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8 Abstract Any sniffer can see the information sent

9 through unprotected ‘probe request messages’ and ‘probe

10 response messages’ in wireless local area networks

11 (WLAN). A station (STA) can send probe requests to

12 trigger probe responses by simply spoofing a genuine

13 media access control (MAC) address to deceive access

14 point (AP) controlled access list. Adversaries exploit these

15 weaknesses to flood APs with probe requests, which can

16 generate a denial of service (DoS) to genuine STAs. The

17 research examines traffic of a WLAN using supervised

18 feed-forward neural network classifier to identify genuine

19 frames from rogue frames. The novel feature of this

20 approach is to capture the genuine user and attacker

21 training data separately and label them prior to training

22 without network administrator’s intervention. The model’s

23 performance is validated using self-consistency and five-

24 fold cross-validation tests. The simulation is comprehen-

25 sive and takes into account the real-world environment.

26 The results show that this approach detects probe request

27 attacks extremely well. This solution also detects an attack

28 during an early stage of the communication, so that it can

29 prevent any other attacks when an adversary contemplates

30 to start breaking into the network.

31Keywords Wireless LAN � Intrusion detection �

32Real-time systems � IEEE 802.11 � DoS attacks �

33Feed-forward neural networks

341 Introduction

35Institute of Electrical and Electronic Engineers (IEEE)

36Wireless Local Area Networks (WLAN) are based on IEEE

37802.11 protocol. The reliability of the media access control

38(MAC) layer of the IEEE 802.11 protocol is maintained by

39enforcing a response message from the access point (AP)

40for every request message from a station (STA). Attackers

41exploit this request-and-respond design flaw to generate

42probe request flood (PRF) attacks. Flooding attacks create

43severe performance dilapidations or decline of resources to

44genuine STAs when besieged by requests. Unprotected

45beacon or probe request and probe response frames which

46are sent ‘clear’ increase the risk of susceptibility. Usually,

47probing is the initial phase of any other attack in computer

48networks [1–7].

49Evaluations of detection systems require identification

50of genuine and rogue frames in the sample. Analysing

51frames of a WLAN test bed manually or statistically and

52detecting a rogue frame are possible to some extent due to

53its controlled nature. However, identifying rogue frames

54from genuine frames in a real network completely is an

55impossible task. Therefore, researchers use existing sample

56datasets or other sanitised or simulated traffic to develop

57and test intrusion detection proposals. Although they are

58rich in variety of genuine and attack traffic, and considered

59as a benchmark for evaluating security detection mecha-

60nisms, these datasets do not contain background noise that

61a real-world dataset consists of. Therefore, the solutions

62that develop based on these datasets may not work as
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63 efficiently and effectively as they claim to be in real-world

64 environments. This research investigates and analyses the

65 traffic of a real-world WLAN and, therefore, works with

66 actual WLAN frames [8–10].

67 The research seeks to identify existence of an adversary

68 in a WLAN at the beginning of a frame transmission, so

69 that it can prevent more disruptive attacks an adversary

70 may plan to perform. The research learnt that traffic pat-

71 terns are unforeseeable and have inherent complexities due

72 to many factors including usage, the operating system, user

73 applications, network prioritisation services, environmental

74 conditions and traffic load of capturing STA [11]. These

75 make this research a good candidate for artificial neural

76 networks (ANN) also commonly known as neural networks

77 (NN). NNs have a very high flexibility and, hence, can

78 analyse incomplete or partial data. However, WLAN traffic

79 and NN parallel processing feature can generate a signifi-

80 cant amount of overhead on the monitoring STA, which

81 can affect performance of the monitoring STA, and

82 sometimes can lead to a denial of service (DoS).

83 In order to classify as a user or attack frame, the research

84 analyses four distinct parameters only. These parameters

85 are sequence number and frame sub-type of a MAC frame;

86 a signal attribute, signal strength indicator (SSI); and sta-

87 tistical information, delta time value. Capturing and pro-

88 cessing few parameters have a low impact on the

89 monitoring STA. The preliminary work on selecting these

90 attributes has been published in Ratnayake et al. [12]. The

91 rest of the paper is organised as follows: Sect. 2 reviews the

92 related current work on probing attack detection and pre-

93 vention using non-intelligent and intelligent methods; Sect.

94 3 defines the probe request attack detection methodology;

95 Sect. 4 discusses the WLAN organisation, data capturing

96 and preparation methods, NN design, evaluation and

97 results; and Sect. 5 concludes the paper.

98 2 Literature review

99 Many researchers have worked in the area of network

100 security looking for possible solutions for intrusion detec-

101 tion, to recognise an adversary attempting to gain access, or

102 have already compromised the computer network [13].

103 Ratnayake et al. [12] analysed non-intelligent and intelli-

104 gent wireless intrusion detection systems (WIDS). Non-

105 intelligent methods, also known as conventional methods

106 [2–4, 14–22], lack flexibility to adaptation to environ-

107 mental changes and therefore become outdated. WLAN

108 security researchers are now gradually moving towards

109 soft-computing techniques [5–7, 23–26]. Some of the

110 popular methods are self-organising maps, artificial

111 immune systems, fuzzy logic and neural models, adaptive

112 neural-fuzzy inference systems and hybrid models. They

113play a major role in current research due to their capability

114to overcome many integral weaknesses in conventional

115intrusion detection systems (IDS) such as adaptability

116issues, which require frequent updates and high computa-

117tion power and time. However, soft-computing techniques

118too suffer from their inherited design weaknesses such as

119requirement of training data; pre-processing of data, time

120and computing resources required for training or learning;

121validation; testing; optimisation and simulation of models.

122Further, less consideration is given to the most crucial

123issue of real-world data collection and real-world applica-

124tion. Training, validating and testing on real data and

125simulation on real data are very important in the process of

126bringing the research into real-world applications. Use of

127existing sample datasets such as KDD Cup ‘99 dataset and

128SNORT or other sanitised or simulated traffic to develop

129and test intrusion detection proposals is a popular approach

130in the current literature. The KDD Cup ‘99 dataset is cre-

131ated by processing the tcpdump portions of the 1998

132DARPA IDS evaluation dataset. DARPA normal dataset is

133a simulated synthetic data, and attack data are generated

134through scripts and programs. These datasets therefore do

135not contain information that a real-world dataset consists of

136[8–10]. SNORT database on the other hand has not been

137updated since year 2005. These problems also apply to

138solutions that are based on other sample databases and

139synthetic or sanitised traffic. Apart from the issues dis-

140cussed above, traffic generated from test beds also has the

141issue of limited environmental conditions as data will be

142collected from a controlled network by simulating traffic.

143Some solutions identify intrusive behaviours based on the

144exploration of known vulnerabilities.

145Collection and use of real-world traffic also makes the

146researcher understand the real-world issues that a security

147administrator may encounter whilst implementing a pro-

148posed application. However, real-world data collection can

149lead to biased data being used for training and testing, as

150there is no standard approach or guidelines for collecting

151and using traffic of a real network. Furthermore, as the

152dataset is unique to each experiment, results cannot com-

153pare with other research, unless one implements other

154methods on the same dataset to compare two methods.

155Furthermore, some of the existing studies do not explain

156how they recognised genuine and attack frames within the

157training traffic when real-world data are collected [6, 9].

158The research assumes that they may have collected attack

159and normal frames separately, or collect traffic whilst an

160attacker is available, and analysed manually to label them

161based on other features.

162Many of the existing approaches of intrusion detection

163have focused on the issues of feature extraction. Selecting

164input features based on the highest eigenvalue from a

165limited set of data may lead to losing many important and
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166 sensitive features, which can affect the efficiency and

167 effectiveness of the classifier. Almost no research evaluates

168 the results of a detection model’s performance to different

169 types of scenarios, e.g. when user and attacker(s) at dif-

170 ferent distances from AP, when only the attacker is present,

171 when there is no attacker, when there is more than one

172 attacker, when there are attackers with similar and different

173 network interface card (NIC) types, and so on. This lack of

174 information can confuse or mislead readers or future

175 researchers, as although their proposals are excellent in

176 technical and practical aspects, they may not reach the

177 outstanding results that other researches may have pub-

178 lished using non-challenging traffic.

179 Further, most of IDSs propose universal solutions to

180 intrusions. This research agrees with Liao et al. [27] who

181 suggest that the existing IDSs pose challenges to the cate-

182 gories that they claim they belong to. Many are extremely

183 complex proposals that are simulated and tested without

184 considering the practical implementation and computing

185 power, they may be required, therefore limited for academic

186 research world as implementation is too complex or expen-

187 sive. This issue has also been identified by Liao et al. [27].

188 There is a broad variety of statistical methods used in

189 the literature for measuring the performance of NNs [28,

190 29]. However, mean squared error (MSE), regression,

191 confusion matrices and operating characteristic (ROC)

192 curve are the most commonly used methods in the field of

193 intrusion detection using NN. In a previous publication,

194 this research implemented a prototype of the proposed

195 design as a function approximation application [12]. Per-

196 formance is evaluated using linear regression value R2 and

197 MSE. The sensor trained outstandingly producing 98 %

198 overall regression, and MSEs 0.0039, 0.0038 and 0.0037 on

199 training, validation and test samples. However, simulation

200 of classifier in eight scenarios with 1,000 frame samples

201 resulted only in an average of 94.5 % detection rate.

202 Conventionally, probe request attack detection is a binary

203 classification application where the output can only have

204 two values, 1 (attack) or 0 (no attack). The research in [12]

205 applied standard linear regression and treated the output as

206 if it is binary, classifying any value of 0.5 or above as a ‘1’,

207 and anything below 0.5, as a ‘0’. Although standard linear

208 regression has been applied successfully for classification

209 in the past and in current research applications, statisticians

210 argue that linear regression should not be used for binary

211 classification applications, it violates many assumptions of

212 linear regression [30–32].

213 3 Probe request attack detection methodology

214 The process of establishing the IEEE 802.11 association

215 during an active scan is presented in Fig. 1. IEEE standard

216802.11 defines three frame types: management, control and

217data. The management frames set up and maintain com-

218munications. The control frames facilitate in the delivery of

219data. The data frames encapsulate the open system inter-

220connection (OSI) network layer packets. Each frame con-

221sists of a MAC header, frame body and a frame check

222sequence (FCS); however, contents of frames vary

223depending on the frame type. Probe requests are manage-

224ment frames and can be sent by anyone with a legitimate

225MAC address, as association with the network is not

226required at this stage. A typical management frame header

227comprises of following: a frame control field that defines

228the type of MAC frame and information to process the

229frame; a duration field that indicates the remaining time to

230receive the next frame; address fields that indicate MAC

231addresses of destination, source and AP; sequence control

232information to indicate the sequence number and fragment

233number of each frame. The frame body contains informa-

234tion specific to the frame type and sub-type. FCS contains

235an IEEE 32-bit cyclic redundancy check (CRC). Another

236valuable set of information available to attackers as well as

237researchers is frame statistical details and radio information

238generated by the STA that is capturing. This information

239can be retrieved by using packet analysing software such as

240Wireshark. Some of the commonly used statistical infor-

241mation in the current research is frame arrival time, time

242delta value (time since the previous packet is captured),

243time since a referenced frame, frame number, actual packet

244length, captured packet length and protocols in frame. In

245Wireshark frame detail, the IEEE 802.11 radio information

246is available before the start of the IEEE 802.11 header. This

247contains signal strength, signal quality (noise), modulation

248type, channel type, data rate, channel number and other

249useful information for network and security administrators

250as well as adversaries [1, 5, 33].

251Through these detailed studies, it is learned that before

252an attack, the attacker actively or passively monitors the

253network to learn vital network information. MAC address

254spoofing is the next step. It is therefore recognised that any
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1 - Probe Request

2 - Probe Response

3 - Authentication Request

4 - Authentication Response
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6 - Association Response

Fig. 1 Active scan and WLAN association
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255 WIDS should address these initial stages of an attack

256 before moving on to more advance steps. After analysing

257 the previous research work and the progress of IEEE

258 802.11 sub-committees, it is understood that there is a gap

259 of knowledge to develop a realistic WIDS that could detect

260 probe request attacks on real WLANs. The aim of this

261 research is to provide a flexible, lightweight and low-cost

262 solution that detects an attack during an early stage of the

263 communication with high accuracy and avoid WIDS flaws

264 discussed above.

265 The research’s scope is to detect an external attacker on

266 a single-frequency band of a single AP WLAN. A high

267 computation power is required for a real-world imple-

268 mentation if a solution is to use the full range of fields of a

269 MAC frame, signal attributes and statistical information.

270 Therefore, the research created a short list of attributes

271 shown in Table 1, after studying the IEEE 802.11 specifi-

272 cation [1] and predominantly used attributes/features in

273 previous research on DoS attacks on WLANs [2–11, 14–

274 26]. The research then manually refined the list removing

275 features that attackers can easily change, and features

276 which are redundant and dependent, reducing the features

277 to sequence number and frame sub-type of a MAC frame,

278 signal attribute—signal strength indicator (SSI) and sta-

279 tistical information—delta time value to develop a WIDS.

280 In summary, a rogue STA cannot practically synchro-

281 nise with a sequence number pattern from a genuine STA.

282 Some signal attributes can be manipulated using identical

283 NICs and configuring accordingly. However, SSI is a

284 nearly impossible feature to mimic. Frame statistics such as

285frame arrival time is a reliable attribute that attackers

286cannot manipulate. Delta time gives time difference

287between two consecutive frames, which is a reliable attri-

288bute commonly used by network administrations to review

289traffic issues. Frame sub-type is a critical attribute identi-

290fying a frame type, but can be manipulated by rogue traffic

291generators and replay attackers; however, the frame sub-

292type manipulation can be detected when combined with

293other 3 features. Additionally, the research performed a

294proof-of-the-concept experiment [12] using data captured

295during an attack from a test bed WLAN. This pilot study

296provided an opportunity to prove the concepts of IEEE

297802.11 standard and to validate many unrealistic concepts

298based on unwarranted theoretical arguments.

299A WIDS should be able to capture and analyse frames

300and detect attacks automatically in a real network that is

301unpredictable by nature. After considering different intel-

302ligent models and their possible realistic and efficient

303application on the detection of probe request attacks, the

304research considered to utilise supervised feed-forward NN

305architecture. Feed-forward NNs are straightforward net-

306works that associate inputs with outputs, sending signals

307only in one direction with no feedback loops. Therefore,

308the output does not affect the same layer. Supervised NNs

309learn from examples. After training or learning, a NN

310system is able to detect intrusions, deal with varying nature

311of attacks. NNs are capable of processing nonlinear data.

312Therefore, data from several sources can be used in a

313coordinated fashion to detect attacks. NNs do not need to

314update frequently, as the generalisation feature enables the

Table 1 Feature selection
Attribute/feature An attacker can imitate

a genuine feature

Can replay

attacked

Duplicate/dependent

on other attributes

Sequence number No Yes No

Frame type Yes Yes Yes

Frame sub-type Yes Yes No

Duration Yes Yes No

SSID Yes Yes No

FCS No Yes No

Supported data rates Yes Yes No

Protocols in frame Yes Yes Yes

Frame length Yes Yes Yes

Power management Yes Yes No

Frame arrival time No No No

Frame relative arrival time No No Yes

Delta time No No Yes

Frame length captured No No Yes

SSI No No No

Channel type Yes No No

Channel number Yes No No

Data rate Yes No Yes
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315 NN to detect unknown and variants of known attacks.

316 Moreover, mostly used WLAN cards today have IEEE

317 802.11 g and n standard, which have a maximum data

318 transfer rates of 54 and 600 Mbps, respectively. Hence,

319 when the number of participating stations in the WLAN

320 increases, the number of frames to be captured and pro-

321 cessed by the WIDS also increases. A NN can also handle a

322 large quantity of data and has very high processing capa-

323 bility due to its parallel processing feature [34–36]. These

324 qualities make NNs a good candidate for detecting WLAN

325 attacks, particularly probe request attacks. However, this

326 solution is limited to detect probe request attacks only

327 whilst a real-world network may experience a cocktail of

328 attacks. This solution also cannot prevent probing attacks

329 and cannot detect any adversary not emitting frames.

330 Following is the summary of methodology applied for

331 data capturing, training, testing and evaluation of NN (Sect.

332 4 discusses these methods in detail):

333 • Apply filtering rules and capture sequence number,

334 delta time, SSI and frame sub-type.

335 • Capture frames from user and spoofed stations.

336 • Create master input and target vectors.

337 • Create sub-input and target vectors (folds) for NN

338 fivefold validation.

339 • Specify 20 hidden neurons and create NNs using each

340 fold

341 • Set data division percentages as 70/30 for training and

342 intermediate validation.

343 • Perform fivefold validation and measure performance

344 using MSE, confusion error and ROC.

345 • Choose the best performed NN based on confusion

346 error in test phase.

347 • Simulate trained NN with freshly captured data from

348 the WLAN, which was not used for training the NN or

349 part of the training dataset.

350 • Analyse performance using classification formulae

351 given in Table 2.

352 4 Probe request attack classifier design and evaluation

353 4.1 WLAN data capture and preparation

354 A wireless network with 8 user stations is utilised to cap-

355 ture delta time value, sequence number, received signal

356 strength and frame sub-type of the packets transmitted

357 between an AP, users and attackers (Fig. 2).

358 • AP is a Netgear DG834GT router with MAC address

359 00:0f:b5:1a:23:82. It is configured with WPA2-PSK

360 enabled controlled access list (CAL), so that only the

361 computers with the listed MAC addresses and network

362key could access the network resources. AP does not

363respond to computers with MAC addresses not listed in

364the CAL. Computers without a network key cannot

365associate with the AP. However, as shown in Fig. 1, AP

366replies with probe responses and authentication

367responses.

368• The user station Test1-PC is a DELL Inspiration 510 M

369laptop with an Intel� Pentium� 1.6 2 GHz micropro-

370cessor and 1 MB of random access memory (RAM),

371with Microsoft Windows XP operating system. Com-

372municates with AP using Intel(R) PRO/WLAN 2100

373mini PCI NIC with MAC address 00:0c:f1:5b:dd:b3.

374Microsoft Office 2007 is the main application software

375used. IE/Firefox, AVG, Skype, Teamviewer, are some

376of the other software that are been used.

377• Attacker Test2-PC is a Toshiba Satellite Pro laptop

378with an Intel� Pentium� M 740 (2 GHz) microproces-

379sor and 1.9 gigabytes of RAM, with Microsoft

380Windows XP. This attacker is spoofed using a

381commercially available spoofing tool, SMAC 2.0.

382SMAC 2.0 changes MAC addresses in Microsoft

383Windows systems, regardless of whether the manufac-

384turers allow this option or not .

385• The capturing/monitoring station Test3-PC is a Toshiba

386Satellite Pro laptop with an Intel� Pentium� M 740

387(2 GHz) microprocessor and 1.9 gigabytes of RAM,

388with BackTrack4 OS. An external network adaptor,

389Realtek RTL8187 Wireless 802.11 b/g, 54 megabytes,

390Wireless Universal Serial Bus (USB) 2.0 packet

391scheduler/mini adaptor, facilitated the monitoring sta-

392tion to be configured to monitor/promiscuous mode in

Table 2 Classification formulae [38–40]

TN coverage% ¼
TN

TNþFPþFNþTP

� �

� 100 (1)

FP coverage% ¼
FP

TNþFPþFNþTP

� �

� 100 (2)

FN coverage% ¼
FN

TNþFPþFNþTP

� �

� 100 (3)

TP coverage% ¼
TP

TNþFPþFNþTP

� �

� 100 (4)

TP rate% ¼
TP

FNþTP

� �

� 100 (5)

TN rate% ¼
TN

TNþFP

� �

� 100 (6)

FP rate% ¼
FP

TNþFP

� �

� 100 (7)

FN rate% ¼
FN

FNþTP

� �

� 100 (8)

þve Prediction precision% ¼
TP

TPþFP

� �

� 100 (9)

�ve Prediction precision% ¼
TN

TNþFN

� �

� 100 (10)

Accuracy% ¼
TNþTP

TNþFPþFNþTP

� �

� 100 (11)

Confusion% ¼
FPþFN

TNþFPþFNþTP

� �

� 100 (12)

AQ1
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393 BackTrack environment, so that it receives and reads

394 all data packets transmitted using Wireshark. NIC in

395 promiscuous mode does not emit any frames. Moni-

396 toring is restricted to IEEE 802.11 WLAN channel

397 number 11—2,462 MHz due to heavy frame loss

398 experienced when capturing on all channels. Therefore,

399 monitoring statistics for STA’s behaviour on the entire

400 bandwidth is unavailable.

401 The research devised a novel method for capturing data.

402 The research captured frames from user and attacker sep-

403 arately and joined them to create sample training and

404 testing datasets as follows: Data capture is performed in

405 two phases. During the first phase (phase_1), genuine

406 frames are captured from user Test1-PC. The user is asked

407 to note the tasks performed during a specific time period.

408 During this period, the User Test1-PC accessed Internet to

409 browse information, download software, watch a live

410 television channel, listen to a live radio channel and check/

411 send emails. Second phase of the capture started immedi-

412 ately after the first phase. During the second phase

413 (phase_2), the Test1-PC is kept offline. Attacker Test2-PC

414 with its spoofed MAC address is made to send a flood of

415 probe request frames to the AP and made few network key

416 guessing attempts. Both user and attacker performed start-

417 up and shutdown procedures, network scans, network

418 connect and disconnect, and NIC repair (Table 3).

419 Preliminary checks have been performed to determine

420 that other attackers are not present during the capturing

421 period. A normal Wireshark capture consists of all frames

422 that are received by the NIC of the capturing station. Each

423frame contains a combination of MAC frame, radio and

424statistical data. Therefore, filtering rules are applied to

425A(a) Filter all frames with source address (wlan.sa)

42600:0c:f1:5b: dd:b3

427A(b) Filter delta time (frame.time_delta), sequence

428number (wlan.seq), SSI (radiotap.dbm_antsignal) and

429frame sub-type (wlan.fc.subtype) of each frame

430Phases 1 and 2 consisted of 157,060 and 19,570 frames,

431respectively.

4324.2 NN classifier training and evaluation

433In order to detect probe request attacks, a supervised feed-

434forward NN with 4 input neurons (deltaTime, sequence-

435Number, signalStrength and frameSubtype), 1 hidden layer

436with 20 neurons and an output neuron that determines

437genuine frames (0) from rogue frames (1) is implemented

438using MATLAB technical computing language. There are

439many conventional and modern theories and practices one

440can implement when determining the number of hidden

441neurons and layers [37]. A single layer is selected to reduce

442the complexity of the NN. The research trained the sample

443dataset with 1–50, step 5, neurons and identified the NN

444with 20 neurons is the best-performing NN based on MSE

445and convergence time. The network is trained using scaled

446conjugate gradient (trainscg) back-propagation function.

447This function is memory efficient and converges slowly.

448During training, the NN updates weight and bias values

449according to the following training parameters: maximum

                        Test1-PC  (User) 

Windows XP 

Intel(R) PRO/Wireless  

2100 3A Network card 

(00:0c:f1:5b:dd:b3) 

Test2-PC  

(Attacker) 

Windows XP with NetStumbler

BRIRAT 

(Access Point)  

Netgear DG834GT 

(00:0f:b5:1a:23:82) 

Test3-PC (Monitor) 

BackTrack4 - Wireshark 

WWW 

Test4-PC  

(Attacker) 

Windows XP with 

NetStumbler 

Test5-PC  

 (Attacker) 

Linux with network scanning tool 

Fig. 2 WLAN
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450 number of epochs = 100, MSE goal = 0, maximum time

451 to train = infinity, minimum performance gradi-

452 ent = 1e - 6, maximum validation failures = 5, second

453 derivative approximation value = 5.0e - 5, parameter for

454 regulating the indefiniteness of the Hessian = 5.0e - 7. It

455 uses tan-sigmoid transfer function in both hidden and

456 output layers as it scales the output values from zero to one.

457 One of the most common performance measurement

458 methods in use for evaluating a NN designed for classi-

459 fication is MSE. MSE is the average squared error

460 between the NN’s output and the target value of a com-

461 plete data sample. MSE = 0 means no errors. Values

462 closer to 0 are better. This research uses the MSE to

463evaluate and compare how the NN has learned the training

464data. After training, testing dataset is passed through the

465classification system. However, MSE does not give a clear

466picture of how a model classified its frames. A basic

467confusion matrix gives sums of correct and incorrect

468classifications based on true positive (TP), true negative

469(TN), false positive (FP) and false negative (FN). These

470results can be further explained using formulae such as

471TN, FP, FN and TP coverage, and rate percentages,

472positive and negative prediction precision percentages,

473accuracy and confusion presented in Table 2.

474A series of FP and TP pairs plots a ROC. A ROC is a

475visual tool to recognise the positive and negative samples

Table 3 User and attacker

activities
Data segments

included

Starting record no. Action

User activities (Phase_1)

k1 1 Capture started

k1 315 Opened IE

k1 409 Googgled and played BBC2 live and stopped

k1 1901 Googgled and played BBC1 radio live

k1 7721 Checked Yahoo email

k1 21474 Sent an email

k1, k2, k3, k4, k5 22840 d/loaded a large file

K5 153240 Stopped BBC1 radio

k5 154670 d/load completed

k5 154686 Closed all opened windows

k5 154734 Disconnected from AP

k5 154769 Scanned network

k5 154860 Tried to connect to the network 3 times

k5 155363 Repaired the adaptor

k5 155640 Opened IE

k5 157001 Shut down

NIL Stopped capture

Attacker activities (Phase_2)

NIL Capture started

y1 1 Attacker started

y1 7 Directed probing attack started

y1 1577 Directed probing attack stopped

y1 1710 Network scanned 3 9 times

y1 1977 Tried to connect to the network with a guessed network key

y1 1846 Tried to connect to the network with a guessed network key

y1 1871 Tried to connect to the network with a guessed network key

y1 2223 Tried to connect to the network with a guessed network key

y1, y2, y3, y4, y5 2223 Directed probing attack started

y5 18941 Directed probing attack stopped

y5 19148 Network scanned 5 9 times

y5 19490 Tried to connect to the network with a guessed network key

y5 19551 Turned off the attacker

Nil Stopped capture
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476 that are incorrectly identified. When (0.1), the FP = 0 and

477 TP = 1, which indicates a perfect predictor. Therefore, the

478 more each curve hugs the left and top edges of the graph,

479 the better the prediction. The area beneath the curve can be

480 used as a measure of accuracy. ROC also encapsulates all

481 the information presented in a confusion matrix and

482 therefore commonly used by the researchers to show the

483 consistency of results [38, 41, 42].

484 However, a model’s performance can be misleading due

485 to over-fitting, which generally occurs when the model

486 training is not evaluated during the training process. Over-

487 fitted models do not perform well on unseen data. Typi-

488 cally, over-fitted models can be recognised from smaller

489 training confusion and larger testing confusion. This issue

490 is addressed by means of intermediate validation during

491 training. Self-consistency and cross-validation are among

492 several methods of estimating how well a trained model

493 will perform with unseen data, and detect and prevent over-

494 fitting of the model. Self-consistency is a method to eval-

495 uate the model’s performance with seen data. In self-con-

496 sistency test method, frames from phase_2 append to the

497 frames from phase_1 to use as the data sample (FoldAll),

498 and complete dataset (176,630 frames) is utilised for

499 training (70 %) and validation (30 %) phase. Therefore,

500 there is no wastage of training data. During the test phase,

501 the complete dataset (176,630 frames) is reused. However,

502 as the parameters of the NN are obtained from the training

503 dataset, error rate can be underestimated leading to a high

504 accuracy rate. Self-consistency test method does not

505 require much computation as training, validation and test-

506 ing are executed only once [43, 44].

507 In order to minimise bias present within the random

508 sampling of the data samples, K-fold cross-validation

509 methodology is used. Here, the original sample is parti-

510 tioned into k sub-samples. Then, the results from each fold

511 are averaged to generate a single estimation. Tenfold cross-

512 validation is most commonly used to reduce the wastage of

513 data in circumstances where there is a limited set of data.

514 However, when larger numbers of folds are applied to a

515 high data volume, it requires extra computations and pro-

516 cessing and is time-consuming [45]. As this research has a

517 large quantity of data, it is decided to use fivefold cross-

518 validation. The frames of phase_1 and phase_2 are divided

519 into 5 equal segments, as shown in Table 4 and labelled as

520 rogue or genuine, for the fivefold cross-validation.

521 The cross-validation process is repeated 5 times. Each of

522 the 5 sub-samples is used only once as the validation data,

523 i.e. each time a single sub-sample is retained to test the

524 model, whilst remaining 4 sub-samples are used as training

525 data. The system randomly divides the data sample and

526 uses 70 % of the data to train the network and 30 % for

527 validation. The MSEs of self-consistency (FoldAll) and

528 Fold1 to Fold5 test are shown in Table 5.

529Table 5 shows in a nutshell that the results are very

530much similar in every test. However, to understand and

531analyse the behaviours of MSE and confusion errors of

532cross-validation and self-consistency test, Figs. 3 and 4 are

533produced. In Fg. 4, Fold1 shows the best MSEs 0.0022 and

5340.0018 for training and validation, respectively. However,

535Fold1 test records the worst MSE 0.0167. Further, it shows

536that Fold1 significantly deviates from the rest of the folds.

537The worst MSE during training is generated by Fold5.

538Fold4 shows the worst MSE during validation and best

539MSE during test. Further, it also shows that MSEs of test

540are higher than the training and validation in Fold1 and

541Fold2, which indicates an over-fit. Figure 4 shows that the

542confusion percentages of the classifiers are extremely low,

543resulting in an accuracy rate ranging from 98.19 to

54499.88 % during training, validation and test. Fold1 shows

545the lowest confusion rates 0.22 and 0.19 % for training and

546validation, respectively. However, Fold1 test records the

547highest confusion 1.81 %. Further, it shows that Fold1

548relatively significantly deviates from the rest of the folds.

549The highest confusion during training is 0.59 %, generated

550in Fold5. The highest confusion during validation is gen-

551erated in Fold4. The least confusion during test is 0.12,

552produced in Fold4. Further, it also shows that confusions of

553tests are higher than the training and validation in Fold1

554and Fold2. Both MSE and confusion values of self-con-

555sistency test have a clear least deviation among training,

556validation and test results: self-consistency test reports

557MSEs as 0.0043, 0.0045, 0.0043 (Fig. 3) and confusions, as

5580.47, 0.50, and 0.47 % (Fig. 4). The ROC curves in Fig. 5

559are a graphical representation of sensitivity and specificity.

560It also visually summarises the results of fivefold cross-

561validation (Fold1–Fold5) tests and self-consistency test

562(FoldAll) presented in the confusion matrix. Figure 6 is a

563cross-section of Fig. 5. In the graph, all curves hug the left

564and top edges of the plot, which proves that the trained

565NNs are nearly perfect predictors. Further, the area beneath

566the curves also shows a high measure of accuracy.

567In summary, Fold1 and Fold2 have a risk of overfitting,

568as its test confusion is greater than the validation confu-

569sion. From the remaining Folds3–5, Fold4 with test con-

570fusion rate 0.12 % has the least confusion, therefore

571becomes the best-performing model. Therefore, Fold4

572qualifies to simulate with unseen data. The information in

573Table 6 is obtained by applying TP, TN, FP and FN results

574attained from the Fold4 test phase to classification formu-

575lae in Table 2.

576The overall analysis of these results in Table 6 shows

577that there are no major deviations in results that is gener-

578alised, when calculating confusion or accuracy. The con-

579fusion percentage is extremely low, resulting in an

580accuracy rate of 98.5 % on unseen test dataset. This indi-

581cates that the classifier’s performance is nearly perfect.
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582 Furthermore, high sensitivity and specificity rates prove the

583 robustness and stability of the NN model. The Fold4 ROC

584 presented in Figs. 5 and 6 hugs the left and top edges of the

585 plot, graphically proves the consistency of the NN and the

586 area beneath the curve illustrates high measure of accuracy.

587To understand the results in Tables 5 and 6, and in

588Figs. 3, 4, 5 and 6, the user and attacker activities during

589the capturing period presented in Table 3 are analysed with

590data segments used for NN training, validation and testing

591(Table 4). Fold5 uses data segments 1, 2, 4 and 5 to train

592the network and leaves segment 3 to test the network. The

593analysis in Table 3 indicates that the training sample with

594segments 1, 2, 4 and 5 is diverse. It also shows that trained

595NN performs considerably well with unseen data.

Table 4 Data segmentation method

Data segments (k ? y) Genuine frames from normal user (Phase_1) Rogue frames from attacker (Phase_2) Running total

Start End Start End

k1 ? y1 0 31,412 0 3,914 35,326

k2 ? y2 31,413 62,824 3,915 7,828 70,652

k3 ? y3 62,825 94,236 7,829 11,742 105,978

k4 ? y4 94,237 125,648 11,743 15,656 141,304

k5 ? y5 125,649 157,060 15,657 19,570 176,630

Table 5 MSE and confusion errors of self-consistency and fivefold

validation

Description FoldAll Fold1 Fold2 Fold3 Fold4 Fold5

Train

sample

1,2,3,4,5 1,2,3,4 2,3,4,5 3,4,5,1 4,5,1,2 5,1,2,3

Test sample 1,2,3,4,5 5 1 2 3 4

MSE

Training 0.0043 0.0022a 0.0039 0.0044 0.0051 0.0053b

Validation 0.0045 0.0018a 0.0045 0.0045 0.0052b 0.0049

Test 0.0043 0.0167b 0.0058 0.0018 0.0012a 0.0014

Confusion

Training

(%)

0.47 0.22a 0.42 0.49 0.56 0.59b

Validation

(%)

0.50 0.19a 0.49 0.50 0.58b 0.54

Test (%) 0.47 1.81b 0.68 0.18 0.12a 0.13

a Lowest value
b Highest valueh

Fig. 3 MSEs of cross-validation and self-consistency tests

Fig. 4 Confusions of cross-validation and self-consistency tests
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Fig. 5 ROC curves of Fold1 to Fold5 and self-consistency tests
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596 4.3 Simulation results and discussion

597 In addition to the attacker Test2-PC utilised in the training

598 capture, two new attackers are utilised for simulation,

599 namely Microsoft Windows-based Test4-PC and Linux-

600 based Test5-PC.

601 • The attacker station Test4-PC is a DELL Inspiron

602 510 M laptop identical to TEST1-PC. This attacker is

603 spoofed using SMAC 2.0.

604 • Attacker Test5-PC is a Toshiba Satellite Pro laptop

605 with an Intel� Pentium� M 740 (2 GHz) microproces-

606 sor and 1.9 gigabytes of RAM, with Linux-based

607 Ubuntu 9.10 OS. NIC is Netgear WG111T 108 Mbps

608USB 2.0 Adapter. This attacker is spoofed using

609macchanger spoofing tool.

610Frames are captured using the capturing STA Test3-PC.

611Capturing sessions varied to collect adequate number of

612frames, approximately 3,000 frames per session. Traffic

613captured from user STAs is normal uncontrolled traffic.

614However, the research generated the probe request attacks

615using NetStumbler and Linux network scanning tool.

616Trained NN is simulated using the pre-defined scenarios as

617shown in Table 7. Frames are captured by using Wireshark

618capturing software with same filtering rules, A(a) and A(b),

619when capturing training data. Data are captured in

620numerical form. Therefore, no conversion is needed.

621Figure 7 shows security administrator’s probe request

622attack monitoring screen. The system tabulates classifier’s

623output values against frame numbers. Output bounds are

624(0,1). Ideally, the output value should be zero, which

625means ‘no attack’. There are many schools of thought as to

626how one classifies a frame into an attack or genuine class.

627This research uses the most common method, that is,

628frames with output neuron value equal or higher than 0.5

629are classified as attack or positive frames (1), whilst others

630are classified as genuine or negative frames (0). However,

631in real-world situations, security administrators can set the

632threshold value depending on the degree of sensitivity

633required. A real-world application also can provide more

634information on the screen such as the MAC address, time

635and other statistics. However, this research cannot verify

636the accuracy of the detection system from Fig 7. Therefore,

637result validation requires comparing the actual results with

638expected results.

639The Fig. 8 tabulates the squared difference between the

640expected value (target) and the actual result (output) of

641each frame of the complete dataset, and produces an error

642value scaled from zero to one. A frame’s error = zero

643means ‘no error’, that frame is correctly classified. The

644MSE of the dataset is 0.034262, which is a value very close

645to zero that is statistically a good performance. This also

646generates 4.1 % overall confusion resulting 95.9 % of

647overall accuracy from the 10 simulation samples used in

648Table 7. The individual simulation results of pre-defined

649scenarios shown in Table 7 are tabulated in Table 8.

650Following is the interpretation of the results of Table 8.

6514.3.1 Detection rate of known and unknown attacks

652This research refers the NetStumbler attack frames that the

653NN is trained with as known attacks. Unknown attacks are

654frames generated from software that were not used for

655training the NN. The results of simulations 34, 36–38 show

656that the NN has detected between 99.66 and 100 % of

657known NetStumbler attacks. The results of simulation 40
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Fig. 6 A cross-section of ROC curves

Table 6 Confusion matrix of Fold4 test

Description Fold4

Training data segments (ky) 4,5,1,2

Test data segment 3

Testing sample 35,326

TP 3,892

TN 31,393

FP 19

FN 22

TP coverage 11.02 %

TN coverage 88.87 %

FP coverage 0.05 %

FN coverage 0.06 %

Sensitivity TP 99.44 %

Specificity TN 99.94 %

FP 0.06 %

FN 0.56 %

Positive prediction precision 99.51 %

Negative prediction precision 99.93 %

Accuracy 99.88 %

Confusion 0.12 %
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658 show that NN has detected 95.89 % of unknown Linux

659 network scanning tool attacks. The accuracy of trained NN

660 was 99.88 % (Table 6). Therefore, whilst the detection

661 rates of known attacks (sim34, 36–38) are 99.5, 100, 100

662 and 100 %, respectively, the detection of unknown attacks

663 shows 4.11 % reduction.

6644.3.2 Effect of the movement of an attacker and a user

665It was observed that when the NetStumbler attacker was at

666a general distance or far away location within the signal

667range, the detection rate was 99.66–100 % (sim34 and 36).

668When the NetStumbler attacker was at the same locations

669as the user, the detection rate was only 72.91 % (sim35).

670However, it is a nearly impossible scenario in a non-public

671WLAN. The results of sim39 showed that the detection rate

672reduces when user moves away from the signal range.

673When the captured data are analysed, it is observed that

674when a genuine user scans a network excessively, it can

675raise a false alarm, because it generates unusually a large

676number of probe requests. This can occur due to an ill-

677configured WLAN card, weak signal strength or as in this

678case, user deliberately scanning the network. This may

679require network administrator’s attention and can be solved

680within the system by setting a threshold value of warnings

681to be tolerated per second to suit to specific users or net-

682work. However, user’s mobility within the signal range

683does not affect the detection rate very much, and therefore,

684this solution enables the WLAN users to change their

685location of work in contrast to some experiments that

686required user stations to be static.

6874.3.3 Effect of the user and an attacker’s presence

688at the same time

689The NN was simulated (sim41) using a random combina-

690tion of data used for sim31 and sim34, which is an unseen

691dataset from user and attacker using NetStumbler (known

692attack). In this scenario, sensitivity and specificity of the

693scenario was 98.18 and 99.66 % respectively, which was

694similar to sensitivity and specificity of sim31 and sim34.

695However, there is a reduction in positive prediction rate

696from 100 to 96.58 % and negative prediction rate from 100

697to 99.82 % in sim41. Further, it reports a 1.31 % of

Table 7 Tests conducted
Sim code Test scenario

Sim31 Unseen dataset from user (Test1-PC)

Sim39 Unseen dataset from user (Test1-PC) far away from AP

Sim34 Unseen dataset from attacker (Test2-PC) using NetStumbler

Sim35 Unseen dataset with attacker (Test2-PC) at the same location as the user

Sim36 Unseen dataset with attacker (Test1-PC) far away from user’s location

Sim37 Unseen dataset with new attacker (Test4-PC) using NetStumbler

Sim38 Unseen dataset with 2 attackers (Test2-PC and (Test4-PC) using NetStumbler

Sim40 Unseen dataset with an attacker using a Linux network scanning tool (Test5-PC)

Sim41 Unseen dataset from user (Test1-PC) and attacker (Test2-PC)using NetStumbler

Sim42 Unseen dataset from user (Test1-PC) and an attacker using a Linux network scanning tool

(Test5-PC)
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698 confusion, which is a rate higher than sim34, less than

699 sim31. sim42 utilised a random combination of data used

700 for sim31 and sim40, which is an unseen dataset from user

701 and an attacker using a Linux network scanning tool

702 (unknown attack). In this scenario too, the sensitivity and

703 specificity of the model was 95.89 and 98.18 % respec-

704 tively, which was similar to sensitivity and specificity of

705 sim31 and sim40. Again, there is a reduction in positive

706 prediction rate from 100 to 96.53 % and negative predic-

707 tion rate from 100 to 97.85 % in sim42. Further, it reports a

708 2.61 % of confusion, which is a rate less than sim40 and

709 higher than sim31. It is clear that confusion rate slightly

710 increases during an unknown attack. However, this

711 experimentation shows that the model could still detect an

712 unknown attack with 97.39 % accuracy.

713 5 Conclusion

714 This experimental study is carried out to detect probe

715 request attacks by analysing real WLAN traffic frames of a

716 STA using a NN classifier. The supervised feed-forward

717 NN classifier analyses four distinct parameters such as

718 delta time, sequence number, signal strength and frame

719 sub-type, and identify and differentiate a genuine frame

720 from a rogue one. Currently, identifying genuine and rogue

721 frames from real-world traffic for NN training is conducted

722 manually, which is labour-intensive. The proposed solution

723 enables security administrators to train the NN with a

724diverse combination of separately captured genuine user

725data and rogue attacker data when necessary. The experi-

726mental results demonstrate that the NN model can detect

727probe request attacks to a very high degree. The proposed

728solution detects an attack during an early stage of the

729communication. The solution also works when network

730prioritisation services like quality of service (QoS) is

731enabled and works well when the genuine user is offline.

732Furthermore, although the detection rates slightly drop

733when STAs move to boundaries of the network, the solu-

734tion does not limit the genuine STA’s movement within the

735network. Monitoring only delta time, sequence number,

736signal strength indicator and frame sub-type considerably

737reduces the overhead of the monitoring machine, whilst

738producing the expected results as all four fields are nearly

739impossible to manipulate at any one time. Therefore, this is

740an efficient, lightweight and low-cost solution, compared to

741solutions currently available, which needs capturing and

742processing STAs with high computing power. Furthermore,

743this may also ease the housekeeping of training data, as

744administrators can remove unnecessary parts of training

745data easily and add new training data without having to

746recapture already available data in circumstances such as

747replacing or upgrading a STA. This research, by design, is

748limited to a single-frequency band of a single AP WLAN

749and can only detect an external attacker. However, the

750applicability of this research can be improved including

751features relevant to channel and AP. More research has to

752be done to improve detection rates when STAs are very

Table 8 Summary of tests conducted

Description Sim31 Sim39 Sim34 Sim35 Sim36 Sim37 Sim38 Sim40 Sim41 Sim42

Complete sample 5,782 3,595 2,975 2,905 2,837 2,026 3,088 3,045 8,827 8,757

TP 0 0 2,965 2,118 2,837 2,026 3,088 2,920 2,965 2,920

TN 5,677 3,180 0 0 0 0 0 0 5,677 5,677

FP 105 415 0 0 0 0 0 0 105 105

FN 0 0 10 787 0 0 0 125 10 125

TP coverage (%) 0.00 0.00 99.66 72.91 100.00 100.00 100.00 95.89 33.86 33.08

TN coverage (%) 98.18 88.46 0.00 0.00 0.00 0.00 0.00 0.00 64.83 64.31

FP coverage % 1.82 11.54 0.00 0.00 0.00 0.00 0.00 0.00 1.20 1.19

FN coverage (%) 0.00 0.00 0.34 27.09 0.00 0.00 0.00 4.11 0.11 1.42

Sensitivity TP (%) NaN NaN 99.66 72.91 100.00 100.00 100.00 95.89 99.66 95.89

Specificity TN (%) 98.18 88.46 NaN NaN NaN NaN NaN NaN 98.18 98.18

False ?ve discovery rate (%) 1.82 11.54 NaN NaN NaN NaN NaN NaN 1.82 1.82

False -ve discovery rate (%) NaN NaN 0.34 27.09 0.00 0.00 0.00 4.11 0.34 4.11

?ve Prediction precision (%) 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 96.58 96.53

-ve Prediction precision (%) 100.00 100.00 0.00 0.00 NaN NaN NaN 0.00 99.82 97.85

Accuracy (%) 98.18 88.46 99.66 72.91 100.00 100.00 100.00 95.89 98.69 97.39

Confusion (%) 1.82 11.54 0.34 27.09 0.00 0.00 0.00 4.11 1.31 2.61

Some formulae generate NaN values when either user or attack frames are presented for calculations where calculations require both user and

attack frames
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753 close to the AP and far away from APs, and to understand

754 the issues of updating the NN with new attack types and

755 user scenarios.

756
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