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ABSTRACT 

A STUDY OF THE MULTIVARIATE DISTRIBUTION OF 
COMMODITY FUTURES PRICES WITH A VIEW TO THE 

DEVELOPMENT OF PORTFOLIOS AND TRADING SYSTEMS 

K. B. CONNOLLY 

The univariate and multivariate distribution of daily returns on 
contracts in the London cocoa, coffee, sugar and rubber futures markets 
over the period 1975-79 are studied. In the analysis, two relatively 
recent multivariate procedures (the multivariate serial correlation 
coefficient and the multivariate extension of the W- test for normality) 
are investigated. The four dimensional vector of returns with one 
component from each futures market can be viewed as being generated from a 
serially independent multivariate normal process with non - constant 
variance/covariance structure and occasional contaminating extreme 
realisations. 

Examining the multivariate distribution in which all the components 
are returns on contracts in the same futures market, however, produced 
different and very unexpected results. Highly significant multivariate 
serial correlation coefficients of lag one day and significant departures 
from multivariate normality were discovered. 

The multivariate temporal dependence was shown to be due to 
correlation between certain linear combinations of returns on contracts of 
differing maturities. Studying the distribution of the linear combination 
estimates led to the discovery that much of the observed phenomenon can be 
explained by negatively correlated multivariate spread portfolios. 

Multivariate trading rules were devised to exploit the observed 
temporal behaviour and when applied to all four series produced large, 
positive and highly statistically significant returns. The introduction 
of non zero transaction costs reduced returns but still produced positive 
profits in the cocoa and coffee series. 

Models of processes that could explain the observed multivariate 
temporal behaviour and the multivariate non - normality are presented. 
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CHAPTER i 

INTRODUCTION AND SUMMARY 

The aim of this research project was to investigate the possibility 

of devising a risk minimizing procedure similar to that devised by 

Markowitz (1952) that would be applicable to the commodity futures 

markets. In the inital empirical study, however, the discovery of 

persistent and significant, multivariate serial correlation suggested the 

presence of a special kind of multivariate market inefficiency and led to 

the development of a number of multivariate trading rules. These trading 

rules when applied to historical data produced consistent, significant 

positive profits. A model explaining the observed multivariate market 

inefficiency has been proposed. The outline of the work is as follows. 

In Chapter 2 we review the literature on the univariate distributions 

of commodity returns. Many non - standard univariate and multivariate 

statistical techniques are employed in this thesis. Rather than include 

them in Chapter 2, they are reviewed briefly in the appropriate chapters. 

The International Commodity Clearing House (ICCH) made available a set 

of daily prices for all the futures contracts traded in the cocoa, 

coffee, sugar and rubber markets in London from 1974 to 1979. Many 

anomalies in the data were discovered and the task of editing and 

subsequent rearrangement into an easily accessible form is described in 

Appendix A. 

In Chapter 3 we outline the results from carrying out all the standard 

(and some non standard) univariate statistical tests on the data. As is 

noted in many other works, returns are highly nonstationary in variance 

and only one series (rubber) could be described as approximately normally 

distributed. 
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No other work to date has investigated, in detail, the joint 

distribution of returns on a set of commodity futures contracts. A 

necessary condition for the application of the classical (Markowitz type) 

portfolio theory and many multivariate analyses is that the joint 

distribution of returns be multivariate normal. Chapter 4 examines 

whether the commodity returns could be viewed as multivariate normal. In 

the same chapter we also investigate the possibility of multivariate 

temporal dependence in futures contracts from different futures markets. 

This is carried out using a relatively new technique devised by O'Brien 

(1980). Our conclusions are that joint sets of returns can be described 

as being generated from a multivariate normal process with occasional 

contaminating extreme observations. These extreme returns are rare and 

not predictable. The observed unpredictable variation in the 

variance/covariance structure and the absence of any significant (non 

zero) multivariated mean vectors, however, suggested that the development 

of a classical Markowitz type model would not be successful. 

In Chapter 5 the returns to contracts of different maturities (eg. 

March, September,.. ) from a given commodity futures market are examined. 

It was here that we discovered the presence of persistent and consistent 

multivariate serial correlation. There is also evidence of departure from 

multivariate normality of a much more extreme nature than reported in 

Chapter 4. 

In Chapter 6 the degree and exact nature of the multivariate serial 

correlation is outlined in more detail. We show how the multivariate 

serial correlation is essentially the joint correlation between certain 

linear combinations of returns on consecutive days. The extreme 

collinearity of the data caused estimation problems. The sampling 

distribution of these correlations and linear combination estimates is 

little understood and we report the results of some simulation experiments 
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aimed at improving the stability of estimates. Attempts at improving 

estimates using Ridge regression techniques were 

investigated, unfortunately with little success. 

Although the sample results were very varied, a general pattern in the 

multivariate correlation parameter estimates was perceived and the pooling 

of correlation matrices enabled the estimation of 'grand average' linear 

combinations. These 'grand average estimates proved to be very 

similar across all four commodity series. 

A general picture of a very special type of multivariate market 

inefficiency common to all four commodity futures markets became 

apparent. This discovery prompted an investigation of multivariate 

trading rules. 

Examination of the linear combinations of returns suggested that by 

constructing certain complex multivariate spread positions one might be 

able to derive portfolios of returns that would exhibit significant 

univariate negative serial correlation. The analytic derivation of these 

temporally dependent portfolios is outlined in Chapter 7. It was found 

that 95 of the 96 resultant portfolios exhibited ex ante negative serial 

correlation. 

In Chapter 8 we outline three trading rules of various degrees of 

sophistication that were specifically designed to exploit the persistent 

negative serial correlation in the spread portfolios. In all cases the 

profits obtained from applying these rules were not only positive and 

highly statistically significant, but in the cocoa and coffee series quite 

spectacular. The inclusion of transaction costs reduced profits and in 

the sugar and rubber series resulted in losses. However the most 

sophisticated rule explicitly incorporates the costs of transaction as 

part' of the strategy and in the cocoa and coffee series produced very 

encouraging returns. 
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Careful examination of the linear combination estimates and the 

results of the multivariate analysis led to the development of a number of 

models that could explain the observed multivariate inefficiency. In 

Chapter 9, two multivariate models of commodity futures prices are 

presented. Both models involve the generation of small perturbations in 

the multivariate vector of prices. In the first model we show 

analytically that, under certain simplifying assumptions, the 

multivariate spread portfolios have serial correlation coefficients with a 

theoretical lower bound of -0.50. This is consistent with the observed 

grand average serial correlation coefficients which are approximately 

-0.45. 

In an attempt to incorporate the observed complex 'grand average' 

correlation matrices, a second and more sophisticated model was developed. 

Attempts at estimating the parameters of this second model have so far 

proved unsuccessful. However, the use of trial parameter values have 

produced a final model that could explain the observed multivariate 

serial correlation and resultant successful trading rules very well 

indeed. 
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CHAPTER 2 

LITERATURE REVIEW 

This research is concerned with the detailed examination of the 

empirical distribution of returns on the four major soft commodities 

traded in London from 1975 to 1979. 

In this chapter we review the papers that, to date, have contributed 

significantly to the body of knowledge relating to the empirical 

distribution of spot and futures prices. Most works examine returns, 

Rt, 

defined as either: 

(i) Rt = Pt - Pt-i 

(ii) Rt Pt /Pt-1 

I 

I 

or its logarithm, i. e. 

(iii) Log (Rt )e Log (Pt - Log (Pt-s ) 

in which Pt = price at end of period t. 

The, period in question can be a day, a week, a month or a'year. 

Most of the early work on empirical distributions examined 

stockmarket returns and it will be helpful, briefly, to review this work 

prior to an analysis of commodity prices. 

Much of the literature examining stock and commodity returns is 

concerned with producing evidence in favour of, or against, some form of 

efficient market hypothesis. From a purely statistical point of view the 
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works concentrate on two main aspects of the return distribution: 

(i) do price series conform to a random walk, (is there temporal 

dependence in the sequence of returns)? and 

(ii) what is the nature of the distribution of returns? 

2.1 The Nature of the univariate distribution of stock market returns 

Bachelier (1900), first proposed the idea that, for a given stock, -if 

there were a sufficiently large number of transactions per day which were 

spread uniformly across time, then price changes should be independently 

and identically distributed (iid) realisations of a Gaussian process. 

Many researchers, including Kendall (1953) and Osborne (1959), produced 

evidence in favour of the normal distribution but all noted that the 

distributions had fatter tails (leptokurtic) than would be expected. 

These fat tails were due to the occasional very large price changes and 

gave rise to large estimates of variance. 

Mandelbrot (1963) and others suggested that price changes were 

generated by an infinite variance process. His model (a more general form 

of Bachelier's model with price changes sampled from the stable Paretian 

distribution) attempts to explain the observed departures from normality 

by lifting the finite variance restriction. One of the main reasons for 

suggesting a stable model for daily or weekly price changes was the fact 

that, if the sum of iid random variables has a limiting distribution then 

the random variable must come from a stable distribution (a sort of 

extension of the classical central limit theorems to cases where the 

second moment is infinite). No distributional form (except in special 

cases) exists for the stable family. It is defined*by a characteristic 

function and a given member of the family is specified by the value of 

three parameters : (i) a location parameter, (ii) a scale parameter and 
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(iii) a characteristic or shape exponent ac [0,2]. If a=2 

we have the normal distribution and if a=1 we have the Cauchy 

distribution. The variance (except if a= 2) is undefined. 

Fama and Roll (1968) studied the stable family and developed 

techniques for estimating the parameter values. 

Praetz (1972) reconsidered Osborne's (1959) Brownian motion model (in 

which price changes are assumed normal). Praetz introduced the Bayesian 

concept of placing a prior distribution on the variance. By choosing a 

suitably vague prior for the variance (inverse gamma) the posterior price 

change distribution is found to be student - t. Using data on 17 price 

indices Praetz fitted the student -t and three other distributions i the 

normal, the compound events model, and the stable distribution. In all 

cases the student -t gave a superior fit. Blattberg and Gonedes (1974) 

examined exhaustively the sampling properties of the student -t and the 

stable distributions and using this experience examined a number of 

security price series. Strong evidence was produced in favour of the 

student -t distribution. Praetz (1978), using monthly returns on the 

Melbourne Stock Exchange, compared the two distributions and found that 

the student -t was clearly superior with normality a reasonable 

approximation in some instances. Fama (1970) and others have compared the 

distribution of returns over various differencing intervals. "All are 

very roughly normal; the approximation is better, the longer the 

differencing interval. " 

2.2 The nature of the distribution of returns on commodity spot and 

futures series 

With the exception of Holthausen and Hughes (1978), all studies 

examining commodity returns report fat tailed (fatter than normal or 
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leptokurtic) distributions. 

Mandelbrot (1963), first suggested that wheat and corn spot 

returns were stable Paretian distributed. Dusak (1973) fitted a stable 

distribution to wheat, corn and soybean futures and foundfestimates of the 

shape parameter to vary from 1.4 to I. B. In his paper on the influence of 

margin levels, Bear (1972) postulated that if margins are set too high, a 

deficiency in speculative interest would impede the rapid adjustment of 

prices to new information causing relatively less leptokurtic 

distributions. Using non parametric techniques Bear finds evidence to 

support his theory. All distributions were leptokurtic but less so over 

periods of high margin levels. Loebs (1979) exhaustive empirical study on 

returns over 20 years and 16 commodities reports that all spot and future 

returns are leptokurtic, 
_. many series being significantly skewed. Loeb 

noted that logging the returns reduced the degree of lepokurtosis and 

skewness. Holthausen and Hughes (1978), produce contradictory evidence, 

reporting thin tailed distributions on 19 spot series. 

Taylor and Kingsman (1979), studying spot copper and sugar futures 

series, note that much of the observed leptokurtosis could be due to non 

stationarity of variance in the generating process and report that 

although the distributions are non normal, they are closer to normality 

than previously suggested and produce evidence to support the hypothesis 

that a student -t distribution could explain their data reasonably well. 

All the empirical studies on distributions of commodity returns 

mention the difficulties in making any firm conclusions owing to the non 

stationarity of the series. 
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2.3 Non Stationarity of commodity returns 

If one reads the final paragraph of any article prior to 1978 that 

examines commodity returns series, invariably it will contain the caveat 

"owing to the extreme non - stationarity in returns any firm conclusions 

are very difficult to make". 

Loeb (1979), investigated the stationarity of the mean returns and 

the variance of returns of many spot and futures series over a 20 year 

period. By dividing the period , into four 5 year subperiods he 

discovered that the mean returns did not vary signficantly but that the 

variances increased towards to end of the time period considered. Loeb 

found some evidence that the variance of returns of some agricultural 

futures was related to seasonal factors. Cox (1976) cites evidence that 

the suspension of futures trading in some commodities (notably onions) 

tended to increase the variance in the underlying spot returns series. 

Taylor and Kingsman (1978) report non stationarity in their long sugar 

series. 

Taylor and Kingsman (1979) appear to be the first authors that 

attempt to explicitly model and estimate parameters of the fluctuating 

variance process. Two models that seem to produce results consistent with 

observations are (i) a simple autoregressive process and (ii) a Markov 

chain with 3 states (low, medium and high variance). 

2.4 Temporal dependence in commodity return series 

Much of the published work on the empirical examination of commodity 

spot and future returns since 1960 have examined the question of temporal 

dependence. Many formal statistical tests have been applied, some 
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examples being : serial correlation coefficients, runs tests, 

autoregression analysis and spectral analysis. Non statistical procedures 

such as filter rule tests and ad hoc chartist type indexes have also been 

employed. The results of all these studies on different series over 

various time periods have, to say the least, been mixed. 

2.4.1 Serial correlation coefficients 

The serial correlation coefficient at lag k defined as rk in 

section 4.2.1 is a measure of the correlation between returns distant k 

periods appart. If there is no temporal dependence in the returns the 

sampling distribution of rk , is N (0, SE (rk)), with 

SE(rk)-. 1/ n. 

This is true even if the returns are non Gaussian, provided the sample 

size, n, is large enough and the variance of the returns 

process is constant. Larson (1960), Smidt (1965), Stevenson and Bear 

(1970), Cargill and Rausser (1975), Loeb (1979) and Tschoegl (1978) found 

evidence of significant rk's but with no apparent consistent pattern. 

Some studies produced significant negative coefficients, while'others 

produced significant positive coefficients. Dusak (1973) and Praetz 

(1975) found no evidence of significant coefficients. 

Bear (1972) noted that in periods when margin levels were higher than 

normal, rk's, tended to be signficiantly positive, supporting his theory 

that high margins attracted less speculative interest and hence induced a 

price stickyness in one direction. Conversely, when margins were lower 

than normal, Bear found most rk's to be signficantly negative, suggesting 

that excessive speculative interest induced an excessive number of 

reversals. When margins were considered normal, rk's turned out to be 

near zero. 
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Loeb (1979) appears to be the first to have studied simple spread 

returns. He found very significant negative first order daily serial 

correlation coefficients in all spread series suggesting excessive daily 

reversalling. , -- t ý,: 

Taylor (1980) used simulations to study the sampling distribution-of 

rk's with a fluctuating variance processes. It was discovered that a 

better description of the sampling distribution of rk is t 

N(O, SE (rk)) with SE (rk)- a /JW in which a=1.40. 

By developing a returns standardization procedure Taylor shows how to 

overcome the fluctuating variance problem. Using his recommended 

technique Taylor finds evidence of small but significantly positive serial 

correlation coefficients in 8 of 11 of the series studied. Taylor 

postulates that these small positive coefficients arise out of a model 

with relatively short lived stochastic trends. 

2.4.2 Runs tests 

The runs test has, always been an attractive alternative to serial 

correlation analysis (outlined in section 3.2.1. ) because no assumptions 

regarding the distribution of returns or the stationarity of the variance 

are made. A drawback of-the test is that it is not very informative. 

Unlike serial correlation analysis one obtains a result that there are 

either too many runs, not enough or that the number of runs is acceptable. 

Most works that report serial correlations coefficients have also tended 

to report the results of runs tests. In many of the studies runs tests 

results back up serial correlation analysis but some eg Bear (1970) and 

Loeb (1979) produce contradictory results. 
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2.4.3 Trading rules applied to commodity series 

Filter (trading) rules have been applied to stock and tommodity price 

series since as early as 1960 in an (alternative) attempt to make some 

statement on the efficiency or otherwise of the relevant markets. The 

rationale of trading rules is that the sequence of prices is non random; 

particular prices tend to move in trends. Once a trend is established, 

prices are more likely to move with the trend than against it. A simple 

filter trading rule involves the choice of an appropriate filter level, 

say, x (or xX) and the monitoring of the price series. If the price moves 

up xX or more on a given day then buy and hold until the price falls xX. 

At this point one may either close out by a sale or close out and go short 

by selling twice and reverse when the price rises by xX. If prices were 

to move in well defined trends, trading rules of this sort would 

outperform simple buy and hold benchmark strategies. 

Houthakker (1959), was one of the first to publish a work in which a 

simple trading rule was used to examine the efficiency of the futures 

markets. Large gross profits were reported. Stevenson and Bear (1970) 

included commissions in their study and reported that with small filters 

(eg one and a half percent) many costly transactions were induced 

resulting in net losses. Leuthold`s, (1972) study of live cattle futures 

reports large gross profits and concludes that "these profits are larger 

than might be expected under a random walk hypothesis". Martell and"Philippatos 

(1974), introduce the idea of having an adaptive trading rule, one in 

which the filter size is set to some varying but optimal level as time 

passes. Net profits from these adaptive filters appears to outperform buy 

and hold policies but as Pinches (1974) points out, the pooling of profits 

by Martell and Philippatos (1974) across commodities is misleading. 
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Applying filter rules of various sizes to 16 futures series, Loeb 

(1979) gets mixed results but notes that a 5X filter appears to give 

substantially superior net profits. Following the discovery of consistent 

negative one day serial correlation coefficients in all spread series, 

Loeb (1979) constructed a reverse filter rule to take advantage of the 

observed price reversaling. Consistent net positive profits resulted. 

However Loeb (1979) notes that the trading rule (set in absolute price 

differences not X changes) appears to be quite impracticable because it 

indicates very infrequent trades. For example using a 2-cent filter rule 

he generated one trade in 4 years. 

Praetz (1976a) criticized all work employing returns from filter 

rules, noting that no well defined distribution for these returns had been 

proposed. In the absence of any sampling theory with associated standard 

errors, it is not sufficient to report that filter rule yield large 

positive returns. In a later paper, Praetz (1976b), develops exact 

expressions for the mean and standard deviation of returns to filter rules 

under a null hypothesis of a random walk and shows that comparison with 

buy and hold policies is unfair. "The returns to the filter man are 

always biased downwards"; "the situation is so loaded against the filter 

man that it is like making him play Russian roulette with five live 

bullets in a six-shooter". Simple reporting of the grand profit (net or 

otherwise) resulting from the application of a certain filter rule is only 

as useful as reporting the sample average to a statistician without a 

measure of accuracy (i. e. standard error). 

2.4.4 Forecasting commodity prices 

Can commodity prices be forecasted? This of course begs the question 

of temporal dependence again. Much of the work on commodity price 
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forecasting obviously assumes that- there is some (albeit complex) sort of 

temporal dependence in the sequence of returns. 

In an attempt to discover if futures trading in a commodity increases 

the informational content to dealers in the corresponding actuals market, 

Cox (1976), fitted autoregressive models to the spot prices of onions 

(among other commodities) in periods when : (1) futures trading existed 

and, (2) futures trading was suspended. In many cases he found 

significant autoregressive coefficients. He also found that the number of 

significant terms in the regression equations were greater in periods in 

which futures trading was suspended than when futures trading existed. 

Cox's work thus suggests that spot market prices can be forecasted and 

that the forecasting accuracy is increased in periods when no futures 

market exists. 

Labys (1976), considered seven different forecasting schemes ranging 

from the naive (i. e. the best estimate of tomorrow's price is today's) 

through exponential smoothing to moving average and autoregressive 

methods. All seven procedures were executed on 1968 daily data on 8 

commodity series. The naive expectation scheme proved to be the most 

accurate. 

Chu (1978) used a Box-Jenkins package in an attempt to forecast, in 

the short run, monthly prices for 10 spot series. Starting from 

econometric type supply-and demand equations, Chu developed a set of final 

autoregressive expressions with some of the agricultural series having a 

seasonal component. Chu notes "These models have, however, only limited 

capability to predict unusual movements in prices". This is not 

surprising, since these movements are, as Chu says, "unusual". 

Taylor (1980) used his conjectured price model to forecast one - day 

- ahead returns and one - day - ahead trends. Disappointing results are 

achieved in returns forecasts but quite encouraging results are obtained 

for forecasted trends. "It is often quite possible to predict correctly 
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whether tomorrows trend will be positive or negative. " Taylor also 

produced expressions giving the theoretical accuracy of forecasts and 

noted that there is a consistent and close agreement between his 

theoretical and the actual forecast errors. 

2.5 Multivariate analysis of commodity return series 

Very little work has been carried out on the multivariate 

distribution of commodity returns. We review what little has been done 

below. 

Labys and Perrin (1976), examined the intercorrelations among monthly 

returns of 31 commodities using 20 years of spot data. Some significant 

positive correlations were found, in particular amongst the oleaginous 

products. Other positive correlations were found between copper and 

aluminium, lead and zinc, copper and tin, and wheat and maize. Principal 

component analysis gave the oleaginous group as the first principal 

component, accounting for 12% of the joint variation in returns. The 

composition of the remaining components could not be associated with any 

of the usually recognisable commodity groups. Apart from the oils, and a 

few metals, Labys could find no evidence of any significant covariability 

amongst commodity returns. Dusak (1973) examined the returns on different 

contracts of the same agricultural commodities. Correlation coefficients 

of between 0.85 and 0.95 were reported. 

Loeb (1979), examined the joint correlation structure of 16 

commodities and identified positive correlations amongst the metals. 

Cluster analysis confirmed these reports. 

No author to date has examined fi) the nature of the joint 
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distribution of commodity returns or (ii) the possibility of 

multivariate temporal dependence. 

2.6 Summary of Chapter 2 

In this chapter we reviewed the literature on empirical studies of 

commodity returns distributions. Most authors find that the returns 

distributions are longer tailed than the Gaussian distribution and that 

there is little or no evidence of a consistent temporal pattern. The 

application of naive trading rules produce mixed results and it 

is only recently that the statistical validity of trading rules has been 

investigated. To date no serious empirical multivariate study of 

commodity returns has been published. 
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CHAPTER 3 

A STUDY OF THE UNIVARIATE DISTRIBUTION OF PRICES 

In Chapter two we reviewed the literature dealing with the empirical 

study of the distribution of commodity spot and futures prices and 

returns. There are conflicting reports on the presence of serial 

dependence and most researchers find that returns are non normal and 

skewed, the degree of skewness depending on the differencing interval. In 

this study we will limit our interest to daily returns defined as: 

(if Xt = Pt - Pt-i , 

and the logged returns ass 

(ii) xt = log( pt / pt_i ) 

3.1 Design of univariate study 

Most empirical studies report that the variances of returns vary over 

time. The tests for serial dependence and of distributional form and 

stability of population parameters are greatly affected by changing 

variability. We decided therefore initially to examine the data in a 

sequence of short time periods in the hope that within these periods the 

variances would remain fairly constant. The data set covers the period 

January 1974 to December 1979. However we only have information on the 

rubber series from March 1975 onwards. We decided therefore to examine 

all four series for the period of 58 months (1218 days) from March 1975 to 

December 1979. Each of the years 1976 to 1979 was divided into three 
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periods of four months (approximately 84 days) and 1975 was cut into two 

periods of five months (approximately 103 days). Thus we have 2+3x4= 

14 periods of approximately equal duration to examine. 

In each period we needed to select one cocoa contract, one coffee 

contract, one sugar contract and one rubber contract and examine the daily 

returns. For each commodity we have between 6,7 or 8 different futures 

contracts to choose from. As is reported in Chapter 5, all the daily 

returns on contracts of differing delivery dates for a given commodity 

appear (not surprisingly) to be highly positively correlated and so it may 

not matter which one we choose for the univariate examination. However, 

the behaviour of the price of a futures contract that has entered the 

delivery month the "near" contract, may not be representative of a 

typical futures price'. Also, the volume of trading in those futures 

contracts that have just started trading the "far" contracts, may be so 

small as to make the prices also non representative. It was decided, 

therefore, to examine prices that are neither at the beginning nor at the 

end of the duration of a contract. Thus each of the 14 subperiods chosen 

contains a four month section of a contract that is roughly in the middle 

of its life span. 

For a list of the contracts chosen with dates for this univariate 

study see Appendix B. Fig. 3.1 shows pictorially what section of each 

contract was used. The layout of this chapter is as follows. In section 

3.2 the statistical methods are reviewed and the results of all of the 

procedures are discussed in section 3.3. Section 3.4 gives a summary. In 

section 3.5 and 3.6 a separate study dealing with the search for long term 

temporal dependence is carried out. 
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3.2 Statistical procedures 

As in most previous empirical research on commodity futures prices we 

study the returns and logged returns and examine them in each period for 

(i) temporal dependence (ii) stability of population parameters and 

(iii) distributional form. Outlined below is a brief summary of the tests 

and statistical procedures used. The results of all the tests appear in 

Tables 3.1 to 3.6. Plots of the unlogged returns appear in Figs, 3.2 to 

3.5. 

3.2.1 Univariate temporal dependence 

The two most commonly used techniques to investigate the presence of 

temporal dependence are the runs test and the examination of a correlogram 

i. e. a set of serial correlation coefficients. 

The Runs Test 

The classical Runs Test examines the sequence of returns. Each return 

is classified into one of two categories, eg positive or negative. In 

this study the two categories chosen are: above the median and below or 

equal to the median. A run is defined as an unbroken succession of 

outcomes of the same kind. It can be shown2 that if ni = number of 

outcomes in the first category and nz = number of outcomes in the second 

category and n=n, + nz is large (greater than 20), that the number of 

runs, r, is approximately normally distributed with mean p, and standard 
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deviation v, given by: 

µ. =2 nine +1 

ni + nz 

171- 

(ni+n2)2(nt+nz-1) 

A test of temporal independence is then to compute z,, where 

Zr = Cr - ýrIIOr 

in which under the null hypothesis of randomness z. ~ N(0,1). 

The P(zr) values for each commodity and for all 14 subperiods appear in 

Tables 3.1 to 3.4. A virtue of the runs test is that no assumptions are 

made about the distribution of the returns'and it is insensitive to the 

presence of outlying observations and errors in the data. 

Serial correlation coefficients 

It is standard practice in the study of time series to plot and 

examine the correlogram or autocorrelogram. The correlogram is a plot of 

the sample serial correlation coefficients, rk , at various lags , k, 

against k. Each rk is computed using the expression: 

fº-k 

rk (x, - x)(xs. k - x) / (n - k) 

E (Xi - 
x)2 /n 

. -ý 
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In the analysis below we computed rk , for k up to and including 

r2 for each periods. If the returns constitute a sequence of serially 

independent identically normally distributed random variables (the null 

hypothesis) the rk values are each normally distributed" with a mean of 

zero and a standard deviation of approximately 1/ i-n. Furthermore, under 

the null hypothesis, the rk's are mutually independent. A test of serial 

independence thus involves the computation of 

zk = rk for k=1,2,..., 20 

1/n 

Values of Zk outside the bounds delineated by the normal tables (eg 1.96 

for 5X test) are regarded as significant. 

In the computation of 20, rk, values one would of course expect, on 

average, one (5X of 20) to result in a significantly large Zk value (at 

the 5X level). In the analysis of time series, interest is usually 

centred on the rk values of small lags and in particular correlograms are 

examined for certain patterns consistent with ARIMA type models°. Taylor 

(1980) also reports that in time series in which the variance is non 

stable the standard error of 1/Fn for rk is no longer valid. We return 

to this subject again in section 3.5. 

3.2.2 Stability of population parameters 

An area of central interest in studying the distributions of returns 

over the 14 subperiods is the stability or otherwise of the population 

parameters. As mentioned in section 3.2.1 tests for temporal dependence 
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are dependent on the stability of variances. 

Recall also that at the outset of this research programme we were 

interested mainly in the possible application of a Markowitz type 

Portfolio Analysis to the set of returns. Obviously the stability of the 

underlying population is crucial for a successful delineation of efficient 

sets from period to period. It was decided, therefore, to test for the 

stability of ti) variances and (ii) means. In the foregoing, the test 

procedures are based on the assumption that the populations are normal but 

fortunately this assumption can be relaxed with samples as large as the 

ones being examined in this study. 

Comparing variances 

If 52, and 52t. ß are the usual unbiased estimates of the population 

variances O2l and c2i., respectively, 

observations in periods i and (i+l) 

H0: Q2 = Q21+1 

against the alternative hypothesis: 

H1 q2 4 c21. i 

the sample statistic: 

F. s2I 

s2, +, 

I 

each estimated on n, and ns., 

then to test the null hypothesis: 
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is computed. Under the null, F, is distributed according to the F 

distribution on (n, -1) and in,., -1) degrees of freedom. Of course, F 

should be near unity. Very large or very small values of F, indicate the 

null hypothesis is probably not true. We use the usual F tables to 

measure significance. 

i 

Comparing Means 

The comparison of the means for periods i and i+1 of two (normal) 

populations is complicated by the dependence of the distributions of the 

sample means on the population variances. 

(a) If the population variances can be considered equal the procedure to 

test : He i& = pi-il 

against Hs Ni * pi-. 1 

is to calculate T, where, 

Xi - Xs+i 

Tý SP 11 

I I- + 
n, nt., 

and s, = pooled estimate of common variance. 

Under the null hypothesis, Ti, is t distributed on ns + ns. 1-2 degrees 

of freedom. This test was used when the test of equal variances produced 

a non significant result. 

(b) If the population variances cannot be assumed equal, the problem of 

comparing means is known as the Behrens-Fisher problem. The problem 

28 



arises since T, defined above, does not follow the t distribution'. One 

suggested test' of the above null hypothesis uses a critical region 

of the form. 

I 
Xs - Xs. i 

I 

T2 = 52t + Set. )C 

J n, ni., 

in which the test statistic, Ta1 quite reasonably, is a measure of the 

differences scaled according to an estimate of the standard deviation of 

the difference in sample means. It can be shown that if C is chosen as 

the (100-a/2) percentile of the t distribution on (nm -1) degrees of 

freedom, where no = min(ni, ns. 0 the probability of the critical region 

under the null hypothesis is at most a. Accordingly, whenever the test of 

the equality of variances failed we used T2 with the appropriate degrees of 

freedoms. 

Are the mean returns significantly different from zero? 

In each period i=1,2,..., 14, it was decided also to test the 

hypothesis: Heip, 0 against the alternative: Hip $0 , using the 

statistic : 

Ts a xi 
/jo. 

2i / fi 

Under Hm, T3 is t distributed on (n, - 1) degrees of freedom. In essence 

this is a test for a persistent long term trend in the prices in each 

subperiod. If T3 is significantly positive (negative) then the daily 

returns are, on average, positive (negative) suggesting a significant rise 
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(fall) in the prices over the time period considered. 

Tables 3.5 give the results of the tests for stability in variances 

and means. The values of Ts appear in Tables 3.1 to 3.4. 

3.2.3 Examinations of univariate distributional form 

There is an extensive literature'on the distributional form of daily, 

weekly and monthly stock and commodity futures returns. For details see 

Chapter two. Recall that the initial motive for this research was the 

application of Markowitz type Portfolio Theory to the commodity futures 

market. A sufficient condition for this application is that returns be 

normally distributed. Therefore, rather than spend time an estimating the 

parameters of various Stable Pareto or t distributions that could explain 

the returns, we concerned ourselves with one question; are the daily 

returns normal? 

In this study three methods were used to investigate the question of 

univariate normality : (i) the coefficient of skewness, bi, (ii) the 

coefficient of kurtosis, b2 and (iii) the normal order plot together 

with the associated Shapiro and Wilk's W-test (1965) for normality. 

The coefficients of skewness and kurtosis 

If Mk * the kth moment about the mean then 

Fi 
m3 , and b2 ° m4 

(M2) 312 (m2)2 
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For normal samples: 

E(J )=0, SEIT, ) 6/n 

E( b2 ) 39 SE( b2 ) 124/n 

If n is large, Ii is normally distributed. For small n, Biometrika 

tables give percentiles for normal samples. Biometrika tables also give 

percentiles of b2 for normal samples. For samples of size n= 80 

significant values of[, could be outside the interval + 0.43 and 

significant values of b2 would be outside the interval 2.27 to 3.87. 

Distributions resulting in b2 values less than 3 are termed 

platykurtic and are characterised by frequency curves more flat-topped and 

shorter in the tails than the normal distribution. Distributions with 

b2 values exceeding 3 are termed leptokurtic and are more sharply peaked 

and longer in the tails than the normal distribution. Most empirical 

studies to date find returns leptokurtic. 

The Shapiro and Wilk's W- test for normality 

A useful first step in studying the question of normality of a sample 

is to examine the normal order plot: a plot of the ordered sample values 

X(1)< X(2)< ... < xcn, against the expected normal order values 

z(s, < z «, < ... ( z<. ). Distributions that are normal result in linear 

plots with slopes equal to the standard deviation of the sample and 

vertical intercepts equal to the mean. Non normal distributions result in 

non linear plots. These plots are also very useful in highlighting errors 

and/or outlying observations from an otherwise normal sample. 

There are a number of formal tests of normality associated with the 

linearity of this plot, one of which is the Shapiro and Wilk's W- test. 
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For more details see Royston (1982a). Pearson (1982) at al carried out 

an extensive study into the power of the various tests for departure from 

normality and concluded that for symmetrical platykurtic distributions and 

for most skew distributions, the Shapiro and Wilk's W- test is 

optimal (most powerful). Here we briefly outline the Shapiro and Wilk's W 

- test. 

Let zT = (2(i), zc2 ,..., Z<n)) denote 

of standard normal order statistics, 

corresponding (n x n) covariance matrix. 

random sample on which the W- test 

ordered so that X(1)< X(2)( ... < x(n). 

the vector of expected values 

and let U= (u�) be the 

If x* _ (x1, x2,..., x,. )is a 

of normality is to be carried out, 

Then we compute 

I' 
WaiE ät. Xctý )2 

s-s 

E( Xt -X iý 
s-s 

where a1 ( a1, a2, ..., a,, ) 

ZT U-1 t(ZTU 1)(V tz )3-1/2 

Shapiro and Wilks (1965) point out that "the coefficients (a, ) are 

just the normalised 'best linear unbiased' coefficients tabulated in 

Sarhon and Greenberg (1956). The numerator of W is the best linear 

unbiased estimate of the squared slope of a linear regression of the 

ordered observations on the expected values of the standard normal order 

statistics. Note that if one is indeed sampling from a normal population 

then the numerator and the denominator of' W are both, up to a constant, 

estimating the same quantity, namely, the variance". For non-normal 

population, these quantities would not in general be estimating the same 

thing and the numerator will be less than the denominator. Departure from 
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normality is indicated by small values of W. Shapiro and Wilks give 

tables for the values of a for samples of size n, up to n= 50 and 

various percentiles of the distribution of W under the null hypothesis of 

normality. 

Royston (1982a), extends the W- test to samples of size n= 2000 by 

considering the normalising transformation of W: 

y=( 1-W! ' 

Zw =( 

in. which the quantities, X, p and o, are all funcions of log(n). Under 

the null, zw, is standard normal and departures from normality are 

indicated by large values of zw. The test is one sided. 

Royston (1982b) provides an algorithm to compute the expected normal 

order statistics and Royston (1982c) provides an algorithm to compute 

X, p, j W, zw and Pr(Zw>zw) = P(W) for samples of size n up to 2000. The 

algorithm also computes the appropriate best linear unbiased coefficients 

{as}. 

A routine was constructed that computes and records J, bz, and 

Pr(W) for each of the 14 subperiods and for each commodity. 

3.3 Discussion of results of univariate tests 

In this section we discuss the results of the tests presented in 

Tables 3.1 to 3.5 in the order considered in section 3.2. In these and 

many of the other tables in this work we use the following notation to 

indicate the degree of significance of a particular test statistics 
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Table 3.1 

Univariate tests on cocoa series 

------- 
Period 
------- 

-------------------- 
Significant rk'S 

-------------------- 

---------- 
P(Zr) 

---------- 

-------- 
P(W) 

------- 

--------- 
bi 

------- - 

-------- 
b2 

----- 
Ts 

1 +6 -12 0.37 
- 

0.00c 
- 

0.83b 
-------- 

6.40c 
------ 
-0.17 

------- 
+6 -12 

--------------------- 
0.37 

--------- 
0.00c 

-------- 
0.93c 

--------- 
5.90c 

-------- 
-0.15 

---- 
2 +17 0.43 0.75 -0.04 4.06a 

-- 
1.97 

----- - 
+13 +17 

-------------------- 
0.43 

---------- 
0.86 

-------- 
-0.05 

--------- 
4.06a 

-------- 
1.86 

------ - 
3 +4 0.83 0.00c -0.22 7.28c 1.57 

--- 
+4 

--------------------- 
0.83 

------- 
0.08c -0.11 5.30b 

- - 
1.70 

----- ---- 
4 +18 -20 

-- 
0.59 

--------- 
0.66 

-------- 
0.18 

----- - 
3.27 

- 
2.90b 

--- 
-2 +9 -20 

-------------------- 
0.59 

---------- 
0.76 

-------- 
-0.04 

--------- 
3.03 

-------- 
2.81b 

------ ---- 
5 0.19 0.39 -0.28 2.71 1.42 

-- --------------------- 
0.19 

-------- 
0.22 -0.20 2.53 1.55 

----- 
6 -3 +13 

- 
0.66 

-------- 
0.00c 

-------- 
-1.77 

-------- 
11.31c 

------ 
0.65 

--- 
-3 +13 

--------------------- 
0.66 

--------- 
0.00c 

-------- 
-1.83 

--------- 
11.49c 

-------- 
0.73 

------ ---- 
7 +3 0.73 0.75 -0.14 2.61 0.41 

--- 
+3 

--------------------- 
0.73 

------- 
0.94 -0.12 2.86 0.42 

---- 
8 -19 

-- 
0.16 

--------- 
0.01a 

-------- 
-0.44 

-------- 
3.34 

------ 
-2.48a 

--- 
-19 

--------------------- 
0.16 

--------- 
0.02a 

--- - - 
-0.51 3.31 -2.56a 

---- 
9 +9 +11 +19 0.37 

- - -- 
0.00c 

-------- 
1.03c 

-------- 
4.98b 

------ 
0.86 

------- 
+11 +19 

--------------------- 
0.37 

--------- 
0.00c 

--------- 
1.01c 

------ 
4.59b 0.88 

10 0.28 0.00c 
-- 

0.62b 
-------- 

8.20c 
------ 

0.37 

------- --------------------- 
0.28 

--------- 
0.01a 

--------- 
0.59a 

--- - 
7.29c 0.36 

il +3 -17 0.83 0.48 
- --- 

-0.13 
-------- 

2.50 
------ 

0.68 

------- 
+3 -17 

--------------------- 
0.83 

--------- 
0.60 

--------- 
-0.12 

----- 
2.53 0.72 

12 -2 +5 -11 0.74 0.67 
--- 

0.19 
-------- 

3.83 
------ 

-1.74 

------- 
-2 +5 -11 

--------------------- 
0.74 

--------- 
0.70 

--------- 
0.24 

--- 
3.70 -1.73 

13 +13 -20 0.13 0.54 
----- 

-0.07 
-------- 

3.21 
------ 
-1.33 

------- 
+5 +13 

--------------------- 
0.13 

--------- 
0.53 

--------- 
0.07 3.56 -1.33 

14 -2 +15 0.82 0.22 
-------- 

-0.24 
-------- 

3.88a 
------ 

0.06 

------- 
-2 +15 

--------------------- 
0.82 

--------- 
0.25 

--------- 
-0.19 

-------- 
3.76 

-------- 
0.06 

------ 

(Upper figures are the unlogged returns results; the lower figures 
are the logged returns results) 
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Table 3.2 

Univariate tests on coffee series 

------- 
Period 

---------------------- 
Significant rk'S 

-------------------- 

-------- 
P(Zr) 

-------- 

--------- 
P(W) 

--------- 

-------- J-bi 

-------- 

-------- 
b2 

-------- 

----- 
T3 

------ ------- 
1 

-- 
+1 0.92 0.00c 3.87c 29.46c 1.42 
+1 

--------------- 
0.92 

-------- 
0.00c 

--------- 
4.23c 

-------- 
31.37c 

-------- 
1.55 

------ ------- 
2 

------- 
0.32 0.84 -0.08 3.38 0.59 

----------- 
0.32 

------- 
0.87 

--------- 
-0.13 

-------- 
3.37 

-------- 
0.56 

------ ------- 
3 

----------- 
+9 0.99 0.00: 0.94c 7.47c 2.45b 
+9 

--------- 
0.99 

- 
0.00c 0. Slb 

---- 
5.66c 
----- 

2.70b 
------ ------- 

4 
------------ - - ------ 

0.33 
-------- 

0.00c 
---- 

-1.40c 
-- 

8.70c 0.50 

-------- 
0.33 

---- -- 
0.00c -1.33c 

------ 
8.85: 

-------- 
0.48 

----- ------- 
5 

------------- 
-4 

- - 
0.99 

--------- 
0.02a 

-- 
0.67b 6.32c 3.78c 

--------------- 
0.99 

--- 
0.94 0.29 

- 
4.37a 

------- 
4.10c 

------ ------- 
6 

------- 
-3 

----- 
0.12 

--------- 
0.68 

------- 
-0.44a 

- 
3.66 0.62 

---------- 
0.12 

------- 
0.44 -0.46a 

----- 
3.54 

-------- 
0.65 

------ ------- 
7 

------------ 
-6 +9 +18 

- 
0.31 

--------- 
0.55 

-- 
0.23 3.23 -1.33 

- 
-5 -6 +9 -13 +18 

-------------- 
0.31 

----- 
0.51 0.14 3.07 

---- 
-1.20 

------ -- ---- 
8 

-------- 
+15 

--- 
0.10 

--------- 
0.98 

-------- 
0.20 

---- 
3.94a -0.61 

+15 
---------------- 

0.10 
-------- 

0.93 
--------- 

0.28 
-------- 

3.85a 
-------- 

-0.57 
------ ------- 

9 
------ 

0.18 0.13 0.47a 2.92 -0.80 

-------------------- 
0.18 

-------- 
0.33 

--------- 
0.46a 

-------- 
3.02 

--- 
-0.78 

------- 
10 

-- 
0.83 0.04a -0.45a 

----- 
5.30b 

------ 
0.39 

--------------------- 
0.83 

--------- 
0.21 

-------- 
-0.25 

---- 
4.43b 0.40 

------- 
11 +5 0.66 0.78 

---- - 
-0.10 

-------- 
3.43 

------ 
-0.31 

- - 
+5 

---------------------- 
0.66 

-------- 
0.77 

--------- 
-0.17 

-------- 
3.61 

----- 
-0.31 

---- - 
12 -6 0.58 0.42 -0.19 

--- 
4.49b 

------ 
2.33a 

------ --------------------- 
0.58 

--------- 
0.93 

-------- 
0.02 

------ 
4.14a 2.32a 

- 
13 +4 +9 0.83 0.00: 

--- 
2.18c 

-------- 
13.75c 

------ 
0.73 

------ 
+9 

---------------------- 
0.83 

-------- 
0.00c 

-------- 
2.52c 

--- 
16.41c 0.76 

- 
14 +11 -20 0.18 0.61 

------ 
-0.46a 

-------- 
3.98a 

------ 
-1.35 

------- 
+11 -20 

--------------------- 
0.18 

--------- 
0.43 

-------- 
-0.50a 

--------- 
4.19a 

-------- 
-1.39 

------ 
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Table 3.3 

Univariate tests on sugar series 

------- 
Period 

------------------- 
Significant rk's 

- 

----------- 
Pftr) 

-------- 
P(W) 

--------- J-bi -------- 
b2 

----- 
T3 

------- 
1 

------ ---------- -- ----------- 
0.47 

-------- 
0.59 

--------- 
0.21 

-------- 
3.86 

------ 
-0.71 

------- ------ ------------- 
0.47 

----------- 
0.32 

-------- 
0.50a 

---------- 
4.71b 

---- - 
-0.64 

-- 
2 0.32 0.00c 0.07 

-- 
7.13c 

---- 
0.10 

------ ------------- 
0.32 

----------- 
0.00c 

------- 
-0.02 

--------- 
6.28c 

- - - 
0.11 

---- ------- 
3 +9 0.83 

- 
0.00c 1.20c 

---- - 
7.48c 

-- 
0.78 

-- 
+9 

------ ------------- 
0.83 

----------- 
0.00c 

-- 
1.23c 7.52c 0.78 

----- 
4 0.45 

------- 
0.56 

--------- 
-0.23 

------- 
3.28 

------ 
-0.66 

- ------ ------------- 
0.45 

----------- 
0.67 

-- - 
-0.25 3.11 -0.72 

----- ------ 
5 +10 0.19 

- ---- 
0.98 

---------- 
-0.13 

------- 
3.73 

- 
-1.32 

--- 
+10 

------ -------------- 
0.19 

---------- 
0.99 

----- 
-0.09 3.62 -1.28 

---- 
6 -6 0.66 

---- 
0.01a 

--------- 
0.84b 

------- 
5.90c 

------ 
0.10 

-6 
---- ------------- 

0.66 
----------- 

0.07 0.72b 5.21b 0.10 
------- 
7 

-- 
-2 -4 -14 +16 0.45 

--------- 
0.20 

--------- 
-0.17 

------- 
2.68 

------ 
-1.46 

-2 
------ 

-4 -14 +16 
-------------- 

0.45 
--------- 

0.22 -0.18 2.61 -1.39 
------- 
8 -1 +3 -4 +13 -15 

- 
+16 0.10 

--------- 
0.16 

--------- 
0.55a 

------- 
3.73 

------ 
-0.19 

----- 
-1 

------ 
+3 -4 +13 -15 
------------- 

+16 0.10 
----------- 

0.14 
--------- 

0.54a 
------ 

3.74 -0.18 
-- 
9 0.66 0.47 

--- 
-0.24 

------- 
4.86b 

------ 
-1.51 

------- ------ -------------- 
0.66 

---------- 
0.38 

--------- 
-0.32 5.31b -1.42 

10 +5 -13 0.66 0.64 
--------- 

0.00 
------- 

2.73 
------ 

-1.34 

------- 
+5 

------ 
-13 
-------------- 

0.66 
---------- 

0.79 
--------- 

0.02 
-------- 

3.06 -1.20 

11 0.51 0.14 
- 

-0.62b 
------- 
5.58b 

------ 
-0.08 

------- ------ -------------- 
0.51 

---------- 
0.31 

--------- 
-0.52a 

------- 
3.16b -0.09 

12 0.74 0.07 
-- 

0.48a 
------- 

2.82 
------ 

-0.48 

------- ------ -------------- 
0.74 

---------- 
0.12 

--------- 
0.51a 

--- 
2.98 -0.49 

13 -12 -18 0.53 0.90 
------ 

-0.36 
------- 

4.01a 
------ 

0.60 

------- 
-12 

------ 
-18 

-------------- 
0.53 

----------- 
0.81 

-------- 
-0.41 

- 
4.13a 0.60 

14 -3 0.18 0.96 
-------- 

0.03 
------- 

3.95a 
------ 

1.90 

------- 
-3 

------ -------------- 
0.18 

---------- 
0.93 

--------- 
0.12 

--------- 
4.05a 

------- 
2.02a 

------ 
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Table 3.4 

Univariate tests on rubber series 

------- 
Period 

--------------------- 
Significant rk's 

---------------- 

--------- 
P(Zr) 

----- 

-------- 
P(W) 

--------- 
T -------- 

b2 
----- 

T3 
------- 
1 

----- 
+4- 7+10-16+18-20 

---- 
0.36 

-------- 
0.29 

--------- 
0.00 

-------- 
3.84 

------ 
1.47 

------ 
+4- 

------ 
7+10-16+18 
--------------- 

0.36 
--------- 

0.45 
-------- 

-0.01 
---------- 

3.32 
---- -- 

1.51 
----- - 

2 0.17 0.77 0.06 
- 

3.04 
- 

0.47 

-- 
-4 

------ --------------- 
0.17 

--------- 
0.86 

-------- 
0.04 

--------- 
3.13 

-------- 
0.45 

------ ----- 
3 +4 -14 +16 0.83 0.29 0.61a 3.84 1.83 

------ 
-14 +16 
--------------- 

0.83 
------- 

0.26 0.49a 3.06 1.91 
- ------- 

4 -4 +13 
-- 

0.75 
--------- 

0.99 
--------- 

-0.05 
------- 

3.47 
-- --- 

0.10 
-4 

---- 
+13 
--------------- 

0.75 
--------- 

0.99 
----- - 

0.06 
-=- 

3.66 
- - -- 

0.10 
------ ------- 

5 
-- 

-5 +7 +10 +17 0.39 
- - 

0.55 
------ 

0.18 
- - -- 

3.16 0.28 

- 
-5 

------ 
+7 +17 
--------------- 

0.39 
--------- 

0.65 0.25 2.94 0.30 
- ------ 

6 0.65 
--------- 

0.76 
--------- 

-0.21 
------- 

4.20a 
----- 

-1.56 

------ --------------- 
0.65 

--------- 
0.68 

------- 
-0.20 4.06a 

- 
-1.63 

---- ------- 
7 0.56 

- 
0.81 

--------- 
0.08 

----- -- 
2.60 

-- 
-0.35 

--- ------ --------------- 
0.56 

--------- 
0.87 

-- 
0.05 2.66 -0.33 

---- 
8 0.56 

------- 
0.68 

--------- 
-0.10 

------- 
3.35 

------ 
-1.66 

------ ------ --------------- 
0.56 

--------- 
0.59 

-------- 
-0.20 

--------- 
3.20 

--- - 
-1.73 

- 
9 0.37 0.54 0.31 " 

-- -- 
3.61 

------ 
0.38 

----- ------ - -------------- 
0.37 

--------- 
0.58 

--- 
0.25 3.48 0.37 

-- 
10 +10 +14 0.28 

------ 
0.82 

--------- 
0.19 

------- 
2.72 

------ 
0.77 

------- 
+10 

------ 
+14 

--------------- 
0.28 

--------- 
0.72 

-------- 
0.19 

---- 
2.65 0.79 

11 -15 0.50 0.90 
----- 

-0.16 
-------- 

3.10 
------ 
-0.51 

------- 
-15 

------ --------------- 
0.50 

--------- 
0.87 

--------- 
-0.19 

------ 
3.06 -0.55 

12 -9 0.91 0.02a 
--- 

-0.17 
------- 

2.07a 
------ 

0., 06 

------- 
-9 

------ --------------- 
0.91 

--------- 
0.04a 

-------- 
-0.16 

----- 
2.11a 0.06 

13 +11 0.66 0.89 
---- 

0.32 
-------- 

3.81 
------ 
-0.58 

------- 
+11 

------ --------------- 
0.66 

--------- 
0.95 

--------- 
0.20 

-- 
3.59 -0.61 

14 0.18 0.65 
------- 
0.14 

------- 
2.65 

------ 
1.09 

------- ------ --------------- 
0.18 

--------- 
0.60 

-------- 
0.16 

--------- 
2.65 

-------- 
1.12 

------ 
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Table 3.3 

Stability of parameter tests 

----------------------------------------------------- 
Cocoa Coffee Sugar Rubber 

Period 
Comparison 
---------- 

F, 
------ 

T2 
--------- 

F, 
------- 

T2 
--------- 

F, 
------- 

T2 
-------- 

Fi 
- 

T2 

1 -2 1.89b 1.28 5.83: -1.11 2.13c 0.65 
------- 

1.37 
------ 
-0.83 

--- ------- 
2.36c 

------- 
1.14 

-------- 
8.33c 

------- 
-1.29 

--------- 
2.38c 

------- 
0.60 

-------- 
1.56a 

- 
-0.91 

2 -3 4.45c 0.68 5.83c 2.10a 3.85: 
- 

0.30 
----- - 

3.19c 
------ 

1.43 

------- 
2.08c 

------ 
0.49 

--------- 
2.40c 

------- 
2.07a 

-------- 
3.70c 

- 
0.30 1.75a 1.34 

--- 
3 -4 1.45 1.21 3.18c 

- 
-0.77 

------ 
1.63a 

-------- 
-1.00 

-------- 
2.45c 

------ 
-0.91 

------- 
1.04 

------- 
0.74 

-------- 
2.34c 

------- 
-1.08 

------- 
1.39 -1.05 1.86b -1.05 

--- 
4 -5 3.52c -0.12 1.05 

-- 
2.35a 

------- 
1.02 

--------- 
-0.45 

-------- 
1.01 

----- 
0.13 

---- 
1.49 

------- 
-0.62 
-------- 

2.86c 
------- 

1.71 
------ 

1.73a -0.57 1.30 0.12 
--- 
5- 

--- 
6 5.25c 0.04 8.12c 

--- 
-0.66 

------- 
2.18c 

-------- 
1.15 

-------- 
2.44c 

------ 
-1.09 

---- 
2.89c 

------- 
0.14 

-------- 
3.77c 

------- 
-1.30 

----- 
2.13c 1.11 2.38c -1.16 

---- 
6 

-- 
-7 1.98b -0.30 1.06 

---- 
-1.38 

-------- 
1.96b 

-------- 
-0.92 

-------- 
1.56 

----- 
1.01 

--- 
2.18c 

------- 
-0.38 
-------- 

1.98b 
------- 

-1.35 
---- 

1.64a -0.93 1.11 0.97 
--- 
7- 

---- 
8 6.95c -1.27 5.82c 

----- 
1.00 

------- 
1.07 

-------- 
0.87 

-------- 
1.20 

------ 
-0.99 

- ------- 
4.76c 
------ 

-1.44 
-------- 

2.50c 
------- 

0.71 
----- 

1.17 0.81 1.14 -1.04 
--- 
8- 9 2.64c 2.03a 2.73c 

---- 
0.10 

-------- 
1.14 

-------- 
-0.91 

-------- 
1.27 

----- 
1.48 

--- ------ 
3.28c 

------- 
2.01a 

-------- 
1.93b 

------- 
-0.10 

------ 
1.04 -0.89 1.10 1.49 

- 
9- 10 2.22c -0.52 2.80c 

--- 
0.75 

------- 
1.04 

--------- 
0.17 

------- 
1.76a 

------ 
0.38 

--- ------- 
2.33c 
------ 

-0.55 
-------- 

2.86c 
------- 

0.75 
--------- 

1.22 
-- 

0.08 1.35 0.35 
- 
10 - 11 1.26 0.18 3.52c -0.49 

------ 
1.26 

-------- 
0.82 

-------- 
1.04 

----- 
-0.92 

---- ------- 
1.64a 
------ 

0.16 
-------- 

3.03c 
------- 

-0.51 
--------- 

1.03 
---- 

0.79 1.14 -0.95 

11 - 12 1.06 -1.71 2.07c 1.60 
---- 

2.13c 
-------- 
-0.21 

------- 
1.13 

------ 
0.39 

---- ------- 
1.34 
------ 

-1.77 
-------- 

2.33c 
------- 

1.55 
--------- 

2.00c 
-------- 

-0.22 
----- 

1.14 0.42 

12 - 13 1.03 0.29 6.21c -0.20 1.03 
--- 

0.77 
-------- 

1.32 
----- 
-0.47 

---- ------- 
1.43 
------ 

0.11 
-------- 

3.58c 
------- 

-0.43 
--------- 

1.07 
-------- 

0.77 
-- 

1.23 -0.49 

13 - 14 1.31 1.03 5.40c -1.22 8.51c 
------ 

1.61 
------- 

1.78a 
------ 

1.13 

---- ------- 
1.25 
------ 

1.02 
-------- 

5.26c 
------- 

-1.27 
---- ----- 

4.41c 
-------- 

1.58 
--- ----- 

1.85b 
-------- 

1.17 
----- 

F, = equality of variances F ratio 
Tz = test of two means statistic outlined in section 3.2.2 

(Upper figures are the unlogged returns results, lower figures 
are the logged returns results) 
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If the statistic is significant at the 5% level, entry =a 

If the statistic is significant at the 1% level, entry =b 

If the statistic is significant at the 0.1% level, entry =c 

3.3.1 Results of temporal dependence tests 

Runs Test 

No significant results obtained. The smallest Pr(zr) value obtained 

was 0.10. 

Serial correlation coefficients 

Some series contained one, two or three significant (at 5% level) rk 

values, many others contained none. There certainly does not appear to be 

any consistent positive or negative serial correlation. Table 3.6 below 

gives a count of the number of significant rk values over the entire 

period for each set of returns. 

We see that the number of significant rk values almost exactly equals 

what one would expect (ie 5%) under the null hypothesis of no temporal 

dependence. It is interesting to note also on referring to Tables 3.1 to 

3.4 that the use of logged returns produces virtually identical results. 

In conclusion, therefore, we note that there seems to be no evidence 

at all of any temporal dependence in any of the series. 
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Table 3.6 

No. of significant serial correlation coefficients at 5% level 

no. of 
no. of sig. possible % of sig. 

-------- 
rk values 

--------------- 
sig. values 

--------------- 
rk values 

------------ -------- 
Cocoa series 

---------- 
22 

--------------- 
280 

--------------- 
7.9 

------------ ------ 
Coffee series 

----------- 
13 

--------------- 
280 

--------------- 
4.6 

------------ ----- 
Sugar series 
---------------- 

20 
--------------- 

280 
--------------- 

7.1 
------------ 

Rubber series 
---------- 

20 
--------------- 

280 
--------------- 

7.1 
------------ ------ 

Total 
---------------- 

75 
--------------- 

1120 
--------------- 

6.7 
------------ 

3.3.2 Results of stability tests 

Variance Stability 

It is clear, referring to Figs. 3.2 to 3.5, that the variances are non 

constant. The F ratios in Table 3.5 reinforce the observation. For the 

cocoa returns, of the 13 subperiods' pairwise comparisons, 8 (7 with logged 

returns) of the F ratios were significant at the 5% level. This 

re-affirms the previous findings of excessive fluctuations in variance, 

and although in many instances the use of logged returns results in a 

smaller F ratio, the statistics are still what one would consider 

significant. With the coffee returns, 13 (11 with logged returns) of the 

13 comparisons result in significant F ratios. The sugar returns yield 7 

(6) significant changes whereas the rubber returns show 5 (5) significant 

changes. 

These results then confirm the previous empirical findings of non 

constant variance and justifies the splitting up of the data into 

subperiods. Testing for normality and serial dependence over the whole 

five year period would certainly result in spurious conclusions. 
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Stability of Means and Evidence of Trends 

These two tests are dealt with together since they are obviously 

interdependent. 

We consider the cocoa series first. In period 4 (middle of 1976) a Ts 

value of 2.90 is highly significant. In this period the mean change in 

the price of a cocoa contract was £6.46 per tonne per day, resulting in a 

change of £560 per tonne over the 4 month period. In fact most T3 values 

for cocoa are positive until period 7, reflecting the rise in cocoa prices 

from 1975 to mid 1977. In only one pairwise comparison do we get 

significant T, or Tz values. Similar results are obtained for the coffee 

returns with significant T, values in early and late 1976. Referring to 

the plot of coffee returns in Fig. 3.3 one can see when and why we get 

these significant results. Two (one with logged returns) pairwise 

comparisons yield significant T2 values indicating the development of, or 

the disappearance of, a trend from one period to another and these occur 

in the early and late periods of 1976. Of the sugar results, only I of 

the T values, (the T, value) yields a significant result. The rubber 

series produced no interesting values. 

In nearly all situations the absolute values of the T statistics of 

the logged data were slightly larger than the corresponding T statistics 

of the unlogged data. This is due to the slight reduction in the variance 

and associated standard errors afforded by logging returns. However, in 

most cases the changes caused by the taking of logs had very little effect 

on the resultant tests of significance. 
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3.3.3 The question of normality 

Tables 3.7 and 3.8 give the number and nature of significant (at 5X 

level) J and b2 statistics. Table 3.9 records the number of 

P(W) values smaller than 0.05. We make the follwing observations: 

(1) The cocoa and coffee returns exhibit non-normality most frequently 

(using any of the measures) and the rubber returns least frequently (only 

once using the W Test). 

(ii) Logging the returns generally tends to reduce the bi and 

b2 values and increases the P(W) values. Certainly, the use of logs 

tends to make returns more normal. 

(iii) Except in the case of sugar, the significant JTi values do not 

show any sign of persistent positive skew. 

(iv) Nearly all significant b2 values are greater than 3 

reinforcing previous empirical findings of leptokurtic distributions. 

(v) From Tables 3.1 to 3.4, in nearly all cases in which we obtain a 

significant P(W) statistic the corresponding Fa or b2 

statistic is significant. There are some situations, however, in which 

or b2 is significant and P(W) is not. J- 

The W- test is therefore the most useful single statistic (compared 

to /s and b2) for investigating the normality or otherwise of a 

sample. Under extreme departures from normality, however, as in the early 

periods of cocoa and coffee returns, the W- test mimics the ITi 

and/or b2 tests but is less informative. 

Referring to Figs. 3.2 to 3.5 it can be seen that possibly one reason 

for the many instances of significant Fi, b2 and P(W) statistics 

could be the sudden changes in variance within some periods (eg period one 

of cocoa and period two of sugar). A second possible explanation is the 
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Table 3.7 

No. and nature of sig. (5X level) skewness statistics 
(counts in parenthesis relate to logged returns) 

------------------- 
No. of sig., Fba's --------- 

Cocoa 
--------- 

Coffee 
------- 

Sugar 
------- 

Rubber 
------------------- 

jb-i >0 
--------- 

3(2) 
--------- 

4(4) 
------- 

4(4) 
------- 

1(1) 
------------------- 

J-bi <0 
--- 

---------- 
2(2) 

---------- 

-------- 
5(3) 

-------- 

------- 
1(1) 

------- 

------- 
0(0) 

------- ---------------- 
Total 
------------------- 

5(4) 
---------- 

9(7) 
-------- 

5(5) 
------- 

1(1) 
------- 

Table 3.8 

No. and nature of sig. (5% level) kurtosis statistics 

------ ------------- 
No. of sig. bz's 

----------- 

-- ------- 
Cocoa 

--------- 

--------- 
Coffee 

--------- 

------- 
Sugar 

------- 

------ 
Rubber 

------- -------- 
b2 >3 
------------------- 

7(6) 
---------- 

9(8) 
-------- 

8(8) 
------- 

2(1) 
------- 

bz <3 
------------------- 

0(0) 
---------- 

0(0) 
-------- 

0(0) 
------- 

1(1) 
------- 

Total 
------------------- 

7(6) 
---------- 

9(8) 
-------- 

8(8) 
------- 

3(2) 
------- 

Table 3.9 

No. of P(W) values less than 0.05 

------- 
Cocoa 

- 

-------- 
Coffee 

-------- 

------- 
Sugar 

------- 

-------- 
Rubber 

-------- ------ 
6(5) 

-------- 
6(4) 

-------- 
3(2) 

------- 
1(1) 

------- 
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presence of a single outlying observation. A detailed examination of each 

period for anomalous values using normal order plots and a specially 

constructed outlier detection routine was carried out but we leave the 

discussion of these techniques together with the results to Chapter 4. 

3.4 Summary of univariate tests 

For the moment we separate the rubber returns from consideration. The 

cocoa, coffee and sugar returns exhibit plenty of evidence of non 

normality - even after logging the data. Variances fluctuate considerably 

throughout the five year period and for the most part the mean returns in 

each period are not statistically significantly different from zero. These 

results lead one to seriously doubt the appropriateness of applying a 

Markowitz Portfolio type analysis to the data. 

However the returns in the rubber series are what could be described 

as 'well behaved'. Only one period showed evidence of non-normality and 

although the variances changed in the earlier half of the five year 

period, reference to Fig. 3.5 shows that this was much more gradual than 

for the other series considered. 

In none of the approximately 84 - day periods examined did we find any 

evidence of temporal dependence. Taylor (1980), however, examined futures 

returns over auch longer periods and produced quite strong evidence in 

favour of certain conjectured models for trends that resulted in 

significant serial correlation. We investigate Taylor's technique in 

section 3.5. 
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3.5 A review of Taylors (1980) study of long series of financial prices. 

In this section we briefly review Taylor's model and his recommended 

method for dealing with long series of financial prices. In section 3.6.1 

we apply Taylor's technique to series woven together from 5 contracts each 

approximately one year in length. In section 3.6.2 we apply Taylor's 

technique to long series that are woven together to approximate to 

contracts with constant maturity dates. 
k 

The Model 

Taylor (1980) proposed a number of models of financial prices. Here 

we consider only the simplesti the basic trend model. If xt, t-1,2, ..., n 

is the sequence of logged returns then: 

Xt = pt + et 

with E(et)  0 and E(et, et. k) 20 for k0 

One usually would have set pt  0 for all t'. Taylors innovation was 

to cosider pt as stochastic, with 

Ne-t 

µt " 

p+ qt 

with probability p 

with probability I-p 

In which Cov(p., et) =0 for all s and t, and E(pt) = N. 

The qt are a series of identically distributed uncorrelated random 

variables with mean zero and each independent of the previous one. 
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Taylor suggests that we would expect a priori that 1-p and the ratio 

Var(pt)/Var(et) to be small. This would be consistent with small and 

infrequent changes in the underlying trend, at. Prices, therefore, would 

tend to move in one direction (the trend) for a period of time and that 

these trends themselves change in a random and unpredictable fashion. The 

mean, t duration of such trends is shown to bet 

Z" -° k( i- p) 1 
E 
w-1 pk_I 1_p 

The rationale for such a model is that the trends are responses to the 

anticipated supply and demand for the commodity. New information relating 

to supply and demand arrives randomly and relatively infrequently and so 

trends alter in an unpredictable manner. 

If indeed returns can be explained by the above model then Taylor 

shows that the theoretical autocorrelations, xk, are non zero and are 

given by: 

xs. 3b pk ,k=1,2, .... ; and b >0 

The constant b is a function of the parameters defining the stochastic 

processes of and It and is expected apriori to be small. 

The Problem of Fluctuating Variance 

All previous research (including this study) report series of returns 

with fluctuating variances. Until recently the effect of this changing 

variance on the sampling distribution of the serial correlation 

coefficients has been unknown and ignored. Taylor and Kingsman (1979) 

examined the problem and proposed two alternative models that seemed to 
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describe the change in variance quite well. One model specified that the 

logarithm of the standard deviation follow an autoregressive process of 

order 1. The second model specified that the standard deviation follow a 

Markov Chain with three states (low, medium and high values). Extensive 

simulations showed that either of the two models was a good candidate for 

explaining the observed variance fluctuations. 

Recall that, with constant - variance series in which there is no 

temporal dependence, the serial correlation coefficients have variances of 

1/n. Simulations by Taylor and Kingsman using samples of size n- 1000 

with the two postulated variance processes showed that the serial 

correlation coefficients had variances of 1.34/n and 1.47/n for the Markov 

and autoregressive processes respectively. The usual two sided tests 

using standard errors of 1/Ti are consequently invalid. 

One of the methods Taylor recommends to overcome this problem is to 

calculate the serial correlation coefficients on the rescaled returns yt: 

yt - xt/at 

in which at is an exponentially smoothed estimate of the average of the 

absolute changes in returns, computed using 

at 0 alit-iI+ (i - a)at-i 

with a set at some suitable value (Taylor suggests 0.1). 

In this way the series, yt, should be of approximately constant 

variance. Simulations with both of the fluctuating variance processes 

showed that the, rk's, calculated by the recommended method had variances 

very near the expected value of 1/n. 
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The test statistics 0, T and U 

In order to test the null hypothesis of a random walk (in which all 

the %k's are zero) against the alternative hypothesis of a trend model (in 

which all the Wk, values can be expressed as nk= bpk) Taylor (1980) 

considered the three test statistics 09T and U 

QnE rk2 
k-l 

/E O2k/n T= Ök rk 
J 

kýl Mý1 

UE äk rk E $2k/n 
k-2 k-2 

with 0<O<i 

If the null hypothesis is true, each rk is independently normally 

distributed with mean zero and variance 1/n and so Q would be 

asymptotically chi-squared distriubted on m degrees of freedom. The T 

and U statistics would be asymptotically normally distributed with mean 

zero and variance unity. 

Taylor points out that previous researchers have used Q in testing 

for temporal dependence but notes that the technique has low power. Under 

Taylor's alternative hypothesis the rk's, are expected to be a 

sequence of monotonically decreasing positive values and has proposed test 

statistics T, and U, designed to be sensitive to the possibility of such 

an alternative hypothesis. If errors are present in a time series they 

will have most influence on r, and thus Taylor decides to test his 
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series with U. Experience suggests that suitable values of m and 0 

are 30 and 0.92 respectively. In Taylor's study of 11 series, 8 showed 

strong evidence of non random behaviour. In nearly all series there was a 

preponderance of positive rk values. As an example, his cocoa series 

(from 1971 to 1976) gave aU value of 3.47 with 21 of the first 30 

rk values positive. 

3.6. Taylor's techniques applied to ICCH data 

Here we describe the results of applying Taylor's technique to long 

series (5 years) obtained by weaving together contracts in two completely 

different ways. 

3.6.1 The weaving of annual segments of contracts to form one long series 

In line with Taylor's (1980) study, consecutive annual contracts of 

each commodity were woven together, care being taken not to include 

periods very near the beginning or the end of a contract for reasons noted 

in section 3.1. For details of the contracts used with dates see Appendix 

C. Initial values of a0 are computed using the first 20 observations 

from each contract and when evaluating the crossproduct term in each rk 

the summation is, of course, limited to those days for which yc and yt-k 

are the rescaled returns from the same contract. With the cocoa returns, 

for example, we had to weave five contracts together resulting in 1213 

returns (=1218-5). Subtracting 20 returns from each contract for the 

estimation of a0 means that each rk is computed using 1213 - (5x20) m 

1113 returns. The first 30 rk values, the values of 9, U and a count 

of the number of positive rk values are given in Table 3.10. In the 

computation of yt and rk, a and 0 were set to 0.1 and 0.92 respectively. 
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Table 3.10 

Results of Taylor's study on annual sections of contracts woven together 

---- 
no. 

--------------- 
of positive rk's 

at 
- 

lags 1 to 30 
----------- ------ ------ -- -------- ----------- 

no. of 
----- ------ -- ---- 

no. of sig. 
-------- ------ 

Series returns 
--------- 

1-10 
------- 

11-20 21-30 
---------------- 

total 
------- 

rk values 
-------------- 

Q(30) 
-------- 

U(30) 
------ ------- 

Cocoa 
------ 

-- 
1113 

----------- 
9 

------- 
73 

---------------- 
19 

------- 
2 

-------------- 
33.17 

-------- 
1.37 

------ - 
Coffee 1092 

----------- 
7 

------- 
55 

---------------- 
17 

------- 
2 

-------------- 
41.78 

-------- 
1.91 

------ ------- 
Sugar 
------- 

1113 
----------- 

6 
------- 

76 
---------------- 

19 
------- 

0 
-------------- 

44.46 
-------- 

0.29 
------ 

Rubber 
------- 

1117 
----------- 

5 
------- 

86 
---------------- 

19 
------- 

0 
-------------- 

17.58 
-------- 

0.59 
------ 

Referring to Table 3.10 and Figs. 3.6 to 3.9 we note that the number of 

positive rk values is greater than 15, half what we would expect 

under the null, although the number of significant values is small. The 

correlograms and the U statistics of the cocoa and coffee returns both 

suggest that an alternative hypothesis of Taylor's type could be true. 

Note however, that the values of U (1.37 for cocoa, significant at 8.5% 

level and 1.91 for coffee, significant at the 2.8% level) are much smaller 

than Taylor's results on cocoa and coffee series from an earlier period 

(1971 - 1976). In a later work, Taylor (1983), examined cocoa and coffee 

series over the period (1976 - 1980) and sugar series over the period 

(1974 - 1980) and produced U values of 3.07,1.50 and 3.64 respectively. 

Taylor (1983) also examined the series over the longer periods of (1971 - 

1980) for the cocoa and coffee and (1961 - 1980) for the sugar series 

producing U values of 5.49,4.83 and 6.58 respectively. 

In this study, therefore, two of the four series examined showed 

evidence of price trends consistent with the models proposed by Taylor. 
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3.6.2 Taylor's technique applied to all the contracts of a given 

commodity 

In examining the time series woven together in the manner described in 

section 3.6.1 we are studying the returns of a typical contract over most 

of its lifespan. If returns are generated by the trend type models 

suggested by Taylor, then examining a contract over its entire duration 

may yield misleading results. Consider, for example, the March 1977 

contract of cocoa spanning the period January 1976 to December 1976 (255 

days). In the early part of the series the prices supposedly represent 

expectations of the price of cocoa (together with storage costs etc) 15 

months into the future. At the end of the series, the prices represent 

expectations of the cocoa price three months into the future. The 

responsiveness of prices to anticipated changes in demand and supply of 

cocoa in the distant months may be different from that when a contract is 

near to maturity. In other words, it is possible that the stochastic 

process generating the trend changes may be different at different stages 

in the life of a contract. 

It would be very interesting to examine a series of prices of 

contracts with delivery dates always a fixed point in the future. This is 

possible with series of metal futures prices. Each day, for example, a 

new three month copper futures price is available. one can, however, get 

an approximation to this situation with the soft futures prices by weaving 

together contracts in the manner described below. 

For simplicity we consider as an example the coffee prices since every 

two months (about 43 days) a contract expires. Consider Fig. 3.10 in which 

all the futures prices or returns are represented by columns. Each row 

represents a day. We always have six columns (prices). The prices in 
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column 1 are the prices of the longest running contract, the one which has 

the nearest delivery date. Every two months a contract expires and so 

column 2 becomes column I etc etc. At the expiration of a contract all 

the columns shift one to the left. The prices of the most distant 

contract are then put into column 6. The data in one of the specially 

rearranged files is actually set out in this way. 

If we weave together all the returns in the first column we will have 

a sequence of returns (or prices) that will always be between two months 

to the delivery date and the final delivery date; an average of one month 

to delivery. Similarly if we weave together all the returns in column 2 

we will have a sequence of returns that reflect the situation (trend or 

whatever) of contracts always between four months and two months of 

delivery, an average of three months to delivery. Thus we will have six 

parallel quasi - contracts, each one representing expectations about 

different points in the future. 

We examine all six series of coffee returns looking for positive 

serial correlation using Taylor's proposed scheme of rescaling returns. 

Initial estimates of as for each series are obtained using the first 

20 observations in period one.. At the beginning of period two, three and 

so on we do not need to put aside the first 20 observations again to 

re-estimate a0 as we can use the last estimate from the previous 

appropriate column corresponding to the same contract. In this way, in 

the case of coffee, we have 1218 -29 (periods) = 1189 days with 1189 - 20 

= 1169 returns. 

An additional problem one encounters when weaving together so many 

different series of prices (29 series in the case of coffee) is the 

reduction in the actual number of terms in the cross product expression 

for rk. With a lag of 30 and only 43 (say) returns in any given 

period, there will only be 42 - 30 = 12 terms in the numerator of the 
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r3o expression. Thus in the case of the coffee series there will be 

a total of 314 cross product terms making up the numerator of r3. as 

compared to 1174 squared terms in the denominator. Obviously the 

estimates of ram will be affected considerably by this imbalance. 

It was decided, therefore, that instead of using the usual approximate 

expression of rk, we would use the full definition given in Kendall 

and Stuart (p 375): 

n-k 

ý = E vt. vt+k K t-i 

n-k n-k 

E v2 tE vet+k 
t-1 t-1 

where vt yt - E yt 
t-i 

%(n-k) 

In this expression, separate means for the series xt, t=1, Z,. 

..., n-k, and xt. k, t=k+l, k+2,...,, n are required. Note also that the 

number of terms in the denominator and numerator are equal. Since nk, the 

number of terms used in computing rk, varies considerably with k, the Q 

and U statistics are now computed using the expressions: 

36 
QE nk r2k 

k-l 

UsE ýk ik E O2k/nk 
4 

k-2 k-2 

Under the null Q and U should be X2(30) and N(0,1) distributed 

respectively. The number of positive rk values, the 0 and U 
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TAhta 3-ti 

Results of Taylor's study on quasi contracts 

------ 
No. of 

------------- 
positive rk 

------- 
values 

at 
--- - 

lags 1 
------ 

to 30 
------ --------- ------ --- --------- - ---- -------- 

Quasi 
--- --- - - - -- ------- 

contract 
-------- - 

1-10 
----- 

11-20 
------- 

21-30 
------ 

Total 
-------- 

Sig. 
------- 

rk 
--- 

values 
---------- 

Q(30) 
-------- 

U(30) 
------- -- 

1 
-- 

4 4 5 13 +4 36.94 -0.80 
2 5 4 4 13 -12 32.19 -0.88 

Cocoa 3 3 4 4 11 -24 37.56 -0.89 
series 4 4 4 4 12 +4 36.85 -0.68 

5 3 5 5 13 +4 38.14 -0.74 
6 4 6 5 15 

------ - 
-12 

- -- 
34.23 

- - - - 
-1.06 

-------- --- 
1 

-------- 
4 

------ 
3 

------ 
3 

- - 
10 

- - - 
+1 

--- 
-28 

---------- -- - - - 
29.29 

------ 
-2.24 

2 4 2 5 11 +1 -11 -28' 34.11 -2.23 
Coffee 3 3 3 4 10 +1 -11 -28 32.17 -2.20 
series 4 2 2 4 8 +1 -11 =-28 39.37 -2.56 

5 3 1 5 9 +1 -28 41.93 -2.75 

-------- 
6 
--- 

4 
-------- 

2 
------ 

5 
------ 

11 
------ 

+1 -6 -11 -28 44.24 -2.63 

1 3 3 4 
-- 

10 
------- 

-2 
--- 
-18 

---------- 
-27 

-------- 
29.13 

------- 
-2.12 

2 4 4 3 11 -2 -18 -29 44.83 -2.11 
Sugar 3 4 4 4 12 -2 -18 -27 -29 43.09 -1.99 
series 4 4 4 5 13 -2 -18 -29 46.59 -2.26 

5 5 4 7 16 -2 -18 -29 41.32 -2.03 

-------- 
6 
--- 

3 
-------- 

5 
------- 

7 
----- 

15 
-------- 

-2 -18 36.61 -1.9B 

1 4 5 4 
- 

13 
------ --- ----- ------ 

19.00 
------- 

-0.79 
2 4 3 7 14' 17.53 -1.02 

Rubber 3 4 4 7 15 -9 14.75 -0.70 
series 4 4 5 7 16 -9 15.79 -0.62 

5 3 4 7 14 -9 19.86 -0.64 

-------- 
6 
--- 

4 
-------- 

4 
------ 

7 
------ 

15 
-------- ------- --- ---------- 

21.47 
-------- 

-0.39 
------- 
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statistics are given for each quasi contract in Table 3.11. 

3.6.3 Discussion of Table 3.11 

The most striking observation from Table 3.11 is that all the U 

statistics of the quasi contracts of all the commodity series are 

negative. Furthermore all the statistics are similar for all the quasi 

contracts of a given commodity. There, is an excess of negative serial 

correlation coefficients. As an example, the fourth coffee series 

produced 22 negative rk values. In almost all cases the number of 

positive r values was less than what we would have expected from a random 

walk process. Note however that the r, value for coffee was significant 

and positive +0.093 for the first quasi contract). This can be 

compared with an ri value of +0.126 from the results of section 3.6.1. 

None of the U statistics would therefore lead us to reject the null 

hypothesis in favour of the hypothesis proposed by Taylor. These results 

are in complete contrast to those produced in section 3.6.1. 

Why are there so many negative rk values, and why are the U statistics 

all negative? In an attempt to answer this we consider again the 

approximate formulation of rk. Recall that the expected value of the 

approximate rk is -1/(nk -1) and the variance is approximately 1/nk. 

So we expect each rk to be slightly less than zero. If we assume that 

the above relations are valid for the expected value and variance 

of rk computed using the complete expression, we can compute the expected 

value of U and a 93% probability interval for U. 
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E(, U )= sk(-1/(nk-I E O2k/nk 
k-2 k-2 

-0.160 for 0=0.92 and using nk's from the 

cocoa series 

and Var( U)=1.000 as before 

The corresponding 95% probability interval for U, for the coffee series is 

thus -0.160 ± 1.96, ie -2.12 to +1.80. Similar intervals can be 

calculated for each series. 

All the observed U values for the cocoa and rubber series fall inside 

the 95% probability intervals. All the observed U values for the coffee 

series and the U value for the fourth sugar series are lower than the 

lower bounds of the 95% probability intervals. So although we expect each 

rk value and the resulting U statistic to be negative, the values 

observed for the coffee series can be considered as unlikely to result 

from-a random walk process. 

Can we explain the conflicting results obtained by examining the 

coffee returns as described in section 3.6.1 and those obtained using the 

method described in section 3.6.2? Great care has been taken in the 

weaving together of all of the periods of each sub-series. There has been 

no overlapping crossproduct terms used in the computation of the numerator 

of each rk . Consequently with lag k 30 there were- only 313 

crossproduct and sums of squares terms used in computing ram. This is to 

be compared with 1125 such terms in the comutation of rt. Obviously the 

variance of r3 and r, will be different and this has been taken into 

account in the computation of U and Q; but the paucity of terms making up 

r3. for larger lags does not explain why so many values should be 

negative. 
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Recall that in Taylor's original model the stochastic process It is 

supposed to represent the random changes in the trend, ut. Taylor 

estimates the mean duration of the trend in his coffee series to be ts6 

days. The two procedures outlined in section 3.6.1 and 3.6.2 are 

examining two completely different series. In section 3.6.1 six typical 

contracts were woven together and each contract produced approximately 200 

returns. If a Taylor- type model was generating these returns one would 

expect about, 200/ 4= 200/6 = 33, changes of trend in each subperiod. In 

section 3.6.2,28 quasi contracts were woven together, each one producing 

approximately 41 returns. By similar reasoning one would expect 41/ Z 

= 41/6 =7 changes of trend in each subperiod. These figures have been 

computed assuming Taylor's estimate of =6 is still valid for the coffee 

returns in the time period we are examining. 

The frequency of trend changes in a given contract may be crucial. It 

is these very changes in the trend that, as Taylor shows, result in small 

positive theoretical %k values. In the long series, the number of such 

trend changes may be quite high and thus the resulting effect on the rk 

values is maybe what we are witnessing in section 3.6.1 (recall U= +1.91 

for coffee). In the short series, the number of trend changes is probably 

low and it is possible that such infrequent changes in trend will not 

result in any observable effect on the rk's. But how do we explain the 

negative U's in Table 3.11? Is it possible that even if a Taylor type 

model is generating the returns, then weaving such short series together 

may result in series that have negative theoretical serial correlation 

coefficients? This is a question we leave for later research. 

In conclusion we note that the examination of the quasi contracts, 

that are always a fixed average time to delivery, produced results 

completely different to those expected and different to those observed by 

a similar study on five or six real contracts woven together. These 
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interesting and unexpected results may be due to the fact that the 

trend-type models proposed by Taylor are not a valid description of each 

of the quasi contracts. The series of returns that are always a fixed 

average time to delivery may be negatively correlated at more lags than 

could be expected under a simple random walk hypothesis. Alternatively, 

examining such quasi contracts may not be appropriate. The weaving 

together of so many short series may be inducing the observed negative 

serial correlations in some way. 

Footnotes for Chapter 3 

1. Most commodity futures brokers will not allow members of the public 

to trade in the delivery month contracts unless a substantially 

larger deposit is placed with them. - The risk of not being able to 

close out a position increases as the final day of the delivery 

month approaches. The situation of not being able to close out a 

short position is particularly risky. 

2. See Mood (1940) pp367-392. 

3. Anderson (1975) suggests that using the above rk expression is valid 

for values of k up to about one quarter of the sample size 

(approximately 20 in our situation). 

4. In practice, when n is large (as in this study) the normality 

condition can be relaxed. 

5. See Anderson (1975). 

6. A survey of various solutions of the Behrens - Fisher problem and a 

study of their power characteristrics is given in Scheffe (1970). 

7. See Snedecor and Cochran. 

8. In testing the stability of means we computed T, and Tz for all 

pairs of contiguous periods for all commodity series and T, and Tz 
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were always very similar. The ratio T, /T2 never moved out of the 

region 0.98 to 1.02 whether the variances could be considered equal 

or not. 

9. Tests using the T3 statistic in section 3.3.2 showed that over 

periods of approximately 84 days, pt values were indeed not 

significantly different from zero. 
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CHAPTER 4 

A STUDY OF THE INTER COMMODITY DISTRIBUTION OF RETURNS 

In this chapter we examine the joint distribution of returns of the 

four soft commodities studied in Chapter 3. The reasons for carrying out 

such a multivariate study are outlined in section 4.1. The layout of the 

rest of the chapter is similar in format to that of Chapter 3: the various 

multivariate procedures are first described and the results and 

conclusions follow. Many of the tests assume multivariate normality and 

so the investigation into distributional form is treated first. Tests for 

multivariate serial correlation and parameter stability follow. 

4.1 The need for a multivariate study 

Tobin (1938) and others have noted that the assumptions underlying the 

Markowitz Portfolio Model are that either (1) investors have quadratic 

utility functions or (11) returns are multivariate normal. Assumption (1) 

is quite restrictive and open to question and so interest is usually 

centred on the possible vailidity of assumption (11). 

All previous empirical studies of returns have examined the question 

of univariate rather than multivariate normality. Of course if returns 

are multivariate normal then each component will be univariate normal. If 

indeed a multivariate normal distribution can explain the returns, then 

with little or no adjustment the Markowitz Model could be applied to 

futures markets. 

The application of Portfolio Analysis aside, a multivariate study will 

give information on the complete set of returns rather than the returns on 

a given single commodity. Previous univariate studies of a variety of 
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price series have resulted in different conclusions for different series, 

yielding no obvious common conclusion. A multivariate study should 

produce a more powerful statement on the joint distribution of returns. 

In this chapter we study a 4-dimensional set of returns. For reasons 

outlined in Chapter 3 we divided the data into 14 subperiods. In each 

subperiod we needed to select a typical contract of each commodity. For 

simplicity we chose the contracts and subperiods used for the separate 

univariate studies carried out in Chapter 3. 

In Chapter 5 we look at the multivariate distribution of returns of 

four contracts of the same commodity and it will be useful to contrast it 

with the results of this study. 

4.2 Multivariate procedures and notation 

In the sections that follow we describe the non-standard procedures 

used to examine the returns for multivariate normality, multivariate 

serial dependence and the stability or otherwise of multivariate 

population parameters. 

Let xt denote the vector (of dimension pxl) of returns (logged or 

otherwise) from day t-1 to day t such that xt1= (X1t, X2t X3t, X4t) where 

x1t = returns on cocoa contract, X2t = returns on coffee contract and so 

on, then: 

z=E xt/n - sample mean of Lt t1 

I' 
S=EE(x 'x )(x, - x) T/ (nI= 

sample estimate of variance matrix 
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population mean of returns 

and V population variance matrix. 

S and V are pxp matrices and in this study p=4. 

4.3 Test of Multivariate Normailty 

In this section we briefly outline some tests of multivariate 

normality. The results of these tests are presented in section 4.8.2. 

No previous study has addressed the question of the multivariate 

distribution of returns on commodity futures prices. There is a vast 

literature on multivariate analysis and nearly all procedures assume an 

underlying multivariate normal ( hereafter referred to as MVN) 

distribution. There have been few proposed multivariate distributions 

other than MVN. Some researchers (eg Malkovich and Afifi (1973)) in 

examining tests of MVN have used multivariate sets of non normal 

univariate distributions such as the log normal, uniform and student t 

distributions. 

It is important to note that if the distribution is MVN then the 

variance matrix describes, completely, the interrelationships between the 

component variables. If the covariances are zero, one could use separate 

univariate studies of the marginal distributions to obtain complete 

information on the joint distribution. 

There are an infinite number of ways in which a distribution can be 

non-normal. This may partly explain the lack of literature on the 

subject. Cox and Small (1978) note that "while in particular 

applications very specific kinds of departure from MV normality might be 

of concern, the departure with the most serious consequences is often the 
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occurrence of appreciable nonlinearity of dependence. " In the Cox and 

Small work interest was centred on this type of non normality and it was 

for this reason that they examined measures of linearity of regressions. 

In none of the 14 subperiods examined did we find any evidence of 

curvature in any of the 6 two-dimensional scatter plots and nowhere did 

we find correlations higher than 0.55. Accordingly we turned our interest 

to other measures of departures from MV normality. 

4.3.1 Multivariate skewness and kurtosis 

Departures from univariate normality are described by the 

skewness and kurtosis measures b, and b2 already outlined in Chapter 3. 

Mardia (1970) developed multivariate analogues of these measures. 

If gi j=(X, - x) *S-' ( x, - 7), 

nn 
then b1.2 

i-i i-s 
g3"/n 

bz. = g2, /n 
L-1 

b,, and b2 are the multivariate skewness and multivariate kurtosis 

statistics respectively. Mardia (1970) has shown that if x, are MVN 

then the following functions of bt, and b2, are asymptotically %2(f) 

and N(0,1) distributed respectively. 

(1/6) n bi, ` %2(f) 

b2p - p(p +2 

gp(p+2 )/n 

with f= p(p +1 )(p +2 )/6 

N(01 1) 
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4.3.2 Multivariate Normal Plots 

Healy (1968) outlines a graphical procedure for the detection of 

systematic non normality and of outlying values. The Mahalanobis distance 

dti of each observation from the sample mean is computed using; 

de at (Xe - X)TS_&(Xt - Xj )1/2 

If the xt are MVN the d2t are x2(p) distributed. The ordered 

d2t are plotted against the expected c2(p) order statistics. If the xt 

are MVN then the plot should be linear. This is a direct multivariate 

analogue of the normal order plot. There are problems with computing the 

expected %2 order statistics and in practice Healy (1968) 

demonstrates that one can use the fact that the cube root of a x2 variate 

is approximately normal. Accordingly the ordered d2'3t values are 

plotted against the appropriate expected normal order values. 

4.3.3 The W- test for multivariate normality 

Royston (1983) developed a very interesting and simple extension of 

the univariate Shapiro and Wilks test for normality to a test for MVN. 

We briefly outline the technique. 

If { xt }, tm1,2,...., n, is the set of MVN returns, consider the 

ith component ( xit ), t=1,2,..., n ordered. Compute the W, and 

associated z, statistic to test univariate normality in the ith 

component, as described in section 3.2.3. Recall that if the ( xit ) are 

univariate normal then z, is N(0,1) distributed. Large positive 

values of zi indicate non normality in the ith component. Consider the 
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set { z, }, i=1,2, ....., p and define 8, as follows: 

0, ={ 1-1(0.3§(-zº)))2 ,121, .... rP 

where II is the cummulative normal integral. Note that if (x, t) are 

normal, each At will be %2(l) distributed. Large values of A, 

indicate non normality in the ith component. 

Consider the function, G, 

P 

GE OtIp , i-I 

and the following two extreme situations. (1) When the components of 

xt are uncorrelated clearly the W,, z, and A, will be uncorrelated and 

thus G will be %2(p)/p distributed. (ii) When the components of xt 

are perfectly correlated, Wi, z, and 9, will be perfectly correlated and G 

will be X2(1) distributed. For intermediate parent correlations Royston 

suggests that a natural approximation to the distribution of G is 

X2(e)/e with e being the "equivalent degrees of freedom". Obviously, e 

need not be integral and is estimated using the first two moments of G. 

If c� - correlation between A, and A,, and 

PP 

EE c�/(p2 - p) = average of c� 

then ep 

I+ (p-1)c 

Thus one computes H= eG and if xt are MVN then H should be %2(e) 

distributed. 

This all assumes, of course that one knows the correlations c,,. 
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Royston examined the values of cii under varying absolute parent 

correlations within xt in MVN samples. Remarkably, the values of 

cs, are very small for parent correlations up to 0.7 and so in the study 

carried out in this chapter (in which the maximum correlation observed was 

0.55 and many were very near zero) one could have regarded the H statistic 

as X2(4) distributed. However in Chapter 5 we encounter distributions 

with much higher correlations (typically 0.95) and so for uniformity we 

followed Royston's suggestion and used his proposed method of estimating 

cs, from the sample correlations, ml,, by using the function: 

Cli = (w )x Cl - (N/v)w (1 - mij)"? f 

in which 

and 

p=0.715 1a=5 

0.21364 + 0.015124(1ag(n))2 -0.0018034(1ag(n))3 

Royston examined the distribution of H under the null situation of 

bivariate MVN with parent population up to values of 0.995 and found that 

the x2(e) approximation was very good. In fact the distribution of H was 

found to be slightly lighter in the upper tail than the appropriate %2 

distribution and so tests are fractionally more conservative than one 

suspects. 

For each of the 14 subperiods we used the algorithm provided by 

Royston (1982b and c) to compute W, and z, for each component i=1,2,3 

and 4. Each of the six cs, values were computed for the sample 

correlations using the above function producing values of e. Because e is 

non integral we used an algorithm due to Narula and Desu (1981) to compute 

the probabilities associated with values of H from a %2(e) distribution. 

Since departure from MVN may occur in lower dimensional' space than 
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P4 we computed H (and the probability of H under the null) for all of the 

possible 15 combinations of the four components of xt. 

4.4 Robust estimation and the detection of outliers 

What of distributions failing the MVN tests described in section 4.3? 

Is there a systematic departure from MVN or are any significant results 

due to the presence or one or more atypical values? In a given subperiod 

clearly one could examine the four separate normal order plots and all the 

15 possible ordered Mahalanobis distance plots. A systematic departure 

from linearity in one or more of the 19 plots would suggest non normality. 

Atypical observations would be highlighted by an otherwise linear plot with 

one or more outlying points. 

A procedure due to Campbell (1980), designed for the robust estimation 

of variance matrices, provides an extremely useful way of detecting 

outliers from an otherwise MVN distribution. The sample estimates of V 

and pt in Campbell's procedure are very similar to the classical ones. 

However each observation xt, is given a weight, wt. Observations coming 

from the main body of the data are given a reduced weight. The 

Mahalanobis distance, dt, plays a central role in deciding which data 

points are far from the centre of the distribution. 

If Wt = weight assigned to observation xt, 

dt = Mahalanobis distance of observation xt, 

from weighted mean, 

xw weighted sample mean, 

S. = weighted variance estimate, 

70 



then 

with 

X. E xtwt /E we 
1 

W2t (Xt (Xt 
n 

E (W2t - 1) 
t-I 

dt s ((xt - x»)TS'1»(xe - x»)3s'ß 

i 
Wt 

(do/dt)exp(-. 3(dt - d. )2/d'2) 

da = J-p + dif 

if dt 4 da 

if de > do 

The value of di determines do and thus the cut off point for the wt's for 

what is considered a reasonable distance of xt from x». The value of 

d2 determines the rate of decrease of the wt's, associated with outliers, 

towards zero. Empirical experience leads Campbell to suggest values for 

d, and d2 of 2.0 and 1.23 respectively. 

The solution for .., S. and wt is iterative. A routine that 

computes xt, S. and Wt was constructed. Iterations were made 

conditional on individual components of xw being to within 0.1% of 

previous values. Following Campbell's suggestions, obsrvations with 

weights less than 0.3 were designated as "outliers". Simulations using 

this routine in conjunction with one that generates contaminated MVN 

samples (see section 4.7) produced estimates of V and e consistently 

superior to the classical estimates and always identified the anomalous 

data. The routine proved extremely useful in the early stages of this 

research. It was particularly useful in the detection of errors in the 

original data set. 
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4.5 Multivariate serial correlation 

If the components of the returns vector are independent, then one 

would think that separate tests of univariate temporal dependence could be 

merged together in making 'a joint statement about the multivariate 

temporal behaviour of xt. What if the components of xt are 

correlated? It would be difficult to make a joint statement from the 

separate univariate tests. Recall that we did not discover any evidence 

of any consistent temporal dependence in any of the subperiods examined 

and we would expect that any joint study of multivariate temporal 

dependence would yield similarly uninteresting results. 

But what if there were any temporally lagged relationships between the 

returns, xt and xt. k of _a more complex nature? What if, for example, 

the cocoa and coffee returns are correlated not only contemporaneously, as 

they seem to be in the five year period considered, but also, say 

correlated significantly across different points in time? Cocoa prices 

going up one day (positive return) could mean that coffee prices will 

follow the next day. Separate univariate serial correlations analysis 

could. still show the cocoa and coffee returns to be white noise when in 

fact there exists (possibly) a multivariate temporal pattern. 

How does one discover if there is any multivariate temporal dependence 

in the series? One method would be to examine all the cross correlations 

of all four commodity returns at all, possible lags. This would have been 

extremely tedious, very time consuming and the author is not sure if any 

clear conclusion could have been drawn from such a mass of correlation 

coefficients. 

Chitturi (1976) and O'Brien (1980) addressed this very problem and 

derived measures of multivariate serial correlation (MVSC) together with 
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associated test statistics. Both authors consider the data to be a 

sequence of p dimensional random variables such that: 

Lt 2B xt_s + et ,t22,3, *%@so 

in which B=a (pxp) matrix of coefficients and at is a sequence of 

mutually dependent and identicaly distributed random variables with: 

E(st) "0 and Var(. )aV. 

One wishes to test the null hypothesis of-no MVSC, ie Ba (0), the matrix 

of zeros against a general alternative hypothesis of at least one non zero 

element in B. 

Chitturi (1976) considered the sample autocovariance matrices: 

Ask 
Ck (i: 

t - A) 
(Xt. 

k -V 'r 

tai 

and showed that under the null hypothesis the sample autocovariance 

matrices are asymptotically uncorrelated and multivariate normal. He 

proposed the test statistic ti. 

tl aE (n - k)tr(Dk) 
k-1 

where Dk 0 rk r. -1 rkT r. -' 

and showed that t, is asymptotically %2(ep2) distributed. 

Although Chutturi (1976) did not explicitly say so, we can assume that 

since the rk are uncorrelated (under the null hypothesis) then one can 
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consider testing each rk using ts(k) : 

ti(k) _ (n - k)tr(Dk) 

which under the null should be %2(p2) distributed, asymptotically. 

O'Brien (1980) notes that the likelihood ratio statistic given byo 

t2(k) = -21oga 0 -nlag(Ck) 

where Ck lIp - ((n-k)/n)2 DkI 

is asymptotically x2(p) distributed. 

O'Brien also outlines two measures of multivariate serial correlation. 

The first one, R2, is based on Chitturi's (1976) test statistic and is 

given by: 

R2 
= (n-k)2 tr(Dk) / pn2 

The second one, R2, is based on O'Brien's test statistic and is given by: 

R2 =I- ýCkýIýP 

O'Brien demonstrates that R2 is a function of the sum of the 

canonical correlation coefficients whereas, R2 is a function of the 

product of the canonical correlation coefficients. We will return to 

these canonical correlations in Chapters 5,6 and 7. O'Brien tested both 

ti(k) and t2(k) using simulations on two dimensional data and reported 

that both statistics performed equally well with samples larger than nm 
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S0. 

Our own simulations study of these test statistics on four dimensional 

multivariate normal data with and without outliers showed that both ts(k) 

and t2(k) performed well and were insensitive even to extreme outlying 

values. However for larger lags the t2(k) statistic rejected the null 

less frequently than expected for various test sizes. 

4.6 Test on Multivariate Parameters 

In Chapter 3 we examined the usual sample statistics such as means and 

variances on each separate univariate commodity returns series. In this 

chapter we are studying the Joint distribution of the set of four 

dimensional returns. Individually testing the means of the separate 

components will not be valid if two or more components are correlated. 

Joint statements and tests are required. 

Amongst other things, interest is centred on the stability or 

otherwise of the multivariate distribution of returns. If Markowitz 

Portfolio Theory is to be successfully applied to the commodity futures 

markets it is important that one can use information from the past, such 

as variances and covariances, to construct portfolios that will be near 

optimal ( efficient) in the future. 

All the foregoing tests assume that the data are multivariate normal 

but Mardia (1979) notes that, broadly speaking, in the presence of non 

normality the normal theory tests on means are influenced by bap whereas 

tests on covariances and correlations are influenced by b2 . 
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4.6.1 Classical single period multivariate tests on parameters 

Two parametrs are of interest in each of the 14 subperiods; the vector 

of means, u and the correlation matrix R 

ti) Hm :k=0V unknown 

This is known as the Hotelling one sample T test. This would be 

consistent with the hypothesis of no persistent trend. Hotelling's one 

sample T Test is appropriate here. Under the nulls 

Ti 6 (n - p)(X - 0)TS-t(x - 0) " F(p, n-p) 

p 

(ii) He :R= Ip 

ie the series are mutually uncorrelated. Box (1949) has shown that under 

the null: 

T2 - -[n - Up + 11)/6] 1ogIRI " %2(p(p-1)/2) 

We can use Tz as a useful measure of the comovement of all the returns. 

With pa4, we have 4x3 /2 =6 pairwise correlation coefficients in 

the R matrix. Strictly speaking one cannot test each component of the R 

matrix as they are interdependent. In fact Elston (1975) provides 

expressions giving the correlations between correlations. 
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4.6.2 Stability of multivariate parameters 

Do the multivariate parameters change from one time period to another? 

Recalling the univariate tests in Chapter 3 we note that the individual. 

variances of returns changed frequently from period to period and so we 

can guess what the answer to the above question is. Nevertheless we will 

consider in full the stability or otherwise of the parameters by 

considering the following four hypotheses: 

(a) Hm. : L, _5, Vs = V2 , (test of complete homogeneity) 

(6) Hob : Vs = V2 (test of equal variances/covariances) 

(c) Hm. : p,   E2 (no assumption on Vi, Vom) 

(d) Hod Rs = R2 (no assumption on j2 , V, or VA) 

where suffix i refers to period 1. 

The test of Hm. is a multivariate extension of the Behrens - Fisher 

problem and requires the computation of estimates of means and variance 

matrices via an iterative routine with similarly controversial results. 

We decided not to carry out test (c). 

No known test exists at present for Hod. Other authors have attempted 

to test corresponding elements of R, and R2 using the Fisher Zr 

transform. However as Elston (1975) points out, the elements of R, are 

not independent and so it is difficult to make a joint statement on the 

stability2 of R. 

And so our concern is reduced to testing H. and Hab. Mardis (1979) 
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outlines the appropriate likelihood ratio testst 

If S, = usual unbiased estimate of V, 

ST = sums of squares and cross products matrix for both periods 

(n, - 1)S, + (nz - 1)S2 

S, = pooled estimate of common variance matrix 

= ST /(n, + nz - 2) 

To test Hm. and Hmb compute 

Tz = nlag ST - nslog (n, - 1) S, - n2log (nz - 1) S2 

n ni nz 

T4 =ö t(ni - 1)logISi-'S, I+ (n2 - 1)logIS2-'SpI) 

with Y= 1- 1+I-\iK 

n, -i nz-2 n, +nz-2 

and xx (2p2 + 3p - 1)/(6(p + 1) 

Under the null, T3 and T4 are asymptotically %2 distributed an 

p(p + 3)/2 and p(p + 1) degrees of freedom respectively. 

All the tests described in this section are likelihood ratio tests and 

were derived assuming a specific distributional form, is the multivariate 

normal distribution, and so the comment at the beginning of section 4.6 is 

relevant. 
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4.7 Simulating multivariate normal data 

In this and later chapters a number of non standard multivariate 

procedures Were examined. Examples are the robust estimation routine due 

to Campbell (1980) and the testing for multivariate serial correlation due 

to O'Brien (1980) and Chitturi (1976). It was decided. that in such a 

study it would be useful to be able to generate data sets whose population 

properties were known. The above non standard procedures could then be 

applied to such data sets and the sample results compared with the known 

population values. 

Two routines were constructed to simulate multivariate normal 

observations, with and without outlying values, respectively. The 

routines are briefly described as followss 

(i) Decide on a population value for p and V. 

(ii) Use the Cholesky decomposition to decompose V into A and AT such 

that 

A AT EV 

(iii) Generate p independent realisations from the univariate N (0,1) 

distribution and stack into a pxl vector z. 

(iv) Calculate the required observation y using 

y. 2 jº, +Az 

Repeat steps (iii) and (iv) until a sample of size n is obtained. It is 

easy to show that X is multivariate normal with mean, E. and variance 
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matix V. Proofs 

E( y)= EC + Az) EC +L) + A. EC z) 

Var( y) Var+ Az ) Var( Az ) 

= EC(Az)(Az)T? a A. E(zzT). AT 

= A. I. AT = A. AT aV 

Each component of y is a linear combination of normal random variables 

and is thus normal. 

The outlier routine is identical to the above routine except that an 

additional step is included in each simulation. 

L_ Az +S 

0 with probability q 

where 8 

6" with probability i-q 

in which the elements of 8 are set to five times the standard deviation 

of a typical component of y. We can adjust the number of outlying 

observations by altering q. 

These routines proved extremely useful in gaining experience with 

multivariate analysis. 

80 



4.8 Discussion of results of multivariate tests 

All the multivariate analyses were carried out on the subperiods using 

both logged and unlogged returns. Before going into a detailed discussion 

of each of the sets of results we note here that it was decided for 

brevity to report only the analysis of the logged data. Recall from the 

univariate study carried out in Chapter 3 that logging returns tended, if 

not to normalise otherwise non-normal data, to reduce slightly any 

positive skew and in some instances also tended to stabilise somewhat the 

variances. Without going into detail yet, we found similar tendencies in 

the multivariate analysis. However the difference between the results of 

the logged and unlogged analyse was small. 

4.8.1 The identification of anomalous returns 

We consider first the question of outlying observations. Table 4.1 

gives a list of the number of outlying observations in each subperiod that 

were identified by the routine devised by Campbell (1980). Examination of 

each of the four components of the observed outlier invariably led to the 

discovery that it was only one of the components that was in fact 

anomalous. 

It is interesting to note that, apart from the first-period, the 

outlier detection routine always converged in less than 17 iterations and 

typically in only 9 iterations. The first period seems to be a special 

case. Referring to Figs. 3.2 to 3.5 we see that 16 days before the end of 

period one the variance of the cocoa and coffee series increased 
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considerably. What we are examining in period one is really two different 

distributions; those observations before the 86th day and those after. 

Considering only the first 86 returns, the routine converged in four 

iterations with no further outliers detected. 

Table 4.1 

Outlier detection routine (due to Campbell) results 

-------- ------------- 
no. of 

------------ 
no. of 

Period 
------ 

outliers 
------------- 

iterations 
------------ --- 

1 16 
2 1 14 
3 5 17 
4 1 9 
5 1 9 
6 2 9 
7 0 1 
8 0 7 
9 1 8 

10 1 12 
11 0 7 
12 0 7 
13 2 9 
14 

---------- 
0 

------------- 
8 

----------- 
Total 
---------- 

14 
----- ------- - ------- ---- 

t*Routine would not converge until last 16 observations of period were 
removed) 

--------------------------------------------------------- 

Apart from the first period there were a total of 14 observations 

identified as anomalous. This means that in the rest of the 4.5 year 

period (a span of 1218 - 102 = 1116 days) only 14 atypical returns could 

be found. Thus only 14/1116 or 1.25X of the returns were considered to be 

out of the ordinary. Examination of the data in more detail revealed 

that many of the 14 outlying returns could be attributed to sudden and 

large changes in the prices of the cocoa and coffee futures. Consider for 

example the 48th day of period six when there was a simultaneous large 

drop in the price of the cocoa future (£465 per tonne) and the price of 
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the coffee future i£400 per tonne). 

How do these outliers affect the multivariate tests? Is it possible 

that the presence of a single outlying observation could seriously affect 

the results of, say, a test for multivariate serial correlation? To 

answer this question we carried out each test on the complete subperiod 

and with the outlier(s) removed. 

4.8.2 Tests of multivariate normality 

We consider first the multivariate kurtosis and skewness measures 

reported in Table 4.2. There are many instances of extremely large sample 

values. Eight of the skewness statistics are significant at the 5X level 

and 5 are signifiant at the 0.1% level. Of the 14 kurtosis statistics, 7 

are significant at the 5X level and 5 are significant at the 0.1% level. 

Not surprisingly those periods with a high skewness statistic also have a 

high kurtosis statistic. Thus over half of the 14 subperiods yielded 

significant results and would lead one to the rejection of a hypothesis of 

multivariate normality. 

If, however, the outliers are removed all the statistics are very 

much reduced in size and only 4 periods would be considered as non 

multivariate normal. It is interesting to note how much each result is 

altered by the removal of a few outliers. Consider for example period 9 

in which there are 82 returns. Removing one of these returns reduces the 

skewness measure from 66.79 to 18.67 and the kurtosis measure from 5.53 to 

0.98. 

We now turn our attention to Tables 4.3a and 4.3b. These Tables have 

been drawn up using the P(W) values from the Royston's W- test for 

multivariate normality on all the possible (15) combinations of the four 
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Table 4.2 

Multivariate skewness and kurtosis measures on logged returns 

----------- 
Skewness 

------------ 
measure 

--- 

-------------- 
Kurtosis 

------------- 

-------- 
measure 

-------- -------- 
Complete 

--- --------- 
Outliers Complete Outliers 

Period data removed 
-------- 

data 
---------- --- 

removed 
--------- -------- 

1 
----------- 

353.46 
-- 
c 

----- 
30.38 29.07 c 2.70 c 

2 33.48 a 33.70 a 2.85 b 2.77 c 
3 54.90 c 18.85 5.26 c 1.55 
4 34.48 a 15.23 2.22 a 1.16 
5 23.05 27.17 0.16 -0.26 
6 95.18 c 39.50 b 8.42 c 2.42 a 
7 22.15 22.15 -1.04 -1.04 
8 33.07 a 33.07 a 1.54 1.54 
9 66.79 c 18.67 5.53 c 0.98 

10 17.72 18.25 1.93 0.78 
11 24.37 24.37 0.29 0.29 
12 16.56 16.56 -0.49 -0.49 
13 142.64 c 19.86 10.12 c 1.61 
14 
------ 

23.80 
----------- -- 

23.80 
------------- 

0.63 
---------- --- 

0.63 
---------- 

Skewness measure " x2(20) under multivariate normality 
Kurtosis measure " N(0,1) under multivariate normality 

If entry =a then associated value is significant at the 5X level. 
If entry =b then associated value is significant at the 1% level. 
If entry =c then associated value is significant at the 0.1% level. 
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Tahl0 IS 

W- tests of Multivariate Normality on complete data set 

Component I= Cocoa returns 
Component 2= Coffee returns 
Component 3= Sugar returns 
Component 4= Rubber returns 

------------ ----- -------- --- 

----------- 
Significant 
----------- 

----- 
P(W) 

----- 

- 

- 

------- 
values 
------- -- ---- ------------- 

Components: 
---- ----- 

All 4 
-------- --- 

In 3's In 
-- 

2's 
--- -- ---- 

Individually 
--- --------- -------- 

Mul. Mul. 1 1 
---------- - 

11 
----- 

1 
- 
1 
-- 

1 1 
skew kut. 2 2 22 2 2 2 2 

3 3 33 3 3 3 3 
Period 

-------- ----- 
4 

-------- --- 
444 

------ - - 
4 

--- ---- 
4 

--- 
4 

---- 
4 

------------- ---- 
1c 
---------- 

c 
----- 

b 
-------- 

c 
--- 

----- 
-cc 

----- - 

---- 
c 

- 
c c 

--- 
- 

---- 
- 

--- 
- 

---- 
cc-- 

------------- -- 
2a 

- 
b 

----- 
a 

-------- 
a 

--- 

- ---- 
aa 
- 

---- - 
b - b 

--- 
- 

--- 
b 

---- 
--b 

------------- ----------- 
3c 

------------ 
c 

----- 
c 

-------- 
c 

--- 

- --------- 
cbb 

----------- 

----- 
c 

----- 

- 
b 
- 

--- 
- 

--- 

- 
c 

---- 
b 

--- 
b 

---- 
-c b- 

------------- 
4a 

------------ 
a 

----- 
c 

-------- 
c 

--- 
c-c 

----------- 
c 

----- 
- 
- 

- 
--- 

c 
--- 

c 
-- 

- 
---- 

- c-- 
------------- 

5- 
------------ 

- 
----- 

- 
-------- 

- 
--- 

--- 
----------- 

- 
----- 

- 
- 

- 
--- 

- 
---- 

- 
-- 

- 
---- 

---- 
------------- 

6c 
------------ 

c 
----- 

c 
-------- 

c 
--- 

cc 
----------- 

c 
----- 

c 
- 

c 
--- 

- 
---- 

- 
--- 

- 
---- 

c--- 
------------- 

7- 
------------ 

- 
----- 

- 
-------- 

- 
--- 

--- 
----------- 

- 
- 
- 
- 

- 
--- 

- 
---- 

- 
--- 

- 
---- 

---- 

Ba 
------------ 

- 
----- 

- 
-------- 

a 
--- 

-a 
----------- 

--- 
a 
--- 

a 
- 

a 
--- 

- 
- - 

- 
-- 

- 
------------- 

a--- 

4c 
------------ 

c 
----- 

a 
-------- 

b 
--- 

-bb 
----------- 

-- 
b 

---- 
b 
- 

b 
--- 

- 
- 

---- 

- 
- 

--- 

---- 
- 

------------- 
c--- 

10 - 
------------ 

- 
----- 

- 
-------- 

a 
--- 

--a 
--------- 

a a a - - 
--- 
- 

------------- 
b--- 

------------ ----- -------- --- 

-- 

------- 

----- - --- ---- --- ---- ------------- 

12 - 
------------ 

- 
----- 

- 
-------- 

- 
-- 

---- 
--- 

----------- 

----- 
- 
-- 

- 
- 

--- ---- 
- 

--- 
- 

---- 
a 

------------- 
---a 

13 c 
------------ 

c 
----- 

c 
-------- 

c 
--- 

c-c 
---------- 

-- - 
c 

----- 

- 
- 
- 

--- 
- 

---- 
c 

--- 
c 

---- 
- 

----------- 
- c-- 

14 - 
------------ 

- 
----- 

- 
-------- 

- 
--- 

--- 
---------- 

- 
----- 

- 
- 

--- 
- 

--- 

---- 
- 

---- 

--- 
- 

--- 

---- 
- 

---- 

------------- 
---- 

------------- 
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Table 4.3b 

W- tests of Multivariate Normality on data set with outliers removed 

------------ ----- ------- ---- 

----------- 
Significant 
------ 

----- 
P(W) 

- ------- 
values 

Components: 
------------ ----- 

All 4 
-------- --- 

----- 
In 3's 
-------- 

----- - ---- 
In 

--------- 
2's 

-------------- 
Individually 

Mul. Mul. 1 1 
--- 

11 
----- 

1 
- 
1 
---- 

1 
--------- -------------- 

1 
skew kut. 2 2 22 2 22 2 

3 3 33 3 33 3 
Period 
------------ ----- 

4 
-------- --- 

444 
- 

4 44 
- - 

4 
---------- 

1- 
-------- 

b 
----- 

- 
-------- 

- 
--- 

---------- 
--- 

----- 
- 

- 
- 
---- 

- 
---- -- -- 

--- 
--- 

---- 
---------- ---- 

2a 
------------ 

b 
----- 

- 
-------- 

- 
--- 

----------- 
--- 

--- 

----- 
- 

- 
a 
---- 

- 
---------- 

a-a 
-- -- 

- -- 
--a- 

----------- 
3- 
----------- 

- 
----- 

- 
-------- 

- 
--- 

-------- 
--- 

-- - 

----- 
- 

- 
- 
---- 

- 
--- --- 

--- 
-- 

---- 
- 

4- 
------------ 

- 
----- 

- 
-------- 

- 
--- 

- ------- 
--- 

-------- 

----- 
- 

- 

- 
- 
---- 

- 
---- 

---------- 
--- 

---------- 

------------- 
---- 

------------- 
5- 
---------- 

- 
----- 

- 
-------- 

- 
--- 

--- 
--- 

--- 

- --- 
- 

- 
- - --- -- 

-- 
bb 
------------ 

a 
----- 

- 
------- 

- 
--- 

-------- 
--- 

----- 
- 

- 
- 
---- 

- 
---------- 

--- 
------------- 

-- 
- 

7- 
------------ 

- 
----- 

- 
------- 

- 
--- 

------- --- 
--- 

- 

----- 
- 

- ---- ---------- 
--- 

------------- 
---- 

- 
Ba 

------------- 
- 

----- 
- 

------- 
a 

--- 

---------- 
-a- 

-------- 

----- 
a 

- 
a 
---- 

a 
---------- 

--- 
------------- 

a--- 

9- 
------------- 

- 
---- 

- 
------- 

- 
--- 

--- 
--a 

------ 

----- 
a 

- 
a 
---- 

a 
---------- 

--- 
------------- 

a--- 

10 - 
------------- 

- 
----- 

- 
------- 

- 
--- 

----- 
--- 

- 

----- 
- 

- 
- 
---- 

- 
--------- 

--- 
------------- 

---- 

------------- ----- ------- - 

---------- ----- - ---- --------- -------------- 

12 - 
------------- 

- 
----- 

- 
------- 

-- 
- 

--- 

---------- 
--- 

----------- 

----- 
- 

----- 

- 
- 
- 

---- 

---- 

--------- 
--a 

-------------- 
---a 

13 - 
------------ 

- 
- 

- - --- - - - 
--------- 

--- 
-------------- 

---- 
- 
14 - 
------------- 

- --- 
- 

----- 

------- 
- 

------- 

--- 
- 

--- 

----------- 
--- 

---------- 

----- 
- 

----- 

- 
- 
- 

---- 
- 

---- 

--------- 
--- 

--------- 

-------------- 
---- 

-------------- 

86 



components of the returns vector. It was decided that rather-than record 

the numerical values of the P(W) statistics, a symbol denoting the 

significance, if any, of the associated test be reported. 

Column three of- Table 4.3a gives the P(W) value associated with the 

test of multivariate normality on the complete set of returns. Note that 

the periods resulting in significant P(W) values almost always also yield 

significant skewness and kurtosis measures. So we see that the W- test 

for multivariate normality gives results identical to those obtained using 

Mardia's multivariate skewness and kurtosis measures. 

Columns 4 to 17 of Table 4.3a however are also very interesting. 

Columns 14 to 17 contain information an the four separate W- tests of 

univariate normality, columns B to 13 contain information on all 

combinations of two components and columns 4 to 7 contain information on 

all combinations of three components. It is interesting to note that for 

any given subperiod, if a particular univariate component of the returns 

vector is reported as non normal, all combinations of the four returns 

containing that component will also be reported as non multivariate 

normal. Consider for example period 13, which results in eight 

significant P values. Examination of Table 4.3a reveals that it is the 

second component, coffee, that is causing all the significant results. 

All combinations containing the coffee component would be considered as 

non multivariate normal. 

This effect is not really surprising. Table 4.4 shows the six inter- 

commodity correlation coefficients for each subperiod. The maximum 

correlation coefficient observed was 0.495 in period 3. As noted in 

section 4.3.3, with correlations less than 0.7 the multivariate W- test 

is equivalent to simply "adding" the results of the separate univariate W 

- tests. 

At this point it may be useful to consider the values of, e, the 
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effective degrees of freedom used in computing the P(W) statistics in 

Tables 4.3a and 4.3b. Recall that for highly correlated data e=I and 

for uncorrelated data e= dimension of vector under consideration. The 

maximum and minimum values of e found in the complete study of the returns 

weret 

M With complete four dimensional set: 

e... = 4.000, e., ý - 3.965 

(ii) With all combinations of three dimensional sett 

e.. H = 3.000, em, n = 2.976 

(iii) With all combinations of two dimensional sets 

e... = 2.001, e. z n = 1.991 

These values of e reinforce the above remarks. 

For tests of multivariate normality, the individual components can 

therefore be considered as separate, uncorrelated series. 

Before moving on to the effect of outliers it is interesting to note 

the dilution effect in these tests caused by increasing the dimensionality 

of the vector considered. For example in period ten, in which the P(W) 

value for the cocoa series is 0.007 (recorded as b in Table 4.3a), the 

P(W) value for the cocoa and coffee series is 0.012. For the cocoa, 

coffee and sugar series the value-is 0.031 and for all four series the 

value is 0.061. In this period only the cocoa series is significantly non 

normal. Notice how in each case the P(W) value is small, resulting 

(except when considering all four returns) in the rejection of the null 

hypothesis; but that as more components are added to the cocoa series, the 

effect of the severe non normality, is gradually diluted. This effect was 

noticed in all of the subperiods, but although the P(W) value increased as 

the number of components was increased one generally found that non 

normality in a single component led to the rejection of the null 
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hypothesis in all combinations containing this component. 

We now turn our attention to Table 4.3b. This table gives the results 

of the tests of multivariate normality on the data after the outliers have 

been removed. The difference between Tables 4.3a and 4.3b is striking. 

The number of periods in which we reject the null hypothesis at, the 1% 

level has been reduced to one. The skewness and kurtosis measures result 

in four periods being significant at the 5% level. The W- test on all 

the full sets of returns result in no periods in which we reject the null. 

Examination of all the other combinations of returns shows however that 

this may be simply a result of the dilution effect. The significant P(W) 

value for cocoa in period 8 shows up in all of the relevant combinations 

of two components, two of-the relevant combinations of three, but not in 

the combination of all four. 

The only unusual results are in periods i and 6 in which we get 

significant kurtosis and skewness statistics but no significant results in 

any of the combinations of individual components. These significant 

results cannot be explained by non normality in any of the individual 

components and examination of all the 6, two dimensional, scatter diagrams 

of the returns, does not reveal any obvious anomalies. 

In summary then, regarding the distribution of the returns, the 

multivariate skewness and kurtosis measures in general led to similar 

conclusions to Royston's W- tests. We also examined many of the 15 x 14 

210 normal order and multivariate normal order plots and, after the 

removal of outliers, there was no real evidence of any consistent 

departures from linearity. It is very interesting that (excluding the 

first period) the removal of 1.25X of the observations changes the picture 

markedly, leading to a general acceptance of the hypothesis that the 

distribution could quite easily be considered as multivariate normal. 

Finally, we note that the study using unlogged returns resulted in 
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more subperiods being regarded as non normal. Of the 14 periods, 10 were 

rejected at the 5% level using the W- test. This compares with 7 of the 

logged returns series. In general the results were similar and removing 

outliers greatly reduced the number of significant statistics. 

4.8.3 Tests for a persistent multivariate trend 

In Table 4.4 are the results of testing the hypothesis of 60 

against the general alternative of p=0. Considering initially the 

columns relating to the complete data set we note that only two periods 

(four and five) produce results that can be considered significant at the 

5X level. However, the tests on a number of the other periods produce F 

statistics that are very near the 5X significance cut off level. For 

example in period 12 the F statistic is 2.47. This corresponds to aP 

value of 0.06. 

Table 4.4 

Testina the hypothesis of no multivariate trend 

Test statistic" 
--------------------------------- 

Complete Without 
Period data outliers 

---------------------------------- 
1 1.22 1.99 
2 0.96 0.94 
3 2.19 2.35 
4 2.55 a 2.74 a 
5 5.49 b 5.30 b 
6 0.74 1.47 
7 0.85 0.85 
8 2.35 2.35 
9 1.02 0.76 

10 0.73 0.61 
11 0.22 0.22 
12 2.47 2.47 
13 0.95 0.81 
14 1.97 1.97 

---------------------------------- 
Test statistic is " F(4, n) under the null hypothesis 
----------------------------------------------------------------- 
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These results are similar to those in Tables 3.1 to 3.4 in Chapter 3. 

The null hypothesis that the vector of returns is identically zero is 

rejected when one of the relevant tests an one of the components is 

rejected. It is interesting to note again the diluting effect introduced 

by considering higher dimensional vectors. In period 12 for example the P 

value associated with the test on the coffee series is 0.01 but when 

compounded into a four dimensional vector the P value of the multivariate 

test becomes 0.06. 

There is very little effect from removing outliers. It is known3 

that Hotelling's T Test is overall robust to non normality and here we see 

that the test seems to be insensitive also to the presence of some extreme 

outlying observations. Analysing the unlogged returns produced virtually 

identical results. We conclude that, in most of the subperiods studied 

the vector of returns could be considered to have a mean of zero. 

4.8.4 Inter - commodity correlation coefficients 

The complete set of six sample correlation coefficients between the 

four series of returns for each subperiod is given in Table 4.5. The 

symbols a, b and c indicate, as usual, if each coefficient can be 

considered to be significantly different from zero at the appropriate 

level of significance. Note that these results are obtained by separately 

testing each coefficient and strictly speaking, cannot be used to make a 

joint statement on the inter commodity correlation matrix. Table 4.5 also 

gives the results of the joint test of all coefficients being zero, 

outlined in section 4.6.1. 

Referring to Table 4.5 we see that 26 of the possible 6x 14 = 84 

correlation coefficients are significant at the 5X level. The strongest 
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Table 4. S 

Inter-commodity correlation coefficients 

------- ------------------------- 
Pairwise correlation 

---------------- 
coefficients 

--------- ---------- 
Test" 

-------- 
of 

------- --------- ------- - -------- -------- ------ H0: R =I 
Cocoa Cocoa Cocoa Coffee Coffee Sugar --------- -------- 

I I I I 1 11 Complete Without 
Period Coffee 

- - 
Sugar 

--------- 
Rubber 

-------- 
Sugar 

----- - 
Rubber 

-------- 
Rubber 

--------- 
Data 

---------- 
Outliers 
-------- ------- 

1 
----- - 

0.231a 0.390c 
-- 

0.163 
--- 

- - 
-0.009 0.084 

-- --- 
0.092 

--------- 
24.70c 

---------- 
28.22c 

------ ---- 
2 

-------- 
0.080 

------- 
0.027b 

- - 

----- 
0.054 
- 

-------- 
0.163 

-- - 
0.122 

---- 
0.102 

--------- 
12.76a 

---------- 
11.65 

------- --- 
3 

-------- 
0.480c 

------ - 
0.292b 

- ------ 
0.403c 

-------- 
0.277a 

---- 
0.219a 

--- 
0.253a 

--------- 
46.85c 

--------- 
34.91c 

------- ---- 
4 

-------- 
0.400c 

--------- 
0.228a 
------- 

-------- 
0.388b 

---- 

-------- 
0.269a 

- 

----- 
0.157 
------- 

0.159 
--------- 

32.56c 
---------- 

26.76c 
------- ---- 

5 
-------- 

0.262a 
-- 

0.247a 
--------- 

---- 
0.141 

------- 

------- 
0.172 0.271a 

------- 
0.147 

--------- 
19.68b 

---------- 
27.74b 

------- --- 
6 

------- 
0.495c -0.185 

- -- 

- 
-0.062 
-- 

-------- 
-0.180 -0.112 

------ 
-0.069 
--------- 

26.91c 
---------- 

13.94a 
------- ---- 

7 
------- 

0.155 
----- - 

0.046 
----- 

------ 
0.135 

----- 

-------- 
0.072 

-- 
0.037 

------ 
0.279a 

--------- 
10.46 

---------- 
10.46 

------- ---- 
8 

-------- 
0.106 

-- 

---- 
0.144 

--------- 

--- 
-0.014 
---- -- 

-------- 
-0.047 

-- 
-0.056 
-------- 

0.023 
--------- 

3.28 
---------- 

3.28 
------- ---- 

9 
------ 

0.172 
--- 

0.105 
--------- 

- - 
0.139 

-------- 

-------- 
-0.037 
-------- 

-0.113 
-------- 

0.175 
--------- 

8.56 
---------- 

14.80a 
------- ---- 

10 
----- 

0.016 
------ 

0.027 
--------- 

-0.045 
-------- 

0.266a 
-------- 

0.149 
------- 

0.170 
---------- 

9.77 
--------- 

10.43 
------- ---- 

11 
-- 

0.048 
-- 

0.241a 
--------- 

-0.007 
-------- 

0.152 
-------- 

0.168 
-------- 

-0.012 
--------- 

9.14 
--------- 

9.14 
------- ---- 

12 
------ 

0.115 
-- 

0.213 
--------- 

0.091 
-------- 

0.251a 
-------- 

-0.071 
------- 

0.261a 
---------- 

16.72a 
------- 

16.72a 
---- 
13 
---- 

------ 
0.175 

-------= 
0.379b 

--------- 
0.193 

-------- 
0.273a 

-------- 
0.103 

------- 
0.120 

---------- 

--- 
23.47b 

-- -- 

------- 
32.99c 

14 
------- 

0.174 
-------- 

0.120 
--------- 

0.162 
-------- 

0.180 
-------- 

0.213a 
------- 

0.235a 
--------- 

- ----- 
14.28a 

----------- 

------- 
14.28a 

------- 

* Test statistic is 1 x2(6) under null hypothesis 
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correlations are positive, involve the cocoa and coffee series, but are at 

the best, weak. There are no significant negative correlation 

coefficients. One or more significant pairwise correlation coefficient 

are almost always reflected by a significant result in the joint test. 

The correlations, although small, seem quite stable. From period 

three to period six the cocoa/coffee returns were consistently weakly 

positively correlated. During this period (early 1976 to mid 1977) the 

prices of cocoa and coffee futures were rising rapidly. 

We have not reported the detailed correlation coefficients for the 

data with the outliers removed but Just make a few remarks on the joint 

test results given in Table 4.5. Removal of the outliers reduced the 

magnitude of four of the joint test statistics. Examination of the 

relevant pairwise correlation coefficients revealed that, not 

surprisingly, four of the correlations were being exaggerated by the 

presence of a single outlier and five were being under stated. 

We conclude by saying that the set of four returns were weakly jointly 

positively correlated for the first two years and the last year. The 

implications this has for applying Portfolio Theory to the futures markets 

will be discussed in section 4.9. 

4.8.5. Stability of multivariate parameters 

Table 4.6 gives the results of the tests of the stability of the 

multivariate parameters as outlined in section 4.6.2. 

Considering initially the tests of the equality of the variance 

matrices, we note that all results are significant at the 0.1% level. 

This result is not surprising. In Chapter 3, in every period-to-period 

comparison of the univariate series, we found evidence that at least one 

of the variances had changed. The results in Table 4.6 and the pictorial 
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Table 4.6 

Stability of multivariate parameters 

-------------------------------------------- 
Complete homogeneity Equality of variance2 

Period Complete Without Complete Without 
Compar 
----- 

ison 
------ 

data 
----------- 

outliers 
------------- 

data 
- 

outliers 

1- 
------ 

2 
------ 

140.79 
----------- 

22.47* 
------------- 

------------ 
145.41 

--- ----- 

--------- 
30.77 

- 
2- 

--- 
3 

------ 
81.75 

----------- 
66.78 

---- 

----- 
87.63 

------ 
71.41 

--- 
3- 
----- 

4 
------ 

31.28 
----------- 

--------- 
42.74 

--- 

------------- 
36.74 

------- 
46.36 

- 
4- 

--- 
5 

------ 
42.62 

----------- 

---------- 
38.20 

- 

------------- 
47.46 

------- 
41.46 

--- 
5- 

------ 
6 

------ 
95.02 

----------- 

------------ 
90.28 

----- 

------------- 
99.97 

------- 
93.67 

6- 
------ 

7 
------ 

45.52 
----------- 

-------- 
28.42 

--- 

------------- 
49.12 

------- 
32.43 

7- 
---- 

8 
------ 

70.03 
----------- 

---------- 
70.03 

----- 

------------- 
74.84 

------- 
74.84 

-- 
8- 
---- 

9 
------ 

39.92 
----------- 

-------- 
33.58 

- 

------------ 
47.23 

- 

------- 
39.80 

-- 
9- 
----- 

10 
----- 

46.73 
----------- 

----------- 
53.11 

---- 

--- -------- 
47.77 

------- 
54.19 

- 
10 - 
------ 

11 
------ 

35.03 
----------- 

-------- 
31.01 

------ 

------------- 
36.99 

------- 
32.97 

11 - 
------ 

12 
------ 

36.11 
----------- 

------- 
36.11 

------------- 

------------- 
42.14 

------------- 

------- 
42.14 

12 - 
------ 

13 
------ 

41.42 
------------ 

16.09* 
------------ 

42.83 
-- 

------- 
21.23 

13 - 
------ 

14 
------ 

117.01 
------------ 

83.86 
------------ 

----------- 
123.61 

------------- 

------- 
88.71 

------- 

1: Complete homogeneity test statistic X2(14) under the null hypothesis 
21 Equality of variancetest statistic X2(10) under the null hypothesis 

* These are the only values not significant at the 5% level 
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evidence in Figs. 3.2 to 3.5 simply reinforce these findings. Removal of 

the outliers reduces somewhat, most of the test statistics, but makes 

virtually no difference to our conclusions. 

The results of the complete homogeneity tests were also predictable. 

The P values associated with each result have been computed but for 

brevity are not reported here. In every period to period comparison, the 

P value of the complete homogeneity test was small (13 were less than 

0.001) but not as small as the equality of variance test. This is 

obviously due to the fact that we are joint hypothesis testing. The 

results in section 4.8.3 show that the trend values (means) are mostly not 

significantly different from zero and so it is unlikely that the means 

E, and y, are different in each period to period comparison. 

What we are observing in the complete homogeneity test are the results of 

a diluted equality of variance test. Again we note that all the results 

are significant. 

4.8.6 Multivariate serial correlation 

The results of the tests for multivariate serial correlation appear in 

Table 4.7a and 4.7b. Again, for brevity, we simply report the 

significance or otherwise of each coefficient. Also for brevity we report 

the results only on O'Brien's test for lags k I to k  20. 

In period one there are seven significant coefficients at the 5% 

level. In the remaining 13 periods, of the total of 13 x 20   260 

coefficients, 11 (4.2X of 260) are significant at the 5X level. There is 

no obvious consistent pattern in the significant coefficients. 

Considering Table 4.7b we see that removing the outliers has a most 

dramatic effect in the number of significant coefficients in period one 
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Table 4.7a 

Significant multivariate serial correlation coefficients 
on complete data set 

----------------------------------------------------------------- 
Lags -123456789 10 11 12 13 14 15 16 17 18 19 20 
Period 

I a b a c c a b 
2 a 
3 a 
4 
5 
6 
7 a a 
8 c 
9 a 

10 
11 
12 a 
13 a a 
14 

------- 
a 

----- ---- 
a 

--- --- --- --- --- ----------- ------------------------- 

Table 4.7b 

Significant multivariate serial correlation coefficients 
on data set with outliers removed 

------------------------------------------------------------------ 
Lags =123456789 10 11 12 13 14 13 16 17 18 19 20 
Period 

1 a 
2 
3 b 
4 
5 
6 
7 a a 
8 c 
9 b 

10 
11 
12 a 
13 a a 
14 

------- 
a 

--- --- --- 
a 

--- --- --- ------------------------------------------ 
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also. The number is reduced from seven to one. The sudden increase in 

the variance of the cocoa and coffee series towards the end of period one 

gives rise to the anomalous results in Table 4.3a. Apart from period one, 

the outliers seem to have very little effect on the test statistic. A 

total of 11 significant coefficients is very near what we would expect 

under the null hypothesis (5% of 280 = 14). 

Using Chitturi's test statistic yields a similar pattern in the 

coefficients. The P values associated with the Chitturi's statistics are 

in general slightly smaller resulting in 16 significant coefficients at 

the 5% level when testing the data with outliers removed. Analysis on the 

unlogged returns gave identical results. 

We conclude then, that there is no evidence of any type of 

multivariate temporal dependence. It seems unlikely, then that there 

are any temporally lagged relationships as described in section 4.5. 

4.9 Summary of the inter - commodity distribution of returns 

The joint variance of the set of returns varied considerably over the 

five year period under consideration. This observation alone is 

justification for the experimental design of this study in which the data 

were cut into smaller subperiods. Even within these small subperiods we 

noticed that the variances occasionally changed. It must be stressed that 

this changing variance witnessed in this study and recorded by many other 

authors, means that one cannot carry out the usual statistical tests for 

normality, serial dependence, etc on daily returns in periods longer than 

80 days or so. 

We conclude then that the returns could be described as being 

generated from a multivariate normal distribution with the occasional 

contaminating extreme realization in one or more of the components. 
The 
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character of these rare extreme returns are varied and not predictable. 

It does not seem likely that a set of longer-tailed univariate 

distributions, such as the t or the stable distribution, would explain 

the returns any better. 

There is no evidence that the set of returns has an average that is 

anything different from zero. 

What of the question of temporal dependence? There does not seem to 

be any. It has occurred to the author to propose a multivariate Taylor 

type model in which the trend vector (p) would be modelled by a 

multivariate stochastic process. The study of such a model would require 

the analysis of very long run series with the associated problem of 

varying variances. One could of course simply extend Taylor's rescaling 

technique by using a multivariate exponentially smoothed estimate of the 

variance matrix. We leave this suggestion for another study. 

4.10 Implications for a portfolio analysis model 

The successful application of a Markowitz type portfolio model to any 

investment medium requires, as inputs, estimates (statistical or 

otherwise) of the expected returns and the riskiness of each asset under 

consideration. Also required is an estimate of the comovement of asset 

returns. If one is to use the classical statistical estimates of expected 

returns (the mean) and risk (the variance) then one would hope that these 

estimates are meaningful and sufficiently accurate for practical use. If 

the returns are multivariate normal then the classical estimates of 

expected return and risk say everything there is to know about the 

investment set. We have found in our study that the returns are 'almost' 

multivariate normal. 

How meaningful would it be then, to apply the portfolio model to the 
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set of returns? Firstly we found that in most of the periods the average 

returns could not be considered statistically different from zero. This 

question of the non significance of average returns must not be over 

stated. Many other empirical works4 applying portfolio theory to 

various investment mediums report returns that are not significantly 

different from zero. However, investing in the proposed portfolio 

produced returns that were positive, if not significant, and positive 

returns with low risks are what we are seeking. 

Secondly with respect to the variances, i. e. the risk estimates, there 

are two points of interest: (i) are the variances the correct 

instruments to use as risk estimates and (ii) are they accurate as 

forecasters of future variances? 

The variance estimates do not take into account the occasional sudden 

movements in the prices witnessed in this study. The sudden movements are 

unpredictable and thus the perceived risk must be higher than that 

suggested by the classical variance estimates. It is possible that one 

could bias upwards the classical variance estimates for each component. 

Such a procedure would require some subjective input as to the likelihood 

of sudden movements in prices. 

Are the classical variance estimates accurate forecasters of future 

variances? The results outlined in section 4.8.5 demonstrate conclusively 

that the answer to this question is no. Even ignoring the outlying 

observations the classical variance estimates do not remain stable. 

Summing up, then, we note that a serious draw back to the viability of 

applying Markowitz Portfolio Theory to the futures markets studied here is 

the question of the appropriateness of using the usual variance estimates 

for risk inputs and the observed instability of these estimates from 

period to period. 

However the inter- commodity correlations are small and positive and 
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thus constructing portfolios of futures contracts will afford some risk 

reduction. Using a technique like the Markowitz procedure will almost 

certainly result in some diversification but the resulting portfolios are 

unlikely to be on the efficient frontier. We leave the study of the 

effectiveness of crudely applying the Markowitz procedure to this data set 

to another study but report the results of investing in a naive portflio 

of futures contracts in Chapter B. 

In Chapter 5 we examine the multivariate distribution of returns an 

all the contracts of a given commodity. 

Footnotes for Chapter 4 

1. We suspect in this study that a departure from MVN is probably 

due to departure from univariate normality in one or more or more 

of the individual components. 

2. Simulations carried out by the author have shown that unless the 

underlying population correlations are higher than 0.7 the 

individual tests on elements of the R matrices yield meaningful 

results. 

3. See Mardia (1979) p 149. 

4. See Watson and Dickinson (1981). 
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CHAPTER 5 

A STUDY OF THE INTRA - CONTRACT DISTRIBUTION OF 

COMMODITY FUTURES RETURNS 

In Chapter 4 we studied a multivariate set of returns in which each 

component of the returns vector was obtained from a typical contract in 

one of the four commodity futures markets. In this chapter we examine 

another type of multivariate distribution, one in which all the components 

are returns on contracts in the same commodity futures market. In the 

rubber futures market, for example, there are usually eight different 

futures contracts which can be traded on any one day. Each contract has a 

different delivery date. We can construct a vector of returns in which 

the first component will be the returns on the nearest contract - the one 

that will reach maturity first, the second component will be the returns 

on the contract that will reach maturity next and so on. Apart from Dusak 

(1973), who reports that the returns on different contracts of a given 

commodity are highly correlated, no other empirical study on such a 

multivariate distribution appear to have been published. 

Such a study may throw light on a number of issues such asi 

U) How the variability of returns on the various contracts are 

related. There are possibly complex associations between the 

variability of returns, the trading volume and price expectations for 

each contract. One would expect the variability of returns in the far 

contracts to be lower than the variability of returns in the near 

contracts. 

(ii) Whether the inter contract correlations vary over time and the 

degree of correlation differs across futures markets. 
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(iii) Whether one can use various futures contracts of the same 

commodity to construct Markowitz type efficient frontiers. 

To answer these questions one must look at the multivariate 

distribution of returns and the stability or otherwise of the 

parameters. 

5.1 Design of the empirical study 

There are 7 different contracts one can trade in each day in the 

cocoa, coffee and sugar futures markets and 8 different contracts in the 

rubber futures market. The delivery dates of the contracts and the dates 

when new contracts become available for trading vary from futures market 

to futures market. Also the time periods in which one could examine the 

same 7 or 8 contracts is quite small (approximately 42 days in the case of 

the coffee contracts). For these reasons, it was decided initially to 

examine only a4 dimensional set of returns from each market. For 

consistency with the studies in Chapter 3 and 4 we decided to study the 

returns over the same 14 subperiods. The 4 contracts from each market 

were picked from the possible 7 or 8 contracts available each day in the 

following way. 

The first component of the 4 dimensional returns vector was derived 

from the prices of the contract that was nearest the delivery date. The 

second component was derived from the prices of the next nearest delivery 

contract and so on. For reasons mentioned in Chapter 3 it was decided 

initially not to use prices of futures contracts very near the maturation 

date and so the first component of the last observation in each subperiod 

was derived from prices at least one month away from maturity. Details of 
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the contracts chosen with dates are given in appendix D. A pictorial 

representation of the portion of each of the contracts used in the study 

is given in Fig. 5.1. 

5.2 Variability of returns on different contracts 

In this section we examine the distribution of the variability of 

returns on futures contracts with different times to maturity. Recall, 

however from section 3.3.2 that the variances of returns 

changed considerably from period to period and listing the variances or 

standard deviations of each of the 4 contract returns for each of the 14 

subperiods would not be very useful. 

We consider, instead, the variability of returns on each contract 

relative to the variability of returns of the first contract - the 

contract with the nearest delivery date. Table 5.1a gives the ratio2 

of the standard deviation of returns of components 2,3 and 4 to the 

standard deviation of returns on component 1. 

The entry of 0.835 in the top left hand corner of Table 5.1a 

indicates that, in the first period, the second component of the cocoa 

series had a standard deviation of 83.5% of the standard deviation of the 

first component. Note that the majority of the entries in Table 5.1a are 

less than unity reinforcing the prior belief that futures prices of 

distant contracts are less volatile than the futures prices of near 

contracts. 

From Table 5.1a we can see many instances in which variances decrease 

monotonically with time to maturity. This can be seen much more clearly by 

referring to Table 5.1b which has been constructed from Table 5.1a as 

follows: a zero is placed in a column if a contract has a lower variance 

than the adjacent (leftward) contract, otherwise place a one3. 
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Ratios of standard deviations of each contract to nearest contract 
(logged returns and complete data) 

Cocoa Coffee 

Period 2: 1 3: 1 4: 1 2: 1 3: 1 4: 1 

1 0.835 0.744 0.715 0.833 0.827 0.828 
2 0.964 0.899 0.909 0.963 0.989 0.977 
3 1.055 1.066 0.936 0.957 0.950 0.961 
4 0.922 0.877 0.882 0.981 0.971 0.979 
5 1.018 1.019 1.032 1.029 1.055 1.091 
6 1.042 1.069 1.045 1.007 1.038 1.040 
7 0.965 0.957 0.956 0.968 0.951 1.002 
8 0.891 1.090 0.859 1.007 1.053 1.023 
9 1.044 0.941 0.893 1.873 1.127 1.136 
10 0.914 0.770 0.762 1.012 1.036 1.001 
11 0.971 0.929 0.820 1.059 1.061 1.021 
12 0.896 0.868 0.747 1.115 1.185 1.239 
13 0.953 0.901 0.886 1.046 1.071 1.238 
14 0.972 0.938 0.909 0.944 0.980 1.000 

Sugar Rubber 

Period 2: 1 3: 1 4: 1 2: 1 3: 1 4: 1 

1 0.940 0.913 0.871 0.897 0.859 0.835 
2 0.942 0.898 0.886 0.911 0.892 0.822 
3 0.954 0.925 0.892 0.850 0.774 0.741 
4 0.990 0.908 0.900 0.965 0.927 0.880 
5 0.920 0.863 0.820 0.900 0.900 0.855 
6 0.955 0.879 0.837 0.892 0.735 0.683 
7 0.880 0.849 0.829 0.935 0.923 0.894 
8 0.949 0.870 0.814 0.897 0.895 0.901 
9 0.955 0.928 0.857 0.823 0.759 0.740 

10 0.990 0.975 0.942 0.973 0.919 0.871 
11 0.967 0.967 0.907 1.007 0.977 0.967 
12 0.833 0.774 0.716 0.907 0.872 0.844 
13 0.888 0.823 0.787 0.964 0.899 0.866 
14 0.956 0.883 0.842 0.877 0.839 0.844 
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Table 5.1b 

Standard deviation profile across contracts with increasing maturit 

Cocoa Coffee Sugar Rubber 

Period 1-2 2-3 3-4 1-2 2-3 3-4 1-2 2-3 3-4 1-2 2-3 3-4 

1 0 0 0 0 0 1 0 0 0 0 0 0 
2 0 0 1 0 1 0 0 0 0 0 0 0 
3 1 0 0 0 0 1 0 0 0 0 0 0 
4 0 0 1 0 0 1 0 0 0 0 0 0 
5 1 1 1 1 1 1 0 0 0 0 0 0 
6 1 1 0 1 1 1 0 0 0 0 0 0 
7 0 0 0 0 0 1 0 0 0 0 0 0 
8 0 1 0 1 1 0 0 0 0 0 0 0 
9 1 0 0 1 1 1 0 0 0 0 0 0 

10 0 0 0 1 1 0 0 0 0 0 0 0 
11 0 0 0 1 1 0 0 0 0 1 0 0 
12 0 0 0 1 1 1 0 0 0 0 0 0 
13 0 0 0 1 1 1 0 0 0 0 0 0 
14 0 0 0 0 1 1 0 0 0 0 0 1 

0 indicates expected decrease in standard deviation 
1 indicates standard deviation profile is opposite to that expected 

Table 5.2 

Outlier detection routine results 

Cocoa Coffee Sugar 

Period no. of no. of no. of no. of no. of no. of 
outs. its. outs. its. outs. its. 

1 3 12 11 10 4 12 
2 1 7 29 10 23 
3 13 17 B 10 3 14 
4 2 7 19 38 
5 2 6 28 4 15 
6 1 5 39 3 13 
7 0 8 09 04 
8 4 10 3 13 07 
9 6 51 28 3 12 

10 1 8 09 06 
11 0 1 5 24 2 10 
12 3 9 18 4 10 
13 0 7 5 11 27 
14 0 7 19 04 

Rubber 

no. of no. of 
outs. its. 

6 23 
2 10 

14 10 
18 
4 11 
48 
2 14 
08 

15 
19 
4 16 
1 13 
07 
1 12 
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We find that the spread of standard deviations of the sugar contracts 

is exactly what was expected (there are 14 : 0-0-0 combinations). The 

rubber series produce almost identical results f 12 : 0-0-0 combinations), 

with only two 1's in the entire set of comparisons. The cocoa series 

yielded 7: 0-0-0 combinations I: 1-1-1 and the rest were varied. The 

coffee series has 10 instances in which the second component is less 

variable than the third and 5 instances in which the distribution of 

standard deviations is exactly opposite to what one would expect. These 

results may be due to the anomalies affecting the coffee market in the 

period examined (1975). 

5.3 Multivariate distribution of returns 

The sets of intra - contract commodity returns were subjected to the 

multivariate tests and procedures already applied to the inter - contract 

commodity returns as outlined in Chapter 4. Testing for no persistent 

multivariate trend and homogeneity of population parameters produced 

results that were entirely predictable from the results of the univariate 

study outlined in Chapter 3. As an example, referring to Table 3.1, period 

4, we see that the test on the average univariate return ( H. ip=0) 

produced a significant result of Is = 2.90 indicating a significant upward 

trend in the price of cocoa. This upward trend was of course present in 

all futures contracts of cocoa in this period and the test on the 

multivariate trend ( Hm :H=0) also produced a significant result. 

Similarly, the results of testing the stability or otherwise of 

multivariate variance matrices agreed perfectly with the results of 

testing the stability of univariate variances. 

Because of this duplication it was decided not to report in detail the 

results of the multivariate tests mentioned above. 
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5.3.1 Identification of outlying returns 

The set of returns was examined using the outlier detection routine 

devised by Campbell (1980) . The number of outliers detected and the 

number of iterations required for convergence appear in Tables 5.2. 

The numbers of outliers detected in each of the series weres 36,44, 

38 and 45 respectively, which is higher than the number reported in 

Chapter 4. Also the number of iterations required for convergence feg 51 

in period 9 of the cocoa series) in this study was much higher than that 

reported in Chapter 4. There appear, then , to be more anomalies when one 

examines the returns on 4 contracts from the same futures markets than one 

observes when examining the returns on 4 contracts with each contract 

being from a different futures market. 

It is not possible to classify each and every one of the 163 outliers 

detected here but it was possible to gain some insight into the general 

nature of the majority. In each period and with each set of returns a 

detailed study of the univariate plots in Figs. 3.2 to 3.5, together with 

all the six 2 dimensional scatter plots and the listings of the 

Mahalanobis distances led to the classification of each outlier into one 

of the following three broad categories( 

(I) There are a number of instances in which the variance of the 

returns changes abruptly within a period. As an example, the variance of 

the rubber series increased towards the end of period 3 and the outlier 

routine identifies the last 11 observations as being "outliers". If we 

discount this type of outlier from consideration, then the number of 

atypical observations is reduced to 26,26,28 and 30 respectively, a total 

of 110. So 2X of the remaining returns can be considered atypical. 

(II) It is clear that a number of the outliers are the result of a 
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simultaneous, sudden change in the level of all of the prices of the 

futures contracts. Some of these large negative and positive spikes were 

also observed in section 4.8.1. A total of 31 of the outliers can be 

attributed to these types of unusual simultaneous price movements. 

(III) A close scrutiny of the individual components of the outlying 

observations that could not be classified as being due to changes in 

variance or sudden large price moves revealed that many of these 

remaining outliers were present in. contemporaneous pairs. Occasionally 

one of the four prices used to obtain the returns gets "out of step" with 

the overall general price movement. Since the set of four returns are 

highly correlated a small deviation of one return in the wrong direction 

will result in that observation having a large Mahalanobis distance from 

the mean of the bulk of the returns. The fact that the outliers tend to 

be present in pairs indicates that the price that moves out of line one 

day moves back into line the very next day. 

A breakdown of the number and nature of the outliers observed in each 

of the series is given in Table 5.3. It must be stressed that this 

classification is not exhaustive and that some outliers could be 

classified into more than one group. Also throughout we define an outlier 

as being an observation whose "weight" in the outlier routine is less than 

0.30. If we chose a different cut off point the number of outliers would 

of course be different. 

To summarize, approximately 3% of the returns are classified as 

outliers. Approximately half of these outliers can be attributed to 

common movements in all of the contract prices and half to an occasional 

irregular shift of one or more of the prices in relation to the main 

pattern of price movements. Throughout the rest of this chapter we report 

results of multivariate analysis of the data with and without the detected 

outliers. 
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Table 5.3 

Breakdown of outlier type 

-------------- 
Type of 

---------- 
Cocoa 

---------- 
Coffee 

---------- 
Sugar 

--------- 
Rubber 

--------- 
Totals 

outlier 
---- 

series 
---------- 

series 
--------- 

series 
---------- 

series 
--------- --------- ----------- 

Change in 10 18 10 15 53 
variance 

------ --------- ---------- --------- --------- --------------- 
Large price 

---- 
13 6 9 3 31 

price swings 
-------------- ---------- --------- ---------- --------- ------- 
Price moving 13 20 19 27 79 
out of line 
--- ------- --------- ---------- --------- --------- ----------- 
Total 
-------------- 

--- 
36 

----------- 
44 

--------- 
38 

---------- 
43 

--------- 
163 

--------- 

5.3.2 Correlations between returns 

Dusak (1973) reports that the returns on different contracts from the 

same commodity futures market are highly correlated. In this section we 

examine the degree of this inter - contract correlation in more detail. 

With 4 contracts there are 6 possible pairwise correlations to 

consider. These have been computed for all the 14 subperiods. All 

correlations are very high with most values being near 0.93. The minimum 

and maximum values observed were 0.8044 and 0.9944 respectively. Rather 

than report all the 2x4x6x 14   732 correlation coefficients, we 

decided to look for a measure of the overall collinearity of the returns. 

Recall from section 4.6.1 in which we test the null hypothesis of 

Hat RsI 

were R is the matrix of correlation coefficients. The test statistic 
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Tz is given by: 

T2 _-[n-( 2p +11 )/6 ] 1ogiRI. 

Under the null hypothesis T2 is %2(6) distributed. One can see that the 

Tz statistic could be a useful measure of the comovement of all of the 

returns. The higher the inter - contract correlations the closer IRI will 

be to zero. So large correlations will be reflected by large values of 

Tz. 

A second possible measure of the degree of collinearity could be the 

effective degrees of freedom parameter, e, used in the computation of the 

W test for multivariate normality reported in section 4.3.2. Small values 

of e (near unity) indicate high average inter contract correlations. The 

values of T2 and e for each period appear in Tables 3.4a and 5.4b. 

Tables 5.4a and 3.4b are essentially reporting similar findings. 

Periods which yield very large Tz values also yield very low e values. 

Consider first the results obtained from the data with the outliers 

removed. The T2 values for each commodity market are very similar and 

very high. Similarly the e values are all very low. The average values 

of the T2 and e statistics indicate that the contracts with the highest 

degree of correlation are from the sugar futures market. The cocoa, 

coffee and rubber futures markets appear to have an almost 

identical, but lower degree of collinearaity. 

We now turn our attention to the effect of the outliers on the 

measures of collinearity. As a first example consider the two Tz values 

corresponding to the cocoa returns in period 1. Note that the T2 value 

for the complete data is 849 and for the data with the 3 outlying 

observations removed is 738. For a second example consider the Tz values 

for the rubber series in period 7 in which the values are 690 and 746 
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Table 5.4a 

T measure of collinearity 

Period Cocoa Coffee Sugar Rubber 
T T" T T* T T* T T" 

1 849 738 1251 747 1092 1961 750 727 
2 773 764 1105 1111 1149 943 753 768 
3 643 581 998 775 861 822 411 528 
4 594 738 1130 1057 700 791 562 579 
5 995 1036 916 870 736 710 547 621 
6 912 805 995 1011 633 706 542 487 
7 846 846 682 682 725 725 690 746 
8 391 504 608 605 643 643 754 754 
9 586 646 365 561 725 749 664 686 

10 536 679 777 777 846 846 955 956 
11 735 735 619 670 908 846 813 934 
12 598 619 524 527 692 745 869 887 
13 776 776 841 749 739 761 1029 1029 
14 804 804 477 454 987 987 720 714 

T= test statistic an R with complete data 
T* = test statistic on R with outliers removed 

Period Cocoa Coffee Sugar Rubber 
e e* e e" e e" e e* 

1 1.38 1.49 1.16 1.35 1.18 1.18 1.47 1.45 
2 1.47 1.48 1.20 1.17 1.17 1.28 1.55 1.50 
3 1.45 1.30 1.12 1.14 1.20 1.20 2.16 1.40 
4 1.64 1.32 1.09 1.11 1.40 1.30 1.63 1.57 
5 1.12 1.10 1.17 1.92 1.37 1.32 1.65 1.52 
6 1.17 1.23 1.11 1.09 1.50 1.28 1.73 1.78 
7 1.25 1.25 1.40 1.40 1.31 1.31 1.58 1.29 
8 2.32 1.81 1.51 1.47 1.49 1.49 1.34 1.34 
9 1.61 1.39 2.33 1.56 1.38 1.27 1.55 1.34 

10 1.77 1.40 1.31 1.31 1.22 1.22 1.16 1.14 
11 1.33 1.33 1.49 1.38 1.18 1.21 1.28 1.15 
12 1.59 1.49 1.79 1.73 1.42 1.24 1.24 1.23 
13 1.35 1.35 1.32 1.27 1.36 1.30 1.13 1.13 
14 1.25 1.25 1.86 1.94 1.13 1.13 1.40 1.40 

e= effective degrees of freedom parameter with complete data 
e" = effective degrees of freedom parameter with outliers removed 

Table 5.4b 

e measure of collinearity 
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respectively. Why does the removal of a few outliers reduce the average 

correlation in the first example and increase the average correlation in 

the second example? The answer is obtained by considering the nature of 

the outliers present in both examples. In the first example, the outlying 

observation is of the type II outlined in section 5.3.1 and it is easy to 

see how such extremes in all components of the returns vector will 

exaggerate the correlations. In the second example the outlier is of the 

third type and it is also obvious why such outliers will reduce an 

otherwise high positive correlation. In order to see more clearly the 

effect the outliers have on the measures of collinearity we produce Table 

5.4c. Table 5.4c has been constructed from Table 5.4a and 5.4b as 

follows. For each set of returns--in each period observe the effect on 

T2 and e of removing the outliers. If the effect is to reduce the 

average correlation coefficients, place a zero (0) in the corresponding 

_L"- 

Effect of removing outliers on collinearity measure 

----------- 
Period 

-------- 

---- 

---- 

-------- 
Cocoa 

-------- 

--------------------- 
Coffee 

--------- -- 

---------- 
Sugar 

------- - 

---- 

-- 

------ 
Rubber 

--- 

---- 
T-T" e-e* 

------------ 
T-T" 

--- 

---------- 
e-e" T-T" 

- - 
e-e" 

-- 
T-T" 

------ 
e-e" 

------- 
1 0 0 

----- 
0 

------------- 
00 

---------- 
1 

---- 
0 

------ 
1 

2 0 0 1 00 0 1 1 
3 0 1 0 00 0 1 1 
4 1 1 0 01 1 1 1 
5 1 1 0 00 1 1 1 
6 0 0 1 11 1 0 0 
7 - - - -- - 1 1 
B 1 1 0 1- - - - 
9 1 1 - -1 1 1 1 

10 1 1 - -- - 1 1 
11 - - 1 10 0 1 1 
12 1 1 1 11 1 1 1 
13 - - 0 11 1 - - 
14 

----------- 
- - 0 0- - 0 0 

0= removal 
---- 

of 
-------- 
outlier 

-------- 
reduces 

------------- 
collinearity 

--------- 
measure 

----- ------ 

1= removal 
----- ------ 

of 
---- 

outller 
-------- 

increases collinearity measure 
---- ----- ------ -------- ------- ----- ------ 
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row and column of Table 5.4c. If removing the outliers increases the 

average correlation coefficients place a one Cl) in the corresponding row 

and column of Table 5.4c. 

, 
From Table 5.4c we see that the reported effects on the average degree 

of collinearity as measured by the two statistics are very similar. 

Considering all 4 futures markets there are 44 periods in which at least 

one outlier was detected. The two measures show different effects of the 

removal of outliers in only 6 of these 44 periods. If we consider only 

those periods in which the two measures show similar effects we see from 

Table 5.4c that there is a predominace of i's. From this we conclude that 

overall, the presence of outliers in the data tend to have the effect of 

reducing the average degree of collinearity. 

In Chapters 6,7,8 and 9 we return to the question of inter contract 

correlation coefficients again and consider in detail the idea of 

computing a grand average correlation matrix. 

5.3.3 Testing the returns for multivariate normality 

For each period and each set of returns we computed the multivariate 

skewness statistic , the multivariate kurtosis statistic and the P(W) 

value associated with the W- test of multivariate normality. The results 

appear in Tables 5.5 to S. B. A count of the number of significant results 

tat the 5X level) for all series appears in Table 5.9. Referring to 
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Table 5.5 

Multivariate normality tests on the cocoa series (logg ed data) 

Complete data Without outliers 

Mul. Mul. Mul. Mul. 
Period P(W) skew kut. P(W) skew kut. 

1 0.000 c 56.67 c 5.17 0.821 39.96 b 3.01 b 
2 0.845 36.27 a 3.37 c 0.943 22.08 1.53 
3 0.011 a 56.05 c 25.78 c 0.734 26.09 1.27 
4 0.915 216.73 c 22.81 c 0.886 32.92 a 2.54 a 
5 0.411 28.43 6.90 c 0.413 30.21 1.80 
6 0.000 c 97.29 c 6.77 c 0.926 25.65 -0.05 
7 0.909 8.55 0.02 0.909 8.55 0.02 
8 0.006 b 84.12 c 22.96 c 0.061 35.46 a 3.12 b 
9 0.000 c 72.87 c 19.76 c 0.000 c 33.49 a 1.60 

10 0.477 756.10 c 36.10 c 0.578 28.14 0.19 
11 0.652 15.49 -0.18 0.652 15.49 -0.18 
12 0.587 24.72 7.74 c 0.706 27.85 1.24 
13 0.654 37.75 b 2.79 b 0.654 37.75 b 2.79 b 
14 0.550 13.61 0.84 0.550 13.61 0.84 

Table 5.6 

Multivariate normality tests on the coffee series (logged data) 

Complete data Without outliers 

Kul. Kul. Kul. Kul. 
Period P(W) skew kut. P(W) skew kut. 

1 0.000 c 1020.74 c 71.04 c 0.747 32.93 a 1.89 
2 0.851 57.92 c 5.81 c 0.909 26.53 1.63 
3 0.001 b 80.65 c 11.73 c 0.007 b 28.62 1.31 
4 0.000 c 80.46 c 7.93 c 0.098 41.74 c 5.83 c 
5 0.755 41.98 c 5.44 c 0.998 13.78 1.40 
6 0.306 36.42 a 5.17 c 0.290 25.32 2.17 a 
7 0.595 23.27 2.59 b 0.595 23.27 2.59 b 
8 0.462 47.73 c 3.97 c 0.252 30.92 1.83 
9 0.000 58.10 c 20.29 c 0.420 20.27 0.14 

10 0.459 17.51 0.41 0.459 17.51 0.41 
11 0.838 19.36 6.64 c 0.778 24.45 3.41 c 
12 0.946 20.76 1.58 0.943 26.02 0.74 
13 0.000 c 458.53 c 32.10 c 0.217 24.42 2.89 b 
14 0.377 69.77 c 6.46 c 0.801 63.33 c 4.92 c 
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Table 5.7 

Multivariate normalit y tests on the sugar series (logged data) 

Complete data Without outliers 

Mul. Mul. Mul. Mul. 
Period P(W) skew. kut. P(W) skew. kut. 

1 0.567 50.07 c 8.03 c 0.276 22.31 2.16 a 
2 0.000 c 83.18 c 16.42 c 0.764 32.66 a 3.70 c 
3 0.004 b 54.28 c 9.15 c 0.740 36.34 a 2.64 b 
4 0.830 51.25 c 17.63 c 0.924 27.90 4.22 c 
5 0.377 72.99 c 12.05 c 0.505 44.56 c 5.10 c 
6 0.083 139.02 c 16.24 c 0.096 32.12 a 4.09 c 
7 0.268 26.43 1.33 0.268 26.43 1.33 
8 0.102 28.59 2.36 a 0.102 28.59 2.36 a 
9 0.512 36.92 a 6.10 c 0.317 32.46 a 4.26 c 

10 0.750 51.39 c 2.73 b 0.750 51.39 c 2.73 b 
11 0.083 65.03 c 5.00 c 0.904 27.05 0.96 
12 0.036 a 549.65 c 31.69 c 0.171 23.25 1.78 
13 0.081 98.07 c 14.55 c 0.813 39.93 b 2.98 b 
14 0.666 21.44 2.43 a 0.666 21.44 2.43 

Table 5.8 

Multivariate normality tests on the rubber series (logged data) 

Complete data Without outliers 

Mul. Mul. Mul. Mul. 
Period P(W) skew. kut. P(W) skew. kut. 

1 0.231 63.27 c 10.14 c 0.232 34.47 a 2.70 b 
2 0.867 31.72 4.65 c 0.877 37.85 b 2.87 b 
3 0.119 159.02 c 22.66 c 0.349 29.78 2.49 c 
4 0.963 30.11 4.42 c 0.959 27.19 2.54 a 
5 0.172 49.07 c 15.26 c 0.341 17.03 1.13 
6 0.047 a 75.48 c 9.76 c 0.367 16.66 -0.50 
7 0.488 31.97 a 11.03 c 0.265 32.74 1.52 
B 0.687 19.01 3.49 c 0.687 19.01 3.49 c 
9 0.671 23.76 5.41 c 0.779 39.88 b 2.60 b 

10 0.625 39.63 b 3.09 c 0.638 19.92 0.52 
11 0.844 23.84 11.32 c 0.811 27.73 2.55 a 
12 0.036 a 67.95 c 6.66 c 0.047 a 35.14 a 3.47 c 
13 0.939 21.41 2.23 a 0.939 21.41 2.23 a 
14 0.571 12.16 1.59 0.590 9.22 1.53 
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Table S. 9 

Number of significant (_5X) statistics in tests of mulitivariate normalfit 

Complete 
----------- 

data 
------ 

Outliers removed 
---------- 

P(W) Mul. Mul. P(W) 
-- 

Mul. 
----- 

Mul. 

------- 
skew 

----------- 
kut. 

------ ----- 
skew 

---- - 
kut. 

Cocoa 59 11 1 
- -- 
5 

---- 
4 

Coffee 5 10 12 1 3 6 
Sugar 3 11 13 0 6 9 
Rubber 
------- 

27 
------------ 

13 
------ 

1 
----- 

5 
-------- 

9 
--- - 

Total 
-------- 

15 37 
------------ 

49 
------ 

3 
----- 

19 
-------- 

- 
28 

----- 

Tables 5.5 to 5.9 we make the following observations. 

(i) Considering The P(W) values on the complete data sets we note that 

we obtain significant results in those periods which gave significant 

results for W- tests of univariate normality. This is of course not 

surprising. When the univariate W test indicates a significant departure 

from normality in all 4 components, the joint W- test for multivariate 

normality also produces a significant result. Removing outlying 

observations reduces the number of significant P(W) values from a total of 

15 to 3. 

(ii) There are a large number of significant multivariate skewness 

results. Of the 4x 14 = 56 values, 37 are significant at the 5% level. 

The level of significance of most of the skewness values is striking. In 

the 4 th period of the cocoa series, for example, the observed value of 

216.73 is extremely unlikely under the null hypothesis. The P(W) value 

for the 4 th period of the cocoa series is however 0.15, There are 

numerous situations such as this, in which the W- test passes a set of 

data as multivariate normal but the skewness test rejects multivariate 

normality. Removal of the outliers predictably reduces the magnitude of 

skewness measures. However, even with the outliers removed, the number of 

periods which result in significant skewness -statistics is still high 

(19). 
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(iii) 49 of the 56 multivariate kurtosis values are significant at the 5% 

level and 43 of these are significant at the 0.1% level. Removal of the 

outliers reduces the number of values significant at the 5% level to 28 

and at the 0.1% level to 10. With the complete data sets all but i of the 

kurtosis values are positive. 

How do we explain these unusual results? Why does one measure of 

multivariate normality, the skewness or kurtosis value, indicate that the 

majority of the periods are highly non-multivariate normal, while another 

measure, the W- test, indicates non-multivariate normality in only a few 

instances? Even with the outliers removed, 9 of the kurtosis values for 

the sugar series are significant but none of the P(W) values are. It is 

also interesting to note that removing the pair of outliers (type 3) from 

period 7 of the rubber series produced a reduction in the kurtosis value 

from 11.03 to 1.52 but left the P(W) value and skewness statistic 

unchanged. There are a number of such instances in which removing 

outliers results in a drastic drop in the kurtosis value. 

One possible explanation for these results is that there may be very 

complex departures from multivariate normality. It is possible to imagine 

departures from multivariate normality that would be apparent only when 

considering the joint distribution but not apparent in the separate 

univariate distributions'. For reasons outlined below we suspect the W- 

test is insensitive to such complex departures from multivariate 

normality. 

The W- test of multivariate normality produces a statistic that is a 

mixture of the results of 4 separate tests of univariate normality. The 

mixing process involves a transformation that uses only correlations 

between the various component distributions. If the set of returns is 

multivariate normal then the relationships between the individual 

components would be completely described by the set of correlation 
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coefficients and the results of the W- test would be valid and 

meaningful. 

The multivariate skewness and kurtosis measures are functions of the 

Mahalanobis distances and angles of observations from the "centre" of 

data. It is possible that these measures are sensitive to and thus 

highlight complex 'departures from multivariate normality apparent only 

when considering the joint distribution. If this indeed was the 

situation, then the correlation matrix would not describe completely the 

joint distribution and the usefulness of the W- test with our data is 

thus brought into question. 

Finally we observe that in some periods, as in the 13th cocoa series, 

we find no outliers but still report significant skewness and kurtosis 

values. The routine computes Mahalanobis distances of each observation 

form the mean and denotes those observations that are far from the centre 

as atypical. Could it be that observations resulting in unusual angles 

are not detected by the outlier routine and it is these observations that 

are giving rise to the significant skewness and kurtosis values? 

Unfortunately the literature on the multivariate skewness and kurtosis 

measures is quite thin and these measures do not appear to be very 

informative. All one can say is whether a result is significant or not. 

5.3.4 Testing returns for multivariate serial correlation 

The series were tested for multivariate serial correlation using the 

routine described in section 4.5. As in Chapter 4, rather than record all 

the individual P values associated with the multivariate serial 

correlation coefficients at various lags, we report only those values that 

could be considered significantly different (at the 5% or level or less) 

from zero. The analysis was carried out on the logged daily returns and 
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Table 5.10 

Significant Multivariate Serial Correlation Coefficients for Cocoa Series 

(a) Complete data set 

Lags =123456789 10 11 12 13 14 15 16 17 18 19 20 
Period 

I c a 
2 c a a 
3 c a s a b b b 
4 c 
5 c a a 
6 c b a s 
7 c 
8 c 
9 c a b b 

10 a 
il * a 
12 c c c b b a a b b b a s 
13 c a 
14 c a a 

Total 13 3212253222021111101 

(b) With outliers removed - 

Lags =123456789 10 11 12 13 14 15 16 17 18 19 20 
Period 

1caa 
2b 
3ca 
4cb 
5caa 
6cbbb 
7c 
8caa 
9c 

10 c 
11 *a 
12 caa 
13 ca 
14 caa 

Total 13 4300122210010000001 

(R = value of multivariate serial correlation coefficient at lag 1) 

* This coefficient was significant at the 6X level. 

R 

0.345 
0.303 
0.435 
0.358 
0.433 
0.398 
0.330 
0.401 
0.424 
0.279 
0.272 
0.441 
0.381 
0.380 

R 

0.318 
0.283 
0.394 
0.838 
0.369 
0.410 
0.330 
0.354 
0.413 
0.391 
0.272 
0.416 
0.406 
0.380 
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Table 5.11 

Significant Multivariate Serial Correlation Coefficients for Coffee Series 

(a) Complete data set 

Lags = 1 2 34 5 6 78 9 10 11 12 13 14 15 16 17 18 19 20 R 
Period 

1 c c aa 0.602 
2 c b a 0.373 
3 c a 0.431 
4 c 0.416 
5 c 0.337 
6 c b a ba 0.471 
7 c a b b 0.371 
8 a a a aa 0.294 
9 c a 0.400 

10 b a 0.323 
11 c ab 0.354 
12 c a a 0.433 
13 c b a 0.464 
14 c a a 0.383 

Total 14 4 21 3 3 02 11002 1040111 

(b) With outliers removed 

Lags =123456789 10 11 12 13 14 15 16 17 18 19 20 
Period 

1c 
2ca 
3ca 
4caa 
5c 
6cc 
7cabb 
8baa 
9ba 

10 ba 
11 aa 
12 c 
13 cba 
14 ca 

Total 14 5211210000010020010 

(R = value of multivariate serial correlation coefficient at lag 1) 

R 

0.353 
0.377 
0.444 
0.376 
0.289 
0.352 
0.371 
0.330 
0.310 
0.323 
0.307 
0.423 
0.388 
0.358 
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Table 5.12 

Significant Multivariate Serial Correlation Coefficients for Sugar Series 

(a) Complete data set 

Lags =123456789 10 11 12 13 14 15 16 17 18 19 20 
Period 

1 c a b a 
2 c c c a a c a 
3 c 
4 b 
5 c 
6 c a b b a 
7 b a 
8 a a b b a 
9 

10 b 
11 b a a 
12 b a 
13 b a a a 
14 c a 

Total 13 4432201220110210000 

(b) With outliers removed 

Lags 123456789 10 11 12 13 14 15 16 17 18 19 20 
Period 

1bab 
2c 
3aaa 
4a 
5ba 
6b 
7baa 
8aabba 
9 

10 b 
11 b 
12 b 
13 a 
14 ca 

Total 13 0211102110010110000 

(R = value of multivariate serial correlation coefficient at lag 1) 

R 

0.313 
0.394 
0.357 
0.330 
0.385 
0.407 
0.319 
0.287 
0.227 
0.335 
0.342 
0.307 
0.332 
0.360 

R 

0.306 
0.322 
0.305 
0.298 
0.323 
0.346 
0.319 
0.287 
0.208 
0.335 
0.309 
0.337 
0.276 
0.360 
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Table 5.13 

Significant Multivariate Serial Correlation Coefficients for Rubber Series 

(a) Complete data set 

Lags 12 34 56 789 10 11 12 13 14 15 16 17 18 19 20 
Period 

Iba a 
2a 
3cc cc b aba 
4c b a 
5c 
6b 
7cb 
8c 
9b 

10 c b 
11 c b b 
12 
13 ca 
14 cb b 

Total 13 5 13 10 20100020011001 

(b) With outliers removed 

Lags =123456789 10 11 12 13 14 15 16 17 18 19 20 
Period 

1aa 
2b 
3caaa 
4c 
5b 
6b 
7ba 
8b 
9 

10 cab 
11 caa 
12 b 
13 ca" 
14 caaa 

Total 13 2121100121010100000 

(R = value of multivariate serial correlation coefficient at lag 1) 

* This coefficient was significant at the 6X level. 

R 

0.280 
0.262 
0.474 
0.362 
0.374 
0.333 
0.393 
0.338 
0.311 
0.405 
0.414 
0.256 
0.369 
0.391 

R 

0.271 
0.306 
0.426 
0.371 
0.315 
0.326 
0.327 
0.338 
0.285 
0.404 
0.383 
0.342 
0.369 
0.388 
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Table 5.14 

Count of significant (5%) multivariate serial correlation coefficients 

----- -------- 

-------- 
Cocoa 
-------- 

------ 

------ 

------- 
Coffee 
------- 

------- 

--- --- 

-------- 
Sugar 
-------- 

------ 

---=-- 

------ 
Rubber 
------ 

Lag 
-- 

CD 
------ 

WOR 
------ - 

CD 
--- 

WOR 
- 

- 
CD WOR 

-- 
CD 

------ 
WOR 

----- ---- 
1 

- 
13 

- 
13 

--- 
14 

------ 
14 

------- 
13 

----- 
13 13 

- 
13 

2 3 4 4 5 4 0 5 2 
3 2 3 2 2 4 2 1 1 
4 1 0 1 1 3 1 3 2 
5 2 0 3 1 2 1 1 1 
6 2 1 3 2 2 1 0 1 
7 5 2 0 1 0 0 2 0 
B 3 2 2 0 1 2 0 0 
9 2 2 1 0 2 1 1 1 

10 2 1 1 0 2 1 0 2 
11 2 0 0 0 0 0 0 1 
12 0 0 0 0 1 0 0' 0 
13 2 1 2 1 1 1 2 1 
14 1 0 1 0 0 0 0 0 
15 1 0 0 0 2 1 0 1 
16 1 0 4 2 1 1 1 0 
17 1 0 0 0 0 0 1 0 
1B 1 0 1 0 0 0 0 0 
19 0 0 1 1 0 0 0 0 
20 

-------- 
1 

-------- 
1 

-------- 
1 

------ 
0 

------- 
0 

------- 
0 

-------- 
1 

------ 
0 

---- 
Total 

------- 
45 

-------- 
30 

-------- 
41 

------ 
30 

------- 
38 

------- 
25 

-------- 
31 

------ 

-- 
26 

R 
-------- 

. 372 
-------- 

. 366 
-------- 

. 404 
------ 

. 357 
------- 

. 335 
------- 

. 309 
-------- 

. 354 
------ 

------ 
. 347 

------ 

R= average value of multivariate serial correlation coefficient at lag 1 

CD column : complete data set 
WOR column : with outliers removed 
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for brevity again we only considered O'Brien's statistic. The results 

appear in Tables 5.10 to 5.13. Table 5.14 gives a count of the total 

number of significant serial correlation coefficients at each lag, for 

lags i to 20 for each series. 

The most startling observation to note from Tables 5.10 to 5.14 is the 

number of significant multivariate serial correlation coefficients of lag 

1. Nearly all the coefficients are significant at the 5% level and many 

are significant at the 1% and the 0.1% level. The number of significant 

coefficients at lag 2,3 and 4 is also more than one would expect under the 

null hypothesis. Removing the outliers reduces the magnitude of many of 

the coefficients and thus the number that can be considered as 

significant. However, even with the anomalies removed, all but 3 of the 

56 coefficients at lag 1 day are significant at the 5% level and 32 are 

significant at the 0.1% level. Because of these extremely interesting and 

unexpected results we report the magnitude of the lag i coefficients in 

Tables 5.10 to 5.13 and the average of the coefficients for each series in 

Table 5.14. The average value of all of the coefficients at lag i day is 

0.366, which is reduced by removing the outliers to 0.345. 

There appears then to be very strong evidence of ' persistent 

multivariate serial correlation at lag i day. Recall that no evidence of 

any type of serial dependence was observed when each of the component 

univariate series were examined in Chapter 3. 

5.4 Summary of Chapter 5 

In this chapter we looked at the distribution of daily returns on four 

contracts of differing maturity for the same commodity. In the sugar and 

rubber series we found that the standard deviation of the returns 

gradually decreases as one considers contracts with delivery dates further 
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and further into the future. The cocoa and coffee series gave mixed 

results in this respect. 

In the multivariate study we found more outlying observations than 

expected from the earlier univariate analysis and the anomalies were of 

3 main types: (i) instances in which there is a simultaneous change in the 

variance of the returns; (ii) instances in which there is a single 

simultaneous large change in the contract prices; and (iii) instances in 

which one or two contract prices "get out of line" with the general price 

profile (lasting usually for only one day). Testing for multivariate 

normality and multivariate serial, correlation produced most unexpected 

results. Many periods showed evidence of multivariate non normality of a 

possibly complex nature and all periods yielded highly significant 

multivariate serial correlation coefficients of lag 1. 

Is it possible that some, for the moment unknown phenomenon, is giving 

rise to both these curious sets of results? We investigate this and other 

questions throughout the rest of this work. 

Footnotes for Chapter 5 

1. Schrock (1971) outlines theoretically, how by the use of spread 

positions, an invetstor can construct very low risk portfolios. 

2. It is not possible to carry out a formal test for the ratios of 

of variances using the F test as the returns are not independent. 

3. In this study we only compare adjacent contracts. 

4. See Kendall and Stuart p 395. 
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CHAPTER 6 

MULTIVARIATE SERIAL CORRELATION IN COMMODITY 

TIME SERIES: A DETAILED EXAMINATION 

In Chapter 5 we reported the discovery of persistent multivariate 

serial correlation in 4 dimensional sets of returns on contracts in the 

same futures markets with different delivery dates. As an exercise we 

also examined sets of returns on 2,3,5 and 6( and 7 and 8 in the case 

of rubber) contracts from the same futures market. The multivariate 

serial correlation coefficients of lag 1 were all highly significant. For 

brevity we do not report these results here, 

In this chapter we investigate in more detail the nature of the 

multivariate temporal dependence. The layout of this chapter is as 

follows. In section 6.1 we review the properties of O'Briens multivariate 

serial correlation coefficient (MVSC). In section 6.2 we briefly review 

canonical correlation analysis and in section 6.3 we show how the MVSC can 

be decomposed into separate canonical correlation coefficients. The study 

of up to 6 contract returns requires a different sampling design to that 

used in Chapter 5 and the new design is described in section 6.4. The 

results of the analysis are presented in section 6.5. The sample 

canonical vectors (explained later) are found to be extremely changable. 

An investigation into the sampling properties of canonical vectors is 

outlined in section 6.6. Attempts at stabilising sample canonical 

correlation vectors are reviewed in section 6.7 and the results of 

applying the procedures to the commodity series are given in section 6.8. 

A technique that produces grand average canonical vectors over the entire 

5 year period is outlined in section 6.9 and the results are given in 

section 6.10. Concluding remarks are made in section 6.11. 
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6.1 The properties of O'Brien's multivariate serial correlation 

coefficient 

We list the properties of O'Brien's (1980) multivariate serial 

correlation coefficient, R, defined in section 4.5: 

(i) 0< R2 <i 

(ii) In the univariate case, R2 reduces to the coefficient of 

determination. 

(iii) R2 has the usual properties of explained variance 

interpretation. 

(iv R2 can be expressed as the geometric mean of the coefficients 

of non determination of various linear combinations of the returns: 

" 
1- R2 = TT tl - a, )ýs""' 

whereJ1, (i=1,2,.., p) are the canonical correlation coefficient between 

returns on day t and day t-1. 

From property (iv) we see that the multivariate serial correlation 

coefficient is a simple function of the product of the canonical 

correlation coefficients. The discovery of significant multivariate 

serial correlation coefficients implies then that one or more of the 

canonical correlation coefficients is significantly different from zero. 

Associated with each canonical correlation coefficient is a linear 

combination of returns. The linear combination is obtained using the 

elements of a canonical variate vector. A study of these canonical 

variates could prove quite interesting. Before we consider the results 
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of our empirical study, we briefly review canonical analysis. 

6.2 Canonical correlation analysis: a synopsis 

Canonical correlation analysis involves partitioning a collection of 

variables, x, into two sets, an x, , set and an X2 set. The object 

is to find linear combinations T, m aTX I and rz = bT X2 such 

that rs and q2 have the largest possible correlation. Such linear 

combinations can give insight into relationships between the two sets of 

variables. 

Formally: consider a random variable x of dimension ((p, +p2)xi) 

partitioned as follows: 

Xs 

X a 

X2 

where x, is (ptxi) and X2 is (pzxi), x is normally distributed: 

xN (ý ' V) 

Vis V1'2 

with =V 
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We wish to find vectors a (p, xl) and b (p2xl) such that subject to 

the constraints: 

a1 aT Vil 

and bT V22 b1 

we maximize a aT V12 b 

It is easy to show that X and a are the eigenvalues and eigenvectors 

respectively of the matrix A where: 

A= V- iii V12 V-122 V21 

with b given by b V-111 V12 a/ a 

If the rank of V12 is k(( min(pi, p2)) so is that of A and there will 

be k distinct sets of a , a, b. It is usual to consider 

eigenvalues ranked so that XL>X2>... >ak . The square roots of the ) 

, i=1,.. k are known as the canonical correlation coefficients and the 

associated vectors at, b, ,i=1,.. k the canonical coefficient 

vectors. It is easy to show that the correlation coefficient between 

aTixi and bT, x2 is IT,. Interest is usually centred on that 

combination aT1xi, bT1x2 that are maximally correlated. 

In an empirical study we use the classical estimates of Vil, V12 etc 

and obtain sample estimates : ä,, at, b:, i=1,... k. Kshirsagor (1972) 

has derived the sampling distribution of these estimates under the null 

hypothesis of no correlation between x, and x2 (ie V, z = 0) but we 

leave discussion of this subject to section 6.6. 
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However, it is possible to test the hypothesis that V12 =0 using the 

classic likelihood ratio statistic, L: 

a. 
L II - Al = TT (1-ä: ) 

which has Wilk's A(p,, n-1-p2, p2) distribution. Of. course we can use 

Bartlett's approximation and compute the U statistic given by: 

U= -t m-1-( PI + pz +1) /2) E lag( 1-a, ), 

which under the null hypothesis of X, =0 for all i=1,2,.. k, is 

asymptotically %2(p, pz) distributed. 

6.3 Decomposing the multivariate serial correlation coefficient into 

canonical correlations 

Using the notation of section 6.2 we have a sequence of returns 

xt, t2 11 2,. .. n of dimension (pxl). We consider the vector 

yt such that 

Lt 

Xe 

Xe-t 

t22,3, .. n 

Assume that yt is normally distributed' with 

Xc E. c Vc. t Vc. c -i 

Y. t = ^' N 

Xc-º E-t-1 Vc-i. e Vc-i. e-i 
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Clearly the canonical correlations, IT, between xt and xt_, are 

obtained from the matrix A: 

A= V-lt. t Vc. e-i V'' 
-1, e-s Vt-i. t 

The vectors at are the associated eigenvectors of A and the vectors 

bt are obtained using: 

bý = V-lt, t Vt. t-i a, /, Xl 

The multivariate serial correlation coefficient, R is thus given by: 

" 
1- R2 = TI t1-a, ) """' 

i-I 

In section 6.5 we report R, along with the associated level of 

significance, the maximum value of j and corresponding canonical 

coefficients. 

6.4 Sampling design for canonical correlation study 

In chapter 5 we examined the logged daily returns on four contracts 

from the same futures market. As noted earlier on in this chapter we also 

examined 2,3,5,6,7 and 8 dimensional sets of returns for various 

periods. In the desire to discover the exact nature of the multivariate 

serial correlation of lag 1 that seems to be present we will need to 

examine the values of X, a, and bs for each period. It is 

possible that the discovery of some sort of pattern in the vectors 
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a, and bi could lead to the development of a successful trading rule. 

As mentioned before interest is usually centred on the coefficients at, 

b, that are maximally correlated. It is desirable therefore to have 

estimates of a,, at and bi that are as accurate as possible. For 

accurate estimates we will need large samples. 

There is also the problem of the dimensionalty of the set of returns. 

How many contracts should we simultaneously examine? It would be 

desirable to examine as many contracts as are traded. Achieving these 

two objectives (of having large samples and studying many contract 

returns) simultaneously is, however, not possible. 

As an example it is possible to monitor the same 2 contracts from the 

rubber market for up to 21 months. With 8 contracts of rubber the maximum 

period one can study all 8 returns is only 3 months. There are also the 

arguments outlined in section 3.6.2 on the usefulness of looking at 

returns on contracts over very long periods. 

Taking all these considerations into account it was decided to limit 

the number of contracts studied to 6. We decided to use the 6 longest 

running contracts. The period of examination ends when a contract expires 

(matures). Note that the 6 contracts used in each period are the 6 

contracts being examined for univariate serial correlation in section 

3.6.2. A diagramatic illustration of the sampling design appears in 

Fig. 3.10. 

By using this sampling design the length of each set of 6 returns 

will vary for each series. The cocoa'series for example are of length 2 

months, 3 months, 3 months, 2 months etc and there are 24 periods. In each 

period the first component of the returns will be the returns on the 

contract that matures at the end of that period. The second component is 

the returns on the contract that will be the next to mature and so on. 

Thus as we proceed from period to period we will be considering a6 

133 



dimensional vector that will represent the returns on the 6 longest 

running futures contracts traded in a given futures market. Throughout 

the rest of this chapter we use daily logged returns with complete data 

sets. 

6.5 A Discussion of the multivariate serial correlation and the 

canonical correlation coefficients 

The multivariate serial correlation coefficients at lag I and 

associated P value for each set of returns foreach period are given in 

Tables 6.1a to 6.1d. Also given in the tables is the root of the maximum 

eigenvalues , 
f.. 

"): the correlation coefficient associated with that pair 

of linear combinations that are maximally correlated. 

The most striking observation from the tables is the number of 

significant R values. All but 12 of the 96 R values are significant at 

the 5% level and many are significant at the 1% and the 0.1% level. These 

results confirm the statements made at the beginning of the chapter. 

There is persistent multivariate serial correlation at a lag of one day. 

It is interesting to note that the magnitudes of the R values are fairly 

constant and very similar for each set of returns. The averages and 

standard deviations of the R values also appear in the tables. 

Recall that one can interpret the value of R2 in the same way as one 

interprets the coefficient of determination in classical regression. The 

average value of R2 for the cocoa series, for example is R2 = 0.23. This 

implies tht 23X of the variation in the returns on any given day can be 

explained by the returns on the previous day. This is of course only when 

we are considering all the contracts in a given futures market. There 

is no such dependence evident in the individual contract returns. 

Consider now the values of T_. 
� given in Tables 6.1a to 
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TAhta A_1a 

= O'Briens mulitivariate serial 
=P value associated with R 

Multivariate serial correlation coefficients and maximum canonical 
correlation coefficents for cocoa and coffee series 

Cocoa series 

Period 
- 

R 
------- 

P(R) 
--------- 

OF/ 
Amax 

------- ------ 
1 

- 
. 401 . 041 . 571 

2 . 593 . 000 . 822 
3 . 408 . 441 . 623 
4 . 384 . 034 . 608 
5 . 520 . 000 . 733 
6 . 480 . 065 . 770 
7 . 505 . 004 . 745 
8 . 488 . 017 . 671 
9 . 401 . 011 . 626 

10 . 459 . 000 . 762 
11 . 537 . 002 . 752 
12 . 477 . 057 . 710 
13 . 572 . 000 . 843 
14 . 401 . 013 . 667 
15 . 510 . 000 . 705 
16 . 574 . 000 . 840 
17 . 496 . 011 . 683 
18 . 537 . 001 . 771 
19 . 445 . 000 . 678 
20 . 510 . 000 . 673 
21 . 518 . 009 . 750 
22 . 422 . 274 . 600 
23 . 540 . 001 . 729 
24 . 429 . 002 . 673 

average: . 484 . 709 

Tahia A_th 

Coffee series 

Period 
- 

R 
-------- 

P(R) 
-------- 

Fl... 

------- ------ 
1 . 473 . 000 . 721 
2 . 703 . 000 . 927 
3 . 4B4 . 029 . 700 
4 . 500 . 009 . 780 
5 . 579 . 000 . 826 
6 . 482 . 024 . 718 
7 . 556 . 001 . 781 
B . 069 . 000 . 909 
9 . 544 . 000 . 703 

10 . 534 . 001 . 770 
11 . 543 . 001 . 752 
12 . 484 . 022 . 752 
13 . 560 . 000 . 832 
14 . 509 . 016 . 7B9 
15 . 457 . 047 . 671 
16 . 462 . 063 . 691 
17 . 451 . 162 . 594 
18 . 553 . 000 . 755 
19 . 440 . 228 . 698 
20 . 435 . 184 . 640 
21 . 477 . 031 . 728 
22 . 451 . 104 . 607 
23 . 438 . 201 . 629 
24 . 485 . 040 . 675 
25 . 537 . 002 . 770 
26 . 418 . 303 . 646 
27 . 545 . 001 . 792 
28 . 487 . 008 . 755 
29 . 825 . 011 . 985 

average: . 499 . 744 

R 
P(R) rm.. 

correlation coefficent at lag 1 

= maximum correlation between the two linear 
combinations aT xt and bT xt_1 
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Table 6.1c Table b. 1d 

Multivariate serial correlation coefficients and maximum canonical 
correlation coefficients for the sugar and rubber series 

Sugar series 

Period 
- 

R 
-------- 

P(R) 
--------- 

Fm. 
� 

------- ------- 
1 . 451 . 001 . 670 
2 . 484 . 000 . 735 
3 . 540 . 000 . 770 
4 . 444 . 202 . 694 
5 . 396 . 015 . 594 
6 . 524 . 006 . 730 
7 . 412 . 003 . 603 
8 . 512 . 004 . 764 
9 . 433 . 200 . 660 

10 . 488 . 000 . 783 
11 . 495 . 024 . 746 
12 . 386 . 035 . 566 
13 . 420 . 294 . 679 
14 . 478 . 041 . 781 
15 . 397 . 022 . 622 
16 . 471 . 073 . 723 
17 . 481 . 000 . 727 
18 . 469 . 045 . 746 
19 . 481 . 047 . 680 
20 . 436 . 001 . 641 
21 . 495- . 033 . 774 
22 . 404 . 007 . 645 
23 . 508 . 005 . 756 
24 - - - 

Rubber series 

Period R 
-------- 

P(R) 
-------- 

'.. 
x 

------- ------ 
1 . 447 . 002 . 640 
2 . 394 . 018 . 649 
3 . 385 . 025 . 560 
4 . 445 . 001 . 670 
5 . 439 . 001 . 722 
6 . 436 . 000 . 605 
7 . 419 . 000 . 712 
8 . 422 . 005 . 618 
9 . 488 . 000 . 651 

10 . 460 . 000 . 613 
11 . 412 . 004 . 606 
12 . 453 . 000 . 708 
13 . 431 . 002 . 596 
14 . 468 . 000 . 715 
15 . 439 . 000 . 665 
16 . 460 . 000 . 606 
17 . 434 . 001 . 684 
18 . 473 . 000 . 682 
19 . 427 . 001 . 665 
20 . 691 . 610 . 879 

average: . 451 . 662 

average: . 461 . 700 

R= O'Briens mulitivariate serial correlation coefficent at lag I 
P(R) =P value associated with R 
Lax = maximum correlation between the two linear 

combinations aT xt and bT xt_i 
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Table 6.2 

Estimates of a, b components for the 24 periods of cocoa returns 

Period 

1a 
b 

2a 
b 

3a 
b 

4a 
b 

5a 
b 

6a 
b 

7a 
b 

Ba 
b 

9a 
b 

10 a 
b 

11 a 
b 

12 a 
b 

Compo 
------------------ 

123 
---------------------- 
-123.0 -123.0 -123.0 

6.8 25.9 -148.1 
---------------------- 

19.4 -46.6 80.6 
-46.6 46.7 -119.8 

---------------------- 
10.4 -99.2 309.0 
2.7 144.4 -381.5 

---------------------- 
37.4 41.7 -222.8 
56.0 -101.0 129.3 

--------------------- 
-27.6 -140.1 109.9 
-70.3 182.9 -73.4 

---------------------- 
56.3 -93.6 30.7 

0.9 50.4 -92.8 
---------------------- 

6.2 -55.6 -119.4 
-18.8 -44.0 318.0 

------------ ---------- 
-17.2 73.5 -136.3 
-51.4 39.0 203.5 

---------------------- 
-31.7 219.9 -218.3 
-19.4 129.6 53.1 

---------------------- 
-44.1 242.7 -205.6 
-35.6 -46.7 106.9 

---------------------- 
-5.1 59.9 -90.0 

9.7 -22.5 -10.4 
---------------------- 
-46.1 ! 93.6 132.1 

20.8 -74.9 -126.7 
---------------------- 

cents 

4 

-123.0 
269.5 

114.4 
-72.0 

-195.3 
195.1 

145.9 
-190.5 

-178.1 
207.1 

-63.1 
6.6 

293.1 
-269.9 

-6.6 
-93.1 

297.1 
-268.9 

-5.4 
-24.7 

18.8 
-100.2 

-212.1 
251.3 

5 

-123.0 
-17.7 

-180.4 
149.6 

-157.9 
168.8 

-63.1 
164.9 

257.1 

-288.8 

221.2 
-192.8 

-98.5 
-54.9 

158.4 
-185.5 

-316.6 
266.7 

154.5 
-148.0 

46.7 
-22.2 

-44.1 
-78.6 

6 

-123.0 
-49.8 

28.1 
82.4 

83.0 
-125.7 

106.4 
-54.5 

4.7 
3.0 

-147.0 
229.6 

-17.7 
32.6 

-76.0 
101.3 

51.8 
-160.3 

-129.9 
151.1 

-22.0 
156.5 

55.3 
-15.6 

length 
of 

vector 

678.9 
518.2 

469.4 
519.2 

854.8 
1018.2 

617.4 
696.2 

717.6 
825.5 

611.8 
573.2 

590.0 
738.3 

468.1 
673.9 

1135.4 
898.0 

782.3 
513.0 

242.4 
321.5 

583.2 
567.8 

sum 
of 

camps. 

19.9 
-17.5 

15.3 
38.3 

-50.1 
3.8 

-45.5 
-4.3 

25.9 
-39.5 

4.6 
2.0 

8.0 
-37.0 

-4.3 
13.7 

2.2 
0.8 

12.1 
3.0 

8.4 
10.9 

-21.3 
-23.8 
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Table 6.2 continued 

Period 12 
----------------------- 

13 a 12.4 29.5 
b 30.8 -207.9 

----------------------- 
14 a -10.0 -29.3 

b -25.2 183.3 
----------------------- 

15 a -11.8 82.1 
b 16.6 -61.3 

----------------------- 
16 a -56.1 75.5 

b -25.6 62.4 
----------------------- 

17 a 32.9 5.6 
b -130.0 24.8 

----------------------- 
18 a 3.6 -241.0 

b 170.1 49.7 
----------------------- 

19 a 7.3 182.5 
b 84.2 -346.4 

----------------------- 
20 a 54.4 -75.9 

b -7.4 93.1 
----------------------- 
21 a_ -33.3 281.0 

b 67.8 -161.4 
----------------------- 

22. a 47.2 -269.7 
b 7.9 179.2 

----------------------- 
23 a_ 3.1 -30.0 S- -66.1 177.8 

------ ---------------- 
24 a 21.3 303.4 

S" 39.5 -353.8 
----------------------- 

Camp at 

3 

-36.2 
222.0 

255.7 
-339.8 

21.6 
-30.3 

-46.4 
-98.2 

-306.7 
159.3 

256.8 
-103.9 

-444.3 
534.0 

247.7 
-144.4 

-220.4 
-23.8 

377.4 
-386.6 

-140.4 
-22.5 

-258.2 
606.8 

tents 

4 

59.4 
-145.4 

-114.1 
149.9 

-201.5 
215.4 

8.5 
-8.7 

-29.4 
155.6 

323.4 
-62.0 

339.0 

-459.9 

-383.3 
276.5 

-229L9 
387.1 

-37.1 
18.2 

222.8 
-238.7 

-106.7 
-377.6 

-------------- 
56 

-------------- 
-73.5 -6.4 

61.9 48.9 
-------------- 

-70.3 -21.9 
54.0 -10.5 

-------------- 
-60.5 176.9 

22.9 -176.1 
-------------- 
-121.4 133.0 

241.0 -188.7 
-------------- 

406.2 -72.2 
-307.8 82.1 
-------------- 
-240.6 -65.4 

-86.6 18.8 
-------------- 
-364.9 275.4 

317.9 -148.9 
-------------- 

272.2 -108.7 
-288.3 61.1 
-------------- 
405.6 -170.1 

-310.8 23.5 
-------------- 

-63.8 -35.3 
121.2 38.3 

-------------- 
195.9 -272.2 
38.9 70.1 

-------------- 
-132.5 167.1 

208.9 -105.2 
-------------- 

length 
of 

vector 

217.4 
717.0 

501.3 
762.8 

554.5 
522.7 

440.8 
624.5 

835.1 
859.5 

1130.7 
491.2 

1613.4 
1891.4 

1142.1 
870.8 

1340.3 
994.3 

830.5 
751.3 

864.4 
614.3 

989.4 
1691.7 

sum 
of 

comps. 

-14.8 
10.3 

10.1 
11.7 

6.9 
-12.8 

-6.9 
-17.9 

36.3 
-15.9 

36.8 
-13.9 

-4.9 
-19.1 

6.3 
-9.4 

32.9 
2.6 

18.8 
-21.9 

-20.9 
-40.5 

-5.7 
18.6 
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6.1d. Not surprisingly the Xnax values are larger than the 

corresponding R values. As an example the average ff.. 
� value 

for the cocoa series is 0.709. Squaring this value we obtain 0.503. This 

implies then that it is possible to find a linear comination of returns on 

any given day, bT ! Lt-i, that will explain about 50X of the 

variation of another linear combination of returns on the next day, 

aT xt-,. These results are very surprising. How can there by such 

temporal dependence in the returns and what is causing it? 

Some light may be cast on these questions by examining the vectors ä 

and b3 the canonical coefficients. In Table 6.2 we list the estimates 

of a and b for each period of the cocoa series. 

There is a tremendous variability in the magnitude of the estimates 

of the elements of the vectors a and b and it is very difficult to 

find any consistent pattern. It is possible, however, to make a number of 

general remarks: 

(i) The magnitude of the first elements of ä and b 

(Ti and b, ) are invariably smaller than the magnitude of the 

remaining elements (a2 to ä6 and b2 to b6). 

(ii) Elements with the maximum absolute values tend to be in the 

middle of the vectors. 

(iii) In those situations in which a particular element of a (say) 

is large and positive, the corresponding element of b is 

usually large 

(iv) Following on 

corresponding 

then they are 

The frequency 

corresponding 

Table 6.2a. 

and negative. 

From point (iii) we note that the signs of 

elements of a and b are different more often 

the same, except that is for the first elements. 

of these situations in which the signs of the 

elements of ä and 6 are different is given in 
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Frequency of opposite signs of corresponding elements of a 
and F. 

----------------------------------------------------- 
Elements: 123456 
----------------------------------------------------- 
Observed Frequency 8 19 20 21 21 21 
----------------------------------------------------- 
Expected Frequency 12 12 12 12 12 12 
----------------------------------------------------- 

Also given in Table 6.2a are the expected frequencies of 

opposite signs if there were no particular pattern in the signs 

of the elements. 

(v) Column 9 of Table 6.2 gives the "lengths" of the vectors2 ä 

and b. These lengths vary considerably from period to 

period. 

(vi) Column 10 of Table 6.2 gives the sums of the elements of each 

vector. These sums seem remarkably close to zero. 

(vii) Examining the sequence of signs of the elements of a (say) 

in the order a,, äz,.., ä`, we notice something very interesting. 

The signs are certainly not random. There is an excess of +/- 

and -/+ pairs. With 6 elements there are 5 contiguous + and or 

- sign pairs to consider. With 24 periods we have 24 x5= 120 

possible pairs. If the elements of a were random we would 

expect 60 +/- and -/+ pairs. The observed number is 87 with 

only 33 +/+ and -/- pairs. There is a similar excess of +/- 

and -/+ sequences in the b vectors. 

The estimates ä and b have been computed for all periods of he 

the coffee, sugar and rubber series and the general remarks made above 

apply to all the series. For brevity we do not report the results here. 

Although the above general observations are extremely interesting the 
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highly changable values of the elements of the a and b vectors 

make it very difficult to come to any definite conclusions regarding the 

nature of the overall MV serial correlation present in the series. We 

pose the question: is the instability of the ä and b vectors caused by 

the underlying population values a and b changing? Or is the 

instability a characteristic of the estimation procedure? If the 

population values of a and b are fixed, two possible reasons for the 

observed instablity are suggested: 

(i) departure from multivariate normality peculiar to these series, 

or 

(ii) possibly ill - conditioned matrices resulting from highly 

collinear- data. 

Obviously we hope that the underlying population a and b vectors 

are fairly constant and we need to investigate techniques that will 

estimate them more accurately. Before we address this problem however it 

was considered instructive to briefly review the little theoretical work 

that has been carried out on the sampling distribution of ä, ä and b. 

6.6 The sampling distribution of canonical correlations and canonical 

coefficients. Some simulation results 

We consider only the situation in which p, a p2. V is the population 

matrix of the partitioned vector XT (XT, a xT2 ) and S is the 

sample estimate of Vs 

Vii V12 S11 S12 

VS  

V21 V22 621 622 
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6.6.1 Theoretical sampling distribution of a, a, b 

Kshirsagar (1972) shows that the canonical correlations and canonical 

vectors can be obtained by considering the matrices D and F given by: 

S12 S-122 S21 2, DF DT 

in which F is diagonal with the eigenvalues (ordered) ai>... >aP 

corresponding to the squared canonical correlations. The columns of D'1 

are the canonical vectors a, S. Under the null situation of no 

correlation between x, and x2 Cl. V  0), Kshirsagar has dervied the 

distribution of X , to be as follows: 

irPis r(ýl. ( 1- äs lcý-ýP-sýis 
' s-s 

j -X, (V(pll2 l(n-p) 
TT I a! - Äj % dXt 

1> 

in which n= sample size and 

q(n) Cn+1-i 

2 

The distribution of the canonical vectors is given by: 

I" lj. exp(-0.5. tr[ V-1 D DT 7) 

": V(n) ID-11In«"> Zn" If, * IVI 

Both these expressions are extremely complex and since they apply only to 

the null situation have limited usefulness. As Kshirsagar points out the 
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distribution in the non null case are mathematically intractable. In 

order to gain some insight into the sampling properties of ä, a and "b 

it was decided therefore to carry out a'simulation study. 

6.6.2 Simulation study 

Outlined briefly in 

extensive simulation study 

The estimates of X, a and 

generated from a multiv 

Simulations were carried 

this section are some of the results of an 

of the sampling distribution of X, a and b. 

b were obtained from samples of size, n, 

ariate normal distribution of dimension 2p. 

out using p=2,3,4,5 and 6 dimensional 

vectors and many different variance/covariance structures. For simplicity 

of exposition we consider here only the results of simulations with p=2 

dimensions and 4 different covariance structures. It is easy to show that 

in the study of canonical correlation analysis (see section 6.9.2) that 

one need only consider the associated partitioned correlation matrixo 

R� R12 

R 

R21 R22 

With each Ri,, being (pxp). In the special situations we are 

interested we obviously set Rica R22 with 

1a 

Rii   R22   

a1 

Four sets of simulations of samples of size n were carried out using a  
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0.759 0.9,0.95 and 0.99. These four values of a were chosen to 

illustrate the effect of various degrees of collinearity in the data. 

The choice of values for R12 was much more difficult. Examination of 

many of the associated S12 matrices used in calculating the results of 

section 6.5 shows that all the elements of R, 2 are typically small. Many 

different R12 matrices were tried and for brevity we only report here the 

results using the matrix: 

0.2 0.1 

R12 = 

0.1 0.0 

Two measures of interest associated with the estimates were computed : the 

bias H(. ) and the root mean square error, RMSE(. ) defined as follows: 

B(ä) 

B(ä, ) 

RMSE(X) _ 

RMSE(a, ) _ 

E (ä(, ß) - a) /m 
i-, 

E (ä, c� - a. ) /m 
i-a 

E (a<� - a)21m 

w 

}r (ai1> -a )2Im 
! -i 

where m= number of samples of size n, i. e. the number of simulations, 

X= maximum population eigenvalue 

a(� =j th value of the maximum sample eigenvalue, j=1,.. 1m 

at =i th element of population vector a associated with maximum 

eigenvalue, 

a 
c�= j th estimate of ail 
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A We define B(bi) and RMSE(b. ) similarly. For comparability with the 

empirical study of section 6.5 the sample size n was set to 50. 

Thus m= 500 samples of size 50 were generated using the routine 

described in section 4.7. The estimates Xc,,, a, c, > and bsc, ) were computed 

for each sample j=1, to 500. The biases and root mean square erros 

appear in Table 6.3. 

Referring to Table 6.3 we note that the population values of A, a,, 

and b,, increase as the value of a increases. With regard to the sampling 

properties of X, ä and b note that the bias and the root mean square 

of each statistic also increases with a. As an example in the very 

extreme case of a=0.99 when at = 5.19 the estimated bias in a, is 0.869 

and the RMSE is 2.493. These values are relatively large and thus it is 

not surprising that the estimated a and b vectors in the empirical 

study in section 6.5 exhibited such marked variability. 

Even more interesting, however, is the joint distribution of the 

individual components of the a and b vectors. As an illustrative 

example, the scatter plats of a,, against ä2 obtained from the first 60 

simultations appear in Figs. 6.1 to 6.4. The corresponding population 

values : a, and a2 are denoted in each diagram by a cross. 

When a 0.75, a,, and 2 are distributed (not uniformly) on an 

ellipse with negative sloping major axis, as a increases, the elliptical 

distribution collapses into a narrow distribution around a downward 

sloping straight line. The diagrams illustrate graphically the increasing 

variability of each component as a increases. The distribution of b is 

similar. 

Although here we have only reported the results of a simple 2 

dimensional study, examples with other variance\covariance structures and 

higher dimensions have been examined. In all cases one obtains a and 
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Table 6.3 1 

Results of simulation study on the canonical correlation estimates 
with population correlation matrix R 

1.0 a .2 .1 

a 1.0 .1 R= ' 
.2 .1 1.0 a 

.1 . 0' a 1.0 

a 
- ------- 

0.75 
----------- 

0.90 
--- 

0.95 0.99 
----------- 

a . 046 
------- 

. 083 
----------- 

. 141 
------------ 

0.579 
a, 1.244 1.794 2.437 5.19 

Population a2 -. 364 -. 992 -1.666 -4.45 
values b, 1.244 1.794 2.437 5.19 

---------- 
b2 

------- 
-. 364 

----------- 
-. 992 

-------- 
-1.666 -4.45 

-- 
a . 069 

-- 
. 079 

----------- 
. 082 

------------ 
. 0386 

a, -. 326 -. 464 -. 556 -. 8685 
Biases a2 . 051 . 235 . 315 . 7588 

b, -. 343 -. 471 -. 650 -. 9162 

------------ 
b2 

------- 
. 062 

----------- 
. 267 

---- 
. 451 . 8016 

a . 097 
------ 
. 114 

----------- 
. 123 

------------ 
. 0847 

al . 732 1.128 1.519 2.493 
Root mean a2 . 870 1.291 1.727 2.676 

square b, . 763 1.113 1.596 2.739 
errors 

------------ 
b2 

------- 
. 906 

----------- 
1.292 

---------- 
1.782 

--------- 
2.911 

----------- 

(Statistics estimated on 500 simulations of samples of size 50) 
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ä 
2 

Fig 6 .1 Scatter plot-of 60 estimates of ä: against a= with a-0.75 

A 

a 

Fig 6.2 Scatter plot of 60 estimates of a, aCainst ä- with a-0.90 



a_ 

ä2 

Fig 6.3 Scatter plot of 60 estimates of ä, against = with a-0.93 

i2 

Fig 6.4 Scatter plot of 60 estimates of ä, against ä2 with a-0.99 



b vectors distributed on hyperellipses of varying degrees of 

eccentricity. The more highly correlated the data, the more eccentric the 

ellipses. In the cases of extreme collinearity one obtains almost perfect 

negative correlation between some of the individual components. 

6.7 Stabilization of the a and b vectors 

In the empirical study of section 6.5 we report highly variable a 

and S vectors. In the simulation study of section 6.6 we discover that 

even when the underlying population vectors, !. and b, are constant the 

t . 
and b estimates exhibit a very high degree of instability. It is 

possible then, that in our commodity time series the true values of a 

and b are constant but the estimation procedure is giving spurious 

results? 

In the desire to estimate the true values of a and b in this 

section we investigate two methods that attempt to produce more stable 

estimates. 

6.7.1 A Canonical Ridge Model 

Recall that in the computation of ä, ä and 1, the inverses of the 

matrices Si, and S22 are used. Vinod (1976) points out that when the 

variables are highly correlated these matrices tend to be ill-conditioned 

and their inverses unreliable and very sensitive to small changes in the 

data. Similar problems of multicollinearity in classical ordinary least 

squares regression are often encountered. Hoerl and Kennard (1970), in a 

now famous article, developed a technique known as ridge regression, in 

which a small arbitrary constant k is added to the diagonals of the near 

singular (XTX) matrix. Hoerl and Kennard proved the existence of a ridge 
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estimate that has a lower mean squared error and is "shorter 13. The 

problem still remains in finding that special value of k that will yield 

the optimal estimate. Hoerl and Kennard recommend plotting the value of 

each estimate against k for k=0 to 1.0 and selecting that k which yields 

"meaningful" values. The literature on ridge regression is extensive. 

Vinod (1976) extends the idea of ridge regression to canonical 

correlation analysis in which we have two near singular matrices; Si1 and 

S22. The recommended procedure is to add small positive constants, k, and 

k2 to the diagonals of Sys and Sze before inversion. The sample problem 

thus becomes : 

subject to the constraints 

a"T (Si, + ki Da* 2 b"T (522 + k2 1)b" =1 

maximize a" a a*T S12 be 

The ridge estimates, X' and a* are obtained by finding the eigenvalues 

and eigenvectors of 

Aý = (S ii + ki I)-* S12 (522 + k2 I)-1 S21 

and 6' _ (Si, + ki I)-1 S12 a"/ a" 

It can be shown that the canonical ridge estimates a" are less than the 

classical estimates ä, and that the lengths of the a", b" vectors are 

less than ä and E. No formal proof of an existence theorem for 

a", a" and b" has yet been derived. 

As Vinod points out it should be possible to plot a ridge trace of 
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the components of a" and b" for various combinations of k, and 

k2. Instead of using a ridge trace however, Vinod considered three 

heuristic indicators to guide the user to the optimal combination of ki 

and k2. These indicators are averages and average sums of squares of 

estimates' and Vinod notes that the addition of values as small as 0.05 

stabilize markedly the estimates of a and b. 

6.7.2 A Normalized Vector Model 

One major source of difficulty in identifying any pattern may be that 

the lengths of the ä and b vectors vary considerably from period to 

period. One way of removing this source of confusion would be to 

"normalize" the vectors a and b by multiplying all components by 

1/äTä and 1/ýbTb respectively. 

It is easy to show that normalizing the vectors in this way does not 

alter the canonical corelations, R. Only the variance of the resulting 

canonical variates 3Tx and 'ITx are affected. For the moment 

we are not interested in the canonical variates. In this way then it 

should be possible to compare the relative magnitudes of each of the 

elements of a and b for each period of estimation. For convenience 

and practical reasons that become obvious in Chapter 7 we will actually 

normalize the vectors ä and b by multiplying by 1/ E lad and 

1/ E 11,1 respectively. 

This alternative approach to the problem of unstable estimates is 

considerably easier to carry out than the ridge technique. In the 

following section we report on a simulation study comparing the 

normalization and ridge techniques. 
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6.7.3 Simulation study of Ridge verses Normalization approach to 

canonical coefficient analysis 

In section 6.7.2 we note that both in the empirical study of 6.5 and 

the simulation study of section 6.6.2 the lengths of the ä and b 

vectors varied considerably. Since interest is mainly on the relative 

magnitudes and signs of each of the vectors a and b we will 

henceforth consider only normalized vectors (both sample estimates and 

population values). 

Below we outline the simulation experiment. 

1. For, convenience and continuity we set the population 

variance/covariance structure to that described in section 6.6.2. The 

same four values of a were chosen. 

2. The constants'ki and k2. Vinod tried adding various values of k, tc 

Si1 and, k2 to S22. For brevity we report here the reults of adding the 

same constant k= ki = k2 to both Si, and 522 . Also for brevity we only 

report the results for k=0 (simple normalized classical procedure), k= 

0.001,0.01,0.05 and 0.1. These were some of the values suggested by 

Vinod. 

3. Samples of size n= 50 were generated and for each value of k, the 

ridge estimates were calculated using the expressions given in section 

6.7.1. 

4. The a" and b" estimates were normalized so that 

=1 E ýa". ý =s Ea Ib"il 
i-1 - 

5. The deviation of each component of a" and b" from the appropriate 
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normalized population component was computed. 

6. This process was repeated for m= 500 samples. Different sets of 500 

samples were generated for each value of a and for each value of k. 

7. The estimated bias and root mean square error of these 

ridge-normalized estimates are given in Tables 6.4 a-d. These statistics 

were calculated using identical expressions to the ones given in section 

6.7.2 but with normalized vectors in place of unnormalized vectors. Also 

given in Tables 6.4 a-d are the average lengths and standard deviations of 

the unnormalized vectors. 

6.7.4 Conclusions on study of Ridge vs. Normalization techniques 

Consider Tables 6.4 a-d. First we note that, as expected, the lengths 

and standard deviations of the raw un-normalized vectors are reduced by 

the addition of a constant, k, to the diagonals of Si, and S12. This 

reduction is much more marked in the very highly collinear populations 

when a=0.99. 

Secondly, note that in all cases the classical estimates of X (in 

which k= 0) are positively biased. The addition of small k values 

reduced this bias. The effect of k on the RMSE of the ' estimates is 

different for different values of a. In the situations in which the 

population value of a is small (i. e. when a 0.75,0.90,0.95) there is 

a marked reduction in the RMSE with the addition of increasingly large k 

values. In the situation in which a is large (a 0.99), the RMSE of ä 

decreases initially then increases rapidly. 

Thirdly consider the estimates of a and b. The picture is a very 

complex one. We consider first the bias of the a" vector. The 

a", component is always negatively biased and the a"2 component 

always positively biased. With all values of a, adding increasingly 
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T. 2h1e A_dn 

Simulation study of Ridge verses Normalization approach to 
canonical correlation analysis 

Population values: a=0.750 X=0.0459 aT = bT = (0.773, -0.227) 

------------- 
k 

------------- 

---------- 
. 000 

---------- 

----------- 
. 001 

----------- 

----------- 
. 01 

------- 

----------- 
. 05 

-------- 
0.10 

a . 071 . 073 
---- 

. 065 
----------- 

. 048 
-------- 

. 035 
as -. 244 -. 261 -. 265 -. 245 -. 233 

Biases a2 . 159 . 173 . 184 . 198 . 211 
bl. -. 264 -. 283 -. 260 -. 245 -. 209 
b2 

------------ 
. 212 

---------- 
. 197 

----------- 
. 156 

- 
. 171 . 227 

- 
x . 100 . 100 

---------- 
. 092 

----------- 
. 075 

-------- 
. 060 

at . 410 . 417 . 430 . 421 . 400 
RMSE a2 . 499 . 517 . 528 . 518 . 530 

bi . 424 . 447 . 426 . 413 . 385 
b2 

------------- 
. 534 

---------- 
. 537 

----------- 
. 500 

------ 
. 512 . 523 

L 1.845 1.880 
----- 

1.816 
----------- 

1.647 
-------- 

1.545 
S(L) 

------------- 
1.978 

---------- 
2.018 

----------- 
1.939 

----------- 
1.759 

---------- - 
1.636 

-------- 

L= average length of vector, S(L) = standard deviation of length of vector 

Table 6.4b 

Population values: a=0.900 X=0.083 aye bT = (0.644 1 -0.356 ) 

------------ 
k, 

------------ 

----------- 
. 000 

----------- 

----------- 
. 001 

----------- 

----------- 
. 01 

----------- 

----------- 
. 05 

---- 

-------- 
0.10 

a . 076 . 076 . 056 
------- 
. 026 

-------- 
. 000 

as -. 174 -. 145 -. 143 -. 133 -. 083 
Biases a2 . 249 . 223 . 222 . 307 . 273 

b, -. 176 -. 150 -. 146 -. 109 -. 085 
b2 

------------ 
. 235 

----------- 
. 231 

----------- 
. 252 

----------- 
. 264 

- 
. 317 

a . 106 . 108 . 089 
---------- 

. 061 
-------- 

. 0460 
a, . 382 . 364 . 357 . 355 . 310 

RMSE a2 . 538 . 506 . 503 . 579 . 534 
b, . 387 . 351 . 355 . 301 . 321 
b2 

------------ 
. 533 

----------- 
. 519 

----------- 
. 538 

-------- 
. 539 . 560 

L 2.812 2.758 
--- 

2.705 
----------- 

2.099 
-------- 

1.856 
S(L) 

------------- 
3.091 

---------- 
3.028 

----------- 
2.947 

----------- 
2.297 

----------- 
2.018 

-------- 
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Table 6.4c 

Population values: a0 . 950 X=0.141 aTm 6T= (0.594, -0.406) 

------------- 
k 
----- 

---------- 
. 000 

---------- 

----------- 
. 001 

----------- 

----------- 
. 01 

----------- 

----------- 
. 05 

----------- 

-------- 
0.10 

-------- -------- 
a . 082 . 071 . 040 . 025 . 054 
at -. 124 -. 103 -. 102 -. 042 -. 001 

Biases a2 . 210 . 212 . 192 . 275 . 288 
b, -. 127 -. 107 -. 103 -. 031 -. 004 
b2 
----- 

. 222 
--------- 

. 190 
----------- 

. 249 
----------- 

. 239 
----------- 

. 268 
-------- -------- 

a . 118 . 112 . 087 . 061 . 071 
at . 361 . 336 . 323 . 293 . 258 

RMSE a2 . 483 . 476 . 466 . 513 . 509 
bi . 344 . 318 . 334 . 272 . 282 
b2 

-- 
. 504 

---------- 
. 463 

----------- 
. 518 

----------- 
. 482 

---------- 
. 486 

-------- ----------- 
L 3.934 3.809 3.634 2.528 2.012 

S(L) 
------------- 

4.324 
---------- 

4.222 
---------- 

9.968 
----- ------ 

2.801 
----------- 

2.209 
-------- 

Table 6.4d 

Population values: a 0.990 X= . 579 aT  bTo (0.538, -0.462) 

------------ 
k 

- 

----------- 
. 000 

----------- 

----------- 
. 001 

----------- 

----------- 
. 01 

--------- 

----------- 
. 05 

--------- - 

-------- 
0.10 

------- ----------- 
a . 0430 . 002 

-- 
. 232 

- 
. 434 

- 
. 485 

a, -. 060 -. 052 -. 048 -. 005 -. 066 
Biases a2 . 123 . 124 . 158 . 225 . 242 

b, -. 044 -. 061 -. 017 -. 002 -. 048 
b2 

------------ 
. 083 

----------- 
. 126 

---------- 
. 140 

----------- 
. 226 

------ 
. 273 

a . 090 . 074 . 239 
---- 

. 436 
-------- 

. 486 
at . 253 . 250 . 274 . 275 . 257 

RMSE a2 . 362 . 357 . 392 . 444 . 425 
bi . 227 . 265 . 236 . 276 . 283 
b2 

------------ 
. 290 

----------- 
. 359 

----------- 
. 351 

----------- 
. 446 

----- 
. 468 

L 8.636 8.214 5.987 
------ 

3.301 
-------- 

2.359 
S(L) 

------------ 
9.348 

- ---------- 
8.913 

----------- 
6.490 

---- ----- -- 
3.582 

----------- 
2.540 

-------- 
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larger values of k has the effect of reducing the bias on one element (as) 

and increasing the bias on the other element (a2). These biases are 

however smaller for larger values of a at all values of k. Exactly 

similar effects are noted with the b" vector. 

Finally we consider the RMSE of the a" and b" vectors. In the 

cases in which X is very small (when a= . 75 and . 90) the additions of k 

seems to have very little effect on the RMSE of the a* and b* vectors. 

In the case of a 0.95 adding k reduces the RMSE of one component of 

a"and b" but increases the RMSE of the other component. With a=0.99 

the RMSE of nearly all components are increased by adding k values. 

Many other population variance/covariance structures were used in 

other simulations with broadly similar results. In populations with large 

canonical correlations (as witnessed in our empirical study), the biases 

and RMSE's of the classical (k = 0) normalized a and b estimates were 

relatively small and there appeared to be no consistent benefit in using 

ridge type estimators. 

Accordingly in all that follows we report only the classical 

normalized vectors: ab 

6.8 The normalized canonical coefficients for commodity series 

The normalized canonical coefficient estimates associated with the 

largest canonical correlation have been computed for each period and for 

each commodity series. For ease of interpretation and clarity of 

presentation these coefficients have been multiplied by 1000 so the 

lengths of all vectors are 1000. These values appear in Tables 6.5 to 

6.8. 
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Table h. `_ 

Narmal: Zed estimates :fa , "b C_mo^nente 4 or GOc a "etuInä 

Components sum 
------ -------- --------- -------- --------- ---- cf 

Period Vector '! 2 

------- 

3 

-------- 

4 

------- -- --------- 
5 

---------- 
c:., eas. 

---------- ------- 
1 

---------- 

A 

--------- 
10 

- 
38 -217 397 -274 62 114.5 

t 103 -159 346 -260 34 -95 -33.9 

2 xr 1T 41 -98 172 244 -383 60 32.7 
B -93 90 -230 -138 288 159 73.8 

3 A 12 -115 362 -228 -184 97 -58.6 
B 3 142 -374 192 166 -122 3.8 

4 A -60 -67 361 -235 102 -171 -73.7 
B -79 145 -185 274 -236 78 -6.1 

5 A -37 -194 153 -247 358 7 36.1 
B -84 222 -Be 251 -349 4 -47.9 

6 A 92 -152 50 -102 362 -239 7.5 
B 2 88 -161 12 -335 401 3.4 

7 A 10 -93 -201 496 -166 -29 13.5 
B -24 -59 431 -365 -73 44 -50.2 

8 A -36 157 -290 -13 338 -161 -9.3 
B -75 58 302 -137 -274 150 20.3 

9 A -27 194 -191 262 -278 46 1.9 
B -21 144 59 -298 297 -178 0.9 

10 A -55 310 -262 -6 198 -165 15.5 
B -68 -90 -208 -47 -288 295 5.8 

11 A -20 247 -370 77 193 -90 34.6 
B 30 -69 -31 -311 -68 487 33.8 

" 
12 A -78 160 226 -363 -75 95 -36.5 

B 37 -131 -222 443 -137" -26 -41.8 

13 A 57 136 -166 273 -337 -28 -67.9 
B 43 -289 310 -202 86 68 14.4 

14 A " -19 -57 510 -227 -139 -43 20.1 
B -32 240 -445 196 71 -13 15.3 

15 A -20 148 39 -362 -108 319 12.4 
B 32 -116 -57 412 44 -336 -24.6 

16 A -126 - 171 -104 19 -274 302 -15.6 
B- -40 100 -156 -13 . 386 -301 -28.6 

17 A 39 7 -359 -33 476 -84 42.6 
B -150 29 185 181 -357 96 -18.5 

18 A 3 -212 227 286 -212 -57 32.5 
B 346 101 -210 -125 -175 38 -28.3 

19 A 4 113 -274 210 -225 171 -3.1 
B 45 -182 282 -242 168 -78 -10.1 

20 A 48 _-65 217 -335 238 -94 5.5 
B -8 107 -165 317 -330 70 -10.8 

21 A -24 210 -163 -171 303 -126 24.6 
B 88 -161 -23 389. -312 24 2.6 

22 A - 57 -324 454 -44 -76 -42 22.6 
B 11 238 -514 24 161 51 -29.1 

23 A 4 -34 -161 258 227 -314 -24.2 
B -107 290 -36 -388 63 114 -65.9 

24 A 22 307 -260 -107 -133 169 -5.8 
B 23 -208 359 -222 123 -61 11.0 
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'able 6.6 

tiýýna1i: d ? °t: mates Cf 3 C^_IlC: rant5 : n. : tae - tu- s 

:_ : crent s a, T 

Per-cd 
-------- 

Vector 
--------- 

1 
--------- ------- 

11 
---------- 

4 
-------- -------- 

6 
----------- 

-"mp:. 
---------- 

1 A -71 118 162 -191 204 -251 -32.4 
B -6 -13 -390 383 -77 127 18.2 

2 A -5 132 -450 353 26 -32 20.9 
B 25 -101 381 -381 44 66 32.4 

3 A 221 -214 204 -27 -270 61 -27.0 
B -184 238 144 -177 -137 117 -1.7 

4 A 67 -118 -382 406 16 -8 -21.2 
B 61 -233 318 -108 -157 121 -1.3 

5 A -9 133 -234 82 295 -243 21.1 
B 15 30 43 84 -496 330 6.4 

6 A 36 -35 -2 -227 456 -240 -15.7 

B 46 -126 -95 339 -285 108 -15.9 

7 A -9 67 -215 232 -275 199 -4.7 
B -29 -35 205 -254 282 -191 -26.1 

8 A 62 -115 39 81 320 -381 5.2 
B -164 176 -325 222 59 53 18.7 

9 A -46 -27 80 65 339 -440 -31.1 
B -33 307 -158 -85 -220 192 -1.3 

10 A 23 -174 200 -126 -195 281 5.9 
B -16 175 -390 310 19 -87 6.8 

11 A -37 -356 322 -81 -38 162 -32.7 
B -43 415 -297 72 -3 -166 -26.5 

12 A 98 -335 227 170 -128 -39 -10.1 
B -88 336 -202 -198 128 45 18.7 

13 A -14 -141 34 91 371 -346 -6.7 
B -44 169 4 -101 -372 307 -39.0. 

14 A -76 -12 235 '290 -312 -72 49.4 
B -11 29 -41 -449 151 316 -7.1 

15 A 64 -20 50 -54 -400 409 45.8 
B 19 84 -259 -9 405 -221 15.5 

16 A 47 121 13 87 -493 238 12.8 
B -91 249 36 -244 245 -132 60.6 

17 A -120 494 -80 -205 -70 26 39.7 
B 37 328 -309 106 58 -161 56.4 

18 A -99 110 33 -359 357 -39 0.9 
B -164 194 -19 249 -316 56 -3.5 

19 A -34 135 -330 120 263 -114 36.6 
B 11 -88 540 -155 -145 -57 101.9 

20 A 33 246 -392 224 -43 -60 4.3 
B -99 -109 407 -299 81 -1 -24.0 

21 A -2 -290 271 -99 201 -133 -54.2 
B -79 416 -441 4 26 31 -45.3 

22 A 29 152 -306 -176 308 27 32.0 
B -22 -147 111 388 -206 -122 -3.0 

23 A 3 -114 247 -146 -233 253 7.0 
B -2 156 -370 150 177 -142 -34.5 

24 A 48 -117 85 254 -371 124" 20.2 
B -167 216 127 -323 157 -7 0.4 

25 A 7 -183 22 412 -315 59 -1.7 
B -56 199 -11 -327 296 -107 -10.7 

26 A -26 75 253 -274 -211 158 -28.1 
B 32 -85 -363 417 -25 75 48.0 

27 A 219 -204 112 81 -265 116 56.7 
B -102 175 -58 -221 328 -111 ' 5.7 

28 A '42 -49 -64 -110 423 -308 -69.9 
B 130 -188 -97 192 -251 138 -77.9 

29 A -5 86 145 -365 256 -139 -23.8 
B 55 -204 -47 335 -221 135 49.8 
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Table 6.7 

Narmali: ed estimatss o+ a, b _om;; r? "ts ; or suga' retlr^; 

Coeponents eun 
----- -------- ---------- -------- ------- ------ of 

Period 
-------- 

Vector 
-------- 

1 
--------- 

2 
-------- 

3 
---------- 

4 
-------- 

S 
-------- 

6 
---------- 

com; s. 
----------- 

1 A 79 -148 151 -101 -231 286 33.6 
B -65 -231 357 -58 131 -153 -25.0 

2 A 93 -243 328 -35 75 -223 -7.9 
B -59 370 -158 -274 62 73 10.7 

3 A 0 107 153 -358 -140 240 0.2 
B 83 -188 74 338 -64 -250 -10.4 

4 A 127 34 -191 -302 107 238 9.7 
B -2 86 -53 364 -469 23 -53.1 

5 A -58 43 -164 286 173 -273 4.8 
B 28 -131 152 -25 -334 327 14.4 

6 A -85 82 -352 391 -40 46 39.7 
B 56 -220 284 -147 164 -125 9.0 

7 A -77 -175 132 173 180 -260 -30.2 
B 68 -203 79 22 -257 368 74.3 

8 A -17 -74 413 -408 75 11 -2.4 
B -39 32 -274 430 -189 34 -8.3 

9 A 14 -35.. -256 494 '-183 15 44.9 
B 29 -176 196 -106 -217 274 -1.8 

10 A 1 76 33 -327 395 -166 9.1 
B -15 177- 

- -73 62 -407 262 2.5 

11 A -12 127 -320 378 -32 -127 11.5 
B 88 -217 266 -137 -129 161 30.5 

12 A 74 -23 74 -355 356 -116 7.7 
B 58 -125 78 349 -369 20 . 8.7 

13 A 55 -25 152 -291 304 -170 23.1 
B 60 6 -178 270 -320 165 0.2 

14 A -77 -1 -84 269 241 -324 20.9 
B -7 -119 147 -11 -344 368 28.8 

15 A -85 132 -133 30 -254 363 49.3 
B 55 -120 '156 '-55 285 -326 -8.5 

16 A 32 - 
-135 -4 - -72 -366 388 -14.6 

B -20 220 -366 - . -50 288 -53 14.9 

17 A -135 100 -22 -345 301 94 -10.5 
B 204 -363 3 291 -44 -91 -3.4 

18 A 11 -96 318 -369 163 -40 -16.1 B 0 -35 -136 410 -326 89 -3.4 
19 A 6- -113 179-- 120 -386 195 -1.1 B -10 32 -87 -231 500 -135 65.1 

- 20 A -18 78 - "-- -370 -- - 289 - 116 - -125 -3296- B 63 -160 256 -261 -76 182 1.1 

21 A 3 -84 167 254 -436 54 -43.7 B -21 281 -436 105 136 19 82.1 

22 A -46 162 -116 -341 215 117 -12.2 B 16 -195 -14 468 -127 -176 -31.6 

23 A 30 -137 -1 109 344 -376 -33.8 B 68 474 -157 -47 -192 -59 82.9 
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Table 6.8 

NcrRal. zed estimates of ab cc, op, ýr=nts far r. t: er returns 

Compcr. ents 543 
---- --------- --------- -------- -------- ------ -2f 

Fer: od 
------- 

Vector 
---------- 

1 
------- 

2 

--------- -------- 
4 

--------- 
S 

-------- 
6 

----------- 
: -mps. 

----------- 

1 A -56 35 -250 477 -137 -41 24.1 
B 19 72 134 -493 172 108 11.1 

2 A 103 -95 -55 -14 403 -326 11.3 
B -43 128 -153 168 -265 239 70.7 

3 A -45 -55 200 50 -380 267 34.6 
B 10 32 -184 25 448 -298 31.4 

4 A 40 -10 241 166 -497 45 -16.9 -- 
B -183 62 -291 197 141 124 46.8 

5 A -43 144 -224 300 -232 54 -4.2 
B -19 46 137 -319 311 -164 -10.7 

6 A 27 131 107 -486 110 137 25.2 
B 96 13 -244 354 -249 41 10.8 

7 A 47 85 -335 261 121 -149 28.7 
B -46 -74 413 -225 -140 98 21.2 

8 A -19 3 -28 393 -496 58 -93.4 
2 92 . -161 -62 -278 389 14 -10.0 

9 A -61 181 -124 -330 235 67 -35.1 
B 39 -235 210 262 -120 -131 22.8 

10 A 45 -203 26 -77 439 -206 21.6 
B -13 -30 242 -23 -440 248 -21.1 

11 A 37 -116 250 -371 218 -4 11.7 
8 65 69 -407 373 -2 -82 13.4 

12 A -80' 54 -70 256 -332 205 29.8 
B 10 -96 207 -212 272 -199 -21.0 

13 A -21 -2 -101 145 355 -372 0.1. 
B 16 33 75 -47 -433 394 35.2 

14 A -33 7 196 -60 -414 286 -21.8 
B -20 105 -229 143 243 -257 -18.0 

15 A -30 36 117 216 -468 131 -0.6 
B 16 47 -213 -133 436 -151 -0.3 

16 A -10 -203 74 217 -282 211 5.2 
B -1 153 -140 -317 344 -42 -6.3 

17 A -20 12 16 -174 468 -308 -9.6 B 11 -44 50 260 -455 177 -2.3 

18 A 9 -60 83 -118 398 -329 -21.6 B -5 -47 64 26 -441 414 8.6 

19 A -9 60 -297 428 -22 -180 -23.5 B 11 66 383 -392 6 -141 -69.1 

20 A -29 -286 300 -7 166 -208 -67.7 B -42 -75 342 39 136 -363 33.9 

ý" 16 0 

t. 



6.8.1 Remark on canonical coefficient estimates 

Referring to Tables 6.5 to 6.8, we note that there is still a 

tremendous variation from period to period in the individual componenets 

of a and b vectors. In all there are 96 periods x2 vectors x6 

components = 1152 individual estimates to consider and although the 

picture is a very complex one some general patterns can be observed. 

(i) The sums of the components of each vector in each period-are very 

near zero. The positive components seem to 'cancel out' the negative 

components. 

(ii) The values of (ä, I and range from i to 540. 

(iii) Considering the absolute values of at and b, only, we note that 

the first component is usually the smallest. 

(iv) The ä component with the largest absolute value tends to be 

'further down' the vector : the 3rd, 4th or 5th element. In each period 

one of the six absolute values, äi, 
....., a& is maximal. Table 6.9 

gives a record of the frequency of each component containing the maximum 

value. Consider for example the rubber series. We see that in 11 of the 

20 periods the maximum component of a was the 5th element t as. 

Note that the frequency distributions are not uniform. The 

first component is maximal only once. For cocoa, coffee and rubber the 

most frequent maximal component is the fifth, for sugar it is the fourth. 

We can make similar remarks relating to the b vector. 

Recall that the a and b vectors give us the canonical variates : 

aTxt and bTxt_l that are maximally correlated. We can see now 

that the contributions to these variates from the individual returns in 
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Table 6.9 

Freauenc iximum absolute components within 
(obtained from Tables 6.5 - 6.8) 

vectors 

-------------- 
no. of matched 

Component 

Cocoa 24 

Coffee 29 

Suger 23 

Rubber 20 

no. 

Il 

of 
periods 

T 
-- 

vector 
--------- -- --- 

1 
----- 
2 

- 
3 
-- 

45 
-------- 

6 
--- -- 

0 
----- 

2 
--- 

6 
- 

68 
--------- 

2 
--- -- 

0 
--- 

4 
- 
3 
- 

6 11 
--------- 

5 
--- -- 

0 
----- 

0 
- 
3 
- 

95 
--------- 

6 
--- -- 

0 
-- 

----- 
0 

------ 
2 
- 

6 11 
--------- 

1 
--- 

pairs with 
opposite sign 

-------- b 

-- 
vecter 
------ -- ---- 

------ 

--- -- 
1 

-- 
2 3 

---- 
4 
-- 

5 
---- 

6 
--- ------ -- 

1 
---- 

0 
-- 

9 6 5 
--- 

399 
--- -- 

0 
---- 

5 
------ 

8 
-- 
9 

- 
7 

--- 
2 14 13 

--- ------ -- 
0 

---- 
3 

------ 
5 

-- 
6 

- 
5 

---- 
4 11 11 

--- ------ --- 
0 

------- 
2 

-- 
6 10 2 16 16 

-- --- ------- -- ---- --- ------ t 

----- ------ 
no. of matched 

pairs 
-------------- 

Tnkte L1a 

Fregunecy of :, f components with opposite signs 
(obtained from Tables 6.5 - 6.8) 

----------- 
Components: 
----------- 

------ 
1 

------ 

-------- 
2 

-------- 

-------- 
3 

-------- 

-------- 
4 

-------- 

-------- 
5 

-------- 

----- 
6 

----- 
Cocoa 

---- 
8 

------ 
19 

- ------- 
20 

-------- 
21 

------- 
21 

-------- 
21 

----- ------- 
Coffee 

---- 
17 

------ 
22 

----- --- 
22 

-------- 
25 

-------- 
24 

-------- 
26 

-- --- ------- 
Suger 
----------- 

16 
------ 

15 
-------- 

15 
-------- 

19 
-------- 

19 
-------- 

18 
----- 

Rubber 
----------- 

14 
------ 

11 
-------- 

14 
-------- 

17 
-------- 

19 
-------- 

14 
----- 

----------------- 
Expected No. of 

Freq. Periods 
----------------- 

12.0 24 

14.5 29 

11.5 23 

10.0 20 
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xt and xt-, are not uniformly spread. It appears that the 3rd, 4th 

and 5th components of the 6 dimensional returns vectors are mostly 

responsible for the observed multivariate dependence. We return to this 

point again later. 

(v) Still on the subject of the component with the largest value it is 

interesting to note the 'pairing' of such components in the ä and b 

vectors. Table 6.9 gives the number of periods in which the maximum 

absolute value of the elements of 'i and b vectors occur in the same 

component. Also reported in Table 6.9 is the number of these pairs in 

which the signs of the relevent maximum a, and b, are opposite. In the 

case of rubber for example in 16 of the 20 periods when a particular 

component of ä is maximal, the corresponding component of b is also 

maximal. In all 16 cases the associated It, b, pairs had opposite signs. 

Reference to Table 6.9 shows that for the other three series roughly half 

of the periods resulted-in this pairing of maximal components and in all 

but I case the signs of the relevent ä,, b, pair were opposite. 

(vi) Following on from (v) we constructed Table 6.10 which lists the 

frequencies of occurrences in which the signs of corresponding elements of 

ä and S are different for each element, not just the maximum ones. 

Also given in Table 6.10 is the expected frequency of these occurrences if 

the signs of corresponding elements of ä and ö were assumed to be 

random. 

Consider as an example the 20 rubber periods. We would expect, under 

a hypothesis of random signs that half (i. e. 10) of the periods would 

result in corresponding elements of ä and 7 to be different. However 

we see that in 19 periods the signs of the 5th elements an and '6e were 

different. Table 6.10 shows that in all but one of the 24 situations 

considered, the observed frequencies of opposite signs far exceeds that 

expected'. We note also that the frequency of different äs, b, signs is 
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lowest in the case of the Ist componenet. 

(vii) Finally, as originally mentioned in section 6.5, we notice that 

the sequence of the signs of the elements within a given vector do not 

appear to be random. If one considers the elements of 1' (say) in the 

sequence ä,,.., ä6 there appears to be a predominance of sign switching. 

For example in the situations in which ä2 (say) is positive it is more 

likely that ä, and ä3 will be negative than positive. This phenomenon 

is neatly summed up in Table 6.11. In this table the frequency of 

contiguous sign combinations is given. Consider as an example the rubber 

series. In each period we have 6 elements of the ä vector resulting in 

5 contiguous + and or - sign pairs. With 20 periods we have 20 x56 100 

pairs of signs. If the signs were random then one would expect half (i. e. 

50) of the cases to result in a+ following a- or a- following a +. 

Similarly we would expect half (i. e. 50) of the cases to result in +/+ or 

-/- combinations. We see from Table 6.11 that the observed frequencies 

are 25 and 75 respectively. The likelihood of this outcome (if the signs 

are really random) can be computed using: 

Z= p-0.5 

0.5 x 0.5 

n 

where n= number of pairs of signs (= 100 for rubber) and p= proportion 

of pairs resulting in +/- or -/+ (a0.75 for rubber). If the signs are 

random Z is N" (0,1). We see from Table 6.11 that in all cases there is 

a very significant excess of +/- or -/+ sequences over +/+ or -/- 

sequences in both the ä and b vectors. 

We sum up then by saying that although the individual elements of the 

normalized ä, b vectors vary considerably from period to period we can 

observe some very interesting and unexpected patterns in the estimates. 
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Table 6.11 

Frequency of contiguous sign combinations within 
. 
A' and Ifti vectors 

(obtained from Tables 6.5 - 6.8) 

Sign combinations 

------ 
+/+ or -/- 

--- - ----- 
+/- or -/+ 

-------------- 
Z value 

--------- -------- 
a 33 87 4.93 

Cocoa b 
---- 

33 
--------------- 

87 
--------- 

4.93 

E 
- 

60 
--------------- 

60 
------------- --------- -------- ----- 

a 47 98 4.24 
Coffee b 

- -- 
43 

-------------- 
102 

---------- 
4.90 

E 
------ 

72.5 
-------------- 

72.5 
-------------- --------- -------- 

a 30 85 5.13 
Sugar b 

---- 
28 

-------------- 
87 

---------- 
5.50 

E 
--- 

57.5 
---------- 

57.5 
-------- --- 

a 
---- 

25 
-------------- 

75 
--------- 

5.00 
Rubber b 

--- 
38 

-------------- 
62 

---------- 
2.40 

-------- 
E 

------ 
50 

-------------- 
50 

-- ------------ ---------- 

E= expected frequency under null hypothesis of random sign allocation 

Z should be N(0,1) distributed under the null hypothesis of random sign 
distribution 
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The larger (both positive and- negative) elements tend to be in the 3rd, 

4th and 5th components and the smallest elements are invariably in the ist 

component. The sums of the components are all very near zero. 

One can possibly best sum up the typical (most frequent) 

configuration of the signs of the ä and b estimates in the following 

ä 
ft. T 

-4 

F' bT 

+ a: - a2 + a3 - a. + as - ab 

-bý +b2 -b3 +b. bs +b& 

Adjacent elements within ä or b tend to have opposite signs as do 

corresponding elements in ä and '6. 

What is also particularly interesting is that the above properties 

are exhibited by all of the commodity series. Whatever phenomenon is 

giving rise to these results must be common to all 4 futures markets. 

Before considering what phenomenon in the futures markets could be giving 

rise to these results we review the possibility of arriving at single, 

'grand average' a and b estimates. 

6.9 An average canonical coefficient vector 

We see from section 6.8 that although the normalized a and b 

vectors vary from period to period there is a-discernable pattern in the 

distribution of the individual elements. Simulations similar to the ones 

described in section 6.7.4 but with 6 dimensional vectors have shown that 

with fixed population vectors a, b and highly collinear data similarly 

varied ä and S' estimates are obtained. It is possible then that with 

our commodity series there exist fixed 'population' a and b vectors. 

but that the highly collinear nature of the data and the relatively small 
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sample sizes are very likely giving rise to extremely varied estimates. 

In this section we attempt to estimate these assumed constant population 

a and b vectors. 

6.9.1 Aggregate variance/covariance matrices 

Throughout this and the next sectin we will refer to the coffee 

series as an example. Recall that there are 29 periods of estimation. 

Each period contains approximately 42 daily returns on 6 contracts. In 

total there are 1189 daily returns. 

In Table 6.6 there are 29 estimates of X, a and b. Each 

estimate is computed from expressions involving the variance/covariance 

matrix estimates; Sys, Sze and Sez. There are 78 elements making up 

these 3 matrices. These 78 elements are computed from sums of squares and 

cross products from the original sample. The original sample is typically 

42 observations of 6 returns. Thus we are using 42 x6a 252 returns to 

compute the 78 elements of Sill 522 and 512 and hence äa and I. 

With such a low ratio of data to parameter estimates we could not expect 

the resulting ä and b vectors to be very accurate. Considering the 

paucity of data and the fact that it is highly collinear it is not 

surprising that the observed ä, ö vectors are highly varied. 

If we assume that there exist fixed constant population a and b 

vectors we could obtain much more accurate estimates by using larger 

samples. One possible approach would be to estimate Sill S22 and S12 over 

the entire 5 year period and this could be achieved as follows. 

Treat each of the 29 periods as separate samples of data each 

containing about 42 returns. Although in each period we are examining 

slightly different contracts we can consider the 6 dimensional set of 

returns in the manner as we did in section 3.6.2. Each element of the 
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vector will represent the returns on a contract that is always on average 

some fixed 'distance' from maturity. It would be possible then to 

estimate each element of Sii, 922 and 612 using all 1189 returns. The Ist 

element of Si, for example would be computed from the sums of squares 

obtained by considering all 1189 returns on the contract that was always 

'nearest' to maturity. 

However recall from section 3.3.2 and 4.8.5 that the variances and 

covariances of returns vary tremendously over the 5 year period. The 

ratio of maximum variance to minimum variance in the coffee series for 

example was found to be 900. If we computed the S matrices as suggested 

above the contribution to each element of Si, etc in periods of low 

variability would be completely swamped by the contributions from periods 

of high variability. 

The discovery of persistent multivariate serial correlation implies 

that the elements of the V12 matrix are not all identically zero. The 

accurate estimation of the elements of this matrix is a crucial point in 

the search for the underlying a and b vectors. The estimates (36 in 

all) are all measures of association between the vector xt and xt-i. 

Unfortunately these estimates will also vary with the underlying variance 

of the series. What is needed is a procedure that is invariant to the 

changing variability. An obvious candidate is the correlation matrix R. 

6.9.2 Canonical correlation analysis with correlation matrices 

Mardia (1979) shows that canonical correlation analysis using the 

correlation matrix leads to essentially the same results as canonical 

correlation analysis using the variance/covariance matrix. If V and R are 

the population variance/covariance and correlation matrices respectively 
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partitioned as in section 6.6.2 it is easy to show thati 

x ÄR 

a [diag (Vll)-1'2] aR 

6= Ediag (V22)'ß'2] bR 

where X, a and b are the canonical correlations and vectors of 

coefficients obtained from the V matrix and XR, aR and bR are the 

corresponding parameters obtained from the R matrix. 

So we see that the canonical correlation coefficients using V and R 

are identical and the coefficient vectors are simple linear transforms of 

one another. 

Note that with the data we have, the study in section 5.2.1 has shown 

that the elements of diag (Vii) and diag (V22) are all very similar within 

each period' but vary markedly from period to period. For the purposes of 

this study then we will consider the diagonal elements of V,, and V22 to 

be identical and so: 

a=c..! aR 

b= Cb. I bR 

where c. and cb are constants. Of course we are only interested in 

normalized vectors and so the constants in the above expression are 

reduced to unity. Thus the results of canonical correlation analysis of 

the series we are examining using correlation matrices will yield 

identical results to an analysis using the variance/covariance matrices. 
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6.9.3 An aggregate correlation matrix 

If we are considering using aggregate correlation matrices to find 

accurate estimates of a and b we will need to estimate the 36 elements 

of R12,15 elements of Res and 15 elements of R22. Each of these 66 

estimates will obviously need to be derived from the 29 individual 

estimates obtained from each period. 

Donner and Rosner (1980) addressed the problem of finding common 

correlation coefficients from k >, 2 independent samples. They showed that 

of the 4 methods they examined (some fairly sophisticated) a standard 

score method equivalent to finding a weighted average of the simple 

correlation coefficients proved generally superior. This weighted 

averaging procedure was shown to be particularly good when the population 

correlation coefficients were very small. 

Donner and Rosner considered the estimation of a single correlation 

coefficient. In this section we extend their ideas to jointly estimating 

all 66 correlation coefficients in the R matrix. We believe that the 

procedure suggested by Donner and Rosner is particularly suited to our 

problem for two reasons: 

(i) We strongly suspect that the elements of R12 are very small but not 

necessarily zero. The accurate estimation of these elements is crucial to 

the accurate estimation of a and b. 

(ii) As noted in section 4.6.2 the author, using many simulations, has 

found that sample estimates of the elements of correlation matrices can be 

considered to be virtually independent, provided the parent correlations 

are not large ( \< 0.7). In brief, the weighted average procedure for 

estimating the crucial R matrix will, have the similar optimal 
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properties noted by Donner and Rosner when studying simple correlation 

coefficients. Accordingly the pooled estimate of the components 

(R) ,. j (i, j = 1,12) of the correlation matrix R were computed using: 

CR)sj =E (rk)lj t nk -1J................. 7.9.3 
M-3 

27 

E( nk -i) 
M-I 

where nk = no. of returns in period k, 

(rk), j = i, J th element of correlation matrix estimated in 

period k. 

The resulting R matrix is partitioned as in section 6.6.2 and the 

pooled, aggregate or grand average )R, aR, 'bR estimates derived. The 

results appear in Table 6.12. 

6.9.4 The pooled canonical coefficient vectors 

We make the following remarks an the values presented in Table 6.12. 

The pooled a values 

The pooled canonical correlation coefficients are virtually identical 

all being approximately 0.450. This is slightly smaller than the 

estimates obtained for most of the 96 individual periods. 

In retrospect this situation of lower sample values of canonical 

correlations is entirely what one would expect. This phenomenon can be 
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Table 6.12 

Average normalized 1 and I estimates from pooled R matrices 

----------- 
Components: 
----------- 

------ 
1 

------ 

------ 
2 

------ 

------- 
3 

------- 

------- 
4 

------ 

------- 
5 

- - - 

----- 
6 

Cocoa a +16 +19 -326 
- 

+394 
- --- 
-143 

------ 
-24 

--- 
b +21 

- 
-119 

------- 
+305 

------ 
-379 

-- 
+141 +35 

---- 
Coffee 

---- 
a 

----- 
-34 +10 +117 

------ 
-308 

------- 
+370 

----- 
-161 

------- 
b 

- 
+20 

-- 
-29 

------- 
-101 

----- - 
+357 

------- 
-370 

------ 
+123 

- - - 
Sugar 

--- 
a 

---- 
+2 -56 +147 +11 

- 
-443 

- -- 
+341 

------- 
b 

---- 
-14 

------ 
+33 

------- 
-143 

------- 
-7 

--- --- 
+460 

----- 
-343 

Rubber a +27 -89 +132 
- 

-269 
-- 

+343 
----- 

-140 

------- 
b 

---- 
-9 

------ 
+54 

------- 
-119 

------ 
+292 

-------- 
-372 

------ 
+154 

------ 

sum sum sum 
of of of 
+ve -ve all 

camps 
------ 

camps 
------- 

camps 
------ 

+507 -498 +14 
+302 

----- 
-498 

------- 
+4 

------ - 
+497 -503 -6 
+500 

-- 
-500 

------- 
0 

------ ---- 
+501 -499 +2 
+493 

-- 
-507 

------- 
-14 

------ ---- 
+502 -498 +4 
+500 

------ 
-500 

------- 
0 

----- - 

Average a.,.. estimates from pooled R matricesi 

------- 
Cocoa 
------- 

----------- 
Coffee 

- --------- - 

---------- 
Sugar 

---------- 

-------- 
Rubber 

-------- 
0.433 
------- 

0.463 
----------- 

0.441 
---------- 

0.463 
-------- 
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explained by considering initially the pooling of R matrices just over the 

first two periods. In period one, the estimation of the elements of R12, 

R22 and Ri, result in one special pair of linear combinations ä<ý), 

bci, that yield a maximum canonical correlation X1, between canonical 

variates jýi<, ) äTC, )Xt and 'V'2(1) = bTci)xt-i. Any pair of 

linear combinations even slightly different from these will result in a 

lower correlation coefficient. In period two the process is repeated and 

we arrive at a new pair of optimal linear combinations a 
«) and b 

(2) 

that result in a maximal correlation, X(2). The averaging of the R 

matrices over these 2 periods will result in new pair of pooled vectors: 

a(), b(P) that will be somewhere between acs,, bL(l) and ^a(2), 

b «,. Since the pooled vectors will not be exactly equal to these found 

in period one or two, the correlation coefficients between aTcp)X and 

bT<P, x must be slightly less than the maximum correlation found in 

period one and less than the maximum correlation found in period two. 

Thus the averaging of R matrices over two periods must result in a lower 

average maximum canonical coefficient. It is not surprising then that 

extending the averaging process to over 20 periods or more results in a 

correlation coefficient as low as 0.450. 

Comparing absolute values of 2 and I elements 

Recall the general pattern observed in the distribution of the 

absolute values of the elements of all 96 individual ä, b vectors 

noted in section 6.8.1 .. The distribution of the absolute values of the 

pooled elements is exactly what we would have predicted. The profiles of 

the values is as follows: 

With the exception of sugar, the smallest elements are in component 
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one. As we consider successive components the elements gradually increase 

in size reaching a maximum at the 4th or 5th component and then fall off 

to a medium value in the 6th component. If the elements of appropriate 

pairs of ä and b vectors are ranked there is an almost perfect 

correspondence in ranks. Not only do largest components match but also 

second largest components etc down to smallest components. 

The Pattern of signs within and across vectors 

With only one exception (Ist elements of cocoa vectors) all the signs 

of corresponding elements of ä and b vectors are opposite. The 

configuration of + and - signs within each vector is also exactly what was 

expected. There are only 7 instances out of a possible (8 x 5) z 40 in 

which the signs of two adjacent elements are identical= 33 of the 40 sign 

configurations are of the +/- or -/+ type. 

Sums of Element Values 

It is interesting to consider the three sums reported in Table 6.12. 

(i) The sum of all the positive elements of a given vector are all very 

near +500. 

(ii) The sum of all the negative elements of a given vector are all very 

near -500. 

(iii) The sue of all the elements of a given vector are near zero. 
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Summary of pooled vector results 

We sum up by saying that, in the light of the general pattern in the 

individual estimates noted in section 6.8.1, the average estimates given in 

Table 6.12 seem to be what we would expect. We will thus consider that 

these pooled vector estimates represent the underlying population vectors 

that we have been seeking. 

We make one final remark on these average vectors. There is a 

remarkable similarity in the ä and 6 vectors. This similarity is 

investigated and exploited further in Chapters 7 and S. 

6.10 Interpretation of canonical coefficient vectors 

We now address the question of what these canonical coefficient 

vectors tell us about the observed persistent multivariate temporal 

dependence found in all the series. 

The ä, b vectors can be used to compute a linear combination of 

returns on day t, y,   aTx: and a linear combination of returns on 

day t-1, V2 a b*xt_1 such that the correlation between V, and 

y2 is maximum and positive. The Y1, rz series are special mixes of 

returns on day t and t-1 and we can refer to them as portfolios. The 

contribution to each portfolio from the xt, ! Lt-, series are given by 

the elements of a and b respectively. If we consider as an example 

the pooled rubber vectorsi 

IT = 

ST 

L+27 -89 +132 -269 +343 -140 

I -9 +54 -119 +292 -372 +154 
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The ja portfolio is made up by summing 2.7%, 13.2% and 34.3% of the 

returns on contracts 1,3 and 5 (a total of 50.2%), and subracting 8.9%, 

26.9% and 14.0% of the returns on contracts 2,4 and 6 (a total of 49.8%). 

The l2 series is made up by summing a similar collection of contract 

returns (with reverse signs) on day t-1. It is easy to see that if the 

correlation between the yi and V2 series is large and positive the 

correlation between the V, and 2 series would be large and negative. 

Considering the r, and -rz series is much more informative, since they 

are virtually identical. In the case of the rubber series we see that the 

maximum contribution to the Yi and Y2 series is contract number 5. The 

contract with the next highest contribution is contract number 4 and so 

on. It appears then that the observed multivariate temporal dependence 

can be explained by large and significantly negatively serially 

correlated linear combinations of returns (portfolios). Most of this 

negative serial correlation can be attributed to the 3rd, 4th and 5th 

contracts. It is interesting to note that no such negative serial 

correlation was discovered -in any of the individual contracts when 

examined univariately (see section 3.6.2). 

What phenomenon is giving rise to this negative serial correlation of 

lag 1 day witnessed in these complex linear combinations? 

We consider two possible explanations 

M In section 5.3.2 we reported that the correlation between returns on 

different contracts in the same futures market are very high, typically 

+0.95. The returns and prices of all 6 contracts move together very 

closely. However there may be days when 1 or 2 of the contract prices 

lags behind the overall general movement of the rest of the market. This 

"getting out of line" with the overall price distribution would obviously 

not last long and trading would ensure that all prices were back to the 
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norm within, say, at most one day. These small perturbations in the 

prices and hence returns may not be picked up in a univariate statistical 

examination of each of the 6 series. However when considering all 6 

series together such anomalies may "stand out" quite clearly in a 

statistical sense. What we are suggesting here then is that the futures 

markets are not perfectly efficient. This model of market inefficiency is 

investigated in more detail in Chapter 9. 

(ii) A market inefficiency of a different nature lies behind our second 

suggested model to explain the observed temporal dependence. This model 

is concerned with the overall pattern of the spread of prices of all the 

contracts in a given futures market. 

It is well known that in periods of plentiful supply of the spot 

commodity there is a contango in which the 'near' prices are lower than 

the 'far' prices. In periods of short supply the reverse situation, a 

backwardation, is more usual; the prices of the 'near' contracts are 

higher than the prices of the 'far' contracts. In any period, the supply 

and demand of the spot and future commodity together with the current 

interest rates and storage charges should determine the relevant price 

profile. 

From day to day information on factors that determine the price 

profile will arrive at the market. If the markets disseminate this 

information efficiently the change from one price profile to another 

should be gradual and smooth. If the markets are not perfectly efficient 

at disseminating this information, it is possible that some of the 

contract prices are not adjusted to their 'correct' level immediately. 

If one or more prices were to 'get out of line' in the manner 

suggested in (i) or (ii) above and 'get back into line' the very next 

day, this could explain the observed negative serial correlations between 

certain linear combinations of returns. Furthermore from the discussion 
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on the magnitudes of the ä and b vectors it would seem that prices 

that 'get out of line' more frequently are the'far' ones (3rd, 4th and 5th 

contracts). This may be a reasonable explanation since the volume 

traded in these far contracts is relatively low. 

6.11 Conclusions of Chapter 6 

In this chapter we investigated the nature of the multivariate serial 

correlation found in the joint distribution of the returns on contracts in 

the same commodity futures market. It was demonstrated that most of the 

correlation could be explained by certain linear combinations of returns. 

This chapter was concerned mainly with the attempt to estimate accurately 

these special linear combinations. The highly collinear data gave rise to 

very changeable estimates but experiments with the use of a ridge - 

regression procedure was shown not produce any significant improvements. 

Although the estimates were very changeablethere was a very clear pattern 

in the individual components and this was discussed at length. Finally a 

grand averaging procedure was used to produce estimates for these linear 

combinations over the entire 5 year period. The general pattern in all of 

the individual components and the pattern in the grand average estimates 

suggests the possibility of a specific type of multivariate inefficiency. 

This multivariate inefficiency could to be mostly due to small price 

perturbations in the middle and far contracts. 

The discovery of this multivariate inefficiency and the special nature 

of the linear combinations prompted the author into investigating the 

possibility of constructing various trading rules. These trading rules are 

outlined in Chapters 7 and S. A model of the multivariate inefficiency is 

considered in Chapter 9. 
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Footnotes for Chapter 6 

1. We know from Chapter 5 that the assumption of multivariate 

normality is suspect but hope that the procedure is robust to the 

type of departures from normality witnessed here. 

2. We define the length L of the vector ä as: 

L=E rail 
s-s 

3. Hoerl and Kennard (1970) and Vinod (1976) define the length of a 

vector a as: 

äTä 

4. In the calculation of his indicators, Vinod (1976) states that he is 

using five sets of data. Unfortunately these five sets were 

overlapping periods and thus are not independent. Accordingly one 

must treat his results with scepticism. 

5. All these results have been tested using the standard test of 

proportions of H0: p=0.5 against H,: p+0.5, where 

p= proportion of pairs resulting in different signs. All except 

the first component of cocoa series result in rejection of the null 

hypothesis at the 0.1% level. See 6.8.1 (vii) for more details. 

6 For the sugar and rubber series the standard deviations tended to 

decrease monotonically as one considers contracts with longer andd 

longer times to maturity. 
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CHAPTER 7 

TIME DEPENDENT PORTFOLIOS 

In Chapter 6 we noted that it is possible to find constructs 

W, =J Txt and. - 2= Txt_, that are significantly negatively 

correlated and that is nearly always very similar to b (in each 

separate period or in the grand aggregate estimate). If this really is 

the case then it should be possible to find a vector c such that 

c^TXt 1^ and cTxt-, are negatively correlated and in which c will 

be somewhere "between" a and b., i. e. 

c-ä- -b 

If this were possible then the vector'? will denote a portfolio of 

returns that will exhibit negative serial correlation at lag 1. The 

portfolio c will delineate a new asset, one made of various proportions 

of long and short positions in commodity futures contracts. 

Classical portfolio theory begins by assuming that the set of returns 

is a set of temporally independent time series with fixed mean and 

variance. The portfolios delineated by Markowitz procedures are efficient 

in the mean/variance sense but will still result in temporally independent 

series (having the lowest variance possible, at the given average 

returns). 

The purpose of this chapter is to construct portfolios which, 

irrespective of expected returns or risk, will exhibit a temporal 

dependence (negative correlation). Constructing such temporally 

dependent portfolios has not previously been reported in the literature 

and leads on to the development of multivariate trading rules which are 
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dealt with in Chapter S. 

The layout of this chapter is as follows. In section 7.1 we show that 

the temporally dependent portfolios we are seeking are the eigenvectors of 

certain matrices. In section 7.2 we show that the resulting eigenvectors 

are always real and in section 7.3 we discuss their sampling properties. 

The portfolios delineated by the procedure on the data set are discussed 

in section 7.4. In section 7.5 we give a brief report on some of the 

other statistical properties of the resultant portfolios. In section 7.6 

we consider portfolios produced using the grand averaging pooling 

technique. Concluding remarks are made in section 7.7 

7.1 Derivation of the s- vector 

Using the notation of sections 6.3 and 6.2 we consider partitioned 

vector yt consisting of the returns of day t, ! Lt and day t-1, ! Lt-, 

t=2, . .. n. Assume that y is multivariate normal of dimension 

2p. 

xt Vt. t Vt. t-1 

It ° ý- N 

L Xt-1 -'J L Vt-1, Vt-i, t-1 

For reasons outlined in Chapter 5 we can assume that Ve. t = Vt_l. t_,. For 

simplicity of exposition denote Vt, t by Vis and Ve-,. t-s by V22. 

We wish to find c such that the linear combination CTXt will be 

maximally negatively correlated with CTXt_I. The correlation 
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coefficient'between cTxt and CTxt_l is given by fl where: 

CovC CT Xt, CT Et-1 

Aar[ CT Xt ]. VarC CT Xt-i 3 

[T V12 C 

[T V11 [ 

It is possible to choose c such that cT V1, c=i and so 

CT V12 C. i%. 1ý 

The problem formally isi 

Minimize K CT V12 c 

Subject to the constraint 

CT V11 C0i.. .... .... (7.2) 

We form the Lagrangian 

Z= CT V12 C-A (CT V11 C -1ý 

differentiate with respect to c and equate to zero 

Z= V12 C+ VT12 C-X Vii C-X VTSZ C 
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(V12 + V21) c-2X V11 c=0 

E(V12 + V21) -2a VII] c=0 

Pre multiply by V-111 (Vii is non singular) 

[V-'i, (VI2 + V21) -2a I] c=0 

.... .. (7.3) 

...... (7.4) 

Thus 2X and c will be the eigenvalues and eigenvectors of the matrix 

D=[ V'111(V12 + V21) ] .905 (7.5) 

The correlation coefficient ! can be obtained by pre multiplication of 

(7.3) by cT: 

CT EV12 + V21 -2X V11] CR CT 0 

CT V12C + CT V21 C- 2X CT Vii C 0 

2cTV12c - 2X "0 

2-2X 0 

therefore f=X= 1/2 eigenvalue of D 

If the rank of matrix D is k (1, < k \(p) there will be k eigenvalues 

and eigenvectors. The eigenvalue of most interest will be the minimum one 

(maximum negative correlation). Accordingly we will compute the minimum 

eigenvalue (2Ymsn) and associated eigenvector (c). 
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7.2 Proof that f and c are real 

In this section we prove that the eigenvalues and eigenvectors of D 

in (7.5) are real. For ease of exposition we express D ast 

D A. B 

in which A= V-1i, and B= V12 + V21 

Note that A and B are symmetric, 

symmetric. A standard result in the 

non zero eigenvalues of AB and BA 

multiplicity. If c is a non-trivial 

2Y = 0, then v= Dc is a non tri 

let a non trivial eigenvalue of AB 

c be be such that: 

but that A. B is not necessarily 

theory of matrices states that the 

are the same and have the same 

eigenvector of AB for an eigenvalue 

vial eigenvector of BA. If possible 

be 2Y with eigenvector c and let 

x+ iy, 2r a+i. b 

with i 

Then the eigenvector and eigenvalue of BA will be Bc and 

2' respectively, with: 

Be =Bx+i By 

and (BA)(Bc) 0 2Y(Bc) 
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(BAB)c 0 2Y(Bc) 

(BAB)(x+i Y) (a+i b) (Bx+i By_) 

BABx + i(BABy) = aBx + iaBy + ibBx - bB 

Equating real and imaginary parts 

BABx = aBx - bB y 

BABY = bBx + aBY 

Premultiplying (7.6) by yT and (7.7) by XT 

L/TBABx = ay_TBx -b TB /L 

xTBABL/ bxTBx + axTBZ/ 

Subtracting (7.9) from (7.8) yields! 

0-b [yTB /L + xTBx 3 

.. 600 (7.6) 

.. 6.9 (7.7) 

.... 98.. (7.8) 

a80... 20 (7.9) 

Since x are non trivial b must be zero. Hence c is real and so 

is 2Y . And so the vector c and eigenvalue, 2t of A in (7.5) are real. 

7.3 Estimation of Y and c 

To estimate the temporally dependent portfolios, c, and the degree 

of temporal dependence, ft (the serial correlation coefficient) one may 
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simply substitute the classical sample estimates S11, and S12 in 

expression (7.5) and solve for the eigenvectors and eigenvalues 

respectively. Note that in all that follows we are only interested in the 

minimum r value and associated c vector and so without loss of 

generality we will refer always to f as half the minimum eigenvalue of 

D in (7.5). 

7.3.1 Sampling properties of i and c 

We noted in section 6.6.1 that the distribution of the canonical 

vectors and canonical correlations were extremely complex in the null case 

and (to date) mathematically intractable in the non null case. The author 

is unaware of any published work relating to the sampling distribution of 

eigenvectors and eigenvalues of matrices of the type in (7.5). We 

strongly suspect that the distributions will be complex. Similarly there 

exists no published work on tests of significance of the eigenvalues of 

matrices of the type in (7.3). Accordingly it was decided, in this study, 

to leave aside the question of the sampling distribution and tests of 

significance of and c. 

7.3.2 Estimating the variance/covariance matrix 

In section 7.1 we made the assumption that Vt, t   Vt_,. t-l, Ve, t 

being estimated for t=1 to n-1 and Vc-,, t-, l being estimated for ta2 

to n. An initial study showed that the two estimates were virtually 

identical so the question arose as to which estimate to use in the full 

study. It was decided to use a third estimate, one which uses squares and 

sums of squares spanning the entire set of observations from t=1 to n. 

All three estimates yielded almost identical results for 7 and c. 
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7.3.3 The problems of highly collinear data 

Note that the matrix D in (7.5) involves the inverse of Vi1. In the 

estimation of f and c then, this will involve the inversion of 8ii, the 

sample estimate of Vii. As noted in section 6.7.1, with highly collinear 

data, the inverses tend to be unreliable and very sensitive to small 

changes in the data. We suspect therefore that we will encounter similar 

problems of instability in the estimation of c. In particular, the 

lengths of c will probably vary considerably. 

The question of finding methods to reduce such instability in 

canonical vector estimates was treated in section 6.7.4. It was found 

that the normalization of vectors proved equally as good as using the 

ridge regression technique. We have not carried out a simulation study 

into the usefulness or otherwise of applying the ridge technique to this 

problem and instead simply present the normalized c vectors. 

Note that in Chapter 6 we studied logged returns. In this chapter we 

are interested in "real" portfolios of returns and so we now revert to 

considering unlogged returns. It should however be noted that the study 

was carried out on logged data as well with almost identical results. 

7.4 The sample results 

7.4.1 The serial correlation coefficients 

The sample values of the 

associated with the portfolio cTxt 

given in Tables 7.1 to 7.4 are the 

correlation coefficientsl, 1T. �, 

serial correlation coefficients, r, 

appear in Tables 7.1 to 7.4. Also 

sample values of the maximal canonical 

associated with the linear combinationli 
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Table 7.1 

Cocoa series 

---------- 
Period 

--------- 
�� 

------- 1' 

---- ---------- 
1 

--------- 
. 573 

--- 
-. 442 

2 . 841 -. 589 
3 . 623 -. 586 
4 . 602 -. 512 
5 . 741 -. 691 
6 . 783 -. 684 
7 . 736 -. 673 
8 . 697 -. 615 
9 . 638 -. 526 

10 . 768 -. 665 
11 . 772 -. 598 
12 . 717 -. 521 
13 . 854 -. 648 
14 . 673 -. 607 
15 . 724 -. 696 
16 . 845 -. 733 
17 . 681 -. 598 
18 . 768 -. 607 
19 . 683 -. 565 
20 . 674 -. 599 
21 . 761 -. 659 
22 . 597 -. 567 
23 . 732 -. 625 
24 

---------- 
. 676 

--------- 
-. 482 

------- 

Table 7.2 

Coffee series 

-------- 
Period 
-------- 

---------- n 

a.. ý 
---------- 

------- .. 

r 
------- 

1 . 720 -. 716 
2 . 942 -. 825 
3 . 695 -. 611 
4 . 782 -. 620 
5 . 832 -. 692 
'6 . 714 -. 621 
7 . 777 -. 672 
8 . 882 -. 614 
9 . 711 -. 561 

10 . 780 -. 678 
11 . 750 -. 593 
12 . 752 -. 750 
13 . 824 -. 726 
14 . 774 -. 695 
15 . 707 -. 694 
16 . 712 -. 569 
17 . 602 -. 530 
18 . 751 -. 620 
19 . 693 -. 406 
20 . 623 -. 589 
21 . 696 -. 516 
22 . 615 -. 553 
23 . 629 -. 610 
24 . 657 -. 640 
25 . 759 -. 716 
26 . 620 -. 532 
27 . 788 -. 718 
28 . 744 -. 627 
29 

-------- 
. 984 

--------- 
-. 911 

-------- 

äß. 
K = maximum correlation between aTxt and bTxt_2 series 

?= minimum correlation between cTxt and cTxt_l series 
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Table 7.3 

Sugar series 

----------------------- 
Period äm. 

� 

1 . 668 -. 592 
2 . 738 -. 552 
3 . 770 -. 765 
4 . 668 -. 496 
5 . 596 -. 544 
6 . 744 -. 631 
7 . 597 -. 571 
8 . 760 -. 711 
9 . 667 -. 561 

10 . 785 -. 624 
11 . 759 -. 589 
12 . 555 -. 537 
13 . 682 -. 478 
14 . 779 -. 698 
15 . 609 -. 599 
16 . 726 -. 572 
17 . 708 -. 566 
18 . 744 -. 588 
19 . 681 -. 634 
20 . 655 -. 559 
21 . 774 -. 589 
22 . 641 -. 577 
23 . 788 -. 591 
24 

----------- 
- 

---------- 
- 

------- 

Table 7.4 

Rubber series 

--------- 
Period 

--------- 

---------- ä... 

------ 

------- { 

- 
1 

---- 
. 642 

------ 
-. 555 

2 . 640 -. 554 
3 . 562 -. 544 
4 . 665 -. 563 
5 . 712 -. 602 
6 . 610 -. 487 
7 . 726 -. 632 
8 . 620 -. 533 
9 . 659 -. 616 

10 . 616 -. 517 
11 . 612 -. 528 
12 . 712 -. 658 
13 . 606 -. 554 
14 . 712 -. 607 
15 . 665 -. 643 
16 . 609 -. 579 
17 . 686 -. 664 
18 . 692 -. 651 
19 . 665 -. 526 
20 

------- 
. 879 

---------- 
-. 853 

------- 

ý, ý, x maximum correlation between aTxt and bTxt_1 series 

minimum correlation between CTXt and CTXt_l series 
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aTxt and bTxt_,. Note in all cases the f values are negative. 

Note also that in each period This is what one would have 

expected. The canonical correlation coefficient is the maximal 

correlation possible between any two linear combinations of the returns 

i xt, ! Lt-i. By constraining the linear combinations to be of the form 

cTxt and cTxt-s it is not suprising that one obtains results 

that are slightly "off" the maximum possible value. What is remarkable 

about these results is the "closeness" of the two sets of correlations. 

In many periods the r values are very near the maximum possible values set 

by X.... 

We have shown then that in each of the 96 periods examined it is 

possible to find a portfolio of returns that exhibit large and significant 

(not necessarily in the statistical sense) negative serial correlation 

coefficients of lag 1. 

7.4.2 The composition of the s. vector 

Tables 7.5 to 7.8 list the components of the sample estimates of the 

c vector for each period. As before, for ease of exposition, the 

absolute values of the components are normalized to sum to 1000. We make 

the following observations. 

Ii) Comparing the values of the components of the c 

vectors with the corresponding values of the components of the ä and 

b vectors in Tables 6.5 to 6.8, we see that the c vector is "somewhere 

between" a and b. 

(ii) The components that are the largest (in absolute terms) are in the 

far contracts. Table 7.9 gives a frequency distribution of the maximal 

component for each series. This table is very similar to the 
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Table 7.5 

Normalized estimates of c components for cocoa returns 

Components sum length 
----- -------- -------- --------- -------- ------ of of 

Period 
-------- 

1 
-------- 

2 
-------- 

3 
-------- 

4 
--------- 

5 
-------- 

6 
----------- 

comps. 
------------ 

vector 
-------- 

1 -6 -54 327 -384 182 -48 17 3.17 

2 14 -16 172 293 -254 -251 -42 3.86 

3 -4 -91 365 -249 -169 121 -27 2.56" 

4 -34 139 -303 254 -136 134 54 3.43 

5 22 -160 56 -279 455 -28 66 1.39 

6 -21 82 -Be 84 -392 333 -2 2.67 

7 42 -23 -376 477 1 -81 40 1.93 

8 24 43 -352 -7 426 -148 -14 2.27 

9 9 -27 141 -356 342 -125 -16 2.52 

10 7 -205 245 -26 -271 246 -4 3.23 

11 -16 178 -195 164 138 -308 -39 3.98 

12 -29 23 -298 446 35 -170 7 2.83 

13 6 -191 268 -301 148 87 17 6.35 

14 2 -132 456 -184 -190 36 -12 1.78 

15 24 -135 -51 396 67 -327 -26 2.61 

16 31 -34 -31 9 464 -431 8 1.79 

17 -6 110 -306 144 249 -185 6 3.72 

18 -5 183 -492 305 -2 14 3 4.58 

19 1 -147 279 -234 217 -123 -7 3.21 

20 -182 301 -98 163 -234 21 -29 3.23 

21 29 -139 29 411 -373 19 -24 2.95 

22 13 -299 498 2 -170 -18 26 1.52 

23 16 -9 176 -470 296 -33 -24 3.24 

24 -25 -220 334 -136 173 -112 14 2.46 
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Table 7.6 

Normali: ed estimates of c components for coffee returns 

Components sum length 
----- -------- --------- --------- -------- ----- of of 

Period 
--------- 

1 
------- 

2 
-------- 

3 
--------- 

4 
--------- 

5 
-------- 

6 
---------- 

comps. 
------------ 

vector- 
-------- 

1 -22 8 282 -178 200 -311 -21 2.85 

2 -55 96 -173 114 293 -269 6 11.59 

3 214 -430 198 76 -20 -62 -24 2.70 

4 -34 -24 334 -372 159 -77 -14 2.06 

5 29 -88 189 -37 -380 276 -11 1.48 

6 -15 -18 236 -414 264 -53 0 2.17 

7 45 179 -124 -370 32 249 11 3.75 

8 -55 13 271 -413 217 -32 1 3.00 

9 -8 210 -109 -279-- -94 300 20 1.88 

10 17 -118 252 -222 -160 232 1 6.07 

11 -12 351 158 -215 -262 -2 18 3.75 

12 -90 371 -252 -152 66 68 11 2.30 

13 57 -226 106 95 247 -269 10 2.82 

14 34 18 -278 -234 183 253 -24 3.46 

15 28 -57 141 --67 -382 326 -11 1.59 

16 -46 26 116 -294 366 -151 17 2.20 

17 22 80 -243 ' 321 -247 87 20 2.94 

18 2 2 44 -354 436 -162 -32 3.05 

19 16 40 -432 264 169 -80 -23 2.24 

20 41 162 -405 299 -34 -58 5 3.02 

21 13 261 -202 -279 235 -9 19 1.90 

22 

-29 -141 230 264 -227 -109 -12 2.89 

23 -2 -140 321 -78 -280 180 1 2.57 

24 -7 54 -151 352 -348 87 -13 1.60 

25 17 -148 -99 470 -251 15 4 3.79 

26 26 52 -233 300 -268 121 -2 1.60 

27 105 -154 120 185 -334 102 24 3.84 

28 -70 98 128 -277 276 -151 4 3.72 

29 18 24 -297 406 -195 60 16 1.53 



Table 7.7 

Normalized estimates of c components for sugar returns 

Components sum length 
----- -------- --------- -------- --------- ----- of of 

Period 
-------- 

1 
-------- 

2 
-------- 

3 
--------- 

4 
-------- 

5 
--------- 

6 
---------- 

comps. 
------------ 

vector 
-------- 

1 204 -35 -56 -214 -177 315 37 3.28 

2 -107 -15 102 398 -353 -24 1 6.83 

3 -74 322 -130 -279 -12 . 
183 10 2.19 

4 -10 -166 123' 370 -248 -83 -14 3.72 

5 -22 82 -203 203 210 -279 -9 2.33 

6 -104 322 -394 151 26 3 4 4.14 

7 -41 -31 41 -31 439 -417 -40 1.73 

8 -9 -66 406 -425 93 -1 0 2.51 

9 7 191 -419 304 19 -60 42 1.82 

10 4 -57 147 -292 353 -147 8 1.97 

11 -24 132 -292 359 -28 -167 -20 1.76 

12 -18 -45 0 398 -436 104 3 2.21 

13 -26 -91 122 -71 386 --304 16 3.60 

. 14 68 -55 24 -108 -311 433 51 1.88 

15 -84 178 -178 -- 13 -233 313 9 2.87 

16 -26 187 -209 -61 316 -201 6 6.29 

17 -70 146 68 -292 -134 291 9 2.41 

18 44 -42 143 -458 299 14 0 2.56 

19 -1 -59 129 213 -450 149 -19 1.72 

20 -23 134 -312 
259 105 -166 -3 3.71 

21 -16 168 -269 -114 347 -85 31 9.08 

22 33 -242 139 329 -117 -141 1 2.35 

23 -20 -19 -37 -150 504 -270 8 2.07 
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Table 7.8 

Normalized estimates of c components for rubber returns 

Components sum length 
----- -------- -------- --------- -------- ------ of of 

Period 
--------- 

1 
------- 

2 
-------- 

3 
-------- 

4 
--------- 

5 
-------- 

6 
----------- 

comps. 
------------ 

vector 
-------- 

1 58 129 110 -506 11 186 -12 2.11 

2 62 -114 87 -120 337 -280 -28 3.69 

3 -13 -111 263 10 -363 239 25 1.83 

4 77 -12 331 -223 -262 94 5 3.01 

5 28 -53 172 -327 302 -118 4 2.86 

6 36 -60 5 365 -460 74 -40 2.99 

7 69 41 -380 250 138 -121 -3 2.58 

8 -64 119 172 137 -453 55 -34 2.07 

9 89 -324 83 376' -11 -117 96 2.29 

10 -79 186 -38 83 -390 223 -15 2.74 

11 -32 50 -341 440' 4 -132 -11 3.42 

12 63 -134 136 -180 292 -196 -19 3.63 

13 26 8 -80 201 -414 271 12 2.89 

14 -3 96 -299 116 291 -196 5 2.05 

15 28 -9 -210 -122 468 -162 -7 2.41 

16 -21 203 -117 -279 299 -81 4 5,83 

17 -15 46 -49 -205 453 -231 -1 2.90 

18 4 10 -35 39 439 -472 -15 2.08 

19 3 -92 424 -390 64 -26 -17 3.22 

20 -20 386 -353 -125 62 53 3 2.61 

0 
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Table 7.9 

Frequency of maximal absolute "c' components 
(obtained from Tables 7.5 - 7.8) 

---------------- ----- ------ 
Component 

------------- ------ ---- 

-------- 
no. of periods 

----------------- 
1 

----- 
2 

------ 
34 

------------- 
5 

------ 
6 

---- ----- 
Cocoa series 

-- 
24 

----------------- 
0 

----- 
1 

------ 
89 

------------- 
5 

------ 
1 

---- ----------- 
Coffee series 

-------- 
29 

----------------- 
0 

----- 
3 

------ 
41 

------------- 
8 

------ 
3 

---- ----- 
Sugar series 
------------- 

23 
----------------- 

0 
----- 

1 
------ 

37 
------------- 

9 
------ 

4 
---- 

Rubber series 
----------- -- 

20 
--------- -------- 

0 
----- 

1 
------ 

44 
------ ------- 

10 
------ 

1 
---- 

Table 7.10 

Frequnecy of contiguous sign combinations within c vector 
(obtained from Tables 7.5 - 7.8) 

Sign combinations 
+/+ or -/- +/+ or -/- Z value 

---------- 
Cocoa 

----------- 
c 

-------------- 
23 

-------------- 
97 

----------- 
6.76 

series 
---------- 

E 
------ 

60 60 

Coffee 
----- 

c 
-------------- 

47 
-------------- 

98 
---------- 

4.24 
series 
---------- 

E 
-------- -- 

72 
- = 

72 
----- 

Sugar 
- 

c 
-------- ---- 

37 
---- ----- 

83 
----------- 

4.20 
series 
---------- 

E 
------ 

60 60 

Rubber 
----- 

c 
------------- 

24 
--------------- 

76 
----------- 

5.20 
series 
---------- 

E 
---------- 

50 
-------------- 

50 
--------------- ----------- 

E= Expected frequency if sign combinations are random 
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corresponding summary Table 6.9. The 4th and 5th components are the 

largest in more than 50% of the periods. 

(iii) As was noted in section 6.8.1 in the analysis of the ä, 

vectors, there is an excessive switching in the sequence of signs of the 

components within any given c vector. Table 7.10 gives a summary of the 

total number of sign sequences (in. pairs) along with the associated test 

statistic Z. Recall that under the hypothesis of random sign sequences Z 

should be N (0,1) distributed. Note that all the Z values are highly 

significant. 

(iv) Note that the sum' of all the c components in each period is 

always very near zero. Thus we observe that in each period the temporally 

dependent portfolio delineated is a nearly perfect spread. As an example 

consider the 6th period of the cocoa series: 

cT (-21,82, -88,84, -392,333 

E Cý = -2 
-1 

The designated portfolio in this case would consist of long positions in 

the 2nd, 4th and 6th contracts and short positions in the Ist, 3rd and 5th 

contracts. The relative numbers of each contract are given by the 

absolute values of the components. In this case 21 short in contract 1, 

B2 long in contract 2 and so on. The total long position is 499 contracts 

and the total short position 501 contracts. The overall net position is 

given by the sum of the components, i. e. -2 ; or 2 short. A perfectly 

spread portfolio2 would have an overall net position of zero. This 

portfolio of contracts over 6 delivery dates is an extremely complex 

multivariate spread and although not a perfect spread the risk associated 

with it will be very small indeed. We return to this point later in 
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section 7.5.1. 

Reference to Tables 7.5 to 7.8 reveals that although some of the 

individual contract positions are as large as 470 the overall position of 

each portfolio is very near zero. 

It is an extremely interesting result that the temporally dependent 

portfolios that "fall out" of this analysis invariably constitute near 

perfect (though complex) spreads. We return to this point again in 

Chapter 9 when discussing the possible mechanisms giving rise to the 

observed multivariate dependence. 

(v) In the above we have outlined the observed general pattern in the 

c vectors. The pattern is very similar to that found when studying the 

ä and ' vectors. However, although these patterns are ' discernible and 

very similar across commodity series, there is still a great deal of 

variation in the estimates of particular c components from period to 

period. As in the case of the variation observed in the ä and b 

vectors we suggest two possible explanations: 

(a) Whatever the mechanism that is causing the observed multivariate 

serial correlation (MVSC), its nature and its effect on the set of 

multivariate returns is changing from period to period. As a result the 

maximally temporally dependent portfolios cTxt will also change from 

period to period. In some periods more weight will be put on the 4th 

contract and in others more weight will be put on the 5th contract and so 

on. In short, one possible explanation for the observed variation in c 

is that the real vector c is varying. 

(b) The mechanism that is giving rise to the observed MVSC is the 

result of some persistent phenomenon in the commodity futures markets. 

The underlying MVSC is thus also a constant [as appears to be the case 

when examining the correlation coefficients]. Accordingly the c vector 
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should also be fixed and constant. If this were the case then the 

observed highly variable components of c must be explained by sampling 

variation. This certainly could be the case. Recall the extreme 

variations in the a, b vectors observed. As noted the estimation 

problem associated with the inversion of near singular matrices yields 

highly variable results. We return to this suggestion again in section 

7.6. 

7.5 A statistical examination of the ex post temporally dependent 

portfolios 

It was decided to examine the 96 sets of time series, 

cTxt delineated by the methods of section 7.2. We know that 

the series will exhibit negative serial correlation but it will also be 

interesting to discover if (i) the serial correlation is caused by one or 

two outliers, (ii) if the series have temporal dependencies at lags other 

than one day. 

Rather than list the results of all the usual statistical tests on 

all 96 series we summarize our findings in the following brief statements. 

7.5.1 Distribution o4 returns 

Some of the distributions of returns appear to be normal and 

certainly nearly all were symmetrical. This is not a surprising result 

since, as reported in Chapter 5, on the multivariate study of individual 

contract returns, the joint distribution could be considered as being 

generated from a multivariate normal process. Not surprisingly, there 

also appeared occasional large spikes and/or sudden chages in the 

variability of returns. The large spikes in the series could usually (but 
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not always - see Chapter 9) be explained by large spikes in the joint 

distribution of individual contract returns. 

The Means of the returns were all not significantly different from zero. 

The standard deviations of the returns were all very much smaller 

than the standard deviations of returns of a contemporaneous individual 

typical contract. Table 7.11 lists the standard deviations of returns on 

the cTXt series, the standard deviations of returns on the contract 

that is nearest maturity and the ratio of these two measures. Note how 

small the ratios are. The range of values of the ratio are 0.047 to . 365 

but most are typically 0.100. Recall from section 7.4 that these series 

are returns on near perfect spread portfolios. Table 7.11 demonstrates 

the much larger risks when investing in a given contract as compared with 

a spread portfolio. 

7.5.2 A further investigation into the nature of the temporal 

dependence 

If the returns series, 2Txt exhibit a temporal 

dependence of a more complex nature than first order autocorrelation, it 

may be possible to fit a Box - Jenkins type model. The autocorrelation 

function (ACF) and the partial auto- correlation function (PACF) of each 

of the 96 series were examined and almost without exception they had the 

following patterns 

U) The first ACF coefficient was negative and highly significant. The 

remaining ACF coefficients were nearly always insignificant and 

distributed randomly positive or negative about the value zero. 

199 

I 



Table 7.11 

Standard deviations of returns on near contract and c'xt portfolio 

Cocoa series 

near 
Period 
-------- 

ct. 
-------- 

portfolio 
------------ 

ratio 
------- 

1 1102. 208. 0.189 
2 1979. 158. 0.080 
3 1493. 119. 0.079 
4 1025. 183. 0.178 
5 991. 181. 0.183 
6 3143. 300. 0.096 
7 1847. 332. 0.180 
8 2685. 529. 0.197 
9 4477. 364. 0.081 

10 10270. 662. 0.064 
11 7586. 1521. 0.291 
12 8032. 776. 0.097 
13 6828. 820. 0.120 
14 5390. 584. 0.108 
15 5107. 604. 0.118 
16 3964. 861. 0.217 
17 3448. 327. 0.095 
18 3033. 243. 0.080 
19 2499. 231. 0.092 
20 2706. 722. 0.267 
21 2511. 314. 0.125 
22 2966. 421. 0.142 
23 2821. 350. 0.124 
24 

-------- 
2412. 

--------- 
225. 

------------ 
0.093 

------ 

Coffee series 

near 
Period 
------- 

ct. 
-------- 

portfolio 
--- 

ratio 
- 

1 511. 
---------- 

102. 
- ----- 

0.200 
2 3998. 348. 0.087 
3 1168. 261. 0.223 
4 759. 84. 0.111 
5 1090. 120. 0.110 
6 1114. 127. 0.114 
7 3702. 374. 0.101 
8 4952. 247. 0.050 
9 2385. 326. 0.137 

10 3290. 333. 0.101 
11 8314. 1004. 0.121 
12 12226. 1362. 0.111 
13 13239. 1172. 0.088 
14 14279. 2358. 0.165 
15 10068. 1817. 0.180 
16 7622. 903. 0.119 
17 6201. 790. 0.127 
18 3496. 930. 0.266 
19 2944. 634. 0.215 
20 6788. 589. 0.087 
21 5753. 631. 0.110 
22 4590. 554. 0.121 
23 4042. 424. 0.105 
24 2195. 391. 0.178 
25 2471. 383. 0.155 
26 6155. 831. 0.135 
27 1650. 386. 0.234 
28 2340. 420. 0.180 
29 

------- 
2585. 

-------- 
387. 

------------- 
0.150 

------- 
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Table 7.11 continued 

Standard deviations of returns on near contract and cTxt portfolio 

Sugar series 

near 
Period ct. 

-- - 
portfolio 

------------ 
ratio 

------ -------- 
1 

----- - 
1097. 400. 0.365 

2 1076. 85. 0.079 
3 392. 48. 0.121 
4 307. 32. 0.105 
5 301. 23. 0.075 
6 296. 28. 0.094 
7 497. 93. 0.188 
6 472. 60. 0.127 
9 446. 53. 0.119 

10 228. 44. 0.192 
11 305. 29. 0.096 
12 188. 28. 0.149 
13 243. 38. 0.157 
14 164. 47. 0.285 
15 152. 26. 0.171 
16 140. 19. 0.139 
17 157. 28. 0.176 
16 184. 20. 0.108 
19 275. 18. 0.067 
20 138. 12. 0.083 
21 188. 14. 0.075 
22 138. 24. 0.171 
23 335. 33. 0.098 
24 

-------- 
382. 

--------- 
- 

------------ 
- 

------ 

Rubber series 

near 
Period 
-------- 

ct. 
------ 

portfolio 
--------------- 

ratio 
------ 

1 40. 8. 0.201 
2 80. 15. 0.184 
3 58. 11. 0.197 
4 43. 10. 0.234 
5 107. 28. 0.265 
6 111. 32. 0.287 
7 147. 24. 0.161 
8 86. 29. 0.333 
9 97. 21. 0.212 

10 66. 13. 0.189 
11 57. 11. 0.199 
12 66. 7. 0.106 
13 76. 9. 0.118 
14 83. 7. 0.087 
15 84. 7. 0.088 
16 86. 11. 0.128 
17 101. 13. 0.125 
18 108. 9. 0.087 
19 72. 8. 0.117 
20 

-------- 
92. 

------ 
7. 

--------------- 
0.073 

------ 

201 



(ii) The first PACF coefficient, by definition, is equal to the first ACF 

coefficient and so was found to be negative and significant. The second 

PACF coefficient was found to be negative and smaller than the first PACF 

coefficient. The third PACF coefficient was found to be negative and 

smaller than the second PACF coefficient and so on. The absolute value of 

the PACF coefficients decayed with increasing lag. 

This pattern of ACF and PACF coefficients is consistent with a simple 

moving average process of order 1. Fitting 96 simple moving average 

models produced 96 estimates of the first order parameter. These 

estimates were in the range 0.50 to 0.70 . 

So a tentative model of the series of returns is: 

OýTxt et - 0.65 et_t X7.10) 

et = random disturbance, E At ) II 0, V (et ) o2 ,E (et et., ) 

for all i. 

Obviously one could spend considerable time on a further examination 

of Box Jenkins type models to explain the returns. We leave such a more 

detailed discussion to another study. We will return to the model (7.10) 

later. 

7.5.3 The influence of anomalies in the returns 

It is well known that the presence of a single anomalous value can 

seriously affect the value of the first order serial correlation 

coefficient. How much of the negative serial correlation is due to some 
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of the large spikes found on close examination of the series? 

All 96 series were examined pictorially for large spikes. Those 

series that were found to contain anomalous observations were examined 

again with the value of the outlier reduced and "brought into line" with 

the rest of the series. In all cases the value of the first ACF and PACF 

coefficients were reduced slightly, but still remained significant. The 

overall patterns of the ACF's and the PACF's remained unchanged. As 

suspected, the values of the corresponding first order moving average 

parameters were also slightly reduced. 

So although the anomalies tend to exaggerate the first order serial 

correlation, the "adjusted" series were found to still exhibit significant 

temporal dependence. It is interesting to compare these results with 

those of section 5.3.4. In section 5.3.4 highly significant multivariate 

serial correlation coefficients of lag 1 day are reduced (but still remain 

significant) by the removal of anomalous values. 

7.5.4 Runs tests an the series a trading rule idea 

A series that exhibits negative serial correlation of lag I day 

should also produce significant values in a runs test. Runs tests on all 

96 series were carried out, and produced highly significant results. In 

every series there were too many runs above and below the median value. 

Adjusting the anomalies found in some series yielded identical results 

(because the runs test is robust to outliers). 

It is interesting to look at a particular cTxt series. As an 

example consider a plot of the rubber series from the 13th period in Fig. 

7.1. In this series there are 64 observations; 32 above the median and 32 

below the median. Using the expression given in section 3.2.1 we see that 
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the expected number of runs above and below the median is 33. The 

observed number of runes is 47. There is an excessive reversalling in the 

returns. 

It is even more interesting if we consider the 

that resulted in this particular returns series. See 

are considering the prices of a new asset; a portfolio 

positions in commodity futures contracts of various 

see that the "price" of this asset is fluctuating in a 

In particular, if the "price" falls (rises) from day i 

more likely to rise (fall) from day i to day i+I than 

7.6 A pooled vector 

series of "prices" 

Fig. 7.2. Here we 

of long and short 

maturity dates. We 

non random manner. 

-I to day i, it is 

fall (rise). 

We see from section 7.4.2 that although the normalized c vectors 

vary from period to period there is a discernible pattern in the 

distribution of the individual components. Tables 7.9 and 7.10 give a 

brief description of this distribution. In section 7.4.2 we suggest that 

the observed variation in the components of c could be simply due to 

sampling variation and problems associated with the inversion of nearly 

singular Sis matrices. 

Is it possible to find one grand average c vector that will be most 

temporally dependent throughout the entire 5 year period? If the 

mechanism giving rise to the observed MVSC is in fact due to some constant 

phenomenon then the estimation of the one overall temporally dependent 

portfolio "CT xt should be possible. In order to calculate such an 

average c vector we will need to estimate average Vst and V12 matrices. 

In the case of the coffee series, for example, we will need to average 

29 individual estimates of Vas and V12. As noted in section 6.9 in the 

computation of a grand average a, b vector, the tremendous variation in 
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variances and covariances over time will mean that estimates made in 

periods of high variation will completely swamp estimates made in periods 

of low variation. What is needed is a procedure that is variance free. 

The obvious step is to consider the possibility of estimating c from 

correlation matrices Ri, and Rez. 

7.6.1 Temporally dependent portfolios using correlation matrices 

Below we show that by considering an appropriate transformation of 

the returns vector, ! Lt, it is possible to compute c from the 

partitioned correlation matrix. 

Using the notation of section 7.1, consider a non singular 

transformation of the returns vector xt as follows: 

X*t ° UT Xt ' X~t-s ° UT Xt-s 

Vor (x"t) = Vor (UT xt) 

or V*11 ® UT V11 U 

and Coy (x"t, x"t_, ) = Coy (UT Xt, UT Xt-, ) 

or V"12 = UT V12 U 

In order to find the vector c" such that C*T Xt and 

c"Txt_, are maximally negatively correlated, we find the eigenvalues and 
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eigenvectors of A*, 

A" = V'*-lll (V*12 + V*21) 

[UT V11 U3-1 [UT V12 U+ UT V21 U] 

= U-1 V-111 (UT) -l UT N12 + V21) U 

A" = U-1 V''11 (VI2 + V21) U..... (7.10) 

It is a standard result that the eigenvalues of A and A* are identical and 

further than if c is an eigenvector of A for 2Y then c (UT)-1 c 

is an eigenvector of A" for 2 Y. If we let U= [diag V,, 7'112, then 

V`11   [ding Vas]-112 Vii [diag Vß, ]'112 

i. e. V"ii a Rii 

matrices of correlation coefficients 

and V"12 Rýý 

So the temporal correlation coefficient (Y= 1/2 eigenvalue) obtained 

using the V and R matrices are identical. - The c vector can be computed 

from the c" vector (obtained using the correlation matrices) as follows: 

UT c` = [diag y11]'112 c. (7.11? 

Each component of c will be the component of c" divided by the 

standard deviation of the return on that component. Note that with this 
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particular transformation, A" can be expressed in terms of the R, 

matrices: 

R-'ii IRsz + R22) ..... (7.12) 

7.6.2 Computing the pooled R matrix 

Recall from section 6.9.3 the remarks made concerning the computation 

of average correlation coefficients. For reasons noted in that section we 

decided to estimate average or pooled correlation matrices R i, and 

R12 over the entire 5 year period using the technique of Donner and 

Rosser. In the case of coffee, for example, 29 individual estimates of 

each of the 15 components of R11 and 36 components of R12 are computed. 

The pooling is carried out using the expression (6.9.3). 

7.6.3 Computing various pooled R matrices 

Computing one pooled estimate of Ri, and R12 and the substitution 

into (7.12) will yield one grand estimate of e for the entire 5 year 

period. However this single result will still not inform us as to the 

stability or otherwise of the population parameters. It was decided to 

produce a number of pooled estimates of c. Accordingly we produced 

estimates obtained by pooling R values over period 1 and 2, then another 

estimate by pooling over periods 1,2 and 3, and so on until finally we 

obtain an estimate by pooling over all (29 in the case of coffee series) 

periods. 

7.6.4 The pooled serial correlation coefficients 

The various pooled estimates of, f, the serial correlation 
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coefficients are given in Tables 7.12 to 7.15. They are all negative. 

Note that over the initial 4 or 5 periods there is some small variation in 

the values but that the estimates rapidly stablize to a value of around 

- 0.455. The final values are identical to or very slightly smaller than 

the corresponding pooled estimates of the canonical correlations presented 

in Table 6.12. 

It would appear then, that almost all of the MVSC witnessed in the 

series could be explained, not necessarily by the complex considerations 

-of a and b vectors outlined in Chapter 6 but by a single vector c. 

7.6.5 The pooled estimates of c and c" 

Note that c given by (7.11) in terms of c" requires the diagonal 

components of (V11)'1'2, the standard deviations of the returns on the 6 

components of xt. These standard deviations- (o1, v2,..., 176) vary 

tremendously from period to period and so the question arises as to what 

values we should use. For consistency we will of course consider both c 

and co after normalization. What effect does the division by each 

standard deviation in expression (7.11) have? If all the v. 's were 

identical it is easy to see that each ct a c",, i"i,.., 6. Recall the 

study of returns on the four contracts that are nearest maturity in 

section 5.2.1. We observed that in most (but not all) periods the 

standard deviations were very similar in magnitude but that generally they 

tended to be smaller the more distant the maturity date was, i. e. 

(c1>o2>... >cd. ). Equation (7.11) implies that the components of c 

associated with the more distant contracts (eg cz, c& ) will be larger 

then the corresponding components of c", (c"z, c"s). By a similar 

reasoning the values of the components of c associated with the 

contracts that are near maturity (e. g. c,, C2) will be smaller than 
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Normali: ed estimates 0r values and c comoon=nts for cocoa returns 
using cumulative average correlation matri_es 

Components sum 
----- ------- --------- -------- --------- ------ of 

Perim 
-------- 

1 
-------- 

? 
------- --------- 

4 
-------- --------- 

6 
---------- 

omps. 
------------ --------- 

1 9 78 -382 338 151 42 " 66 -0.442 

2 - 72 122 - 350 366 -7 - 83 - 24 -0.400 

3 - 30 -64 -323 372 59 -153 , - 11 -0.400 

4 -31 199 -343 390 -119 17 13 -0.388 

5 - 22 136 - 390 367 - 85 0 6 -0.478 

6 - 25 152 - 384 . 347 -88 4 6 -0.472 

7 -10 113 -379 391 - 93 -14 9 -0.475 

8 -11 115 -389 389 - 75 - 22 7 -0.477 

9 -10 112 - 387 391 - 87 - 13 6 -0.475 

10 - 10 . 117 - 390 386 - 84 - 14 5 -0.474 

11 - 12 "119 - 377 383 - 101 -9 3 -0.475 

12 - 13 "107 - 369 "395 - 109 -8 "3 -0.473 

13 -3 "92 - 345 . 40 5 - 151 5 -,,,, 3 -0.474 

14 -4 "136 - 431 -365 - 32 - 32 2 -0.472 

15 "2 111 - 399 "386 - 49 - 53 -2 -0.469 

16 --9 116 - 313 387 -128 - 48 5 -0.455 

17 -7 "114 - 324 "389 - 102 - 65 5 -0.456 

18 -7 119 - 337 384 - 80 - 73 6 -0.456 

19 -6 119 - 337 383 - 99 - 55 "5 -0.454 

20 -9 118 -319 385 -129 - 40 6 -0.454 

21 -8 "109 - 304 395 - 154 -31 7 -0.453 

22 -9 110 - 302 393 - 160 - 26 6 -0.453 

23 -9 109 -299 394 --163 - 26 6 -0.454 

24 -8 Atli -306 392 -160 - 23 6 -0.452 
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Table 7.13 

Normalized estimates of f values and ccomponents for coffee returns 
using cumulative average correlation matrices 

Components sum 
----- -------- --------- -------- --------- ----- of 

Period 
--------- 

1 
------- 

2 
-------- 

3 
--------- 

4 
-------- 

5 
--------- 

6 
----------- 

comps. 
----------- 

It 
-------- 

1 -26 7 288 -179 186- -314 -38 -0.716 

2 -15 -16 300 -148 191 -330 -18 -0.654 

3 26 30 249 68 ""244 383 1 14 -0.556 

4 18 62 -267 145 224 283 17 -0.526 

5 32 1 181 173 312 302 15 -0.519 

6 -29 -3 -181 -226 -310 252 -13 -0.503 

7 -28 -4 -. 203 -250 291 -224 -12 -0.504 

8 -28 -5 -211 -261 -283 -212 -12 -0.499 

9 -22 -20 -221 -254 -272 -210 -13 -0.487 

10 29 -2 -191 245 -302 231 10 -0.484 

11 -28 -1 -184 -236 -309 -241 -11 -0.483 

12 -29 -14 -181 -260 -301 -215 -8 -0.475 

13 -27 -6 -171 -237 -319 -240 -8 -0.466 

14 -36 -152 -100 -450 -15 -247 -2 -0.455 

15 17 -13 89 -91 -394 395 3 -0.475 

16 -32 - 
55 

-102 -7 - 445 -360 -1 -0.462 

17 -38 - 72 -18 -231 -426 -214 -3 -0.456 

18 27 -3 -124 285 -370 190 5 -0,477 

19 27 4 -145 319 -353 153 5 -0.452 

20 -27 -11 -153 -324 -345 -140 -4 -0.444 

21 -25 -14 -158 -333 -340 -130 -4 -0.437 

22 25 21 -160 332 -338 125 5 -0.427 

23 26 12 -165 353 -332 112 6 -0.425 

24 24 16 -162 356 -336 107 5 -0.440 

25 -23 -7 -163 -372 -335 -101 -5 -0.439 

26 23 10 -165 366 -332 103 5 -0.443 

27 22 8 -138 338 -359 134 5 -0.451 

28 -22 -7 -138 -324 -360 149 -4 -0.458 

29 -22 -4 139 -335 359 -141 4 -0.461 



N rma1i: e tlrates :t~ values and c components or su; a- returns 
Lily Cumulative average correlation -, Btri: Es 

, cmrcnents sure 
----- -------- --------- -------- --------- ----- c1 

Period 
------ 

2 Z 4 5 cctaps. - 
-------- 

1 
- - 

286 
-------- 

-39 
--------- 

-71 
-------- 

-191 
--------- 

-152 
---------- 

260 
------------ 

93 
-------- 

-0.592 

2 279 -198 184 -268 -17 54 34 -0.561 

3 332 -206 97 -150 -130 85 28 -0.538 

4 69 -280 190 204 38 -218 3 -0.508 

5 -102 249 -103 -208 -89 249 -4 -0.491 

6 -206 337 -224 94 -75 65 -9 -0#470- 

7 35 -5 134 -408 -74 344 26 -0.444 

8 -9 -24 -160 "347 133 -327 -22 -0.438 

9 -2 -103 -334 -342 -47 -171 -15 -0.440 

10 1 - 47 152 -327 349 -124 "4 -0.450 

11 1 -55 164 -327 337 -117 3 -0.447 

12 2 -22 113 -350 387 -126 4 -0.452 

13 2 -20 108 -340 391 -138 3 -0.445 

14 -11 9 75 -322 416 -167 0 -0.431 

15 0 1 75 -326 424 -174 0 -0.416 

16 -8 12 64 -309 424 -183 0 -0.414 

17 -10 "15 -55 -291 429 -200 -2 -0.416 

18 16 10 66 *315 - 423 x"180 2 -0.412 

19 4 - 14 - 62 ' 331 - 424 1.64 -1 -0.415 

20 1 -5 - 73 332 - 422 167 -0 -0.414 

21 3 - 11 - 68 "327 - 422 "169 2 -0.413 

22 3 - 12 - 65 "336 - 425 "160 -3 -0.411. 

23 "5 15 - 62 331 - 424 163 -2 -0.412 

24 7 - 20 - 56 330 -425 162 -2 -0.412 
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Nornali: ed estimates of T values and : Components Or -t r returns 

using cumulative average correlation matrices 

Componen ts sum 
----- -------- --------- -------- -------- ------ Vc 

Period 
-------- 

1 
-------- 

2 
-------- --------- 

4 
------ 

5 
-------- 

6 
----------- 

Camps. 
------------ 

IV 
-------- 

1 83 148 102 -482 1 184 36 -0.555 

2 -49 88 -161 299 -303 99 -27 -0.468 

3 63 -52 3 -204 457 -221 46 -0.458 

4 -38 17 133 72 -479 260 -35 -0.403 

5 -24 69 -138 274 -351 144 - 26 -0.470 

6 -14 44 -129 330 -372 111 -30 -0.460 

7 -19 70 -151 278 -336 146 -12 -0.474 

8 -24 " 73 -137 300 -345 122 -11 -0.466 

9 -25 71 -130 305 -354 116 -17 -0.463 

10 -27 80 -112 281 -368 131 -15 -0.462 

11 -24 -80 -127 -288 -355 -126 -12 -0.455 

12 -26 87 -134 274 -344 134 -9 -0.454 

13 -24 82 -133 "279 -347 135 -8 -0.454 

14 -22 80 -129 275 -351. 142 -5 -0,453 

15 -22 79 -121 272 -360 145 -7 -0.453 

16 22 - 81 -119 -269 361 -- 148 4 -0.452 

17 20 -- 74 109 - 269 373 - 154 ,. 5 -0.454 

18 20 - 74 "102 - 263 379 - 161 3 -0.453 

19 '21 70 105 -" 269 376 - 159 4 -0.453 

20 
'20 -- 69 .. 102 - 267 380 162 -4 -0.451 
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the corresponding componenets of c` (e. g. c",, c02). Equation (7.11) 

affords a gentle rescalling of co to c. 

However the comparison of some estimates of c" and c from a 

number of sub samples studies shows the difference to be remarkably small. 

Because of this slight difference and the ambiguity as to what values of 

0*, 02 etc to choose we simply report the various pooled c" vectors 

computed from (7.12) and bear in mind that the far components should 

probably be slightly larger and that the near components should be 

slightly smaller. See Tables 7.12 to 7.15 for the c" estimates. 

Referring to Tables 7.12 to 7.15 one sees that, as with the serial 

correlation coefficients, , there is an initial instability in the 

pattern of the individual components of co. However after the first 6 

or 7 periods the pooling seems to produce remarkably stable c" vectors. 

The final estimates of c" are almost identical to the grand average 

estimates of a and b vectors produced in section 6.9. 

What are we to conclude from these results? It certainly looks as if 

it is possible that there is an underlying constant c vector. The 

vector is slightly different for each future series but the overall 

picture is very much the same. The components with the highest 

contribution to the portfolio of returns are the 4th and 5th in the case 

of the coffee, sugar and rubber series and the 3rd and 4th in the cocoa 

series. In 4 series the grand average pooled results are almost a perfect 

multivariate spread. 

7.7 Conclusions of Chapter 7 

The discovery of persistent multivariate serial correlation outlined 

in Chapter 5, its special nature investigated in Chapter 6 and the 

discovery, in this chapter, of a particular portfolio c that could 
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explain most of the observed temporal dependence suggests a possible model 

for the multivariate distribution of prices. This model is further 

investigated in Chapter 9. 

In Chapter 8 we consider the application of a number of trading rules 

based on these temporally dependent portfolios. 

Footnotes for Chapter 7 

1. These a,... values have been computed on the unlogged 

returns. 

2. We are using the term perfect spread here to mean a net overall 

neutral position. The resulting spread may of course not be 

perfect in the sense of zero risk. 

3. The P(Z. ) value associated with this result is 0.004. 
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CHAPTER 8 

TRADING RULES 

In this chapter we examine the application of three trading rules 

designed to exploit the observed multivariate serial correlation. The 

layout of this chapter is as follows. In section 8.1 we outline the 

results of a study into the temporal dependence of ex ante portfolios. In 

section 8.2 the general idea of a scheme that could exploit excessive 

price reversaling is introduced. In section 8.3 the first trading rule 

(rule l)-is outlined along with a discussion of the results obtained by 

applying the rule to all four series. In section 8.4 a slightly more 

sophisticated rule (rule 2), one which is designed to produce a smoother 

flow of returns, is described. In section 8.5 we consider the impact of 

transaction costs on these rules and in section 8.6 we explicitly 

incorporate such costs into our final trading rule, rule 3. In section 

8.7 we compare the returns from applying these rules to the returns 

received by investing in single commodity futures contracts and in the 

British Stock Market over the same period. In section 8.8 we consider the 

application of simulationeously applying rule 3 to all four series. The 

practical limitations of applying these rules is dealt with in section 8.9 

and concluding comments are made in secion 8.10. 

8.1 An ex ante analysis of temporally dependent portfolios 

In Chapter 7 we demonstrated that it was possible to find in each 

period ex post portfolios of commodity futures contracts that exhibited 

negative serial 'correlation but that the portfolios were not the same 
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from period to period. A trading rule designed to exploit negatively 

serially correlated returns series must be able to select ex ante 

portfolios that are still negatively serially correlated. How can this be 

achieved? We consider three possibilities: 

fi) Use a grand average estimate based on all previous periods. If we 

believe the underlying population c vector is fixed, each additional 

period will provide information on the vector. Using the grand average 

technique of section 7.7.4 one could pool all the estimates of the R 

matrices from period 1 to i in order to obtain an estimate of c for 

period i+1. 

(ii) If the underlying c vector is changing, then the grand average 

technique suggested in ti) above will not be appropriate. Averaging the 

R matrices over all periods will not yield valid estimates for c in 

period i+1. It may be more useful to consider a weighted averaging 

technique, a procedure that will place more weight on the most recent 

estimates. The author has experimented with exponentially smoothed 

estimates of correlation matrices and has encountered problems, 

particularly in arriving at positive definite estimates. 

(iii) Although we see from Tables 7.5 to 7.8 that the c estimates vary 

from period to period, we could let c, be the predictor of c,. t. 

If the underlying c vector is changing from period to period this 

procedure will surely be optimal'. 

It was decided to find which of the schemes mentioned above would 

yield superior ex ante estimates of c. A measure of the effectiveness 

of these estimates will be the degree of negative serial correlation 

witnessed in period i+I using the estimates derived in period i. 

Accordingly we used methods (i) and (iii) above to compute estimates of 
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c in period I. The serial correlation coefficients of the resulting 

portfolio of returns cTIx in period (i + 1) were computed using 

estimates of c from period I. The method that yields the ex ante 

portfolios with the maximum negative serial correlation will be superior. 

In Tables 8.1 to 8.4 we list the results of this study. Also given in 

these tables are the maximum negative serial correlation coefficients that 

one could have obtained ex post. 

Referring to Tables 8.1 to 8.4 we note that, with the exception of 

one period in the coffee series, all (i. e. 92) ex ante portfolios exhibit 

negative serial correlation coefficients using methods (i) and (iii). 

This is an extremely encouraging result. It appears then that it is 

possible to contruct ex ante portfolios that will in future periods 

exhibit the hoped for excesive price reversaling. 

We now turn our attention to the question as to which method produces 

superior results. Consider the ex ante coefficients in Tables 8.1 to 8.4. 

In each period an asterisk appears in either column 2 or 3. The asterisk 

denotes the particular technique which produced the largest negative 

serial correlation. The results for the cocoa, sugar and rubber series 

are very similar. The ratio of the total number of periods in which 

method (i) is superior to method (iii) is almost exactly 2 to I in each of 

the 3 series. For the coffee series the result is almost exactly the 

opposite. These results are mirrored in the average ex ante serial 

correlation coefficients. For the cocoa, sugar and rubber series the 

average ex ante serial correlation coefficient is more negative using 

method (i) and for the coffee series the average using method (iii) is 

more negative. It must be pointed out, however, that the difference 

produced by the two methods is very small indeed. 

For comparison, the averages of the ex post serial correlation 

coefficients are also given in Tables 8.1 to 8.4. In all 4 series the ex 
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ante portfolios produced using methods (i) or (iii) have a much reduced 

degree of negative serial correlation: typically about half the negative 

serial correlation that could have been obtained ex post. 

8.2 A reverse filter rule 

How can one exploit the negatively serially correlated return series 

obtained in all the sub periods examined? One possibility would be to 

investigate the modelling of these series using Box - Jenkins techniques. 

If the ex ante portfolios could be explained by simple moving average 

processes originally mentioned in section 7.5.2, then it may be possible 

to forecast the price of the series at some future time horizon and trade 

accordingly. 

However a trading rule that is possibly much simpler to consider 

would be the use of a reverse filter rule. One such rule could be : if the 

price of the portfolio moves up a large amount, say x%, sell and close out 

the next day, if the price falls a large amount, say xX buy and close out 

the next day. Loeb (1979) noticed a small degree of negative serial 

correlation. in some of the simple spread series he examined and 

experimented with this type of reverse filter rule. His results were 

disappointing, with the rule only invoking one trade about every two 

years. In the next section we set out in detail the first of three trading 

rules used in this study. 

8.3 Trading rule i 

To outline the rationale and the results of the trading rule it is 

helpful to consider a 
. 
particular sub-period in detail. To this end we 

present as an example the ex ante portfolio prices of the 17th rubber 
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series plotted in Fig. 8.1. Below we explain how this series is arrived 

at. 

Recall from section 8.1 that it was found that of the two suggested 

methods for calculating 2 (the one using the average correlation 

matrices of all the previous periods) seemed to produced optimal results2. 

Accordingly the "C' vector used in constructing the ex ante portfolio in 

our example was computed using the average correlation matrices of all the 

previous 16 periods. The individual components of this S 
. 

vector appear 

in row 16 of Table 7.15. Note that, as in all periods, the sum of the c 

components is near zero, representing a near perfect spread. The sum of 

all the terms corresponding to long positions is very near +500 and the 

sum of all the terms corresponding to short positions is very near -500. 

It is thus possible to think of the portfolio as a complex, multiple spread 

of 500 long and 500 short positions. These numbers are very large and it 

would be much more instructive to consider the portfolio in terms of a 

typical single spread, i. e. one of 1 long and 1 short position. 

. 
Accordingly the c vectors are normalized so that E IN = 2. This 

proves to be particularly useful later on when we have to take into 

account deposit considerations. The time series plot of the 62 daily 

prices of the ex ante portfolio is given in Fig. 8.1. The units are in 

£'s per unit spread (I net long and 1 net short position). 

Note that more than 50% of the prices in Fig. 8.1 are negative. 

These represent situations in which the contracts that are held in short 

positions have on average, a higher price than the contracts that are held 

in long positions. The use of a% type reverse filter rule is thus 

impracticable; Instead we consider an absolute price change type reverse 

filter rule. 

Consider the returns on the above portfolio. The price differences, 

are plotted in Fig. 8.2. We construct a fixed band above and below the 
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Table 8.5 - Trading Rule 1 on 17th Rubber Series 

Width of N band in Fig. 8.2 £15.12 mf1.4 x St. dev of returns in 
in 16th period 

--------------------- 
No. of days into 

-- ------------------ 
Signal 

------------- --------- 
Profit received 

period 17 signal CB=buy, S=sell? on closing the 
occurs 

----------------- ------- 
following day in £'s 

----------- - - - ---- 
5 

------------- 
B 

----- - - - 
8.84 

13 B 7.28 
21 S 28.16 
22 B 40.98 
23 S 23.38 
24 B -27.74 
28 B 10.72 
30 S 20.84 
31 B 14.48 
35 S 49.46 
36 B 32.78 
37 S 22.14 
38 B -2.72 
55 S 7.86 
58 S 25.14 
59 

------------------ 
B 

---------- - 
-6.58 

---------------- --- --- ----- ---- 
£ 255.00 

Total no. of buy signals 69 

Total no. of sell signals =7 

Total no. of signals = lb 

Total profit on period = £255.00 

Average profit per trade z £15.94 
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zero return line. This band encompasses a region we designate as region N 

(for null). The rule is as follows. If the price of the portfolio rises 

significantly, the returns will leave region N and enter the region S and 

we interpret this as-a sell signal [denoted S in Figs. 8.1 and 8.2 ]. The 

portfolio is sold at that price and the position is closed out the very 

next day, whatever happens to the price, by a purchase. Using similar 

reasoning, *if the price falls significantly the returns will enter region 

B and we interpret this as a buy signal [denoted B in Figs. 8.1 and 8.2 ]. 

The portfolio is bought at that price and the position is closed out the 

very next day by a sale, whatever happens to the price. Note that if the 

returns plot swings from region S straight into region B our rule dictates 

that the original position (sold short) be closed out and a further, 

opposite position be entered by another buy transaction. 

In the use of this rule on the data set given it should be noted that 

we are making three major assumptions: 

(i) One can get transactions at the close of day prices on that day. 

(ii) Transactions are executed at the one price - the seller prices used 

in this study. 

(iii) There are no transaction costs involved. 

Later in this chapter we attempt to bring transaction costs into 

account. We return to the problems associated with assumption ti) and 

(ii) in section 8.9. 

Table 8.5 gives in more -detail the results of applying the trading 

rule to the 17th rubber series. A profit of £255 or £15.96 per trade over 

the short period of 62 days is very encouraging, particularly when one 

considers that at that time the deposit recommended by the ICCH for 

traders in rubber futures dealing in spreads was £300 per spread. Before 
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we go on to consider the results for the entire 5 year period, it is 

important to note why the band width of region N was set to ± £15.12. 

It was noticed in studying many of the ex post and ex ante returns 

series that a good deal of the negative serial correlation could be 

attributed to the larger swings. The reverse filter rule was constructed 

to exploit these large swings. The width of the region N should be set in 

such a way as to produce the maximum number of profitable signals, i. e. 

signals that result in large and opposite returns the very next day. If 

the band is set too narrow, many signals will occur with the possible 

execution of many loss-making trades. If the band width is set too wide, 

the frequency of signals would be so low as to make the trading rule 

inpractical. It was decided therefore that a useful technique would be to 

set the band to a suitable multiple of the standard deviation of the 

returns. The question then arises "what is the standard deviation of the 

returns"? We cannot use the ex post value for period 17 and so an obvious 

and reasonable candidate is the standard deviation of the returns of the 

most recent series. In this particular example we set the band width to 

a value of' 1.4 times the standard deviation of the returns estimated from 

period 16. 

We now consider the results of applying the trading rule to all of 

the 19 rubber series. Note that the first period of 58 days is used as an 

initialization period - one in which the first c vector and the first 

standard deviation of returns are computed. In each subsequent period, 

i, the c, are computed using the averages of the correlation matrices 

of all the previous i-1 periods. Also in each period, i, the width of 

region N is set to 1.4 times the standard deviation of the returns in the 

most recent period, i-1. A brief summary of the profits in each period 

appear in Table 8.6 and we make the following observations: 
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Table 8.6 

Trading Rule 1 on complete rubber series with scale factor set to 1.4 

------- --------- 
5t. dev. 

------- 
no. of 

-------- 
no. of 

-------- 
no. of 

-------- 
no. of 

------ 
no. of 

----------- --------- 
profit 

of days buy sell trades days per per 
Period 
------- 

returns 
--------- ------- 

sigs 
-------- 

sigs 
-------- ------- 

trade 
------ 

profit 
------ 

trade 
------- 

1 24.00 58 - - - - 
----- 
- 

-- 
- 

2 26.73 64 5 4 9 7.1 62.50 6.94 
3 15.99 65 2 0 2 37.5 -4.24 -2.12 
4 15.99 62 5 5 10 6.2 35.88 3.56 
5 31.95 63 12 12 24 2.6 100.86 4.20 
6 28.98 65 2 4 6 10.8 33.10 5.52 
7 69.51 65 16 12 28 2.3 983.78 35.14 
8 30.66 61 0 0 0 - 0.00 - 
9 33.57 64 7 5 12 5.3 331.46 27.62 

10 19.95 63 1 1 2 31.5 93.84 46.92 
11 14.19 65 1 2 3 21.7 -23.76 -7.92 
12 7.80 61 0 1 1 61.0 -2.44 -2.44 
13 14.31 62 12 11 23 2.7 127.18 5.53 
14 12.48 15 6 4 10 6.5 116.52 11.65 
15 9.36 65 1 2 3 21.7 44.92 14.97 
16 10.80 61 7 4 11 5.5 61.80 5.62 
17 16.26 62 9 7 16 3.9 255.00 15.94 
18 10.02 65 1 0 1 65.0 19.62 19.62 
19 18.75 65 11 9 20 3.3 194.00 9.70 
20 

------- 
21.27 

--------- 
17 

------- 
1 

---- - 
1 2 8.5 51.84 25.92 

Totals 
------- --------- ------- 

- -- 
99 

-------- 

-------- 
84 

-------- 

-------- 
183 

-------- 

------ 

------ 

----------- 
2481.86 

----------- 

------- 

------- 

Average no. of days/trade m 6.34 Average profit/trade   £13.56 

Average no. of trades/month   3.33 

St. dev. of no. of trades/month   3.32 

Monthly returns average £45.13 

Monthly returns st. dev.   £85.48 

Coefficient of monthly variation   1.89 
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(i) A total profit of £2481.86 with 183 trades, or £13.56 per trade is 

encouraging. 

(ii) Consider all 19 periods. All but 4 result in positive profits. We 

return to the question of the statistical significance of these profits in 

section 8.3.5. 

(iii) The numbers of buy (99) and sell (84) signals in each period are 

approximately equal. This result is not significantly different from a 50 

to 50 ratio. 

(iv) The number of signals in each period varies considerably. A 

maximum of 28 signals occurred in period 7. No signals occurred in period 

8. For a useful trading rule one would like a fairly constant rate of 

trading opportunities. Trading every 2 or 3 days in period 7 followed by 

a wait of 61 days without a trade in period 8 does not seem very 

satisfactory. Examination of column 2 of Table 8.6 reveals that a 

possible cause of the large fluctuations in the number of trading signals 

per period is the variation in the standard deviation of returns from 

period to period. In period 6 the standard deviation was found to be 

£28.98. Multiplying this by 1.4 we set the width of band N in period 7 to 

be ± £40.57. In period 7 the returns turned out to be more than twice as 

varied with a standard deviation of £69.51. Not surprisingly many (28) 

trading signals were observed resulting in a large profit of £983.78. In 

the next period, period 8, the band width is set to ± 1.40 x 69.51 = 

± £97.31 a very wide band. After period B the standard deviation of 

returns had fallen back to £30.66, with the net result being that no 

trading signals were generated. However, although there are a number of 

such instances in which large changes in the variation of returns produce 

'too many' or too few trades, the overall profits are very encouraging. 
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8.3.1 Monthly returns to trading rule I 

In section 8.7 we will be comparing the returns to our trading rule 

with returns from the British Stock Market. There is an immediate 

difficulty in comparing two such streams of returns. In many empirical 

studies of the stock market the standard measure is the monthly return. 

One considers buying a stock on the first day of the month and selling the 

stock on the last day of the month, recording the return as a percentage 

of the original investment. Throughout the month the investor has a given 

sum of money completely committed to the stock. This sum of money is at 

risk for the entire month and the return constitutes one payment at the 

end of each month. 

For an individual using trading rule i, in rubber say, a deposit of 

£300, approximately, is placed in an account and occasionally (in our 

example on average once every 6 or 7 days) a trade is invoked. Only at 

these times is the individual exposed to risk and the returns thus 

constitute a stream of profits over unequal intervals of time. 

In order to compare the trading rule with the more standard assests 

it was decided to present the trading rule returns as monthly returns. 

This was done by accumulating profits generated by the rule over each 

month and reporting these as a single sum. In some months, say, up to 5 

or so trades would thus produce a single profit payment that we consider 

to be received on the last day of the month. Although the risks 

associated with the rule and investing in the stock market are not 

comparable one can simply look at the two streams of monthly returns. 

Accordingly in all that follows we report, along with other information, 

the means and the standard deviations of the monthly returns in £'s per 

unit spread traded. Note that the entire period covers 55 months. 
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8.3.2 Deposits required for spread trading 

At this point it is also useful to consider the deposits recommended 

by the ICCH for traders in spreads. Although there has been a good deal 

of variation throughout the period, typical deposits required for spread 

trading were: 

Cocoa : £450, Coffee : £400, Sugar : £500 and Rubber : £300 

These are the minimum sums required to hold simultaneously I long and i 

short position. 

8.3.3 Adjusting the number of trade signals. The scale factor 

In the above example we had defined the region N to be set rigidly to 

+ 1.4 times the standard deviation of returns (estimated from the previous 

period). In the entire rubber series 183 trading signals were observed. 

An obvious way to alter the number of trading signals would be to alter 

the width of the band N. Reducing the width (choosing a smaller 

multiplier) will probably increase the number of signals, increasing the 

width (choosing a larger multiplier) will probably decrease the number of 

signals. In all that follows we will now refer to this multiplier as the 

scale factor. 

The rule was applied to all 4 series with many values of the scale 

factor. For brevity we present the results using scale factors of 0.6, 

1.0,1.4,1.8,2.2,2.6 and 3.0 in Tables 8.7 to 8.10. 

230 



Table 8.7 

Trading rule i applied to complete cocoa series 

------ -------- -------- ------- --------- 

----------- 
Days/month 

------------ 

------------------ 
Monthly returns 

------------------ 

----- 

----- 
Scale no. of profit no. of profit/ mean st. dev. coeff 

trades (£'s) days/ trade (£'s) (£'s) of 

------ -------- ------- 
trades 

-------- 
(£'s) 

--------- 
µd 

------ 
cd var. (v) 

.6 424 9435 2.74 22.25 7.7 
------ 
3.5 

-------- 
171.55 

---------- 
276.28 

------ 
1.61c 

1.0 249 8486 4.7 34.08 4.5 3.3 154.29 263.87 1.71c 
1.4 153 6300 7.6 41.18 2.8 2.7 114.55 230.39 2.09c 
1.8 96 4831 12.1 50.32 1.8 2.0 87.84 208.25 2.37b 
2.2 65 3927 17.9 60.42 1.2 1.7 71.40 210.37 2.95a 
2.6 41 4239 28.3 103.39 0.8 1.3 77.07 181.40 2.35b 
3.0 
------ 

33 
-------- 

3972 
------- 

35.2 
-------- 

120.36 
--------- 

0.6 
------ 

1.1 
------ 

72.22 
-------- 

182.88 
---------- 

2.53b 
------ 

Pd = average number of trades per month 
Td = st. dev. of number of trades per month 

Test of significant of monthly returns : small v are significant 

If v<3.71 returns are sig. diff. from zero at 5% level (a) 
If v<2.79 returns are sig. diff. from zero at 1% level (b) 
If v<2.12 returns are sig. diff. from zero at 0.1% level(c) 

Table 8.8 

Trading rule I applied to complete coffee series 

------ -------- ------- -------- --------- 

----------- 
Days/month 

- 

----------------------- 
Monthly returns 

Scale no. of profit no. of profit/ 
---- ------- -------- 

mean 
--------- 
st. dev. 

------ 
coeff 

trades (£'s) days/ trade (£'s) (£'s) of 

------ -------- ------- 

trades 

-------- 

(£'s) 

--------- 

Pd 

- 

od var. (v) 

.6 459 6034 2.53 13.15 
---- 
8.4 

----- - 
3.6 

------- 
109.71 

---------- 
189.83 

--- ---- 
1.73c 

1.0 290 4469 4.00 15.41 5.3 3.5 81.25 125.19 1.54c 
1.4 184 4025 6.30 21.88 3.4 2.8 73.18 126.28 1.73c 
1.8 125 3304 9.3 26.43 2.3 2.5 60.00 117.81 1.96c 
2.2 70 2508 16.6 35.83 1.3 1.5 45.60 110.21 2.42b 
2.6 40 1994 29.0 49.85 0.7 1.1 36.25 100.11 2.76b 
3.0 
------ 

28 
-------- 

1505 
------- 

41.4 
-------- 

53.75 
--------- 

0.5 
----- 

0.9 
------- 

27.36 
------- 

93.91 
---------- 

3.43a 
------- 
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Table 8.9 

Trading rule 1 applied to complete sugar series 

--- -------- ------- -------- --------- 
Days/month 

------------ 
Monthly 

--------- 
returns 

--------- ------ --- 
Scale no. of profit no. of profit/ mean st. dev coeff 

trades (£'s) days/ trade (£'s) (£'s) of 

------ -------- ------- 

trade 

-------- 

(£'s) 

--------- 

Pd 

------ 

vd 

------ --------- --------- 

var. (v) 

------ 
.6 423 3401 2.7 8.04 7.7 3.2 61.84 82.76 1.34c 

1.0 236 2633 4.9 11.16 4.3 2.8 47.87 89.48 1.87c 
1.4 129 1791 9.0 13.88 2.4 2.2 32.56 82.22 2.52b 
1.8 67 1346 17.3 20.08 1.2 1.7 24.46 80.89 3.28a 
2.2 40 805 29.0 20.12 0.7 1.3 14.63 41.39 2.83a 
2.6 30 417 38.7 13.90 0.6 1.2 7.58 28.51 3.76 
3.0 
------ 

23 
-------- 

348 
------- 

50.4 
-------- 

15.13 
--------- 

0.4 
----- 

1.1 
-- ----- 

6.33 
------- -- 

28.06 
--------- 

4.43 
----- 

Tah1p R_10 

Trading rule I applied to complete rubber series 

------ -------- ------- -------- ---------- 

------------ 
Days/month 
------------ 

-------- 
Returns 

-------- 

--------- 
Monthly 

--------- 

----- 

----- 
Scale no. of profit no. of profit/ mean st. dev coeff 

trades (£'s) days/ trade (£'s) (£'s) of 

------ -------- - ------ 
trade 

-------- 
(£'s) 

------- -- 
pd 

------ 
Qd 

------ --------- -- ------- 
var. (v) 

------ 
.6 457 3541 2.5 7.74 8.3 3.4 64.38 92.. 69 1.44c 

1.0 278 2866 4.2 10.31 5.1 3.5 52.12 88.33 1.69c 
1.4 183 2482 6.3 13.56 3.3 3.2 45.12 85.48 1.89c 
1.8 119 2191 9.8 18.41 2.2 2.8 39.83 80.41 2.02c 
2.2 78 1553 14.9 19.91 1.4 2.0 28.23 56.81 2.01c 
2.6 52 1088 22.3 20.92 1.0 1.5 19.78 47.47 2.40b 
3.0 
------ 

36 
-------- 

904 
------- 

32.2 
-------- 

25.11 
--------- 

0.7 
------ 

1.2 
------ 

16.44 
--------- 

49.82 
--------- 

3.03a 
------ 
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8.3.4 General discussion of results of returns to trading rule i on all 

four series 

Referring to Tables 8.7 to 8.10 we note that, not surprisingly, the 

profits obtained in each series are not exactly identical. However the 

dependence of the total returns and the number of trading signals on the 

value of the scale parameter are remarkably similar across all series. 

We make the following remarks on the general patterns observedc 

(1) For each value of the scale parameter we note that the number of 

trades invoked in each series is very similar. 

(ii) As expected, small values of the scale parameter produce a large 

number of trades. Increasingly the scale parameter reduces the number of 

trades. 

(iii) With the scale parameter set to 0.6 the average number of days 

between trades is approximately 2.6. With the largest value of the 

scale parameter set to 3.0, the average number of days between trades 

increases to about 45. 

(iv) Large positive profits result with small scale values. Increasing 

the scale, value reduces the number of trades and reduces the total 

profit. 

(v) Although the total profits and the number of trades decrease with 

increasing scale values, the average profit per trade is small for small 

scale values and increases with increasing scale values (to a spectacular 

£120.36 for cocoa series). 

NO The mean monthly returns and the standard deviation of monthly 

returns are high for small scale values and decrease with increasing scale 

values. 
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(vii) The rate of the decrease in the monthly means and standard 

deviations of the returns as the scale value increases is however not 

identical. The coefficient of variation (v = standard deviation / mean) 

is an indicator of these different rates of dependence on the scale value. 

Coefficients of variation are small for small scale values and large for 

large scale values. From this we conclude that increasing the scale value 

reduces the mean monthly return proportionately more than the standard 

deviation of the monthly returns. 

The frequency of trading signals and the association between the 

returns and the scale values are remarkably similar across all series. We 

now discuss in more detail the magnitude of returns generated by rule I in 

each series. 

Without exception, for each scale value, the ranking of the returns 

as measured by total profit, profit per trade, or profit per month are as 

follows: 

cocoa > coffee > rubber > sugar 

Over the whole period of 55 months the cocoa series gave the most 

spectacular total returns of £9,435, and the sugar series gave the least 

total returns, £3,541. When one considers that the initial deposits 

required to achieve these profits are £450 and £500 respectively 

indicating profits of 2,000% and 700X, the rule seems to be a very 

successful one. 

As early as the original works by Alexander (1960) and Houthakker 

(1939), authors have been reporting large positive returns by the 

application of simple x% filter type rules to commodity futures markets. 

Recall however that in these early works only certain values of the filter 

level produced positive profits. Many filter values produced negative 
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profits and nowhere has the statistical significance of the returns been 

tested. Note that in our study no negative total returns were found at 

all, with any value of the scale factor. 

Finally, an important consideration in the application of any trading 

strategy is the level of risk. Usually high returns are associated with 

high risk. There is no exception in the returns to rule 1. Consider as 

an example the monthly returns on the cocoa series with the scale value 

set to 0.6. Although an investor would be receiving an average of £171.25 

per month for a deposit of £450, the monthly standard deviation of returns 

is very high : £276.28. Consider the, not unlikely, possibility of two 

successive months in which the returns are I standard deviations below 

the mean (i. e. -£242.87). In such situations the deposit of £450 would be 

wiped out. In reality then, one would need to maintain deposits larger 

than the minimum sums recommended by the ICCH3. 

8.3.5 Statistical significance of returns to rule I 

The total profits and profits per trade to rule I on first sight seem 

extremely encouraging across all commodity series. Of course with any 

trading rule it is possible to end up with positive profits through sheer 

chance. What is needed is a test of significance. If the rule works, the 

returns should on average be greater than zero. An obvious and simple way 

to investigate this is to examine all the individual returns produced in 

each series. Consider in more detail, for example, the returns of the 

rule on the rubber series with a scale value of 1.0. There were n  278 

trades, an average of £10.31 per trade and the standard deviation of 

returns (not reported in Table 8.10 for brevity) of £31.48. We carry out 

235 



the classic two sided t test: 

t 10.31 -0 

I 31.48 

1 278 

+30.64 

a highly significant result. 

This test was carried out on all series with all scale values and 

with the exception of the returns on two high scale values on the sugar 

series all returns proved highly significant. 

An equivalent test can be performed an the monthly returns using the 

coefficients of variation as follows: 

t=µ -o 

vý 

or equivalently ye 

t 

J-n 

v 

with n  55 

Thus small ' statistics in Tables 8.7 to 8.10 correspond to large t 

statistics and significant values are s 3.71,2.79 and 2.12 at 5%, 1% and 

0.1X levels respectively. 

Observe from the tables that with small scale values all results are 

significant at the 0.1% level, at medium scale values some are significant 

only at the 1X level and all but 2 results at the high scale values are 

significant at the 5% level. 

This then confirms, statistically, that the returns to rule I (in the 

absence of transaction costs) are significantly greater than zero. The 

chance of receiving these very large positive returns with a series of 
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prices that follows the classic random walk is less than I in a 1000. 

8.4 Trading rule 2 

We now consider a slightly different rule in which the standard 

deviation of returns within a period is continuously updated using the 

iterative relation 

? 2t =a 
42t +ci-a) Q2t-i 

where 1t --= return on day t 

ät estimate of standard deviation of returns on day t 

aa smoothing constant t (0,1) 

In this relation we obviously assume E( 't ) 0. It is easy to 

show, that if the returns are generated from a process with a constant 

standard deviation c, then: 

EfQ2t)0 q2 as t 
ý# 00 

This new procedure is one in which each day a new estimate of the 

standard deviation is derived as an exponentially smoothed average of the 

previous days' estimates. Using this new technique, when the standard 

deviation of returns increases (decreases) the band width for the trading 

rule will be automatically increased (decreased). The rate of response to 

changes in the standard deviations will be set by the value of a. The 

results of applying this new procedure (trading rule 2, with a  . 2) to 
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Tnh1e A_11 

Trading Rule 2 on all rubber prices with scale factor set to 1.4 and 
smoothing constant set to a=0.2 

-------- -- ------- -------- -- ------- ---------- -------- 
no. of 

----------- -------- 
profit 

no. of no. of no. of no. of days per 
days buy sell trading betwee n profit trade 

Period 
- --------- 

sigs. 
-------- 

sigs. 
--------- 

sigs. 
--------- 

trades 
--------- 

in £'s 
---------- 

in £'s 
-------- ------- 

1 58 - - - - - - 
2 64 6 4 10 6.4 23.92 2.39 
3 65 5 3 8 8.1 76.42 9.55 
4 62 6 5 11 5.6 63.92 5.81 
5 63 5 4 9 7.0 148.08 16.45 
6 65 6 6 12 5.4 209.78 17.48 
7 65 8 5 13 5.0 631.34 48.56 
8 61 5 5 10 6.1 177.94 17.79 
9 64 4 7 11 5.8 370.26 29.11 

10 63 3 3 6 10.5 159.08 26.51 
it 65 5 8 13 5.0 28.36 2.18 
12 61 3 5 8 7.6 49.60 6.20 
13 62 7 8 15 4.1 138.06 9.20 
14 65 6 6 12 5.4 123.68 10.31 
15 65 6 4 10 6.5 86.62 8.66 
16 61 5 4 9 6.8 59.12 6.57 
17 62 5 6 11 5.6 229.26 20.84 
18 65 4 6 10 6.5 83.26 8.33 
19 65 8 7 15 4.3 181.72 12.11 
20 17 

--------- 
1 

--------- 
3 

--------- 
4 

--------- 
4.3 

--------- 
72.44 

---------- 
18.11 

------- ------- 
Totals 
------- --------- 

98 
--------- 

99 
--------- 

197 
--------- --------- 

£2862.78 
---------- ------- 

Average no. of days between trades a 5.92 Average no. of trades per 
month = 3.58 

Average profit per trade   £14.53 

Monthly return average £52.05 St. dev. of no. of trades per 
month   1.46 

Monthly return st. dev. _ £63.22 

Coefficent of variation = 1.21 
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the entire rubber series are given in Table 8.11. 

We now compare the results obtained using rule I and rule 2 an the 

rubber series by reference to Table 8.6 and 8.11. 

(i) The total profits over the entire 5 years are similar although 

rule 2 produces slightly (£381) more than rule 1. 

(ii) The two rules generate remarkably similar numbers of trading 

signals. 

(iii) The profits per trades are similar but again rule 2 generates 

slightly superior results (£14.52 verses £13.56). 

(iv) The number of trades in each period is, on average, almost the 

same for both procedures. However, as expected, the variation in the 

number of trades from period to period is very much smaller using rule 2. 

(A comparison of the number of trades generated by both technique in 

periods 7 and B highlight this feature very well). 

(v) Point (iv) is reinforced when one considers the number of trades 

per month. While numbers of trades per month are similar, the standard 

deviation of the number of trades per month for rule 2 is half the 

corresponding standard deviation for rule 1. The stream of trading 

signals is "twice as smooth" using rule 2. 

(vi) The monthly average return using rule 2 is higher than the monthly 

average return using rule 1. 

(vii) The standard deviation of monthly returns using rule 2 is lower 

than the standard deviation of monthly returns using rule 1. 

(viii) The coefficient of variation of monthly returns is lower using 

rule 2. 

In every respect then, rule 2 seems superior to rule 1. The overall 
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profit is larger, the variability of returns is lower and most 

importantly, rule 2 seems to generate a much smoother stream of trading 

opportunities. Tables 8.12 to 8.15 contain the results of applying rule 2 

to all 4 series using the following values of a 0.02 (low), 0.14 

(medium) and 0.26 (high). 

In the tables 8.12 to 8.15 and many of the remaining tables in this 

chapter we use the following abreviationst 

n tds. : total number of trades over all periods 

days : average number of days between trades 

pft : total profit in £'s received per unit spread 

pft/td : average profit in £'s per trade per unit spread 

days/mnth : the two entries correspond to the average number of 

trades per month and the standard deviation of the 

number of trades per month respecitively 

mon ave. : average monthly return in £'s from trading rule 

st. dv. : standard deviation of monthly returns in £'s 

from trading rule 

c of var i coefficient of variation of monthly returns from 

trading rule 

8.4.1 General discussion of returns to rule 2 

In this section we discuss (a) 

a, on the returns to rule 2 and, 

results of rule 2 and rule 1. 

There is a tremendous quantity 

and in order to address (a) and (b) 

statistics in tds, pft etc etc and 

the effects of the smoothing constants 

y) the differences (if any) between the 

of information in Table 8.12 to 8.15 

above we look in detail at each of the 

for ease of reference we use the 
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Table 8.12 

Trading rule 2 on cocoa series with low, medium and high a values 

a 0.02 
------ 
scale 

--- 

------ 
n tds 

------ 

------ 
pft 

------ 

------- 
days 

------- 

---------- 
pft/td 

---------- 

------------- 
days/ninth 

------------- 

--------- 
man ave 

-- 

--------- 
st. dv. c 

------- 
of var. 

- --- 
.6 394 9625. 2.94 24.43 7.16 3.15 

------- 
175.00 

-- ------- 
282.45 

--- --- 
1.61c 

1.0 194 7021. 5.98 36.19 3.53 2.54 127.66 250.40 1.96c 
1.4 103 4817. 11.26 46.77 1.87 1.88 87.58 215.35 2.46b 
1.8 61 5043. 19.02 82.67 1.11 1.36 91.69 193.71 2.11c 
2.2 38 4195. 30.53 110.39 0.69 1.10 76.27 183.66 2.41b 
2.6 29 4320. 40.00 148.98 0.53 0.96 78.55 182.48 2.32b 
3.0 
------ 

18 
------ 

3615. 
------ 

64.44 
------- 

200.82 
----- ----- 

0.33 
------- 

0.67 
------ 

65.72 
--------- 

177.77 
--------- 

2.70b 
------- 

aa0.14 

scale 
-- 

n tds 
------ 

pft 
------ 

days 
------- 

pft/td 
---------- 

days/mnth 
-- 

man ave. st. dv. c of var. 
---- 

.6 478 11082. 2.43 23.18 
----- 
8.69 

------ 
2.62 

--------- 
201.49 

------- 
320.07 

--------- 
1.59c 

1.0 302 9313. 3.84 30.84 5.49 2.51 169.33 250.10 1.48c 
1.4 174 6062. 6.67 34.84 3.16 1.69 110.21 183.64 1.67c 
1.8 96 4371. 12.08 45.54 1.75 1.31 79.48 198.31 2.50b 
2.2 57 4910. 20.35 86.14 1.04 1.02 89.27 201.18 2.25b 
2.6 34 4436. 34.12 130.47 0.62 0.85 80.66 197.15 2.44b 
3.0 
------ 

19 
---- -- 

4131. 
------ 

61.05 
------- 

217.41 
---------- 

0.35 
------- 

0.55 
------ 

75.10 
--------- 

180.08 
- ------ 

2.40b 
-- ------- 

a 0.26 

scale 
------ 

n tds 
------ 

pft 
------ 

days 
------- 

pft/td 
---------- 

days/mnth 
---- 

man ave. st. dv. c of var. 

.6 502 10045. 2.31 21.60 
--- 

9.13 
------ 
2.25 

--------- 
197.19 

--------- 
334.88 

-------- 
1.70c 

1.0 334 9399. 3.47 28.14 6.07 2.19 170.89 255.95 1.50c 
1.4 195 6929. 5.95 35.53 3.55 1.50 125.98 194.22 1.54c 
1.8 125 7042. 9.28 56.34 2.27 1.16 128.04 191.57 1.50c 
2.2 70 5489. 16.57 78.41 1.27 0.95 99.79 192.30 1.93c 
2.6 44 4222. 26.36 95.95 0.80 0.76 76.76 188.42 2.45b 
3.0 
------ 

28 
------ 

3820. 
------ 

41.35 
------- 

136.42 
---------- 

0.51 
------- 

0.74 
------ 

69.45 
--------- 

185.85 
--------- 

2.68b 
-------- 

See page 240 for legend 
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Table 8.13 

Trading rule 2 on coffee series with low, medium and high a values 

a=0.02 

scale 
-- 

n tds 
------ 

pft 
------ 

days 
------- 

pft/td 
---------- 

days/mnth 
------- ------ 

man ave 
-------- 

st. dv. c 
- -- 

of var. 
------- ---- 

.6 414 6672. 2.80 16.11 7.53 3.18 
- 

121.30 
------ 
203.28 1.68c 

1.0 232 4301. 5.00 18.54 4.22 2.79 87.20 115.81 1.48c 
1.4 140 2636. 8.29 18.83 2.55 2.18 47.93 112.44 2.35b 
1.8 79 2695. 14.68 34.11 1.44 1.60 48.99 115.66 2.36b 
2.2 40 1926. 29.00 48.15 0.73 0.97 35.02 99.35 2.84a 
2.6 28 1520. 41.43 54.28 0.51 0.79 27.63 98.54 3.57a 
3.0 
------ 

17 
------ 

1222. 
------ 

68.24 
----- -- 

71.87 
---- ------ 

0.31 
------- 

0.66 
------ 

22.22 
--------- 

91.96 
------ --- 

4.14a 
------- 

aa0.14 

scale 
- 

n tds 
------ 

pft 
------ 

days 
-------- 

pft/td 
--------- 

days/mnth 
----- - 

man ave. st. dv. c of var. 
----- 

.6 483 7334. 2.40 15.18 
-- 

8.78 
----- 
2.33 

--------- 
133.34 

------ - 
198.80 

--------- 
1.49c 

1.0 292 5038. 3.97 17.25 5.31 1.97 91.60 183.01 2.00c 
1.4 178 3579. 6.52 20.11 3.24 1.56 65.08 105.66 1.62c 
1.8 106 2775. 10.94 26.18 1.93 1.25 50.43 98.27 1.95c 
2.2 59 2159. 19.66 36.59 1.07 0.88 39.26 92.71 2.36b 
2.6 34 1749. 34.12 51.44 0.62 0.65 31.80 96.98 3.03a 
3.0 
------ 

23 
- ----- 

1668. 
---- -- 

50.43 
---- --- 

72.51 
------- --- 

0.42 
---- --- 

0.53 
------ 

30.32 
--------- 

97.18 
------- 

3.21a 
--------- 

a 0.26 

scale 
------ 

n tds 
------ 

pft 
------ 

days 
------- 

pft/td 
---------- 

days/mnth 
---------- - 

man ave. "t. dv. c of var. 

.6 514 7014. 2.26 13.65 9.35 
-- 

2.07 
------ --- 

127.53 
------- 
202.25 

----- --- 
1.59c 

1.0 321 5560. 3.61 17.32 5.84 1.64 101.10 182.83 1.81c 
1.4 204 4814. 5.69 23.60 3.71 1.42 87.54 176.66 2.02c 
1.8 130 2552. 8.92 19.63 2.36 1.21 46.40 93.31 2.01c 
2.2 71 2110. 16.34 29.72 1.29 0.76 38.36 98.40 2.56b 
2.6 49 2029. 23.67 41.41 0.89 0.63 36.90 99.03 2.68b 
3.0 
------ 

37 
------ 

1905. 
-- ---- 

31.35 
--- ---- 

51.49 
---------- 

0.67 
----- -- 

0.61 
----- 

34.64 
----- ---- 

99.53 
------- 

2.87a 
---- ----- 
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Table 8.14 

Trading rule 2 on sugar series with low, medium and high a values 

a 0.02 
------ 
scale 

- 

------ 
n tds 

------ 

------ 
pft 

------ 

-------- 
days 

-------- 

--------- 
pft/td 

--------- 

------------- 
days/mnth 

------------- 

--------- 
man ave 

-- -- 

------- 
st. dv. 

--------- 
c of var. 

----- 
.6 400 3128. 2.90 7.82 7.27 3.17 

----- 
56.86 

------- 
84.28 

--------- 
1.48c 

1.0 215 2566. 5.40 11.94 3.91 2.80 46.66 92.25 1.98c 
1.4 108 1481. 10.74 13.72 1.96 1.82 26.93 64.37 2.39b 
1.8 58 1302. 20.00 22.44 1.05 1.43 23.67 80.20 3.39a 
2.2 41 780. 28.29 19.02 0.75 1.28 14.18 40.90 2.89a 
2.6 23 532. 50.43 23.12 0.42 0.83 9.67 28.69 2.97a 
3.0 
------ 

15 
- ----- 

384. 
------ 

77.33 
-------- 

25.61 
----- ---- 

0.27 
------- 

0.62 
---- -- 

6.98 
--------- 

28.29 
-- ----- 

4.05 
--------- 

a=0.14 

scale 
--- 

n tds 
------ 

pft 
------ 

days 
-------- 

pft/td 
--------- 

days/mnth 
------------- 

man ave. 
------- 

st. dv. c of var. 
--- 

.6 491 3363. 2.36 6.85 8.93 2.49 
-- 

61.15 
------- 

93.18 
--------- 

1.52c 
1.0 318 3203. 3.65 10.07 5.78 2.05 58.23 71.68 1.23c 
1.4 182 2508. 6.37 13.78 3.31 1.72 45.60 80.99 1.78c 
1.8 102 1533. 11.37 15.02 1.85 1.33 27.86 57.56 2.07c 
2.2 58 957. 20.00 16.50 1.05 1.11 17.40 32.70 1.88c 
2.6 33 746. 35.15 22.61 0.60 0.76 13.56 33.16 2.59b 
3.0 
------ 

19 
----- - 

526. 
------ 

61.05 
------- 

27.70 
------- --- 

0.35 
------- 

0.52 
----- - 

9.57 
----- ---- 

32.03 
------- 

3.35a 
-- ------- 

a=0.26 

scale 
------ 

n tds 
------ 

pft 
------ 

days 
------- 

pft/td 
---------- 

days/mnth 
----------- 

man ave. st. dv. c of var. 

.6 511 3503. 2.27 6.85 9.29 
-- 

2.31 
--------- 

63.69 
---------- 

98.67 
------ 
1. SSc 

1.0 347 2983. 3.34 8.60 6.31 1.85 54.24 74.13 1.37c 
1.4 203 2742. 5.71 13.51 3.69 1.46 49.85 81.42 1.63c 
1.8 125 1855. 9.28 14.84 2.27 1.21 33.73 58.35 1.73c 
2.2 79 1231. 14.68 15.59 1.44 1.00 22.39 35.68 1.59c 
2.6 51 905. 22.75 17.74 0.93 0.79 16.43 34.35 2.09c 
3.0 
------ 

26 
------ 

661. 
------ 

44.62 
------- 

25.43 
---------- 

0.47 
------- 

0.54 
------ 

12.02 
--------- 

32.31 
-- ------- 

2.69b 
- ------ 
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Table 8.15 

Trading rule 2 on rubber series with low, medium and high a values 

a 0.02 
------ 
scale 

-- 

------ 
n tds 

------ 

------ 
pft 

------ 

-------- 
days 

-------- 

--------- 
pft/td 

--------- 

------------- 
days/mnth 

------------- 

--------- 
man ave 

------ 

---------- 
st. dv. c 

------ 
of var. 

---- 
.6 446 3611. 2.60 8.10 8.11 2.98 

--- 
65.66 

--------- 
93.79 

------- 
1.43c 

1.0 272 3297. 4.26 12.12 4.95 2.75 59.95 87.04 1.45c 
1.4 142 2347. 8.17 16.53 2.58 2.02 42.68 75.98 1.78c 
1.8 74 1501. 15.68 20.29 1.35 1.53 27.30 57.99 2.12b 
2.2 46 1248. 25.22 27.14 0.84 1.12 22.69 49.83 2.20b 
2.6 29 715. 40.00 24.64 0.53 0.86 12.99 44.48 3.42a 
3.0 
------ 

19 
------ 

587. 
------ 

61.05 
-------- 

30.87 
--------- 

0.35 
------- 

0.70 
---- -- 

10.66 
--------- 

45.19 
---------- 

4.24 
------ 

a=0.14 

scale 
-- 

n tds 
------ 

pft 
------ 

days 
------- 

pft/td 
---------- 

days/mnth 
------------ 

mon ave. st. dv. c of var. 
---- 

.6 509 3578. 2.28 7.03 9.25 
- 

2.30 
--------- 

65.05 
--------- 

79.04 
------- 

1.22c 
1.0 326 3326. 3.56 10.20 5.93 1.95 60.46 89.31 1.48c 
1.4 183 2691. 6.34 14.70 3.33 1.49 48.92 63.66 1.30c 
1.8 109 2138. 10.64 19.61 1.98 1.25 38.87 59.07 1.52c 
2.2 61 1201. 19.02 19.69 1.11 0.81 21.84 46.36 2.12b 
2.6 35 880. 33.14 25.14 0.64 0.65 16.00 44.31 2.77b 
3.0 
------ 

22 
------ 

730. 
------ 

52.73 
------- 

33.19 
---------- 

0.40 
------- 

0.49 
------ 

13.27 
--------- 

40.57 
--------- 

3.06a 
------- 

a=0.26 

scale 
------ 

n tds 
------ 

pft 
------ 

days 
-------- 

pft/td 
--------- 

days/mnth 
---------- 

man ave. st. dv. c of var. 

.6 532 3669. 2.18 6.90 9.67 
--- 

2.06 
--------- 

66.71 
--------- 

78.01 
------- 

1.17c 
1.0 348 3436. 3.33 9.87 6.33 1.74 62.47 90.91 1.46c 
1.4 210 2939. 5.52 13.99 3.82 1.40 53.43 62.83 1.18c 
1.8 127 2337. 9.13 18.40 2.31 1.22 42.49 58.51 1.38c 
2.2 86 1657. 13.49 19.27 1.56 1.03 30.13 46.70 1.53c 
2.6 48 1112. 24.17 23.17 0.87 0.75 20.22 45.00 2.23b 
3.0 
------ 

31 
------ 

976. 
------ 

37.42 
----- --- 

31.50 
------- -- 

0.56 
----- -- 

0.60 
------ 

17.75 
--------- 

43.98 
------- -- 

2.48b 
------ 
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notation, n( a,, I, ), say to 

the smoothing constant set to 

at = 0.02, a2 = 0.14 and a3 = 

.... 17 = 3.0. Also, when 

confusion, refer to, say, the 

The effects of the var 

refer to the number of trades 

a, and scale parameter set to 

0.26. Similarly, we define 

referring to rule i results, 

number of trades as n( Yj ). 

sous a's on the results to 

on rule 2 with 

ä,. We define 

1, = 0.06, 

we can, without 

rule 2 and the 

differences between rules I and 2 are remarkably similar across commodity 

series. Accordingly, in what follows (except in certain situations) we 

are referring to the results of all 4 sets of returns. 

(1) Number of trades n() 

(a) In each series and at every combination of a and Y, n( a, V ) are 

remarkably similar across series. The fixing of a and I produces almost 

identical numbers of trades in the cocoa, coffee, sugar and rubber series. 

As expected, for each value of a, increasing Y decreases n( a, Y 

Without exception, larger values of a generate more trades, i. e. 

nt ai, Y )(n( a2, Y )<n( as, 'tl ) 

for all 1. At small Y values the maximum difference is quite large 

(approximately 100 with Y 0.6) and decreases with large I 

(approximately 10 with ö=3.0). 

(b) We observe that rule 2 does not always produce more trades than rule 

1. In some instances this is so, in others not. It is interesting to 

note that the rate of change of n( all ) and n(ö) with respect to ö is 

different. Whatever the value of, a, the decrease in the number of trades 

caused by increasing I is more marked with rule 2 than with rule 1. With 

rule 2 the number of trades generated is more sensitive to the scale 
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parameter setting. 

(2) Total profits P() 

(a) As observed with rule 1, total profits are high for low Y and 

decrease as ö increases. At most I values, the ranking of profits across 

a values iss 

P (a, , %) (P (a2, 'ß ) (P (a3, 'ß ) 

With some values of 11 in the cocoa and coffee series, this ranking is 

reversed. By considering the profits across commodity series we note that 

in general the ranking is: 

cocoa > coffee > rubber > sugar 

at each combination of a and ö. 

(b) Total profits to rules I and 2 are similar at each value of V. 

(3) Profits per trade Pt () 

(a) Pt ( a, Y ) increases as y increases at all values of a. The ranking 

of the profits per trade is identical to the ranking of the total profits 

given in 2 (a) with cocoa yielding the highest value at £217 and sugar 

yielding the lowest at V. The rankings of profit per trade over 

increasing a values is given generally by: 

Pt ( al,, )> Pt ( a2,1 )> Pt ( as, V ) 
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The difference between 

values and large at 

n( all ? and P( all 

Pt( all } decreases. 

(b) At small Y vale 

similar. At larger 

rule i results. 

Pt ( a,, l ) and Pt ( a3,1 ) 

large I values. We deduce from 

both increase with increasing 

des, the profit per trdes to 

I values rule 2 results are ge 

is small at low I 

this that although 

a, the ratio: 

rule i and 2 are 

nerally superior to 

(4) Monthly returns means and standard deviation sM() and S() 

The average monthly returns are simply the total profits divided by 

55 and so the pattern of variation of values is exactly duplicated those 

of the total profits given in (2) above. 

(a) As I increases, the standard deviation of monthly returns decreases. 

There is no obvious consistent pattern in the effects of a on S( all 

except that they are all very similar across 1. The cocoa S( I) 

values are the largest and the sugar and rubber values, the lowest. 

(b) The S( all ) and S(8) values seem to be similar. 

(5) Coefficients of variation of month returns v( 1 

(a) As Y increases, v( all ) increases. With the exception of the 

rubber series (in which v( ai, Y )> v( a2, Y )> v( a3,1 ), for almost all 

Y), there does not seem to be any general pattern across a values. 

Nearly all n( all ) values are significant at the 1% level and many are 

significant at the 0.1% level. The values of n( all ) are, in general 

remarkably similar across series. The rubber series produced the smallest 

values with v(0.26,0.6) = 1.17 
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(b) The v( all ) and v( I) values appear to be quite similar. 

(6) Variation of streams of returns : pa( ), ad( 

The average number of trades per month is simply the total number of 

trades divided by 55 and so remarks in (1) above apply. As I increases, 

µd( all ) decreases. 

(a) The standard deviation of the number of trades per month, fd( all 

decreases as I increases. In almost every series and at all Y values: 

a. ( a1, Y)) Qd ý a2,0 )> Qd ýaS1Y 

It appears then that high a's smooth out the numbers of trades per month 

more than law a's. 

(b) Without exception the cd( all ) values are smaller than the 

vd( I) values. As expected, the variation in the number of trades per 

month is lower using rule 2. 

8.4.2 Concluding remarks on trading rule 2 

By considering Tables 8.12 to 8.15 along with the above summary we 

note that the effects of the two parameters in the application of trading 

rule 2 is complex but consistent across all commodity series. We can 

generate a large number of trading signals by selecting high smoothing 

constants and small scale parameters. Such trades will be frequent and 

result in relatively small returns per trade on average. Alternatively, 

one could set a to a small value and I to a large value to generate few 

but very profitable trades. 

The values of a and I which one would wish to set in a 
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practical situation would be governed by the cost of transactions which 

we have so far ignored. If trading costs are small, we could achieve high 

profits by generating a large number of trades. If trading costs are high 

it would be desirable to generate a small number of more profitable 

trades. In section 8.5 we now consider the question of transaction costs 

8.5 Transaction costs 

For private investors in the futures markets, transaction costs will 

depend on the broker and to a certain extent on what volume of trading is 

involved. At the time of writing the author has noted that the 

commissions quoted for trades on the London soft futures markets vary 

considerably from broker to broker. In order to arrive at some sort of 

typical commissions that would have been charged over our period, it was 

decided to refer to the ICCH Procedural Manuals for the years 1975 to 

1979. However, studying the relevant sections in each manual reveals a 

confusing array of different commissions for each commodity futures 

market. There are, for example, 27 different possible commissions listed 

for trading in the cocoa futures market. Which commission one is charged 

depends on what status one has within the relevant market association. 

The Cocoa Terminal Market Association for example has trade members, 

broker members, and city home members. The lowest commissions are charged 

for trades between trade members and the highest are for trades between 

non members. 

Rather than examine the trading rule results with all the possible 

rates of commissions we decided to investigate the profits received by 3 

types of individual; ones required to pay, (i) the minimum commission, 

(ii) a medium commission and (iii) the maximum commission. Although there 

was some variation in these commissions charges throughout the 5 year 



period covered, the values chosen to be typical for each futures market 

are given in Table 8.16. These are the commissions charged per spread per 

round turn, (i. e. I buy followed by I sell or vice versa). 

Table 8.16 
1 

Commissions in £'s per spread per round turn 

------ 

Commissions 

------ 

---------- 

Low 

----------- 

----------- 

Medium 

----------------- 

------- 

High 

--------- 

Cocoa 

---------- 

8.00 

----------- 

20.00 

--------------- 

32.00 

Coffee 

----------- 

6.00 

---------- 

-- 

20.00 

------ 

--------- 

28.00 

Sugar 9.00 

--- 

----------- 

- 20.00 

-------- 

--------- 

36.00 

Rubber 

---------- 

9.00 

---------- 

20.00 

----------------- 

------- 

39.00 

--------- 

8.5.1 Rule 2 with transaction costs 

Trading rules 1 and 2 with the inclusion of transaction costs were 

applied to the data sets with many values of a and Y. However since the 

overall profits to rule 1 and 2 are similar (except for large Y) it was 

decided for brevity to report results for rule 2 only. Also rather than 
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present returns for many values of a we consider results for only one 

value; the medium value of a=0.14. Also for brevity we decided not to 

report the statistics relating to the flow of trading signals as these are 

independent of commissions and are already presented in Tables 8.12 to 

8.15. 

The results appear in Tables 8.17 to 8.20. We make the following 

observationsi 

(i) Low commissions 

In all series the profit per trade, as expected, is small for low 

ö values and increases with y. In all but two instances Cä= .6 in 

sugar and rubber series) the profits per trade are positive. The ranking 

of total profits across series is as in section 8.4.1. The sugar profits 

are quite low with only £4.78 per trade at ä=1.4 and the cocoa profits 

are high at £26.84 at Y=1.4. Many of the cocoa and coffee returns are 

significant at the 1% level. However, although in the rubber and sugar 

series with y greater than 0.6 the total returns are positive, only 2 

rubber and i sugar results are significant. Note the monthly returns and 

the standard deviation of monthly returns. The sugar and rubber returns 

have relatively low standard deviations of £30 to £70 per month whereas 

the cocoa and coffee standard deviations are typically 2 to 5 times these 

values. 

Thus with low commissions, positive profits were still possible. 

When one considers the margin requirements, a profit of £7258 in the cocoa 

series is very large indeed. Although the sugar and rubber results are 

disappointing in that the (small) commissions remove a good deal of the 

profits recorded in section 8.4.1, the returns with middle to high ö 

values are still quite large. 
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Table 8.17 

Trading rule 2 with a 0.14 applied to the cocoa series 
with low, medium and high commission charges 

-------------- -------- ---------- ---------- 
Monthly 

------ - 
returns 
------ 

Commission scale profit profit 
- - 

means 
---- 

st. dev. 
------- 

coef. 
level 

-------------- --------- --------- 
/trade 

---------- 
(£'S) 

---------- 
(£'s) 

---------- 
of var 

-------- 
.6 7258. 15.18 131.96 321.83 2.44 b 

1.0 6897. 22.84 125.40 249.13 1.99 c 
1.4 4670. 26.84 84.91 184.18 2.17 b 

Low 1.8 3603. 37.54 65.52 196.26 3.00 a 
2.2 4454. 78.14 80.98 196.14 2.42 b 
2.6 4164. 122.47 75.71 193.34 2.55 b 

------------ 
3.0 

---- ---- 
3979. 

--- -- 
209.41 

-- - -- -- 
72.34 

--------- 
177.55 

---------- 
2.45 

--- ---- 
b 
-- -- - 

.6 
---- 

1522. 
- - - 

3.18 
- 

27.67 326.98 11.82 
1.0 3273. 10.84 59.51 250.69 4.21 
1.4 2582. 14.84 46.94 186.83 3.98 

Medium 1.8 2451. 25.54 44.57 194.21 4.36 
2.2 3770. 66.14 68.54 188.98 2.76 b 
2.6 3756. 110.47 68.29 187.94 2.75 b 

------ - -- 
3.0 

--------- 
3751. 

----- ---- 
197.41 

-- 
68.20 

- - - 
173.90 

---- --- - 
2.55 b 

- -- -- 
.6 -4214. 

- ------- 
-8.82 

- --- - - 
-76.62 

- - 
335.00 

------- 
- 

-- 

1.0 -351. -1.16 -6.38 255.80 - 
1.4 494. 2.84 8.98 191.60 21.34 

High 1.8 1299. 13.54 23.63 193.41 8.19 
2.2 3086. 54.14 56.10 182.37 3.25 a 
2.6 3348. 98.47 60.87 182.96 3.01 a 

-------------- 
3.0 

--------- 
3523. 

--------- 
185.41 

---------- 
64.05 

---------- 
170.43 

---------- 
2.66 

------- 
b 
-- 
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Table 8.18 

Trading rule 2 with a 0.14 applied to the coffee series 
with low, medium and high commission charges 

-------- 
Monthly 

----- 

------- 
returns 

-------- - --- -- - -------------- 
Commission 

-------- 
scale 

---------- 
profit 

--------- 
profit 

----- 
means 

- 
st. dev. 

-- - 
coef. 

level 
------ 

/trade 
---------- 

CE's) 
---------- 

CE's) 
---- ----- 

of var 
------- - - -------------- -- ------ 

.6 
--- 

4436. 9.18 80.65 201.22 2.49 b 
1.0 3286. 11.25 59.75 183.85 3.08 a 
1.4 2511. 14.11 45.66 106.23 2.33 b 

Low 1.8 2139. 20.18 38.89 97.35 2.50 b 
2.2 1805. 30.59 32.82 90.94 2.77 b 
2.6 1545. 45.44 28.09 95.78 3.41 a 
3.0 1530. 66.51 27.81 

- -- 
96.04 

-------- 
3.45 

------- 
a 
- -------------- -------- - 

.6 
--------- 

-2326. 
------ ---- 

-4.82 
------ - 

-42.29 
- 

210.40 - 
1.0 -802. -2.75 -15.58 188.69 - 
1.4 19. 0.11 0.35 110.69 318.11 

Med 1.8 655. 6.18 11.91 97.41 8.18 
2.2 979. 16.59 17.80 87.92 4.94 
2.6 1069. 31.44 19.44 93.55 4.81 
3.0 1208. 

--- 
52.51 

--- ------- 
21.96 

---------- 
93.76 

-- ----- -- 
4.27 

-------- - -------------- --------- 
.6 

------ 
-6190. -12.82 -112.55 217.67 - 

1.0 -3138. -10.75 -57.05 193.17 - 
1.4 -1405. -7.89 -25.54 115.17 - 

High 1.8 -193. -1.82 -3.51 98.83 - 
2.2 507. 8.59 9.22 86.94 9.43 
2.6 797. 23.44 14.49 92.66 6.39 

-------------- 
3.0 

--------- 
1024. 

---- ----- 
44.51 

- ----- ---- 
18.61 

---------- 
92.70 

--------- 
4.98 

-------- - 
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Table 8.19 

Trading rule 2 with a=0.14 applied to the sugar series 
with low, medium and high commission charges 

--- -------- ---------- --------- 
Monthly 

------------ 
returns 
--------- ------- ----------- 

Commission scale profit profit means st. dev. coef 
level 

----- ---------- 
/trade 

---------- 
(£'s) 

----------- 
(£'s) 

--------- 
of var 

------- -------------- --- 
.6 -1056. -2.15 -19.20 84.94 - 

1.0 341. 1.07 6.19 68.39 11.04 
1.4 870. 4.78 15.82 74.77 4.73 

Low 1.8 615. 6.02 11.17 51.18 4.58 
2.2 435. 7.50 7.91 27.70 3.50 a 
2.6 449. 13.61 8.16 31.44 3.85 

------ 
3.0 

-------- 
355. 

---------- 
18.70 

----- - -- 
6.46 

----------- 
29.59 

--------- 
4.58 

------- -------- 
.6 -6457. 

- - 
-13.15 -117.40 82.40 - 

1.0 -3157. -9.93 -57.41 71.00 - 
1.4 -1132. -6.22 -20.58 71.11 - 

Medium 1.8 -507. -4.98 -9.23 46.44 - 
2.2 -203. -3.50 -3.69 25.90 - 
2.6 86. 2.61 1.56 28.50 18.22 
3.0 146. 7.70 2.66 

------ 
27.39 

---------- 
10.29 
------ -------------- -------- 

.6 
---------- 

-14896. 
---------- 

-29.15 
----- 

-260.23 94.11 - 
1.0 -8245. -25.93 -149.92 85.95 - 
1.4 -4044. -22.22 -73.52 74.55 - 

High 1.8 -2139. -20.98 -38.90 47.36 - 
2.2 -1131. -19.50 -20.56 32.64 - 
2.6 -442. -13.39 -8.04 28.39 - 

-------------- 
3.0 

-------- 
-158. 

---------- 
-8.30 

---------- 
-2.87 

----------- 
26.14 

--------- 
- 

------- 
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Table 8.20 

Trading rule 2 with a=0.14 applied to the rubber series 
with low, medium and high commission charges 

-------- 
Monthly 

- 

------- 
returns 
--------- ------ -------------- 

Commission 
-------- 

scale 
---------- 

profit 
---------- 

profit 
---------- 

means st. dev. coef 
level /trade CE's) WS) of Yar 

--- -------------- -------- 
.6 

---------- 
-1003. 

---------- 
-1.97 

----------- 
-18.24 

---------- 
78.01 

--- 
- 

1.0 392. 1.20 7.12 85.35 11.99 
1.4 1044. 5.70 18.97 59.53 3.14 a 

Low 1.8 1157. 10.61 21.04 53.73 2.55 b 
2.2 652. 10.69 11.86 44.15 3.72 
2.6 565. 16.14 10.27 42.68 4.16 
3.0 532. 24.19 9.67 

---------- 
38.98 

--------- 
4.03 

------- -------------- -------- 
.6 

---------- 
-6602. 

---------- 
-12.97 

- 
-120.04 83.94 - 

1.0 -3194. -9.80 -58.08 85.30 - 
1.4 -969. -5,30 -17.63 58.42 - 

Medium 1.8 -42. -0.39 -0.76 49.98 - 
2.2 -19. -0.31 -0.34 42.99 - 
2.6 180. 5.14 3.27 41.73 12.75 
3.0 290. 

--------- 
13.19 

---------- 
5.27 

----------- 
37.67 

--------- 
7.14 

------- -------------- -------- 
.6 

- 
-16273 -31.97 -295.88 108.19 - 

1.0 -9388. -28.80 -170.70 97.13 - 
1.4 -4446. -24.30 -80.85 66.73 - 

High 1.8 -2113. -19.39 -38.42 52.18 - 
2.2 -1178. -19.31 -21.41 45.23 - 
2.6 -485. -13.86 -8.82 42.92 - 

-------------- 
3.0 

-------- 
-128. 

---------- 
-5.81 

---------- 
-2.33 

----------- 
37.21 

--------- 
- 

---------- 
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(ii) Medium commissions 

The relative ranking of profits and profits per trade are as 

before. However the increased commissions produce significantly different 

returns. At the low y values, very large losses result. With ä set to 

0.6, losses of the order of £6000 are realised in the sugar and rubber 

series. However even at the low Y values, when many non profitable 

trades are executed, the cocoa series still produces positive (though not 

statistically significant) returns. Increasing, ', and reducing the 

number of many of the non profit making trades reduces the losses in the 

sugar and rubber series and similarly increases the profits in the cocoa 

and coffee series. At large V's, the sugar and rubber profits are 

positive, though small. Only 3 values are significant; the cocoa returns 

at I values greater than 2.7. 

(iii) High commissions 

Very large and significant losses are realised with high commission 

charges. A loss of £14,313 occurs with I=0.6 in the sugar series. No 

y values produces a positive profit in the sugar and rubber series. At 

Y=0.6 and 1.0 even the cocoa returns are negative. At Y values higher 

than 1.0 one still observes significantly positive large profits in the 

cocoa series. 

8.5.2 Concluding remarks on rules 1 and 2 with transaction costs 

The extremely large profits reported to rules i and 2 reported in 

sections 8.3 and 8.4 are drastically altered by the inclusion of 
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commission charges. As predicted, the setting of low I values resulted in 

many trades and thus induced large transaction costs. However, 

considering trades between members in which low commissions are charged 

the profits to rules i and 2 are still very large indeed, especially on 

the cocoa and coffee series. The medium and high charges imposed on non 

members would have removed most profits received and actually resulted in 

extremely large losses in the sugar and rubber series. However even with 

the highest charges the rules would have produced positive profits in the 

cocoa series and it seems possible that a private individual may have been 

able to realise large positive returns over this period. 

8.6 Trading rule 3 

The large positive profits reported in section 8.3 and 8.4 are much 

reduced by the inclusion of transaction costs. Although the negatively 

serially correlated portfolios are generating trades that are on average 

highly significant and positive, the cost of each transaction in many 

instances is reducing the resulting profits of each trade and in the sugar 

and rubber series resulting in losses. This may be due to the slightly 

unrealistic nature of rules i and 2. 

In rules i and 2a trade is invoked if the price change of the 

portfolio moves out of a region (band N in Fig. 8.2) set by the standard 

deviation of returns of the series. With non zero transaction costs this 

may be slightly impractical. It is not very useful to construct, ex 

ante, a portfolio that exhibits negative serial correlation if the price 

movements are not large enough to cover transaction costs. Recall from 

Tables 8.5 that there is tremendous variation in the standard deviation of 

the portfolio returns over the whole period. In periods in which the 

standard deviations of the returns on the portfolios are very low, rules I 
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and 2 still continue to generate trading signals even though most of the 

prices never move enough on the subsequent days to cover the cost of the 

trades. 

We now consider a possibly much more practicable trading rule; rule 

3. In rule 3 the band width is set as in rule 2 to a multiple of the 

standard deviation of the returns of the portfolio. This standard 

deviation is the exponentially smoothed estimate and is updated every day. 

However, in order to prevent trades that seem likely to result in profits 

less than transaction costs we add an additional constraint. If on day, 

t, a portfolio return moves into the region B or S in Fig. 8.2, a trading 

signal is given only if the magnitude of the returns have been greater 

than the expected transaction cost. 

Rule 3 was applied to each data set with many different values of the 

scale parameter, y, and smoothing constant, a. For brevity we report only 

those results in which 8= . 6,1.0,1.4,1.8,2.2,2.6 and 3.0 and with 

a-0.14. The results appear in Tables 8.21 to 8.24. 

8.6.1 Results of trading rule 3 

For ease of reference and in order to compare results of various 

scale and commission values and to compare rule 3 with rule 2, we now use a 

slightly different notation. When considering the number of trades, for 

example, we refer to n (c, *d, k) in which k has the value 2 for rule 2 and 3 

for rule 3. The c parameter has the three values i 1, for low 

commissions, 2 for medium commissions and 3 for high commissions. The 

scale parameter, 19 as before takes the values 11, _ . 06,12   1.0 etc. 

A comparison of the results in Tables 8.21 to 8.24 with the results in 

Table 8.17 to 8.20 yields a startlingly consistent pattern across all 

series. In what follows we shall (a) consider the effects of the various 
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I and c values on results to rule 3 and (b) compare corresponding results 

across rules 2 and rules 3. We consider in detail each of the four 

statistics (i) number of trades, (ii) total profits, (iii) profits per 

trade and (iv) the coefficients of variation of monthly returns. 

(i) Number of trades n(,, ) 

(a) Without exception and at each I level the number of trades induced 

by rule 3 at various c levels is ranked as followsi 

n ti ,, 3) >, n t2 111 3) n tS ,, 3) 

The difference between n (I I1,3) and n (3 ,Y, 3) is maximal at low 

I values (eg in the rubber series at ö= .6 the difference is 434 - 94 = 

340). At larger I values the differences are very much reduced (it is 

zero above 8=2.2 in cocoa series). This is exactly what we would have 

expected. At low scale values the commission constraint in rule 3 is 

dominant and increasing the commissions will result in significantly fewer 

trading signals. At larger scale values the commission constraint becomes 

less influential and in the cocoa series is completely redundant at I 

above 2.2. 

(b) Again without exception and at all c and I levels 

n Cc ,, 3) ý< n tr. ,, Z), 

with the equality holding at high y and low c values in all series. With 

hindsight this result was only to be expected, as rule 3 is rule 2 with an 

additional constraint. The number of trades to rule 3 must be less than 

or equal to the number of trades to rule 2, other things being equal. 
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(ii) Total Profits P(,, ) 

(a) All the cocoa and all but two of the coffee profits are positive. 

In the sugar and rubber series at the medium and high commission values, 

the profits are negative. However at the value of Y=3.0, both sugar 

and rubber series produce small but positive profits. All the medium and 

high commission level profits increase with increasing 1. In the cocoa 

and coffee series with low commissions this trend is reversed. At every 

value of I and in all series i 

P I1 ,Y, 3) >P (2 111 3) >P (3 111 3). 

The difference between P (1 , 1,3) and P (3 , Y, 3) is most marked at low 

I values feg in cocoa series a difference of £7284 - £679 = £6655 at 

Y=0.6 is realized) and least marked at high y values. 

(b) Without exception, at every value of Y and c and across all series: 

P (c, 11 3) )P (c, 11 2), 

the difference being most marked at high c and low ä values. A loss of 

£16773 at I_ .6 in the rubber series in rule 2 is reduced to one of only 

£1715 in rule 3. In the cocoa series with I_ . 6, a loss of £4214 with 

rule 2 can be compared to a profit of £629 with rule 3. 

At higher ä values the differences between the profits to rules 2 and 

3 becomes less and less (in the cocoa series the total profits to rules 2 

and 3 are equal at medium to high Y values). It is interesting to look 

at this phenomenon in more detail. 

With low I and high c values, many expensive trades that would be 
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invoked by rule 2 are being blocked in rule 3. At high I and/or low c 

values few and relatively cheap trades are invoked by rule 2 and these 

would also be invoked by rule 3 resulting in similar profits. 

The very interesting (but not immediately obvious) result to note 

here is that the inclusion of an additional commission constraint in rule 

3 does not appear to be blocking any potentially profitable trades. The 

constraint seems to work as designed; many non profitable trades are 

blocked and no profitable trades are overlooked. 

(iii) Profits per trade Pt (,, ) 

(a) The profits per trade are spectacular in the cocoa series even when 

considering high transaction costs where values range from £1.97 to 

£185.41 per trade. The coffee series also produces mostly positive 

profits per trade. The sugar and rubber series at the low commission 

rates produce positive values but these become negative as one considers 

higher commissions. The patterns in the profit per trade figures over 

various I and c values is identical across all series and can be summed 

by the following equalities: 

Pt (c, 1,, 3) < Pt (Cl 12,3) <.. 68.6. < Pt (c, ö7,3) 

at all c, and 

Pt (i ,I, 3) > Pt (2 111 3) > Pt (3 111 3) 

at all I. 

With hindsight neither of these results is surprising. At a giver 
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c, increasing I reduces the number of non profitable trades resulting in 

an overall larger profit per trade. At a given 1, value, increasing c 

also has the effect of reducing the number of non profitable trades but 

each trade invoked is more expensive with the resultant reduction in the 

overall profits per trade. 

(b) Similarly the pattern in the difference between rules 2 and- 3 is 

identical across all series and at all c and Y values: 

Pt (c, I, 3) >, Pt (c, 11 2) 

The difference between the results from the two rules is most marked at 

low Y and high c values, particularly in the sugar and rubber series. For 

example in the sugar series at the high c value and I-0.6 an average 

loss of £260.23 per trade from rule 2 is altered to an average loss per 

trade of only £17.80. These large differences at high c and low ä values 

are obviously due to the dominance of the commission constraint and the 

remarks made about the total profits apply directly here. 

(iv) Coefficients of variation v( ,, ) 

(a) In the cocoa and coffee series all of the coefficients are 

signficant at the low commission values. At the medium to high commission 

levels, the cocoa results are significant above V=2.2. None of the 

sugar or rubber results prove significant. The pattern in the variation 

of, coefficients over various V and c values is not as consistent as the 

patterns observed in the other statistics we have considered thus far. 

However, it is still possible to discern a general pattern and this is 
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best summed up by the inequalities i 

(i) v(c, 1,, 3) > v(c, V2,3)> ... > v(c, 17,3) 

over most c values, and 

3) < v(2 ,8,3) < v(3 ,ý, 3) (ii) v(1 911 

over all Y values. 

(b) The coefficients of variation to rule 3 are equal to or less than 

the corresponding coefficients in rule 2, ie 

2) V (Cl 11 3) <v (c, 19 

at all c and Y. 

From this we can conclude that rule 3 is relatively less risky than 

rule 2. 

8.6.2 Concluding remarks on trading rule 3 

It appears then that the introduction of a commission constraint in 

rule 3 is successful. Rule 3 is superior to rule 2 on every counts 

(i) The number trades generated by rule 3 is less than the number of 

trades generated by rule 2. 

(ii) Each of the trades is on average more profitable with rule 3 than 

with rule 2. 

(iii) The total profits to rule 3 are larger than the total profits to 

rule 2. 

(iv) The relative riskiness of the stream of returns to rule 3 is lower 
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than the relative riskiness of returns to rule 2. 

All of the cocoa and some of the coffee series profits are 

large, positive, and highly statistically significant. At low commission 

rates large positive profits could have been obtained in all series. For 

members of the relevant trade associations who enjoy low transaction costs 

the returns would have been very large indeed. 

8.7 Comparing rule 3 returns to other assets 

So far in this chapter we have looked at the stream of returns to 

various trading rules involving complex spread portfolios. Rule 3 seemed 

to be the most successful rule and with hindsight probably a much more 

realistic one to use in practice. It will be interesting to compare these 

returns with the returns obtained in other investments over the same 

period i. e. ti? long positions in each futures markets and (ii) a 

portfoliio stocks in the UK market. 

8.7.1 Returns on net long positions 

Using rule 3 on a particular series is essentially watching the price 

of a very complex six dimensional portfolio every day. Keeping close 

track of such a spread over time results, every now and then, in the 

generation of a trading opportunity. The returns from these trades are 

lumped together each month and considered to be one monthly return. 

Consider now an alternative strategy. At the begining of each month go 

long one futures contract in each market. At the end of each month close 

out the position by a sale. Repeat this process for each of the 35 months 

being considered. Brokers usually require identical deposits and charge 
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Table 8.25 

Returns (£'s) on long positions in contracts one delivery period from maturity 

------------ 
Commission 

--------------- ------------ 
Profit 

------------- 
Monthly 

------------ 
Monthly 

--------- 
Coeff 

level 
----- 

mean 
------------ 

st. dev. 
------------ 

of var. 
--------- ------------ --------------- 

Cocoa 
------- 

20815 378 1812 4.79 
Coffee 11335 206 1275 6.19 

Low Sugar -3248 -59 584 - 
Rubber 

---- 
967 

------------ 
18 

------------- 
489 

------------ 
27.80 

--------- --------- 
Portfolio 

- 
7467 

------------ 
136 

------------- 
610 

------------ 
4.49 

--------- ------------ -------------- 
Cocoa 20155 366 1812 4.94 
Coffee 10565 192 1275 6.64 

Medium Sugar -3853 -70 584 - 
Rubber 

----- 
362 

------------ 
7 

------------- 
489 

------------ 
74.2 

--------- -------- 
Portfolio 

------ 
6807 

------------ 
124 

------------- 
610 

------------ 
4.93 

--------- ------------ --------- 
Cocoa 19495 354 1812 5.11 
Coffee 10125 184 1275 6.93 

High Sugar -4733 -86 584 - 
Rubber 

------ 
-683 

------------ 
-12 

------------- 
489 

------------ 
- 

-------- 

------------ 

------- 
Portfolio 

----- ---------- 
6349 

----- ------- 
116 

------------- 
610 

------------ 
5.25 

--- ------ 

identical commissions on net long positions and on spreads. Thus we can 

use the same sums given in section 8.3.2 and 8.5 to support our 

alternative stream of trades. The results appear in Table 8.25 and we 

make the following observations on the returns to long positions: 

M The cocoa and coffee profits and monthly means are very large 

indeed. Over the period concerned the prices of cocoa and coffee rose 

sharply. The rubber series produces a small profit that is reduced to a 

small loss at higher commission levels. The sugar prices fell over the 

period and results in large losses. 

(ii) The monthly standard deviations are very large. As noted in section 

7.5.1 the standard deviation of the underlying futures contract returns 

are between 10 to 30 times the standard deviation of the returns of the 

specially constructed portfolios. Comparing Tables 8.25 with Tables 8.21 
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to 8.24 we note that indeed the returns on the net long contracts are also 

between 10 to 30 times as variable as the returns obtained using rule 3. 

(iii) The coefficients of variation are so large that no return is 

statistically significant. This just confirms what was originally 

reported in section 3.3.2 that there are no significant trends. 

We conclude then that although the returns to an investor in long 

cocoa and coffee contracts were large, the risks borne by such investors 

were very large indeed. The returns to rule 3, although lower on average 

than net long positions, were very much less risky. 

8.7.2 Returns an the FT index 

We now compare the returns from rule 3 to the returns one would have 

received by investing in a market portfoliio on the British Stock Market. 

Returns on the FT index (including dividends) were supplied by the London 

Business School. The deposits required to maintain a spread position in 

each of the futures markets were approximately £400 and so in order to 

compare like with like we examined the returns on £400 invested in the FT 

index over the 55 months in question. The question of commission charges 

is a difficult one as charges in the stock market vary with the size of 

transactions. As a rough figure we assumed transaction costs were 1% per 

round turn. Two strategies were examined. . (i) Buy and hold for 55 

months and (ii) buy and sell the FT index at the beginning and the end of 

each month. The returns on each stratergy were : (i) P= £307.00, M= 

£5.58, S= £18.91 and v=3.39; (ii) P= £95.04, M= £1.73, M= 

£18.91 and v= 10.93. 

As expected the returns to both strategies are very low, as are the 

standard deviation of returns. The relative riskiness of the returns, as 

measured by the coefficients of variation, is certainly higher than many 
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of the corresponding measures of risk of returns obtained from rule 3. 

It appears then that over the period considered applying trading rule 

3 in the futures markets would have resulted in returns in the 

risk- adjusted sense that were-higher than returns witnessed in the stock 

market. 

8.8 Simultaneous application of rule 3 to all series 

It is interesting to examine the joint distribution of the monthly 

returns produced by applying rule 3 to each of the series. In particular 

we are specifically interested in the correlations between returns. All 4 

x 3/2 =6 correlation coefficients were computed from returns generated by 

rule 3 on many a, I and c values. All correlations were very similar and 

below we report a typical correlation matrix generated with a set 

to 0.14,1 set to 1.0 and low commission rates: 

cocoa coffee sugar rubber 

cocoa 

coffee 0.181 

sugar -0.129 -0.135 

rubber 0.047 0.010 0.057 

FT 0.045 0.193 -0.058 -0.039 

For comparative purposes we also report the correlations between the 
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returns on the FT index and the 4 sets of trading rule returns. 

Note that all correlations are small and that none are significantly 

different from zero. This result is interesting. The returns to rule 3 

arise out of some, as yet, unexplained phenomenon that gives rise to 

persistent complex multivariate serial correlation. The phenomenon 

appears to be consistent within each commodity series. The zero 

correlations between each stream of returns suggests that the phenomenon 

is not common across commodity series. We are however only for the moment 

studying monthly returns and we have not yet investigated the possibility 

of joint daily multivariate serial correlation existing across commodity 

series. 

However this lack of correlation between monthly returns to rule 3 

does suggest the possibility of constructing portfolios that would have 

risks even lower than those outlined in section 8.6. It is well known 

that given a multivariate set of returns, provided the components are not 

perfectly positively correlated, there is scope for Markowitz-type 

diversification. The correlations reported above are near zero and some 

are negative and accordingly we constructed a naive portfolio, one in 

which the returns each month are simply the sum of the 4 sets of returns 

obtained from applying rule 3 to each series. The total margin required 

for such a portfolio would be £1650. 

The mechanics of such a scheme would require the continuous 

simultaneous monitoring of 4 different portfolios, one from each futures 

market. On one day a trade would be executed in, say, the sugar market, 

on another day a trade may be executed in the coffee market and so on. On 

some days all 4 portfolios would be traded. The results of these trades 

are given in Table 8.26. In order to compare returns on this naive 

strategy with returns on each individual series it is necessary to correct 

for the larger commissions. 
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Table 8.26 

Returns (in £'slusing rule 3 simultaneously on all 4 futures series 

------------ 
Commission 

--------- ---------- 
no. of 

---------- ----------- 
monthly 

----------- 
monthly 

---------- 
coeff. 

-- 

level 
------------ 

scale 
--------- 

trades 
---------- 

profit 
------- --- 

mean 
- - - 

st. dev. 
-------- - 

of var. 

.6 1765 10918 
------ - - 

198.51 
-- 

440.00 
---------- 

2.22 
-- 
b 

1.0 901 11056 201.02 346.00 1.72 c 
1.4 710 9117 165.78 244.40 1.47 c 

Low 1.8 411 7517 136.67 241.20 1.76 c 
2.2 235 7346 133.56 218.40 1.64 c 
2.6 136 6723 122.24 218.40 1.79 c 

- 
3.0 83 

------- -- 
6396 

---------- 
116.29 

--------- - 
208.80 

----- ------ 
1.80 

---------- 
c 

----- ------ --------- 
.6 

- 
1147 173 3.14 416.00 132.48 

-- 

1.0 853 2077 37.77 332.00 8.79 
1.4 560 2739 49.80 241.60 4.85 

Medium 1.8 361 3234 58.80 232.40 3.95 
2.2 220 4753 86.42 210.8 2.44 b 
2.6 132 5165 93.92 209.6 2.23 b 

-------- 
3.0 

--------- 
81 

---------- 
5443 

---------- 
98.96 

-- --------- 
200.40 

----------- 
2.03 

-------- 
c 

---- 
.6 744 -2918 -53.06 396.0 

-- 
- 

-- 

1.0 571 -1645 -30.99 333.2 - 
1.4 386 -240 -4.37 245.6 - 

High 1.8 256 1125 20.46 231.6 11.32 
2.2 111 3048 55.42 211.6 3.82 
2.6 106 4017 73.04 207.6 2.84 a 

------------ 
3.0 

--------- 
68 

---------- 
4659 

---------- 
84.70 

----------- 
193.2 

--------- 
2.28 b 

FT index * 55 392 7.13 
-- 

77.99 
---------- 

10.94 
-- 

------------ 
** 

--------- 
1 

---------- 
1283 

---------- 
23.33 

----------- 
77.99 

----------- 
3.34 

---------- 
a 
-- 

* Investing £1650 in FT index over 55 months with 1% turn round commission. 
** Buy and hold £1650 in FT index fo entire period. 

273 



Only 3 of the total profits are negative. The very worst situation 

arises with a loss of £2918 with Y=0.6 and high commission charges. 

The most impressive profits are £11056 with y=1.0 at the lowest 

commission level. All of the coefficients of variation at the low c level 

are significant and those above ya2.2 are significant even at the 

highest c level. These coefficients of variation of the returns to the 

naive strategy are, as expected, lower than many of the coefficients of 

variation of the individual returns. 

Finally, for comparison purposes we also report in Table 8.26, 

information relating to the returns obtained by investing an equivalent 

sum, £1650, in the FT index over that period. Note that the coefficients 

of variation are larger than many of the ones realised from the naive 

portfolio. 

We summarize then by saying tht at low commission levels, large and 

relatively low-risk returns were possible from the simultaneous 

application of rule 3 to all 4 futures markets. Even at the highest 

commission levels and with Y=2.6, say, a stream of (on average 

positive) profits would have been obtained. At this value of y, a profit 

of £4017 would have been realised. This represents an annualized return 

of 21% (if one is to use the deposit as an albeit inaccurate measure of 

initial investment). This profit would have been realized by the 

execution of 106 trades, approximately i every 11 days. 

8.9 Limitations of trading rules 

In the application of our final and most realistic trading scheme, 

rule 3 we explicitly incorporate the transaction costs as part of the 

trading strategy. However the author is still aware of 3 possible 

drawbacks to the practicalities of applying these rules. They relate to 
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assumptions about (i) the prices; (ii) the possibility of getting 

executions at closing prices; and (iii) placing spreads in six contracts 

simultaneously. 

8.9.1 Closing seller prices 

All the prices used in this study were closing seller prices an each 

day (30,450 prices in all). In practice the execution of our rule 

requires the simultaneous buying and selling of 6 different contracts. It 

is well known that even in very liquid markets there is always a 

buyer-seller spread and such spreads will reduce the profits to our 

trading rules. The buyer-seller spread could be considered to be 

essentially an additional transaction cost and one could attempt to 

incorporate this into our rules by increasing such costs. However it is 

not really that simple. The buyer-seller spreads are not usually the same 

on the near and far contracts. It is more likely that a lower volume of 

trading in the far contracts will result in larger buyer-seller spreads 

and so a simple increase in transaction costs would not be the appropriate 

course of action. 

The ICCH did supply all the closing buyer prices on each contract and 

each day and the author intends in time to edit these and incorporate them 

into this study. Nevertheless the author is still reasonably confident 

that even with the inclusion of buyer-seller spreads (provided they are 

not excessively large) the profits in the cocoa and coffee series at the 

low commission levels would be positive and significant. 
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8.9.2 Execution at close of day 

In our trading rules, a trading signal is generated if the price of a 

special protfolio moves out of a certain band. Using these rules we have 

assumed that it is possible to get executions at the prices given at the 

close of each day. This may not be realistic. Once the market is closed 

no more trades are possible and one may be considering a slightly 

unrealistic situation of a trader waiting until a few moments before the 

close of day for a trading signal. 

However, if it is not possible in reality to trade at the close of 

day prices it may be that prices in the final hours of trading are not 

that far from the closing prices. Indeed, it is perfectly feasible that 

the rule could be successfully applied not just to end of day prices but 

to, say end of hour prices. It may be that the returns to a rule which 

continuously monitors the prices of all 6 contracts minute by minute may 

result in significantly larger profits than those reported here. 

8.9.3 Spreads of 6 contracts 

A major assumption of all our trading rules has been that a trader 

can simultaneously buy and sell different quantities of 6 contracts to 

form complex spread positions. It is of course possible for an 

individual, through a broker, to buy a simple 2 dimensional spread across 

any pair of contracts. In fact there is evidence (Schrock(1971)) that a 

significant proportion of the trades in the American futures markets are 

of this sort. However the simultaneous purchase and sale of 6 contracts 

in the proportions delineated by procedures outlined in chapter 8 may not 

be possible in practice. 
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The author has, however, experimented with applying the above trading 

rules to portfolios that are much less complex than the ones used in this 

study. The revised portfolios contained very much fewer positions, often 

only in 3 or 4 different futures contracts. These constrained portfolios 

still exhibited ex ante multivariate serial correlation and produced 

equally encouraging profits. We leave the discussion of this research to 

another work. 

8.10 Concluding remarks on Chapter 8 

In this chapter we outlined three simple trading rules that were 

designed to exploit the observed persistent multivariate temporal 

dependence in commodity futures prices. The trading rules proved very 

profitable on all series with zero or low commission charges. Even with 

the very largest transaction costs the rules still proved profitable in 

the cocoa and coffee series. With low transaction costs the stream of 

returns to these rules proved not only to be positive, but highly 

statistically significant. Furthermore it appears that investing in such 

a scheme would have resulted in a sequence of returns that would have 

yielded, in a risk-adjusted sense, returns superior to those obtained by 

investing in a basket of common stocks. 

Footnotes for Chapter 8 

1. This is equivalent to using an exponential prcedure with the 

smoothing constant set to 1.0. 

2. Note that when the study was repeated with method (iii) , type 

c estimates, the results were remarkably similar. 

3. However, it is possible to consider a slightly more sophisticated 
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and ambitious strategy in which the investor would increase his 

trading unit to 2 or 3 spreads in those times when there had been a 

run of positive returns. Such a strategy may result in even larger 

returns fand risks) than those reported here. 
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CHAPTER 9 

MULTIVARIATE MODELS OF COMMODITY FUTURES PRICES- 

In this chapter we propose two models of the multivariate 

distribution of prices that could explain much of the observed significant 

multivariate serial correlation of lags of I day. 

Recall from the univariate study of returns in Chapter 3 that, apart 

from the coffee series, there was no evidence of significant serial 

correlation at a lag of 1 day. However as reported in Chapter 5 there is 

evidence of a persistent and highly significant multivariate serial 

correlation at a lag of I day in all series. This was examined in more 

detail in Chapter 6 and in Chapter 7 led to the development of special 

linear combinations of returns that seemed to explain almost all of the 

observed multivariate serial correlation. 

In section 5.3.1 we outlined the results of applying the robust 

estimation and outlier detection routine to the distribution of returns on 

4 typical futures contracts from the same market. Many more outliers were 

detected than in a similar study on 4 contracts, with each contract being 

from a different futures market. 

Half of the observed outliers appeared in contemporaneous pairs and 

corresponded to situations in which one of the 4 contract prices moved out 

of line for one day only to get back into line the very next day. 

Although only 79 out of a total of 30430 returns could be attributed 

to these infrequent deviations of contract returns from the norm, the 

discovery did suggest a possible cause for the observed MVSC. 

It may be that there are many such instances of prices occasionally 

deviating from the main price profile. If these deviations are small 

compared to the overall movements in daily returns they may not be 
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detectable even by the outlier routine. 

Consider an albeit unrealistic example of the prices of all 6 

contracts moving from day to day up and down in perfect unison. For 

simplicity assume that the variability of all the returns are identical. 

Consider a day when events in the futures market dictate that all prices 

should rise by, say 30 units. On that day the contract returns should all 

be +30 units. Consider the situation however in which for some reason the 

price of the 6th contract only rises 20 units. The returns on the 6th 

contract that day will be only +20 units. Assume also that the next day 

the Ist 5 contracts rise a further 30 units. If the 6th contract is to 

get back into line its price must rise by 40 units. Thus one small price 

disturbance has caused two anomalous returns, one below and one above the 

average returns of most of the contracts on each day. If such 

disturbances of prices are small relative to the overall movements of 

returns then it is unlikely that any anomalous temporal patterm will be 

observed by a univariate examination of each series. 

Consider however the distribution of returns to an individual trading 

a spread of I long position in each of the 1st, 3rd and 5th contracts and 

1 short position in each of the 2nd, 4th and 6th contracts. If the prices 

move perfectly in unison the returns on the spread will be exactly zero 

each and every day. However, if as described above, the price of the 6th 

contract lags behind by 10 units on one day the returns on the spread will 

be +10 units. The very next day the returns on the spread will be -10 

units. 

Price disturbances in any of the contracts will always give rise to 

such switching of spread returns. Furthermore even though the 

disturbances may be small relative to the variation of returns within each 

contract series, the resulting positive and negative disturbances in the 

spread returns compared to the overall variability of spread returns can 
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be very large indeed. It is for this reason that we now propose the first 

of two models of the multivariate distribution of returns. 

9.1 Model IA simple model of the multivariate distribution of 

daily returns 

The first model that we propose to explain the multivariate 

distribution of prices is as follows: 

Pt = Pt-s + rt 

.0.090 (9.1) 

rt xt + dt -0 dc-s 

In which: 

(i) Pt is the- (p dimensional) vector of prices at the' close of 

trading on day t. 

(ii) rt is the vector of returns on day t. 

(iii) xt is a vector of random variables that represents the majority 

of the returns on day t. We define E(xc) =0 and Var(xt) = V�, 

With V. being a symmetric positive definite matrix. Furthermore, all the 

co-movement of returns in the series is explained by the off diagonal 

terms of V.. Accordingly V. is nearly singular with many off diagonal 

terms being near 0.95. Also xt and xt_k are independent for all k 

= 1,2, .. 

(iv) dt is a vector of disturbance terms. The i th component of 

dt, dst takes on the values (0l, 0, -o0 with probabilities 

Cps/2, (1-p, ), p, /2) respectively. Each component of dt is indpendent of 

the other components and furthermore pairs i (dt and dt_k) and 

(xt, dt_, ) are independent for all t=1,2, .. and k 0,1,2, ... 
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It is easy to show that 

E (dt) =0 Var (dt) = diag (A2, p, ) 

= Vd 

(v) 8 is a (p x p) matrix of constants and in model 1 we shall assume 

all off diagonal terms are zero, i. e. 

8= diag ( 8, ) 

In this way we model exactly the situation outlined in the 

introduction to this chapter. On most days the returns are simply 

identical to xt. Occasionally the i th component of rt will be 

disturbed by a small amount; At or -At. This will occur with a 

probability of pi. The next day a certain fraction, 8,, of this 

disturbance in the returns will be removed. The disturbances to the 

returns and subsequent prices are completely at random and the rates are 

set by the parameters p., i=1, to p. A priori we would assume pi be 

small. The magnitude of the disturbances will be governed by the 

parameters e:, i=i to p and the degree of correction of each 

disturbance on the following days is set by A,, i=1 to p. 

We now investigate the properties of such a model and show 

analytically that the presence of small disturbance described by this 

model can give rise to MVSC. 

9.2 Derivation of the MVSC coefficient and temporally dependent 

portfolios of model I 

Consider the model given by expression 9.1. We now derive the 
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expected returns, the variance of'returns on day , t, and the covariance of 

returns between day t and day t-1. 

rt = Xt + dt -0 dt-s 

E (rt) =E NO +E NO -0E (dt-, ) 

E trc) =0194.9.2.0000.00010.0... (9.2) 

Var (rt) ='Var (xt) + Var NO +0 Var (dt-i) OT 

Vr = Vx + Vd +0 Vd 9T 0"""6"000"90""9 (903) 

In model 1 we set e= diag ( 9, ) in which all 0, >0 

and therefore (9.3) reduces to 

Vr 2 V. + diag [(1 + e2s) ez, p, ] ......... . (9.4) 

Cov (xc, Et-k )= Cov [(xc + dt -e dt) (xt-k + dt-k -0 dt-k-i) 

= -0 Var NO for k-1 

0 for k=2,3,. .9 

Thus 

Cov frt, e Vd . C9.5) 

In model I this reduces to 

Cov (rt, Et-i) = diag ( -9, &21 p, ) ........... (9.6) 
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In model 19 then, the variance of returns matrix is represented by 

equation 9.4 and is simply the variance matrix of the xt process with 

additional (small) terms of (1 + 82, )e2ip: along the diagonal. These 

small additions will have the effect of increasing, slightly, the variance 

of each component of rt over the variance of the corresponding 

component of the xt process. In addition to this, the correlation 

coefficients between each pair of components of rt will be slightly 

lower than the correlation coefficients of corresponding pairs of the xt 

process. 

The covariance between returns on day t and day t-I is defined 

purely in terms of the parameters A,, At and p, . The covariance matrix 

in expression 9.5 is diagonal. Thus the i th component of rt is 

negatively correlated with the i th component of rt-s and not correlated 

with any of the other components of rt-i. Assuming model 1 is a true 

description of the process generating the returns, we now derive the 

temporally correlated portfolios, c, referred to in Chapters 7 and 8. 

Substituting the variance and covariance matrices derived in 9.4 and 9.6 

into equation 7.5 we haves 

A  [V. + diag [(1 + 921)o21p13-1 [ -2 diag [Ai Ali pi] 3.. . (9.7) 

Interest is centred on the minimum eigenvalue (2T) and corresponding 

eigenvector c of A. If we divide 9.7 by -2 we have 

A" = [VK + diag (Cl + 82, )42 ps]-1 1 diag CO, &2s p�i ]. (9.8) 

and interest is now centred on the maximum eigenvalue (-K) and associated 

eigenvector (c) of A*. The c vector will give the special portfolio 

cT rt that will be maximally negatively correlated with 
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CT rt-i. The serial correlation coefficient will be, -Y. It is 

interesting to note that if we express A* in (9.8) as 

A" = B-1 C 

in which B V. + diag [(1 + 82, )o21 pý] 

and c diag te, n21p. ) 

then since B and C are positive definite, all the eigenvalues of A" are 

real and positive . Thus the maximum eigenvalue, -Y, will be positive and 

so the correlation between CT rt and CT rt-,, Y, will always be 

negative. 

The analytic derivation of the eigenvalues and eigenvectors of A* in 

(9.8) in terms of 81, e, and p, appears to be intractable and so the 

author experimented with various 9s, o, and ps values in an attempt to 

duplicate the empirical temporal portfolios outlined in Chapter 7. 

However the problem is more complex than finding 8,, At and p, 

values that produce c and Y similar to the values observed in practice. 

For consistency the variances and covariances given by (9.4) and (9.6) 

must also be reasonably similar to the ones observed in practice. We 

defer the treatment of this problem to section 9.3 but note in passing 

that in the experimentation process the maximum negative correlation 

coefficient, y, that was produced was -0.49. Recall from section 7.6.4 

that using the grand average correlation matrices the average temporal 

correlation appeared in all 4 series to be approximately -0.43. This led 

the author to investigate, in more detail, the properties of the 

eigenvalues of, A", under certain simplifying assumptions. 
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9.2.1 A theoretical lower bound on the degree of serial correlation 

in multivariate portfolios 

Consider, again, the matrix A* in (9.8). It is simpler if we turn 

our interest to the inverse of A", A"" _ (A")-'. It is well known that if 

(-t) and c are the corresponding eigenvalues and eigenvectors of 

A" then (- 1/Y ) and c are corresponding eigenvalues and eigenvectors 

of A**, where, 

A"" = diag 1 V. + diag 1(1 + 02a) ... (9.9) 

eIA2, p, es 

So the minimum eigenvalues (- 1/K ) of A'" will correspond to the maximum 

egienvalues (-f ) of A*. 

We now make three assumptions; (i) each A1 is equal to a constant 

correction factor 80, (ii) each disturbance component At is equal to a 

constant value om and (iii) all p, values are identical and equal to pm. 

These values substituted in (9.9) affords a simplifications 

A"" 1 V� + 11 + e2 I t9.10) 

80A'm pm em 

With these simplifications the eigenvalues of A** , C-1/Y ), can easily be 

expressed in terms of the eigenvalues of V. , X. as follows: 

-1Z1X. +1+ elm 
1' 90420 p0 em 
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or (-i )_+1... (9.11) 

+1+ e20 1 X. 

9ao2m pm 8m 

The value of (-Y ) of interest is the maximum value and this will be given 

in terms of the minimum eigenvalue of V. in (9.11). The V. matrix is 

positive definite and so all, even the smallest, X., will be positive. 

However in our models V. will be nearly singular and thus the smallest 

eigenvalue, X., will be near zero. If we substitute the lower bound of 

such, a., i. e. zero in (9.11) we have 

= V0 

1+ Alm 

1090 (9.12) 

Note that in this situation the magnitude of the temporal dependence is 

now dependent only on, 8m , the degree of correction of price disturbances 

and independent of the magnitude ( 00 ) and frequency (pm ) of 

disturbances. 

A priori we would expect 80 to lie in the range (0,1) and it is 

interesting to note that if we substitute Am =1 (corresponding to model 

in which a price disturbance is corrected perfectly the very next day) 

into (9.12) we obtain i= -0.5. 

Thus if the multivariate set of highly collinear prices were 

generated according to model 1, we see that MVSC of lag 1 day would be 

observed. Furthermore with certain simplifying assumptions relating to 

the parameters of the model it is possible to show that the maximum degree 

of negative serial correlation possible would be -0.5. It is extremely 

interesting to note that the maximal negative serial correlation observed 
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when using the grand average technique over the entire period was in fact 

-0.461. 

9.3 The Grand Average R11 and R12 matrices 

At this stage we will consider how one might estimate the parameters 

of model i that would best explain the observed variance/covariance 

matrices and resulting eigenvalues and eigenvectors. 

Obviously we would wish to find e,, &,, p: and V. that result in V, and 

Cov(rt , Et-, ) matrices that are as near as possible to the observed 

ones. However here again we encounter the problem present throughout this 

study, that of fluctuating variances. Model I assumes a constant variance 

structure. 

It is possible of course to extend model I to one of fluctuating 

variance and one could use either of the variance processes suggested by 

Taylor (1980 ). We will instead approach the problem in a much cruder 

way, and simply assume that variances remain fairly constant within the 

short time periods examined and remodel the process in terms of correlation 

matrices. Although the variances vary considerably over time we are 

assuming the correlation structure is constant. In fact this very 

assumption underlies the rationale of calculating the grand average 

correlation matrices used in Chapters 6 and 7. 

Using the notation of Chapters 6 and 7 and the variance/covariance 

matrices given in (9.4) and (9.6) we arrive at the following correlation 

matrices for model 1. 
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Ri1 = {diag (Vr)}' "z Vr (diag (Vr)) 1/2 ... 9 . (9.13) 

and 

R12 = {diag (V,, ))-112CDV(rt, Et-i) (diag (Vr))'''2 

Note that in (9.14) all the off diagonal terms of R12 are zero and so we 

would expect the sample R12 matrix to contain negative elements along the 

diagonal term and all off diagonal elements to be zero. It was considered 

for reasons argued in section 6.9.3 that a good estimate of Ri, and R12 

for each series would be the grand average matrices and accordingly we now 

present these in Tables 9.1 to 9.4 

Referring to Tables 9.1 to 9.4 we notice that the sample R12 

matrices are not exactly as expected, i. e. purely diagonal. Although many 

of the diagonal terms are negative, many are smaller in magnitude than the 

off diagonal terms. However there appears to be a general pattern common 

to each R12 matrix. We make the following remarks on this general 

patterns 

(i) With the exception of two elements, all the elements in the first 

column are positive. 

(ii) Apart from the terms in column 1, most of the elements are 

negative. 

(iii) In each row as one spans the elements from column I to column 6, 

the elements tend to decrease in value. 

These results are interesting and certainly unexpected. It appears then 

that the correlations between elements of rt and rt_, is more complex 

than that proposed by model 1. The asymmetry of R12 is difficult to 

explain. 

Consider the Ist row and the Ist column of the rubber series, as an 
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Table 9.1 

Grand average R� and R12 matrices for the cocoa series 

r,, t = returns on ith component on day t 

ri, t r2, t r3, t r4, t r3, t 

ri, t 1.000 
r2, t . 888 1.000 

R, 1 r3, t . 843 . 954 1.000 
r., t . 812 . 930 . 957 1.000 
r5, t . 798 . 909 . 942 . 957 1.000 
rb, t . 782 . 889 . 923 . 936 . 954 

ri, t rz, t rs, t r., t r5, t 

ri, t-, L . 021 -. 014 -. 036 -. 037 -. 034 
r2, t-I . 043 -. 022 -. 029 -. 032 -. 018 

R12 r3. t-t . 059 . 003 -. 030 -. 018 -. 006 
r,, t-s . 044 -. 007 -. 025 -. 046 -. 019 
r5, t-i . 056 . 004 -. 018 -. 022 -. 031 
r&, t-, . 060 . 007 -. 014 -. 016 -. 016 

Table 9.2 

Grand average R� and R12 matrices for the coffee series 

ri.. c 

1.000 

r&, t 

-. 036 
-. 026 
-. 013 
-. 025 
-. 023 
-. 042 

r,, ,t rz, t r3, t r4, e rZ. t ra. c 

riet 1.000 
r2, t . 811 1.000 

R11 2 r3. e . 773 . 946 1.000 
r,.: . 752 . 936 . 959 1.000 
r3. ß . 740 . 912 . 937 . 971 1.000 
rb, t . 719 . 884 . 914 . 948 . 960 1.000 

ri. t r2, t r3. t r,, t r3, t r.. t 

r,. t-i . 005 . 008 -. 001 -. 021 -. 013 -. 004 
r2, t-1 . 018 -. 011 -. 004 -. 016 -. 008 -. 007 

R,, 2 2 r3. t-i . 021 -. 003 -. 027 -. 019 -. 008 -. 001 
r., t-s . 023 . 009 -. 002 -. 018 . 001 . 013 
r5. t-, . 032 . 013 . 001 -. 010 -. 012 . 015 
r, &, t-º . 027 . 008 . 002 -. 014 -. 010 -. 013 
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Table 9.3 

Grand average Ri, and R2 matrices 4or the sugar series 

rl't 

r, ,t 1.000 
r2, t . 804 

R11 r3, t . 783 
r., t . 768 
r5, t . 746 
r&, t . 726 

ri. t 

rl, t -. 030 
r2, t-1 . 079 

R12 = r3, t-, . 076 

r4, t-, . 068 
r5, t-, . 059 
rb, t-i . 056 

r2. t r3, t r., e r3, t rr, t 

1.000 
. 978 1.000 
. 955 . 975 1.000 

. 934 . 959 . 978 1.000 

. 918 . 943 . 951 . 967 1.000 

r2, t r3, t r4, t r5,! r6,! 

-. 027 -. 045 -. 046 -. 050 -. 062 
-. 001 -. 015 -. 013 -. 020 -. 030 

. 002 -. 018 -. 010 -. 018 -. 027 
-. 005 -. 019 -. 020 -. 024 -. 028 
-. 014 -. 026 -. 020 -. 040 -. 040 
-. 017 -. 028 -. 018 -. 033 -. 057 

Table 9.4 

Grand average R11 and R12 matrices for the rubber series 

rt, t r2, t r3, t r., t rz,, rr, t 

ri, t 1.000 
r2, t . 815 1.000 

Ri, = r3, t . 799 . 951 1.000 
r., t . 779 . 930 . 974 1.000 
r5, t . 763 . 908 . 954 . 967 1.000 
rb, t . 741 . 878 . 916 . 933 . 942 1.000 

ri, t r2, t r3, t r4, t r5, t r 6, t 

ri, t-, -. 068 -. 045 -. 057 -. 064 -. 070 -. 078 
r.; t, t-i . 021 -. 039 -. 038 -. 042 -. 058 -. 072 

R12 = r3, t-1 . 023 -. 007 -. 035 -. 037 -. 053 -. 066 
r., t-i . 026 -. 010 -. 030 -. 051 -. 060 -. 070 
r5. t-, . 017 -. 011 -. 034 -. 046 -. 080 -. 074 
rb, t-t . 028 -. 009 -. 021 -. 034 -. 053 -. 091 
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example. In particular we consider the elements: 

(R12)1, o = -0.078 and (R12)6,1 = +0.028 

From this we infer that the components, ri. t, and r", t-z are negatively 

correlated whereas componenets re. t_i and ri. t are positively correlated. 

This effect is observed in all 4 series. 

It is interesting to consider also the four Ri, matrices. Note that 

all the correlations are high and positive and that as one considers 

components that are further apart the correlations decrease. This seems a 

reasonable result. The degree of comovement of contract prices (and hence 

returns) may be directly proportional to the distance in days between 

maturity dates. However, what perhaps is unexpected is the relatively low 

values of the coefficients in the first column of each Rs, matrix. It 

appears that there is a high degree of correlation amongst the contract 

returns that are not immediately due for delivery; contracts 2 through 6, 

but that this very high degree of correlation is not shared with the 

contract that is due for immediate delivery; contract 1. The above 

observations suggest that the distribution of returns on contract I is 

Isubtely different from the distribution of the returns on all the other 

contracts and furthermore that the nature of the association between the 

entire set of returns on day t and day t-1 is much more complex than that 

explained by model 1. 

9.4 Model 2 

In this section we consider a more complex model of the multivariate 

distribution of returns that could explain, not only the observed MVSC but 

also the observed Rt, and R12 matrices reported in section 9.3. 
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Consider again the model of returns defined in section 9.1: 

rt = xt + dt -$ dt-, 

In this model 1 we assumed 8 to be a diagonal matrix. In this way, the i 

th component of rt, (ri. t) would be correlated only with the i th 

component of rt-,, (ri, t-, ) through 8s, i. e. 

rt, t = Xs, t + ds, t - 9i dt, t-i 

If we now revert to a more general model In which-0 is a square 

matrix of non zero constants, (61j) the association between rt' and 

rt_, becomes more complex. In this model, model 2, the ith component 

of rt is now given by: 
s 

r.. t = x, t +- d. t-E e1 ds. t-, 
j-l 

In this model, ra. t would experience not only corrections from 

disturbances to r,. t-, but also corrections from disturbances to 

rk, t-,, through 8,, k. This may be reasonble in the sense that a random 

shock to the i th contract price may have an impact the next day on the 

prices of the other contracts. The A� will represent the influence of 

a disturbance to the J th contract on day t-1 on the returns in the ith, 

contract on day t. 

Using arguments similar toý section 9.3 we derive the theoretical 
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Ri , and R12 matri_ces, of model 2. 

R il = (diag (V, ))- 12 V. (diag (V, -))1''2 

R, 2 =- (diag (V. )}-12 e Vd (diag (V,. ))-"_ 

with 
V. V. + Vd +8 Vd BT 

...... (9.1! ) 

and Vd diag {p2, pi) 

Note that each element of R1, and R12 in (9.15) is a complex function of 

0I� All pi, i=1,.., p and the elements of V.. 

9.4.1 Estimation of parameter values for Model 2 

The estiiation of the values of the parameters in Model 2 presents a 

problem. There are 21 elements of V�, 36 elements of A and 6 (&2, p, ) 

terms-3. How does one find the values of all 63 parameters? As an attempt 

at estimation we considered minimising a function of the form: 

F=E C(Rii), .ý- (R, . ),. j 32+E C(R12), L.., - (R%2)t. j12 

where (R: J).., = theoretical elements of RI, matrix given by (9.15) 

and = sample values of elements of grand average R: j matrix 

given in Tables 9.1 to-9.4 . 

In this way it was hoped that one would be able to find parameter values 

that resulted in theoretical R11 and R12 matrices that were as 'near' as 

possible the observed matrices. The minimization is of course subject to 
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the constraints: 

IV. I>0 
V. !>0 

Rii R±2 (9.17) 

>0 

R21 Ril 

The minimisation of such a function requires the analytic derivation 

of the differential of F and the constraints with respect to each of the 

63 variables. Accordingly a program was constructed that computed the 

values of (i) F given by (9.16) ' (ii) the constraints given by (9.17), 

(iii) the rates of change of F and the constraints with respect to each 

parameter (iv) the Ri, and R12 matrices and (v) the eigenvalues and 

eigenvectors of A given by (7.12). The program called the NAG minimisation 

routines E04VBF. 

Many problems have been encountered with this procedure. No single 

global minimum could be found and those local minima that were found were 

'ill conditioned', a small shift in one of the 63 parameter values alters 

the values of F drastically. Altering the range constraints on the 

parameters invariably produced different local minima. The computer 

processor time for a typical minimisation run was 3 to 4 hours. 

In an attempt to simplify the problem land possibly speed up the 

minimisation routine, many simplifying assumptions on the parameter 

structures were tried. Examples of some of the simplifications are given 

below. 

(i) Constraining all the correlation coefficients defining the xt 
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process to be modelled by, 

(rx)s. J =a (w)I(s-J. I)I 

with a, w(1 

In this way-the correlation between near components of Xt is higher than 

the correlation between distant components. 

(ii) Constraining all the standard deviations of the xt process to 

decrease : monotonically according to the relation: 

Cax)1 fox) - (vc)i 

in which Q. = change in standard deviation of xt vector from component 

to component. 

(iii) Many simplifications on the structure of the 0 matrix were tried. 

None of these simplifications has yet led to a satisfactory solution 

and we leave this problem as the subject for further research. 

9.4.2 Some suggested parameter values for model 2 

Although attempts at finding global minima have yet to prove 

fruitful, some degree of success has been obtained by the simple 

substitution of trial parameter values into (9.15). With 63 variables 

there is' obviously an enormous number of possibilities to consider. 

However the detailed empirical examination of the multivariate 

distribution outlined in Chapter 5 led one to experiment with certain 

combinations of parameter values. Many such combinations produced 

theoretical Rii and R12 matrices that were very near those given in Table 

9.1 to 9.4. 
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In Table 9.5 we present one example of such a set of parameter values 

along with the resulting theoretical i' and c values. We briefly outline 

the rationale behind choosing this particular set. 

(i) Recall the remarks on the components of the c vectors made in 

section 7.6.5. We suspect that the major contributing factor to the 

multivariate temporal dependence comes from the middle to far contracts. 

With this in mind we choose (&2, p, ) values to be scaled accordingly. 

(ii) In section 5.2.1 we noted that the standard deviation of returns 

generally decreased as one considered contracts further and further from 

maturity. The standard deviations of the xt process were thus set to 

decrease monotonically. 

(iii) In section 5.3.2 we noted that all the cross contract 

correlations were very high. The correlation coefficients of the xt 

process were thus set to near unity. 

(iv) Considering the grand average R12 matrices in Table 9.1 to'9.4 we 

note that the correlation between each component of rt and rt-, is 

extremely complex and in an attempt to reproduce a typical R12 matrix we 

set 6 to be as in Table 9.5. For simplicity the diagonal terms are set to 

1.0 and all off diagonal terms (except the Ist column) were set to 0.3. 

The elements in the Ist column were set to -1.0. 

The substitution of these parameter values in (9.15) result in Rs, 

and R12 matrices remarkably near those given in Table 9.1 to 9.4. 

Furthermore the resulting theoretical MVSC, v, and the c vector are 

consistent with those of the grand average estimates given in Tables 7.12 

to 7.15. 

It must be pointed out that very many different sets of parameter 

values have been tried and the dependence of R, 2 and R, s matrices on the 

individual values is very complex indeed. Increasing the disturbance term 

parameters &2, pi tends to reduce the elements of R1, and increase the 
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Table 9.5 

A set of parameter values for model 2 with theoretical results 

cros 1.00 0.96 0.92 0.88 0.84 0.80 

1.000 
0.950 1.000 
0.912 0.980 1.000 

Cor«i 0.876 0.951 0.980 1.000 
0.840 0.922 0.951 0.980 1.000 
0.807 0.894 0.922 0.951 0.980 1.000 

o2spsl 0.0204 0.0424 0.0562 0.0697 0.0467 0.0294 

1.0 0.3 0.3 0.3 0.3 0.3 
-1.0 1.0 0.3 0.3 0.3 0.3 
-1.0 0.3 1.0 0.3 0.3 0.3 

8 -1.0 0.3 0.3 1.0 0.3 0.3 
-1.0 0.3 0.3 0.3 1.0 0.3 
-1.0 0.3 0.3 0.3 0.3 1.0 

In the above Q� = the standard deviation of the xt process 
and Corn = the correlation structure of the xt process. 

The substituting these into equatuion (9.15) yields: 

1.000 
0.875 1.000 

Raga 0.829 0.912 1.000 
0.783 0.872 0.887 1.000 
0.761 0.860 0.875 0.887 1.000 
0.737 0.847 0.862 0.874 0.912 1.000 

-0.019 
0.019 
0.020 

R12: 0.020 
0.022 
0.023 

-0.012 
-0.041 
-0.012 
-0.013 
-0.014 
-0.014 

-0.016 
-0.016 
-0.056 
-0.017 
-0.018 
-0.020 

-0.021 -0.015 -0.010 
-0.021 -0.015 -0.010 
-0.021 -0.015 -0.010 
-0.073 -0.016 -0.011 
-0.023 -0.056 -0.011 
-0.025 -0.018 -0.040 

Sum of 
components 

---------------------------------------------------------- 
cT; -13 103 -248 320 -237 79 4 

-------------------------------- -------------------------- 

-0.443 
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elements of R12. The f and c values are very sensitive to the 

specification of 6. The relationship between the parameter values and the 

resulting f, c values is left as the subject for further research. 

9.5 Implications of models for multivariate distributions 

of commodity futures returns 

It is likely that processes of the type described in this chapter will 

have complex multivariate distributions. If the xt process in model 1 

or 2 is multivariate normal then disturbances dt and corrections edt-s 

will obviously result in multivariate non - normal distributions. In 

section 3.3.3 we investigated the multivariate distribution of returns on 

four contracts from the same futures market. Highly significant 

multivariate skewness and multivariate kurtosis statistics were reported. 

Removing outliers reduced the magnitude of the statistics but many 

remained significant. Thus if the returns are generated by processes 

described by the above models this may explain not only the observed 

multivariate temporal behaviour but also the observed extreme departure 

from multivariate normality. 

The mathematical treatment of the multivariate skewness and kurtosis 

of model I and 2 returns appears to be intractable and we leave this as an 

interesting area of research. 

9.6 Conclusions of Chapter 9 

In this chapter we outlined two models of the multivariate 

distribution of commodity futures prices. These models involve small 

perturbations in individual components of the price vector. We have 

demonstrated that processes generated from these models would exhibit a 
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multivariate temporal dependence consistent with that observed throughout 

this study and could also explain the significant multivariate skewness 

and kurtosis values. In the first model, under certain limiting 

conditions, the maximum degree of negative serial correlation possible in 

multivariate spread portfolios is O. S. A second model was introduced in 

an attempt to explain the complex nature-of the observed R12 matrices. 

Although we have yet to estimate the parameters of this second model, a 

trial set of parameters produced theoretical results that were very near 

those observed in practice. 
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SUMMARY 

In this study we examined in detail the univariate and multivariate 

distribution of daily returns of futures contracts in the four major 

London soft commodity futures markets. The univariate study revealed 

that the distributions were highly nonstationary in variance and only one 

series (rubber) could be described as approximately normally distributed. 

An investigation into the univariate temporal dependence of long series of 

contracts woven together produced evidence of long term negative serial 

correlation. 

In the multivariate analysis, three relatively recent procedures (the 

multivariate serial correlation, the multivariate extension of the W- 

test for normality and a multivariate outlier detection routine) were 

investigated. The four dimensional vector of returns with one component 

from each futures markets can be viewed as being generated from a serially 

independent multivariate normal process with non - constant 

variance/covariance structure with occasional contaminating extreme 

realisations. 

Examining the multivariate distribution in which all the components 

are returns on contracts in the same futures market however produced 

different and very unexpected results. Significant departures from 

multivariate normality were witnessed and highly significant multivariate 

serial correlation coefficients of lag one day were discovered. The 

departures from multivariate normality could not be completely explained 

by the presence of obvious anomalous "spikes" in the plots and the 

sensitivity of the multivariate W- test was brought into question. 

The multivariate temporal dependence was shown to be due to the 
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correlation between certain linear combinations of returns. The near 

singularity of the sample variance/covariance matrices encountered, caused 

estimation problems and an extensive study into the possibility of using 

enhanced (ridge - regression type) estimators was carried out, 

unfortunately with little success. 

In an attempt to obtain average linear combination estimates over the 

entire time period studied (five years) the idea of estimating grand 

average correlation matrices was investigated. The resulting grand 

average linear combination estimates were remarkably similar across all 

four series of returns and led to the discovery that most of the observed 

multivariate serial correlation could be explained by certain complex 

multivariate spread portfolios. 

Three multivariate trading rules of various degrees of sophistication 

were devised to exploit the observed temporal behaviour and when applied 

to all four series produced positive and statistically significant 

returns. The introduction of non zero transaction costs reduced 

returns but still produced positive profits in the cocoa and coffee 

series. There are a number of practical limitations to the implementation 

of these trading rules, not the least being the purchase of complex six 

dimensional spread portfolios. Also the Author is aware that the large 

returns in the cocoa and coffee series may be peculiar to those markets 

in the time period examined. 

Finally, models of multivariate processes that could explain both the 

observed departure from multivariate normality and the significant 

multivariate serial correlation coefficients are presented. In one model 

we show analytically that under certain simplifying assumptions the 

multivariate spread portfolios have a theoretical serial correlation 

consistent with that observed. 
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THE DATA SET 

In this appendix we describe the data set, how the numerous errors 

were identified and corrected and the final rearrangement into a 

chronological file that was much easier to access in subsequent analysis. 

A. I. Description of the data set 

The International Commodity Clearing House (ICCH) made available. a 

magnetic tape containing daily information on all the futures contracts of 

cocoa, coffee, sugar from the i st. January, 1974 to the 31 st December, 

1979 inclusive and on the rubber series from the 13 th March 1975 to the 

31 st December, 1979 inclusive. The data set contained information on 

the following prices: open, high, low, closing buyer and closing seller for 

each contract. The set contained 5,120,000 prices in all 

Virtually all previous statistical empirical research on the commodity 

futures markets use daily, weekly or monthly closing prices and so it was 

decided to use the closing seller price as the one price representing that 

contract on each day. Accordingly a smaller subfile (a random access 

file) was constructed containing only the daily closing seller prices. 

This new file contained 43,022 records. Each record contained information 

on the price, the date, the commodity code and the particular contract. 
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Each record had the following format: 

ü 06047 MY8 195500 

where, 

1= commodity 

TeT 

od= c ocoa) 

06047 date tbth day of 4th month 1977) 

MY8 delivery month of contract (MAY 1978) 

195300 2 closing seller price ( £1955 per tonne) 

So, on the 6 th April, 1977 a contract (10 tonnes) of cocoa for 

delivery at the end of May, 1977 could have been purchased (at the close 

of day) at a price of £1955 per tonne. All the cocoa prices (from 13 th 

March, 1974 to 31 st December, 1979) were at the begining of the file 

followed by all the coffee prices followed by all the sugar prices and 

finally all the rubber prices. A description of the contracts on the ICCH 

tape is given in Table A. 1. 

The total number of contracts is = 37 + 42 + 35 + 27 = 141 , the 

length of each contract varies from 14 months for the coffee series to 24 

months for the rubber series. The original tape also contained 

information on the 'current month' contracts, e. g. January, 1977 Sugar. 

These current months are simply duplicates of the nearest delivery months 

(in the above example it would be March, 1977 Sugar) and so were not 

copied into the new abreviated data set. 
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Table A. 1 

Complete contracts on ICCH data tape 

Cocoa contracts 

-------------- 
Delivery Month 

------------------------------------------ 
Year March May July September December 

1974 / / / / / 
1975 / / / / / 
1976 / / / / / 
1977 
1978 
1979 
1980 / / / / / 
1981 
------ 

/ 
------ 

/ 
------ 

x 
------- 

x 
-------- 

x 
--------- 

Coffee contracts 

------------- 
Delivery Month 

Total number of 
contracts = 37 

Year March May July September November December 

1974 x / / / / / 
1975 / / / / / / 
1976 / / / / / / 
1977 / / / / / / 
1978 / / / / / / 
1979 / / / / / / 
1980 / / / / / / 
1981 
------ 

/ 
----- 

x 
------- 

x 
------- 

x 
-------- 

x 
--------- 

x 
--------- 

Sugar contracts 

-------------- 
Delivery Month 

------------------------------------------ 
Year March May August October December 

1974 / / / / / 
1975 / / / / / 
1976 / / / / / 
1977 / / / / / 
1978 / / / / / 
1979 / / / / / 
1980 
------ 

/ 
------ 

/ 
------ 

/ 
------- 

/ 
--------- 

/ 
-------- 

Total number of 
contracts   42 

Total number of 
contracts = 35 
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Table A. 1 continued 

Rubber contracts 

-------------- 
Delivery Month 

------------------------------------------ 
Year February May August November 

1974 x x x x 
1975 x / / / 
1976 / / / / Total number of 
1977 / / / / contracts = 27 
1978 / / / / 
1979 / / / / 
1980 / / / / 
1981 
------- 

/ 
-------- 

/ 
--------- 

/ 
-------- 

/ 
---------- 

A. 2 Identification and removal of errors 

With a file containing 43,022 prices it seemed likely that some errors 

would be present. Before any serious statistical work was to be carried 

out, the data had to be examined in detail for anomalies. 

A. 2.1. Missing trading days 

A routine that generated trading day codes was constructed. A second 

routine checked the entire file for missing observations. There were no 

missing trading days. 

A. M. Missing Significant Digits 

Listing all the prices of a few randomly chosen contracts showed that 

some large obvious errors were present in the data. As an example 

consider the recorded prices of the March, 1978 cocoa contract for the 
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period 16 th Decmber, 1976 to 23 rd December, 1976 inclusive. 

date recorded price 

16126 155000 

17126 158000 

20126 60500 

21126 61000 

22126 162000 

23126 
. IF 

162000 

Obviously on the 20 th and 21 st December, the ICCH operator did not 

record the most significant digit. Clearly the prices an these dates were 

160300 and 161000 respectively. It was decided that in order to disclose 

all of the errors of this type a time series plot of each contract had to 

be made. In Figs. A. 1 and A. 2 are two typical examples of initial plots 

of the unedited data set. 

The large spikes and abrupt changes in the level of the series are clearly 

due to errors of the type mentioned above. The sugar prices were 

particularly bad in this respect, especially in the earlier half of the time 

period considered. Consider for example the October 1975 contract on the 

days 20 th November 1974 to 3 rd December 1974. 
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recorded real 
date contract price price 

20114 015 7050 57050 
21114 OT5 3000 53000 
22114 0T5 0 50000 
25114 015 8000 48000 
26114 OT5 6000 46000 
27114 OT5 5000 45000 
28114 OT5 9525 39525 
29114 OT5 2000 42000 
02124 OT5 0 40000 
03124 OT5 8000 38000 

A. 2.3. Incorrect significant digits 

Occasionally an incorrect significant digit was recorded, eg on 2 nd 

January 1977 the September 1978 cocoa contract was recorded as 296000 

(£2960 per tonne). It should have been 196000 (£1960 per tonne). Whenever 

an error was discovered the real closing seller price for that day was 

obtained from past copies of The Financial Times and/or records on 

Microfiche at the ICCH. As the errors in each contract were corrected new 

plots were made and new errors were disclosed. The process was repeated 

until all 141 plots were free from obvious anomolous spikes and changes in 

level. 

In all there were 5725 such mistakes corrected, most of them in the 

sugar series. In Table A. 2 a breakdown of the number of errors is given. 

Table A. 2 

---------- 
No. of 

--------------- 
No. of 

------------ 

-------- 
prices 

------------- 
errors 

---- 
% Errors 

Cocoa 
-------- 

10841 
------------- 

----------- 
924 

----------- 

------------ 
8.5X 

Coffee 
-------- 

10351 
------------- 

---- 
522 

--- -- 

------------ 
3.0% 

Sugar 
-------- 

11089 
------------- 

--- 
4268 

- 
38.5X 

Rubber 
-------- 

10738 
------ 

-------------- 
11 

------------ 
0.1X 

Total 
--------- 

------- 
43022 

------------ 

--------------- 
5725 

--------------- 

------------ 
13.0% 

------------ 
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The number of errors, their special nature, and the size of the data 

file meant that the use of a text editor such as SOS on the DEC10 would 

have been very time consuming and the computer workspace required 

prohibitive. As a result a suite of editing programmes specially designed 

to search and correct the file was created. The programmes proved 

extremely useful, being both fast and requiring very little workspace. 

A. 3 Rearrangement of data into final form 

Before the final sample of contracts (outlined in chapter 3) was 

decided on, many different 

examined. To make this task 

each record contained the 

markets. In the new rearran 

with a total of 1218 records 

could read the prices of any 

combinations of multiples of contracts were 

easier the data file was rearranged so that 

prices of all contracts of. all 4 futures 

ped data set there is only one record per day 

in all. A routine was then constructed that 

number of specified contracts in a given 

record and any number of consecutive records. This final data 

reaarangement made the subsequent univariate and multivariate analysis 

particularly simple. A pictorial representation of the entire data set is 

given in Fig. A. 3. 

A. 4 Computer routines 

All computations and data rearrangements were carried out on The City 

of London Polytechnic's DEC10 and DEC20 computers. All programmes were 

written in FORTRAN 77. In Chapters 4 through to 9 we outline work 

involving computations requiring the inversion of matrices and the 
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solution of eigen value problems. In Chapter 9 the minimization of a 63 

variable function with non linear constraints in the variables was 

involved. 

These computations were carried out using the NAG library routines. 

Routine F01ABF was used to invert positive definite matrices, 

F01AKF, FOIAPF and F02AQF were used to find the eigenvalues and 

eigenvectors of general matrices . E04VBF was used in an attemp to 

solve the minimization problem. G05DDF was used to generate standard 

normal random variables in simulation routines. All computations were 

carried out at the single precision level. 
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APPENDIX B 

Sections of contracts studied in Chapters 3 and 4 

------ -------- 
No. of 

------ 
Cocoa 

---- ---------- 
Coffee 

-- ---- 
Sugar 

---- ---------- 
Rubber 

----------- 
Dates 

-------- 

Period 
------ 

days 
-------- 

contr 
------ 

act 
---- 

contract 
---------- 

contr 
------ 

act 
---- 

contract 
---------- 

from - 
----------- 

to 
-------- 

1 102 Dec. 
- 
75 
---- 

Nov. 
----- 

75 
----- 

Mar. 
------ 

76 
---- 

May 
----- 

76 
----- 

7/03/75 - 
---------- 

31/07/75 
-------- ------ 

2 
-------- 

107 
--- 

----- 
May 

------ 
76 
---- 

May 
----- 

76 
----- 

May 
------ 

76 
---- 

Aug. 
----- 

76 
----- 

1/08/75 - 
----------- 

31/12/75 
-------- ------ 

3 
----- 

85 
------ 

Sep. 
------ 

76 
---- 

Sep. 
----- 

76 
----- 

Oct. 
------ 

76 
---- 

Feb. 
----- 

77 
----- 

2/01/76 - 
----------- 

30/04/76 
-------- ------ 

4 
- 

-- 
86 

-------- 
Dec. 

------ 
76 
---- 

Jan. 
----- 

77 
----- 

Mar. 
------ 

77 
---- 

May 
----- 

77 
----- 

3/05/76 - 
---------- 

31/08/76 
-------- ----- 

5 87 Jul. 77 May 77 May 
---- 

77 
---- 

Aug. 
---- 

77 
----- 

1/09/76 - 
--------- 

31/12/76 
-------- ----- 

6 
------ 

-------- 
83 

-------- 

------ 
Sep. 

------ 

---- 
77 
---- 

----- 
Sep. 

----- 

----- 
77 

----- 

-- 
Oct. 

------ 
77 
---- 

Feb. 
----- 

78 
----- 

4/01/77 - 
----------- 

29/04/77 
-------- 

7 86 
-------- 

Dec. 
------ 

77 
---- 

Jan. 
----- 

78 
---- 

Mar. 
------ 

78 
---- 

May 
----- 

"78 
----- 

2/05/77 - 
----------- 

31/08/77 
-------- ------ 

8 86 May 78 May 78 May 78 Aug. 78 1/09/77 - 30/12/77 
-------------- ------ ---r ---------- ------ ---- ---------- ----------- -------- 

9 83 
---- 

Sep. 
------ 

78 
---- 

Sep. 
----- 

78 
---- 

Oct. 
------ 

78 
---- 

Feb. 
----- 

79 
----- 

3/01/78 - 
----------- 

28/04/78 
------- ---- 

10 
---- 

87 Dec. 78 
-- 

Jan. 
----- 

79 
----- 

Mar. 
------ 

79 
---- 

May 
----- 

79 
----- 

2/05/78 - 
--------- 

- 
31/08/78 
------- ------ 

ii 
-------- 

85 
-- 

------ 
May 

------ 

-- 
79 
---- 

May 
----- 

79 
----- 

May 
------ 

79 
---- 

Aug. 
----- 

79 
----- 

1/09/78 - 
----------- 

- 
29/12/78 
-------- ------ 

12 
------ 

------ 
84 

-------- 
Sep. 

------ 
79 
---- 

Sep. 
----- 

79 
----- 

Oct. 
------ 

79 
---- 

Feb. 
----- 

80 
----- 

2/01/79 - 
----------- 

30/04/79 
-------- 

13 
--- 

87 
-------- 

Dec. 
------ 

79 
---- 

Jan. 
----- 

80 
----- 

Mar. 
------ 

80 
---- 

May 
----- 

80 
----- 

1/05/79 - 
--- 

31/08/79 
--- 

14 
---- 

83 
-------- 

May 
---- -- 

80 
---- 

May 
----- 

80 
---- - 

May 
------ 

80 
--- - 

Aug. 
----- 

80 
----- 

-------- 
3/09/79 - 

- ---------- 

-------- 
28/12/79 
-------- 



APPENDIX C 

Sections of contracts woven together in study of long term 
serial correlation in section 3.6.1 

---------- 
Series 

-------- 

---------------- 
Contracts 

--------- - -- 

------------------------ 
Dates 

-- -- ----------------- - 
Mar. 

-- - - 
76 

- 
7/03/75 - 31/12/75 

Mar. 77 2/01/76 - 31/12/76 
Cocoa Mar. 78 4/01/77 - 30/12/77 

Mar. 79 3/01/78 - 29/12/78 
Mar. 80 2/01/79 

-------- 
- 28/12/79 
---------- ---------- ------ -- 

Mar. 
-------- 

76 
--- 

7/03/75 - 30/01/76 
Jan. 77 2/02/76 - 30/11/76 

Coffee Nov. 77 1/12/76 - 30/09/77 
Sep. 78 3/10/77 - 31/07/78 
Jul. 79 1/08/78 - 31/05/79 

---------- 
May 

-------- 
80 

- ------- 
1/06/79 

------------- 
- 28/12/79 
----------- 

Mar. 76 7/03/75 - 31/12/75 
Mar. 76 2/01/76 - 31/12/76 

Sugar Mar. 78 4/01/77 - 30/12/77 
Mar. 79 3/01/78 - 29/12/78 

- 
Mar. 

- - 
Be 

-------- 
2/01/79 

------------- 
- 28/12/79 
----------- -------- - ----- - 

Feb. 76 7/03/75 - 28/11/75 
Feb. 77 28/11/75 - 30/11/76 

Rubber Feb. 78 30/11/76 - 30/11/77 
Feb. 79 30/11/77 - 30/11/78 

---------- 
Feb. 

------- 
80 

-------- 
30/11/78 

------------- 
- 28/12/79 
----------- 



APPFNDTY D 

Sections of cocoa contracts studied in Chapter 5 

------ -------- 
No. of 

---------- 
first 

---------- 
second 

---------- 
third 

---------- 
fourth 

------------------- 
Dates 

Period days contract contract contract 
----- 

contract 
- 

from - to 
------ 

1 
-------- 

102 
-- 

----- 
Sep. 

--- 

----- 
75 

----- 

----- 
Dec. 

----- 

----- 
75 

----- 

----- 
Mar. 

----- 
76 

----- 

---- 
May 

----- 

----- 
76 

----- 

--------- 
7/03/75 

--------- 

---------- 
- 31/07/75 
--------- ------ 

2 
------ 

107 
-- 

Mar. 
--- 

76 
----- 

May 
----- 

76 
----- 

Jul. 
----- 

76 
----- 

Sep. 
----- 

76 
----- 

1/08/75 
--------- 

- 
- 31/12/75 
--------- ------ 

3 
-------- 

85 
-- 
May 76 

----- 
Jul. 

----- 
76 

----- 
Sep. 

----- 
76 

----- 
Dec. 

----- 
76 

----- 
2/01/76 - 

--------- 

- 
30/04/76 

---------- ------ 
4 

-------- 
86 

----- 
Sep. 76 Dec. 

-- 
76 

----- 
Mar. 

----- 
77 

----- 
May 

----- 
77 

----- 
3/05/76 - 

--------- 
31/08/76 

---------- ------ 
5 

-------- 
87 

----- 
Mar. 

----- 
77 

--- 
May 77 

-- 
Jul. 

----- 
77 

----- 
Sep. 

----- 
77 

----- 
1/09/76 

--------- 
- 31/12/76 
-------- ------ 

6 
------ 

-------- 
83 

-------- 

----- 
May 

----- 

----- 
77 

----- 

----- 
Jul. 

----- 

--- 
77 

----- 
Sep. 

----- 
77 

----- 
Dec. 

----- 
77 

----- 
4/01/77 - 

--------- 

-- 
29/04/77 

---------- 
7 
--- 

86 
-------- 

Sep. 
--- 

77 
----- 

Dec. 
----- 

77 
----- 

Mar. 
----- 

78 
----- 

May 
----- 

78 
----- 

2/05/77 - 
-------- 

31/08/77 
--- 

8 86 
------ - 

-- 
Mar. 

----- 
78 

----- 
May 

----- 
78 

----- 
Jul. 

----- 
78 

----- 
Sep. 

---- 
78 

- 
1/09/77 - 

---------- 
30/12/77 

------ 
9 
--- 

- 
83 

-------- 
May 

----- 
78 

----- 
Jul. 

----- 
78 

----- 
Sep. 

----- 
78 

----- 

- 
Dec. 

----- 

----- 
78 

-- - 

--------- 
3/01/78 - 

---------- 
28/04/78 

--- 
10 87 

--- 
Sep. 

----- 
78 

----- 
Dec. 

----- 
78 

----- 
Mar. 

----- 
79 

----- 
May 

----- 

- - 
79 

----- 

--------- 
2/05/78 - 

--------- 

---------- 
31/08/78 

------ 
11 

----- 
85 Mar. 

- - - 
79 

----- 
May 

----- 
79 

----- 
Jul. 

----- 
79 

----- 
Sep. 

----- 
79 

----- 
1/09/78 - 

- -- 

---------- 
29/12/78 

------ 
12 

------- 

-------- 
84 

------- 

- - 
May 

----- 
79 

----- 
Jul. 

----- 
79 

----- 
Sep. 

----- 
79 

----- 
Dec. 

----- 
79 

----- 

- ----- 
2/01/79 - 

------ 

---------- 
30/04/79 

13 
------- 

87 
------- 

Sep. 
----- 

79 
----- 

Dec. 
----- 

79 
----- 

Mar. 
----- 

80 
----- 

May 
----- 

80 
----- 

--- 
1/05/79 

-- 

---------- 
- 31/08/79 

14 
------- 

83 
------- 

Mar. 
----- 

80 
- ---- 

May 
----- 

80 
----- 

Jul. 
----- 

80 
----- 

Sep. 
- ---- 

80 
----- 

------- 
3/09/79 

------- -- 

---------- 
- 28/12/79 
------ ---- 



APPENDIX D (continued) 

Sections of coffee contracts studied in Chapter 5 

------ -------- 
No. of 

------ 
first 

---- ---------- 
second 

------ 
third 

---- ---------- 
fourth 

----------- 
Dates 

-------- 

Period days contr 
--- 

act 
---- 

contract 
---------- 

contr 
------ 

act 
---- 

contract 
---------- 

from - 
----------- 

to 
-------- ------ 

1 
-------- 

102 
--- 
Sep. 75 

- 
Nov. 

----- 
75 

----- 
Jan. 

------ 
76 
---- 

Mar. 
----- 

76 
----- 

7/03/75 - 
----------- 

31/07/75 
-------- ------ 

2 
-------- 

107 
------ 
Jan. 

-- 

--- 
76 
---- 

Mar. 
----- 

76 
----- 

May 
------ 

76 
---- 

Jul. 
----- 

76 
----- 

1/08/75 - 
----------- 

31/12/75 
-------- ------ 

3 
-------- 

85 
---- 
May 76 

---- 
Jul. 

----- 
76 

----- 
Sep. 

------ 
76 
---- 

Nov. 
----- 

76 
----- 

2/01/76 - 
----------- 

30/04/76 
-------- ------ 

4 
-------- 

86 
------ 
Sep. 

- 
76 
---- 

Nov. 
----- 

76 
- - 

Jan. 
------ 

78 
---- 

Mar. 
----- 

78 
----- 

3/05/76 - 
---------- 

31/08/76 
-------- ------ 

5 
-------- 

87 
----- 
Jan. 77 

--- 
Mar. 

----- 

--- 
77 
---- 

May 
------ 

77 
---- 

Jul. 
----- 

77 
----- 

1/09/76 - 
----------- 

31/12/76 
-------- ------ 

6 
-------- 

83 
------ 
May 

- 
77 Jul. 

- 
77 

----- 
Sep. 

------ 
77 
---- 

Nov. 
----- 

77 
----- 

4/01/77 - 
----------- 

29/04/77 
-------- ------ 

7 
-------- 

86 
---- 

------ 
Sep. 

------ 

---- 
77 
---- 

----- 
Nov. 

----- 
77 

----- 
Jan. 

------ 
78 
---- 

Mar. 
----- 

78 
----- 

2/05/77 - 
----------- 

31/08/77 
-------- ------ 

8 
---- 

86 
--- 

Jan. 
------ 

78 
---- 

Mar. 
----- 

78 
----- 

May 
------ 

78 
---- 

Jul. 
----- 

78 
----- 

1/09/77 - 
----------- 

30/12/77 
-------- ------ 

9 
----- 

83 
---- 

May 
------ 

78 
---- 

Jul. 
----- 

78 
----- 

Sep. 
------ 

78 
---- 

Nov. 
----- 

78 
----- 

3/01/78 - 
----------- 

28/04/78 
-------- ------ 

10 
---- 

87 Sep. 
---- 

78 
---- 

Nov. 
----- 

78 
----- 

Jan. 
------ 

79 
---- 

Mar. 
----- 

79 
----- 

2/05/78 - 
----------- 

31/08/78 
-------- ------ 

11 
-------- 

85 
-- 
Jan. 

---- 
79 
---- 

Mar. 
----- 

79 . 
----- 

May 
------ 

79 
---- 

Jul. 
----- 

79 
----- 

1/09/78 - 
----------- 

29/12/78 
-------- ------ 

12 
-------- 

84 
-- 
May 79 

- 
Jul. 

----- 
79 

----- 
Sep. 

------ 
79 
---- 

Nov. 
----- 

79 
----- 

2/01/79 - 
-------- - 

30/04/79 
-------- ------ 

13 
-------- 

87 
------ 
Sep. 

--- 
79 Nov. 

----- 
79 

----- 
Jan. 

------ 
80 
---- 

Mar. 
----- 

80 
----- 

-- 
1/05/79 - 

------- 
31/08/79 

------ ------ 
14 

------ 

-------- 
83 

-------- 

------ 
Jan. 

------ 

---- 
80 
---- 

Mar. 
----- 

80 
----- 

May 
------ 

80 
---- 

Jul. 
----- 

80 
----- 

---- 
3/09/79 - 

- ---------- 

- - 
28/12/79 
-------- 

2 



.; 

APPENDIX D (continued) 

Sections of sugar contracts studied in Chapter 5 

------ -------- 
No. of 

------ 
first 

-- -- ---------- 
second 

-- ---- 
third 

---- --------- - 
fourth 

----------- 
Dates 

-------- 

Period days 
- 

contract 
---------- 

contract 
---------- 

contr 
------ 

act 
---- 

contract 
- 

from - to 
------ 

1 
------- 

------ 
102 

------- 
Aug. 

------ 
75 
---- 

Oct. 
----- 

75 
----- 

Dec. 
------ 

75 
---- 

- --- 
Mar. 

----- 

----- 
76 

----- 

----------- 
7/03/75 - 

--------- - 

-------- 
31/07/75 
-------- 

2 107 
-- 

Mar. 
--- - 

76 
---- 

May 
----- 

76 
----- 

Aug. 
------ 

76 
---- 

Oct. 
- - - 

76 
- 

1/08/75 - 31/12/75 
------- 

3 
----- 

85 
- 

- - 
May 76 

---- 
Aug. 

----- 
76 

----- 
Oct. 

------ 
76 
- 

- -- 
Dec. 

---- 
76 

----------- 
2/01/76 - 

-------- 
30/04/76 

------- 
4 

------ 
86 

------ 
Oct. 76 Dec. 76 Mar. 

--- 
77 

------ 
May 

---- 
77 

----------- 
3/05/76 - 

-------- 
31/08/76 

-------------- ---------- ---------- ------ I ---- ---------- ---------- -------- 
5 

------ 
87 

------- 
Mar. 

------ 
77 
---- 

May 
----- 

77 
----- 

Aug. 
------ 

77 
---- 

Oct. 
------ 

77 
-- 

1/09/76 - 
- 

31/12/76 
- 

6 
-- 

83 
------- 

May 
------ 

77 
---- 

Aug. 
----- 

77 
---- 

Oct. 
------ 

77 
---- 

Dec. 
------ 

-- 
77 
- 

------ ---- 
4/01/77 - 

-------- 
29/04/77 

----- 
7 

----- 
86 

------- 
Oct. 

------ 
77 
---- 

Dec. 
----- 

77 
----- 

Mar. 
------ 

78 
---- 

May 
------ 

--- 
78 
---- 

----------- 
2/05/77 - 

-------- 
31/08/77 

-- 
8 

------ 
86 

------- 
Mar. 

------ 
78 
---- 

May 
----- 

78 
----- 

Aug. 
------ 

78 
---- 

Oct. 
------ 

78 
---- 

----------- 
1/09/77 - 

-------- 
30/12/77 

- 
9 

------- 
83 

------- 
May 

------ 
78 
---- 

Aug. 
------ 

78 
---- 

Oct. 
------ 

78 
---- 

Dec. 
------ 

78 
---- 

----------- 
3/01/78 - 

-- 

-------- 
28/04/78 

10 87 Oct. 
----- 

78 
---- 

Dec. 
------ 

78 
---- 

Mar. 
------ 

79 
---- 

May 
------ 

79 
---- 

--------- 
2/05/78 - 

--------- 

-------- 
31/08/78 

------- 
11 

--- 

------- 
85 

- 
Mar. 

- 
79 
---- 

May 
------ 

79 
---- 

Aug. 
------ 

79 
---- 

Oct. 
------ 

79 
---- 

-- 
1/09/78 - 

--- 

-------- 
29/12/78 

---- 
12 

------- 

------- 
84 

------- 

----- 
May 

-- 
79 
---- 

Aug. 
------ 

79 
---- 

Oct. 
------ 

79 
---- 

Dec. 
------ 

79 
---- 

-------- 
2/01/79 - 

----- 

-------- 
30/04/79 

13 
------- 

87 
------- 

---- 
Oct. 

----- 
79 
---- 

Dec. 
------ 

79 
---- 

Mar. 
------ 

80 
---- 

May 
------ 

80 
---- 

------ 
1/05/79 - 

------- 

-------- 
31/08/79 

14 
------- 

83 
---- --- 

- 
Mar. 

------ 
80 
---- 

May 
----- 

80 
----- 

Aug. 
------ 

80 
---- 

Oct. 
----- - 

80 
---- 

---- 
3/09/79 - 

----------- 

-------- 
28/12/79 
---- ---- 

3 



APPENDIX D (continued) 

Sections of rubber contracts studied in Chapter 5 

------- ------- 
No. of 

---------- 
first 

---------- 
second 

---------- 
third 

---------- 
fourth 

------------------- 
Dates 

Period 
- 

days contract 
---------- 

contract 
---------- 

contract 
---------- 

contract 
----- 

from - to 
- ----- 

1 
---- 

------- 
102 Nov. 

---- 
75 

----- 
Feb. 

----- 
76 

----- 
May 

----- 
76 

----- 
Aug. 

----- 

----- 
76 

--- - 

--------- 
7/03/75 - 

- - 

---------- 
31/07/75 

--- 
2 

------- 
107 

- 
Feb. 

- 
76 

----- 
May 

----- 
76 

----- 
Aug. 

----- 
76 

----- 
Nov. 

----- 

- 
76 

-- 

--- - --- 
1/08/75 - 

---------- 
31/12/75 

------- 
3' 

------- 

------- 
85 

------- 

---- 
May 

----- 
76 

----- 
Aug. 

----- 
76 

----- 
Nov. 

----- 
76 

----- 
Feb. 

----- 

--- 
77 

----- 

--------- 
2/01/76 - 

--------- 

---------- 
30/04/76 

---------- 
4 

------- 
86 

---- 
Nov. 76 

--- 
Feb. 

----- 
77 

----- 
May 

----- 
77 

----- 
Aug. 

----- 
77 

-- 
3/05/76 - 31/08/76 

5 
------- 

--- 
87 

------- 

----- 
Feb. 

-- 

-- 
77 

- - 
May 

----- 
77 

----- 
Aug. 

----- 
77 

----- 
Nov. 

----- 

--- 
77 

--- 

--------- 
1/09/76 - 

---------- 
31/12/76 

6 
------- 

83 
------- 

--- 
May 

----- 

-- - 
77 

----- 
Aug. 

----- 
77 

----- 
Nov. 

----- 
77 

----- 
Feb. 

----- 

-- 
78 

----- 

--------- 
4/01/77 - 

- 

---------- 
29/04/77 

7 
------- 

86 
------- 

Nov. 
----- 

77 
----- 

Feb. 
----- 

78 
----- 

May 
----- 

78 
----- 

Aug 
----- 

78 
---- 

-------- 
2/05/77 - 

---------- 
31/08/77 

8 
------- 

86 
----- 

Feb. 
----- 

78 
----- 

May 
----- 

78 
----- 

Aug. 
----- 

78 
----- 

Nov. 
----- 

- 
78 

----- 

--------- 
1/09/77 - 

---------- 
30/12/77 

9 
------- 

83 
------ 

May 
----- 

78 
----- 

Aug. 
----- 

78 
----- 

Nov. 
----- 

78 
----- 

Feb. 
----- 

79 
----- 

--------- 
3/01/78 - 

--- 

---------- 
28/04/78 

10 87 
---- 

Nov. 
----- 

78 
----- 

Feb. 
----- 

79 
----- 

May 
----- 

79 
----- 

Aug. 
----- 

79 
----- 

------ 
2/05/78 - 

------ 

---------- 
31/08/78 

------- 
11 

-- - 

--- 
85 Feb. 

--- 
79 

----- 
May 

----- 
79 

----- 
Aug. 

----- 
79 

----- 
Nov. 

----- 
79 

----- 

--- 
1/09/78 - 

- 

---------- 
29/12/78 

- --- 
12 

------- 

------- 
84 

------- 

-- 
May 

----- 
79 

----- 
Aug. 

----- 
79 

----- 
Nov. 

----- 
79 

----- 
Feb. 

----- 
80 

----- 

-------- 
2/01/79 - 

------ 

---------- 
30/04/79 

13 
------- 

87 
------- 

Nov. 
--- - 

79 
----- 

Feb. 
----- 

80 
----- 

May 
----- 

80 
----- 

Aug. 
----- 

80 
----- 

--- 
1/05/79 - 

------- 

---------- 
31/08/79 

14 
------ 

83 
------- 

- 
Feb. 

----- 
80 

--- -- 
May 

----- 
80 

----- 
Aug. 

----- 
80 

----- 
Nov. 

-- --- 
80 

-- --- 

-- 
3/09/79 - 

--------- - 

---------- 
28/12/79 

--------- 

4 


