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ABSTRACT

A STUDY OF THE MULTIVARIATE DISTRIBUTION QOF
COMMODITY FUTURES PRICES WITH A VIEW TO THE
DEVELOPMENT OF PORTFOLIOS AND TRADING SYSTEMS

K. B, CONNOLLY

The wunivariate and multivariate distribution of daily returns on
contracts in the London cocoa, coffee, sugar and rubber futures markets
over the period 11%975-79 are studied. In the analysis, two relatively
recent multivariate procedures (the nmultivariate serial correlation
coefficient and the multivariate extension of the W - test for normality)
are investigated. The four dimensional vector of returns with one
component from each futures market can be viewed as being generated from a
serially independent multivariate normal process with non - constant
variance/covariance structure and occasional contaminating extreme
realisations.

Examining the multivariate distribution in which all the components
are returns on contracts in the same futures market, however, produced
different and very unexpected results. Highly significant multivariate
serial correlation coefficients of lag one day and significant departures
from multivariate normality were discovered,

The multivariate temporal dependence was shown to be due to
correlation between certain linear combinations of returns on contracts of
differing maturities. Studying the distribution of the linear combination
estimates led to the discovery that much of the observed phenomenon can be
explained by negatively correlated multivariate spread portfolios.

Multivariate trading rules were devised to exploit the observed
temporal behaviour and when applied to all four series produced large,
positive and highly statistically significant returns. The introduction
of non zero transaction costs reduced returns but still produced positive
profits in the cocoa and coffee series,

Models of processes that could explain the observed nmultivariate
temporal behaviour and the multivariate non - normality are presented.
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CHAPTER 1

INTRODUCTION AND SUMMARY

The aim of this research project was to investigate the possibility
of devising a risk nminimizing procedure similar to that devised by
Markowitz (1952) that would be applicable to the commodity futures
markets. In the inital empirical study, however, the discaovery of
nersistent and significant, multivariate serial correlation suggested the
presence of a special kind of multivariate market inefficiency and led teo
the develaopment of a number of multivariate trading rules. These trading
rules when applied to historical data produced consistent, significant
positive profits. A model explaining the observed multivariate market
inefficiency has been propaosed. The outline of the work is as follows.,

In Chapter 2 we review the literature on the univariate distributions
ot commodity returns. Many non - standard wunivariate and nmultivariate
statistical techniques are employed in this thesis. Rather than include
them in Chapter 2, they are reviewed briefly in the appropriate chapters.

The International Commodity Clearing House (ICCH) made available a set
of daily prices for all the futures contracts traded in the cocoa,
coffee, sugar and rubber markets in London from 1974 to 1979. Many
anomalies in the data were discovered and the task of editing and
subsequent rearrangement into an easily accessible form is described in
Appendix A.

In Chapter 3 we outline the results from carrying aut all the standard
(and some non standard) univariate statistical tests on the data., As is
noted in many other works, returns are highly nonstationary in variance
and only one series (rubber) could be described#as approximately normally

distributedt



No other work to date has investigated, in detail, ¢the joint
distribution of returns on a set of commodity futures contracts. A
necessary condition for the application of the classical (Markowitz type)
portfolio theory and many aultivariate analyses is that the joint
distribution of vreturns be multivariate normal. Chapter 4 examines
whether the commodity returns could be viewed as multivariate normal. In
the same chapter we also investigate the possibility of multivariate
temporal dependence in futures contracts from different futures markets.
This is carried out using a relatively new technique devised by 0’Brien

(1980). Our conclusions are that joint sets of returns can be described

as being generated from a multivariate normal process with occasional
contaminating extreme observations. These extreme returns are rare and
not predictable. The observed  unpredictable variation in the
variance/cavariance structure and the absence of any significant (non
zero) multivariated mean vectors, however, suggested that the development
nf a classical Markowitz type model would not be successful.

In Chapter 5 the returns to contracts of different maturities (egq.
March, September,..) from a given commodity futures market are examined.
It was here that we discovered the presence of persistent and consistent
multivariate serial correlation. There is also evidence of departure fronm
multivariate normality of a much more extreme nature than reported in
Chapter 4.

In Chapter 6 the degree and exact nature of the multivariate serial
correlation i{s outlined in more detail. We show how the multivariate
serial correlation is essentially the joint correlation between certain
linear combinations of returns on consecutive days. The extreme
collinearity of the data caused estimation problems. The sampling
distribution of these correlations and linear combination estimates is

little understood and we report the results of some simulation experiments



aimed at impraving the stability of estimates. Attempts at improving
estimates using Ridge regression techniques were
investigated, unfortunately with little success,

Although the sample results were very varied, a general pattern in the
multivariate cnrrelationhparameter estimates was perceived and the pooling
of correlation matrices enabled the estimation of 'grand average'’ linear
combinations., These ‘grand average &estimates oproved to be very
similar across all tour commodity series.,

A general picture of a very special type of amultivariate market

inefficiency common to all four commodity futures markets Dbecame
apparent. This discovery prompted an investigation of wmultivariate

trading rules.

Examination of the linear combinations of returns suggested that by
lFonstructjng certain complex multivariate spread positions one might be
able to derive portfolios of returns that would exhibit significant
univariate negative serial correlation. The analytic derivation of these
temporally dependent portfolios is outlined in Chapter 7. It was found
that 95 of the 96 resultant portfolios exhibited ex ante negative serial
correlation.

In Chapter B we outline three trading rules of various degrees of
. sophistication that were specifically designed to exploit the persistent
negative serial correlatiaon in the spread portfolios. In all cases the
profits obtained from applying these rules were not only positive and
highly statistically significant, but in the cocoa and coffee series quite
spectacular, The {inclusion of transaction costs reduced profits and in
the sugar and rubber series resulted in losses. However the most
sophisticated rule explicitly incorporates the costs of transaction as

part of the strategy and in the cocoa and coffee series produced very

encouraging returns,



Careful examination of the linear combination estimates and the
results aof the multivariate analysis led to the development of a number of
models that could explain the observed multivariate inefficiency. 1In
Chapter 9, two multivariate models of commodity futures prices are
presented. Both models involve the generation of small perturbations in
the multivariate vector of oprices. In the first nmodel we show
analytically that, under certain simplitying assumptions, the
multivariate spread portfolios have serial correlation coefficients with a
theoretical lower bound of -8.30. This is consistent with the observed
grand average serial correlation coefficients which are approximately
~-8.49.

In an attempt to incorporate the observed complex ;grand average’
correlation matrices, a second and more sophisticated model was developed.
Attempts at estimating the parameters of this second model have so far
proved unsuccessful. However, the use of trial parameter values have
produced a final model that could explain the observed nmultivariate
serial correlation and resultant successful trading rules very well

indeed.



CHAPTER 2

LITERATURE REVIEW

This research 1is concerned with the detailed examination of the
empirical distribution of returns on the four major soft commodities

traded in London from 1975 to 1979,

In this chapter we review the papers that, to date, have contributed
significantly to the body of knowledge relating to the empirical
distribution of spot and futures prices. Most works examine returns,
Rey

defined as either:

(i) Re = Pe = Pe-s '
(i1i) Re = Pe /Pe-s ‘
or {ts logarithm, i.e.
(111) Log (Re ) = Log (Pe ) = Log (Pees )

in which Pe = price at end of period t,.
The period in question can be a day, a week, a month or a’ year.

Most of the early work on  empirical distributions examined
stockmarket returns and it will be helpful, briefly, to review this work
prior to an analysis of commodity prices.

Much of the literature examining stock and commodity returns |is
concerned with producing evidence in favour of, or against, some form of

etficient market hypothesis. From a purely statistical point of view the



works concentrate on two main aspects of the return distribution:
(i) do price series conform to a random walk, (is there temporal
dependence in the sequence of returns)? and

(ii) what is the nature ot the distribution of returns?

2.1 The Nature of the univariate distribution of stock market returns

Bachelier (1900), first proposed the idea that, for a given stock, {f
there were a sufficiently large number ot transactions per day which were
spread uniformly across time, then price changes should be independently
and identically distributed (iid) realisations of a Gaussian process.
Many researchers, including Kendall (1953) and Osborne (193%9), produced
evidence in favour of the normal distribution but all noted that the
distributions had fatter tails (leptokurtic) than would be expected.
ihese fat tails were due to the occasional very large price changes and
gave rise to large estimates of variance.

Mandelbrot (1943) and others suggested that price changes were

generated by an infinite variance process. His model (3 more general form
of Bachelier'’'s model with price changes sgmpled from the stable Paretian
distribution) attempts to explain the observed departures from normality
by lifting the finite variance restriction. 0One of the main reasons for
guggesting a stable model for daily or weekly price changes was the fact
that, if the sum of iid random variables has a limiting distribution then
the random variable must come from a stable distribution (a sort of
extension of the classical central 1limit theorems to cases where the
second moment is infinite). No distributional form (except in special
cases) exists for the stable family. It is defined by a characteristic
function and a given member of the family is specified by the value of

three parameters : (i) a location parameter, (ii) a scale parameter and



(1ii) a characteristic or shape exponent ¢ ¢ (0,21, Ifa =2

we have the normal distribution and if a =1 we have the Cauchy
distribution. The variance (except if a = 2) is undefined.

Fama and Roll (1968) studied the stable family and developed
techniques tor estimating the parameter values.

Praetz (1972) reconsidered Osborne’s (195%9) Brownian motion model (in
which price changes are assumed normal). Praetz introduced the Bayesian
concept of placing a prior distribution on the variance. By cthoosing a

suitably vague prior faor the variance (inverse gamma) the posterior price

change distribution is found to be student - t. Using data on 17 price

indices Praetz fitted the student - t and three other distributions : the
normal, the compound events model, and the stable distribution. 1In all
cases the student - t gave a superior fit. Blattherg and Gonedes (1974)
examined exhaustively the sampling properties of the student - t and the
stable distributions and wusing this experience examined a number of
security price series, GStrong evidence was produced in favour of the

student - ¢ distribution, Praetz (1978), wusing monthly returns on the

Melbourne Stock Exchange, compared the two distributions and found that
the student - t was clearly superior with normality a reasonable

approximation in some instances. Fama (1978) and others have compared the
distribution of returns over various differencing intervals. "All are
very roughly normalj the approximation is better, the longer the

differencing interval."”

2.2 The nature pf the distribution of returns on commodity snot and

futures series

With the exception of Holthausen and Hughes (1978), all studies

examining commodity returns report fat tailed (fatter than normal or



leptokurtic) distributions.

Mandelbrot (1963), first suggested that wheat and corn spot
returns were stable Paretian distributed. Dusak (1973) fitted a stable
distribution to wheat, corn and soybean futures and found estimates of the
shape parameter to vary from 1.4 to 1.8. In his paper on the influence of
margin levels, Bear (1972) postulated that if margins are set too high, a

deficiency in speculative interest would impede the rapid adjustment of

prices to new information causing relatively less leptokurtic
distributions. Using non parametric techniques Bear finds evidence to

support his theory. All distributions were leptokurtic but less so over

periods of high margin levels. Laoebs (1979) exhaustive empirical study on
returns over 20 years and 16 commodities reports that all spot and future
returns are leptokurtic, . many series being significantly skewed. Loeb
noted that logging the raturns reduced the degree of lepokurtosis and
skewness. Holthausen and Hughes (1978), produce contradictory evidence,
reporting thin tailed distributions an 19 spot series.

Taylor and Kingsman (1979), studying spot copper and sugar futures

series, note that much of the observed leptokurtosis could be due to non
stationarity of variance in the generating process and report that
although the distributions are non normal, they are <closer to normality
than previously suggested and produce evidence to support the hypothesis

that a student - t distribution could explain their data reasonably well.
All the empirical studies on distributions of commodity returns
mention the difficulties in making any firm conclusions owing to the non

stationarity of the series.,



2,3 Non Stationarity of commodity returns
|
If one reads the final paragraph of any article prior to 1978 that
examines commodity returns series, invariably it will contain the caveat
"“owing to the extreme non - stationarity in returns any firm conclusions
are very difticult to make",
Loeb (1979), investigated the stationarity of the mean returns and

the variance of returns of many spot and futures series over a 28 year

period. By dividing the period - into four 3 year subperiods he

discovered that the mean returns did not vary signficantly but that the
variances increased towards to end of the time period considered. Loeb
found some evidence that the variance of returns of some agricultural
futures was related to seasonal factors. Cox (1974) cites evidence that
the suspension of futures trading in some commodities (notably onions)
tended to increase the variance in the underlying spot returns series.
Taylor and Kingsman (1978) report non stationarity in their long sugar
series.,

Taylor and Kingsman (1979) appear to be the +first authors that
attempt to explicitly model and estimate parameters of the fluctuating
variance process. (w0 models that seem to produce results consistent with
observations are (i) a simple autoregressive process and (ii) a Markov

chain with 3 states (low, medium and high variance).

2.4 Temporal dependence in commodity return series

Much of the published work on the empirical examination of commodity
gspot and future returns since 196@ have examined the question of temporal

depéndence. Many formal statistical tests have been applied, sonme



examples being serial correlation coefficients, runs tests,

autoregression analysis and spectral analysis. Non statistical procedures

such as filter rule tests and ad hoc chartist type indexes have also been
employed. The results of all these studies on different series over

various time periods have, to say the least, been mixed.

2.4.1 Serial correlation coefficients

The serial correlation coefficient at lag k defined as r« in
section 4.2.1 is a measure of the correlation between returns distant k
periaods appart. If there is no temporal dependence in the returns the
sampling distribution of r« , is N (B, SE (r«}), with
SE(r«)~ 1//m,

This is true even if the returns are non Gaussian, pravided the sample
size, n, is large enough and the variance of the returns
process 1is constant. Larson (1940), Smidt (1963), Stevenson and Bear
(197@), Cargill and Rausser (1973), Loeb (1979) and Tschoegl (1978) found
evidence of significant r«'s but with no apparent consistent pattern.
Some studies produced significant negative coefficients, while others
produced significant positive coefficients. Dusak (1973) and Praet:z
(1975) found no evidence of significant coefficients.

Bear (1972) noted that in periods when margin levels were higher than
normal, r«’'s, tended to be signfticiantly positive, supporting his theory
that high margins attracted less speculative interest and hence induced a
price stickyness 1in oane direction. Conversely, when margins were lower
than normal, Bear found most r«'s to be signficantly negative, suggesting
that excessive speculative interest induced an excessive number of
reversals. When margins were considered normal, r«’'s turned out to be

near Zera.



Loeb (1979) appears to be the first to have studied simple spread
returns. He found very signitficant negative first order daily serial
correlation coefficients in all spread series suggesting excessive daily
reversalling. RN

Taylor (1980) used simulations to study the sampling distribution of
r«'s with a fluctuating variance processes. It was discovered that a
better description of the sampling distribution of r« is ¢
N(Q,SE (r«)) with SE (re)=a //n in which a & 1.40.

By developing a returns standardization procedure Taylor shows how to

overcome the fluctuating variance problem. Using his recommended
technique Taylor tinds evidence of small but significantly positive serial

correlation coefficients in 8 of {1 of the series studied. Taylor

postulates that these small positive coefficients arise out of a model

with relatively short lived stochastic trends.

2.4.2 Runs tests

The runs test has always been an attractive alternative to serial
correlation analysis (outlined in section 3.2.1.) because no assumptions
regarding the distribution of returns or the stationarity of the variance

are made. A drawback of-the test is that it is not very informative.
Unlike serial correlation analysis one obtains a result that there are
either too manyfruns, not enough or that the number of runs is acceptable.
Most works that report serial correlations :ue%ficients have also tended
to report the results of runs tests. In many of the studies runs tests
results back up serial correlation analysis but some eg Bear (1978) and

Loeb (1979) produce contradictory results,

11



2.4.3 Trading rules applied to commodity series

Filter (trading) ruleshave been applied to stock and tommodity price
series since as early as 1960 1in an (alternative) attempt to make some
statement on the efficiency or otherwise of the relevant markets. The

rationale of trading rules is that the sequence of prices is non random;j

particular prices tend to move in trends. Once a trend is established,
prices are more likely to move with ¢the trend than against it. A simple

tfilter trading rule involves the choice of an appropriate filter level,

say, X (or xX) and the monitoring of the price series. If the price moves
up x4 or more on a given day then buy and hold until the price falls x%.
At this point one may either close out by ; sale or close out and go short
by selling twice and reverse when the price rises by x%X. If prices were
to move in well defined trends, trading rules of this sort would
cutperform simple buy and hold benchmark strategies.

Houthakker (193%), was one of the first to publish a work in which a
simple trading rule was used to examine the efficiency of the futures
markets., Large gross profits were reported. Stevenson and Bear (1970)
included commissions in their study and reported that with small filters

(eq one and a half percent) many costly transactions were 1induced

resulting in net losses. Leuthold's:  (1972) study of live cattle futures
reports large gross profits and concludes that “these profits are larger

~  than might be expected under a random walk hypothesis*, Martell and-Philippatos
(1974), introduce the idea of having an adaptive trading rule, ane |in
which the filter size 1is set to some varying but optimal level as time
passes. Net profits from these adaptive filters appears to outperform buy
and hold policies but as Pinches (1974) points out, the pooling of profits

by Martell and Philippatos (1974) across commodities is misleading.

12



Applying filter rules of various sizes to 16 <futures series, Loeb
(1979) gets mixed results but notes that a 3% filter appears to give
substantially superior net profits. Following the discaovery of consistent
negative one day serial correlation coefficients in all spread series,
Loeb (1979) constructed a reverse filter rule to take advantage of the
observed price reversaling. Consistent net positive profits resulted.
However Loeb (1979) notes that the trading rule (set in absolute price
differences not % changes) appears to be quite impracticable because {t
indicates very infrequent trades. For example using a 2-cent filter rule

he generated one trade in 4 years.

Praetz (197ha) <criticized all work employing returns from filter
rules, noting that no well defined distribution for these returns had been
proposed. In the absence of any sampling theary with associated standard
errors, it 1is not sufficient to report that filter rule yield large
positive returns. In a later paper, Praetz (1974b), develops exact
expressions tor the mean and standard deviation of returns to filter rules
under a null hypothesis of a random walk and shows that coamparison with
buy and hold policies 1is wunfair. "The returns to the filter man are
always biased downwards"; "the situation is so loaded against the filter
man that it is like making him play Russian roulette with five live
bullets in a six-shooter”. -Simple reporting of the grand praofit (net or
otherwise) resulting from the application of a certain filter rule is only
as useful as vreporting the sample average to a statistician without a

measure of accuracy (i.e. standard error).

2.4.4 Forecasting commodity prices

Can commodity prices be forecasted? This of course begs the question

of temporal dependence again. Much of the work on commodity price

13



forecasting obviously assumes that there is some (albeit complex) sort of
temporal dependence in the sequence of returns.

In an attempt to discover if futures trading in a commodity increases
the informational content to dealers 1in the corresponding actuals market,
Cox (197&6), fitted autoregressive models to the spot prices of onions
(among other commodities) in periods when t (1) futures trading existed
and, (2) futures trading was suspended. In many cases he found
significant autoregressive coetficients, He also found that the number of
significant terms in the regression equations were greater in periods in
which futures trading was suspended than when futures trading existed.
Cox's work thus suggests that spot market prices can be forecasted and
that the forecasting accuracy 1is increased in periods when no futures
market exists,

Labys (1976), considered seven different forecasting schemes ranging
from the naive (l.e. the best estimate of tomorrow’s price is today's)
through exponential smoothing to moving average and autoregressive
methods. All seven procedures were executed on 1948 daily data on 8
commodity series. The naive expectation scheme proved to be the most
accurate, H

Chu (1978) wused a Box—-Jenkins package in an attempt to forecast, in
the short run, monthly prices for 10 spot series. Starting fron
econametric type supply and demand equations, Chu developed a set of final
autoregressive expressions with some of the agricultural series having a
seasonal component. Chu notes "These models have, however, only limited
capability to predict unusual movements in prices®. This 1is not
surprising, since these movements are, as Chu says, "unusual".

Taylor (1980) used his conjectured price model to forecast cne - day
- ahead returns and one - day - ahead trends. Disappointing results are
achievéd in returns forecasts but quite encouraging results are obtained

for torecasted trends. "It is often quite possible to predict correctly

14



whether tomorrows trend will be positive or negative." Taylor also

produced expressions gqQiving the theoretical accuracy of forecasts and
noted that there is a consistent and close agreement between his

theoretical and the actual forecast errors.

2.9 Multivariate analysis of commodity return series

Very 1little work has been carried out on the amultivariate
distribution of commodity returns. We review what little has been done

below.

Labys and Perrin (1976), examined the intercorrelations among monthly
returns of 31 commodities using 20 years of spot data. Some significant
positive correlations were found, in particular amongst the oleaginous

products. Other positive correlations were found between copper and
aluminium, lead and zinc, copper and tin, and wheat and maize. Principal
component analysis gave the oleaginous qroup as the first principal
component, accounting for 124 of the joint variation in returns. The
composition of the remaining components could not be associated with any
of the usually recognisable commodity groups. Apart from the oils, and a
few metals, Labys could find no evidencte of any significant covariability

amongst commodity returns. Dusak (1973) examined the returns on different

contracts of the same agricultural commodities. Correlation coeffictients

of between 0.85 and 8.95 were reported.

Loeb (1979),  examined the Jjoint correlation structure of 1é
commodities and identified positive correlations amongst the metals.

Cluster analysis tonfirmed these reports.

No author to date has examined (i) ¢the nature of the Jjoint

13



distribution of —commodity returns or (ii) the  possibility aof

multivariate temporal dependence.

2.6 Summary ot Chapter 2

In this chapter we reviewed the literature on empirical studies of
commodity returns distributions. Most authors find that the returns -

distributions are longer tailed than the Gaussian distribution and that
there is little or no evidence of a consistent temporal pattern. The

application of  naive trading rules produce mixed results and {t

is only recently that the statistical validity of trading rules has been
investigated. To date no serious  empirical multivariate study of

commodity returns has been published.
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CHAPTER 3
A STUDY OF THE UNIVARIATE DISTRIBUTION OF PRICES

In Chapter two we reviewed the literature dealing with the empirical
study of the distribution of commodity spot and f{futures prices and
returns, There are conflicting reports on the presence of serial
dependence and most researchers +find that returns are non normal and
skewed, the degree of skewness depending on the differencing interval. In -

this study we will limit our interest to daily returns defined as:
(i) X¢ = Pe = Pe-1

and the logged returns as:
(11) Xxe = 10g( pe / Pe-3 )

3.1 Design of univariate study

Most empirical studies report that the variances of returns vary over
time. The tests for serial dependence and of distributional form and.
gtability of population parameters are greatly affected by changing
variability. We decided therefore initially to examine the data in a
sequence of short time periods in the hope that within these periods the
variances would remain fairly constant. The data set covers the period
January 1974 to December 1979. However we only have information on the
rubber series from March 1975 onwards. We decided therefore to examine
all four series for the period of 58 months (1218 days) from March 19735 to

December 1979, Each of the vyears 1976 to 1979 was divided into three

17



periods of four months (approximately 84 days) and 1975 was cut {nto two
periods ot tive ;ﬁnths (approximately 183 days). Thus we have 2 + 3 xhi =
14 periods of approximately equal duration to examine.

In each periaod we needed to select one cocoa contract, one coffee
contract, one sugar contract and ane rubber contract and examine the daily
returns. For each commodity we have between &6, 7 or B differ;nt futures
contracts to choose from. As is reported in Chapter 5, all the daily
returns on contracts of differing delivery dates for a given commodity
appear (not surprisingly) to be highly positively correlated and so it may
not matter which one we choose for the univariate examination. However,
the behaviour of the price of a futures contract that h#s enteredhthe
delivery month ,the ‘'near" contract, may not be representative of a
typical futures price!. Also, the volune of trading in those futures
contracts that have just started trading ,the "far" contracts, may be so
small as to make the oprices also non representative. It was decided,
therefore, to examine prices that are neither at the beginﬁing nor at the
end of the duration of a contract., Thus each of the 14 subperiods chosen
contains a four month section of a contract that is roughly in the middle
of its life span.,

For a list of the contracts chosen with dates for this univariate
study see Appendix B. Fig. 3.1 shows pictorially what section of each
contract was used., The layout of this chapter is as follows, In section

32 the statistical methods are reviewed and the results of all of the

praocedures are discussed in section 3.3. Section 3.4 gives a summary. In
section 3.9 and 3.4 a separate study dealing with the search for long ternm

temporal dependence is carried out.
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3.2 Statistical procedures

As in most previous empirical research on commodity futures prices we
study the returns and logged returns and examine them in each period for
(1} temporal dependence (ii) stability of population parameters and
(iii) distributional form. Outlined below is a briet summary of the tests
and statistical procedures used. The results of all the tests appear in
Tables 3.1 to 3.6, Plots of the unlogged returns appear in Figs., 3.2 to

.9

Se2.1 Univariate temporal dependence

The two most commonly used techniques to investigate the presence of

temporal dependence are the runs test and the examination of a correlogranm

i.e. a set of serial correlation coefficients.

The Runs Test

The classical Runs Test examines the sequence of returns. Each return

is classified into one of two categories, eg positive or negative. In
this study the two categories chosen are: above the median and below or

equal to the median. A run is defined as an wunbroken succession of
outcomes of the same kind. It can be shown? that if n; = number of
outcomes in the first category and nz = number of cutcomes in the second
category and n = ng + nz is large (greater than 28), that the number of

runs, r , is approximately normally distributed with mean p. and standard
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deviation ¢.given by:

2n;nz(2n;nz-n;-ng

(ni+tn2)<{n.s*+nz2-1)
A test of temporal independence is then to compute 2,, where
2 = (r = ped/o-

in which under the null hypothesis of randomness z, * N(Q,1).

The P(z,.) values for each coamodity and- for all 14 subperiods appear in
Tables 3.1 to 3.4, A virtue of the runs test 1is that no assumptions are
made about the distribution of the_returns'and it is insensitive to the

presence of outlying observations and errors in the data.

Serial correlation coefficients

T

It is standard practice in the study of time series ¢to plot and
examine the correlogram or autocorrelogram. The correlogram is a plot of
the sample serial correlation coefficients, r. , at various lags , k,
against k. Each r« is computed using the expression:

-k

Fee 3 Y (X¢ = ®)(Xgawe =X) / (n = k)
{ =]

L (xy = x)2 / N

{w]
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In the analysis below we computed r« , for k up to and including
rze for each period>. If the returns constitute a sequence of serially
independent 1{dentically normally distributed random variables (the null
hypothesis) the r« values are each normally distributed* with a mean of
zero and a standard deviation of approximately 1/,]32 Furthermore, under
the null hypothesis, the r«'s are mutually independent. A test of serial

independence thus involves the computation of

2k = M« fﬂr k = 1'2'111'25

Values of z. outside the bounds delineated by the normal tables (eg 1,96

for 5% test) are regarded as significant,

In the computation of 28, r., values one would of course expect, on

average, one (5% of 28) to result in a significantly large z« value (at
the 5% level). In the analysis of time series, interest 1is wusually
centred on the r« values ot small lags and in particular correlograms are
examined for certain patterns consistent with ARIMA type models®. Taylor
(1980) also reports that in time series in which ¢the variance 1is non

stable the standard error of IIJF' tor r« is no longer valid. We return

to this subject again in section 3.3,

Se2:2 Stability of population parameters

An area of central interest 1in studying the distributions of returns
over the 14 subperiods is the stability or otherwise of the population

parameters. As mentioned in section 3.2.1 tests for temporal dependence
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are dependent on the stability of variances.

Recall also that at the outset of this research programme we were
interested mainly in the possible application of a Markowitz type
Portfolio Analysis to the set of returns, O0Obviously the stability aof the

underlying population is crucial for a successful delineation of efficient

sets from period to period. It was decided, therefore, to test for the
stability of (i) variances and (ii) means. In the foregoing, the test

procedures are based on the assumptian that the populations are normal but
fortunately this assumption can be relaxed with samples as large as the

ones being examined in this study.

Comparing variances

If <2, and s2®;+: are the usual unbiased estimates of the population
variances ¢%, and ¢%i+: respectively, each estimated on n: and Nie:
observations in periods i and (i+1) then to test the null hypothesis:

Hat 02:(5 0%141
against the alternative hypothesis:

H, 021* 0201

the sample statistic:
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is computed. Under the null, F: is distributed according to the F

distribution on (n; -1) and (n.+s ~-!) degrees of freedom. Of course,F
should be near unity. Very large or very small values of F; indicate the
null hypothesis {s probably not ¢true. We use the usual F tahles to

neasure significance.

Comparing Means

The comparison of the means for periods { and i+1 of two (normal)
populations {s complicated by the dependence of the distributions of the

sample means on the population variances.

{a) If the population variances can be considered equal the procedure to
test ¢ Ho P1 = Hiesy
against Hy ps # paes

is to calculate T, where,

and S, = pooled estimate of common variance.

Under the null hypothesis, T:, 18 t distributed on ny + ns;+1-2 degrees
of treedom. This test was used when the test of equal variances produced

a non significant result.

(b) It the population variances cannot be assumed equal, the problem of

comparing means 1is known as the Behrens~Fisher problem. The problem
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arises since Ty defined above, does not follow the t distribution®., One
suggested test” of the above null hypothesis uses a critical region

of the tornm.

T2 = §%1 + €25 .43 b, C

in which the test statistic, T2, quite reasonably, is a measure of the
differences scaled according to an estimate of the standard deviation of
the difference in sample means. It can be shown that if C is chosen as
the (1@2@~-a/2) percentile of the t distribution on (ne -1) degrees of
freedom, where ne = min{ns;,ns:+s) the probability of the critical regian
under the null hypothesis is at most a. Accordingly, whenever the test of

the equality of variances failed we used T2 with the appropriate degrees of

treedom®,

Are the mean returns significantly different from zero?

In each perfod i = {,2,...414, {t was decided also to test the
hypothesis: Hotp: = B against the alternativer Hip 1438 , using the

statistic :

Is = ':E',./m

Under Hey Ts 15 t distributed on (n, - {) degrees of freedom. In essence
this is a test for a persistent long term trend in the prices in each
subperiod. I+ Ts is significantly positive (negative) then the daily

returns are, on average, positive (negative) suggesting a significant rise
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($all) in the prices over the time period considered.

Tables 3.5 give the results of the tests for stability in variances

and means. The values of Ts appear in Tables 3.1 to 3.4.
3.2.3 Examinations of univariate distributional form

There is an extensive literature on the distributional form of daily,
weekly and monthly stock and commodity futures returns. For detalls see
Chapter two. Recall that the initial motive for this research was the
application of Markowitz type Portfolio Theory to the commodity futures
market. A sufficient condition for this application is that returns be
normally distributed. Therefore, rather than spend time on estimating the
parameters of various Stable Pareto or t distributions that could explain
the returns, we concerned ourselves with one question; are the daily
returns normal?

In this study three methods were used to investigate the question of
univariate normality :(i) the coefficient of skewness, bi:i, (ii) the

coefficient of kurtosis, b> and (ii{i} the normal order plot together

with the associated Shapiro and Wilk'’s W-test (1945) for normality.

The coefficients of skewness and kurtosis

I1f me = the kth moment about the mean then

\/?1 &= flx Y and ba = Ma

(mz2)37% (m2) 2

S0



For normal samples:

E( /by ) = 08 , SE( /by, ) ¥ 6/n

EC bz) = 3, SE( bz) *~ J2a/n

It n |is large,\fgl is normally distributed. For small n, Biometrika
tables give percentiles for normal samples. Biometrika tables also give
percentiles aof bz for normal samples. For samples of size n = 80
significant values of JT: could be outside the interval + 0.43 and
significant values of bz would be outside the interval 2.27 to J3.87.
Distributions resulting in bz values less than 3 are termed
platykurtic and are characterised by frequency curves more flat-topped and
shorter in the tails than the normal distribution. Distributions with

bz values exceeding 3 are termed leptokurtic and are more sharply peaked

and longer in the tails than the normal distribution, Most empirical

studies to date find returns leptokurtic.

The Shapiro and Wilk's W - test for normality

A useful first step in studying the question of normality of a sample
is to examine the normal order plot: a plot of the ordered sample values
XK¢11€ X¢29€ +ss€ X¢n» against the expected normal order values
2¢19¢ 2¢25€ oss€ 2¢n>s Distributions that are normal result in linear
nlots with slopes equal ¢to the standard deviation of the sample and
vertical intercepts equal to the mean., Non normal distributions result in
non linear plots. These plots are also very useful {n highlighting errors
and/or outlying observations from an otherwise normal sample.

There are a number of formal tests of normality associated with the

linearity of this plot, one of which is the Shapiro and Wilk's W - test.



For more details see Raoystan (i1982a), Pearson (1982) et al carried out
an extensive study 1into the power of the various tests for departure frona
normality and concluded that for symmetrical platykurtic distributions and
for most skew distributions, the Shapiro and Wilk's W - test is
optimal (most powerful). Here we briefly cutline the Shapiro and Wilk’'s W
- test,

Let 27 = (Z¢s142Z¢214ses92¢n>) denote the vector of expected values
of standard normal order statistics, and let U = (us;) be the
corresponding (n x n} covariance matrix, [f x7T =2 (X4,X2,.00y%nlls a
random sample on which the W - test of normality is to be carried out,
ordered so0 that xc¢1>¢ X¢23¢ +ses ¢ Xc¢n>s Then we compute

W = ( 8!1- X s )2

b 24 (X;'T)z

fw]

where a¥= ( a4, 32y eesgdn}

= 2T U=t [(zTU-*) (U=t 2z )1-2/2

Shapiro and Wilks (1945) point out that “the coefficients <{a,)} are
just the normalised ‘best linear wunbiased’ coefficients tabulated in
Sarhon and Greenberg (1954). The nuamerator of W is the best linear
unbiased estimate of the squared slope of a linear regression of the
ordered observations on the expected values of the standard normal order
statistics. Note that it one is indeed sampling from a normal population
then the numerator and the denominator of W are both, up to a constant,
estimating the same quantity, namely, the variance". For non-normal
population, these quantities would not in general be estimating the same

thing and the numerator will be less than the denominator. Departure fronm
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normality is indicated by small values of W. Shapiro and Wilks give

tables for the values of a for samples of size n, up to n = 52 and
various percentiles of the distribution of W under the null hypothesis of

normality,

Royston (1982a), extends the W =~ test to samples of size n= 2000 by

considering the normalising transformation of W:

y = (1 -W)>

2w = (y-=p)ley

in which the quantities, A, p and ¢, are all funcions of log(n}. Under
the null, 2w, is standard normal and departures from normality are
{ndicated by large values of zw. The test is one sided.

Royston (1982b) provides an algorithm to compute the expected normal
order statistics and Royston (1982c) provides an algoritha to compute

Ay Byy Wy 2w and Pri{lwdzuw) = P(W) for samples of size n up to 20@@. The
algorithm also computes the appropriate best linear unbiased coefficients

{31}-
A routine was constructed that computes and records \fE:, bzyand

Pr(W) for each of the 14 subperiods and for each commodity.

I.3 Discussion of results of univariate tests

In this section we discuss the results of the tests presented in

Tables 3.1 to 3.9 in the order considered in section 3.2. In these and
many of the other tables in this work we use the following notation to

indicate the degree of significance of a particular test statistic:
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Table 3.1

Univariate tests on cocoa series

Period Significant r«’'S

i1.31c
11.4%9%c

+11 +19

(Upper figures are the unlogged returns results; the lower figures
are the logged returns results)



Table 3.2

Univariate tests on coffee series

Period Significant r.'S P(Z,) P(W) Jts b= Ts
| +1 .92 8.00c 3.87¢c 29.46c 1.42
+1 0.92 0.008c¢ 4.23¢c 31.37c 1.339
2 B.32 0.84 -0.88 338 B.59
5132 3197 '3.13 3.37 3156
3 +9 .99 0.080c B.94c 7.47c 2.45b
+9 .99 2.00c 0.81b J.66c 2.78D
4 Bl33 B.BBC '1.43C 9.73: @-53
.33 8.80c -1.33c B8.83c ©.48
5 _4 @-99 9.923 Bnb7b 6-32: 3-78:
.99 0.94 0.29 4,372 4.10c
b -3 0.12 @.48 -B0.44a J.46 0.62
.12 B.44 -0.46a J.54 @.65
7 -6 +9 +IB 3131 3155 3-23 3:23 _1133
-5 -6 +9 ~13 +i8 .31 .91 8.14 3.07 -1.,20
g +135 0.10 0.98 .20 J.74a -0.61
+15 3-13 3-93 3-29 3:853 -3157
9 9-15 3113 3-478 2-92 '@.Ba
0.18 .33 31463 3.32 '3179
{0 B.83 p.%4a -0.45a S5.30b 0.39
EIBS 3121 -3125 4:43b 3143
i1 +3 B.66 .78 -0.10 3.4 =-0.31
+5 0.66 .77 -0.17 S:61 =-0.,31
12 _6 3-59 3142 ‘3.19 4-49b 2:33.
@.38 .93 0.02 4.14a 2.32a
13 +4 +9 2.83 0.08c 2.,18c 13.75c¢ @.73
+9 0.83 0.00c 2.92C 16.41c B.76
14 +11 -20 B.18 B.61 -8.46a 3,983 =1.39
+11 -20 .18 B.43 -0.380a 4,192 ~-1.39
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Table 3.3

Univariate tests on sugar series

Period Significant ru's P(Z,)  P(W) Jbs b2 Ts
1 3147 315? 3.21 3-96 '3-71
Q.47 B.32 0.30a 4.71b =-0.64
2 B.32 0.00c 0.07 7.13cC .10
8.32 8.00c -0.02 6.28¢c @.11
3 +9 .83 B.0808c 1,20c 7.48c 0.78
+9 .83 B.20¢ 1.,23¢  7.32¢ Q.78
4 3145 3156 -Q,23 3.28 -0, 66
B.45 B.47 -08.25 J. i1 =-0.72
5 +lﬂ Bll? 3-95 '3-13 3!73 -1132
+10 0.19 0.99 -0.0% 3.62 -1.28
b of- Q.66 .01a 2.84b S5.%90c 0@.10
ol - B.66 8.Qa7 B.72b S5.2ib Q.10
7 -2 -4 -14 +16 8.45 B.20 -08.17 2,68 -1.44
-2 -4 ~-14 +16 .45 .22 -0.18 2.61 -1.39
8 -1 +3 -4 +13 =10 +146 Q.18 .16 .595a 3.7 =0.19
_1 +3 -4 +13 -15 +16 3-13 3114 31543 S.74 '3-13
? Blbb 3147 -3124 4-86b -1151
B.66 B.38 -0.32 2.91b =-1.42
{0 +5 =13 .66 .64 .20  2.73 -1.34
+5 =13 B.66b .79 .02 J3.86 -1,20
11 3.51 3114 '@.62b 5-59b -BIBB
.51 g.31 -0.924 g« 16b 'B.B?
2 .74  0.07  0.48a 2.82 ~-0.4§
.74 .12 31511 2,98 ~B.49
13 -12 -18 8.353 .90 -0.36 4.81a 0,60
-12 ~-18 .33 .81 -0,41 4,152 Q.40
v -3 .18 .94  2.83  3.9% 1.92
-3 @.19 @ 93 3112 4-35& 2-323

3b



Table 3.4

Univariate tests on rubber series

Period Significant ru's P(Z,)  P(W) Jbs b Ts
1 +4-7+108-16+18-20 .36 8.29 0.080 J.84 1.47
+4~-7+10~16+18 B.36 Q.45 -0.01 .32 1,91
2 .17 B.77 B.04 S.04 0.47
-4 B.17 .86 B.24 J.13 B.45

3 +4 -14 +16 .83 6.29 B.61a J.84 1.83
~14 +16 .83 B,26 0.49a J.06 1.91

4 -4 +13 .73 B.99 -8.035 Ss47 .10
-4 +13 B.73 .99 .06 J.b4 a.10

5 -5 +7 +18 +17 B.39 B.95 .18 J.16 0.28
_5 +7 +17 @.39 3165 3.25 2-94 3.33

b B.63 Q.74 ~0,.21 §.20a -1.36
@.63 @.48 -0.208 4.0 ~-1.63

7 3-56 3.91 3.33 2-63 '3.35
.36 .87 B.025 2.66 =-B.33

8 3156 @.69 '3.13 3-35 -1166
.56 0.59 -0.20 3.20 ~=1.73

; .37  0.54 2.31 - 3.1  0.38
.37 .58 0.25 3,48 .37
10 +10 +14 B.28 .82 0.19 2.72 Q.77
+10 +14 @.28 .72 .19 2,63 .79

11 -13 .50 .90 -B.16 .10 -0.51
-19 .30 B.87 -0.19 S.86 -8,.39F
{2 -9 8.91 0.92a -0.17 2.87a Q.04
-G @-91 3.343 -Bllb 2:11. 3 36
13 +11 B.66 8.89 .32 J.81 -0.38
+11 0,664 .93 9.20 3,99 ~0.61
(4 .18  0.65  0.14 2,65  1.09
.18 8.60 .16 2.63 1.12
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Table J.3

Stability of parameter tests

Cocoa Coffee sugar Rubber
Period
Comparison F. T2 Fs T2 F4 T2 Fia T2
1| - 2 1.89b 1.28 9.83c ~-1.11 2.13c 0.65 1.37 -0.83
2,36c 1.14 8.33c -1.2% 2.38c @.40 1.96a -0.91
2 = 3 4,45c Q.48 9.83c 2.10a 5.89¢ 0.30 3.19¢ 1.43
2.08c Q.49 2.,40c 2.07a S.78c .30 1.73a 1.34
- 4 1.45 {.21 3.18c -0.77 1.63a -1.08 2.45¢c -0.91
1.04 0.74 2.34c -1.08 1,539 =1.03 1.86b ~1.03
4 = 9 3.942c ~-0.12 1.5 2.35a 1.02 =-Q@.435 1.01 0.13
1.49 -0.62 2.86c 1.71 1.735a -@.37 1.530 0.12

6 - 7 1.98b ‘3-33 1.06 _1139 llgbb '3.92 1-56 1.31
2-18c -BI3B 1.98b -1135 1-643 -3193 llll @-97
7 - B8 6.95¢c ~-1.27 °.82c 1.0@0 1.07 0.87 1.20 -0.99
4.76c -1.44 2.38c 0.71 1.17 0.81 1.14 -1,04
g8 - 9 2.64c 2.03a 2.73c 0,10 1.14 -0.91 1.27 1.48
3.28¢c 2.@1a 1.93b -6@.10 1.04 -0.89 1.10 1.49
? - 10 2.22¢ -0.52 2,80c @,735 1.04 8.17 {.76a 0.38
2.33¢c =-8.335 2,86c 0.75 1.22 0.08 1.309 0.35
10 - {1 1.26 0.18 J.92€C -0.49 1.26 0.82 1.04 -0.92
i.64a 0@.16 J3.083¢c -9.51 1.83 0.79 1.14 -0,.95
11 - 12 1IB6 -1171 2-37: 1.63 2-13: -3.21 1-13 3139
1-34 -1177 2.33C 1-55 2.@3: -3122 1:14 g 42
12 - {3 1.83 0.29 6.21c -0.20 1.0 @.77 1.532 -0.47
1143 @.11 3-58c -3143 1-37 5177 1-23 ‘@-49
13 - 14 1.31 1.03 9.48c -1.22 B.91c 1.41 1.78a §.13

1.25 1.02 J.26C ~1.27 4.41c 1.38 1.83b 1.17

F: = equality of variances F ratio
T = test of two means statistic outlined in section 3,2.2

(Upper figures are the unlogged returns results, lower figures
are the logged returns results)
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[f the statistic is significant at the 35} level, entry = a

[f the statistic is significant at the 1% level, entry = b

If the statistic is significant at the @.1% level, entry = ¢

J.3.1 Results of temporal dependence tests

Runs Test

No significant results obtained. The smallest Pr(z,) value obtained

was @, 10,

Serial correlation coefficients

Some series contained one, two or three significant (at 5% 1level) r«
values, many others contained none. There certainly does not appear to be
any consistent positive or negative serial correlation. Table 3.6 below

gives a count of the number of significant r« values aver the entire

period for each set of returns,

We see that the number of significant r. values almost exactly equals
what one would expect (ie 3%4) under the null hypothesis of no temporal
dependence. It is interesting to note also on referring to Tables 3.1 to
3.4 that the use of logged returns produces virtually {dentical results.

In conclusion, therefore, we note that there seems to be no evidence

at all of any temporal dependence in any of the series.
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Table J.6

No. of significant serial correlation coeftficients at 5% level

| no. of

no. of sig. possible 4 of sig.

r« values gig. values r« values
Cocoa series 22 2880 7.9
Coffee series 13 280 4,6
sugar series 20 280 7.1
Rubber series 28 280 7.1
Total 79 1128 6.7

3.3.2 Results of stability tests

Variance Stabilit

It is clear, reterring to Figs. 3.2 to 3.5, that“the variances are non
constant. The F ratios in Table 3.3 reinforce the observation. For the
cocoa returns, n% the 13 subperiods’ pairwise comparisons, 8 (7 with logged
returns) of the F ratios were significant at the 3% level. This
re-affirms the previous +findings of excessive fluctuations in variince,
and although in many instances the use of logged returns results i{n a
smaller F ratio, the statistics are still what one would consider
significant., With the coffee returns, 13 (i1 with logged returns) of the
13 comparisons result in significant F ratios. The sugar returns yield 7
(4) significant changes whereas the rubber returns show 5 (5) significant
cha;ges.

These results then contirm the previous empirical {findings of non
constant variance and Jjustifies the splitting up of the data into
subperiods. Testing for normality and serial dependence over the whole

tfive year period would certainly result in spurious conclusions.
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Stability of Means and Evidence of Trends

These two tests are dealt with together since they are obviously
interdependent.

We consider the cocoa series first. In period 4 (middle of 1978) a Ts
value of 2.9@0 1is highly significant. 1In this period the mean change in
the price of a cocoa contract was £46.46 per tonne per day, resulting in a
change of £54@ per tonne over the 4 month period. In fact most Ts values
for cocoa are positive until period 7, reflecting the rise in cocoa prices
from 1975 to mid 1977. 1In only one pairwise comparison do we get
significant T, or T2 values. Similar results are obtained for the caffee
returns with significant T: values in early and late 1976. Referring to
the plot of cnffge returns in Fig. 3.3 one can see when and why we get
these significant results. Two (one with logged returns) pairwise
comparisons yleld significant Tz values indicating the development of, or
the disappearance of, a trend from one period to another and these occur
in the early and late periods of 1976, O0f the sugar results, only i of
the T values, (ihe T: value) yields a significant result, The rubber
series produced no interesting values.

In nearly all situations the absolute values of the T statistics of
the logged data were slightly larger than the <corresponding T statistics
of the unlogged data., This is due to the slight reduction in the variance
and associated standard errors afforded by logqging returns. However, in
most cases the changes caused by the taking of logs had very little effect

on the resultant tests ot significance.
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3.3.3 The question of normality

Tables 3.7 and 3.8 give ¢the number and nature of significant (at 5%
level) JE: and b=z statistics. Table 3.9 records the number af

P(W) values smaller than 0.@3. We make the follwing observations:

(1) The cocoa and coffee returns exhibit non-normality most frequently
(using any of the measures) and the rubber returns least frequently (only
once using the W Test).

(ii) Logging the returns generally tends to reduce the JE: and
b values and increases the P(W) values. Certainly, the use of logs
tends to make returns more normal,

(iii) Except in the case of sugar, the significant 1/32 values do not
show any sign of persistent positive skew.

(iv) Nearly all  significant bz values are greater than 3
reinforcing previous empirical findings of leptokurtic distributions.

{v) From Tables 3.1 to 3.4, in nearly all cases in which we obtain a
significant P(W) statistic the corresponding JE: or b2
statistic is significant. There are some situations, however, in which

JE; or b2 is significant and P(W) is not,
The W - test 1is therefore the most useful single statistic (compared
to JEZ and bz) for investigating #the normality or otherwise of a
sample. Under extreme departures from normality, however, as in the early
periods of cocoa and coffee returns, the W - test mimics the'JE:
and/or bz tests but is less informative.

Referring to Figs. 3.2 to 3.3 it can be seen that possibly one reason

for the many instances of significant JE:, bz and P(W) statistics

could be the sudden changes in variance within some periods (eq period one

of cococa and period two of sugar). A second possible explanation is the
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Table 3.7

No. and nature of sig. (SX level) skewness statistics
(counts in parenthesis relate to logged returns)

No. of sig.fE}'s Cocoa Coffee Sugar Rubber

Jo: > 0 3(2) 4(4) 4(4) 1(1)

/by ¢ 0@ 2(2) 5(3) 1(1) 2(0)

Total 5(4) ?(7) 5(5) 1(1)
Table 3.8

No. and nature of sig. (5X level) kurtosis statistics

No. of sig. bz's Cocoa Coffee Sugar Rubber

ba > 3 7(4) 2(8) B8(8) 2(1)

ba ¢ 3 (@) B(0) a(a) 1(1)

Total 7(6) ?(8) 8(8) J(2)
Table 3.9

No. of P(W) values less than 0.085
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presence of a single outlying observation. A detailed examination of each
period for anomalous values using normal order plots and a specially
constructed outlier detection routine was carried out but we leave the

discussion of these techniques together with the results to Chapter 4.

J.4 Summary of univariate tests

For the moment we separate the rubber returns from consideration. The

cocoa, coffee and sugar returns exhibit plenty of evidence of non
normality - even after logging the data. Variances fluctuate considerably

throughout the five year period and for the most part the mean returns in
each period are not statistically significantly different from zero. These
results lead one to seriously doubt the appropriateness of applying a
Markowitz Portfolio type analysis to the data.

However the returns in the rubber series are what could be described
as ‘well behaved’. 0Only one period showed evidence of non-normality and
although the variances changed in the earlier half of the five year
period, reference to Fig. 3.5 shows that this was much more gradual than

for the other series considered.

In none of the approximately B4 - day periods examined did we find any
evidence of temporal dependence. Taylor (1988), however, examined futures
returns over nmuch longer periods and produced quite strong evidence 1in

favour of certain conjectured models <for trends that resulted in

significant serial coarrelation. We investigate Taylor’s technique 1in

section J.95.
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Y.5 A review of Taylors (1980) study of long series ot financial prices.

In this section we briefly review Taylor’s model and his recommended
aethod for dealing with long series of financial prices. In section J.64.1
we apply Taylor’s technique to series woven together from 3 contracts each
approximately one year in length. In section 3.6.2 we apply Taylor’s

technique to long series that are woven together to approximate to

contracts with cunﬁfant maturity dates.

The Model

A e

Taylor (1988) proposed a number of models of financial prices. Here
we consfider only the simplest: the basic trend model. If xe¢, t=1,2,...,n

is the sequence of logged returns thent

with E(ec) = @ and E(Et' Been) = @ for k # 'y

One usually would have set pe = @ for all t®., Taylors innovation was

to cosider pe as stochastic, with

He-1 nith probability p
B + ne with probability 1 - p

In which Cov(pa,e.) = 0 for all s and t, and E(pe) = .

The ye are a series of identically distributed uncorrelated randonm

variables with mean zero and each independent of the previous aone.
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Taylor suggests that we would expect a priori that 1 - p and the ratio

Var(pe)/Var(e.) to be small. This would be consistent with small and

infrequent changes in the underlying trend, pe.. Prices, therefore, would
tend to move in one direction (the trend) for a period of time and that

these trends theaselves change in a random and unpredictable fashion., The

mean, ¢ duration of such trends {s shown to be:

P = % k(1 -p) - 1
)
hel pk—l 1-p

The rationale for such a model is that ¢the ¢trends are responses to the
anticipated supply and demand for the commodity. New information relating
to supply and demand arrives randomly and relatively infrequently and so

trends alter in an unpredictable manner.

1f indeed returns can be explained by the above model then Taylor

shows that the theoretical autocorrelations, f%«, are non zero and are

given by?
’h = bph ) k = 1' 2’ * s ; indb )3

The constant b {s a function of the parameters defining the stochastic

processes e. and n. and is expected apriori to be small,

The Problem of Fluctuating Variance

All previous research (including this study) report series of returns
with fluctuating variances. Until recently the effect of this changing
variance on the sampling distributiont ot the serial correlation
coefficients has been unknown and ignored. Taylor and Kingsman (197%)

examined the problem and proposed two alternative models that seemed to
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describe the change in variance quite well. One model specified that the
logarithm of the standard deviation follow an autoregressive process of
order 1. The second model specified that the standard deviation follow a
Markov Chain with three states (low, wmedium and high values). Extensive
simulations showed that either of the two models was a good candidate for
explaining the observed variance fluctuations.
Recall that, with constant - variance series in which there 1is no
temporal dependence, the serial correlation coefficients have variances of
{/n. Simulations by Taylor and Kingsman using samples of size n = {008
with the two postulated variance processes showed that the serial
correlation coefficients had variances of 1.34/n and 1.47/n for the Markov
and autoregressive processes vrespectively. The wusual ¢two sided tests
using standard errors of 1//n are consequently invalid.
One of the methods Taylor recommends to overcome this problem is to

calculate the serial correlation coefficients on the rescaled returns ye?

Ye = Xelae
in which a¢« is an exponentially smoothed estimate of the average of the

absolute changes in returns, computed using
de E a|Xe-s]+ (1 = a)ae-s

with a set at some suitable value (Taylor suggests 0.1),
In this way the series, y., should be of approximately constant
variance, Simulations with both of the fluctuating var{ance processes

showed that the, r«’'s, calculated by the recommended method had variances

very near the expected value of 1/n.
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The test statistics @ , T and U

In order to test the null hypothesis of 3 random walk (in which all
the #.'s are zero) against the alternative hypothesis of a trend model (in
which all the #.«, values can be expressed as .= bp*) Taylar (198@)

considered the three test statistiés @, T and U ¢

with 0<¢as<l

[f the null hypothesis is true, each r«. is independently normally
distributed with mean 2zero and variance 1/n and so @ would be
asymptotically chi-squared distriubted on ® degrees of freedom. The T

and U statistics would be asymptotically normally distributed with mean

zero and variance unity.

Taylor points out that previous researchers have used @ in testing
for temporal dependence but notes that the technique has low power. Under
Taylor’'s alternative hypothesis ¢the r«‘'s, are expected to be a
sequence of monotonically decreasing positive values and has proposed test
statistics T , and U , designed to be sensitive to the possibility of such
an alternative hypothesis, If errors are present in a time series they

will have most 1influence on ry and thus Taylor decides to test his
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series with U. Experience suggests that suitable values of m and ¢

are 38 and 0.92 respectively. In Taylor’'s study of 11 series, 8 showed
strong evidence of non random behaviour. In nearly all series there was a

pnreponderance of positive r. values. As an example, his cocoa series
(from 1971 ¢to 1976) gave a U value of 3.47 with 21 of the first 3@

r« values pasitive.

S.b. Taylor's techniques applied to ICCH data

Here we describe the results of applying Taylor’s technique to long
series (5 years) obtained by weaving together contracts in two caompletely

different ways.

J.6.1 The weaving of annual seqments of contracts to form one long series

In line with Taylor's (1980) study, consecutive annual contracts of
each commodity were woven together, care being taken not to include
periods very near the beginning or the end of a contract for reasons noted
in section 3.1, For details of the contracts used with dates see Appendix
C. Initial values of as are computed using the first 20 observations
from each caontract and when evaluating the crossproduct term in each r«
the summation 1is, of course, limited to those days for which y« and ye-«
are the rescaled returns from the same contract. With the cocoa returns,
for example, we had to weave five contracts together resulting in 1213
returns (=1218-3), Subtracting 20 returns from each contract for the
estimation of as means that each r« is computed using 1213 - (35x20@) =

1113 returns., The first 30 r« values, the values of Q@ , U and a count

of the number of positive r.« values are given in Table 3.10. In the

computation of ye and r«, a and ¢ were set to 8.1 and 0.92 respectively.
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Table 3.18

Results of Tavlor’s study on annual sections of contracts woven together

no, of positive rv’s
at lags ! to 30

no. of no. of sig.
Series returns i-18 11-20 21-30 total r« values B(38) U(3Q)
Cocoa 1113 e 71 3 19 2 $3.47 1,37
Coffee 1092 7 s s a1 2 4178 191
sugar 1113 6 7 & 19 0 146 0,29
auber 1117 s 8 & 19 0 17.58 0.59

Referring to Table 3.10 and Figs. 3.6 to 3.9 we note that the number of
paositive r.« values is greater than 15, half what we would expect
under the null, although the number of significant values is small. The
correlograms and the U statistics of the cocoa and coffee returns both
suggest that an alternative hypothesis of Taylor’s type could be true.
Note however, that the wvalues of U (1,37 for cocoa, significant at 8.5%
level and 1.91 for coffee, significant at the 2.8% level) are much smaller
than Taylor’s results on cocoa and coffee series from an earlier period

(1971 - 1976). In a later work, Taylor (1983), examined cocoa and coffee

series aover the period (1976 - 1980) and sugar series over the period
(1974 - 1980) and produced U values of 3.087, 1.50 and 3.64 respectively.
Taylor (1983) also examined the series over the longer periods of (1971 -
1980) for the cocoa and coffee and (1941 -~ 1980) for the sugar series
producing U values of 5.49, 4.83 and 6.358 respectively.

In this study, therefore, two of the four series examined showed

evidence aof price trends consistent with the models proposed by Taylor.
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Se6.2 Tavliaor’s technique applied to all the contracts of a given

commodity

In examiningthe time series woven together in the manner described in
section J.4.1 we are studying the returns of a typical contract over most

of its lifespan. If returns are generated by the trend type models
suggested by Taylor, then examining a contract over its entire duration
may yield misleading results. Consider, for example, the March 1977
contract of cocoa spanning the period January 1976 to December 1976 (2335
days). In the early part of the series the prices supposedly represent
expectations of the price of cocoa (together with storage costs etc) 19
months into the future. At the end of the series, the prices represent
expectations of the cocoa price three nmonths into the future. The
responsiveness of prices to anticipated changes in demand and supply of
cocoa in the distant months may be different from that when a contract is
near to maturity. In ather wards, it 1is possible that the stochastic
nrocess generating the trend changes may be different at different stages
in the life of a contract,

It would be very interesting to examine a series of prices of
contracts with delivery dates always a fixed point in the future. This is
pnossible with series of metal futures prices. Each day, for example, a
new three month copper futures price is available. One can, however, get
an approximation to this situation with the soft futures prices by weaving
together contracts in the manner described below,

For simplicity we consider as an example the coffee prices since every
two months (about 43 days) a contract expires. Consider Fig.3.1@ in which
all the futures prices or returns are represented by columns. Each row

represents a day. We always have six columns (prices). The prices in
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Col, 1 Col. 2 Col., 3 Col. & Col., § Cal.b

Jul, 795 Jan. 76 Mar. 76
Period 1

Jul. 78 Sep. 73 Nov. 75 Jan. 76 Mar. 76 May 76

Period 2

Fig 3.10 Diagramatic representation of the 6 coffee contracts

nearest maturity studied in section J3.4.2 and in Chapters 6, 7 and 8



column 1 are the prices of the longest running contract, the one which has
the nearest delivery date. Every two wmonths a contract expires and so
column 2 becomes column { etc etc. At the expiration of a contract all
the columns shift one to the lett, The prices of the most distant
contract are then put into column 6. The data in one of the specially
rearranged files is actually set out in this way.

If{f we weave together all the returns in the first column we will have
a sequence of returns (or prices) that will always be between two months
to the delivery date and the final delivery date; an average of one month
to delivery. Similarly if we weave together all the returns in column 2
we will have a sequence of returns that reflect the situation (trend or
whatever) of contracts always between four months and two months of
delivery, an average of three months to delivery. Thus we will have six

parallel quasi - contracts, each one representing expectations about

different points in the future,

We examine all six series of coffee returns looking for positive
serial correlation using Taylor‘s proposed scheme of rescaling returns.
Initial estimates of as for each series are obtained wusing the first

20 observations in period one. At the beginning of period two, three and
so on we do not need to put aside the first 28 observations again to
re-estimate aes as we can use the last estimate from the previous
appropriate column corresponding to the same contract. In this way, in
the case of coffee, we have 1218 -.29 (periods) = 1189 days with 1189 - 20
= 1169 returns,

An additional problem one encounters when weaving together so many
different series of prices (29 series in the case of coffee) 1is the
reduction in the actual number of terms in the cross product expression
for re. With a lag of 3@ and aély 43 (say) returns in any given

period, there will only be 42 - 3@ = 12 terms in the numerator of the
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rse expression., Thus in ¢the case of the cofftee series there will be

a total of 314 cross product terms making up the numerator of rse as
compared to (174 squared terms in the denominator. QObviously the
estimates of rse will be attected considerably by this imbalance.
It was decided, therefore, that instead of wusing the usual approximate

expression of rk; we would use the full detinition given in Kendall

and Stuart (p 379):

-k

r = I: VeosVe ok
t=1

ne i ne-ik
z Vztl E vzt-l-k
twm] twm]

[n—k / ‘] )
where Ve = Ye = | £ VY )

el (n=k

In this expression, separate means for the series Xt t = 1, 2,
esognN=ky, and Xeew, t=k+i,k+2,...,,n are required. Note also that the
number of terms i1n the denominator and numerator are equal. 3Since n«, the
number of terms used in computing re, varies considerably with k, the @

and U statistics are now computed using the expressions:

X3
Q@ = T nNe r2,
k)
U = E. g% r. Eﬁ 3% /N
k=2 k=2

Under the null @ and U should be x2(308) and N(@,1) distributed

respectively. The number of opositive r. values, the @ and U

36



Table 3.1

i

Results of Taylor's study on gquasi contracts

No. of positive r« values
at lags | to 3@

Quasi .
contract i-18 11-20 21-30 Total 8ig. r« values B(30) U(38)}
| 4 4 9 13 +4 J6.94 -0.88
2 9 4 4 13 -12 32,19 -~0.88
Cocoa 3 3 4 4 11 -24 37.56 -0.89
series 4 4 4 4 12 +4 36.89 -~0.48
9 3 o! S 13 +4 38.14 -0.74
b 4 b 9 135 -12 34,23 -1,.04
i 4 3 3 i@ +{ -28 29.29 =2,2%4
2 4 2 5 11 +1 -11 -25' 34:11 -2-23
Coffee 3 3 3 4 10 +1 -{] -28 32,17 =2.20
series 4 2 2 4 8 +{ ~-11 -28 39.37 -2.96
9 3 | 9 q +{ ~28 41.98 =2.73
& 4 2 9 i1 +{ -6 -11 -28 44.24 -2.63
i 3 3 4 10 -2 -18 =27 29. 13 -2.12
2 4 4 3 i1 -2 -18 -29 44,83 -2,11
Sugar 3 4 4 4 12 -2 =-18 =27 =29 43.09 -1,99
series 4§ 4 4 3 13 -2 =18 ~-29 446.35% -2.26
5 ~ 4 7 14 -2 =18 -29 41.32 -2.03
b 3 9 7 15 -2 ~18 S6.61 -1.98
| 4 9 4 13 19.080 -0.79
2 4 3 7 14 17.53 -1.02
Rubber 3 4 4 7 15 -9 14.75 =-0.78
series 4 4 9 7 14 -9 15.79 -0.42
S 3 4 7 14 -9 19.86 -0.64
b 4 4 7 IS 21.47 -0.39
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statistics are given for each quasi contract in Table 3.11.
J:6.3 Discussion of Table 3.1l

" The most striking observation from Table 3I.1! is that all the U
statistics of the quasi contracts of all the commodity series are
negative., Furthermore all the statistics are similar for all the quasi
contracts of a given commodity. There 1is an excess of negative serial
correlation coefficients. As an example, the fourth coffee series
produced 22 negative r. values, In almost all cases the number of
positive r values was less than what we would have expected from a randonm
walk process. Note however that the r, value for coffee was significant
and positive (= +0.893 for the first quasi contract). This can be
compared with an ri value of +0.126 +from the results of section 3.64.1.
None of the U statistics would therefore lead us to reject the null
hypothesis in favour of the hypothesis proposed by Taylor. These results
are in complete contrast to those produced in section 3.4.1.

Why are there so many negative r. values, and why are the U statistics
all negative? In an attempt to answer this we consider again the
approximate formulation of r.. Recall that the expected value aof the
approximate r« is -1/(n« -~1) and the variance i§ approximately 1/n«.
S0 we expect each r« to be slightly less than zerao. I{ we assume that
the above relations are valid for the expected value and variance

of r« computed using the complete expression, we can compute the expected

value of U and a 93% probability interval for U.
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30 BET R
E(C-U ) = 4 a“(-i/(nu-l))/ S #2%/ni -
ic =2 e =2
= -Q.1460 tor ¢ = B.92 and using n.'s from the
cocoa series
and Var({ U ) = 1,000 as before

The corresponding 935% prabability interval faor U, for the coffee series is
thus -0.160 + 1.96, .ie -2.12 to . +1.88. Similar intervals can be
calculated for each series.

All the observed U values for the cocoa and rubber series fall inside
the 95% probability intervals., All the observed U values tor the cotffee
series and the U value for the fourth sugar series are lower than the
lower bounds of the 95% probability intervals. So although we expect each
F i value and the resulting U statistic to be negative, the values
observed for £he coffee series can be considered as unlikely to result
from-a random walk procass.

Can we explain the <conflicting results obtained by examining the
coffee returns as described in section 3.6.1 and ¢those obtained using the
method described in section J3.6.27 Great care has been taken 1in the
weaving together of all of the periods of each sub-series. There has been
no overlapping crossproduct terms used in the computaticn of the numerator
of each r. . Consequently with lag k = 3@ there were only 313
crossproduct and sums of squares terms used in computing rse. This is to
be compared with 1125 such terms i{n the comﬁtation of ry, QObviously the
variance of rse and r, will be different and ¢this has been taken into

account in the computation of U and Q; but the paucity of terms making up

rse for larger lags does not explain why so many values should be

neqgative,
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Recall that in Taylor’s original model the stochastic process n. is
supposed to represent the random changes in the trend, ve. Taylor
estimates the mean duration of the ¢trend in his coffee series to he & = &
days. The two procedures outlined "in section 3.6.1 and 3J.6.2 are
examining two completely different series, In section 3.6.1 six typical
contracts were woven together and each contract produced approximately 208
returns. If a Taylor- type model was generating these returns one would
expect about, 200/ &= 288/6 = 33, changes of trend in eacﬁ subperiod. In
section J.6.2, 28 quasi contracts were woven toqether, each one producing
approximately 41 returns. By similar reasoning one would expect 41/ X
41/6 =7 changes of trend 1in each subperiod. These +fiqures have been
computed assuming Taylor'’'s estimate of = 6 is still valid for the coftfee
returns in the time period we are examining.

The frequency of trend changes in a given contract mﬁy be crucial. It
is these very changes in the trend that, as Taylor shows, result 1in small
positive theoretical #. values. In the long series, the number of such
trend changes may. be quite high and thus the resulting etfect on the r.
values is maybe what we are witnessing i{n section J.6.1 (recall U = +1{,91
for coffee), In the short series, the number of trend changes is probably
low and it is possible fhat such infrequent changes in frend will not
result in any observable ef}ect un'the e« s« But how do we explain the
negative U's in Table J3.117 Is it passible_ that even if a Taylor type
model is generating the returns, then weaving such short series together
may result 1in series that have negative theoretical serial correlation
coefficients? This is a question we leave for later research.

In conclusion we note that the examination of the quasiu contracts,
that are always a fixed average time to delivery, produced results
completely d;fferent to those expected and different toqthnse observed by

a similar study on five or six real contracts woven together. These
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interesting and unexpected results may be due to the fact that the

trend-type models proposed by Taylor are not a valid description of each
of the quasi contracts., The series of returns that are always a fixed
average time to delivery may be negatively correlated at more lags than
could be expected under a simple random walk hypothesis. Alternatively,
examining such quasi contracts may not be appropriate. The weaving

together of so many short series may be inducing the observed negative

serial correlations in some way.

Footnotes for Chapter S

1. Most commodity futures brokers will not allow members of the public
to trade in the delivery month contracts unless a substantially
larger deposit is placed with them. The risk of not being able to
close out a position increases as the final day of the delivery
month approaches., The situation of not being able to close out a
short position is particularly risky.

2, See Mood (1940) pplb7-392.

Se Anderson (1975) suggests that using the above r. expression is valid
for values of k up to about one quarter of the sample size
(approximately 20 in our sjtuation).

4. In practice, when n is large (as in this study) the normality
condition can be relaxed,

P See Anderson (1973).

b, A survey of various solutions of the Behrens - Fisher problem and a
study of their power characteristrics is given in Scheffe (1970).

1. See Snedecor and Cochran.

8, In testing the stability of means we computed T, and Tz for all

pairs of contiguous periods for all commodity series and Ti1 and T2
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7.

were always very similar. The ratio T:/Tz= never moved out of the
region @.98 to 1.82 whether the variances could be considered equal
or not,

Tests using the Ts statistic in section J3.3.2 showed that over
periods of approximately 84 days, pe. values were indeed not

significantly different from zero,
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CHAPTER 4

A STUDY OF THE INTER COMMODITY DISTRIBUTION OF RETURNS

In this chapter we examine the joint distribution of returns of the
four soft commodities studied in Chapter 3. The reasons for carrying out
such a multivariate study are outlined in section 4.1. The layout af the
rest of the chapter is similar in format to that of Chapter 3: the various
multivariate procedures are first described and the results and
conclusions follow. Many of the tests assume multivariate normality and
so the investigation into distributional form is treated first. Tests for

multivariate serial correlation and parameter stability follow,

4,1 The need for a multivariate study

Tobin (1938) and others have noted that the assumptions underlying the
Markowitz Portfolio Model are that either (1) investors have quadratic
utility functions or (11) returns are amultivariate normal. Assumption (1)
is quite restrictive and open to question and so 1interest 1is usually
centred on the possible vailidity of assumption (11).

All previous empirical studies of returns have examined the questian
of univariate rather than aultivariate normality. O0f course if returns
are multivariate normal then each component will be univariate normal. If
indeed a multivariate normal distribution can explain the returns, then
with little or no adjustment the Markowitz Model could be applied to
futures markets.,

The application of Portfolio Analysis aside, a multivariate study will
give information on the complete set of returns rather than the returns on

a glven single commodity. Previous univariate studies of a variety of
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price series have resulted in diftferent conclusions for different saries,
yielding no obvious common conclusion. A nmultivariate study should
produce a more powertful statement on the joint distribution of returns,

In this chapter we study a 4-dimensional set of returns., For reascns
outlined in Chapter 3 we divided the data into {4 subperiods. In each
subperiod we needed to select a typical contract ot each commodity. For
simplicity we chose the contracts and subperiods used for the separate
univariate studies carried out in Chapter 3.

In Chapter 5 we look at the multivariate distribution of returns of
four contracts of the same commodity and it will be useful to contrast it

with the results of this study.

4,2 Multivariate procedures and notation

In the sections that follow we describe the non-standard procedures
used to examine the returns for amultivariate normality, aultivariate
serial dependence and the stability or otherwise of  multivarjate
population parameters,

Let x. denote the vector (of dimension px1) ot returns (logged or
otherwise) from day t=-1 to day t such that xe™= (Xse,X2¢yXscyXae) where

X1« = returns on cocoa contract, %z« = returns on coffee contract and so

on, then:

"N

z - tz‘ F_f_t/n = sample mean of K ey

S =X Elx-FT M x=-X)"/(n-=-1) ,

jmg Jmy -

= sample estimate of variance matrix |,
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p o= papulation mean of returns ,

and vV = population variance matrix.

8 and V are pxp matrices and in this study p = 4.

4,3 Test of Multivariate Normailty

In this section we briefly outline some tests of wmultivariate
normality. The results of these tests are presented in section 4.8.2.

No previous study has addressed the question of ¢the wmultivariate
distribution of returns on commodity futures prices. There 1is a vast
literature on multivariate analysis and nearly all procedures assume an
underlying multivariate normal ( hersafter vreferred to as MVN)
distribution. There have been few proposed mu{tivariate distributions
other than MVN. Some researchers (eg Malkovich and Afifi (1973)) in
examining tests of MVN have used nmultivariate sets of non normal
univariate distributions such as the log normal, uniform and student ¢
distributions.

It is important to note that if the distribution is MVN then the

variance matrix describes, completely, the interrelationships between the

companent variables. If the covariances are zero, one could use separate
univariate studies of the marginal distributions to obtain complete
intormation on the joint distribution,

There are an infinite number of ways in which a distribution can be
non-normal. This may partly explain the lack of literature on the
subject, Cox and Small (1978) note that ‘“while in particular
applications very specific kinds of departure from MV normality might be

of cancern, the departure with the most serious consequences is often the
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occurrence of appreciable nonlinearity ot dependence.” In the Cox and
Small work interest was centred on this type of non normality and it was
for this reason that they examined measures of linearity of regressions,
In none of the 14 subperiods examined did we ¢find any evidence of
curvature in any of the 6 two-dimensional scatter plots and nowhere did
we find correlations higher than 0.33. Accordingly we turned our interest

to other measures of departures from MV normality.

4.3.1 Multivariate skewness and kurtosis
Departures from univariate normality are described by the
skewness and kurtosis measures b, and b2 already outlined in Chapter 3.

Mardia (1970) developed multivariate analogues of these measures.

1$ gis = ( X4= X )78 ( x,- X ),
th!l'l blp = E z qsi"/nz’
img =i
b2, = E g%ss/n
f=my

bia and bz, are the multivariate skewness and aultivariate kurtosis

statistics respectively., Mardia (197@) has shown that i{f x. are MVN

then the following functions of bi, and b2, are asymptotically X%2(f)

and N(@,1) distributed respectively.
(1/8) n bis * Xx*(f) with £ = p(p + 1 )(p + 2 )/6b
b2p = p(p + 2 ) " N(@,1{)

J8 plp ¢+ 2 )/n
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4.3.2 Multivariate Normal Plots

Healy (19é6B) outlines a graphical procedure for the detection of
systematic nnn'nnrmality and of outlying values. The Mahalanobis distance

de of each observation from the sample mean is computed using]

de = { (Xe - E)TS"‘(_:S} - X} Y1/2

If the x. are MVN the d2. are %2(p) distributed. The ordered

d?. are plotted against the expected %X2(p) order statistics. If the «x.
are MVN then the plot should be linear. This is a direct nmultivariate
analogue of the normal order plot. There are problems with computing the
expected X2 order statistics and in practice Healy (1968)

demonstrates that one can use the fact that the cube root of a ¥ variate

is approximately normal. Accordingly the ordered d2/3. values are

plotted against the appropriate expected normal order values.

4,3.3 The W - test for multivariate normality

Royston (1983) developed a very interesting and simple extension of
the univariate Shapiro and Wilks test for normality to a test for MVN.
We briefly outline the technique.

It { e }y t =1, 2yeeeey Ny is the set of MVN returns, consider the
ith component { xs¢ }y, t =1, 2,..., n ordered. Compute the W, and
associated z; statistic to test univariate normality in the 1ith
component, as described in section J3.2.3. Recall that if the { x.¢ )} are
univariate normal then 2z4 is N(@,1) distributed., Large positive

values of z: indicate non normality in the ith component. Consider the
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set ¢ 2: }y, 1 321y 2, ¢eveeyp and define 9, as follows:
04 s { 5"{3-55('21)}}2 ’ { = 1‘ sesey P

where I is the cummulative normal integral. Note that if ({x..} are

normal, each 6, will be %x2(1) distributed. Large values of 8
indicate non normality in the {th component,

Consider the tunction, G,

o
G = z ei/p 3
i=}
and the +following two extreme situations. (1) When the components aof
xe are uncorrelated clearly the W;, 2; and 0, will be uncorrelated and

thus G will be X=(p)/p distributed. (ii) When the companents of Xe.
are perfectly correlated, W., z: and 6; will be perfectly correlated and G
will be x2(1) distributed., For intermediate parent correlations Roystan
suggests that a natural approximation to the distribution of 6 is
x2(e)/e with e being the "equivalent degrees af freedoa®. OQObviously, e ,

need not be inteqral and is estimated using the first two moments of G.

If cas = correlation between 8: and 6,, and

o .
ct=X = cu/(p’*‘ - p) = average of C,
=1 {iwm]

then e = p

1 + (p=1)¢C

Thus one computes H = eG and if xe« are MVN ¢then H should be Xx2(e)

distributed.

This all assumes, of course that one knows the correlations Cis.
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Royston examined the values of c€:s under varying absolute parent
correlations within x. in MVN samples., Remarkably, the values of
Cis are very small for parent correlations up to 0.7 and so in the study
carried out in this chapter (in which the maximum correlation observed was
2.55 and many were very near zero) one could have regarded the H statistic
as Xx<(4) distributed. However in Chapter 5 we encounter distributions
with much higher correlations (typically 0.93) and so for uniformity we

followed Royston’s suggestion and used his proposed method of estimating

css; from the sample correlations, w;;, by using the function:

Cis = (wis)™ {1 - (F/Y)Wa:“ - 0!11)"}'

in which F = B8.715 r A =3

and y = 0.213464 + 0.015124(log(n))* -8.00818034(log(n))*>

Royston examined the distribution of H under the null situation of
bivariate MVN with parent population up to values of @.995 and found that
the x=(e} approximation was very good. In fact the distribution of H was
found to be slightly lighter in the upper tail than the appropriate %=
distribution and so tests are fractionally more conservative than one
suspects.

For each of the 14 subperiods we used the algorithm prgvided by
Royston (1982b and c) to compute Wi and z: for each component { = {, 2, 3
and 4. Each of the six cis values were computed for the sample
correlations using the above function producing values of e, Because e is
non integral we used an algorithm due to Narula and Desu (1981) to compute
the probabilities associated with values of H from a %¥2(e) distribution.

Since departure from MVN may occur in lower dimensional® space than
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R* we computed H (and the probability of H under the null) for all of the

possible 15 combinations of the four components of Xe..

4.4 Robust estimation and the detection of outliers

What ot distributions failing the MVN tests described 1in section 4.37
Is there a systematic departure from MVN or are any significant results
due to the presence or one or more atypical values? In a given subperiod
clearly one could examine the four separate normal order plots and all the
15 possible ordered Mahalanobis distance plots. A systematic departure
from linearity in one or more of the 19 plots would suggest non normality.
Atypical observations would be highlighted by an otherwise linear plot with
one or more outlying points.

A procedure due to Campbell (1988), designed for the robust estimation
of variance matrices, provides an extremely useful way of detecting
outliers from an otherwise MVN distribution, The sample estimates of V
and pe in Campbell’s procedure are very similar to the classical ones.
However each aobservation x., is given a weight, we. Observations coming
from the main body of the data are given a reduced weight. The

Mahalanobis distance, dey plays a central role in deciding which data

paints are far from the centre of the distribution.

I{ We = weight assigned to observation xe,
de = Mahalanobis distance of observation xe.,
from weighted mean,
Xw = weighted sample mean,

S» = weighted variance estimate,
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‘then

twm]} twy}

Su = E uzt(&_‘h - -E_u’(it - ?_u)T/ E (“gt - 1)

tmy t=g

de =2 {((X¢e = E_u)TS"-(E_t - E_-)}”:
| if de € da
(de/dt)!xp{-.S(dt - da)*/d%2} it de > do

with de = \/; + d:ﬁ

The value of d; determines de and thus the cut off point for the we's far
what is considered a reasonable distance of x. from x.. The value of
d2 determines the rate of decrease of the we's, associated with outliers,
towards zero. Empirical experience leads Campbell to suggest values for
d:s and d= of 2.0 and {.23 respectivaly.

The solution for Xw, Se and we is iterative. A routine that

computes xey, S. and  We was constructed. [terations were made

conditiconal on {ndividual components of X« beinq to within 0.1% of
previous values. Fbllouing Campbell ‘s suggestions, obsrvations with
weights iess than 8.3 were designated as "outliers"®. Sinﬂlatians using
this routine in conjunction with one that generates contaminated MVN
samples (see section 4.7) produced estimates of V and p consistently
superior to the classical esfiaates and always identified the anomalous
data. The ruutine‘pruved extremely useful in the early stages of this

research. It was particularly useful in the detection of errors in the

original data set.
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4,35 Multivariate serial correlation

If the components of ¢the returns vector are independent, then one
would think that separate tests of univariate temporal dependence cauld be
merged together in making 'a joint statement about the mnmultivarfate
temporal behaviour of x.. What if the  components of xe are
correlated? It would be difficult to make a Jjoint statement <from the
separate univariate tests. Recall that we did not discover any evidence
of any consistent temporal dependence 1in any of the subperiods examined
and we would expect that any joint study of wmultivariate temporal
dependence would yield similarly.uninteresting results.,

But what if there were any temporally lagged relationships between the
returns, xe¢ and Xe+x Of .3 more complex nature? What if, for example,
the cocoa and coffee returns are correlated not only contemporaneously, as
they seem to be 1in the five year period considered, but also, say
correlated significantly across different points in time? Cocoa prices
going up one day (positive return) could mean that coffee prices will
follow the next day. GSeparate univariate serial correlations analysis
could still show the cocoa and coffee returns to be white noise when in
fact there exists (possibly) a multivariate temporal pattern,

How does one discover if there is any multivariate temporal dependence
in the series? One method would be to examine all the cross correlations
of all four commodity returns at all possible lags. This would have been
extremely tedious, very time consuming and the author 1is not sure if any

clear conclusion could have been drawn from such a mass of correlation

coefficients,

Chitturi (1976) and 0’Brien (198@) addressed this very problem and

derived measures of multivariate serial correlation (MVSC) together with
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assoclated test statistics. Both authors consider the data to be a

sequence of p dimensional random variables such that:
Xt < th—z + Et ’ t=2’ 3‘ NN N

in which B = a (axp) matrix of coefficients and e« s a ssquence of

mutually dependent and identicaly distributed random variables withy
E{ee) = 0 and Var(e.) = V.

One wishes to test the null hypothesis of no MVSC, ie B = (@}, the matrix
of zeros against a general alternative hypothesis ot at least one non zero
element in B,

Chitturi (1976) considered the sample autocovariance matrices:

"n=-k

) 2 (?S_t "2‘_) (X_t-u: - Y_)T / (n - k)

t=}

Ce

and showed that under the null hypothesis the sample autocovariance

matrices are asymptotically uncorrelated and naultivariate normal. He

proposed the test statistic t,,

ty = Z (n = k)tr(Du}

k=3

where | Dv = e« Ta~! T Ta™?
and showed that t, is asymptotically %x2(mp?) distributed.

Although Chutturi (1976) did not éxplicitly say so, we can assume that

since the [« are uncorrelated (under the null hypothesis) then one can
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consider testing each ' wusing ts (k)

t. (k) = (n - k)tr(D«)

which under the null should be X<(p%) distributed, asymptotically.

D'Brien (1980) notes that the likelihood ratio statistic given by:

t2(k) = =2logh = =-nlog(C«)

where Ch = Ip - ((n=k)/n)#® D.

is asymptotically X=2(p) distributed.

0'Brien also oautlines ¢two measures of multivariate serial correlation.

The first une,'ﬁé, is based on Chitturi’'s (1974) test statistic and is

given by!

R = (n-k)2 tr(D«} / pn*

The second one, R*%, is based on O0’'Brien’'s test statistic and is given by:

R# = 1 = (Ck)t/”

D'Brien demonstrates that R2 is a function of the sum of the
canonical correlation coefficients whereas, R2? {is a function of the
product of the canonical correlation coefficients. We will return to
these canonical correlations in Chapters 5,6 and 7. 0’Brien tested both
ti(k) and t=(k) using simulations on two dimensional data and reported

that both statistics performed equally well with samples larger than n =
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9.

Qur own simulations study of these test statistics on four dimensional
multivariate normal data with and without outliers showed that both ti (k)
and t=(k} performed well and were insensitive even to extreme outlying
values. However for larger lags the t=(k) statistic rejected the null

less frequently than expected for various test sizes.

4,4 Test on Multivariate Parameters

In Chapter 3 we examined the usual sample statistics such as means and
variances on each separate univariate commodity returns series. In this
chapter we are studying the Jjoint distribution of the set of four
dimensional returns. Individually testing the means of the separate
companents will not be valid if two or more components are correlated.
Joint statements and tests are regquired.

Amongst other things, interest is centred on the stability or
otherwise of the multivariate distribution of returns. It Markowit:z
Portfolio Theory is to be successfully applied to the commodity futures
markets it is important that one can use information from the past, such

ag variances and covariances, to construct portfolios that will be near

optimal ( efficlent) in the future.

All the foregoing tests assume that the data are multivariate normal

but Mardia (1979) notes that, broadly speaking, in the presence of non
normality the normal theory tests on means are influenced by b:, whereas

tests on covariances and correlations are influenced by bz,.
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4.6.1 Classical single period multivariate tests on parameters

-

Two parametrs are of interest in each of the 14 subperiods; the vector

of means, u and the correlation matrix R

(1) He t p =18 V unknown

This is known as the Hotelling one sample T test. This would be
consistent with the hypothesis of no persistent trend. Hotelling's one

sample T Test is appropriate here. Under the nulls

Ts = (n=p(X=-0)76~*(X =@ ~ Flpyn-p)

F
(i1) He ¢ R = 1Ip

ig the series are mutually uncorrelated. Box (1949) has shown that under

the null:
T2 = =[n = (2p + 11)/61 log|R| v x2(plp=1)/2)

We can use T> as a useful measure of the comovement of all the returns,
With p = 4, we have 4 x 3 /2 = 6 pairwise correlation coefficients in

the R matrix. Strictly speaking one cannot test each component of the R

matrix as they are interdependent. In fact Elston (1975) provides

expressions giving the correlations between correlations.
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4.6,2 Stability of multivariate parameters

Do the multivariate parameters change from one time period to another?
Recalling the univariate tests in Chapter 3 we note that the individual.
variances of returns changed frequently‘from period to period and so we
can guess what the answer to the above question is. Nevertheless we will
consider in full the stability or otherwise of the parameters by

considering the following four hypotheses:

(3) Hoa ¢ pas =2 p2 , Vi = Vo (test of complete homogeneity)

(b) Hes ¢ Vi = V3 (test of equal variances/covariances)
() Hoc ¢ p1 = pa (no assumption on V., Vz2)

(d) Hea ¢ R:i = Rz (no assumption on Ps,p=2,Vs or Vz)

where suffix 1 refers to period {.

The test of Hae 15 a multivariate extension of the Behrens - Fisher
problem and requires the computation of estimates of means and variance
matrices via an iterative routine with similarly controversial results.
We decided not to carry ocut test (c).

No known test exists at present for Hea. Other authors have attempted
to test corresponding elements of R: and R2 using the Fisher I-

transform. However as Elston (1973) points out, the elements of R: are

not independent and so it is difficult to make a joint statement on the
stability? of R.

And so0 our concern is reduced to testing Hea and Haw. Mardia (1979)
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outlines the appropriate likelihood ratio tests:

If §S: = wusual unbiased estimate of V,
Sr = sums of squares and cross products matrix for both periods
= (ng = 1)}8; + (n2 - 1)52
Se = pooled estimate of common variance matrix

= 8¢+ /{ny + nz2 - 2)
To test Heoa and How compute

Ts = nlog |Ss] - nslog|lns = 1) 84 = n2logj(nz - 1) 52

1 Ni 2

To = 4 {(n: - 1)10g|8:=18,|+ (nz = 1)1ag|82"*8|)

with ¥ = § - i + i - I | ~ K
n, - 1| Nz = 2 Ng + Nz = 2

and Kk = (292 + Jp = 1)/(6(p + 1)

Under the null, Ts and T« are asymptotically x= distributed on
plp + 3)/2 and p(p + 1) degrees of freedom respectively.

All the tests described in this section are likelihood ratio tests and
were derived assuming a specific distributional form, ie the multivariate

normal distribution, and so the comment at the beginning of section 4.6 is

relevant.
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4.7 Simulating multivariate normal data

In this and later chapters a number of non standard multivariate
procedures were examined. Examples are the robust estimation routine due
to Campbell (1980) and the testing for multivariate serial correlation due
to O'Brien (19808) and Chitturi (1976). It was decided that in such a
study it would be useful to be able to generate data sets whose population
properties were known. The above non standard procedures could then be
applied to such data sets and the sample results compared with the known

population values.

Two routines were constructed to simulate multivariate normal
observations, with and without outlying values, respectively. The

routines are briefly described as followst

(i) Decide on a population value for ¢ and V.

(ii) Use the Cholesky decomposition to decompose V into A and AT such

that
A AT = V

(iii) Generate p independent realisations from the univariate N *~ (0,1)
distribution and stack into a axt vector z.

(iv) Calculate the required observation y using

Repeat steps (iii) and (iv) until a sample of size n is pbtained. It is

easy to show that y is multivariate normal with mean, p and variance
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matix V. Proots

E(y) = E(p+Az) = E(p) + AE(2)
.
var( y ) = Var(p + Az ) = Var( Az )
= E((Az)(A2)T)} = A,E(227).AT

e A.[.AT = AAT = V

tach component of y is a linear combination of normal random variables

and is thus normal.

The outlier routine is identical to the above routine except that an

additional step {s included in each simulation.,

with probability g

where § =

§* with probability | - g

in which the elements of §* are set to five times the standard deviation

of a typical component of y. We can adjust the number of outlying

observations by altering q.

These routines proved extremely useful in gaining experience with

multivariate analysis.



4.8 Discussion of results of multivariate tests

All the multivariate analyses were carried out on the subperiods using
both logged and unlogged returns. Before going into a detailed discussion
of each of the sets of results we note here that it was decided for
brevity to report only the analysis of the logged data. Recall from the
univariate study carried out in Chapter 3 that logging returns tended, if
not to normalise otherwise non-normal data, to reduce slightly any
positive skew and in some instances also tended to stabilise somewhat the
variances. Without going into detail yet, we found similar tendencies in
the multivariate analysis. However the difference between the results of

the logged and unlogged analyse was small.

4.8.1 The {dentitication of anomalous returns

We consider first the question of outlying observations. Table 4.1

gives a list of the number of outlying observations in each subperiod that
were identified by the routine devised by Campbell (1980). Examination of
each of the four components of the observed outlier invariably led to the
discovery that it was only one of the components that was in fact
anomalous.

It is interesting to note that, apart from the first-period, the
outlier detection routine always converged in less than 17 iterations and
typically in only 9 iterations. The first period seems to be a special
case. Referring to Figs. 3.2 to 3.5 we see that 1é& days before the end of

period one the variance of the cocoa and coffee series increased
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considerably. MWhat we are examining in period one is really two different
distributions; those observations before the 84th day and those after.

Considering only the first 86 returns, the routine converged in four

o

{terations with no further outliers detected.

Table 4.1

Qutlier detection routine (due to Campbell) results

no., ot no., of
Period -~ outliers fterations
{ 14 *
2 | 14
3 9 17
4 | 9
2 | 9
b 2 q
7 2 |
8 0 7
q | g
10 | 12
i1 g 7
12 " 7
13 2 q
14 @ 8
Total 14

(*Routine would not converge until last 16 observations of period were
removed)

Apart fraom the ¢first period ¢there were a total ot 14 observations

identified as anomalous. This means that in the rest of the 4.3 year
period (a span of 1218 - 1082 = 1116 days) only 114 atypical returns could
be found. Thus only 14/1116 or 1.25% of the returns were considered to be
out of the ordinary. Examination of the da{a in more detail revealed
that many of the 14 outlying returns could be attributed to sudden and
large changes in the prices of the cocoa and coffee futures. Consider for
example the 4Bth day of period six when there was a simultaneous large

drop in the price of the cocoa future (£465 per tonne) and the price of
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the coftfee future (£400 per tonne).

How do these outliers affect the multivariate tests? 1Is it possible
that the presence of a single outlying observation could seriously affect
the results of, say, a test for multivariate serial correlation? To
answer this guestion we carried out each test on the complete subperiod

and with the outlier(s) removed.

4.8,2 Tests of multivariate normality

We consider first the multivariate kurtosis and skewness measures
reported in Table 4.2. There are many instances of extreamely large sample
values. Eight of the skewness statistics are significant at the 3% level
and 5 are signifiant at the @.1% level. Of the 14 kurtosis statistics, 7
are significant at the 5% level and 5 are significant at the 2.1% level.
Not surprisingly those periods with a high skewness statistic also have a
high kurtosis statistic. Thus over half of the 14 subperiods ylelded °
significant results and would lead one to the rejection of a hypathesis of
multivariate normality.

If, however, the outliers are removed all the statistics are very

much reduced in size and only 4 periods would be considered as non

multivariate normal. It is interesting to note how much each result |is
altered by the removal of a few outliers. Consider for example period 7
in which there are 82 returns. Removing one of these returns reduces the
skewness measure from 66.79 to 18.47 and the kurtosis measure from 5.33 to
2.98.

We now turn our attention to Tables 4.3a and 4.3b. These Tables have
been drawn up using the P(W) values from the Royston’'s W - test for

multivariate normality on all the possible (15) combinations of the four
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Table 4.2

Multivariate skewness and kurtosis measures on logged returns

Skewness measure Kurtosis measure
Complete Qutliers Complete Qutliers
Periad data removed data removed
i 393.46 ¢ 30,38 29.87 ¢ 2,78 ¢
2 J3.48 a 33.70 a 2.89 b 2.77 ¢
3 04.90 ¢ 18.835 9.26 C 1.95
4 34,48 a 15,23 2,22 a 1.16
S 23,035 27.17 .16 -B.26
4 95.18 ¢ 39.38 b 8.42 ¢ 2.42 a
7 22,19 22,13 -1.04 -1.04
g 33.87 a 33.87 a 1,54 {.94
9 b6.79 C 18.467 9.93 € 0.98
10 17.72 18,23 1.93 Q.78
{1 24,37 24,37 .29 - B8.29
12 16:56 16-56 "3.49 -Bl49
13 142,64 ¢ 19.84 i0.12 ¢ 1.61
14 235,80 23.80 B.63 B.563

Skewness measure “ X2(20) under multivariate normality
Kurtosis measure ™~ N(@,1) under multivariate normality

1f entry = & then associated value is significant at the 34 level.
1f entry = b then associated value is significant at the 141 level,.
If entry = ¢ then associated value is significant at the 0.1% level.
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Table 4,3a

W - tests of Multivariate Normality on complate data set

Component 1
Component 2
Component 3
Companent 4§

Cocoa returns
Cotfee returns
Sugar returns
Rubber returns

Components: All 4 In 3's In 2°'s Individually
R O T T
skew kut. 2 2 2 2 2 2 2 2

3 J 3 3 3 3 3 3
Periad 4 4§ 4 4 4 4 4 4
T ¢ ¢ b c-cc ceeco--- coco- -
2 & b a2 aaa- -b-b-b = -ub-
5 ¢ ¢ ¢ ccbb ebo-cbb -cb -
4 a2 a ¢ cc-c c--cc- -t - -
PO S e e e . LT e e e .
4 ¢ t ¢ c-ce cee--- €---
'; C e e e e e e L
R s - e e - s - oI T
9t € a b o-bb bbb~~~ c---
"R e e e e e - oI
“o L - . L L LTI
17 e . e e LTI
5 ¢ ¢ t cco-c €o--coeo- -c--
" L. . . LTI
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Table 4.3b

W - tests of Multivariate Normality on data set with ocutliers removed

Components: All 4 In 3's In 2°s Individually

Mul. Mul. i i 1 1 i
skew kut.

A N -

3 - - - T
b - - - T T
s - - - oL LTI
b b a4 - - T
- - . T

10 - - - - - - - - - - - - - - - - -
M - - - T
12 - = . L TTTTTTTTITTTTTTITITTTTTTLTT T
3 - - . LTI
W - - - LTI
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components of the returns vector. It was decided that rather- than record
the numerical values of the P(W) statistics, a symbol denoting the
gignificance, i{f any, of the associated test be reported.

Column three of Table 4.3a gives the P(W) value associated with the
test of multivariate normality on the complete set of returns. Note that
the periods resulting in significant P(W) values almost always also yield
significant skewness and kurtosis measures. So we see that the W - test
for multivariate normality gives results identical to those obtained using
Mardia‘'s multivariate skewness and kurtosis measures.

Columns 4 to 17 of Table 4.3a however are also very interesting.
Columns 14 to 17 contain information nn-the four separate W - tests of
univariate normality, columns 8 to 13 contain information on all
combinatiaons of two components and columns 4 to 7 contain information on
all combinations of three components. It is interesting to note that for
any given subperiod, if a particular univariate component of the returns
vector 1s reported as non normal, all combinations of the four returns
containing that component will also be reported as non multivariate
normal. Consider for example period 13, which results 1in eight
significant P values, Examination of Table 4.3a reveals that it is the
'gecond component, coffee, that is causing all the significant results.

All combinations containing the coffee component would be considered as

non multivariate normal.,

This effect is not really surprising. Table 4.4 shows the six inter-

commodity correlation coetficients for each subperiod. The maximum

correlation coefficient observed was @.495 in period 3. As noted in

section 4.3.3, with correlations less than 0.7 the multivariate W -~ test

is equivalent to simply "adding" the results of the separate univariate W

- tEStBI

At this point it may be useful to consider the values of, e, the
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eftfective degrees of freedom used in computing the P({(W) statistics 1in
Tables 4.3a and 4.3b. Recall that for highly correlated data e = | and
tor uncorrelated data e = dimension of vector under consideration. The
maximum and minimum values of e found in the complete study of the returns
weret
(1) With complete four dimensional set:
Bmax = 4,000, Cmin = J.945
(ii) With all combinations of three dimensiaonal sets
Bmax = J.000, emsn = 2.974
(iii) With all combinations of two dimensional set:
Cmax = 2.001, €min = 1.991

These values of e reinforce the above remarks.

For tests of  multivariate normality, the individual components can
therefqrg be considered as separate, uncorrelated series.

Before moving on to the effect of outliers it is interesting to note
the dilution effect in these tests caused by increasing the dimensionality
of the vector considered. For example in period ten, in which the P(W)
value for the cocoa series i{s 0.007 (recorded as b in Table 4,3a), the
P(W) value for the cocoa and coffee series is B8.012. For the cocoa,
coffee and sugar series the value'is 0.031 and for all four series the
value is @.0861. In this period only the cocoa series is significantly non
normal. Notice how in eacth case the P(W) value is small, resulting
(except when considering all four returns) in the rejection of the null
hypothesis; but that as more components are added to the cocoa series, the
effect ot the severe non normality, is gradually diluted. This effect was
noticed in all of the subperiods, but although the P(W) value increased as
the number of components was increased one generally found that non

normality in a single component led to the rejection of the null
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hypothesis in all combinations containing this component.

We now turn our attention to Table 4.3b. This table gives the results
of the tests of multivariate normality on the data after the outliers have
been removed. The difference between Tables 4.3a and 4.3b 1is striking.
The number of periods in which we reject the null hypothesis at the (%
level has been reduced to one. The skewness and kurtosis measures result
in four periods being significant at the 5% level. The W - test on all
the full sets of returns result in no periods in which we reject the null.
Examination of all the other combinations of returns shows however that
this may be simply a result of the dilution effect. The significant P(W)
value for cocoa in period B shows up in all of the relevant combinations
of two components, two of the relevant combinations of three, but not in
the combination of all four.

The only unusual results are in periods 1 and & in which we get
significant kurtosis and skewness statistics but no significant results in
any of the combinations of individual components. These significant
results cannot be explained by non normality in any of the 1individual
components and examination of all the &, two dimensional, scatter diagrams
of the returns, does not reveal any obhvious anomolies.

In summary then, regarding the distribution of the returns, the
multivariate skewness and kurtosis measures in general led to similar
conclusions to Royston’s W - tests. We also examined many of the 15 x {4 =
218 normal order and multivariate normal order plots and, after the
removal ot outliers, there was no real evidence of any consistent
departures from linearity. It 1is very interesting that (excluding the
first period) the removal of 1.25% of the observations changes the picture
markedly, leading to a general acceptance of the hypothesis that the
distribution could quite easily be considered as multivariate normal.

Finally, we note that the study using unlogged returns resulted in
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more subperiods being regarded as non normal. Of the {4 periods, 18 were
rejected at the 5% level using the W - test. This compares with 7 ot the

logged returns series. In general the results were similar and removing

outliers greatly reduced the number of significant statistics.

4,8.3 Tests for a persistent multivariate trend
In Table 4.4 are the results of testing the hypothesis of p =0

against the general alternative of p = @, Considering initially the
columns relating to the complete data set we note that only two periods
(four and five) produce results that can be considered significant at the
5% level. However, the tests on a number of the other periods produce F
statistics that are very near the 5% significance cut oft level. For
example in period 12 the F statistic is 2.47. This corresponds to a P

value of 0.04.

Table 4.4

Testing the hypothesis of no multivariate trend

Complete Without

Period data outliers
i {.22 {.99
2 B.94 B.94
3 2.19 2.35
4 2,399 a 2,74 a
5 9.49 b 5.38 b
4 B.74 1.47
7 .85 B.85
B 2:3% 2,39
q i.02 B.76
i0 .73 0.461
i1 B.22 B.22
12 2.47 2,47
13 83.95 .81
14 1.97 1.97
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These results are similar to those in Tables 3.1 to 3.4 in Chapter 3.
The null hypothesis that the vector of returns is identically zero is
rejected when one of the relevant tests on one of the components is
rejected. It is interesting to note again the diluting effect introduced
by considering higher dimensional vectors. In period 12 for example the P
value associated with the test on the coffee series is 8.01 but when
compounded into a four dimensional vector the P value of the multivariate
test becomes @.06.

There {s very little effect from removing outliers. It i{s knownS
that Hotelling’'s T Test is overall robust to non normality and here we see
that the test seems to be insensitive also to the presence of some extreme
outlying observations. Analysing the unlogged returns produced virtually
identical results. We conclude that, in most of the subperiods studied

the vector of returns could be considered to have a mean of zero.

4.8.4 Inter - commodity correlation coefficients

The complete set of six sample correlation coefficients between the
four series of returns for each subperiod 1is gqiven in Table 4.5. The
symbols a, b and ¢ indicate, as wusual, 1f each coefficient can be
considered to be significantly different from zero at the appropriate
level of significance. Note that these results are obtained by separately
testing each coefficient and strictly speaking, cannot be used to make a
joint statement on the inter commodity correlation matrix. Table 4.5 also

gives the results of the joint test of all coefficients being zero,

outlined in section 4.4.1.

Reterring to Table 4.5 we see that 24 of the possible & x 14 = 84

correlation coefficients are significant at the S% level. The strongest
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Table 4.5

Inter-cnﬁmudit! correlation coetficients

Cocoa Cocoa Cocoa Coffee
: E i l
Period Coffee  Sugar Rubber Sugar

Coftee Sugar
: :
Rubber Rubber

¥ Test statistic is ™ x2(4) under null

92
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correlations are positive, involve the cocoa and coffee series, but are at

the best, weak. There are no significant negative carrelation

coefficients, One or more significant pairwise correlation coefficient
are almost always reflected by a significant result in the joint test.

The correlations, although small, seem quite stable. From period
three to period six the cocoa/coffee returns were consistently weakly
pnositively correlated. During this period (early 1976 to mid 1977) the
prices of cocoa and coffee futures were rising rapidly.

We have not reported the detailed correlation coefficients for the
data with the outliers removed but just make a few remarks on the Jjoint
test results given in Table 4.3. Removal of ¢the outliers reduced the
magnitude of four of the Jjoint test statistics. Examination of the
relevant pnairwise correlation —coefficients revealed that, not
surprisingly, four of the correlations were being exaggerated by the
presence of a single outlier and five were being under stated.

We conclude by saying that the set of four returns were weakly jointly
positively correlated for the first two years and the last year. The

inplications this has for applying Portfolio Theory to the futures markets

will be discussed in section 4.9.

4.8.3., Stabilitx uf multivariate parameters

Table 4.6 gives the results of the tests of the stability of the

multivariate parameters as outlined in section 4.6,2.

Cansidering initially the tests of the equality of the variance

matrices, we note that all results are significant at the 0.1% level.
This result is not surprising. In Chapter 3, in every periud-tu-periud’
comparison of the univariate series, we found evidence that at least one

of the variances had changed. The results in Table 4.4 and the pictorial
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Table 4.6

Stability of multivariate parameters

Period Complete Without Complete Without
Comparison data outliers data outliers
1= 2 148,79 22.47¢ 14541 30.77
2 - 3 815 6678 87.63  71.41
3 - 4 328 4274 36.74 4.3
4o- 5 4262 3820 47.46 1.4
s - & 95.02  98.28  99.97  93.47
b o= 7 4552 2842 412 32.43
7 -8 70.03  70.03  76.84 74,88
8- 9 3992 33.58 47,23 39.80
9.1 K73 St 47,77 S&9
10 - 11 35.03 3.1 36,99 32.97
1=z S Sedt 4204 42014
12 - 13 M.82 16,09 4283 21.23
13 - 14 17.00  83.86  123.61  88.71

{: Complete homogeneity test statistic ~ X2(14) under the null hypothesis
2t Equality of variancetest statistic ™ X¥*(1@) under the null hypothesis

* These are the only values not significant at the 5% level
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evidence in Figs. 3.2 to 3.0 simply reinforce these findings. Removal of
the outliers reduces somewhat, most of the test statistics, but makes
virtually no difference to our conclusions.

The results of the complete homogeneity tests were also predictable,
The P values associated with each result have been computed but for
brevity are not reported here. In every period to period comparison, the
P value of the complete homogeneity test was small (13 were less than
8.801) but not as small as the equality of variance test. This is

obviously due to the fact that we are joint hypothesis testing. The
results in section 4.8.3 show that the trend values (means) are mostly not
significantly different from zero and so it s unlikely that ¢the means
p:s and Ppi.s are different in each period to period comparison.

What we are observing in the complete homogeneity test are the results of
a diluted equality ot variance test. Again we note that all the results

are significant,

4.8.6 Multivariate serial correlation
The results of the tests for multivariate serial correlation appear in

Table 4.7a and 4.7h, Again, tor brevity, we simply report the
significance or otherwise of each coefficient. Also for brevity we report

the results only on O0'Brien’s test for lags k = { to k = 28,
| In period one there are seven significant coefficients at the 5%
level. In the remaining 13 perifods, of the total of 13 x 20 = 2640
coefficients, 11 (4,24 of 26@) are significant at the 5% level. There is
no obvious consistent pattern in the significant coefficients.
Considering Table 4.7b we see that removing the outliers has a most

dramatic effect in the number of significant coefficients in period one
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Table 4.7a

Significant multivariate serial correlation coefficients
on complete data set

Lags =1 2 3 4 5 & 7 8 910 11 12 13 14 15 14 17 18 19 20

i a b a ¢ ¢ a b
2 a
3 a
4

2

b

7 a a

g C

Q a

10

11

12 a

{3 a a

i4 a a

Table 4,7b

Significant multivariate serial correlation coefficients J
on data set with outliers removed

i a

S p—— o ——— r— e

96




also. The number is reduced from seven to one. The sudden {ncrease in
the variance of the cocoa and coffee series towards the end of period one
gives rise to the anomalous results in Table 4.3a. Apart from period one,
the outliers seem to have very little effect on the test statistic. A
total of 11 significant coefficients is very near what we would expect
under the null hypothesis (54 of 280 = 14).

Using Chitturi’s test statistic yields a similar pattern in the
coefficients. The P values associated with the Chitturi’s statistics are
in general slightly smaller resulting in 16 significant coefficients at
the 5% level when testing the data with outliers removed. Analysis on the
unlogged returns gave identical results.

We conclude then, that there is no evidence of any type of
nultivariate temporal dependence. It seems unlikely, then that there

are any temporally lagged relationships as described in gection 4.3,

4.9 Summary of the inter - commodity distribution of returns

The joint variance of the set of returns varied considerably over the
f§ive year period under consideration. This observation alone 1is
justification for the experimental design of this study in which the data
were cut into smaller subperiods. Even within these small subperiods we
noticed that the variances occasionally changed. It must be stressed that
this changing variance witnessed in this study and recorded by many other
authors, means that one cannot carry out the usual statistical tests for
normality, serial dependence, etc on daily returns {in periods 19NQ°F than
80 days or so.

We conclude then ¢that the returns could be degcribed as belng

generated from a nmultivariate normal distribution with the occasional

contaminating extreme realization in one or more of the copponents. The
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character of these rare extreme returns are varied and not predictable.
It does not seem likely that a set ot longer-tailed  univariate
distributions, such as the t or the stable distribution, would explain
the returns any better.

There is no evidence that the set of returns has an average that is
anything different from zero.

What of the question of temporal dependence? There does not seem to
be any. It has occurred to the author to propose a multivariate Taylor
type model in which the trend vector ( p ) would be modelled by a
nultivariate stochastic process. The study of such a model would require
the analysis of very long run series with the associated problem of
varying variances. One could of course simply extend Taylor's rescaling
technique by using a multivariate exponentially smoothed estimate af the

variance matrix. We leave this suggestion for another study.

4,10 Implications for a portfolio analysis model

The successful application of a Markowitz type portfolio model to any
investment medium requires, as 1inputs, estimates (statistical or
otherwise) of the expected returns and the riskiness of each asset under
consideration. Also required is an estimate of the comovement of asset
returns. If one is to use the classical statistical estimates of expected
returns (the mean) and risk (the variance) then one would hope that these
estimates are meaningful and sufficiently accurate for practical use. If
the returns are wmultivariate normal then the classical estimates of
expected return and risk say everything there 1is to know about the
investment set. We have found in our study that the returns are 'almost’

multivariate normal.

How meaningful would it be then, ¢to apply the portfolio model to the
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gset of returns? Firstly we found that in most of the periods the average
returns could not be considered statistically different from zera. This

question of the non significance of average returns must not be over
stated. Many other empirical works*® applying portfeolio theory to
various investment mediums report returns that are not significantly
different from zero. However, investing in the proposed portfolio
nroduced returns that were positive, if not signitficant, and positive
returns with low risks are what we are seeking.

Secondly with respect to the variances, {.e. the risk estimates, there
are two points of interest: (i) are the variances the correct
instruments to wuse as risk estimates and (i{i{) are they accurate as
forecasters of future variances?

The variance estimates do not take into account the occasional sudden
movements in the prices witnessed in this study. The sudden movements are
unpredictable and thus the perceived risk must be higher than that
suggested by the classical variance estimates. It is possible that one
could bias upwards the classical variance estimates <for each camponent.
Such a procedure would require some subjective input as to the likelihood
of sudden movements in prices.

Are the <classical variance estimates accurate forecasters of future
variances? The results outlined in section 4.8.5 demonstrate conclusively
that the answer to this question i{is no. Even 1ignoring the outlying
observations the classical variance estimates do not remain stable.

Summing up, then, we note that a serious draw back to the viability of
applying Markowitz Portfolio Theory to the futures markets studied here is
the question of the appropriateness of using the usual variance estimates
for risk 1inputs and the observed instability of these estimates fron
period to period.

However the inter- commodity correlations are small and positive and
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thus constructing portfolios of futures contracts will afford some risk
reduction. Using a technique 1like the Markowitz procedure will almost
certainly result in some diversification but the resulting portfolios are
unlikely to be on the efficient frontier. We leave the study of the
effectiveness of crudely applying the Markowitz procedure to this data set
to another study but report the results of investing in a naive portflio
of futures contracts in Chapter 8.

In Chapter 5 we examine ¢the aultivariate distribution of returns on

all the contracts of a given commodity.

Footnotes for Chapter 4

i, We suspect in this study that a departure from MVN is probably
due to departure from univariate normality in one or more or more
of the individual components.,

2. Simulations carried out by the author have shown that unless the
underlying population correlations are higher than 0.7 the
individual tests on elements of the R matrices yield meaningful

results.
3. See Mardia (197%9) p 149.

4, See Watson and Dickinson (1981).

108



CHAPTER 9

A STUDY OF THE INTRA - CONTRACT DISTRIBUTION OF

COMMODITY FUTURES RETURNS

In Chapter 4 we studied a multivariate set of returns in which each
component of the returns vector was obtained from a typical contract i{n
one of the four commodity futures markets. 1In this chapter we examine
another type of multivariate distribution, one in which all the components
are returns on contracts in the same commodity futures market. In the
rubber futures market, for example, there are usually eight different
futures contracts which can be traded on any one day. Each contract has a
different delivery date. We can construct a vector of returns in which
the first component will be the returns on the nearest contract - the one
that will reach maturity first, the second component will be the returns
an the contract that will reach maturity next and so on. Apart from Dusak
(1973), who vreports that the returns on different contracts of a given
conmodity are highly correlated, no other empirical study on such a
multivariate distribution appear to have been published,

Such a study may throw light on a number of issues such asi

(i) How the wvariability of returns on the various contracts are
related. There are possibly complex associations between the
variability of returns, the trading volume and price expectations for
each contract. One would expect the variability of returns in the far
contracts to be lower than the variability of returns in the near
contracts.

(1i) Whether the inter contract correlations vary over time and the

degree of correlation differs across futures markets,
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({ii) Whether one can use various futures contracts of the same
commodity to construct Markowitz type efficient frontiers.
To answer these questions one must look at the multivariate

distribution of returns and the stability or otherwise of the

parameters?®.

5.1 Design of the empirical study

There are 7 different contracts one can trade {n each day in the
cocoa, coffee and sugar futures markets and 8 different contracts in the
rubber futures market. The delivery dates of the contracts and the dates
when new contracts become available far trading vary from futures market
to futures market. Also the time periods 1in which one could examine the
same 7 or B contracts is quite small (approximately 42 days in the case of
the coffee contracts). For these reasons, it was decided initially to
examine only a 4 dimensional set of returns from each market. For
consistency with the studies in Chapter 3 and 4 we decided to study the
returns over the same 14 subperiods. The 4 contracts from each market
were picked from the possible 7 or 8 contracts available each day in the
following way.

The first component of the 4 dimensional returns vector was derived
from the prices of the contract that was nearest the delivery date. The
second component was derived from the prices of the next nearest delivery
contract and so on. For reasons mentioned in Chapter I it was decided
initially not to use prices af futures contracts very near the maturation
date and so the first component of the last observation in each subperiod

was derived from prices at least one month away from maturity. Details of
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the contracts chosen with dates are given in appendix D. A pictorial
representation of the portion of each of the contracts used in the study

is given in Fig., 3.1,

5.2 Variability of returns on different contracts

In this section we examine the distribution of the variability of
returns on futures contracts with different times to maturity. Recall,
however  from section J.3.2 that the variances of returns
changed considerably from period to period and listing the varfances or
standard deviations aof each of the 4 contract returns for ea;h of the 14
subperiods would not be very useful,

We consider, instead, the ;ariability of returns on each contract
relative to the variability of returns of the first contract - the
contract with the nearest delivery date. Table 5.1a gives the ratio?
of the standard deviation of returns of components 2,3 and 4 to the
standard deviation ot returns on component {.

The entry of @.835 in ¢the top 1left hand corner of Table S5.!a
indicates that, in ¢the +first period, the second component of the cocoa
series had a standard deviation of 83.3% of the standard deviation of the
first component. Note that the majority of the entries in Table 5.1a are
less than unity reintorcing the prior belief that futures prices of
distant contracts are less volatile than the futures prices of near
contracts.

From Table S.1a we can see many instances in which variances decrease
monotonically with time to maturity. This can be seen much more clearly by
referring to Table 3.1b which has been constructed from Table S.la as

follows: a zero is placed in a column if a contract has a lower variance
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