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A B S T R A C T   

The paper presents the results of a novel 3-D shared aperture 3 × 3 matrix antenna-array for 26 
GHz band 5 G wireless networks. Radiation elements constituting the array are hexagonal-shaped 
patches that are elevated above the common dielectric substrate by 3.35 mm and excited through 
a metallic rod of 0.4 mm diameter. The rod protrudes through the substrate of 0.8 mm thickness. 
It is shown that by isolating each radiating element in the array with a wall suppresses unwanted 
electromagnetic (EM) wave interactions, resulting in improvement in the antenna’s impedance 
matching and radiation characteristics. Moreover, the results show that by embedding hexagonal- 
shaped slots in the patches improve the antenna’s gain and radiation efficiency performance. The 
subwavelength length slots in the patches essentially transform the radiating elements to exhibit 
metasurface characteristics when the array is illuminated by EM-waves. The proposed array 
structure has an average gain and radiation efficiency of 20 dBi and 93%, respectively, across 
24.0–28.4 GHz. The isolation between its radiation elements is greater than 22 dB. Compared to 
the unslotted array the improvement in isolation between radiating elements is greater than 11 
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parisnanterre.fr (S.N. Burokur), sonia.aissa@inrs.ca (S. Aïssa), iyad.dayoub@uphf.fr (I. Dayoub), francisco.falcone@unavarra.es (F. Falcone), 
limiti@ing.uniroma2.it (E. Limiti).  

Contents lists available at ScienceDirect 

Optik 

journal homepage: www.elsevier.com/locate/ijleo 

https://doi.org/10.1016/j.ijleo.2022.169708 
Received 22 September 2021; Received in revised form 29 April 2022; Accepted 19 July 2022   

mailto:mohammad.alibakhshikenari@uc3m.es
mailto:b.virdee@londonmet.ac.uk
mailto:valeria.vadala@unimib.it
mailto:valeria.vadala@unimib.it
mailto:mardal@kth.se
mailto:medecos@uniovi.es
mailto:a.g.alharbi@ieee.org
mailto:sburokur@parisnanterre.fr
mailto:sburokur@parisnanterre.fr
mailto:sonia.aissa@inrs.ca
mailto:iyad.dayoub@uphf.fr
mailto:francisco.falcone@unavarra.es
mailto:limiti@ing.uniroma2.it
www.sciencedirect.com/science/journal/00304026
https://www.elsevier.com/locate/ijleo
https://doi.org/10.1016/j.ijleo.2022.169708
https://doi.org/10.1016/j.ijleo.2022.169708
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2022.169708&domain=pdf
https://doi.org/10.1016/j.ijleo.2022.169708
http://creativecommons.org/licenses/by/4.0/


Optik 267 (2022) 169708

2

dB, and the gain and efficiency are better than 10.5 dBi, and 25%, respectively. The compact 
array has a fractional bandwidth of 16% and a form factor of 20× 20× 3.35 mm3.   

1. Introduction 

Worldwide deployment of 5 G wireless communication systems is currently underway [1]. Unlike the previous generations of 
cellular systems, 5 G offers benefits of faster internet connectivity and capability to link with thousands of devices [2]. This technology 
makes the realization of Internet of Things (IoT) or Internet of Everything (IoE) possible as well as the creation of new ‘smart’ services 
capable of providing information in real-time. The frequency bands used in the initial phase of 5 G deployment are between 700 MHz 
and 3.8 GHz. This frequency band were originally used for previous generations of mobile technology. The demand for bandwidth is 
expected to grow with greater usage of 5 G. This demand can only be met by using the millimeter-wave 5 G spectrum at 26 GHz. The 
large data transmission capacity [3] of the millimeter-band is associated with a high loss resulting from propagation, atmospheric loss, 
pathloss, dielectric-loss, radiation-loss, and metallic loss in transmission-lines [4,5], To compensate for such loss, research is now 
focused on antenna array technologies at the millimeter-wave band [6–9]. 

In this paper, a novel 3-D shared aperture 3 × 3 antenna array concept is proposed for 5 G millimeter-wave applications operating 
over 24–28.4 GHz. The antenna array consists of hexagonal-shaped patches that are perched above a common substrate and excited 
using metallic rods through the substrate. Individual antennas are decoupled from each other with an isolation wall to prevent un
wanted mutual coupling that can degrade the overall far-field performance of the antenna. To enhance the gain and radiation effi
ciency of the antenna the patches are made to exhibit metasurface chacteristics. This is achieved by loading the patches with 
hexagonal-shaped concentric slots of decreasing diameters. The feeding structure of the proposed array makes it amenable to 
either single aperture or shared aperture antenna applications as it covers a relatively wide bandwidth. This is achieved by grouping 
together individual antennas in the array to form sub arrays that are used to cover a specific portion of the total bandwidth for different 
applications on time/frequency shared basis [10,11]. 

2. 3D shared aperture nine-element antenna array 

Geometry of the proposed 3-D shared aperture nine element antenna array is shown in Fig. 1. The array consists of hexagonal- 
shaped patches that are constructed on the base dielectric substrate (Rogers RT5880) with a thickness of 0.2 mm, dielectric con
stant of 2.2, and tanδ of 0.0009. The radiating patches are elevated above the dielectric substrate by 3.35 mm using a metallic rod of 
0.4 mm diameter. The base substrate of 0.8 mm thickness has a ground-plane. The metallic rods protrude through the base substrate 
and are insulated from the ground-plane metallization layer. Each antenna is exited through the metallic rods. By raising the antenna 
above the substrate effectively reduces surface current interactions between adjacent antennas which can drastically undermine the 
antenna’s characteristics. The structural parameters of the array are listed in Table 1. The overall size of the proposed basic antenna 
array is 20× 20× 3.35 mm3. 

Theoretical modeling of such an array is provided in [12]. To validate the design of the proposed antenna array it was constructed 
and analyzed using two very different 3-D electromagnetic solvers, namely, CST Microwave Studio and Ansoft HFSS. The numerical 
EM-solver by Ansoft HFSS is based on frequency-domain finite-element method (FEM), and CST Microwave Studio is based on a 

Fig. 1. 3-D shared aperture nine element 3 × 3 array antennas, (a) isometric top-view, and (b) side view.  
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time-domain finite integration technique (FIT) method. 
The active S-parameters in Fig. 2(a) shows that the proposed basic antenna array exhibits an impedance bandwidth of 700 MHz and 

operates across 26.5–27.2 GHz, which corresponds to a the fractional bandwidth (FBW) of 2.6%. The transmission-coefficient response 
between the radiation elements is shown in Fig. 2(b)-(i). These results show that the average isolation between the patches #2 to #9 

Table 1 
Geometrical Parameters of the Array (units in millimeters).  

Length Width La Wa Lw Ww Lp 

20 20 4 4 5 5 1.75 
dhole drod Hrod Hw hs1 hs2 d1 

0.5 0.2 3.35 2 0.8 0.2 3  

d2 s g Ws Wml form factor  
2 7 0.25 0.08 0.2 20× 20× 3.35  

Note: Ws and Wml represent the width of the slots and meandered-lines, respectively. Some parameters are annotated in Fig. 4 & 5. 

Fig. 2. Active S-parameter response of the proposed antenna array, (a) reflection-coefficient (S11), (b) transmission-coefficient between antennas 
#1&#2 (S12), (c) transmission-coefficient between antennas #1&#3 (S13), (d) transmission-coefficient between antennas #1&#4 (S14), (e) 
transmission-coefficient between antennas #1&#5 (S15), (f) transmission-coefficient between antennas #1&#6 (S16), (g) transmission-coefficient 
between antennas #1&#7 (S17), (h) transmission-coefficient between antennas #1&#8 (S18), and (i) transmission-coefficient between antennas 
#1&#9 (S19). 
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relative to patch #1, i.e., the isolation between patches #1&#2 is 12 dB, #1&#3 is 6 dB, #1&#4 is 11 dB, #1&#5 is 7 dB, #1&#6 is 
11 dB, #1&#7 is 12 dB, #1&#8 is 10 dB, and #1&#9 is 13 dB. The results are summarized in Table 2. 

The radiation characteristics of the proposed antenna array are shown in Fig. 3. It can be observed from this figure that an average 
gain and efficiency achieved over the antenna’s operating frequency band of 26.5–27.2 GHz are 9.5 dBi and 68%, respectively. The 
radiation characteristics of the antenna array are summarized in Table 3. 

Mutual coupling effects between the closely spaced radiating elements can cause unwanted distortion in the radiation charac
teristics of the array. This can adversely affect the overall far-field performance of the antenna array. Therefore, to suppress the near- 
field radiation emanating from each antenna in the array, an isolation wall wrapped around the individual antennas, as shown in Fig. 4. 
The wall is made from a perfect electric conductor. This simple technique does not affect the overall size of the antenna. 

The active S-parameters and radiation properties of the array with the isolation wall are shown in Figs. 2 and 3. These results show 
that with the isolation wall the impedance bandwidth of the antenna array improves by a factor of four across 24.8–28.4 GHz, which 
corresponds to a fractional bandwidth of 13.5%. The transmission-coefficient response in Fig. 2(b)-(i) show that the improvement in 
the average isolation between antennas #1&#2 is 5 dB, #1&#3 is 8 dB, #1&#4 is 9 dB, #1&#5 is 10 dB, #1&#6 is 5 dB, #1&#7 is 
6 dB, and #1&#8 is 6 dB, and #1&#9 is 6 dB. These results are compared with the basic array in Table 2. 

Table 2 
S-Parameters Of The Various Antenna Array Structures.  

Antenna Arrays Reflection coefficient (S11 <− 10 dB)        

Basic array 26.5–27.2 GHz (700 MHz & 2.6% FBW)        
Array with wall 24.8–28.4 GHz (3.6 GHz &13.5% FBW)        
Array with slots 24.0–28.4 GHz (4.4 GHz & 16.8% FBW)        
Improvement of slot array c.f. basic array 3.7 GHz & 14.2% FBW        
Antenna Arrays Average transmission coefficient (dB)  

S12 S13 S14 S15 S16 S17 S18 S19 

Basic array 12 6 11 7 11 12 10 13 
Array with wall 17 14 20 17 16 18 16 19 
Array with slot load 23 22 27 22 23 24 23 30 
Improvement of slot array c.f. basic array 11 16 16 15 12 12 13 17  

Fig. 3. Radiation properties of the antenna array, (a) gain, and (b) efficiency.  

Table 3 
Radiation Characteristics With CST.  

Average gain (dBi)  

Basic array  9.5 
Array with wall  15.7 
Array with slot load  20.5 
Improvement of slot array c.f. basic array  10.5  

Average efficiency (%)   
Basic array  68 
Array with wall  82 
Array with slot load  93.5 
Improvement of slot array c.f. basic array  25  
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Fig. 3 shows that CST predicts the average gain and efficiency of the antenna array to be 20.5 dBi and 93.5%, respectively, over 
24.8–28.4 GHz. Compared to the basic array this corresponds to an average improvement in gain and efficiency of 10.5 dBi and 25%, 
respectively. With HFSS the average gain and efficiency are 19.2 dBi and 85%, respectfully. These results are compared in Table 3. 

In order to improve the antenna’s performance, the hexagonal-shaped patches are loaded with hexagonal-shaped slot rings of 
decreasing diameter, as shown in Fig. 5. The rings are of subwavelength circumference and the width of the slots is 0.08 mm. When the 
slot loaded patches are exposed to EM-waves they behave like a metasurface as described in [13–15] that has an effect of magnify the 
aperture of the antenna array. Results from the 3-D EM-solvers, i.e., CST Microwave Studio and Ansoft HFSS, in Figs. 2 and 3 
demonstrate that by introducing the slots the array’s performance is improved. This is achieved without increasing the physical size of 
the antenna array. Moreover, the results show that the slots increase the array’s impedance bandwidth by 4.4 GHz. Compared to the 
basic array in Fig. 1 the bandwidth is increased by a factor of approximately six. 

Fig. 2(b)-(i) show the average isolation improvement of the antennas #2 to #9 relative to antenna #1 in respectively order is: 
11 dB, 16 dB, 16 dB, 15 dB, 12 dB, 12 dB, 13 dB, and 17 dB. The average isolation of the slotted patches in sequence from #2 to #9 
with respect to antenna #1 is: 23 dB, 22 dB, 27 dB, 22 dB, 23 dB, 24 dB, 23 dB, and 30 dB. Fig. 3 shows that with the slot loaded patch 
the gain and radiation efficiency improve significantly compared to the basic array in Fig. 1. On average the gain increases by 10.5 dB 
and the efficiency increases by 25%. These results are compared in Table 2. 

The radiation characteristics of the proposed antenna array structure in its various forms, i.e., basic ‘with’ and ‘without’ the 
isolation wall and metasurface slots, are compared in Table 3. It is shown that the array structure with the isolation wall and meta
surface provides superior antenna performance. The excellent correlation between the two different 3-D numerical solvers shows the 
viability of the proposed array for millimeter-wave applications such as 5 G wireless communications. 

Comparison of the proposed antenna with the previously published antenna arrays operating in the same band is presented in  
Table 4. The comparison parameters include dimensions, substrate properties, bandwidth (BW), radiation gain, and efficiency. The 
comparison shows that the key performance of gain and efficiency are not possible with the other array approaches reported thus far 
considering the compact footprint area of the proposed array antenna. 

Fig. 4. Antenna Array with the isolation walls, (a) isometric top-view, (b) schematic top-view to show the location of each structural element, and 
(c) side-view. 
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3. Conclusion 

A novel and compact nine element antenna array with shared aperture configuration is shown to exhibit high-gain and high ra
diation efficiency at the millimeter-wave 5 G band. The 3 × 3 matrix antenna array is composed of hexagonal-shaped patches that are 
suspended above a common substrate and excited by metallic rods through the substrate. To minimize the adverse effects of mutual 
coupling between the radiators the individual antenna elements in the array were surrounded with a metallic wall. The patches were 
embedded with hexagonal-shaped slots to transform them to a metasurface. The proposed array structure exhibits an average gain and 
efficiency of 20 dBi and 93%, respectively, with isolation between the radiating ellements better than 22 dB. 

Declaration of Competing Interest 

The authors confirm that they do not have conflict of interest. 

Fig. 5. Proposed array antennas with isolation walls and loaded with metasurface slots, (a) isometric top-view, (b) schematic top-view to show the 
location of the geometrical parameters, (c) side view with zoomed single antenna to better displaying the feeding mechanism, and (d) schematic 
bottom-view to show the precise location of the structural parameters. 

Table 4 
Proposed Antenna Array Compared With Other Arrays Reported In Literature.  

Ref. Size (mm2) Substrate Bandwidth /freq. range (GHz) Gain (dBi) Eff. (%) 

[16] 20 × 20 Two different layers: (i) 1 mm FR4 
(ii) 0.254 mm RO4350B 

5.25 / 24.25–29.5 Max. 10 Max. 85 

[17] 99.2 × 17.45 0.254 mm 
Rogers 5880 

6.78 /24.35–31.13 Max. 19.88 Max. 86 

[18] 27 × 25 0.508 mm 
Roger 4003 C 

5 / 24–29 Max. 9 – 

[19] 130 × 90 0.508 mm 
RO4003C 

3 / 28–3 Max. 9.6 – 

This work 20 £ 20 0.8 mm Rogers RT5880 4.4 / 24.0–28.4 Max. 21 Max. 98  
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