. 2021].

William Stafford Noble (2017). 1 Support vector machine applications in

computational biology. [online] Available at:

https://www.semanticscholar.org/paper/1-Support-vector-machine-applications-in-

biology-Noble/1b86be75e9c44351c8de387a3223e7930078c22c [Accessed 11 Nov.

2021].

Windeatt, T., and Ghaderi, R. (2003). Coding and Decoding Strategies for Multi-Class

Learning, Information Fusion, 4, 1, 11–21

Wu, C.C, Asgharzadeh, S., Triche, T.J. and D’Argenio, D.Z. (2010). Prediction of

Human Functional Genetic Networks from Heterogeneous Data Using RVM-Based

Ensemble

Learning.” Bioinformatics, 26, 807–813

Yang P., Zhou B., Zhang Z., Zomaya A. (2010a). A multi-filter enhanced genetic

ensemble system for gene selection and sample classification of microarray data. BMC

Bioinformatics. 11(Suppl 1), S5.

Yang P., Ho J.W.K., Zomaya A.Y., Zhou B.B. (2010b) A genetic ensemble approach

for genegene interaction identification. BMC Bioinformatics. 11, 524.

Yang, Z.R., Chou, K.C.: Predicting the O-linkage sites in glycoproteins using bio-basis

function neural networks. Bioinformatics 20, 903–908 (2004)

190

Yanover C., Weiss Y. (2004). Finding the AI Most Probable Configurations Using

Loopy Belief Propagation. In: Advances in Neural Information Processing Systems 16:

Proceedings of the 2003 Conference. The MIT Press.289.

Yanover C., Singh M., Zaslavsky E. (2009). M are better than one: an ensemble-based

motif finder and its application to regulatory element prediction. Bioinformatics.25,

868–874.

Zou, L., Wang, Z., Wang, Y. and Hu, F. (2010). Combined prediction of

transmembrane topology and signal peptide of β-barrel proteins: Using a hidden

Markov model and genetic algorithms. Computers in Biology and Medicine,40,621-

628

191

Appendix A
	

	
	

Accuracy (%) Window Size Bits encoding
Transfer
functon

Hidden layer
size

Training
function

Performance Fcn Data division Dataset used

64.5 53 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
63.1 54 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
64.3 52 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
63.8 52 20 logsig 68 trainscg sum squared error Dividerand Boctopus2
62.3 54 20 logsig 70 trainscg crossentropy Dividerand Boctopus2
63.7 54 20 logsig 68 trainscg sum squared error Dividerand Boctopus2
60.9 51 20 logsig 72 trainscg sum squared error Dividerand Boctopus2
64.5 53 20 logsig 70 trainscg sum squared error Dividerand Boctopus2
64.5 53 20 tansig 70 trainscg sum squared error Dividerand Boctopus2

53.2 53 20 logsig 70 trainscg
Sum absolute error

performance function
Dividerand TopBPdataset

64 53 20 logsig 70 trainscg

Mean squared
normalized error

performance function
Dividerand TopBPdataset

53.2 53 20 logsig 70 trainscg
Mean absolute error

performance function
Dividerand TopBPdataset

63.8 53 20 logsig 70 traincgp sum squared error Dividerand TopBPdataset
58.6 53 20 logsig 70 traincgb sum squared error Dividerand TopBPdataset
53.4 50 20 logsig 70 trainrp sum squared error Dividerand TopBPdataset
62.9 79 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
54.6 80 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
60.2 20 20 logsig 70 trainscg sum squared error Dividerand TopBPdataset
33.1 70 20 logsig 70 traingdx sum squared error Dividerand TopBPdataset
45.9 20 20 logsig 70 traingdx sum squared error Dividerand TopBPdataset
53.2 53 20 logsig 70 traindgx sum squared error Dividerand TopBPdataset
48.5 53 20 logsig 70 traincgf sum squared error Dividerand TopBPdataset
63 53 20 logsig 73 trainscg sum squared error Dividerand TopBPdataset

192

	
Appendix B
	

	

Accuracy (%)
K Value
(NumNeighbors)

Nearest Neighbor
search method
(Nsmethod)

Tie-breaking algorithm
(BreakTies)

Maximum data
points in node
(Bucketsize)

Tie inclusion flag
(IncludeTies)

Distance
(Distance)

Exponent
(Exponent)

Data division Dataset used

Comments

46.2 2 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 77.4-I; 32.0-O; 15.1-M
48.6 4 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 71.9-I; 33.0-O; 29.7-M
51.8 8 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 76.3-I; 33.3-O; 32.0-M
51.9 16 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 79.1-I; 29.7-O; 32.5-M
53.3 32 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 85.6-I; 26.7-O; 30.4-M
52.2 64 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 89.4-I; 20.7-O; 26.7-M
50.5 128 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 94.2-I; 13.0-O; 20.9-M
48.5 256 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 96.5-I; 7.6-O; 15.6-M
45.8 512 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 98.8-I; 2.6-O; 8.2-M
44.3 1024 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 99.6-I; 0.4-O; 4.0-M
53.1 42 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 87.4-I; 23.3-O; 30.1-M
53.3 29 exhaustive random n/a n/a n/a n/a 79% for training Boctopus2 84.6-I; 27.6-O; 31.4-M
52.8 29 exhaustive random n/a n/a n/a n/a 70% for training Boctopus2 83.9-I; 26.6-O; 30.8-M
51.7 29 exhaustive random n/a n/a n/a n/a 60% for training Boctopus2 83.2-I; 25.7-O; 29.5-M
53.6 29 exhaustive random n/a n/a n/a n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.1 29 exhaustive random n/a n/a n/a n/a 90% for training Boctopus2 85.7-I; 25.9-O; 30.6-M
52.9 29 exhaustive random n/a n/a n/a n/a 87% for training Boctopus2 85.2-I; 27.1-O; 30.2-M
53.6 29 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
49.1 256 kdtree random n/a n/a euclidean n/a 85% for training Boctopus2 96.7-I; 7.8-O; 16.4-M

53.1 29 kdtree random n/a n/a euclidean n/a 90% for training Boctopus2 85.7-I; 25.9-O; 30.6-M
52.8 29 kdtree random n/a n/a euclidean n/a 70% for training Boctopus2 83.9-I; 26.6-O; 30.8-M

53.6 29 kdtree random n/a n/a cityblock n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M

52.9 64 kdtree random n/a n/a cityblock n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M

51.4 128 kdtree random n/a n/a cityblock n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M

53.6 29 kdtree random n/a n/a minkoswki 2 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree random n/a n/a minkoswki 2 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree random n/a n/a minkoswki 2 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
43.3 29 kdtree random n/a n/a chebychev n/a 85% for training Boctopus2 100-I; 0-O; 0-M
43.3 64 kdtree random n/a n/a chebychev n/a 85% for training Boctopus2 100-I; 0-O; 0-M

43.3 128 kdtree random n/a n/a chebychev n/a 85% for training Boctopus2 100-I; 0-O; 0-M

53.6 29 kdtree smallest n/a n/a euclidean n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree smallest n/a n/a euclidean n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree smallest n/a n/a euclidean n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
53.6 29 kdtree nearest n/a n/a euclidean n/a 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
52.9 64 kdtree nearest n/a n/a euclidean n/a 85% for training Boctopus2 89.9-I; 21.3-O; 27.1-M
51.4 128 kdtree nearest n/a n/a euclidean n/a 85% for training Boctopus2 94.2-I; 14.5-O; 21.8-M
52.7 29 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
51.8 64 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 93.6-I; 16.5-O; 22.5-M
48.3 128 exhaustive n/a n/a true. n/a n/a 85% for training Boctopus2 97.0-I; 8.3-O; 13.3-M
52.7 29 kdtree n/a n/a true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 40 true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 80 true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 580 true. euclidean n/a 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 580 true. minkoswki 2 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
52.7 29 kdtree n/a 10 true. minkoswki 2 85% for training Boctopus2 91.2-I; 20.9-O; 25.0-M
53.6 29 kdtree random 10 n/a minkoswki 2 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.6 29 kdtree random 100 n/a minkoswki 2 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.6 29 kdtree random 100 n/a minkoswki 3 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
53.6 29 kdtree random 100 n/a minkoswki 30 85% for training Boctopus2 85.1-I; 28.4-O; 30.5-M
63.4 2 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 76.8-I; 65.5-O; 56.4-M
66.9 4 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 59.7-I; 60.8-O; 72.7-M
67.4 8 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 49.7-I; 54.2-O; 80.8-M
66.7 16 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 37.2-I; 43.5-O; 89.5-M
64.1 32 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 25.8-I; 32.5-O; 94.4-M
60.3 64 exhaustive random n/a n/a n/a n/a 85% for training TopBPdataset 14.4-I; 18.9-O; 98.1-M
67.6 8 exhaustive random n/a n/a n/a n/a 90% for training TopBPdataset 49.7-I; 54.1-O; 81.2-M
68.6 8 exhaustive random n/a n/a n/a n/a 95% for training TopBPdataset 52.9-I; 54.8-O; 81.5-M
69.7 8 exhaustive random n/a n/a n/a n/a 97% for training TopBPdataset 52.5-I; 47.8-O; 87.0-M
71.8 8 exhaustive random n/a n/a n/a n/a 99% for training TopBPdataset 57.7-I; 56.5-O; 83.8-M
66.6 8 exhaustive random n/a n/a n/a n/a 80% for training TopBPdataset 47.9-I; 53.2-O; 80.6-M
67.6 8 kdtree random n/a n/a euclidean n/a 90% for training TopBPdataset 49.9-I; 54.1-O; 81.2-M
66.7 16 kdtree random n/a n/a euclidean n/a 90% for training TopBPdataset 38.5-I; 43.7-O; 89.0-M
67.6 8 kdtree random n/a n/a cityblock n/a 90% for training TopBPdataset 49.9-I; 54.1-O; 81.2-M
67.6 8 kdtree random n/a n/a minkoswki 2 90% for training TopBPdataset 49.9-I; 54.1-O; 81.2-M
54.7 8 kdtree random n/a n/a chebychev n/a 90% for training TopBPdataset 2.3-I; 2.7-O; 100-M
67.6 8 exhaustive smallest n/a n/a n/a n/a 90% for training TopBPdataset 49.7-I; 54.1-O; 81.2-M
67.6 8 exhaustive nearest n/a n/a n/a n/a 90% for training TopBPdataset 49.7-I; 54.1-O; 81.2-M
66.8 8 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
63.1 16 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset 24.0-I; 30.4-O; 94.4-M
60.8 32 exhaustive n/a n/a true. n/a n/a 90% for training TopBPdataset 15.5-I; 21.8-O; 97.6-M
66.8 8 kdtree n/a 40 true. euclidean n/a 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
66.8 8 kdtree n/a 80 true. euclidean n/a 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
66.8 8 kdtree n/a 10 true. minkoswki 2 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M
66.8 8 kdtree n/a 20 true. minkoswki 8 90% for training TopBPdataset 36.9-I; 43.7-O; 89.9-M

193

Appendix C
	

	
	

Accuracy (%)

Kernel
function(Ker
nelFunctio
n)

Store support
vectors, their labels
and α coefficients
(SaveSupportVec
tors)

Box constraint
(BoxConstraint)

Cache size
(CacheSize)

Flag to clip alpha
coefficients
(ClipAlphas)

Optimization routing
(Solver)

Tolerance for
gradient difference
(DeltaGradientT
olerance)

Feasibility gap
tolerance
(GapTolerance)

 Maximal number of
numerical optimization
iterations
(IterationLimit)

Kernel offset
parameter(KernelO
ffset)

Kernel scale
parameter
(KernelScale)

Karush-Kuhn-Tucker
complementarity
conditions violation
tolerance
(KKTTolerance)

ν parameter
for one-class
learning (Nu)

Number of
iterations between
optimization
diagnostic
message output
(NumPrint)

Expected
proportion of
outliers in training
data
(OutlierFract
ion)

Polynomial kernel
function order
(PolynomialOr
der)

Number of
iterations between
movement of
observations from
active to inactive
set
(ShrinkagePer

Flag to standardize
predictor
data(Standardi
ze)

Verbosity level
(Verbose)

Dataset

60.1 linear false(default) 1(default) 1000(default) true(default) SMO(default) 0.001 0(default) 1e6(default) 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
60.1 linear true_ 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 1e6(default) 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
43.3 rbf true_ 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 1e6(default) 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
39 linear true_ 1(default) 10000 true(default) SMO(default) 0.001(SMO default) 0(default) 100 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

39.8 linear true_ 1(default) 10000 true(default) SMO(default) 0.001(SMO default) 0(default) 1000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

41.2 linear true_ 1(default) 10000 true(default) SMO(default) 0.001(SMO default) 0(default) 10000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

39 linear true_ 1(default) 500 true(default) SMO(default) 0.001(SMO default) 0(default) 100 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

38.5 linear true_ 1(default) 500 true(default) SMO(default) 0.001(SMO default) 0(default) 500 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.2 linear true_ 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

40.7 linear true_ 100 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.2 linear true_ 0.5 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.5 linear true_ 0.1 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

58.4 linear true_ 0.001 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.5 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2
60.4 linear true_ 0.1 1000(default) false_ ISDA 0(ISDA default) 0(default) 100000 0 .1(default for ISDA) 1(default) 1e-3 (default for ISDA) 0.5(default) 1000(default) 0.05 n/a 0(default) false(default) 0(default) Boctopus2
59.8 linear true_ 0.1 1000(default) false_ ISDA 0(ISDA default) 0(default) 100000 0 .1(default for ISDA) 1(default) 1e-3 (default for ISDA) 0.5(default) 1000(default) 0.95 n/a 0(default) false(default) 0(default) Boctopus2

25 linear true_ 0.1 1000(default) false_ SMO(default) 0.01 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

43.2 linear true_ 0.1 1000(default) false_ SMO(default) 0.0001 0(default) 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

54 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0.5 100000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

43.2 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0.5 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

60.3 linear true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 0.5 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) Boctopus2

62.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 0.5 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.5 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 0.95 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

59.9 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 2.5 10 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

59.9 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 10 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) auto 0 (default for SMO) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.5 polynomial true_ 0.1 1000(default) false_ ISDA 0(ISDA default) 0(default) 100000 0 .1(default for ISDA) 0.95 1e-3 (default for ISDA) 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

44.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 10 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.25 1000(default) 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 3(default) 0(default) false(default) 0(default) Boctopus2

62.6 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 3(default) 0(default) false(default) 1 Boctopus2

64.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 0(default) false(default) 0(default) Boctopus2

58.1 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 15 0(default) false(default) 0(default) Boctopus2

63.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 1000 false(default) 0(default) Boctopus2

52 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 100000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 1000 true_ 0(default) Boctopus2

63.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 1500000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 0(default) false(default) 0(default) Boctopus2

63.8 polynomial true_ 0.1 1000(default) false_ SMO(default) 0.001(SMO default) 0(default) 2000000 0 (default for SMO) 5 0.00001 0.5(default) 500 0(default) 5 0(default) false(default) 0(default) Boctopus2

48 linear false(default) 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 100 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) TopBPdataset

47.7 linear false(default) 1(default) 1000(default) true(default) SMO(default) 0.001(SMO default) 0(default) 1000 0 (default for SMO) 1(default) 0 (default for SMO) 0.5(default) 1000(default) 0(default) n/a 0(default) false(default) 0(default) TopBPdataset

194

Appendix D

	
	

 Configurations:
1:Layer 1(KNN=1,SVM=1,DNN=1)/Layer 2 (SVM)
2:Layer 1(KNN=0,SVM=1,DNN=1)/Layer 2 (SVM)
3:Layer 1(KNN=1,SVM=0,DNN=1)/Layer 2 (SVM)
4:Layer 1(KNN=1,SVM=1,DNN=0)/Layer 2 (SVM)

Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 3 Configuration 4 Configuration 4 Configuration 1 Configuration 1 Configuration 2 Configuration 1 Configuration 1

Dataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset TopBPDataset Boctopus2dataset TopBPDataset TopBPDataset TopBPDataset

 tspart1 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.75 0.8

 tspart2 0.6 0.9 0.75 0.35 0.25 0.4 0.45 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Overall accuracy 61.2 49.4 53.1 65.2 64.5 66.1 65.4 66.2 72.8 71.9 73.1 63.6 72.8 74.6 75.2

KernelFunction polynomial polynomial polynomial polynomial polynomial polynomial polynomial

 SaveSupportVectors TRUE TRUE TRUE TRUE TRUE TRUE TRUE

BoxConstraint 1(default) 0.1 1(default) 1(default) 1(default) 1(default) 1(default)

CacheSize 1000(default) 1000(default) 1000(default) 1000(default) 1000(default) 1000(default) 1000(default)

ClipAlphas true(default) FALSE true(default) true(default) true(default) true(default) true(default)

Solver SMO(default) SMO(default) SMO(default) SMO(default) SMO(default) SMO(default) SMO(default)

 DeltaGradientTolerance 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default) 1e-3(default)

 GapTolerance 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

 IterationLimit 1e6(default) 100000 1e6(default) 1e6(default) 1e6(default) 1e6(default) 1e6(default)

KernelOffset 0 0 0 0 0 0 0

 KernelScale 1(default) 5 1(default) 1(default) 1(default) 1(default) 1(default)

KKTTolerance 0 0.00001 0 0 0 0 0

Nu 0.5(default) 0.5(default) 0.5(default) 0.5(default) 0.5(default) 0.5(default) 0.5(default)

 NumPrint 1000(default) 500 1000(default) 1000(default) 1000(default) 1000(default) 1000(default)

 OutlierFraction 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

 PolynomialOrder 3 (default) 5 3 (default) 3 (default) 3 (default) 3 (default) 3 (default)

 ShrinkagePeriod 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

Standardize false(default) false(default) false(default) false(default) false(default) false(default) false(default)

 Verbose 0(default) 0(default) 0(default) 0(default) 0(default) 0(default) 0(default)

 NumNeighbors 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Nsmethod exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive exhaustive

 BreakTies random random random random random random random random random random random random random random random

 Bucketsize n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

 IncludeTies n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

 Distance n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

 Exponent n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Window Size 65 65 65 65 65 65 65 65 65 65 65 65 65

Bits encoding 50 50 50 50 50 50 50 50 50 50 50 50 50

Transfer functon logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig logsig

Hidden layer size 50 50 50 50 50 50 50 50 50 50 50 50 50

Training function trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg trainscg

Performance Function
sum squarred

error
sum squarred

error
sum squarred

error
sum squarred

error
sum squarred

error
sum squarred

error
sum squarred

error
sum squarred

error
sum squarred error sum squarred error

sum squarred
error

sum squarred
error

sum squarred
error

Data division Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand Dividerand

