
.~
'l, .

An Assessment of
Existing Component-Based Software Development Methodologies

and a Holistic Approach to CBSD

Thein Than Tun

C(!kUt-e8 HOlJ~'" I.!brary
Old Ci'lsti.£' Street
london E1 7NT

A thesis submitted in partial fulfilment of the requirements of
London Metropolitan University

for the degree of
Doctor of Philosophy

May 2005

31 11436338

111111111

. j
;,

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

ANY MAPS, PAGES,

TABLES, FIGURES, GRAPHS

OR PHOTOGRAPHS,

MISSING FROM THIS

DIGITAL COPY, HAVE BEEN

EXCLUDED AT THE

REQUEST OF THE

UNIVERSITY

Abstract

Software applications nowadays are getting ever larger and more complex. At the

same time, users and sponsors of software applications have increasingly higher

expectations: lower development cost, faster delivery time and higher quality of the

products. This creates new challenges that the traditions of developing a software

application from scratch every time a need arises, and of reusing code at a low-level

of programming, are unable to address adequately. Component-Based Software

Development (CBSD) is a strategic attempt to address these challenges by

promoting extensive software reuse throughout the software development stages.

This development strategy raises a spectrum of important issues. This research is

primarily concerned with methodological issues such as system modelling,

architecture and development process. This research validates two main hypotheses.

The first hypothesis is that the theoretical basis of existing CBSD methods is weak.

To test this hypothesis, existing CBSD methods need to be evaluated using an

extensive and rigorous evaluation approach. This research identifies four publicly

available CBSD methods and numerous approaches to evaluation of system

development methods. These evaluation approaches are deemed unsuitable for the

kind of evaluation envisaged by this research. Therefore, a new comprehensive

framework for evaluating system development methods, called the MAP framework,

is proposed. The existing CBSD methods are then evaluated using the MAP

framework, which confirms the first hypothesis. The second hypothesis is that the

limitations of the existing CBSD methods can be overcome. To test this hypothesis,

various positive features of existing CBSD and non-CBSD methods that the MAP

framework helps identify are synthesised, giving rise to NA VITA, a holistic CBSD

method proposed by this research. The new CBSD method is then evaluated using

the same criteria and rigour applied to existing methods. The evaluation confirms the

second hypothesis. Furthermore, this research contributes to the application of

Object-Oriented system development methods by proposing a set of principles that

govern a rational allocation of class operations.

Acknowledgement

I would like to express my sincere gratitude to my supervisors, Dr. Peter Bielkowicz

and Preeti Patel - both of the Department of Computing, Communication

Technology and Mathematics, London Metropolitan University (London Met) - for

their generous help, wise guidance and invaluable support. It has been a great

pleasure to work with them both. Special thanks to Dr. Peter Bielkowicz for giving

me this wonderful research opportunity after my first degree.

Many thanks to Dr. Islam Choudhury (London Met), Dr. David Soud (Kent

University) and Vic Page (London Met) for sharing ideas and to all QC309 students

(2003-2005) for participating in IPI Matrix experiments.

Thanks also to my teachers in Burma, who include the late U Aung Kyaw Myint,

U Sann Lwin, Daw Thida Aung ofMCC and U Thaung Tin ofKMD.

Special thanks to Zibby for proofreading the whole thesis. Thanks also to my

tlatmates Ma Mawgyi, Mg Mawgyi, Phosa and Sumi for all their kindness in

creating a comfortable environment in which to write up this work.

My family have given me the best possible moral and financial support for my

studies in the UK. Without their encouragement, I would not have been able to

complete this work.

ii

Table of Contents

CHAPTER 1 RESEARCH OVERVIEW •••..........•........•....••...•••..•.••.......•••......•••••.....•••.•.....••..... 1

1.1 INTRODUCTION •........••......••....................••..............•....................•.....•...........................•.... 1

1.2 COMPONENT-BASED SOFTWARE DEVELOPMENT .. 2

1.3 RESEARCH OBJECTIVES••...........•..•...•.......••.........••....••• 3

1.4 RESEARCH CONTEXT•...•................................... 3

1.5 STAGE 1- EVALUATION OF EXISTING CBSD METHODS .. 4

1.6 STAGE 2 -CREATION OF A NEW CBSD METHOD AND ITS EVALUATION •..•.......................... 6

1.7 LANGUAGE, TERMINOLOGY AND ABBREVIATIONS•... 6

CHAPTER 2 APPROACHES TO EV ALUA TION OF SDMS ... 8

2.1 INTRODUCTION ... 8

2.2 EMPIRICAL ApPROACHES .. 10

2.2. I Formulation of Criteria I I

2.2.2 Evaluation Process I I

2.3 NON-EMPIRICAL ApPROACHES ... 14

2.3. I Subjective Criteria Approaches ... 14

2.3.2 Meta-Modelling Approaches 16

2.3.3 Action Research. 17

2.3.4 Systemic Approaches 19

2.3.5 Evaluation Process 22

2.4 SUMMARY OF THE FINDINGS ... 23

CHAPTER 3 THE PROPOSED EV ALUA TION FRAMEWORK ... 25

3.1 INTRODUCTION ... 25

3. I. I Systems Thinking 25

3.1.2 System 26

3.1.3 Information Systems .. 27

3.1.4 Key Properties of ISs 27

3.2 ELEMENTS OF EVALUATION IN THE MAP FRAMEWORK ... 28

3.3 THREE MAJOR ELEMENTS OF A METHOD .. 28

3.4 SYSTEM MODELLING .. 29

3.4.1 Global Models ... 30

3.4.2 Contextual Models 35

3.4.3 Evaluation of System Modelling .. 37

3.5 SYSTEM DEVELOPMENT PROCESS (SDP) .. 41

3.5.1 Evaluation of System Development Process (SDP) ... 41

iii

3.6 SOFTWARE ARCHITECTURE .. 45

3.6./ Two kinds of architecture .. 45

3.6.2 Evaluation of Software Architecture ... 46

3.7 SUMMARy ... 49

CHAPTER 4 EVALUA TION OF EXISTING CBSD METHODS ... 51

4.1 INTRODUCTION ... 51

4.2 EVALUA TlON OF REUSE-DRIVEN SOFTWARE ENGINEERING (RSE) 52

4.2./ Correlations Between the Three Elements of a Method .. 52

4.2.2 Evaluation of System Modelling 52

4.2.3 Evaluation of Architecture .. 58

4.2.4 Evaluation of the System Development Process of RSE .. 59

4.3 EVALUA TlON SELECT PERSPECTIVE (PERSPECTIVE) ... 60

4.3.1 Correlations Between the Three Elements of a Method 60

4.3.2 Evaluation of System Modelling .. 60

4.3.3 Evaluation of Architecture .. 66

4.3.4 Evaluation of System Development Process .. 67

4.4 EVALUATION OF CATALYSIS ... 68

4.4.1 Correlations Between the Three Elements of a Method .. 68

4.4.2 Evaluation of System Modelling .. 69

4.4.3 Evaluation of Architecture .. 75

4.4.4 Evaluation of System Development Process .. 75

4.5 EVALUATION OF KOBRA .. 76

4.5.1 Correlations Between the Three Elements of a Method .. 76

4.5.2 Evaluation of System Modelling 76

4.5.3 Evaluation of Architecture .. 83

4.5.4 Evaluation of System Development Process .. 84

4.6 EXPERIMENT ON THE FRAMEWORK ... 84

4.6./ Objective of the Experiment .. 84

4.6.2 The Experiment Method 85

4.6.3 Experiment Results .. 86

4.7 SUMMARY AND CONCLUSION ... 88

CHAPTER 5 THE PROPOSED CBSD METHOD: NA VITA - AN INTRODUCTION •••••• 91

5.1 INTRODUCTION ... 91

5.2 ORTHOGONAL VIEW OF NA VITA .. 92

5.2.1 NAVITA Software Architecture ... 92

5.2.2 NAVITA System Development Process (SDP) ... 93

5.2.3 NAVITA System Modelling .. 95

5.3 NA VITA FILTERS: CONDITIONS OF USE ... 101

CHAPTER 6 NAVITA SOFTWARE ARCHITECTURE ... 102

iv

6.1 INTRODUCTION ... 102

6.1.1 Software Architectural Models Suggested by Existing CBSD Methods 102

6.1.2 Software Architectural Model Envisaged by NAVITA ... 103

6.1.3 Enabling Technologies 103

6.1.4 Hardware Analogy 103

6.2 NA VITA REFERENCE ARCHITECTURE ... 104

6.2.1 The Backbone Component 105

6.2.2 Application Administrator 106

6.2.3 Application Manager ... 106

6.2.4 Service ... 106

6.2.5 Logical and Physical Architecture .. 107

6.3 LOGICAL ARCHITECTURE .. 107

6.3.1 Logical Boundary Component 107

6.3.2 Logical Business Component .. lOB

6.3.3 Logical Component Communication lOB

6.4 PHYSICAL ARCHITECTURE .. 108

6.4.1 Physical Boundary Component 109

6.4.2 Physical Business Component 109

6.5 COMPONENT ACCORDING TO NA VIT A ... 116

6.5.1 Important Aspects of Component .. 116

6.5.2 Physical Component Communication ... 119

6.6 RELATED WORK ... 120

CHAPTER 7 NAVITA SYSTEM DEVELOPMENT PROCESS .. 121

7.1 INTRODUCTION ... 121

7.2 NAVITA SDP .. 121

7.2.1 Stage I - Feasibility Study .. 122

7.2.2 Stage 2 - Business Study and Requirements Investigation .. 123

7.2.3 Stage 3 - Component Search and Acquisition 124

7.2.4 Stage 4 - Detailed Requirements Analysis 125

7.2.5 Stage 5 - Prototyping 125

7.2.6 Stage 6 - Logical Architectural Analysis .. 126

7.2.7 Stage 7 - Component Service Specification .. 126

7.2.B Stage B - Physical Design ... 126

7.2.9 Stage 9 -Implementation/Adapt 127

7.2.10

7.2.11

7.2.12

7.2.13

Stage 10-Component Testing ... 127

Stage II - Application Assembly/Tuning ... 127

Stage 12 -Integration Testing 127

Stage 13 - Application Acceptance Testing .. 127

7.3 NA VITA SDP SCENARIOS ... 128

7.4 CONCLUSION .. 128

v

CHAPTER 8 NAVITA SYSTEM MODELLING - CONTEXT DIAGRAM 130

8.1 INTRODUCTION ... 130

8.2 CONTEXT DIAGRAM .. 131

8.2.1 Limitations of Context Diagram as Traditionally Understood. 131

8.2.2 The NA VITA Context Diagram 132

8.3 CONTEXT DIAGRAM: MODELLING CONCEPTS ... 132

8.3.1 System Boundaries .. 133

8.3.2 Actor 134

8.3.3 Correlations between Actor Responsibilities and Actor Types 137

8.3.4 Interaction ... 138

8.4 CONTEXT DIAGRAM: MODELLING PROCESS AND TECHNIQUE .. 139

8.5 CONTEXT DIAGRAM: DOCUMENTATION ... 142

8.5.1 Documenting Actors 143

8.6 DEVELOPMENT PROCESS .. 144

8.7 SOFTWARE ARCHITECTURE .. 144

CHAPTER 9 NA VITA SYSTEM MODELLING - FUNCTIONALITY MODEL 145

9.1

9.2

9.2.1

9.2.2

9.2.3

9.3

9.3.1

9.3.2

9.3.3

9.3.4

9.4

9.5

9.6

9.7

9.7.1

9.7.2

9.7.3

9.7.4

9.7.5

9.7.6

9.7.7

9.8

9.9

9.10

INTRODUCTION ... 145

FUNCTIONALITY MODELLING ...•....... 146

Use Case as Functionality Mode!... 147

Main limitations of the concept of use case 149

NAVITA Functionality Modelling 149

MIDDLE-LEVEL FUNCTIONALITY DIAGRAM: MODELLING CONCEPTS•......... 150

Actor 150

System Boundary 150

Functionality Unit ... 150

Interaction 154

MIDDLE-LEVEL FUNCTIONALITY DIAGRAM: MODELLING PROCESS AND TECHNIQUE 154

MIDDLE-LEVEL FUNCTIONALITY DIAGRAM: DOCUMENTATION•.... 156

LOWER-LEVEL FUNCTIONALITY DIAGRAM•...•........... 157

LOWER-LEVEL FUNCTIONALITY DIAGRAM: MAIN CONCEPTS .. 157

System Boundaries, Actor, and Functionality Unit ... 157

Start and End. .. 157

Activity ... 157

Flow (Sequence, Selection and Iteration) 159

Swimlane ... 159

Synchronisation 160

Input and Output Data .. 160

LOWER-LEVEL FUNCTIONALITY DIAGRAM: MODELLING PROCESS AND TECHNIQUE 160

LOWER-LEVEL FUNCTIONALITY DIAGRAM: DOCUMENTATION 162

DEVELOPMENT PROCESS .. 163

vi

9.11 SOFlWAREARCHITECTURE ..•... 163

CHAPTER 10

MODELLING

NA VITA SYSTEM MODELLING - SYSTEM INTERACTION

164

10.1 INTRODUCTION ... 164

10.2 SYSTEM INTERACTION MODELLING .. 165

10.3 LOGICAL SCREEN LA YOUT ... 165

10.4 LOGICAL SCREEN LAYOUT: MODELLING CONCEPTS .. 166

10.4.1 Input and Output Fields 166

10.5 LOGICAL SCREEN LAYOUT: MODELLING PROCESS AND TECHNIQUE••......•.....•... 166

10.6 LOGICAL SCREEN LAYOUT: DOCUMENTATION••......••.......•............. 167

10.7 USER SYSTEM DIALOGUE MODEL .•.......•.......................•....................•..•......•......•.....••... 167

10.8 USER SYSTEM DIALOGUE MODEL: MODELLING CONCEPTS•...........•. 168

10.8.1 Start and End .. 168

10.8.2 Input and Output Data 168

10.8.3 Sequence, Selection and Iteration 168

10.8.4 Scenario 169

10.9 USER SYSTEM DIALOGUE MODEL: MODELLING PROCESS AND TECHNIQUE 169

10.10 DEVELOPMENT PROCESS .. 171

10.11 SOFTWARE ARCHITECTURE .. 171

CHAPTER 11 NA VITA SYSTEM MODELLING -INFORMATION MODELLING .. 172

11.1 INTRODUCTION ...•...•. 172

11.2 INFORMATION MODEL: MODELLING CONCEPTS•....................•.........•.........•.....•.... 172

11.2.1 Entity Class 172

11.2.2 Attributes .. 173

11.2.3 Association. Aggregation and Composition 173

11.2.4 Inheritance 173

11.3 INFORMATION MODEL: MODELLING PROCESS TECHNIQUE •..•...........•.............•....•....•.... 174

11.4 DOCUMENTING INFORMATION MODEL•..••....................•............•........... 176

11.4.1 Documenting Entity Classes and Attributes ... 176

11.4.2 Documenting Relationships .. 176

Extra Information 176 II. 4.3

11.5 FUNCTIONALITY ENTITY CLASS MATRIX (FEM)•.. 176

11.6

11.7

11.8

FEM MODELLING PROCESS AND TECHNIQUE ... 177

DEVELOPMENT PROCESS•......................•.....•.............•..........••....•........•...• 178

SOFlWAREARCHITECTURE••........•..............••..............•...........•..•......••••...•.•....•••. 178

CHAPTER 12 NA VITA SYSTEM MODELLING - ARCHITECTURAL ANALYSIS .. 179

12.1 INTRODUCTION ..••..........•................•.....................•..............•..............•..•........•............•.. 179

12.2 ARCHITECTURAL ANALYSIS: DIAGRAMS AND CONCEPTS•............•...............•... 180

12.2.1 Protocol Model 180

vii

12.2.2

12.2.3

12.2.4

Logical Component and Logical Component Interface .. lSI

Service .. lSI

Operation. IS2

12.2.5 Flow - Sequence, Selection and Iteration .. IS2

12.3 PROTOCOL MODEL: MODELLING PROCESS AND TECHNIQUE•................................... 182

12.4 OPERATION LIST ... 187

12.5 INFORMATION MODELLING ... 188

12.6 LOGICAL COMPONENT SPECIFICATION ... 188

12.7 DEVELOPMENT PROCESS .. 188

12.8 ARCHITECTURE ..•...•................ 188

CHAPTER 13 NAVITA SYSTEM MODELLING -COMPONENT DESIGN 190

13.1 INTRODUCTION••....•...•........ 190

13.2 PHYSICAL BOUNDARY COMPONENT DESIGN•....................•.•..........................•.•...... 190

13.3 PHYSICAL BOUNDARY COMPONENT DESIGN: MODELLING CONCEPTS•....• 191

13.4 PHYSICAL BOUNDARY COMPONENT DESIGN: MODELLING PROCESS AND TECHNIQUE ... 191

13.4.1 Related Work 193

13.5 PHYSICAL BUSINESS COMPONENT DESIGN ... 193

13.6 PHYSICAL BUSINESS COMPONENT DESIGN: MODELLING CONCEPTS 193

13.6.1 Physical component 193

13.7 BUSINESS COMPONENT PHYSICAL DESIGN: MODELLING PROCESS AND TECHNIQUE 194

13.8 00 DESIGN FOR BUSINESS COMPONENTS ... 202

13.S.1 Principle on distribution of operations 203

13.S.2 Sequence Diagram .. 204

13. 9 STATE TRANSITION DIAGRAM ...••...........................•............... 209

13.10 STA TE TRANSITION DIAGRAM: MODELLING CONCEPTS•..........•...............•......•.... 209

13.10.1 Event and Transition .. 210

13./0.2 State 211

13.11 STATE TRANSITION DIAGRAM: MODELLING PROCESS AND TECHNIQUE 211

13.12 SDP .. 212

13.13 ARCHITECTURE ... 212

CHAPTER 14 EVALUATION OF NAVITA ... 213

14.1 INTRODUCTION ... 213

14.2 EVALUATION OFNAVITA .. 213

14.2.1 Evaluation of System Modelling 214

14.2.2 Evaluation of Architecture .. 220

14.2.3 Evaluation of System Development Process ... 221

14.3 A COMPARISON OF EVALUATION RESULTS ... 222

14.3.1

14.3.2

14.3.3

Correlations between the Three Elements of Methods 222

Coverage Models 222

Relative Strengths of Modelling Techniques 223

viii

14.3.4 Architectural Models .. 224

14.3.5 SDP 224

14.4 SUMMARy ... 22S

CHAPTER 15 RESEARCH METHODOLOGY ... 226

IS.1 INTRODUCTION ... 226

IS.2 INITIAL INVESTIGATION OF CBSD METHODS .. 226

IS.3 INVESTIGATION OF METHOD EVALUA TION ApPROACHES AND THEIR ApPLICABILITY TO

THIS RESEARCH ... 228

IS.4 DEVELOPMENT OF AN SDM THEORY AND THE MAP FRAMEWORK 229

IS.5 EVALUATION OF EXISTING METHODS USING THE NEW FRAMEWORK 229

IS.6 VALIDATING THE EVALUATION RESULTS USING AN EXPERIMENT 229

IS.7 DEVELOPMENT OF THE NEW CBSD METHOD .. 230

IS.8 DEMONSTRA TION OF THE NEW METHOD USING A COMMON CASE-STUDy 230

IS.9 EVALUATION OF THE NEW CBSD METHOD ... 231

IS.10 METHODOLOGICAL ISSUES ... 231

CHAPTER 16

RESEARCH

CONCLUSIONS, CONTRIBUTIONS AND AREAS FOR FURTHER

232

16. I RESEARCH CONCLUSIONS ... 232

16.2 RESEARCH CONTRIBUTIONS ... 232

16.3 AREAS FOR FURTHER RESEARCH .. 236

CHAPTER 17 REFERENCES ... 240

17.1 REFERENCES ... 240

CHAPTER 18 APPENDICES .. 251

18.1 GLOSSARY OF ACRONYMS AND ABBREVIATIONS ... 2S1

18.2 ApPENDIX II -A DETAILED ANALYTICAL SURVEY OF COMPONENT-BASED SYSTEM

DEVELOPMENT METHODS ... 2S3

18.3 ApPENDIX II1- FOUNDATION FOR RATIONAL ALLOCATION OF CLASS OPERATIONS 276

18.4 ApPENDIX IV - LIBRINFOSyS CASE STUDy .. 286

18.S ApPENDIX V - STRUCTURED DIAGRAM Vs UML ACTIVITY-LIKE DIAGRAM 297

18.6 ApPENDIX VI - RAw DATA FROM THE REPEATABILITY EXPERIMENT 299

ix

List of Figures

FIGURE 2.1 THE MAGIC SQUARE (WIERINGA 1998) .. 19

FIGURE 2.2 FUNCTION DECOMPOSITION TABLE. (WIERINGA 1998) ... 20

FIGURE 3.1 ELEMENTS OF EVALUATION, JAY ARATNA (1994) .. 28

FIGURE 3.2 ELEMENTS OF METHOD ACCORDING TO THE MAP FRAMEWORK•.... 29

FIGURE 3.3 MODEL VIEWPOINTS ... 30

FIGURE 3.4 IPI MATRIX FOR GLOBAL MODELS OF INFORMATION SYSTEMS .. 31

FIGURE 3.5 GLOBAL MODELS OF VARIOUS METHODS•................................... 32

FIGURE 3.6 CONTEXTUAL MODELS SHOW HOW COMPONENTS FROM GLOBAL MODELS CORRELATE ••• 35

FIGURE 3.7 CONTEXTUAL MODELS SHOW ABSTRACT AND DETAILED RELATIONSHIPS BETWEEN

ELEMENTS OF GLOBAL MODELS•..•......... 36

FIGURE 3.8 AN IDEAL SET OF MODELS ENVISAGED BY THE MAP FRAMEWORK•.•..••............ 38

FIGURE 3.9 THE IPI MATRIX SHOWING ALL MAJOR MODELS OF SSADM••..•........•............•.•••... 40

FIGURE 3.10 DIFFERENT TYPES OF ApPLICATIONS AND SUITABLE CONTROL MECHANISMS 44

FIGURE 3.11 A REFERENCE ARCHITECTURE BY CHEESMAN AND DANIELS (2001) 46

FIGURE 3.12 STRUCTURE OF THE MAP FRAMEWORK•.. 49

FIGURE 4.1 IPI MATRIX SHOWING RSE MODELS ... 53

FIGURE 4.2 IPI MATRIX SHOWING SELECT PERSPECTIVE MODELS .. 61

FIGURE 4.3 EVALUATION OF SELECT PERSPECTIVE EVENT MODELLING ..• 65

FIGURE 4.4 IPI MATRIX SHOWING ANALYSIS MODELS OF CA TAL YSIS ... 69

FIGURE 4.5 IPI MATRIX SHOWING MAIN KOBRA MODELS ... 77

FIGURE 5.1 ORTHOGONAL VIEW OF NA VITA•..............................•.•.................•.......•.....•.••.... 92

FIGURE 5.2 NA VITA REFERENCE ARCHITECTURE•..•...•................•.•......•.•......••... 93

FIGURE 5.3 SOP OF NA VITA ...•...........................•.......• 94

FIGURE 5.4 FLOW, DEPENDENCY AND CROSSCHECKS BETWEEN NA VITA MODELS•..... 99

FIGURE 6.1 NA VITA REFERENCE ARCHITECTURE•......•.•..............•.................... 104

FIGURE 6.2 BOUNDARY COMPONENT AND LOGICAL BUSINESS COMPONENT REALISING A

FUNCTIONALITY UNIT ...•...•...•.................••••...•.............. 107

FIGURE 6.3 COMPONENT AS A PROCESS OR GROUP OF PROCESSES•............. 110

FIGURE 6.4 HOw PROCESS-ORIENTED AND STRUCTURE-ORIENTED DESIGNS ACCOMMODATE DIFFERENT

KINDS OF CHANGES (JACOBSON ET AL, 1992) ... 112

FIGURE 6.5 SINGLE ENTITY AND ENTITIES WITH STRONG RELATIONSHIPS•............•.......•........... 114

FIGURE 6.6 LIBRARY SYSTEM ENTITy/CLASS DIAGRAM•........•...............................•••........•. 115

FIGURE 6.7 COMPONENT COMPOSITION ...•...............•......••. 115

FIGURE 6.8 CHARACTERISTICS OF A COMPONENT ..••...........•.... 118

FIGURE 7.1 NAVITASDP•....................................•....................•.........•........................•.......• 122

FIGURE 8.1 CONTEXT DIAGRAM AS TRADITIONALLY UNDERSTOOD ... 131

x

FIGURE 8.2 NA VITA CONTEXT DIAGRAM .. 133

FIGURE 8.3 READER IN FIRST ACTOR, OPERA TOR ACTOR AND FINAL ACTOR ROLES 135

FIGURE 8.4 READER AS FIRST AND LAST ACTOR, LIBRARY ASSISTANT AS OPERATOR ACTOR 135

FIGURE 8.5 READER AS LAST ACTOR, LIBRARY ASSISTANT AS OPERATOR ACTOR AND SYSTEM AS

FIRST ACTOR .. 136

FIGURE 8.6 PARTIAL CONTEXT DIAGRAM FOR LIBRINFOSyS .. 139

FIGURE 8.7 A SIMPLE TEMPLATE FOR DOCUMENTING ACTORS ... 143

FIGURE 8.8 A SIMPLE TEMPLATE FOR DOCUMENTING MANUAL PROCESSES 143

FIGURE 8.9 A SIMPLE TEMPLATE FOR DOCUMENTING EXTERNAL SYSTEMS 144

FIGURE 8.10 A SIMPLE TEMPLATE FOR DOCUMENTING INTERACTION .. 144

FIGURE 9.1 FOUR POSSIBLE OUTCOMES .. 152

FIGURE 9.2 LOW-GRAINED PROCESSES OF A FUNCTIONALITY UNIT .. 153

FIGURE 9.3 FUNCTIONALITY UNITS MAKING UP A LARGER PROCESS .. 153

FIGURE 9.4 A MFD FOR LIBRINFOSYS SHOWING SOME FUNCTIONALITY UNITS 154

FIGURE 9.5 A SIMPLE TEMPLATE FOR DOCUMENTING FUNCTIONALITY UNITS 156

FIGURE 9.6 HIERARCHY AND COMMON ACTIVITIES IN LFD .. 158

FIGURE 9.7 SEQUENCE, SELECTION AND ITERATION .. 159

FIGURE 9.8 INPUT AND OUTPUT DATA ... 160

FIGURE 9.9 LOWER-LEVEL FUNCTIONALITY MODEL FOR REGISTER READER 162

FIGURE 10.1 LOGICAL USER INTERFACE DIAGRAM ... 166

FIGURE 10.2 SEQUENCE, SELECTION AND ITERATION .. 168

FIGURE 10.3 USDM FOR BORROW BOOK .. 170

FIGURE 11.1 A SIMPLE 1M SHOWING ENTITY CLASSES, ATTRIBUTES AND RELATIONSHIPS 174

FIGURE 11.2 TEMPLATE FOR DOCUMENTING ENTITY CLASSES AND ATTRIBUTES 176

FIGURE 11.3 TEMPLATE FOR DOCUMENTING ENTITY CLASS RELATIONSHIPS 176

FIGURE 11.4 A SIMPLE FEM FOR LIBRINFOSyS .. 177

FIGURE 12.1 BOUNDARY COMPONENT AND LOGICAL BUSINESS COMPONENT REALISING A

FUNCTIONALITY UNIT ... 180

FIGURE 12.2 COMPONENT AND SERVICES .. 181

FIGURE 12.3 AN OPERATION AND CONTROL STRUCTURES .. 182

FIGURE 12.4 PROTOCOL MODEL FOR BORROW BOOK FUNCTIONALITY UNIT 183

FIGURE 12.5 OPERATION LIST FOR BORROW BOOK ... 187

FIGURE 13.1 LOGICAL SCREEN LAYOUT FOR BORROW BOOK ... 191

FIGURE 13.2 PARTIAL BOUNDARY CLASS DIAGRAM ... 192

FIGURE 13.3 PHYSICAL COMPONENT ... 194

FIGURE 13.4 FEM FOR LIBRINFOSyS .. 195

FIGURE 13.5 COMPACTED FEM ... 197

FIGURE 13.6 COMPONENT DIAGRAM FOR LIBRINFOSYS .. 198

FIGURE 13.7 COMPONENTS AND ENTITY OBJECTS AT RUN TIME ... 199

FIGURE 13.8 SPLITTING OPERATIONS ACROSS COMPONENTS .. 201

FIGURE 13.9 PHYSICAL ARCHITECTURAL MODEL OF LIBRINFOSyS .. 202

xi

FIGURE 13.10 INITIAL SEQUENCE DIAGRAM FOR BORROW BOOK FUNCTIONALITY UNIT•.• 205

FIGURE 13.11 REVISED SEQUENCE DIAGRAM FOR BORROW BOOK FUNCTIONALITY UNIT 208

FIGURE 13.12 PARTIAL SEQUENCE DIAGRAM SHOWING INTERACTIONS BETWEEN OBJECTS OF THE

BOOK COMPONENT FOR THE ADD BOOK FUNCTIONALITY UNIT ..•......••....................••...•........... 209

FIGURE 13. 13 STATE TRANSITION DIAGRAM FOR READER COMPONENT•.......•.. 210

FIGURE 14.1 IPI MATRIX FOR NAVITA MODELS•..................••..•..•....•.........•........•......•.... 214

xii

List of Tables

TABLE 3-1 CRITERIA FOR EVALUATION OF AN INFORMA TION MODEL.. ... 39

TABLE 4-1 EVALUATION OF RSE USE CASE MODELLING•...........................•...... 54

TABLE 4-2 EVALUATION OF RSE CLASS MODELLING•.•................•...•......••.•......•.•. 55

TABLE 4-3 EVALUATION OF RSE INTERACTION DIAGRAM•..•........... 57

TABLE 4-4 EVALUATION OF RSE STATE DIAGRAM•............••...............••.......•.•.•. 57

TABLE 4-5 EVALUATION OF RSE SYSTEM DEVELOPMENT PROCESS•........•............ 59

TABLE 4-6 EVALUATION OF SELECT PERSPECTIVE USE CASE MODELLING 61

TABLE 4-7 EVALUATION OF SELECT PERSPECTIVE CLASS MODELLING .. 63

TABLE 4-8 EVALUATION OF SELECT PERSPECTIVE OBJECT INTERACTION MODELLING•...... 65

TABLE 4-9 EVALUATION OF SELECT PERSPECTIVE STA TE MODELLING•..................•..........••.. 66

TABLE 4-10 EVALUATION OF SELECT PERSPECTIVE SYSTEM DEVELOPMENT PROCESS•.............. 68

TABLE 4-11 EVALUATION OF CATALYSIS BEHAVIOURAL MODEL••..•...........•...••••....•.....•••............ 70

TABLE 4-12 EVALUATION OF CATALYSIS STATIC MODEL•.•..................................... 71

TABLE 4-13 EVALUATION OF CATALYSIS INTERACTION MODELS •....•...............•................................. 73

TABLE 4-14 EVALUATION OF CATALYSIS SNAPSHOT•.........•..........................•......•............. 74

TABLE 4-15 EVALUATION OF CATALYSIS STATE CHARTS ... 74

TABLE 4-16 EVALUATION OF KOBRA FUNCTIONAL MODEL..•.............................•.......•............. 78

TABLE 4-17 EVALUATION OF KOBRA STRUCTURAL MODEL•................................ 79

TABLE 4-18 EVALUATION OF KOBRA ACTIVITY MODEL..•.................•.•.....................• 81

TABLE 4-19 EVALUATION OF INTERACTION MODEL.. ...•....••.•............ 82

TABLE 4-20 EVALUATION OF KOBRA BEHAVIOURAL MODEL•................••••......................••• 83

TABLE 7-1 CBSD DEVELOPMENT SCENARIOS AND NAVITA SOP ROUTES ..•.............•.................... 128

TABLE 8-1 CORRELATIONS BETWEEN ACTOR RESPONSIBILITIES AND ACTOR TYPES 138

FIGURE 9-1 PROBLEM WITH GRANULARITY OF USE CASES ..•............ 147

TABLE 9-2 COMPLETE AND INCOMPLETE USE CASES - BOTH ARE VALID ..•....•.................................... 148

TABLE 9-3 A SUPERORDINATE USE CASE •..................••................•.•....................•......•......•......•......... 148

TABLE 13-1 STATES OF READER COMPONENT BEFORE AND AFTER SOME FUS•....................••..... 212

TABLE 14-1 EVALUATION OF THE NA VITA CONTEXT DIAGRAM MODELLING TECHNIQUE 215

TABLE 14-2 EVALUATION OF THE NAVITA MFD MODELLING TECHNIQUE 216

TABLE 14-3 EVALUATION OF THE NA VITA 1M MODELLING TECHNIQUE •..•.•.......................•••.•....... 217

TABLE 14-4 EVALUA TION OF THE NA VITA FEM MODELLING TECHNIQUE•............................•. 218

TABLE 14-5 EVALUATION OF THE NA VITA PROTOCOL ANALYSIS MODELLING TECHNIQUE ..•........ 218

TABLE 14-6 EVALUA nON OF NA VITA SEQUENCE DIAGRAM MODELLING TECHNIQUE 219

TABLE 14-7 EVALUATION OFNAVITA STD MODELLING TECHNIQUE ... 219

xiii

TABLE 14-8 EVALUATION OFNAVITA LFM MODELLING TECHNIQUE .. 220

TABLE 14-9 EVALUATION OF RSE SYSTEM DEVELOPMENT PROCESS ... 221

xiv

List of Charts

CHART A NUMBER OF SSADM AND UML MODELS IDENTIFIED BY PARTICIPANTS 86

CHART B TOTAL NUMBER OF MODELS IN EACH METHOD•........•....................•......... 223

CHART C RELATIVE STRENGTHS OF COMPARABLE MODELLING TECHNIQUES .••..•...••............•.•........ 223

CHART D RELATIVE STRENGTHS OF COMPARABLE CONTEXTUAL MODELLING TECHNIQUES 224

xv

1.1 Introduction

Chapter One

Research Overview

1.1 Introduction

Creation of the Unified Modelling Language (UML) has marked the end of a

tremendous transformation in Software Engineering (Booch et aI, 1999; Rumbaugh

et aI, 1999; UML Success Stories, n. d.). It effectively ended the era of what is

wittily called the 'method war', in which method experts promoted different brands

of 00 methods over Structured and other 00 methods (Fowler and Scott, 1997).

UML seems to have had the last word on 00 methods. It is, perhaps, an indication

that 00 methods have come of age.

It has long been maintained that one of the main strengths of the 00 approach to

system development over its predecessors is better software reuse (Jacobson et aI,

1992; Coad and Nicola, 1993). Class inheritance or generalisation/specialisation

mechanism allows developers to create new classes by reusing the existing ones.

However, there was a recognition that in order to yield substantial reuse,

developers need to look beyond the reuse of individual classes (Udell, 1994;

Aoyama, 1998a and 1998b; Brown, 1996). As the debate over 00 methods has

settled with the arrival of UML, another approach to software development with an

even greater emphasis on reuse has emerged: Component-Based Software

Development (CBSD). Accumulated interests, both academic and commercial, in

CBSD is evident from the growing list of published works on this topic as well as

increasing commercial availability of components and component technologies. For

example, the ComponentSource website, a popular online marketplace for

component buyers and sellers, claims to be in partnership with over 500 component

publishers worldwide (ComponentSource, n. d.). Most standard texts on Software

Engineering include chapters on the topic (Pressman, 2005; Sommerville, 2004).

Chapter 1 - Research Overview 1

1.2 Component-Based Software Development

generated excitement amongst software developers (Kozaczynski and Booch, 1998).

Bashir (2003) for instance, argues that even though CBSD is still evolving, there are

commercial imperatives for adopting the development strategy now, while

predicting greater availability of commercial components in future.

1.2 Component-Based Software Development

CBSD, often loosely referred to as Component-Based Development (CBD), is a

relatively new software development strategy. Traditional development approaches

are criticised for implicitly encouraging the reinvention of old wheels and not giving

enough emphasis to the substantial reuse of software artefacts in all development

stages. Its main proposition, originating from electronics and computer hardware

engineering, is that applications need not be monolithic and completely unique.

Instead, they may be assemblages of loosely-coupled components, where interfaces

are clearly defined and implementations are well-hidden (Szyperski, 1997). With

CBSD, every time a need for a new system arises, the first response is to investigate

whether an existing application can be deployed as it is or adapted, without needing

to carry out all the traditional software development activities. Developers may look

for components in a range of sources including Commercial-Off-The-Shelf (COTS)

packages, legacy systems, and nowadays, online component vendors (Allen and

Frost, 1998). With this approach, creation of new applications is considered only if

the reuse of the application through adaptation and negotiation and adjustment of

requirements is not feasible. This is therefore, a "reuse first" approach (Ambler 1998

and 1999). Catalysis (D'Souza and Wills, 1999) defines CBSD as follow.

An approach to software development in which all artefacts - from

executable code to interface speCifications, architectures, and

business models and scaling from complete applications and systems

down to small parts - can be built by assembling, adapting, and

"wiring" together existing components into a variety of

configurations.

CBSD is often portrayed as a natural successor to 00 development. Indeed, most

CBSD methods, techniques and technologies have evolved from 00 counterparts. A

fusion of 00 concepts with contemporary developments in system development

methods, such as domain modelling and design patterns, and software technologies

such as middleware architecture, plug-in technologies and component packaging

Chapter 1 - Research Overview 2

1.3 Research Objectives

mechanisms in various programming languages have thrust CBSD into the forefront

of modern software development approaches.

1.3 Research Objectives

Since the late 1990s, some systems development methods purported to be based on

the CBSD approach have appeared in publications. An initial investigation by this

research suggests that these methods have major weaknesses in many aspects and

that these weaknesses can be overcome. The main aim of this research is to

contribute to the advancement ofCBSD methods by means of these two objectives:

(a) following an analytical survey, a critical evaluation of existing CBSD

methods using a rigorous evaluation framework

(b) creation of a new holistic approach to CBSD that overcomes weaknesses in

existing methods

1.4 Research Context

CBSD has a number of important and related dimensions including:

• Business Dimension - mainly concerned with the implications CBSD has on

the business processes, development time and cost, and general effectiveness

of the approach (Jacobson, 1997; Veryard, 1998)

• Technological Dimension - concerned with issues such as the availability of

the necessary component-based technologies, their compatibility, reliability,

reusability etc (Szyperski, 1997)

• Economics Dimension - involves financial planning and investment strategy

for large scale reuse of components in long term (Aoyama, 1997;

Sametinger, 1997)

• Legal Dimension - legal considerations for ownership, rights to

modification, and liability of reusing components developed and/or

integrated by other parties (Chavez et aI, 1998; Yoche, 1989; Yoche and

Levine, 1989; lakes and Yoche, 1989)

• Methodological Dimension - technical aspects of analysing, designing and

implementation of component-based applications (Jacobson, 1997; D'Souza

and Wills, 1999)

• Project Management Dimension - planning and control of component-based

projects (Jacobson, 1997; Atkinson et aI, 2002)

Chapter 1 - Research Overview 3

1.5 Stage 1 - Evaluation of existing CBSD methods

The methodological dimension of CBSD is the principle interest of this research, in

particular, System Modelling, Software Architecture and System Development

Process. The two stages of this research are outlined below.

1.5 Stage 1 - Evaluation of existing CBSD methods

This stage of the research is mainly related to a rigorous theoretical evaluation of

existing CBSD methods. It is important here to emphasise the nature of evaluation

this research is concerned with because it has significant relevance to the research

methodology used.

Avison and Fitzgerald (1995 and 2003) suggest that there are two strongly

connected reasons for evaluating methods: academic reason and practical reason,

where the former attempts to understand the philosophy and nature of method in

order to classify and improve them, whilst the latter deals with the question of

applicability of some methodes) within a limited context.

The nature of evaluation in this research is academic in the sense that it aims to

critically examine the technical quality, and consistency of CBSD methods. It means·

for example, examining the systemic coverage of various models provided by a

method, the rigour of modelling techniques, and consistency between models. The

main purpose therefore is not to verify claims of methods, as in "Does the method

do what it says it will do in practice?", but to examine the basis on which claims are

or can be made, as in "Does a method have good enough reasons to claim what it

claims, generally that it is good?" Therefore, the research aims to examine the

strengths and weaknesses of the principles, or lack of the principles, on which the

existing methods are built and how these principles are manifest in the methods.

It is important here to note the difference between empirical and metaphysical

approaches to explaining physical phenomena. Lowe (2002) explains that empirical

sciences such as physics are concerned with 'explaining certain basic and ubiquitous

phenomena in the natural world, that is, in the realm of things existing in space and

time.' Metaphysics is not only concerned with the nature of physical entities but

also 'with the nature of space and time themselves, and with the nature of

causation.' In addition, metaphysics is also concerned with abstract entities that do

not exist in space and time such as numbers and sets, and entities that exist in space

Chapter 1 - Research Overview 4

1.5 Stage 1 - Evaluation of existing CBSD methods

and time, such as mental states of thought and feelings of people, the behaviour of

which according to many philosophers and scientists, 'can never be explained solely

by appeal to the laws of physics, not least because their behaviour is, in large

measure, subject to rational rather than merely to causal explanation' .

The objects of study in this research such as modelling concepts, techniques,

consistency between models and so on, are by nature abstract entities, like our

thoughts and emotions. Therefore, any serious evaluation of their inherent qualities

can only be an essentially rational exercise.

Such an enquiry helps both creators and intelligent practitioners of methods

determine the quality of a given method. Moreover, it provides the necessary further

knowledge for improvement of methods. Such knowledge of methods, crucial for

the next stage of this research, cannot be ascertained from mere statistical analyses

of empirical data. Therefore, this evaluation will not be overtly concerned with

matter-of-fact issues such as how improvement of software quality is facilitated by a

given method. Rather, the research is focused on a rational inquiry into the quality of

CBSD methods.

In order to evaluate existing CBSD methods, this research investigates evaluation

approaches used by researchers and practitioners. A survey of these approaches,

described in Chapter 2, shows that there is no effective means for understanding and

evaluating system development methods. Approaches to evaluating CBSD methods

in a manner envisaged by this research are non-existent. In this research, a novel

approach to evaluating system development methods, partly based on the well­

established theory of systems thinking and systemic evaluation approaches, is

advanced (Chapter 3). Using this new evaluation framework, existing CBSD

methods, Software Reuse (Jacobson et aI, 1997), Select Perspective (Allen and

Frost, 1998), Catalysis (D'Souza and Wills, 1999), KobrA (Atkinson et aI, 2002),

are evaluated. Another method, SCIPIO, initially considered for evaluation, has been

dropped because development of the method by its authors was abandoned. A

summary of the evaluation and results of a small experiment about the repeatability

of the evaluation framework are presented in Chapter 4.

Chapter 1 - Research Overview 5

1.6 Stage 2 - Creation of a new CBSD method and its evaluation

1.6 Stage 2 - Creation of a new CBSD method and its
evaluation

A systematic evaluation of existing CBSD methods in the previous stage exposed

their relative strengths and weaknesses. Furthermore, the evaluation framework used

also indicated how either existing methods could be improved or a new and better

method created. This critical knowledge of the existing methods led to the creation a

new CBSD method by synthesising strong features of the existing methods and

novel insights into CBSD. Again, the new method deals with the three main, and

related, aspects of CBSD methods, namely, System Modelling, Software

Architecture and System Development Process (Chapter 5 to Chapter 13). The new

method is then evaluated using the same framework used to evaluate existing CBSD

methods before comparing the evaluation results (Chapter 14).

Chapter 15 describes the methodology of this research, whilst the research

conclusions, contributions and areas for further research are discussed in Chapter 16.

There are seven appendices in this thesis:

• Appendix I lists a full glossary of acronyms and abbreviations used in

this thesis

• Appendix II presents a journal-formatted paper surveying existing

CBSD methods

• Appendix III presents another journal-formatted paper discussing the

principles for rational allocation of class operations

• Appendix IV illustrates the proposed CBSD method using the

LibrInfoSys case-study

• Appendix V shows a comparison of a structured diagram with an

activity diagram

• Appendix VI contains the raw data gathered from the experiment

described in Section 4.6

1.7 Language, Terminology and Abbreviations

British English spellings are used throughout this thesis. For consistency, original

quotations are transcribed into British English (CIDE, 1995).

When referring to system development approaches, the term 'method' is used over

'methodology'. Although methodology was the original choice of word in

Chapter 1 - Research Overview 6

1.7 Language, Terminology and Abbreviations

documents such as the project proposal form, and the two terms are often used

interchangeably by other authors (Jayaratna, 1994), in this thesis, 'methodology' is

used only to mean 'research methodology'.

The terms 'system', 'software' and 'application' are used in the following broad

sense: system is mainly used at the analysis stage when the exact solution to the

users' problems is not known; software is the generic term for the solution in the

design sense; and application is the implementation of the solution. A full list of

commonly used acronyms and abbreviations is provided in Appendix 1.

Chapter 1 - Research Overview 7

2.1 Introduction

2.1 Introduction

Chapter Two

Approaches to
Evaluation of SDMs

It is a widely accepted view in science that the method of inquiry is more important

than the inquiry outcome. Results alone are meaningless unless the method used is

sound (Brown et aI, 1989). Similarly, when evaluating system development methods

or creating a new method, it is important to scrutinise the evaluation or creation

process before accepting the conclusions drawn.

A literature survey carried out in this research reveals that there are a number of

approaches that may be used to evaluate products, tools, technologies and methods.

These approaches range from feature analysis to benchmarking, from subjective to

statistical analysis, and from empirical to downright arbitrary approaches, including

many imaginable shades of grey between them I (Galliers and Land, 1987; Basili,

1993; Kitchenham and Pickard, 1995; Evaristo and Karahanna, 1997; Zelkowitz and

Wallace, 1998; Basili et aI, 1999). The evaluation approaches are diverse not only

because there are relative strengths and weaknesses in each of these approaches, but

also because the purpose of evaluation is often very different. For example,

commercial software developers may be more interested in the market shares of the

methods (Hutt, 1994), while academic researchers will be more concerned with the

lOne remarkable finding of this survey is that most discussions on research methodologies are

related to validation of tools, technologies and methods. No research methodology for creation of

SDMs has been found. Even authors of new SDMs do not generally discuss how their methods have

Chapter 2 - Approaches to Evaluation of SDMs 8

2.1 Introduction

technical qualities of the methods (Bubenko, 1986). Such differences in nature of

interests in methods and purpose of their evaluation affect the choice of evaluation

approach. If the purpose of evaluation is to establish the market share of two

competing methods, methods such as survey may be appropriate because this

requires eliciting responses from a number of people spread over a large

geographical location. On the other hand, if the purpose is to establish how a given

method can help improve certain quality attributes of the end product, statistical

analysis of empirical data will be more appropriate.

Avison and Fitzgerald (1995 and 2003) catalogue a long collection of approaches

proposed and used over many decades for evaluation of SDMs. There are notable

omissions in the list, but it is beyond the scope of this project to engage in detailed

discussions about the issue.

An approach for evaluation of SDMs has to provide two key elements: criteria and

evaluation process. The "criteria" define the important or desirable quality attributes

of SDMs and the "evaluation process" suggests how these quality attributes of

SDMs should be observed and measured. If the evaluation is concerned with a

particular product such as a CASE Tool, or with quality characteristics that are

obvious and directly measurable such as "efficiency" of a particular design

algorithm, then formulation of quality criteria and the evaluation process will be

relatively straightforward. SDMs neither have dominant quality attributes that

determine the overall quality of the methods, nor are their quality attributes always

directly measurable. Therefore, a rigorous SDM evaluation approach must provide a

mechanism for formulating a set of evaluation criteria that collectively determines

the general quality of a method, and an outline of the process through which the

quality of an SDM can be determined.

The following sections provide an overview of a wide variety of evaluation

approaches in order to discuss their relative merits, their potential effectiveness and

applicability of these approaches to this research. The discussed evaluation

approaches are carefully selected - not to be comprehensive, but to be representative

arisen. For that reason, discussions will largely focus on approaches to evaluation, rather than

creation, of methods.

Chapter 2 - Approaches to Evaluation of SDMs 9

2.2 Empirical Approaches

of the diversity of ideas - so that different important ideas relevant to this research

can be illuminated. The evaluation approaches are divided into two main groups:

empirical approaches and non-empirical approaches (Van Hom, 1973).

2.2 Empirical Approaches

It is tempting for researchers to try and support their speculations - alas, all good

hypotheses and theories are speculative by nature; indeed if they do not speculate,

they would not tell anything that is not already known2
- with statistical analyses of

empirical data of varying forms and sizes. Basili et al (1999) give the following

definition.

An empirical study, in a broad sense, is an act or operation for the

purpose of discovering something unknown or of testing a

hypothesis, involving an investigator gathering data and performing

analysis to determine what the data mean.

Empirical approaches cover various methods, such as case study, field experiment,

field study (survey), and laboratory study, qualitative study and archival analyses

(Basili et ai, 1999; Van Hom 1973).

However, researchers in various fields of computing have a reputation for not using

empirical research approaches. For example, a survey 600 research papers published

in 1985, 1990 and 1995 show the use of research methods that do not have empirical

rigour are prevalent (Zelkowitz and Wallace, 1998). Some consider this an

extremely serious problem. Tichy (1998), for example, passionately argues that

"computer scientists" should experiment more, and he attempts to refute various

"fallacies" about why empirical methodologies are not widely used. Kitchenham is a

well-known advocate of statistical analysis methods in software engineering with

her work such as (Kitchenham, 1992; Kitchenham et ai, 1995; Kitchenham et al

2 Popper (1972) has suggested that scientific theories are distinguished from others by their

refutability. That is, a given theory can be accepted not only because there is evidence to support it,

but perhaps more importantly because there is no available evidence against it, and that it is clearly

possible for the evidence to become available and if that evidence were to become available, it will

falsify the theory. Therefore, every scientific theory must contain an element of 'risk' that it will be

falsified; because a theory must predict what is not known, it is speculative.

Chapter 2 - Approaches to Evaluation of SDMs 10

2.2 Empirical Approaches

2002). Pfleeger also strongly promotes the use of empirical approaches in her work

such as (Pfleeger, 1995).

There are those who strongly doubt the necessity of empirical approaches to

computer science. Tichy himself cites Fred Brooks as saying that computer science

is "not a science, but a synthetic, an engineering discipline" and the current editor­

in-chief of IEEE Software, Warren Harrison, as suggesting that "gut feeling is

enough when adopting new software technology; experimentation and data are

superfluous." Even where there is an agreement on the need for empirical

methodologies, there is no consensus on what they should constitute.

This research is not concerned with whether or not scientific methodologies are

applicable to research in computer science, this is too wide a field for comment.

Rather it is concerned with their applicability to research in SDMs. White (1982), as

cited by Avison and Fitzgerald (1995), argues for the use of scientific methods in

evaluation of SDM because only repeatability of a method justifies its adoption. A

notable rejection comes from Checkland (1987), who sets two challenges: in cases

of successful application of a method, he demands proof that another method could

not be successful; in cases of failures, he asks for proof that it is not the

incompetence of developers that is really responsible. Neither case has been proven,

according to A vison and Fitzgerald (1995).

2.2.1 Formulation of Criteria

Empirical approaches are exclusively concerned with the process of observation,

testing and validation, and not what should be observed, tested and validated.

Therefore, evaluation criteria need to be formulated before any empirical approach

can be applied.

2.2.2 Evaluation Process

If a genuine empirical approach is to be used, the following will be an appropriate

research methodology:

• Apply each of the existing CBSD methods to a real-life project for the same

or near-identical system, involving the same developers or developers with

near identical profiles.

Chapter 2 - Approaches to Evaluation of SDMs 11

2.2 Empirical Approaches

• Measure whether the system was developed on time, within budget, to the

quality acceptable by its users, and other stakeholders who have vested

interests in the system: precise criteria need to be known.

• Repeat this exercise in projects of different types and sizes, and in different

implementation environments. As the number and diversity of projects in

which the methods are applied increase, more confidence can be attached to

the conclusions drawn from analyses of the accumulated data as to which

method is better.

• If the evaluation of the measurements shows that the existing methods are

unsatisfactory, synthesise various good elements from the existing methods

to create a new one and reapply the new method in the same context. Again,

measure how the new method performs and compare the measurements to

those made for the existing methods. From these results, draw conclusions

about the quality of the new method against the existing ones.

It is clear from this account that if such an investigation is undertaken, it will

contribute hugely to our knowledge about the effectiveness of the use of various

system development methods in general, of which little is known at presene (Avison

and Fitzgerald, 1995), and of individual methods, of which even less is known. As

noted by Tichy, the same can be said about programming paradigms, and many

other aspects of computer science. Such research will have to be done on a very

large scale, over a long period of time, involving numerous people with diverse

professional expertise, costing a large sum of money and indeed, would be truly

revolutionary .

If this is the general standard for a method to be acceptable, almost all published

methods fall short since not a single method in the public domain has such empirical

meticulousness. This does not mean that a given method has not been applied in a

great number of projects. The point is that system development methods

3 At an international workshop the author attended, the same question was asked, and was met by a

certain amount of despondency. Nobody had any answer. An IBM whitepaper (Cernosek and

Naiburg, 2004), for example, claims that modelling helps reduce technical and financial risks, but it

does not offer hard evidence. Judging by the popularity of UML, there might be some truth in this

claim.

Chapter 2 - Approaches to Evaluation of SDMs 12

2.2 Empirical Approaches

traditionally do not have an empirical justification. In fact, they tend not to be

supported by any justification at all. For example, most component-based methods

investigated in this research justify themselves by neither serious arguments nor

empirical evidence. The same is true for most 00 methods and even UML. This

does not, of course, mean there should be no such research to find out if they

actually work; the reverse is the case.

There are some practical difficulties with the controlled experiments required by

these approaches. It is reasonable to expect a developer to know one or two popular

methods, but there are unlikely to be many developers with detailed knowledge of

all of the existing CBSD methods. To overcome this difficulty, groups of developers

with different expertise may be used; having to take into account the differences in

developers' profiles causes an extra problem. From the time the first method is

applied, developers' familiarity with, and knowledge of, the system will

increase very rapidly, which will favour the application of later methods. Against

this factor, developers may also become weary of working on the same system

repeatedly, which can inevitably adversely affect their quality of work. Jayaratna

(1994) for example identified a number of personal factors, such as experience and

prejudice, which affect how a method is used to solve a problem. In a sense, there is

a complex web of psychological influences at work, which add additional

difficulties to the measurement of how well the method has performed (Basili et ai,

1999).

Suppose a group of super-developers who can work as necessary can be found and

they develop the application using each of the methods. The question now is: what

should be measured? What are the quality attributes that will help decide the quality

of the methods used? Sponsors of the projects will be interested in delivery time,

budget, and general user acceptance of the application. What about the technical

qualities of the application itself? Whatever the outcome of the project, it will not be

clear if it was the development method used, and not say the programming

experience of developers, that has mainly contributed to the success or failure of the

project. It could be both. How can one know how much each has contributed? If the

quality of the application itself is going to be measured, what exactly should be

measured? What if the nature of applications is hugely different? Some of these

Chapter 2 - Approaches to Evaluation of SDMs 13

2.3 Non-Empirical Approaches

quality criteria will clash; shorter development time and lower cost may negatively

affect the technical qualities of the product.

Suppose it is still possible to do this exercise in a project. The process needs to be

repeated across different projects involving different set of people, for different

types of application, in different environments and so on, before any conclusive

verdict can be reached.

Limitations of the empirical approach in relation to the creation of the new method

are even more acute. Inventing new methods, by definition, is a creative process that

requires a leap of thought. Philosophers of science, such as Popper, suggest that

empirical evidence does not lead one in a linear fashion towards a valid

generalisation. Pfleeger (1999) makes clear that applicability of empirical

approaches to software engineering is limited.

Such a type of empirical research, in terms of resources, is beyond the reach of

individual academic research projects. In these projects, it is a reasonable aim to

evaluate CBSD methods in order to understand what makes a method good through

rational means (Section 1.5), rather than being concerned with the mammoth task of

discovering whether the methods measure up to their claims in practice. For this

reason, the use of empirical research approaches to evaluate existing methods in this

research is not called for.

2.3 Non-Empirical Approaches

Most evaluations of system development methods do not use empirical approaches,

and if they do, the criteria are usually narrow. For example, most evaluation

approaches surveyed by Avison and Fitzgerald (1995) are non-empirical in nature.

2.3.1 Subjective Criteria Approaches

There are too many suggested criteria to be listed here comprehensively. Most of

these criteria are characterised by limited scope, subjective application and often

random organisation. Authors of some approaches do not explain why the criteria

are important, or even what they ultimately aim to achieve. The use of such criteria

is acceptable where the focus of evaluation is limited.

Chapter 2 - Approaches to Evaluation of SDMs 14

2.3 Non-Empirical Approaches

For example, authors of a new ambitious object-oriented method called ADORA

(Glinz et aI, 2001) attempt to show that their method is superior to UML by

analysing fifteen people's responses to questions regarding "two fundamental

qualities" of a specification language: comprehensibility ("a specification must be

easy to understand") and acceptance ("user must like it").

However, there are more sophisticated approaches. A vison and Fitzgerald (1995),

for example, provide a set of seven main criteria, which include Philosophy, "a

principle, or a set of principles that underlie the methodology"; Model; Techniques

and Tools; Scope; Outputs; Practice; Produce. Some of these criteria are further

broken down; for instance, Philosophy involves Paradigm, Objectives, Domain and

Target.

As cited by A vison and Fitzgerald (1995), Catchpole (1987) summarises "the views

of a number of authors concerning the important areas of concern when comparing

methodologies" and suggests a set of twenty three criteria that include Rules,

"formal guidelines in a methodology to cover phases, tasks and deliverables, and

their ordering, techniques and tools, documentation and development aids, and

guidelines for estimating time and resource requirements"; Total Coverage;

Teachability. Land (1982) adds three more criteria to the list: "A systematic way of

looking into the future"; "The integration of the technical and non-technical

systems" and "Scan for opportunity". Not to be outdone, it seems, Avison and

Fitzgerald (1995) further append the following criterion to the list: "Separation of

analysis and design".

Bjorn-Andersen (1984) has created a checklist including questions such as: "What is

the context where a methodology is useful?", "To what extent is modification

enhanced or even possible?" and "Is user participation really encouraged or

supported?"

2.3.1.1 Formulation of Criteria

There are a number of problems with these approaches. Some criteria are too

generic, bordering on vacuity. What is needed to be compared in models; symbols,

concepts or something else? Organisation of the criteria is often arbitrary. For

example, where expert opinions are drawn upon, how are "experts" selected? What

Chapter 2 - Approaches to Evaluation of SDMs 15

2.3 Non-Empirical Approaches

"experts" they change views or disagree with each other? If experts can add

whatever criteria they think are important, when will the list end? And will an

endless list of criteria help evaluators determine the quality of a method? This does

not mean that some of the suggested criteria cannot be used; rather, the way in

which the criteria are articulated, organised and applied does not instil objectivity,

comprehensiveness and authority. Even a seemingly self-evident and commonly

suggested criterion such as simplicity is problematic. The level of simplicity of a

method does not necessarily bear any relation to the overall quality of a method. In

any case, how should one measure the simplicity of a method? If the simplicity is to

be considered collectively with other criteria, there remains the question of how this

should be done.

2.3.1.2 Evaluation Process

These criteria only suggest what to evaluate in general terms, not how to carry out

the evaluation. How can different philosophies of methods be evaluated? How are

models assessed? What if they are based on different paradigms, for example, in the

case of Data Flow Model, which is based on the structured paradigm and Use Case

Model, which is based on the object-oriented paradigm?

It is clear that the use of a random list of criteria is unlikely to lead to the interesting

discovery of qualities of system development methods, unless the remit of the

research is narrowly defined. Therefore, the use of such a set of criteria is not

justifiable for this research.

2.3.2 Meta-Modelling Approaches

There is an increasing tendency for authors of new methods to use meta-models as,

or as part of, their justifications of their proposals. For example, methods/modelling

languages such as Open (Firesmith et ai, 1997; Graham et ai, 1997; Henderson­

Sellers et ai, 1998;), UML (OMG, 2003) and KobrA (Atkinson et ai, 2002) provide

various meta-models. Hong et al (1993) describe a two-phased evaluation approach,

based on meta-modelling, to compare 00 methods.

In Phase One, two meta-models are built: one is the meta-process model of analysis

and design steps, including input and output from each step, and the other is the

meta-data model of concepts and techniques showing "both the definitions of the

Chapter 2 - Approaches to Evaluation of SDMs 16

2.3 Non-Empirical Approaches

concepts and the relationships among them." Hong et al do not discuss how the

meta-models have been built; they only give examples of a meta-data model and a

meta-process model of an 00 method described by Wirfs-Brock et al (1990).

In Phase Two, the methods are compared. The comparison of processes begins by

creating a "supermethodology", which is "the smallest common denominator of all

activities depicted in the meta-process models" of all investigated methods. A table

is produced listing all activities of methods against the supermethodology and

showing how they correspond. Concepts from the meta-data model are compared

following the same approach. A set of concepts of supermethodology from the meta­

data models is drawn, against which concepts from methods are compared. In

addition to the "string" indicators used in the previous table, "numbers" are also

used to provide a footnote to the concept.

2.3.2.1 Formulation of Criteria

The supermethodology, created from concepts and development activities of

existing methods, serves as the evaluation criteria. The main difficulty with the

philosophy of this approach is the existing methods are used as a basis for deriving

criteria used to evaluate the same methods; therefore, if all the existing methods are

flawed, any common denominator produced will also be flawed. Therefore, the

supermethodology does not lend itself as a standard against which others should be

measured.

2.3.2.2 Evaluation Process

Hong et al (1993) make some attempt to quantify the quality attributes. There are

also problems here. For instance, when comparing techniques, the approach does not

suggest how techniques used to capture objects should be compared; rather it

superficially suggests that evaluators should mention the name of techniques.

2.3.3 Action Research

It can reasonably be argued that the description of the empirical approach in Section

2.2 might be rather extreme; perhaps a watered-down version of the approach, a kind

of empirical-light, could be applied instead. One such approach popular with IS

researchers is the action research approach (Wilson, 1984; Galliers and Land, 1987;

Chapter 2 - Approaches to Evaluation of SDMs 17

2.3 Non-Empirical Approaches

A vison et aI, 1999). This approach emphasises the participation of the observer in

the phenomenon or the process being studied, so that he or she is no longer a fly-on­

the-wall witness but an active learner interacting with the subject(s), guiding or even

working with the subject to arrive at the desired solution. Based on such

experiences, the observer theorises and tests dynamically his or her theories. For

example, the author of NIMSAD, Jayaratna (1994), claims that his framework is

based on his personal experience of working with clients as a consultant and his own

action research. There are those, such as Avison and Fitzgerald (1995), who believe

that this may be the only appropriate approach to IS research.

2.3.3.1 Formulation of Criteria

Since the emphasis of the action research approach is the exploratory and cyclic

process of learning, reflection and generalisation, the formulation of criteria is

subjective, dynamic and highly subjective.

2.3.3.2 Evaluation Process

The evaluation process involves the research working closely with those who are

involved in the "problem situation," and developing an interpretivist narrative to

explain a phenomenon.

This approach may be appropriate if the project is concerned "soft" issues such as

human factors in IS projects. The main problems with this approach include its

subjectivity, repeatability, and time.

Simply because a method has been evaluated through action research need not mean

that the results will be objective. The exercise needs to be repeated across a number

of projects before any reliable conclusions can be drawn. Since only one method can

be evaluated in a project, evaluation of multiple methods will require a number of

projects to be carried out. Still, the verification would not be independent.

Other problems with the methodology are concerned with the method user(s), the

person(s) who applies/apply the new method. There are questions about who should

apply this method in a real-life project. The author, with intimate knowledge of the

method, is arguably in the best position to be the method user. However, this is

unrealistic because medium-sized software development projects need more than

Chapter 2 - Approaches to Evaluation of SDMs 18

2.3 Non-Empirical Approaches

one analyst. Furthermore, this gives the author's method an unfair advantage over

other methods. It is however possible for other developers in the project to be trained

in this new method so that they can also apply it. There are issues about who should

apply it and when they would be ready to apply.

For these reasons, the action research approach is not appropriate for this project.

2.3.4 Systemic Approaches

There are also evaluation approaches that are based on the concept of systems, and

systems thinking, that generate questions regarding various qualities of methods.

Two systemic approaches, proposed by Wieringa (1998) and Jayaratna (1994), are

discussed in this section.

Wieringa (1998) discusses a comparison framework that is based upon the concept

of systems that interact with their environments. These interactions can be grouped

into meaningful units called functions. Functions have two orthogonal properties

known as communication (interaction) and behaviour (time-dependent

communication). Wieringa regards functions, communication and behaviour as

"system properties" that can be described at various levels of abstraction. System

interaction at the top level can be called mission of the system, at a more detailed

level, functions, and at the bottom level, atomic transactions. Also, behaviour of the

system can be described at various levels. A refinement hierarchy is used to show

the relationship between various levels of description.

igure 2 1 The magic square (Wieringa 1998)

Systems are composed of parts, and their composition is shown in aggregation

hierarchy of systems. Hierarchies of aggregation and refinement are also intrinsic

properties, and can be represented in a magic square. Wieringa writes:

Chapter 2 - Approaches to Evaluation of SDMs 19

~ ..

2.3 Non-Empirical Approaches

At a given level of aggregation and abstraction, we can decrease the

abstraction level at which we specify the interaction of a system at

that level without decreasing the aggregation level. ... Conversely, at

a given level of aggregation and abstraction, we can decompose a

system without decreasing the level of abstraction We allocate a

system interaction to one or more components if we decide that

these components will realise the system interaction.

System decomposition and interaction refinement lead to the idea of Function

Decomposition Table, which shows the mappings of system interactions onto

system components.

Based upon the concepts discussed above, Wieringa concludes that a method should

offer (modelling) techniques for four properties:

• function specification techniques

• behaviour specification techniques

• communication specification techniques

• decomposition specification techniques

Since Wieringa regards decomposed system parts as systems in their own right, he

has come up with the following criteria. A method should have specification, which

in most cases implies modelling, techniques for External Communication; External

Behaviour; External Function; Conceptual Decomposition; Component Functions;

Component Behaviour and Component Communication. These criteria provide the

systematic and systemic basis for determining the sort of models the methods

surveyed in his paper should offer.

Jayaratna (1994) proposes the Normative Information Model-based Systems

Analysis and Design (NIMSAD) framework, which is a generic framework for the

Chapter 2 - Approaches to Evaluation of SDMs 20

2.3 Non-Empirical Approaches

evaluation of any method, including Information Systems Development methods.

He suggests that effective application of a method depends upon three elements: the

method itself, the person who applies the method, and the context in which the

method is applied.

Problem Context

NIMSAD suggests that if a method is to be evaluated, there is also a need to

evaluate the organisational context in which the problem exists, and to which the

method is applied. The primary reason for this is that the ultimate test for the method

is to demonstrate its effectiveness when applied to a problem situation, which can

only be observed in the changes it brings to that situation.

Intended Problem-Solver

Effective application of a method is subject to the "personal characteristics" of those

who apply it in their given situation. These include: Perceptual Process; Values;

Ethics; Motives; Prejudices; Experiences; Reasoning Ability; Knowledge and Skills;

Structuring Processes; Roles; Models and Frameworks.

Problem Solving Process

The method itself is regarded as the problem-solving process. This is broken down

into three phases, which are further divided into stages.

~ Phase 1: Problem formulation

~ Stage 1: Understanding the situation of concern - Before diagnosing the

problem, there is a need to grasp the problem situation.

~ Stage 2: Performing the diagnosis - Diagnosis is the expression of the

"situation of concern" and the reasons why such a state exists.

~ Stage 3: Defining the prognosis outline - Where do we want to be and

why?

~ Stage 4: Defining problems - Once the existing and desired states of the

situation are understood, there is a need to find out what has been

preventing the transformation, i.e., the problem.

~ Stage 5: Deriving notional systems - This is the expression of the

system, "if designed, built and operational," it is believed it would

eliminate the identified problems.

~ Phase 2: Solution design

Chapter 2 - Approaches to Evaluation of SDMs 21

2.3 Non-Empirical Approaches

~ Stage 6: Performing conceptual/logical design - In this stage, the

solution design is formulated using "systems notions".

~ Stage 7: Performing physical design - "Physical design can be

considered as the deliberation and selection of ways and means of

realising the logical design".

Phase 3: Design implementation

~ Stage 8: Implementing the design - It is the realisation of the physical

design for the "situation of concern".

Evaluation of a method

Evaluation of the three elements of a method, namely, the problem situation, the

problem-solving process and the problem solver, is carried out at three stages:

before, during and after the method is applied.

2.3.4.1 Formulation of Criteria

Formulation of criteria in these systemic approaches is a rational exercise firmly

based on clear philosophical principles. The criteria generated in both the

Wieringa's and Jayaratna's approaches are comprehensive and well-organised.

2.3.5 Evaluation Process

The evaluation process used by Wieringa is analytical, whilst NIMSAD promotes

the use of action research approach, although analytical techniques can also be

deployed.

Despite its relatively narrow focus on modelling techniques, it is clear that the

approach used by Wieringa is vastly superior to the random list of criteria previously

discussed for many reasons. Wieringa discusses the reasoning process behind the

criteria suggested, in terms of why certain models are needed in a method. He uses

the same reasoning process to generate the criteria for evaluation, ensuring that the

criteria possess a good organisation.

There are certain weaknesses observable In this framework. For example, the

treatment of system as essentially a process has some drawbacks. ER model is

placed in the column of system decomposition, even though entities do not exhibit

the sub-system properties of being "systems in their own right". The claim that

Chapter 2 - Approaches to Evaluation of SDMs 22

2.4 Summary of the findings

decomposition of system and refinement of interaction can be done independently is

also highly questionable. For instance, DFD decomposition requires refinement of

data flows and vice versa. Therefore, decomposition of the system and refinement of

system interaction seem to be mutual.

When contrasted with other approaches, the NIMSAD framework is unique in many

ways. First, it highlights that, practically speaking, effective problem-solving not

only depends upon the method used, but also on the situation to which the method is

applied and the person who uses the method. As far as the method is concerned, it

provides a set of generic phases and steps that any given method should follow and

explains why those phases and stages are necessary. Since these system

development activities are constructed in very generic terms so that they are

applicable to different kinds of methods, or all methods as NIMSAD claims,

genericity is both a strength and weakness of the framework. If one is exclusively

concerned with, say, CBSD methods, these activities can be of more help if they are

more specific. Furthermore, since the framework defines method as a "problem­

solving process", there is little scope to incorporate other important parts of modem

software development methods such as those based on UML. Therefore, it is fair to

say that if the framework is to be used for the technical and theoretical evaluation of

a very specific kind of method, it needs to be adapted.

NIMSAD also treats the evaluation of a method as a dynamic activity that is carried

out before, during and after the method is applied. This is an original feature of this

framework.

2.4 Summary of the findings

As far as the use of empirical approaches to evaluation of CBSD methods is

concerned, there are practical difficulties as well as questions regarding its relevance

to the nature of inquiry envisaged by this research. Non-empirical approaches are

more appropriate in this case. Of the approaches discussed, systemic approaches are

the most appropriate because they are based upon sound logical reasoning, and they

provide some fairly objective and systematic ways to question the quality of

methods. Existing evaluation frameworks such as NIMSAD and Wieringa's provide

a good basis for evaluation but they are too generic and need to be synthesised and

supplemented with more concrete and detailed criteria as well as mechanisms to

Chapter 2 - Approaches to Evaluation of SDMs 23

2.4 Summary of the findings

gauge the quality attributes analytically. The next chapter describes such a

framework.

Chapter 2 - Approaches to Evaluation of SDMs 24

3.1 Introduction

Chapter Three

The Proposed Evaluation Approach
The MAP Framework

3.1 Introduction

This chapter expounds a novel evaluation approach proposed by this research, called

the MAP framework4
• MAP stands for Modelling, Architecture and Process. This

framework is based upon a number of approaches to understand and evaluate

methods, which include systems thinking, NIMSAD and Wieringa's framework.

The MAP framework also sheds new light on other important areas of method

evaluation such as categorising system models and their correlations, which are not

explored by the existing approaches. The proposed framework does not overturn

these approaches, but rather synthesises and enhances them by providing more

concrete guidelines appropriate for evaluations of CBSD methods. Certain aspects

are also applicable to evaluations of other kinds of methodologies, such as

Structured and 00 methods. Before going into detailed discussion of the evaluation

framework, it is worthwhile elucidating some of the key concepts employed:

Systems Thinking, System and Information Systems.

3.1.1 Systems Thinking

"Systems Thinking" has its roots in General Systems Theory (GST), which is

usually attributed to Ludwig von Bertalanffy (Bertalanffy, 1968) and Ross Ashby

(Ashby, 1947). GST suggests that scientific reductionism (Boyd et aI, 1991), the

idea that a complex problem can be tackled by breaking it down into a set of simpler

4 A shorter description of this framework has been published in (Bielkowicz and Tun, 2002). An

application of the framework to SSADM and UML was presented in (Bielkowicz et ai, 2003).

Chapter 3 - The Proposed Evaluation Framework 25

3.1 Introduction

problems to solve, cannot adequately deal with complex biological, social, and other

non-physical problems. GST emphasises the importance of interconnectedness of

parts of the systems and their complexity. Problems in software development,

despite being called an engineering discipline, are softer in nature, due to the socio­

economic dimension, than those in traditional engineering disciplines such as

hardware engineering. Systems thinking is a particular interpretation of the GST

applicable to problem-solving in development of information systems. Checkland

(1999) defines systems thinking as:

An epistemology which, when applied to human activity is based

upon the four basic ideas: emergence, hierarchy, communication,

and control as characteristics of systems. When applied to natural or

designed systems the crucial characteristic is the emergent

properties of the whole.

Epistemology is 'a theory concerning means by which we may have and express

knowledge of the world'. Emergent property means that systems have properties

that are relevant only to the system as a whole, which cannot be attributed to

individual components. Hierarchy is a concept that is concerned with the

relationships between the description of a system/component and a more detailed

description of its components. Communication means 'the transfer of information'

and control is the system's ability to exercise regulations (Checkland, 1999).

3.1.2 System

The term system is ubiquitous nowadays. It is used to describe many things from

machines such as computer systems, to software applications such as payroll

systems, and from public services such as transport systems or underground systems,

to the interdependency of living things as such an ecosystem. All these systems have

common properties including the following (Waring, 1996).

~ Systems have functions

~ System are made up of a number of parts or components or elements

~ Components have roles in hierarchical structures

~ There are means for control and communication

~ Systems have emergent properties

~ Systems have boundaries

~ Systems are affected by their environments

Chapter 3 - The Proposed Evaluation Framework 26

3.1 Introduction

3.1.3 Information Systems

There are a number of definitions of the term 'information system': some of them

come from systems thinking perspective and others from methodological

background. Jayaratna (1994) provides the following definition, which in a typical

systems thinking fashion, emphasises not only the functional aspects of the systems,

but also the context in which they operate.

A system for the most efficient and effective means of identifying the

'real' needs of users, and developing information processing systems

for satisfying these needs; ensuring that the resulting information

processing systems continue to satisfy changing user needs by the

most efficient means of acquiring, storing, processing, disseminating

and presenting information; by providing facilities and a learning

environment for users and information systems specialists to

improve the effectiveness of their decision model; and by supporting

operational, control and strategic organisational objectives.

3.1.4 Key Properties of ISs

The MAP framework suggests that there are three key properties of information

systems, the proper analysis of which are vital for development of these systems.

INFORMATION: As the name implies, ISs are concerned with information, which is

often called 'input and output', or 'signals'. In order to provide useful information,

information systems have to carry out tasks such as gathering, storing, manipulating

and presenting information.

PROCESsIFUNCTIONALITY: The actions of storing, retrieving, manipulating,

presenting information are the functional characteristic of ISs. Some of these actions

require the system to communicate with the outside world, such as users and other

systems, and to obtain or transmit information through system interactions.

INTERACTION: ISs communicate with the outside world by means of interaction. In

a broad sense, interaction means conveying information from a source to a

destination.

Whilst there are other characteristics associated with ISs, such as emergence,

ownership and control, the MAP framework suggests that these are the three most

Chapter 3 - The Proposed Evaluation Framework 27

3.2 Elements of Evaluation in the MAP Framework

important characteristics to which developers need to pay paramount attention when

analysing and designing ISs. Compared with Wieringa's communication, behaviour

and function (Section 2.3.4) these characteristics are less ambiguous.

3.2 Elements of Evaluation in the MAP Framework

At a generic level, this framework agrees with the assertion of NIMSAD that

successful evaluation of an SDM requires assessment of not just the method, but

also the context in which the it is applied and various personal qualities ofthe person

who applies it. This framework is in line with NIMSAD in saying that the evaluation

of the three elements should be done at three stages, before intervention, during

intervention and after intervention. Since the NIMSAD framework is designed for

the evaluation of a wide range of methods, its definition of method is very generic:

'a problem-solving process'. It is process-focused and for most SDMs, it is rather

simplistic. In modem methodologies, such as CBSD methods, specific issues such as

modelling techniques are too important to be glossed over. Therefore, the method

element ofNIMSAD is elaborated by the MAP framework.

Figure 3.1 Elements of Evaluation, Jayaratna (1994)

3.3 Three Major Elements of a Method

Based on observations of modem SDMs, the MAP framework suggests that SDMs

have three main elements: System Models, System Development Process (SOP) and

Software Architecture. These three elements are related to each other, and in a good

SDM, the following correlations between the three elements of a method can be

observed:

Chapter 3 - The Proposed Evaluation Framework 28

3.4 System Modelling

• SDP stages can be expressed in terms of the System Models produced. There

are clear correlations between the SDP stages and System Models in terms of

when models are created, revised and validated during the development

• Different SDP stages are concerned with different aspects of software

architecture, and such correlations are clearly observable.

• System Models, especially design models, have clear correspondence with

the software architecture.

Figure 3.2 Elements of Method according to the MAP framework

System Development Process

Method

System Models Software Architecture

Therefore, the MAP framework suggests that having these three elements and

having clear correlations between them are the highest level criteria in evaluation of

a method. From the perspective of a method user, a method cannot be complete or

coherent if some of these elements are missing or their correlations unclear. The

latitude at which the criteria are applied is high, but these are not too abstract to the

point of being unquantifiable. The discussion now will focus on each of the three

elements.

3.4 System Modelling

SDMs provide various system models to project the method-users' reflection of the

'situation of concern'. The projections may be either diagrammatic, formal,

informal or a combination of some or all of these. In terms of coverage, the MAP

framework suggests that there are two kinds of models: Global Models and

Contextual Models. Global Models are the descriptions of the system in its entirety

from a modelling viewpoint, and Contextual Models are the descriptions of the

context in which a component of the system operates.

Chapter 3 - The Proposed Evaluation Framework 29

3.4 System Modelling

3.4.1 Global Models

Due to the complexity of many systems and the limitation of human ability to deal

with various complex issues at once, it is difficult in practice to express all important

aspects of an entire system in a single model. In fact, it is a general practice for

SDMs to use multiple global models, each focusing on one particular aspect of the

system and capturing one major characteristic while discriminating others.

Therefore, global models tend to give an inherently one-sided view of the system .

.. - .+Oo(O]J)
IA ~

(Note: There can be elements in a system, which are not covered at all; a heart shape in the

3.4.1.1 Modelling Viewpoints

Systems are made up of various kinds of elements (Figure 3.3) and the system, as a

whole possesses a range of characteristics, some of which are of vital importance for

understanding the way the system functions. For instance, one of the strong

characteristics of ISs is the transfer of information between the system and its users

across the system boundaries. Therefore, many SDMs can be expected to provide

models to capture that particular aspect of the system. In order to produce a model

that focuses on one particular characteristic of the system, the modeller takes a

standpoint and studies the system from a particular angle, called the modelling

viewpoint. Modelling viewpoints are termed differently in methods: for example,

SSADM calls them "perspectives", and UML calls them "views" (Goodland and

Slater, 1995; Eriksson and Penker, 1998).

Since SDMs provide many viewpoints on a system, the questions of how many

modelling viewpoints are needed to get a near-complete description of a system may

be raised here. The answer rests with the type of system developers are dealing with;

Chapter 3 - The Proposed Evaluation Framework 30

3.4 System Modelling

understanding these characteristics is a prerequisite for gaining full comprehension

of the system. In this sense, system modelling viewpoints are inseparable from the

major characteristics of the system. SDMs should be expected to provide appropriate

global models to capture the important characteristics of the type of systems they

support. Since this research is particularly concerned with CBSD methods for

general ISs, according to the key properties of ISs discussed in Section 3.1.4, SDMs

to be evaluated in this research should provide three modelling viewpoints.

If methods to be evaluated are designed for development of a particular kind of IS,

such as Real-Time Systems (Burns and Wellings, 2001), which has other important

global characteristics such as time. In these cases, additional viewpoints will be

needed. It must be noted that all global models have a unique property: they all have

the characteristic of hierarchy. In other words, global models describe the system at

various levels of abstraction or decomposition.

3.4.1.2 IPI Matrix

It is clear from the discussion above that information, process and interaction are

important characteristics of ISs. Therefore, it is reasonable to expect SDMs to

provide global models to describe these characteristics. In the MAP framework, a

polar graph is drawn in which an axis represents each modelling viewpoint

necessary for development of a particular type of system. For IS development

methods, the polar graph will have three axes for Information, Process and

Interaction, named IPI Matrix.

Information

Interaction Process

Chapter 3 - The Proposed Evaluation Framework 31

3.4 System Modelling

3.4.1.3 Plotting Global Models to IPI Matrix

Each global model from a method is plotted on this matrix by drawing a line along

the appropriate axis. According to this framework, an ideal ISD method provides

three global models: the process model providing an overall view of the system's

functionality, the information model providing a representation of things in the real

world that the system it is concerned with, and the interaction model giving a high­

level description of the system's communication with the outside world.

Interaction
Axis

Information
Axis

ER Model
Class model

case model

Axis

(Note: ER should be drawn along the information axis; but for the purpose of readability, it
is drawn from it)

ISs have three main characteristics, but it does not follow that they each requires a

modelling viewpoint, or that an SDM must provide exactly three global models that

fit neatly into this categorisation. For example, some methods may have an

information model that contains elements of processes or interactions or both. Such

models are accommodated in the matrix by tilting the line towards the appropriate

axis or shading an angular area. In the IPI matrix in Figure 3.5, the ER model is

drawn very close to the information axis because ER models deal only with the

information aspect of the system. On the other hand, the class model has elements of

processes, called class operations; hence it is slightly aligned towards the process

axis. DFD is essentially a process model but also contains elements of interaction

and information. How far a model should be drawn away from an axis is determined

by the dotted line which halves the region between the two axes, and represents a

Chapter 3 - The Proposed Evaluation Framework 32

3.4 System Modelling

hypothetical model that contains an equal amount of elements from the two

neighbouring axes. However, such a model may not have much practical use, since

each model should have a clear aim of what it intends to describe.

Certain methods may provide fewer or more than three global models. Again, in

these cases, models are aligned appropriately to the axes by first examining the type

of elements these models contain. It is worth noting that each global model has a

clear purpose: to describe a system from a perspective. As far as ISs are concerned,

having more than three main models means that global models contain a large

amount of overlap, which is not beneficial since the aims of models can be

misleading. Having less than three models means that the aims of the models are

ambiguous and their coverage is incomplete. Ideally, all global models should be as

close as possible to the axes, ensuring the clarity of purpose.

3.4.1.4 Elements of Global Models

Each global model embodies an aim: for example, the general aim of an information

model is to describe the system's information requirements. The main basic units of

a process model, an information model and an interaction model are the processing

units, logical groups of data items and events (an abstraction of some data

flows/messages) respectively. These global models will use various model elements

to describe what they aim to represent. Therefore, if a global model is broken down

into smaller elements, there will be a certain type of elements that is dominant,

reflecting the aim of the global model. A typical information model will contain a

disproportionately large number of model elements describing 'basic information

units', such as entities. In total, there are three notable kinds of element in a global

model. These are:

• ContentlFunctional Elements are essential for the fulfilment of a global

model's main aim. For instance, if the global model aims to describe the

system's functionality, content/functional elements are then units of

processing etc.

• Structural Elements show the relationships/dependencies between the

content/functional elements, the scope the model, its boundary, its

environment etc. They form the scaffolding to support the content/functional

Chapter 3 - The Proposed Evaluation Framework 33

3.4 System Modelling

elements. They are also used to add other information such as the

boundary/limitations of the model.

• Overlap Elements span more than one model since there is a need for

traceability between models. Some methods use extra diagrams and other

ways of referencing between global models rather than overlap elements.

There can be extra information in a diagram such as diagram title, author, date of

creation, version number, and so on. Since such information does not substantially

add to the description ofthe system, it need not be part of a critical evaluation.

3.4.1.5 Hierarchical Nature of Global Models

Due to the size and complexity of systems, detailed descriptions of global models

can be overwhelmingly complex. An effective means of managing them is required.

Perhaps the most common approach is to break down the system into smaller and

comprehensible parts; and describe each part. This is fundamentally a reductionist

approach, rejected by systems thinking. The new element brought about by systems

thinking, the emergent property, requires that, in order not to lose sense of the

system at large, the hierarchical structure of the system is used to spell out the role

of each part in the system. Therefore, global models are not described in atomic

parts; rather their descriptions are expressed at various levels of detail. At the

highest level of abstraction, the descriptions will concentrate on the overall structure

of the system, and lower level descriptions will contain more detailed information

about each component without losing the sense of its place in the overall system.

Here an abstract description does not mean an incomplete description; rather it is a

description that embodies many detailed descriptions. In terms of building such a

hierarchical description of a system, three general approaches are suggested by

SDMs: top-down, bottom-up and middle-out.

3.4.1.6 Global models aud time dimension

Global models are normally static, i.e. time-independent. This is largely because of

the sheer amount of information embedded within them. It is easier to take the time

dimension into account when one is concerned with a relatively small portion of the

system. This does not mean that a global model cannot be dynamic and a contextual

model static. However, if the time dimension is added to a global model, the amount

Chapter 3 - The Proposed Evaluation Framework 34

3.4 System Modelling

of information one has to account for will be overwhelming. Static contextual

models are very useful for dynamic modelling (see Section 16.3).

3.4.1.7 Making Sense of Global Models: Integrating Global Models

Clearly global models provide only partial views of the system. There are a number

of reasons for consolidating the global models, one of which is to check consistency

of these models. In order to perceive the entire system, we need to merge the models

together. Now, there is a strong need for a mechanism that will allow one to forge

links between global models, paving the way for contextual models. There are two

ways to achieve this. The first is to add explicit cross-referencing elements to global

models, such as Data Stores in DFD which are directly mapped to entities in the

Entity Relationship Diagram. The second is to use a completely separate model that

shows only how elements from the two models can be mapped, for example, Entity

Access Matrix (EAM); see (Weaver et ai, 1998). The first method clearly provides a

good starting point for seamless navigation among models; the second is explicit and

usually more detailed. It is indeed good to use both. Such relationships between

global models are called contextual models.

3.4.2 Contextual Models

A contextual model takes a basic major unit of a global model and describes the

system from the perspective of that unit in order to show how the unit of a global

model takes part in the running of the system. For instance, a contextual model can

show the system from the point of view of a unit of processing in terms of how it

relates to information unites) and interaction unites) to perform a specific task.

Global models are outside views of the system in its entirety; contextual models are

inside views ofthe system limited to a single element.

Chapter 3 - The Proposed Evaluation Framework 35

3.4 System Modelling

Contextual models tend to transcend limits of global models in the sense that they

may contain information from all global models. For example, when describing the

system from a processing unit's point of view, analysts can freely mention how it

interacts with elements of other global models and vice versa. Therefore, overlaps

between the global models are crucial for contextual modelling.

3.4.2.1 Two Kinds of Contextual Models

In the IPI matrix, contextual models are shown as arrow-headed arches. The MAP

framework distinguishes between two kinds of contextual models. The first is the

abstract contextual model that shows in generic terms, following the direction of the

arrow, how one element from a global model relates to element(s) from another

global model. The second is a detailed contextual diagram. The former is

represented by the dotted arrow and the latter, a thick arrow.

Information

Abstract Contextual Model

Detailed Contextual Model

Interaction Process

Though contextual diagrams are classified in this way, there is no need to have

separate diagrams for each of the contextual models. A simple table such as

Entity/Event Matrix in SSADM shows abstract contextual relationships between all

entities and events in the system. Detailed contextual models expand on these

abstract relationships and provide greater analyses of the correlations. For example,

an ELH in SSADM expands on the effects of events on an entity shown in the EAM.

3.4.2.2 Time Dimension

Since contextual models, especially detailed contextual diagrams, describe the

system from the individual component's perspective, their descriptions of the system

tend to be detailed and therefore they normally have a time dimension. For example,

Chapter 3 - The Proposed Evaluation Framework 36

3.4 System Modelling

the state transition diagram for an object will clearly have a time dimension.

Although in theory, it is possible to draw a state diagram for the entire system, the

diagrams are better suited for individual objects because the sheer amount of detail

analysts have to deal with is much more manageable on the scale of an individual

element. Contextual models are often known as dynamic models because of their

time dimension.

3.4.2.3 The relationship between global models and contextual models

Global models show the system as a whole, and contextual models focus on

individual elements in these global models. In one sense, contextual models bind

global models together. The depth of information and dynamism of contextual

models presents a good opportunity to check the validity and consistency of the

global models.

The discussion so far has outlined what can be called a theory of system development

method, in the sense of the theory of mind, as assumed by the MAP framework. The

following criteria and evaluation process are derived from this theory.

3.4.3 Evaluation of System Modelling

Evaluation of modelling is primarily concerned with the coverage of all models as a

whole in describing various important aspects of the system, and examining how

closely they are held together. According to this theory of system development

method, an ideal method will have:

• three global models describing the information, process and interaction

characteristics of the system

• six abstract contextual diagrams

• six detailed contextual diagrams

General alignment of a model in the IPI matrix, the rigour of the modelling

techniques, and its consistency with other models will indicate the overall quality of

a model, according to the MAP framework. Furthermore, models should also have

clear correspondence with the stages at which they are developed, revised, and

finalised and with the aspects of software architecture they correspond with. Having

this many models in a method may be considered bureaucratic and impractical

Chapter 3 - The Proposed Evaluation Framework 37

3.4 System Modelling

(Hares, 1994). However, this defines the best possible set of models required to

describe a system, against which a method can be evaluated.

Interaction Model

/
I ,
I
\
\
\

/
I

/
/

,,-

Information
Axis

Information Model

/ -~ -.....
......

\. : ~

,
\.
/\

\
\
\
I
I ,

"" Process Model

Interaction
Axis

...... . ,,-
~ '" -..... _..,..-/. / /

'-~ ~/ Process
Axis /

.... ,,-..... .,; ----------

The system modelling evaluation criteria of the MAP framework are divided into

two categories: criteria for evaluation of techniques used by global models and

criteria for evaluation of techniques used by contextual models. It can be argued that

"consistency" is perhaps the single most important quality of requirement

specifications. Consistency has two important dimensions: external consistency, a

specification reflecting users' real requirements, and internal consistency, the

specification not contradicting itself or other specifications. The MAP framework

suggests specific criteria for evaluation of techniques used by global and contextual

models in order to measure how rigorously external and internal consistencies of

system models are ensured by SDMs.

3.4.3.1 Criteria for Evaluation of Techniques used by Global Models

These criteria refer to specific quality attributes of individual global models. The

criteria and the evaluation process are based on the rigorous approach described in

our paper on a comparison of data requirements specification techniques

(Bielkowicz and Tun, 2001).

Chapter 3 - The Proposed Evaluation Framework 38

3.4 System Modelling

The evaluation approach suggests that quality of a global model/specification, in that

case a data requirements specification, can be evaluated at three main levels:

Description Level, Semantic Level and Contextual Level. The first is a superficial

level at which a common understanding is thought to have established if a shared

vocabulary is used. The second level is more meaningful, whilst the third applies to

consistency between models. For the first level, there are two main quality

characteristics: completeness and minimality, which ensure that the specification

matches squarely with what is required. At the semantic level, the quality

characteristics correctness and non-redundancy are identified; these ensure that there

is no difference between the meaning of the languages used by the developers and

the users. For the contextual level, only the inter-model consistency criterion is

suggested in the paper, which is subsumed in this framework by the criteria for

evaluation of contextual models. These criteria are then applied to all elements in the

model in all levels of abstraction. In data requirements specifications, the main

elements are: data groups (entities/classes), attributes, and relationships between

entities or classes.

Level Characteristic Element Criterion
Description Completeness Entity/Class Completeness of entities/classes
Description Completeness Attribute Completeness of attributes
Description Completeness Relationships Completeness of relationships
Description Minimality Entity/Class Minimality of entities/classes
Description Minimality Attribute Minimality of attributes
Description Minimality Relationships Minimality ofrelation-ships
Semantic Correctness Entity/Class Correctness of entities/classes
Semantic Correctness Attribute Correctness of attributes
Semantic Correctness Relationships Correctness of relationships
Semantic Non-redundancy Entity/Class Non-redundancy of entities/classes
Semantic Non-redundancy Attribute Non-redundancy of attributes
Semantic Non-redundancy Relationships Non-redundancy of relationships
Contextual Consistency Related specifications Consistency ofthe specifications

The levels of description and characteristics are essentially the same for all global

models. Since global models contain different sets of elements, specific criteria for

evaluation of a global modelling technique are generated by applying the four

characteristics to each major element in that model.

When evaluating the specification techniques, the guidelines are first summarised

and then their rigour is measured using a simple scale where:

Chapter 3 - The Proposed Evaluation Framework 39

3.4 System Modelling

• 0 means no guidelines are provided

• I means some guidelines provided but they are weak or implicit

• 2 means guidelines are clear and strong

The grading for each criterion is then added up to give a figure indicating the total

rigour of the modelling technique for a global model. Relative strength of a

modelling technique can be calculated using the following formula:

Strength = Round (Total Rigour / (Number of Criteria * Maximum Rigour Grade) * 100)

Strength therefore means the extent to which a modelling technique achieves the

highest rigour score.

3.4.3.2 Criteria for Evaluation of Techniques used by Contextual Models

Information
Axis

ER model

""
-­....

/ ~
6 / "" /5 /
f /
/1

I /
I I
I I
I I
\ \

Context diagram ~ \
(Data Flows, Events)

-­ "-

" " \ /\
. \ 2
I \

\
I
I
I

"" DFD model

Interaction
Axis ~~ ~ / " /

Process
Axis " ,9 /

...... ""
-...-~--.,...... 8

1. Entity Life History (including operations)
2. A column in the Entity Event Matrix
3. Effect Correspondence Diagram (including operations)
4. A row in the Entity Event Matrix
5. A DFD fragment showing how a data flow affects a number of storages via process/processes
6. A DFD fragment showing how a storage is created/updated/deleted/read by a number of data
flows via processes
7. Explicit in DFD
8. I/O Structures
9. Also explicit in DFD

Chapter 3 - The Proposed Evaluation Framework 40

3.5 System Development Process (SOP)

Contextual models will largely make use of elements already used in global models,

and therefore, the main issue here is to assess how linkages between elements of

global models are identified. The criteria for evaluation of a contextual modelling

technique are generated by applying description level characteristics - namely,

Completeness and Minimality - to major elements of the contextual model.

3.4.3.3 Evaluation Process

For each global model provided by a method, draw a line in the IPI Matrix as shown

in Figure 3.9. The position of the line depends upon the aim of the model. Then

discover the contextual models, and draw appropriate arches on the matrix. Then

from the matrix, ascertain the coverage of analysis models provided by the method,

i.e., ifthere are complete circles, ideally four of them, models have a good coverage.

Then evaluate the modelling technique of each global and contextual model using

the criteria discussed in previous two sections.

3.5 System Development Process (SOP)

The MAP framework considers that there are two related issues in a SDP model:

Development Activities that developers need to carry out in a typical project and a

Control Mechanism, which applies regulations to the development activities. For

example, the classical "waterfall model" suggests that the requirements definition,

system and software design, implementation and unit testing, integration and system

testing, and operation and maintenance are the main stages of system development

activities. The control mechanism it uses indicates that those activities should be

carried out in that sequential order (Sommerville, 2004).

3.5.1 Evaluation of System Development Process (SDP)

Evaluation of a SDP model in the MAP framework is divided into evaluation of its

development activities and control mechanism.

3.5.1.1 Criteria for Evaluation of Development Activities

The NIMSAD framework provides a set of logical steps and stages that any system

development project should take. These steps and stages serves as a set of criteria

against which a given system development process can be evaluated. As noted in

Section 2.3.4, these steps and stages are too generic for a critical evaluation of very

Chapter 3 - The Proposed Evaluation Framework 41

3.5 System Development Process (SOP)

specific kinds of method, in this case, CBSD methods. The MAP framework

remedies this shortcoming by synthesising generic development activities with

considerations for unique features ofCBSD.

A number of component-based SDPs have been examined in this research including

those put forward by authors of the evaluated CBSD methods and many others, such

as Cheesman and Daniels (2001) and Pressman (2005). It is clear from these SDP

models and general commentary of CBSD that the defining theme of CBSD is to

create applications from developed components by reusing them, and its key

development activities include creating/acquiring components and assembling them.

By combining specific features of CBSD with NIMSAD, the MAP framework

proposes that a component-based SDP should entail the following development

stages:

• Feasibility Analysis - Before the technical, financial, technological,

methodological and component feasibilities of the project are established,

an understanding of the problem situation needs to be acquired through

basic business and functionality analysis. This stage is similar to the

'understanding the situation of concern' in NIMSAD.

• Business Modelling - Business Modelling usually involves an expression

of the current situation and the new situation. Analysis of the current

situation and the gap between the current and required situations

constitutes the "performing the diagnosis" stage of NIMSAD, while the

expression of the desired situation constitutes the "defining the prognosis

outline" stage ofNIMSAD.

• Requirements Analysis - The requirements specification produced in this

stage defines what the required system should do. This step corresponds

with the "defining problems" ofNIMSAD.

• System Analysis - NIMSAD seems to treat the development of notational

models of the system as a separate step, but most methods suggest that the

models are developed in the development stages. Arguably, most of these

models are produced during system analysis.

• Logical Architecture - Architectural design deals with issues such as

decomposition of the system into logical components and an analysis of

their dependencies. The design is essentially logical because it is

Chapter 3 - The Proposed Evaluation Framework 42

3.5 System Development Process (SOP)

independent of the implementation technology. NIMSAD calls this

"performing logical design".

• Physical Design - This design is more detailed and implementation­

oriented, and is generally called physical design.

• Component Search - This is a CBSD-specific task dealing with the search

for existing components and applications that are reusable in the project.

• Component Certification - Identified components need to be verified and

validated against their specifications before they can be integrated into the

application.

• Component Implementation - Components for which there are no reusable

candidates need to be implemented.

• Application Assembly - Components are put together to create the

application.

• System Testing - Testing of the system/application as a whole to ensure

that it satisfies both functional and non-functional requirements.

• System Delivery - Hand-over the application from the developers to the

users.

These stages serve as a set of criteria for evaluating coverage of CBSD processes in

the MAP framework. Regarding these criteria, there are two important points to note

here.

First, these stages are by no means exhaustive; this is not a super-process that

encompasses all imaginable tasks developers will come across in a development

project. It is, in fact, the least that can be expected of a CBSD process, the lowest

common denominator. Methods may provide additional detailed activities.

Second, these criteria do not state whether some stages are more important than

others. Depending on the principles of a method, emphasis may be placed upon

different stages; for example, a CBSD method, based on the principle of rigorous

modelling prior to the development of software, will play up the importance of the

early stages, while another method based on the principle of rapid development,

such as the agile development approach, will play down the importance of these

stages. On the whole, the MAP system development process criteria do not promote

one approach over others. The framework disagrees with approaches that call for a

Chapter 3 - The Proposed Evaluation Framework 43

3.5 System Development Process (SOP)

complete demotion of system modelling such as eXtreme Programming (Beck,

1999).

3.5.1.2 Criteria for Evaluation of Control Mechanisms

In addition to providing good coverage for development activities, a chosen SDP

should have an appropriate control mechanism suitable for the project. Since

different control mechanisms are suitable for different types of project, the main

issue here is not about deciding whether one control mechanism is better than

another, but rather about choosing a control mechanism that a particular application

development needs.

Figure 3.10 Different Types of Applications and Suitable Control Mechanisms

Type of Application Suitable Control Mechanism
Requirements for the application are stable, clear and can Linear, Spiral
be well-defined
A high level of accuracy required, e.g. applications using
scientific algorithms
Requirements for the application change frequently Iterative, Incremental, Prototyping

Requirements are unknown or uncertain; the situation is Exploratory Prototyping
new and needs innovation and learning
The environment changes in reaction to the system under Evolutionary Prototyping
development

Therefore, the MAP framework suggests that a control mechanism can only be

evaluated in terms of its suitability for a given project. Based on the 'organisational

environments' and their characteristics, explained by Land (1998), the MAP

framework provides the following correlations between different types of

applications and suitable control mechanisms, which can help developers make a

choice. According to Land (1998), most business applications have changing

requirements, and therefore, component-based development of these applications

requires control mechanisms that are iterative, incremental, and prototype-based.

Development of other types of applications, such as real-time applications, requires

rigidity of the linear control mechanism.

3.5.1.3 Evaluation Process

Evaluate the coverage of a given SDP by comparing it against the criteria given in

Section 3.5.1.1, and determine the suitability of the control mechanism for the

project by assessing the nature of application as discussed in the previous section.

Chapter 3 - The Proposed Evaluation Framework 44

3.6 Software Architecture

3.6 Software Architecture

Since CBSD encourages creation of applications by assembling components,

possibly from different sources, the question of how to determine the best design for

the application is crucial. Therefore, the MAP framework expects CBSD methods to

provide guidelines for producing a good architectural design. The term "software

architecture" has been defined in many ways (SEIa, n. d.); Garlan and Shaw (1993,

1996), for example, provide the following simple definition, which is reasonably

good for discussions in this thesis.

The architecture of a software system defines that system in terms

of computational components and connections among those

components.

3.6.1 Two kinds of architecture

The MAP framework recognises the need for the separation of architecture into

logical architecture and physical architecture, as suggested by NIMSAD.

3.6.1.1 Logical Software Architecture

The primary focus of this logical software architecture is to help identify high­

grained components and structure of the system without reference to implementation

technologies. Logical architectural analysis, performed at the earlier stage of

development with a view to identifying and specifying major components of the

system, is important because this model will lay the foundation for later

development. Many strategic architectural decisions such as security, reliability, and

functionality of each component are taken here. To assist with this activity, many

methods offer a "reference architecture", which is a "generalised architecture of

several end systems that share one or more common domains" (Gallagher, 2000).

These reference architectures spell out, in application-nonspecific terms, the main

components of systems and their relationships. For instance, Cheesman and Daniels

(2001) propose a four-layered architecture, which is divided into two: a client part

and a server part. Components in the User Interface and User Dialogue layers of the

client part will deal with the user interaction aspect of the system, while components

in the System and Business Services layers will encapsulate the business logic and

database. When developing an application using this architecture, analysts will then

Chapter 3 - The Proposed Evaluation Framework 45

3.6 Software Architecture

know what kind of component they should be looking for in each layer, hence the

name, "reference architecture".

3.6.1.2 Physical Architecture

Physical architecture is concerned with lower-level, or component level,

implementation-dependent design of components. The logical architecture is

concerned with issues external to components, such as communication, whilst the

physical design is concerned with issues internal to components. Again, CBSD

methods are expected to provide guidelines on producing good internal designs.

3.6.2 Evaluation of Software Architecture

Architecture is most receptive to the use of empirical evaluation approaches. Much

research has already been done in this area, notably by researchers at the Carnegie

Mellon Software Engineering Institute (SEIb, n. d.). The MAP framework does not

propose any new evaluation approach for software architecture; the discussions here

will only point out how some of the existing evaluation approaches can be used

within the context ofthe MAP framework.

Chapter 3 - The Proposed Evaluation Framework 46

3.6 Software Architecture

3.6.2.1 Evaluation of Logical Architecture

Since reference architectures cater for different types of application, the issue here is

how to select a reference architecture that is suitable for a given application.

Traditionally, software architectures are evaluated using a narrow set of criteria,

such as performance and reliability (Bass et aI, 1998; Kazman et aI, 1996; Smith and

Williams 1993). However, it is well known that there are many important quality

attributes in software applications, and that they often conflict; for example,

efficiency versus usability. Choosing the right architecture for an application is,

therefore, a balancing act. One main contribution of researchers at the Software

Engineering Institute is an architecture evaluation approach that helps evaluators

make a conscious decision about the quality compromise they want to achieve. The

evaluation approach is called that Architecture Tradeoff Analysis Method (A TAM).

The AT AM and case studies for its applications have been described in a number of

publications such as (Kazman et aI, 1998), (Gallagher, 2000) and (A TAM, n. d.).

Kazman et al (1998) describe the A TAM as a six -step process in which requirements

and quality attributes are identified, and competing architectural designs are

produced and evaluated. Steps ofthe A TAM are:

• Step 1: Collect Scenarios - usage scenarios are elicited, and

requirements, constraints, and environment details are identified from

stakeholders.

• Step 2: Collect Requirements/Constraints/Environment - "attribute­

based" requirements are identified; Step 1 and Step 2 are

interchangeable.

• Step 3: Describe Architectural Views - analysis of architectural

properties is captured in "architectural views," such as module view,

process view, dataflow view, class view, and so on.

• Step 4: Attribute-Specific Analyses - each quality attribute is analysed

in isolation with respect to each architecture.

• Step 5: Identify Sensitivities - attribute values that are significantly

affected by deign change to a particular architectural element, known

as "sensitivity points," are identified.

• Step 6: Identify Tradefoffs - architectural elements with multiple

sensitivity points are identified and interactions between the attribute

values analysed.

Chapter 3 - The Proposed Evaluation Framework 47

3.6 Software Architecture

The evaluation process is iterative, part social and part technical. The MAP

framework recommends the use of the AT AM for evaluation of logical architecture.

3.6.2.2 Evaluation of Physical Architecture

For comparative assessment of competing architecting, Shaw (1994) has suggested a

three step evaluation approach involving "model problems", which is further

explained in other publications such as (Shaw et aI, n. d.; Model Problem, n. d.).

• Step 1: First choose a type problem - a kind of multi-purposed case­

study scenario "that set[s] a minimum standard of capability for new

participant" is chosen. Shaw et al (n. d.) explored 11 problems ranging

from Automated Teller Machine (A TM) to Library system.

• Step 2: Develop a design model that conforms to the architecture -

following the techniques and modelling languages provided by the

methods, designers will produce architectural designs of the chosen

model problem. However, Shaw acknowledges that a good design is to

some degree subjective.

• Step 3: Compare the resultant designs by applying a set of criteria -

Shaw has used the following criteria: generic criteria include

"Separation of concerns and locality," "Perspicuity of design," "Ability

to analyse and check the design" and "Abstraction power". For

application-specific criteria (for the Cruise-control problem), Shaw

assesses "Safety" and "Integration with the vehicle."

Since this is low-level design, design metrics such as (Washizaki et aI, 2002;

Washizaki et aI, 2003) can also be used.

Due to limitation of scope and time, this research will not explore on empirical

evaluation of architecture; rather, it will focus on important methodological issues,

namely, what components are, and how they are identified and validated in various

CBSD methods.

Chapter 3 - The Proposed Evaluation Framework 48

3.7 Summary

3.7 Summary

Evaluation of
method user
(NIMSAD)

Evaluation of System
Development Process

Evaluation of
System

Development
Activities

(MAP)

Evaluation
of Control
Mechanism

(MAP)

Evaluation of a SDM

Evaluation of method
(Correlations between the

following elements -
MAP)

Evaluation of
System Modelling

(lPI Matrix - MAP)

Evaluation of
method context

(NIMSAD)

Evaluation of Software
Architecture

Evaluation
of Logical

Architecture
(ATAM)

Evaluation of Global
Modelling Techniques

(MAP)

Evaluation of Contextual
Modelling Techniques

(MAP)

Evaluation of
Physical

Architecture
(Model Problem

- Shaw and
Garlan)

/ ~ ~
Description Semantic Description

Level Level Level
Characteristics Characteristics Characteristics

/ ~ / ~ / ~
Completeness Minimality Correctness Non-redundancy Completeness Minimality

In the MAP framework, criteria for evaluation of a method are organised

hierarchically as shown in Figure 3.12. At the highest level, the evaluation covers

three key elements - method user, method and the method context - as suggested by

NIMSAO. The MAP framework focuses on the evaluation of the method which it

suggests has three elements: SOP, System Modelling and Software Architecture.

Evaluation of a method starts with an analysis of the correlations between these

three elements. When evaluating SOP, the MAP framework divides the evaluation

criteria into two groups. For evaluation of development activities of an SOP, the

MAP framework provides a set of development activities using which the coverage

of the SOP can be determined. For evaluation of the suitability of the control

mechanism of the SOP for a particular application development, the framework

Chapter 3 - The Proposed Evaluation Framework 49

3.7 Summary

identifies correlations between types of application and suitable control mechanisms.

As far as modelling is concerned, an IPI Matrix is produced showing the

relationships between major models of a method. Modelling technique for each

global model is evaluated using evaluation criteria generated by applying the four

quality characteristics of a global model - completeness, minimality, correctness,

non-redundancy - to model elements used by the model. Criteria for evaluation of

contextual models are generated by applying completeness and minimality to model

elements used by the contextual model. Strength of a modelling technique is

measured by grading the rigour for each criterion. Software architecture is evaluated

by using the A TAM approach and the "model problem" approach.

Chapter 3 - The Proposed Evaluation Framework 50

4.1 Introduction

Chapter Four

Evaluation of Existing CBSD Methods
Applying the MAP framework

4.1 Introduction

This chapter presents discussions on the evaluation of the following CBSD methods,

in chronological order of their publication, using the MAP framework.

• Reuse-driven Software Engineering (RSE) by Jacobson et al (1997)

• SELECT Perspective by Allen and Frost (1998)

• Catalysis by D'Souza and Wills (1999)

• Component-based Product Line Engineering with UML or KobrA by

Atkinson et al (2002)

The initial plan to present the evaluation of these methods was to summarise the key

features of each method before going on to evaluate them with reference to the

points highlighted in the summary. This format was used in our published paper on

the evaluation of data requirements specification techniques (Bielkowicz and Tun,

2001). However, since that style of presentation would make this document

extremely long, a decision has been taken to present an analytical summary of

existing CBSD methods in journal paper format and attach it to Appendix II. The

paper has been prepared with an intention for later publication.

Evaluation of these methods in the following sections is organised as follows. For

each method, correlations between the three elements of the method, namely

Software Architecture, System Modelling and System Development Process, are

assessed. This is the top level criterion. Each of the elements is then evaluated

individually. For evaluation of models, an IPI matrix is produced showing the global

and contextual models of the method, and conclusions regarding the coverage and

rigour of crosschecking are derived. The modelling technique for each model is then

evaluated using a detailed set of criteria formulated according to the discussions

Chapter 4 - Evaluation of Existing CBSD Methods 51

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

provided in Sections 3.4.3.1 and 3.4.3.2. Rigour of the modelling technique is also

graded. For evaluation of software architecture, the nature of components, their

identification and validation techniques are discussed. Finally, the development

process of the method is evaluated according to the criteria discussed in Section 3.5.

This chapter concludes with a report on the results of an experiment carried out to

test whether independent practitioners of the MAP framework can produce similar

IPI matrixes for two well-known methods.

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

A summary of RSE is provided in Section 2 of Appendix II.

4.2.1 Correlations Between the Three Elements of a Method

RSE provides all three elements of a method as required by the MAP framework

(Section 3.3), and the following correlations between these elements can be

observed.

• RSE regards the development process as a series of model development.

There are explicit mappings between the system development stages and

system modelling (see Figure 2-2 of Appendix II).

• The relationships between the system development process and software

architecture are also clear because one of the main sub-processes is called

Application Family Engineering (A FE), which specifically deals with the

architectural issues (see Section 2.4 of Appendix II).

• The links between the modelling and software architecture are implicit

because modelling in AFE sub-process largely relates to the software

architecture.

At this latitude, some cohesion between the three elements of the method can be

noted. Each of these elements will now be evaluated individually.

4.2.2 Evaluation of System Modelling

Figure 4. I shows the IPI Matrix produced for RSE models according to discussions

given in Section 3.4.1.

As far as the coverage is concerned, the following conclusions can be drawn.

• Out of three possible global models, RSE provides two; there is no model in

RSE that explicitly deals with the interaction between the system and the

Chapter 4 - Evaluation of Existing CBSD Methods 52

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

user at the global level. Therefore, though both state diagram and use case

descriptions are unified through the concept of stimuli, there is no global

diagram expressing the input/output interactions between actors and the

system.

~
Interaction '\. "-

Axis "

A. Class Model
B. Use Case Model

Information
Axis

-- ' 3- 1-

A

Process
Axis

I. Robust Analysis showing objects of different types contribute to a use case
2. Interaction Diagram showing how messages are passed between objects to realise a use case
3. Step-by-step descriptions of the use cases indicating stimuli of a use case
4. State Model showing how states of a class make it respond differently to stimuli

• Out of six possible abstract contextual models, this method provides only

two. This means a serious lack of abstract contextual models.

• Out of six possible detailed contextual models, this method provides only

two, of which RSE only emphasises the interaction diagram. This is also a

major shortcoming of RSE.

4.2.2.1 Evaluation of Use Case Modelling

Use Case Modelling of RSE uses the concepts Use Case, Actor, (Actor-Use Case)

Association and (Use Case-Use Case) Relationships. The criteria in the first column

of the table are generated according to the discussion in Section 3.4.3.1. The second

column summarises the modelling guidelines relevant for each criterion and the third

Chapter 4 - Evaluation of Existing CBSD Methods 53

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

column indicates the rigour of those guidelines. Similar tables will be used to show

evaluation of other modelling techniques in this chapter.

Authors of RSE have invented "superordinate" use cases and actors to capture

requirements at a high level of abstraction, such as the requirement for an entire

application. Due to the word limitation of this thesis, they will not be distinguished

here. Modelling guidelines are partly given in the RSE book, with numerous

references to OOSE. This evaluation covers guidelines provided in both books.

Table 4-1 Evaluation of RSE Use Case Modelling

Criterion

(a) Completeness of use
cases

(b) Completeness of
actors

(c) Completeness of
associations

(d) Completeness of use
case relationship

(e) Minimality of use
cases

(f) Minimality of actors

(g) Minimality of
associations

(h) Minimality of use
case relationship

(i) Correctness of use
cases

Modelling Guidelines

By analysing the ways various actors use or interact with
the system, use cases are identified (p. 159, OOSE). RSE
suggests a number of inputs to this process such as
customers, business models and existing components. It
generally regards identification of use cases as obvious
and no checks are provided to ensure completeness of use
cases. Although domain object model and use case model
can be crosschecked systematically, no guidelines are
provided for this.

Actors are identified by analysing roles of those who
(will) use the system. Although it is straightforward to
identify actors, an SDM needs to provide checks to ensure
the completeness, and RSE does not have such checks.

These associations are usually derived from the analysis
of use cases. Since the meaning of these associations is
rather vague, it is difficult to ensure that all relevant
associations have been identified. For example, if a reader
borrows book through a library assistant, it is difficult to
see how the association(s) should be indicated.

OOSE suggests potential cases in which use case
relationships such as «extends» can be used. For
example, extension is used to 'model optional parts of use
cases' (p. 165, OOSE). There are no clear conditions for
when and when not to use these relationships.

Participation of users in the development of use cases and
the problem domain objects model can help remove
unnecessary use cases, actors, and their relationships.
This elimination of extraneous model elements can be
done much more methodically; however, RSE does not
provide guidelines in this respect.

See (e).

See (e).

OOSE does not indicate when use case relationships
become unnecessary and should be eliminated.

RSE relies on user participation, business models and
existing components to ensure that the requirements
model is correct. S ecific mechanisms are however

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

o

54

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

lacking.

U) Correctness of actors See (h). 1

(k) Correctness of See (h). 1
associations

(I) Correctness of use OOSE provides some arguments for and against using 1
case relationship low-grained use cases, meaning that there are cases where

many use case relationships should be used and there are
cases where few use case relationships should be used.
Authors of OOSE are in favour of the former, they do not
state firmly when (p. 174, OOSE).

(m) Non-redundancy of The usage of use case relationships such as «uses» can 2
use cases help remove overlaps between use cases.

(n) Non-redundancy of Generalisation of actors can help remove redundancy 2
actors between actors.

(0) Non-redundancy of No guidelines are provided. 0
associations

(p) Non-redundancy of No guidelines are provided. 0
use case relationship

Total 15

Strength of the RSE use case modelling technique 47

4.2.2.2 Evaluation of Class Modelling

The main elements of class modelling are Class, Attributes, Operations, Inheritance

and Associative Relationships (Association, Aggregation, Composition and their

cardinalities). By applying the quality characteristics discussed in Section 3.4.3.1 to

these elements, the criteria in the first column of the following table are generated.

Criterion

(a) Completeness of
classes

(b) Completeness of
attributes

(c) Completeness of
operations

Modelling Guidelines

In OOSE, first a noun analysis of business concepts is carried
out to identify problem domain objects. Then in the analysis
model, entity and interface objects are identified from use case
descriptions. Exactly how and when control objects should be
used is rather unclear. RSE suggests that there are additional
sources of information such as business model, existing
components etc.

OOSE is ambiguous about this completeness. It suggests that it
is often difficult to decide how to model certain information;
what is important is how the information is used: "Information
that is handled separately should be modelled as an entity
object, whereas information that is strongly coupled to other
information and never used by itself should be made into an
attribute of an entity object." (p. 185-188, OOSE)

Since entity objects can be manipulated only through operations,
all access to these objects must be made through operations.
Descriptions of use cases provide the source of information for
operations (p. 188, OOSE). Later, interaction diagrams are used
to analyse interactions between objects, where operations are

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

2

55

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

further identified.

(d) Completeness of OOSE only discusses what inheritance relationships mean; it is 1
inheritance left to the analysts to decide when to use them.
relationships

(e) Completeness of These relationships are added when instances of the classes 2
associative communicate by invoking operations of each other.
relationships

(0 Minimality of Only those objects that participate in the use cases are included 2
classes in the analysis model.

(g) Minimality of No guidelines are provided. 0
attributes

(h) Minimality of It is determined implicitly; operations of classes that do not 1
operations contribute to use cases are unnecessary.

(i) Minimality of No guidelines are provided. 0
inheritance
relationships

U) Minimality of Implicit from (e). 2
associative
relationships

(k) Correctness of OOSE emphasises that the participation of users in the I
classes development of the use case model, user interface descriptions

and the problem domain model can help here.

(I) Correctness of No guidelines are provided. 0
attributes

(m) Correctness of Guidelines for determining the nature of operations are typically I
operations vague. OOSE suggests that there are two extremes here: in one

extreme, only "set" and "get" operations are allocated, and in
the other extreme "whole course of events" is included in
operations. "As always," it suggests, "the right thing is the
middle course between these extremes."

(n) Correctness of No guidelines are provided. 0
inheritance
relationships

(0) Correctness of It is unclear how this correctness is ensured in RSE. 0
associative
relationships

(p) Non-redundancy As in (r), OOSE suggests 'homogenisation' of classes, so that 2
of classes classes that are not related by inheritance do not provide similar

functionality. (p. 243)

(q) Non-redundancy No guidelines are provided. 0
of attributes

(r) Non-redundancy OOSE talks about 'homogenisation' of stimuli for operations, 2
of operations by which, its authors mean minimising the set of operations

required from a class. (p. 228, OOSE)

(s) Non-redundancy No guidelines are provided. 0
of inheritance
relationships

(t) Non-redundancy No guidelines are provided. 0
of associative
relationships

Chapter 4 - Evaluation of Existing CBSD Methods 56

,

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

Total 18

Strength of the RSE class modelling technique 45

4.2.2.3 Evaluation of Interaction Diagram

Interaction diagrams are used to show how messages are passed between objects

when a use case is executed. The main concepts are: participating Objects,

Operations and the Flow of the messages passed.

Table 4-3 Evaluation of RSE Interaction Diagram

Criterion Modelling Guidelines Rigour

(a) Completeness of
participating objects

(b) Completeness of
operations

(c) Completeness of
flows

(d) Minimality of
participating objects

(e) Minimality of
messages

(t) Minimality of
flows

Participating objects come directly from the robust analysis, 2
in which interface, control and entity objects of a use case
are identified. Use cases are described in steps and
operations are allocated to carry out the tasks.

Operations are identified from the stimuli that the system 2
receives from the actor(s). They are identified by looking at
how the actor(s) interact with the system through the
interface.

This is dependent on the description of the use cases.

RSE and 008E do not suggest how to identify and
eliminate unnecessary participating objects.

Messages are minimised by rational ising the stimuli. (p
220-221, 008E)

Not provided ..

o

2

o

Total 7

Strength of RSE Interaction Diagram modelling technique 58

4.2.2.4 Evaluation of State Diagram

RSE only mentions state diagrams and the discussion refers to the technique

discussed in OOSE. The main concepts used are States and Event/Transition.

Criterion

(a) Completeness of
states

Modelling Guidelines

In 008E, stimuli and operations from interaction
diagrams are crucial for determining the states and
transition of the objects. It is not clear how exactly states
are identified.

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

57

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

(b) Completeness of EventslTransitions are identified rather intuitively. 1
events/transitions

(c) Minimality of states No guidelines are provided. 0

(d) Minimality of Implicit from 'homogenisation' of stimuli. 1
events/transi ti ons

Total 3

Strength of the RSE State Diagram modelling technique 38

4.2.3 Evaluation of Architecture

RSE Architecture is summarised in Section 1.1 of Appendix II. The RSE reference

architecture is intended for design of a set of related applications, called Application

Family, which share a number of common features. The applications it envisages are

very large, complex, and geographically dispersed. They are suitable for large

business applications.

4.2.3.1 Definition of Component

RSE defines the term "component" as "anything specifically engineered to be

reusable". Therefore, any development artefact, whether it is a class, a use case, a

fragment of a class diagram, a sequence diagram, a program, a test case, or a project

plan, for example, is a potential component. In order to maximise granularity of

reuse, models are packaged together. For example, in RSE, there is a clear thread of

development running from use cases down to coded programs, and RSE suggests

that they can be packaged together on that basis. Reusing a use case means reusing

all classes analysed in the analysis model (for the use case), the sequence diagram in

the design model, the programs in the implementation model and the test cases in the

test model.

One key issue in reuse is genericity. In order to make something reusable, it is

important to make it generic; the more generic an artefact is the more reusable it

becomes. Therefore, RSE reminds us of a range of 'variability mechanisms' that are

at the disposal of developers. These include Inheritance for classes, Uses and

Extends for use cases, Parameterisation for classes, Configuration and Module­

interconnection languages and other CASE Tools related facilities. Using some of

these mechanisms in all stages of development, RSE intends to make all artefacts

more generic and reusable.

Chapter 4 - Evaluation of Existing CBSD Methods 58

4.2 Evaluation of Reuse-driven Software Engineering (RSE)

4.2.3.2 Identification and Validation of Components

Since RSE's definition of component is rather loose, no hard and fast rules for

identification and verification of components are provided. However, from the SDP

model ofRSE, it can be ascertained that identification and validation of components

will take place in Application Family Engineering and Application System

Engineering sub-processes respectively.

4.2.4 Evaluation of the System Development Process of RSE

Table 4-5 summarises the evaluation of SDP of RSE.

The MAP Criteria

Feasibility Analysis

Business Modelling

Requirement Analysis

System Analysis

Logical Architecture

Physical Design

Component Search

Component Certification

Component
Implementation

Application Assembly

System Testing

System Delivery

RSE

SDP of RSE explicitly requires the feasibility analysis to be carried
out at the beginning of the development stages.

RSE emphasises the importance of business analysis for software
reuse, and it often refers to the object-oriented business process
modelling approach discussed in (Jacobson et ai, 1994).

RSE mainly deploys the requirements analysis techniques
mentioned in OOSE, such as use case modelling and domain object
modelling. New concepts are also added, such as various reuse
mechanisms (see Section 4.2.3.1).

System analysis in RSE revolves around robust analysis or class
modelling. In OOSE, sequence diagrams (together with state
diagrams) are used in the design stage. In RSE, sequence diagrams
are produced in the analysis stage.

The robust analysis dictates the logical architecture in RSE. The
separation of classes into different types, namely, boundary, control
and entity objects, contribute to the creation of a layered
architecture.

RSE provides few guidelines for developing a physical design of the
system.

RSE has an entire sub-process and indeed a business department
devoted to developing and managing components.

This is part of the management of components.

Discussions are general and largely restricted to how classes can be
implemented in programming languages such as C++ and Smalltalk.

Not provided.

RSE refers to existing literature, for example, OOSE.

Not provided.

Chapter 4 - Evaluation of Existing CBSD Methods 59

4.3 Evaluation SELECT Perspective (Perspective)

4.3 Evaluation SELECT Perspective (Perspective)

A summary of SELECT Perspective is provided in Section 3 of Appendix II.

4.3.1 Correlations Between the Three Elements of a Method

In terms of the three elements of a method suggested by the MAP framework,

SELECT Perspective is a complete method. In addition, the following

correspondence between these elements can be observed.

• There are clear mappings between the models and the system development

process. SELECT Perspective clearly defines the stages of developments in

terms of models produced in each stage, which are mostly in the solution

process.

• Some mappings between the models and software architecture can also be

observed; for example, models such as the deployment model are all about

architectural modelling.

• The component process is largely about architectural analysis, and therefore,

there is also a good level of interconnectedness between the system

development process and the software architecture.

4.3.2 Evaluation of System Modelling

System Modelling of SELECT Perspective is described in Section 2.2 of

Appendix II. The following is the IPI Matrix for the models in SELECT Perspective.

The following conclusions can be drawn about the coverage of models used by

SELECT Perspective.

• SELECT Perspective provides a global process model (the use case model).

Both LDS and class models can be regarded as information models (hence

the triangular area), and although there is no explicit global model showing

interaction between the system and its environment, the list of events can be

considered as such.

• Out of six possible detailed contextual models, this method provides only

two. As with UML, detailed contextual modelling in perspective is largely

centred on use case realisation and state modelling.

• There are three abstract contextual models observed in this method.

Chapter 4 - Evaluation of Existing CBSD Methods 60

4.3 Evaluation SELECT Perspective (Perspective)

Information
Axis

l'

~

Ii- ~ "- ,/ Interaction "-,,- _____ ,;

Ax~ 4
............... -------~

3

A. Logical Data Model and Class Diagram
B. Use Case Model

"­
'\

\.
\ 1
\
\
\
I
I
I

/
B

":.1
Process

Axis

C. Events - although Perspective does not have a separate global model for this axis, an
extensive use of events in the early stage of analysis and integration with other UML models in
later stages justify inclusion of this model
1. Textual analysis of use case descriptions gives some indication of classes and objects that
participate in the collaboration
2. Object Interaction Model uses UML Sequence and Collaboration diagrams
3. and 4. SELECT Perspective suggests that there is a general correspondence between a use
case and an event, usually one-to-one. But the relationship is not explored in great detail.
5. State Model

4.3.2.1 Evaluation of Use Case Modelling

The modelling concepts of use case modelling in SELECT Perspective are similar to

those used in RSE (see Section 4.3.2.1).

Table 4-6 Evaluation of SELECT Perspective Use Case Modelling

Criterion Guidelines

(a) Completeness of use "Use cases are identified along chains of event-related
cases activity" (p. 68). Alternatively, business processes in

the business process model also provide the basis for
identification of use cases.

(b) Completeness of Some actors can be identified using Joint Application
actors Development sessions. In addition, the statement of

purpose of the system is examined to find out about

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

2

2

61

4.3 Evaluation SELECT Perspective (Perspective)

responsibilities of those who use the system.
Alternatively, business actors, identified in the business
process modelling, also provide candidates for various
actors (p. 67-68).

(c) Completeness of Associations are identified with use cases. Perspective 1
associations categorises different types of actors, such as external

and internal actors, which helps discover complex
associations. However, it falls short of suggesting how
completeness of associations can be achieved.

(d) Completeness use "Alternative courses can be modelled as use case 1
case relationships extensions. Extensions are commonly used to partition

error and exception functionality" (p. 77)

(e) Minimality of use Not explicit, though it can be inferred that since use I
cases cases tend to have clear correspondence with business

processes, which are defined as atomic tasks performed
by an actor at a place, it may help prevent duplicate use
cases slipping into the model.

(f) Minimality of actors See (d). 1

(g) Minimality of See (c) I
associations

(h) Minimality of use Perspective generally suggests not using too many use 1
case relationships case relationships. This is not methodical; however it

goes some way to eliminate unnecessary use case
relationships.

(i) Correctness of use Perspective emphasises the need for user participation 1
cases in the development of the use case model, and it is

supported by some prototyping.

(j) Correctness of actors See (g). 1

(k) Correctness of It is not clear how this correctness is ensured. 0
associations

(I) Correctness of use See (g). I
case relationships

(m) Non- Not explicit, though it can be argued that the use of 1
redundancy of use «uses» and «extends» relationships help factor
cases out the common and unnecessary elements in the uses

cases.

(n) Non-redundancy of The use of generalisation/specialisation for the analysis 2
actors of actor roles can help remove redundancy in actor

roles.

(0) Non-redundancy of No guidelines are provided. 0
associations

(p) Non-redundancy of It is not clear how this is done in Perspective. 0
use case
relationships

Chapter 4 - Evaluation of Existing CBSD Methods 62

4.3 Evaluation SELECT Perspective (Perspective)

Total 16

Strength of the Perspective use case modelling 50
technique

4.3.2.2 Evaluation of Class Modelling

Perspective has two models occupying the region around the information axis of the

JPJ Matrix, namely LOS and class model. Since LOS in Perspective is used to

translate 00 classes into Relational entities, the evaluation here will largely

concentrate on the modelling technique for class modelling. The modelling concepts

of class modelling in SELECT Perspective are similar to those used in RSE (see

4.2.2.2).

Criterion

(a) Completeness of
classes

(b) Completeness of
attributes

(c) Completeness of
operations

(d) Completeness of
inheritance
relationships

(e) Completeness of
associations

(0 Minimalityof
classes

(g) Minimality of
attributes

(h) Minimality of

Modelling Guidelines Rigour

Candidates for classes are first identified by noun analysis 2
of the requirements statement and/or business services. For
classes in real-time systems, events are examined. (p. 93)
Classes are then analysed for their participation in use case
realisations.

Attributes are identified mainly by analysing the business
concepts in use case descriptions and requirements
statements (p. 93). Classes generally have more than one
attribute (p. 119).

Class operations should reflect services. Again, use case
realisation is crucial for completeness of class operations.
Usually, classes do not have more than seven services (p.
119).

"Specialising involves examining a particular class for
different ways in which its member objects can be split into
subclasses. Generalisation involves searching for different
classes that have some characteristics in common."

"Associations identify good paths for communication
between objects." Associations are often modelled as
classes if they involve some attributes. "Aggregation
relations are used to model whole-part relationships between
objects" (p. 108). Classes may be either generalised to
create superclasses or specialised to create subclasses.

Classes should be checked for duplication and if necessary a
generalised class should be used.

No guidelines are provided.

It can be inferred that use case realisation will provide

2

2

2

o

Chapter 4 - Evaluation of Existing CBSD Methods 63

4.3 Evaluation SELECT Perspective (Perspective)

operations opportunities to do this.

(i) Minimalityof Classes can be specialised in many ways. "However, like
inheritance most powerful concepts, inheritance should be used
relationships sparingly." Quoting Rumbaugh et al (1991), Perspectives

suggests that "[a]n inheritance hierarchy that is two or three
levels deep is certainly acceptable; ten levels deep is
probably excessive; five or six levels, mayor may not be
proper."

U) Minimalityof No guidelines are provided.
associations

(k) Correctness of lAD sessions and prototyping are recommended during this
classes modelling, providing opportun ities to validate various

aspects of the model. Exactly how this should be done is not
specified.

(I) Correctness of See (i).
attributes

(m) Correctness of See (i).
operations

(n) Correctness of No guidelines are specified.
inheritance
relationships

(0) Correctness of See (i).
associations

(p) Non-redundancy of Classes should be checked for duplication and if necessary a
classes generalised class should be used.

(q) Non-redundancy of When classes are converted into relational entities in
attributes Logical Data Structure, Relational Data Analysis rules are

applied. This analysis requires removing redundant
attributes and relationships.

(r) Non-redundancy of No guidelines are specified.
operations

(s) Non-redundancy of No guidelines are specified.
inheritance
relationships

(t) Non-redundancy of See (n).
associations

Total

Strength of the Perspective Class/LOS modelling technique

4.3.2.3 Evaluation of Event Modelling

The main concept used in this model is Event.

Chapter 4 - Evaluation of Existing CSSD Methods

2

0

I

I

I

0

I

2

2

0

0

2

23

58

64

4.3 Evaluation SELECT Perspective (Perspective)

Criterion Modelling Guidelines

(a) Completeness of events Perspective events are linked with Business Processes
Modelling. Perspective suggests that events are
signalled by the arrival of some data and time. Based
on these events, Perspective identifies Elementary
Business Processes (EBPs), a unit of work done by a
single person at a time in a place. Since EBPs are
later interfaced with use cases, there is an opportunity
to crosscheck the events with use cases and classes.

(b) Minimality of events See (a).

(c) Correctness of events No guidelines are provided for validation the events
by users.

(d) Non-redundancy of There are no clear guidelines on eliminating
events overlapping events.

Total

Strength of Perspective State Model

4.3.2.4 Evaluation of Object Interaction Modelling

Rigour

2

2

o

o

4

50

The main concepts of Perspective Object Interaction Modelling (OIM) are similar to

those used in RSE Interaction Diagram (4.2.2.3).

Criterion

(a) Completeness of
participating objects

(b) Completeness of
messages

(c) Completeness oftlows

(d) Minimality of
participating objects

(e) Minimality of
messages

(f) Minimality oftlows

Modelling Guidelines

Use case descriptions are first analysed for the
sequence of steps and participating objects. (p.B3)
Control objects are introduced to minimise coupling
between business objects and interface objects. (p.137)

Some of the steps of the use case description indicate
messages. (p. 133)

It is mainly derived for the use case description.

Textual analysis of use case descriptions gives some
indication of participating objects, and minimality of
these objects can only be determined implicitly at best.

No guidelines are provided

Perspective discusses the problem of "fork and stair
structures" in distributing control over objects, and
suggests that, in general terms, the choice depends on
the strength of relationships between participating
objects.

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

o

65

4.3 Evaluation SELECT Perspective (Perspective)

Total 5

Strength of Perspective OIM modelling technique 42

4.3.2.5 Evaluation of State Modelling

The main concepts used here are also same as those used in RSE State Diagram (see

Section 4.2.2.4)

Criterion

(a) Completeness of states

(b) Completeness of
events/transitions

(c) Minimality of states

(d) Minimality of
events/transitions

Modelling Guidelines

The concept of event is used in various stages of
development such as business process modelling and
use case modelling. Perhaps for that reason,
Perspective does not state how they are identified for
this modelling.

In the life-cycle approach, states can be identified
analysing how attribute values and links change over
a span of time. Alternatively, they can be identified
from the messages objects receive from control
objects in the sequence and collaboration diagrams.

No guidelines are provided for elimination of
unnecessary states.

To some extent, it is implicit from (b).

Total

Strength of Perspective State Model

4.3.3 Evaluation of Architecture

Rigour

2

2

o

5

63

The main features of the reference architecture recommended by SELECT

Perspective are summarised in Section 3.2 of Appendix II.

4.3.3.1 Definition of Component

Perspective regards components as executable code units that provide services

through their published interfaces. Since Perspective views a system as layers of

services in architectural terms, the concept of service is crucial to its component

modelling. 'Service' is defined as a group of related operations that provide useful

functionality to consumers. Services are grouped into physical units called service

packages. Components implement these services and groups of components that

support a service package are called component packages.

Chapter 4 - Evaluation of Existing CBSD Methods 66

4.3 Evaluation SELECT Perspective (Perspective)

The architectural model suggested by Perspective is neither radically new nor

technically complex. It is a simple tiered architectural model, much like the classic

MVC (Model-View-Control Model) of Smalltalk (Bennett et ai, 2002). What is

interesting, however, is the integration of the concept 'service' into this architectural

model. The term 'service' is used in Perspective to mean a 'collection of related

functionality' that can only be 'accessed through a consistent interface'. In 00

terms, a service generally means a coherent group of class operations that is

meaningful in business sense. Therefore, the granularity of a service is typically

higher than normal class operations, coming somewhere closer to the granularity of

a use case. Alternatively, services are similar to 'responsibility' of CRC approach

(Bellin and Simone, 1997; Wirfs-Brock et ai, 1990) in terms of granularity. In order

to construct a higher level object that would provide higher-level operations, rather

than low-level class operations, Perspective introduces control objects (Jacobson et

ai, 1992) that encapsulate groups of operations and act as a kind of interface for the

services. Therefore, service classes, not ordinary classes, are the basic material of

software architecture in Perspective. Control classes that provide at least one service

are called service classes, and each service layer in the Perspective architectural

model is made up of service classes.

The Perspective architectural model is a tried and tested model for middle-sized

enterprise business applications.

4.3.3.2 Identification and Validation of Components

Perspective suggests that identification of business-oriented components draws from

a number of sources including, domain knowledge, business process models,

solution project feedback, generic models and patterns, legacy systems and models,

legacy database and packages. The technique is more of a collection of buzzwords

than an incisive modelling approach.

4.3.4 Evaluation of System Development Process

SELECT Perspective has a reasonably complete development process, from

feasibility and business analysis to implementation and testing. It also emphasises

user involvement at various stages of development. The development stages are

clearly defined in terms of input and output processes.

Chapter 4 - Evaluation of Existing CBSD Methods 67

4.4 Evaluation of Catalysis

Table 4-10 Evaluation of SELECT Perspective System Development Process

The MAP Criteria

Feasibility Analysis

Business Modelling

Requirement Analysis

System Analysis

Logical Architecture

Physical Design

Component Search

Component Certification

Component
Implementation

Application Assembly

System Testing

System Delivery

SELECT Perspective

At this stage, the scope of development is defined in terms of the
system it proposes, business justification and possibility of reusing
existing components.

The business process models of the current and the new system are
produced.

This is done mainly through business process, use case and class
models.

Class modelling, object interaction modelling and state modelling
are carried out.

A component diagram showing service components of the three
types, namely, user services, business services and data services is
produced.

The component diagram is revised by taking into accounts various
considerations such as implementation environment, legacy systems
etc. A deployment diagram is also produced.

There is an explicit process of component search.

Not provided.

Discussions are restricted to reuse of legacy systems.

Same as Component Implementation above.

Only general discussions are provided.

Same as System Testing above.

4.4 Evaluation of Catalysis

A summary of Catalysis is provided in Section 4 of Appendix II.

4.4.1 Correlations Between the Three Elements of a Method

Of the three elements of a method, only system modelling is described in detail;

discussions on SDP and system architecture are mainly about process and

architectural patterns. As far as the correlations between the three elements are

concerned, only general mappings can be ascertained from the SDP of Catalysis, as

indicated in Figure 4-7 of Appendix II.

Chapter 4 - Evaluation of Existing CBSD Methods 68

4.4 Evaluation of Catalysis

• Since the Catalysis development stages are rather generic, the mappings

between the models and the development stages are not detailed

• Catalysis does not suggest a reference architecture, although some models

clearly deal with architectural issues

• Catalysis does have development stages that focuses on architectural issues

4.4.2 Evaluation of System Modelling

Figure 4.4 shows the IPI Matrix for Catalysis models, from which the following

conclusions can be drawn:

• Catalysis has only two global models; although State Charts refer to

events, there is no global model in Catalysis that focuses on

interactions between the user and the system at the global level.

,;'
,;'

,;'

k,;'

Interaction
Axis

,;'

Information
Axis

,;'
,;'

,;'

A
I

Process
Axis

A. Static Model: shows classes/types, their attributes and operations
B. Behavioural Model: shows the actions as well as types
1. Interaction Model: shows collaboration between objects
2. Snapshot: shows state of objects, links and attribute values at a time
3. Types in the behavioural model are same as types in the static model
4. State Model: shows time-oriented behaviour of an object/system

• There only one abstract contextual model in Catalysis, indicating that

there is very little common elements between global models

• There are three main detailed contextual models in Catalysis, two of

which occupy the same region between the Information and Process

Chapter 4 - Evaluation of Existing CBSD Methods 69

4.4 Evaluation of Catalysis

axes on the IPI matrix. State Charts refer to events, and because there

is no global interaction model in Catalysis, the arrow for State Chart in

the IPI Matrix points to the Interaction axis.

4.4.2.1 Evaluation of Behavioural Models

Behaviour of a component or a system is described "by specifying the component's

type: a list of actions it can take part in and the way it responds to them." Again,

OCL expressions are used to capture the effects of actions. Importantly, Catalysis

does not allocate operations to classes or types straight away. It keeps the type and

actions separate in the behavioural model, although they make implicit references to

each other (Chapter 3, e.g. p. 139). The main concepts are: Action, Type, Action

Refinement and Type Refinement.

Criterion

(a) Completeness of actions

(b) Completeness of types

(c) Completeness of action
refinements

(d) Completeness of type
refinements

(e) Minimality of actions

(f) Minimality of types

(g) Minimality of type
refinements

(h) Minimality of action
refinements

Modelling Guidelines

Catalysis implies the use of grammatical
analysis of a problem description, where verbs
are candidates for actions. Pre- and post­
conditions of an action are depicted using a
pair of snapshots.

See (c) in Table 4-12.

Refinement of action and types are
interdependent. If a collaboration for an action
involves more than one type, usually the action
is further decomposed, until no further
refinement of types is possible and actions
become messages between classes. In Catalysis
all actions and types are refined in that fashion.

See (c)

Verbs that are not mentioned in the
specification text are not candidates for
actions.

See (h) in Table 4-12.

Implicit from (c); however there are no specific
checks to ensure this minimality.

Implicit from (c).

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

2

2

2

70

4.4 Evaluation of Catalysis

(i) Correctness of types See (m) in Table 4-12. 1

U) Correctness of actions Since there is little emphasis on the user 0
participation through prototyping or a kind of
user interface modelling, users may not be albe
to confirm whether an analysis of actions is
correct.

(k) Correctness of type See (i). 0
refinements

(I) Correctness of action See (i). 0
refinements

(m) Non-redundancy of types See (r) Table 4-12. 1

(n) Non-redundancy of actions Catalysis discusses various factoring 2
techniques for reducing redundancy in action
specitications (p. 117-126). For example, it
suggests that some pre- and post-conditions
can be made into an attribute with a simple
invariant; and specifications of common pre-
conditions can be shared, and so on.

(0) Non-redundancy of type Although Catalysis discusses extensively about 0
refinements how to use refinement of types and actions, it

does not suggests clearly when the use of
refinement will become unnecessary.

(p) Non-redundancy of action See (n) 0
refinements

Total 15

Strength of the Catalysis behavioural 47
modelling technique

4.4.2.2 Evaluation of Static Model

Catalysis suggests models have static, dynamic and interactive parts. The static

model aims "to provide a vocabulary in which to describe actions, which include

interactions in a business, between users and software, or between objects in side the

software" (p. 45, 77). The main concepts used in the diagram are Objects, Attributes,

Types, Associations and Invariants.

Criterion

(a) Completeness of objects

Modelling Guidelines

"Anything that can be identified as an individual
thing, physical or conceptual, can be modelled as
an object; if you can count it, distinguish it from
another, or tell when it is created, it is an object" (p.
49). It is not clear how this completeness is
ensured.

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

71

4.4 Evaluation of Catalysis

(b) Completeness of attributes

(c) Completeness of types

(d) Completeness of
associations

(e) Completeness of invariants

(f) Minimality of objects

(g) Minimality of attributes

"The state of an object, the information that is
encapsulated in it, is modelled by choosing suitable
attributes. In constructing a model, we choose all
the attributes that we need to say everything we
need to say about the object." Snapshots are used to
envisage how values of some attributes change at
various points in time; for example, before and
after an action has taken place, changing the
state(s) of some object(s). (p. 50, 80)

Objects, their links and attribute values in the
snapshots, are generalized into types, associations
and attributes of the types (p. 57).

"A pair of attributes that are inverses of each other,
usually drawn as a line connecting two types." This
means that two objects holding attribute values
referring to each other imply an association
between the type(s) of the objects. (p. 61)

Catalysis makes extensive use of invariants, "a
Boolean (true/false) expression that must be true
for every permitted snapshot." (p. 67) For example,
an instructor who does not have the right
qualification cannot be allocated to teach a course.
Catalysis use Object Constraint Language to
express such invariants.

Not all objects identified are interesting, and "the
behaviours that we wish to describe determine
which objects and properties are relevant." This
does not however suggest how the behavioural
model itself can be validated. In the book, Catalysis
uses a textual description of a case study as a basis
for this exercise. (p. 49)

Catalysis suggests that exact formulation of
attributes is unnecessary as long as there are
operations that can provide the required
information. It also emphasises the use of
parameterised attributes which it says eliminate the
need to normalise attributes and make the model
simpler and more natural.

2

2

2

2

(h) Minimality of types Catalysis discusses various ways to join types, i.e. 1
combine specifications of types if they are thought
to be describing the same thing from different
angles. It is not explicitly concerned with removing
unnecessary types.

(i) Minimality of associations Implicit from (d). 1

U) Minimality of invariants Catalysis talks about combining invariants of 1
classes, where the purpose is to simplify, rather
than optimise the specification. Since it does
openly discuss the issue, some grade can be
awarded.

(k) Correctness of objects Catalysis put little emphasis on user involvement in 0
its modelling activity. In its case study, it uses a

Chapter 4 - Evaluation of Existing CBSD Methods 72

4.4 Evaluation of Catalysis

small interview transcript and, elsewhere a textual
description, as a starting point for the analysis. It is
difficult to see how Catalysis models are approved
by users.

(I) Correctness of attri butes See (k) 0

(m) Correctness of types See (k) 0

(n) Correctness of associations See (k) 0

(0) Correctness of invariants See (k) 0

(p) Non-redundancy of objects See (k) 0

(q) Non-redundancy of See (g) 1
attributes

(r) Non-redundancy of types See (h) 1

(s) Non-redundancy of No guidelines are provided. 0
associations

(t) Non-redundancy of In some cases, Catalysis argues, deliberate 1
invariants redundancy of specifications can help simplify the

models.

Total 17

Strength of the Catalysis static modelling technique 43

4.4.2.3 Evaluation of Interaction Models

These models describe "the most interesting aspect of any design [that] lies in the

interactions among the objects: the way that the net behaviour resulting from their

collaborations realises some higher-level function when they are configured together

in a particular way." (p. 153) Collaborations can be a refinement of an abstract

action or "a design to maintain invariants between objects" (p. 172). The main

modelling concepts are: Collaboration, Message and Flow.

Criterion

(a) Completeness of
collaborations

Modelling Guidelines

Candidates for type collaborations are actions
identified previously in static and behavioural
models. Here responsibilities are assigned to
classes by hierarchically decomposing actions
and allocating smaller-grained operations to
types or classes. Constraints involving multiple
types are enforced. Completeness of
collaborations depends upon how types and
actions are decomposed.

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

73

4.4 Evaluation of Catalysis

(b) Completeness of messages 'Scenarios' of an action are described. Then by 1
following the steps in the descri pti ons,
messages between collaborating objects are
identified. (p. 177)

(c) Completeness of flows See (b). I

(d) Correctness of collaborations No guidelines are provided. 0

(e) Correctness of messages Implicit from (b). 1

(f) Correctness of flows Implicit from (b). 1

Total 5

Strength of the Catalysis interaction modelling 42
technique

4.4.2.4 Evaluation of Snapshot

The main concepts used in this modelling are: participating Objects and Messages

passed between objects.

Table 4-14 Evaluation of Catalysis Snapshot

Criterion

(a) Completeness of participating
objects

(b) Completeness of messages

(c) Correctness of participating
objects

(d) Correctness of messages

Modelling Guidelines

Usually these are identified from requirements
specification, user interview transcripts etc.
Nouns in the descriptions are candidates for
objects.

Messages are identified from the verb analysis.

Not provided.

Not provided.

Rigour

o

o

Total 2

Strength of the Catalysis snapshot modelling 25
technique

4.4.2.5 Evaluation of State Charts

The main concepts used in Catalysis State Charts are: States and TransitionslEvents.

Table 4-15 Evaluation of Catalysis State Charts

Criterion

(a) Completeness of states

Modelling Guidelines

States are generally identified from attributes
and invariants. Catalysis does not say how this
is done. "Sometimes it is easy to see distinct
states that an object progresses through over its

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

74

4.4 Evaluation of Catalysis

lifetime." (p. 126)

(b) Completeness of Actions provide the basis for identification of 1
events/transi ti ons transitions. (p. 127)

(c) Correctness of states No guidelines are provided. 0

(d) Correctness of No guidelines are provided. 0
events/trans i ti ons

Total 2

Strength of the Catalysis state modelling 25
technique

4.4.3 Evaluation of Architecture

Instead of proposing a single main reference architectural model, Catalysis provides

general discussions covering issues such as architectural views, physical and logical

architecture system qualities affected by architectural design decisions, architectural

styles, and patterns such as four-tier business architecture.

4.4.3.1 Definition of Component

Components can be either executable or non-executable. Executable components

can be implemented using popular 00 programming languages such as Java. Non­

executable components include a range of development artefacts, in particular,

design pattern and frameworks (Gamma et aI, 1995).

4.4.3.2 Identification and Verification of Com ponents

Components are identified by recursively decomposing the system. In Catalysis,

each class, or type, or collaboration of classes to fulfil an action is potentially a

component. In this sense, identification and validation of components are done

rather informally.

4.4.4 Evaluation of System Development Process

Catalysis does not provide a detailed SOP model; instead it suggests a general

outline of development process and for specific projects, it recommends the use of

process patterns. The main stages of development are: Requirements Specification,

System Specification, Architectural Design and Component Internal Design.

Chapter 4 - Evaluation of Existing CBSD Methods 75

4.5 Evaluation of KobrA

4.5 Evaluation of KobrA

A summary of KobrA is provided in Section 5 of Appendix II.

4.5.1 Correlations Between the Three Elements of a Method

KobrA mainly focuses on system modelling. Its treatment of the development

process is fairly minimal, while its discussions on software architecture primarily

deal with component design. KobrA does not provide any reference architecture,

leaving it to analysts to choose an appropriate architectural pattern (Kircher and Jain,

2004).

• KobrA is similar to RSE in the sense that both regard the development

process as a series of development of models. Therefore, the system

development process and the model development process are very much

intertwined. At any rate, the development process described by KobrA, the

product line engineering process, is limited.

• There is general correspondence between system modelling and software

architecture: the structural model explicitly deal with architectural design

issues, although KobrA does not provide any reference architecture.

• The correlations between architecture and the development process are made

clear through the modelling activities; the structural model and the

containment tree deal with the architectural aspects ofthe system.

4.5.2 Evaluation of System Modelling

Figure 4.5 shows the IPI matrix for the models used in this method.

As far as the modelling coverage is concerned, the following conclusions can be

drawn:

• KobrA provides three global models dealing with information, interactions

and processes of systems. The suggestion by KobrA that statecharts can be

used to model interactions between the user and the system at the global

level, traced back to 00 methods such as Fusion (Coleman et aI, 1993), is

questionable. Two points can be raised against this proposition. Firstly,

Fusion and KobrA use conveniently simplified ATM and library systems to

show that the global behaviour of the system can be captured in terms of

state-dependencies. An experiment in this research shows that when the

behaviour of the system is richer, the diagram either becomes so complex

Chapter 4 - Evaluation of Existing csse Methods 76

4.5 Evaluation of KobrA

that it hardly makes sense or the behaviour cannot be adequately captured

(Section 16.3). For this reason, the MAP framework suggests that time­

dependent analysis of the system is better suited for contextual models only

(Section 3.4.2.2). Secondly, statechart is not a model that aims to show

input/output-based interactions between the system and the user. However,

since it contains all major events of the system, and any detailed description

of these involves inputs and outputs, it qualifies as a partial interaction

model.

• There is only one significant abstract contextual model in this method.

• Out of six possible detailed contextual models, there are only two main

models observable in this method.

3

C
k

Interaction
Axis

Information
Axis

A

B

Axis

A. Structural Model: shows Class/Komponent diagram and Object diagrams, where 'classes'
are usually operation less, while Komponents are not.
B. Functional Model: shows textual specification of effects of Komponent operations
C. Enterprise Model (Interaction Diagram): KobrA suggests using either an activity diagram,
use case diagram or interaction diagram for enterprise modelling, where only the interaction
diagram can be counted as an Interaction model.
1. Interaction Model (Collaboration Diagram)
2. Activities in the process model referring to Komponents in the structural model
3. Behavioural Model: Statechart diagram I table

The fact that there are very few contextual models is an indication that there is very

little cohesion between KobrA models, and also that they are fragmented. Perhaps to

address this, KobrA discusses one unique feature of modelling: the so-called Intra-

Chapter 4 - Evaluation of Existing CBSD Methods 77

4.5 Evaluation of KobrA

diagram and Inter-diagram rules, which specify the mapping of elements between

models. For example, some intra-diagram rules for the class diagram require that

only Komponents (not ordinary classes) should have operations, several

Komponents must show all or none of their operations, and the client Komponents

need to show the operations the server invokes. Some inter-diagram rules between

the structural and behavioural models include attributes of classes in both models

being consistently specified and the states being expressible in terms of classes

(p.430). These rules and meta-models are useful for creating CASE Tools and

ensuring consistency between models. This is to KobrA's credit. However, these

static rules are no replacement for modelling dynamics of the system; only the

appropriate contextual models serve this purpose.

4.5.2.1 Evaluation of Functional Model

The functional model of KobrA is a set of specifications of operations, as in Fusion

(Coleman el ai, 1993). This modelling is often preceded by an enterprise model that

involves activity/ use case/ interaction modelling (p. 157, 169-170). The main

concept is Operation. Since any reasonable specification of an operation is

accompanied by two clauses, Assume and Result, identification of clauses is also

considered in this evaluation.

Criterion

(a) Completeness of
operations

(b) Completeness of
assumes

(c) Completeness of
results

(d) Minimality of
operations

(e) Minimality of
assumes

(f) Minimality of results

(g) Correctness of

Modelling Guidelines

Operations are identified by examining the messages
sent to instances of the Komponent (p. 116).

Parameter types and return types of operations are
identified. Intended effects of operations are identified
in object, class, state chart diagrams and parameters. A
snapshot object diagram can be used to model the
configurations objects before and after the operation.
"Identify all appropriate assumptions." (p.116)

"Formulate result and assumes clauses." For all initial
assumptions in operation specifications there are final
values that satisfy the result clause. (p 116)

Summarise operations of server Komponents. (p. 116)

Parameter types and return types are summarised.

See (e).

No guidelines are provided.

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

2

o

78

4.5 Evaluation of KobrA

operations

(h) Correctness of No guidelines are provided. 0
assumes

(i) Correctness of results No guidelines are provided. 0

U) Non-redundancy of No guidelines are provided. 0
operations

(k) Non-redundancy of No guidelines are provided. 0
assumes

(I) Non-redundancy of No guidelines are provided. 0
results

Total 7

Strength of the KobrA functional modelling technique 29

4.5.2.2 Evaluation of Structural Model

KobrA makes use of a few diagrams for this model, class diagram, object diagram

and containment hierarchy. The main concepts used in this model are

Class/Komponent, Attributes, Operations, Association and Containment Hierarchy.

The following table shows the criteria applicable to this model, and a summary of

evaluation of the modelling technique used in this modelling.

Criterion

(a) Completeness of
classes I Komponent

(b) Completeness of
attributes

(c) Completeness of
operations

(d) Completeness of
associations

Guidelines

"Based on the functionality and behaviour, add data types for
any entities needed to store persistent state or data. Indicators of
the need for such data types are states in the behavioural model
or post-conditions in the functional model (p.133)" "All roles
interacting with the system to be built as well as all entities
involved in this interaction (p. 169)" are candidates for classes.
Two criteria are applied to distinguishing simple classes from
Komponents: multiplicity and granularity. Komponents tend to
have fewer instances and higher granularity. (p. 151-152)

"Add appropriate logical attributes to all classes. Add any
missing logical attributes required in any of the operation
specifications or any of the statechart states" (p. liS). "Get and
Set operations pairs can be modelled as logical attributes"
(p.134).

"Every message sent to an object in an interaction diagram
must correspond to an operation of the corresponding class in
the class diagram" (p. 134) During activity modelling of the
system operations are identified. These are added as operations
to the system Komponent (p. 169 and 135).

"Add essential associations between all classes. Add any
missing associations needed in any of the operation
specifications to navigate between instances." (p.115)

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

2

2

79

4.5 Evaluation of KobrA

(e) Completeness of KobrA only suggests that Komponents are identitied at the end 1
containment of realisation modelling, by looking at multiplicity and
hierarchies granularity of the classes. The only way to partially ensure that

all Komponents and classes in the hierarchy have been
completely identitied is through interaction modelling. (p. 151-
152)

(t) Minimality of Remove any model elements not needed in the functional 2
classes model or behavioural model. (p. 115)

(g) Minimality of See (t). 2
attributes

(h) Minimality of See (t). 2
operations

(i) Minimality of See (t). 2
associations

U) Minimality of Simple data structures should not be treated as Komponents (p. 0
containment 151-152). KobrA discusses a technique on how to refactor
hierarchies containment hierarchy by adjusting it so that Komponents and

classes have proper visibilities. (p. 153-154) However, there is
no mechanism to ensure that the hierarchy of components and
classes do not contain any unnecessary elements and levels of
hierarchy.

(k) Correctness of KobrA emphasises the role of User Interface artefacts in 1
c1asses/ identifying classes, but it does not go as far as saying that the
Komponents users need to participate to validate models being produced.

Perhaps it is due to the nature of Product Line Engineering,
which requires the analysts to have specialist domain
knowledge of the application, and the analysis process is driven
by generic requirements, rather than situation-speci tic
requirements. Hands-on participation of users in the
development of a framework, as in RAD, may largely be
unnecessary. Still, KobrA does not say how the knowledge of
the domain can be validated.

Komponents have no 'real world' counterparts and it is up to
analysts to decide whether an invented Komponent is correct;
KobrA provides the two criteria, multiplicity and granularity, to
differentiate classes from Komponents.

(I) Correctness of See (k). 0
attributes

(m) Correctness of See (k). 0
operations

(n) Correctness of See (k). 0
associations

(0) Correctness of The visibility rules of a Komponent tree provide the basis for 1
containment determining the locations of Komponents within it. A
hierarchies containment hierarchy that is consistent with the visibility rules

may not necessarily satisfy users' requirements.

(p) Non-redundancy System analysis in KobrA is very much influenced by 1
of classes/ implementation-oriented design considerations; for example,

Chapter 4 - Evaluation of Existing CSSD Methods 80

4.5 Evaluation of KobrA

Komponents refactoring of classes is very much a design activity which in
KobrA is done during what can be called the system analysis
stage. Addition and removal of classes or components are often
done in the light of implementation. Therefore, there is no
logical model that is robust and free from influences of
implementation.

(q) Non-redundancy See (q).
of attributes

(r) Non-redundancy See (q).
of operations

(s) Non-redundancy See (q).
of associations

(t) Non-redundancy Not provided.
of containment
hierarchies

Total

Strength of the KobrA structural modelling technique

4.5.2.3 Evaluation of Activity Model

o

21

53

Activity diagrams are used to describe the algorithms of Komponent operations. (p.

123). The main concepts are: Activity/Subactivity and Flow.

Criterion

(a) Completeness of
acti vi ties/su bacti vi ties

(b) Completeness of flows

(c) Minimality of
activities/subactivities

(d) Minimality of flows

(e) Correctness of
activities/subactivities

(f) Correctness of flows

Modelling Guidelines

"For each operation, identify the subactivities
needed to fulfill the operations specification
effects. Classic structured decomposition
techniques can be applied at this stage to determine
the subactivities." (p. 135) Activities are then
crosschecked with Komponent operations.

First inputs to, and outputs from, each subactivity
are determined. Then activities that provide and
require input and output data from the activities are
connected accordingly to create the flow.

By allocating subactivities to data type,
unnecessary activities can be removed (p. 135).

Implicit from (b).

No guidelines are provided.

No guidelines are provided.

Chapter 4 - Evaluation of Existing CBSD Methods

Rigour

2

2

2

o

o

81

4.5 Evaluation of KobrA

(g) Non-redundancy of No guidelines are provided. 0
activities/subactivities

(h) Non-redundancy of flows No guidelines are provided. 0

Total 7

Strength of the KobrA activity modelling technique 44

4.5.2.4 Evaluation of Interaction Model

KobrA's interaction model also describes the algorithm by which an operation is

realised, but from the objects' perspective, rather than the flows' perspective.

Following the trend of Fusion, it suggests using UML collaboration diagram for this

purpose. The main modelling concepts are: participating Objects, Messages and

Flows.

Criterion

(a) Completeness of participating
objects

(b) Completeness of messages

(c) Completeness of flows

(d) Minimality of participating
objects

(e) Minimality of messages

(f) Minimality of flows

Modelling Guidelines

"Identify collaborations: Once tentative
allocations have been determined, identify
potential collaborations between objects for
realising the unresolved activities (i.e. those
currently at the leaves of the activity
hierarchy). Consider modifying the data types,
activities and allocations." (p. 135)

"All the messages within collaborations
represent operations of objects." (p. 136)
Operations are then collated and specified.

See (b) in Table 4-18.

O~iects must be instances of classes.

Messages must correspond with the operations
of classes.

See (d) in Table 4-18.

Rigour

2

2

Total 8

Strength of the KobrA interaction modelling 67
technique

4.5.2.5 Evaluation of Behavioural Model

KobrA suggests using statechart diagram(s) and/or statechart table(s). The main

modelling concepts are: State and EventslTransition.

Chapter 4 - Evaluation of Existing CBSD Methods 82

4.5 Evaluation of KobrA

Table 4-20 Evaluation of KobrA Behavioural Model

Criterion

Completeness of states

Completeness of
events/transitions

Minimality of states

Minimality of events/transitions

Modelling Guidelines

"Identify all externally visible, logical states of
the Komponent. A visible state characterises
the operations that can be performed on the
Komponent under particular circumstances."
(p. 117)

State attributes of classes and Komponents are
identified. Operations that can be executed in
each state, and the invocation of the transition
are identified. (p. 117)

No guidelines are provided.

No guidelines are provided.

Rigour

o

o

Total 2

Strength of the KobrA statechart modelling 25

4.5.3 Evaluation of Architecture

Since KobrA does not give any reference architecture, nor discuss how a known

architecture should be selected, it is left to the analysts to determine what is

appropriate for a given application.

4.5.3.1 Definition of Component

KobrA components, or Komponents, have three parts: a specification, realisation

and one or more implementation. KobrA views a system as a hierarchy of

Komponents, which is expressed through a containment hierarchy. Since KobrA is

based on the concept of product line engineering, the aim of reuse is not of

individual components, but an entire application. Therefore, generic applications,

called frameworks, are built with all possible variant features, and the application

development in the traditional sense is all about choosing the right set of variant

options and instantiating the application. KobrA, therefore, aims for total reuse.

4.5.3.2 Identification and Validation of Components

Domain modelling with an emphasis on identifying common and application­

specific features is crucial for the development of frameworks. KobrA also discusses

in great detail about how component hierarchy should be composed and rules

applying the composition.

Chapter 4 - Evaluation of Existing CBSD Methods 83

4.6 Experiment on the framework

4.5.4 Evaluation of System Development Process

The system development process of KobrA is markedly different from all other

processes investigated in this research because it is uniquely based upon the concept

of product line engineering. Its development process is only described in terms of

context realisation of the system followed by a series of specification and realisation

in an iterative manner. Seen through the prism of the MAP evaluation framework,

the development stages of KobrA are not clearly demarcated, and as a result, there

are ambiguities about what analyst should be focusing on in each stage. KobrA also

does not emphasise the user participation in the development process, which is also

evident in modelling. The reuse is perhaps most effective with the product line

approach because it is entirely geared towards full reuse of applications.

4.6 Experiment on the framework

When we attempted to publish a paper on the evaluation of UML using the MAP

framework, a referee gave some comments relating to the repeatability of the

evaluation exercise, i.e. if someone else has carried out the evaluation with the MAP

framework, would they still get the same results? The paper was accepted for

publication (Bielkowicz and Tun, 2003). Nevertheless, we decided to set up a small

experiment to investigate the issue. The following sections discuss the experiment

methods and results for the data gathered in the academic year 2003/2004. The

experiment is repeated this year and the results are due in early June, 2005.

4.6.1 Objective of the Experiment

The main objective of the experiment is to find out whether the MAP framework, in

particular the IPI matrix, can be applied independently by others who would then

come to a similar conclusion by producing comparable IPI matrixes. For example,

evaluation of the two popular methods, SSADM and UML, using the IPI matrixes in

this research (see Figure 3.9 and Bielkowicz and Tun, 2003) suggest that SSADM

has better coverage and more contextual models, both abstract and detailed.

4.6.2 The Experiment Method

Requirements

Participants of the experiment need to have working knowledge of the following:

Chapter 4 - Evaluation of Existing CBSD Methods 84

4.6 Experiment on the framework

• UML, in particular its models such as Use Case Model, Class Model, Use

Case Realisation Model (Sequence Diagram and Collaboration Diagram) etc,

and how the models are related to each other (OMG, 2003)

• SSADM, in particular its models such as Context Diagram, Data Flow

Diagram, Entity Relationship Diagram, Entity Event/Access Matrix, Entity

Life History, Effect Correspondence Diagram, and relationships among these

models (Goodland and Slater, 1995; Bentley 1997; Weaver et al 1998)

• Participants also need to develop a good understanding of the framework,

and possess the ability to think critically and conceptually.

Participants

In the experiment that took place at London Metropolitan University in the second

semester of the academic year 2003-2004, the participants were students of the

QC309 Advanced Systems Analysis and Design unit. All students had done various

units on UML and SSADM in previous years of their studies. The 29 students taking

part were asked to divide themselves into groups of between two and four students.

This resulted in nine groups of participants.

Plan for the experiment

• Participants were first given a formal lecture and a tutorial reviewing various

models of UML and SSADM by the author (in the first week of the second

semester, 2003-3004)

• Participants were given a lecture on NIMSAD (Week 2)

• Participants were given a lecture on the MAP framework, with particular

emphasis on evaluation of models using IPI Matrix (Week 3). The lecture

notes included an extract from the published paper (Bielkowicz and Tun,

2002)

• Students assignments were issued, which required participants to produce the

IPI matrixes showing appropriate UML and SSADM models and

commenting on the coverage of and facility for checking consistency

between the models in each method. The evaluation was a compulsory part

of the assignment (it carried 25% of the overall mark of the assignment),

countering the likelihood of participants not being motivated to take part.

• Participants handed in their work (Week 10) including the evaluation.

• Participants were given overall grades and comments on their work

Chapter 4 - Evaluation of Existing CBSD Methods 85

4.6 Experiment on the framework

4.6.3 Experiment Results
---------- ------- ------- ---------

Chart A Number of SSADM and UML Models Identified by Participants
---~ - ------ --- - -- - -- ------ ----- -- -

30

25

20
!!1
II>
~
0
:E ... 15 0 ...
GI
~

E
::I
Z 10

5

0
'" a;
"0 '" o Ol

~E
'" '" .0 E
.Q II>
<9=
"iii c:
0-
I-

-)(

"'£
~ '" .Q E
<90l
~=
.0 c:
.lll .­
a.!!1
Ol Ol
U"O
U a
«:;

_!!1
U Ol
~"O
- a
~:;
«x
]9~
a c:
I- a

U

'0
Ol­=-= co
.lll.a
II>)(
o~ _ c:
.lll a
aU
I-

"0
~

~-
Ol '" o.a
Ol ~
:B'E
.lll a
a.u

8 «

.SSADM
OUML

Chart AS shows total numbers of global, abstract contextual and detailed contextual

models in SSADM and UML identified by the participants, together with the

numbers of acceptable models. 'Acceptability' means that the categorisation of a

model by participants is broadly in line with what the MAP framework suggests. For

example, regarding activity diagram as a functional global model is acceptable,

although use case modelling is usually the preferred choice for global system

functionality modelling in UML, while assuming Entity Access Matrix as a global

interaction modelling is not acceptable because it does not deal with the system's

interaction with its users. When assessing students' work, there were a few cases in

which wrong direction of arrows denoting contextual diagrams, confusion in

denotation, and drawing made it difficult to ascertain exactly what was meant. If

5 Raw data is attached in Appendix VI.

Chapter 4 - Evaluation of Existing CBSD Methods 86

4.6 Experiment on the framework

there was a good basis to believe that the entry was broadly correct, it was counted

as 0.5, instead of 1. Otherwise, it was regarded as wrong.

The nine groups of participants should have identified at least 27 global models for a

method (three global models per group per method). Assuming that there were three

global models in each method, there should have been a maximum of 54 abstract

contextual, and 54 detailed contextual models in each method. Participants found 28,

one more than expected, global models in SSADM, although only 24 can be counted

as acceptable. In that regard, UML did not fare well as only 17.5 global models were

identified. Some participants noted that UML did not have a global interaction

model, whilst some thought that either use case or activity might be counted as such.

Relatively high numbers of global models can be explained by the fact that the

lecture on the MAP framework included examples referring to some global and

contextual models from both SSADM and UML 6, and that the global models are

usually regarded as the most important by authors and teachers of methods.

Participants tended to be less confident about plotting contextual models onto the

matrixes. They identified consistently more contextual models, both abstract and

detailed, in SSADM than UML. The error rate here was rather high. Out of 26 and

16 attempts at abstract contextual models of SSADM and UML respectively, on

average, only 36% and 19% were correct. For detailed contextual models, the

figures went up to about 55% each. The fact the detailed contextual models are

more 'visible' to analysts may explain this disparity.

It is clear from this chart that participants generally came to the conclusion that

SSADM has more global models, abstract contextual and detailed contextual models

than UML. In addition, participants were able to correctly map SSADM models,

contextual models in particular, to the IPI matrixes more frequently than UML. Not

only did participants find fewer relevant contextual models in UML, the number of

times where no contextual model was identified for a contextual region (the region

6 Since most participants did not know another major method well enough, it was not possible to

explain the IPI matrix in great detail without making references to SSADM or UML. In order not to

prejudice their judgements, some global and contextual models from both methods were mentioned

as examples in the lecture.

Chapter 4 - Evaluation of Existing CBSD Methods 87

4.7 Summary and Conclusion

between two axes) was 41, whilst for SSAOM it was 25. These points were reflected

in participants' commentaries. Four teams stated clearly that SSAOM has a better

coverage, as opposed to three teams for UML. The remaining two teams were

undecided, although one of these teams was marginally in favour ofSSAOM. On the

question of inter-model checks, five teams were largely in favour of SSAOM, but

only two of these teams thought that perhaps UML was in some way better.

Limitations and conclusions of the experiment

Participants had had exposure to both SSAOM and UML, although they were hardly

connoisseurs of system development methods. Errors and omissions in the matrixes

can partly be accounted for by this point. Also, the sample size of the experiment

was small; hence the experiment is repeated this year. If the general tendency, often

instilled into students by teachers, authors and the general hype surrounding 00, to

dismiss SSAMO as old and outdated, whilst promoting UML as more advanced, is

taken into consideration, these findings are very revealing. The conclusions students

reached are not through general hunches, but through careful analysis and critically

thinking. It is therefore clear that the model evaluation method suggested by the

MAP framework is to some extent repeatable, encouraging method users to think

critically about methods.

4.7 Summary and Conclusion

Based on the evaluation of the existing CBSO methods presented in this chapter, the

following conclusions can be drawn:

• RSE and Perspective not only provide all three elements of a method,

but also offer good correlations between these elements. Coverage of

SOP in both Catalysis and KobrA is relatively limited, and neither

Catalysis nor KobrA provides a reference architecture. In this respect,

RSE and Perspective are complete methods.

• IPI Matrixes of these methods show that Perspective models have the

best coverage of all methods (Figure 4.2). There are three global

models as well as some contextual models, which nevertheless fall far

short of forming four complete circles around the axes. RSE (Figure

4.1) and Catalysis (Figure 4.4) both lack a global interaction model.

Catalysis contextual models focus very much on the region between

Chapter 4 - Evaluation of Existing CBSD Methods 88

4.7 Summary and Conclusion

the Information and Process axes, whilst RSE models have a fairer

distribution across the IPI Matrix. KobrA (Figure 4.5) has three global

models, but few contextual models. It is clear from these IPI Matrixes

that coverage of models used by existing CBSD methods is generally

poor. Models in these methods pay little or no attention to the analysis

of user-system interactions, and these methods consistently fail to

provide a sufficient number of abstract and detailed contextual models

to help ensure internal and external consistencies of the global models

• A verage strength of modell ing techniques in RSE, Perspective,

Catalysis and KobrA are 47, 53, 40 and 43 respectively. There seems

to be a problem here: the more recent methods, and the ones that use

more formal specification techniques, have less rigour in their

modelling techniques. This paradox can be explained by two factors.

The first factor is user participation: involving users in the

development of models, through interface modelling, prototyping and

so on, helps ensure internal and external consistency of system models.

Since Catalysis and KobrA do not emphasise this, modelling

techniques of these methods score consistently low for the semantic

level criteria. The second factor is the failure to distinguish between

expressiveness of a modelling language and guidelines for applying the

language. Catalysis, for example, uses a barrage of modelling concepts:

actions, action types, joint actions, localised actions, concurrent

actions, external actions, internal actions, joint services, use cases,

interactions, operations and message flows. These concepts all mean

more or less the same thing, but Catalysis provides few guidelines on

how to identify and validate them. This is like having a very

comprehensive dictionary, but not knowing enough grammar to put

words into sentences. The MAP framework exposes these weaknesses.

• Reference architectures provided by RSE and Perspective are largely

reminiscent of 00 systems. Catalysis focuses on architectural patterns,

whilst KobrA discusses at length technical issues related to

composition of component hierarchies.

Chapter 4 - Evaluation of Existing CBSD Methods 89

4.7 Summary and Conclusion

• Both RSE and Perspective have SOP with reasonably good coverage

and control mechanisms. Treatment of SOP in Catalysis and KobrA is

rather general.

These evaluation results confirm the first hypothesis of this research that the

theoretical basis of the existing CBSD methods is weak. This is particularly the case

with system modelling.

Chapter 4 - Evaluation of Existing CBSD Methods 90

5.1 Introduction

5.1 Introduction

Chapter Five

The Proposed CBSD Method
NAVITA - An Introduction

This chapter provides an overview of the proposed holistic approach CBSD,

NA VITA. It is holistic in a sense that it addresses all three important aspects of

software development, namely, System Modelling, Software Architecture and

System Development Process (SDP), in a true component-based fashion. The name

NA VITA is derived from an abbreviation of two Sanskrit words "Naviinamh"

meaning new and "GhaTaka" meaning component (Sanskrit Dictionary, n. d.).

Being a component-based method, NA VITA is fully geared towards the realisation

of the "reuse first" vision of software development. In this approach, once a general

understanding of the users' requirements is established, the search for an existing

application that satisfies the requirements begins. If the matching application is not

found or reuse of it not viable, the search looks for an application that could be

adapted. In many cases, users may be encouraged to choose an existing application

if the gap between their expectations and the available application is not wide. If not

successful, the system is decomposed and smaller components that can be reusable

in the application are examined. This process may be repeated many times. Only

those components that are neither available nor viable for reuse are to be analysed in

detail, designed, implemented and tested. This reuse philosophy is not treated as a

fad but a strong principle appropriately manifest in all three main aspects of

NA VITA. SDP of NA VITA encompasses a spectrum of development scenarios of

the CBSD approach, from acquisition of an entire matching application in which

very little system modelling and development activities are necessary, to

development of an application for which no components are viable/available, and

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 91

5.2 Orthogonal View of NAVITA

need to be created from scratch. System Modelling activities are tied to SDP stages;

therefore, only necessary models are produced. Software Architecture of NA VITA

prominently features the quality of 'pluggability', which allows parts of the systems

to be added, removed and upgraded on the go, facilitating reuse of different kinds of

component.

5.2 Orthogonal View of NAVIT A

The three elements ofNAVITA, System Modelling, Software Architecture and SDP

are tightly linked to each other. Figure 5.1 shows general correlations between those

elements, which are described in greater detail as the discussion progresses.

There are clear
mappings between the ~
SDP stages and the \
models developed in a
project.

System
Development

Process

System
Models

5.2.1 NA VITA Software Architecture

System models express
the architectural
properties of the
system.

Architecture

Certain SDP stages explicitly
deal with architectural issues of
the system.

NA VITA provides the following reference architectural model that gives a realistic

vision of software architecture as necessitated by CBSD and modem software

technologies. In this architecture, every 'application', or an assemblage of

collaborating component, has three key elements: a Backbone component; an

Application Manager component; and business, boundary and other generic

components, such as Database Management System (Figure 5.2). Backbone and

Application Manager components are the most essential ones, even an application

without any user functionality will have them. To add functionality to the system,

the application administrator will use the Application Manager component to first

define services with the Backbone component. This involves naming of the service

and the operation signatures of the operations used for this service. This registry of

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 92

5.2 Orthogonal View of N A VITA

services and operations are managed by the Backbone component. The defined

services are logical in a sense that it does say how physical components ought to be

composed. Once services are defined, the application administrator can then add

physical components by specifying the service(s) the component offers and requires,

represented by plug and socket icons. A boundary component generally uses (from

business components) one service only, while physical business components may

provide and use multiple services from multiple components. At runtime, the

Backbone component ensures that components communicate with each other with

no knowledge of their physical locations, design paradigm or implementation

technology.

Business
Component A

Application
Manager

I

f
Admin

Business
Component Z

Boundary
Component 1

Boundary
Component 2

User

5.2.2 NA VITA System Development Process (SDP)

DBMS
Component

Boundary
ComponentN

The SDP envisaged by NA VITA (Figure 5.3) reflects the basic nature of system

development according to the "reuse first" principle of the component-based

approach.

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 93

Application
Development

5.2 Orthogonal View of N A VITA

System development with NA VITA starts with a Background Investigation into the

business processes, project feasibility - in terms of time, technology, organisational,

costs, benefits, and reuse of existing components - and a general outline of the

users' requirements. Once the feasibility of the project and requirements for a new

system are established, existing applications are investigated for potential reuse. If

applications are not found in the Component Search and Acquisition stage, their

reuse unviable or users' requirements cannot be adjusted to an available application,

the requirements are further analysed, helped by user interface prototyping. Then

specifications of the system's main logical components are produced in the

Requirements and System Analysis stage. Then, components for these specifications

are searched again. If existing components found to be reusable, they are certified. If

components need to be developed or tuned, the development moves into the

Component Design and Development stage. Once the components are developed,

tuned and/or ready to be reusable, application is assembled, tested and delivered to

the users, who then accept it. Therefore, system deveiopment with NA VITA is based

around the central activity searching and acquiring relevant existing components.

This whole SDP is often carried out in an iterative and incremental fashion.

Chapter 7 discusses the NA VITA SDP in detail.

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 94

5.2 Orthogonal View of NAVITA

5.2.3 NA VITA System Modelling

In line with the lessons learnt from the evaluation of the existing CBSD methods,

NA VITA provides a set of global and contextual models that would enable analysts

to model important characteristics of the systems, as well as ensure that the global

models are complete and consistent, both internally and externally (see Section

3.4.1). Furthermore, being a component-based method, NAVITA suggests

modelling only when necessary, i.e. depending on the development scenario. Models

are tied to SDP stages, and the SDP stages required in a project are dictated by the

development scenarios. For example, if a matching or similar application is found

for the users' requirements, little or no modelling is carried out. The following are

the main models used in NA VITA:

¢ Business Analysis - NA VITA Modelling starts with Business Process

Modelling (BPM) with an emphasis on gaining an understanding of the

business domain, the users' requirements, system boundary and necessary

improvement to the business processes. This thesis will not cover the business

process modelling due to limitations of the research scope and thesis space.

Broadly speaking, NA VIT A suggests using the standard business process

modelling language (BPMN) (White, n. d.; BPMI, 2004) with the modelling

techniques suggested by SELECT Perspective (Allen and Frost, 1998). As in

SELECT Perspective, two main diagrams are used.

~ Process Hierarchy Diagram - This diagram shows a simple

hierarchical breakdown ofthe business processes.

~ Process Thread Diagram - This diagram shows the order in which

Elementary Business Processes from the Process Hierarchy Diagram are

executed.

¢ Requirements/System Functionality Modelling - Functionality Model is

usually developed in conjunction with the BPM. The latter emphasises the

context in which the new system will operate, while the former underlines

what the system would do. In this modelling, the following diagrams are used

to capture the users' requirements from three perspectives: process, data and

interaction.

~ Context Diagram - This diagram provides an overview of the system

with emphasis on the roles of users, their interactions with the system,

and manual and computerised processes of the system. Although there

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 95

5.2 Orthogonal View of NAVIT A

are similarities between the NA VITA context diagram and traditional

context diagrams, NA VITA diagram is more expressive. This diagram is

also used to explore the often grey line between computerised and

manual processes by differentiating between two types of boundaries:

traditional system boundary and 'greater IS boundary'. The former

represents the boundary of the computerised system, while the latter

represents the Information System as a whole including manual

processes. This separation allows analysts to investigate the system from

a much broader perspective. NA VITA context diagram is discussed in

Chapter 8.

~ Middle-level Functionality Diagram (MFD) - This Middle-level

System Functionality diagram is the main functionality diagram, which

is supported by some other diagrams and documentation. The main

purpose of this diagram is to show, in a clear and simple way, the main

functional requirements of the system, while the textual documentation

gives further details of these functional requirements as well as captures

non-functional requirements (Chapter 9)

~ Lower-level Functionality Diagram - The granularity of the

functionality units is fixed at the middle level functionality modelling,

and detailed analyses of the complex functionality units are done using

Lower-level Functionality diagrams. A LFD is a UML Activity

Diagram-like diagram containing activities, the flows of information and

interactions between actors. (Chapter 9)

~ System Interaction Modelling - This modelling is made up of Logical

Screen Layout (LSL) and User-System Dialogue Model (USDM). A

LSL shows the logical and static interface between the system and the

user. This is a simple and largely informal diagram used to model the

input and output data of each functionality unit. It is not at all concerned

with Graphical User Interface (GUI) and navigational issues. LSL

modelling attempts to visualise the static interface of the system, and in

USDM, detailed dynamic interactions between the system and the user

are explored. In a sense, USDM is Logical Screen Layout Diagram with

the added time dimension. This diagram provides an important

crosschecking between the functionality model (through its steps) and

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 96

5.2 Orthogonal View of N A VIT A

the LSL (through its data items). A combination of these three diagrams

provides a complete 'external' view of the system functionality. LSL

and USDM are described in Chapter 10.

~ Information Model - Information Model is used in a number of stages.

The main aim, however, is the same: to show the data structure of a

group of data items, in terms of entities/classes and their relationships.

Chapter 11 explains the concepts and modelling technique of this model.

~ FEM - FEM shows the relationships between functionality units and

entities/classes. From Middle-level Functionality Model and USDM,

events are identified, and from the protocol model, various effects are

extracted. These effects are mapped onto entities from the Information

Model. This matrix, therefore, brings together the main models, and

helps ensure consistency and completeness of these models. This

modelling is discussed in Chapter 11.

~ Architectural Analysis and Component Design

~ Protocol Model - For each functionality unit, a protocol model is

produced to show how a logical boundary Component and a logical

Business Component will communicate to realise a functionality unit.

With Logical Screen Layout and User-System Dialogue Model, analysts

are able to analyse in detail the interactions between the user and the

system. Now, the interactions between the boundary Component and

Business Component, to provide the required service to the user, are

analysed.

~ Logical Component Specification - This specification, a culmination

of a number of models produced so far, precisely defines the interface of

the logical components with the system. The specifications cover the

functional, information and interaction aspects of the components. These

specifications are the basis for the search of existing components, and

possible design and implementation. Protocol Model and Logical

Component Specification are described in Chapter 12.

~ Component Design - Development of components either from nought

or existing similar component starts with internal design of the

components. The specifications of services in the previous modelling are

logical in a sense that they do not tell us how actual components should

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 97

5.2 Orthogonal View of N A VIT A

be designed. It is at this stage that analysts determine how best to create

required components using a certain existing implementation technology

of choice. This diagram shows the architectural design of the system in

terms of its physical components. The main issue here is how best to

create physical components that are not only compliant with service

specifications, but also architecturally sound and reusable. This

modelling is very important for CBSD methods and NA VITA provides

detailed discussions on issues surrounding this modelling. Component

modelling is described in Chapter 13.

~ Sequence Diagram, State Transition Diagram, and Deployment

Diagram - These UML diagram are also used in appropriate contexts:

Sequence Diagrams to model interactions between objects within a

component, and between multiple components; State Transition

Diagrams to model event-driven lifecycle of objects and components;

and Deployment Diagrams to show allocation of software components

to hardware devices. Sequence Diagram and State Transition Diagram

are discussed in Chapter 13. Since the deployment modelling is

relatively simple, for example see (Bennett et aI, 2001), it will not be

repeated in this thesis.

Figure 5.4 shows the general flow of development of NA VITA models,

dependencies between diagrams and other documentations used in those models, and

various crosschecks between them. Single-headed arrows in the figure indicate the

timing of development and/or one way dependency of elements ofthe models, while

double-headed arrows show interdependencies between them. It is worth reminding

that if a diagram is dependent on another, every time the first diagram is revised, the

second diagram needs revision too. If more than one arrow converges in a diagram

or documentation, the diagram or documentation is a crosscheck between diagrams

from which the arrows originate.

a. Actors, interactions and system boundaries from the context diagram are

documented in the system functionality documentation

b. Actors, interactions and system boundaries from the context diagram are

brought forward into the MFD

c. Descriptions of functionality units in the MFD are documented in the system

functionality documentation

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 98

n

5.2 Orthogonal View of N A VIT A

d. Each complex functionality unit analysed in detail using LFD by breaking it

down into smaller-grained activities. This analysis can often lead to revision of

original MFD in terms of changes to the boundaries, limits of the functionality

and even actor(s) involved. Therefore, new and detailed knowledge gained

from LFD feeds back into the MFD. As noted, any changes to MFD are likely

lead to changes in the documentation according to the flow c.

Context Diagram

Ib

g

a

c

Lower-level Functionality
Diagram (LFD)

11
h

Logical Screen ----..... User System
Layout (LSL) Dialogue Model

I j k (USOM)

1

f

1M Fragments -------.... Information Model
(1M)

m Functionality ... _____ ..J

Unity Entity Class
Matrix (FEM)

Protocol
Modelling

q LI ___ -+. Component
Modelling

o

e. Descriptions of the functionality units in the documentation feed into the LFD.

A combined flow d and e into LFD enables it to become a crosscheck between

the MFD and the documentation, because it enables the analyst to approach

this detailed analysis from two independent angles - first from informal textual

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 99

5.2 Orthogonal View of N A VITA

description of the functionality unit focusing on what the process entails, then a

diagrammatic analysis showing how the user would interact and system would

work - and check one against the other. In particular, it ensures that the steps in

the descriptions of functionality units are consistent with the activities in the

LFD.

f. The initial 1M bases itself from candidates for entity classes identified from the

documentation. After crosschecking with 1M fragments from LSL, it may lead

to revision of what entity classes are inside the system and what are not. This

may often lead to revision of the way functionality units are described.

g. Details of interactions, carried from the context diagram through MFD and

crosschecked in LFD, are used for the analysis of input and output data

between the users and the system. For each functionality unit in MFD, a LSL is

produced.

h. Based on the input and output data in LSL, USDMs are produced, which bring

together 10 data from LFD and 10 data from LSL, enabling a crosscheck

between the two diagrams. Furthermore, the control structures of the two

diagrams can be crosschecked as well.

i. 10 Data in LSL are analysed to form entity classes and relationships. In some

cases, it may lead to identification of missing data and hence revision of the

LSL.

j. 1M fragments from LSL are then used to crosscheck the original 1M, which

often requires a revision in the light of the concrete analysis of data.

k. Functionality units are brought forward into FEM.

I. Entity classes are carried into FEM that provides a crosscheck between the two

models.

m. Entities from the 1M are fed into FEM.

n. For each functionality unit a protocol model is produced; the control structure

derived from the protocol analysis can be used to crosscheck the control

structure in LFD and USDM too.

o. Control structures are brought forward for crosschecking.

p. Entities and functionality units provide the basis for NA VITA component

modelling.

q. Operations identified in the protocol analysis are allocated to classes and

components.

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 100

5.3 N A VIT A Filters: Conditions of use

5.3 NAVITA Filters: Conditions of use

NA VITA is suitable for use in development of software applications with the

following characteristics.

• Database-driven business/enterprise applications with some complex

computational processes: modelling techniques and software

architecture proposed by NA VITA assume that the applications are

typically business information systems. This method provides no

methodological guidance on, for example, how to develop a compiler

or a game application using the CBSD approach.

• Interactions with users through GUI: modelling techniques and

software architecture of NA VITA also assume that users interact with

the system directly or through other human actors. System analysis in

NA VITA depends heavily on the analysis of the user-system

interactions.

• Medium-sized applications: all three elements ofNAVITA assume that

the applications have between 10 and 50 complex functionality units.

Applications with fewer functional units may not benefit much from

this method, whilst applications with substantially more functionality

units may require more detailed methodological guidance on issues

such as implementation, testing, documentation and project

management.

• Time, safety and dependability are not of primary concern: NA VITA

does not provide methodological guidance, such as the use of formal

specification techniques, for the analysis and design of applications

such as real-time systems.

Having said this, parts of NA VITA may be adapted for use in development of

applications without these characteristics; for example, the NA VITA protocol model

may be used for analysing real-time applications.

Chapter 5 - The Proposed CBSD Method: NAVITA - An Introduction 101

6.1 Introduction

Chapter Six

NA VITA Software Architecture

6.1 Introduction

In this chapter, the architectural model suggested by NA VITA is discussed in detail.

The role of architecture is extremely important in component-based software

applications, and NA VITA puts software architecture on an equal footing with the

system development process and system modelling. The main reason is that

component-based applications need to be built so that it will be easy to add, remove

and upgrade parts of the system with minimal ramifications on the rest of the

system. A good software architectural model helps analysts achieve qualities such as

flexibility and reusability in their designs (Crnkovic and Larsson, 2002). In this

method, analysts first attempt to understand the users' requirements. If some or all

parts of the system need to be developed, due to unavailability or non-viability of

reusing the entire application, then requirements must be translated into a logical

architectural design. The application architecture is defined in terms of services the

components should offer. Specifications of these services provide the basis for the

acquisition, or if necessary eventual development, of the components. Therefore,

application architecture is the key to most development stages.

6.1.1 Software Architectural Models Suggested by Existing CBSD

Methods

Software architectural models suggested by existing CBSD methods are examined in

the survey paper in Appendix II. Models suggested by various existing CBSD

methods tend to be rather generic. For example, RSE and SELECT Perspective

promote the three-tier architectural model, which is suitable for many applications

including non-component-based ones. Such genericity is unhelpful where analysts

Chapter 6 - NAVIT A Software Architecture 102

6.1 Introduction

are interested in a more specific ways to break down the system into components.

NA VITA Software Reference Architecture is formulated in such as way that it is

generic enough to be applicable to a range of systems, while restricted to only

component-based applications.

6.1.2 Software Architectural Model Envisaged by NAVITA

NA VITA Software Architectural Model, in line with the philosophy of CBSD, does

away with the notion of application as a monolithic entity in terms of the way the

system is implemented and is seen by its users. In its place comes the notion of a

union of loose and fairly independent components collaborating with each other

through a common 'platform', onto which components can easily be added and

removed in order to keep the system in line with changing user requirements. In this

architectural vision, components are added to the system if and when new

capabilities are required and removed if they are deemed unnecessary. NA VITA

Software Architectural Model is inspired by a range of modem software

technologies.

6.1.3 Enabling Technologies

Middleware architecture and technologies such as CORBA, Java RMI, DCOM,

OLE, ActiveX (Szyperski, 1998; Orfali and Harkey, 1997) provide mechanisms for

components to share their services across applications and implementation

environments. Programming languages such as Java allow programmers to create

self-contained components (Sun, n d.), while commercial application development

environments such as Visual Basic enable developers to reuse components visually

(Microsoft, n d.). Most commercial web browsers such as FireFox (MoziIIa, n. d.)

provide plug-in managers that allow users to update and maintain components in the

browser applications on the go.

6.1.4 Hardware Analogy

Many authors on CBSD methods are quick to highlight the analogy between the

standard computer hardware engineering approach and the CBSD software

development approach, citing the importance of modularity of components,

separation and standardisation of component interface, and pluggability of

components. NA VITA software architecture draws a deeper analogy with the

Chapter 6 - NAVITA Software Architecture 103

6.2 NA VITA Reference Architecture

computer hardware. One of the key aspects of computer hardware architecture is the

use of a core component into which other components plug, namely, the

"motherboard". The motherboard functions as the central component that defines the

core of the system by way of expressing the interfaces with other components in the

system, effectively defining what components can and cannot plug into it. The use of

the motherboard component provides a simple, flexible and effective computer

hardware architecture. NA VITA Reference Architecture suggests the use of such a

component in software applications too.

6.2 NAVITA Reference Architecture

NA VITA Reference Architecture is based on three key properties:

• the Backbone component provides the platform for component

communication

• the use of Application Manager in each application serves as an accessible

mechanism for addition and removal of components from the application

• the concept of Service is used to describe the functional behaviour of

components

Figure 6.1 NAVITA Reference Architecture

Business
Component A

Application
Manager

I

Admin

Business
Component Z

Boundary
Component 1

Boundary
Component 2

User

Chapter 6 - NAVIT A Software Architecture

DBMS
Component

Boundary
ComponentN

104

6.2 N A VITA Reference Architecture

6.2.1 The Backbone Component

The Backbone component is the central component through which services of

components are provided and used. In this respect, it is the most important

component in a system; without it other components could not function together as a

system. The Backbone component provides a registry and serves as a medium of

communication for all other components. Each application has a Backbone

component built into it. Everything in this architectural model is a component

including the Backbone component; in a sense, it is a true component-based

architectural model. The Backbone component primarily deals with the following

tasks:

• maintaining the service registry, which holds detailed information

about the services and interfaces of all components

• keeping the registry updated when a new service is defined, an existing

service is removed, when a component that satisfies some service(s) is

installed, and when a component is removed

• during the runtime, resolving the requests for component services in a

way that is platform-independent and location-transparent

When a service is defined with the Backbone component, it will generate stubs for

the client and the server, i.e. interfaces that the real client and server must implement

in order to be able to communicate with each other (Orfali and Harkey, 1997). Once

defined, implementation of these interfaces, or other compatible interfaces, can be

registered with the Backbone component. The Backbone component will have to

ensure that the expected interface matches the actual interface of the component. At

runtime, when client components invoke services from the server components, the

Backbone component ensures that the components are identified and their services

used, irrespective ofthe physical location of the components involved. For other key

services typically provided by Object Request Brokers, see Szyperski (1998).

The Backbone component therefore acts like a middleware architecture, and it has

the following key properties:

• platform-independent - implementation technology of components do

not present a barrier to the integration of components in an application

• location-transparent - the physical location of the components, which

may be the same computing device or device across a network, does

not present a barrier to the way in which services of components are

Chapter 6 - NAVITA Software Architecture 105

6.2 NA VITA Reference Architecture

provided and used. Simply put, components do not need to know each

others' physical locations in order to share their services.

• paradigm-neutral - components may be designed and implemented

using any 'paradigm' such as Structured, 00, Relational

• flexible openness - this architecture supports both open and closed

architectural models. An open architectural model is a model in which

the kinds of components that may be added to the application are not

limited by the Backbone and Application Manager components;

therefore the exact services are not 'hardwired' into the application.

With the closed architectural model, the services of the application are

restricted, mainly by limiting the service definition functionality of the

Application Manager and Backbone components.

6.2.2 Application Administrator

An application administrator is someone who is in charge of managing the

components in an application. The administrator role can be played by some of the

users, or a dedicated individual or group of people, if the application is large and

spans multiple locations.

6.2.3 Application Manager

In each application, there will be a specialist boundary component, known as the

Application Manager component. This is used by Application Administrator to

interact with the Backbone component in order to perform component

administration tasks such as registering components with the Backbone component

(see Section 6.2.1).

6.2.4 Service

A service is a contribution made by a component of any type, such as boundary,

business and DBMS, to realise a functionality unit. In many cases, a service is a set

of publicly accessible operations provided by a component, often involving a

complex protocol for communication, such as that between a desktop application

and a printer manager.

Chapter 6 - NAVIT A Software Architecture 106

6.3 Logical Architecture

6.2.5 Logical and Physical Architecture

NA VITA Software Architecture is expressed at two levels of abstraction: one logical

and one physical. Logical software architecture is mainly concerned with the high­

level (system-level) description of the system in terms of services provided by its

components in a way that is not influenced by considerations for their

implementation. Physical architecture is more focused on lower-level (component­

level) design ofthe individual components.

6.3 Logical Architecture

NAVITA logical architecture assumes that a functionality unit (Section 9.3.3) is

realised by collaboration between two logical components: a boundary component

through which users interact with the system and a business component that

encapsulates the business logic, constraints, process/procedures and data. The two

components are bound by a contract, and their interactions realise the functionality

unit.

- Boundary --(]::
Component

(
)

Business
Component

User Component Communication

6.3.1 Logical Boundary Component

A logical boundary component is an encapsulation of the mechanism through which

an actor interacts with the system while using a functionality unit. In many

situations, it is a set of Graphical User Interface (GUI) objects, using which a human

actor interacts with the system. The primary concern of the analysts at this logical

level is not how these boundary components are made up of various visual user

Chapter 6 - NAVITA Software Architecture 107

6.4 Physical Architecture

interface objects, or in cases of interaction with other systems, the exact nature of

communication protocols, but rather the nature of logical interactions with the user

in terms of inputs and outputs, and communication with a business component.

6.3.2 Logical Business Component

A logical business component provides a complete service to the logical boundary

component to realise a particular functionality unit. It is neither good nor feasible to

implement a business component for every functionality unit. However, logical

architectural analysis is not about identifying physical components of the

application. Rather, it is about identifying and specifying the interfaces of business

components providing certain functionality units in a way that does not indicate how

the application should be composed. Therefore, the main aim of logical architectural

analysis is to explore the externally visible interfaces and communications of

business components by first separating out the user interface part of the system and

then envisaging how the boundary will have to respond to the needs of the users. In

this architectural analysis it is assumed, for simplicity, that the Backbone component

is not involved in the communication. Chapter 12 provides further discussion of

logical architectural analysis suggested by NA VITA.

6.3.3 Logical Component Communication

Components communicate through service operations. These operations need not be

simple operation calls, such as those in object collaborations (Jacobson et aI, 1992).

Instead they may involve complex exchange of messages, such as those between

message-based synchronised processes in real-time applications (Bums and

Wellings, 2001). In a typical client-server configuration, the server does not need to

'know' its clients; only the client needs to know its server (Edelstein, 1994).

Therefore, clients do not have to register with the server in order to use its services,

except in special circumstances, for example, for security reasons.

6.4 Physical Architecture

While the logical architecture defines the functionality of the application in terms of

services of logical components, useful for the purpose of defining what components

should do and their interfaces should be, it is not a pragmatic design for

implementation. Some services may be related and always used together; in such

Chapter 6 - NAVIT A Software Architecture 108

6.4 Physical Architecture

cases these services can be provided by a single physical component, reducing the

number of components and complexity to manage.

Physical components, like logical components, may be of two main types: boundary

components and business components. Other components such as Database

components, language (library) components, lower-level service components such as

sort, search and queue components can also be accommodated in this architecture, as

discussed in Section 6.3.

6.4.1 Physical Boundary Component

These components are compositions of aUI or other interface objects, through

which users communicate with the system. They mainly communicate with the

Backbone component to acquire the services they need. Related boundary

components can be composed together. See Chapter 13 for further discussion.

6.4.2 Physical Business Component

Various definitions of component by existing CBSD methods are presented in

Appendix II. The survey shows that different authors emphasise different aspects of

components: some emphasise the technological aspect (Szyperski, 1998), some

regard it as essentially non-technological (Jacobson, 1997), some stress the

relationships between components and business processes (SCIPIO), some treat it as

a generic application (Atkinson et ai, 2002), and so on. Not only CBSD methods, but

also non-CBSD methods have their own notions of the term "component".

6.4.2.1 Fundamental approaches to decomposition of system

Detailed analysis of a system always requires systematic decomposition of the

system by means of identifying its constituents and their dependencies (Wieringa,

1998). The nature of a system's constituents - dictated by the paradigm of the

method - affects the way in which the system is decomposed. There are two

fundamental main perceptions of the nature of a system's constituents: one promotes

the process-centric view and the other, the structure-centric view.

Chapter 6 - NAVIT A Software Architecture 109

6.4 Physical Architecture

6.4.2.2 Component as a process or group of processes

In this view, the system and its constituents are all processes by nature. The system,

as shown in Figure 6.3, is often described as a hierarchy of processes. In such a

hierarchy, the system is represented as a single process at the top of the hierarchy

which is repeatedly decomposed until further breakdown is deemed unnecessary.

System as a process

Process group/thread - higher level processes

<I...... Functionality units - middle level processes

Lower level processes

If a component is treated only in terms of pure processes, then there are three main

possibilities for granularity of components:

• Component as a Low-level Process - component as a unit smaller than that

of a functional process is untenable because it is unlikely to yield a high

amount of reuse.

• Component as a Middle-level Process - component as a functional process

is desirable only so long as it is behaviourally rich, complex and worthwhile.

It however would not represent a step forward from the traditional reuse

approach.

• Component as a High-level Process - component as a sub-system or an

application itself is an attractive prospect from the reuse point of view.

Then the question is this: How can analysts compose process into larger ones or

components? There are a few notable approaches to answering this question.

In methods such as SSADM, composition of smaller processes into larger ones is

generally arbitrary since there is no principled way to ascertain what processes make

up a higher-level process or component. The usual approach is to break up the

system processes along departmental lines, such as Order Processing and Payroll.

However, analysts are at liberty to decide whatever forms of sub-system there

Chapter 6 - NAVIT A Software Architecture 110

6.4 Physical Architecture

should be in the system. Such a random composition of components cannot lead to a

stable basis for component composition.

Alternatively, processes that are used together can be grouped together. The

emphasis is therefore upon how the users will be using the processes. For example,

in the case of library system, all functionality units used by readers are put into a

component, those used by librarians into another component and so on. There are a

number of problems with this approach: first, functionality units are often shared by

many users such as the 'search' functionality (in that case we may decide to have a

separate component for share functionality units), and second, often actors who use

certain functionality units may change over time. For example, Borrow Book may be

once used by a librarian, then a reader might use it and later both. It is clear that this

approach does not provide a stable basis for grouping processes.

A more sophisticated approach, which can be called the 'business-driven approach',

would be to group together processes that are chained together by their input and

output values (Allen and Frost, 1998). For example, for Borrow Book, Return Book

will be necessary, for Make Reservation, Cancel Reservation and so on. This approach

goes some way to solve the question; however, since all functionality units are

related in some way, it is difficult to determine where to draw the line.

6.4.2.3 Component as an encapsulation of data structure

In this perception of the system, constituents of a system encapsulate a certain part

of the data structure. Components are created by accommodating operations to the

underlying data structure. Manifestation of this idea is clearly seen in Abstract Data

Types (Watt and Brown, 2001). Each component in this perception is centred on a

well-defined data structure with a finite set of operations. Data structures such as

Stack, List, and Queue are neat components because their data structures are

completely encapsulated by their operations. These components are self-contained

and cohesive, making them highly versatile and their reuse convenient. Object­

orientation can be explained as an attempt to apply this idea universally. Like ADTs,

00 classes have internal data structures which are encapsulated by a set of

operations. There are other similar approaches such as JSD entities (Cameron, 1989)

and high-level processes in Yourdon Structured approach (Yourdon, 1989).

Chapter 6 - NAVIT A Software Architecture 111

6.4 Physical Architecture

When entities of business information systems are taken as a basis for objects,

difficulties arise. Entities of information systems are not as self-contained as stacks

or lists, and they have complex and large data structures. Only if classes are as

reusable as ADTs, would there be a perfect means of reuse.

6.4.2.4 Difference - The Problem

The fundamental differences between these two approaches reflect the two

perspectives analysts have on components: one business and one technical. From the

business point of view, it is more convenient to think of components in terms of

processes (Casson, 2000; Allen and Frost, 1998). This view of component does not

take into account technical and architectural issues of integrating foreign

components into an unfamiliar system. On the other hand, the technical view would

favour the structural approach because it enforces the integrity and cohesiveness of

the components. In doing so, it is easy to ignore the business perspective of the

component.

Jacobson et al (1992) show that, contrary popular belief, 00 software is more

maintainable than Structured software, and that 00 approach is better only so long

as the nature of change is structural. In Figure 6.4 for example, addition of a new

account type such as student account will not affect the rest of the class hierarchy,

while adding a new operation such as to calculate interest will affect all classes. On

the other hand, adding a new account type will affect all processes that access the

account data store, while adding a new account operation will have no impact on

Chapter 6 - NAVIT A Software Architecture 112

6.4 Physical Architecture

both data store and processes. Therefore, these two approaches are not only

significantly different, but also paradoxical.

NA VITA argues that there are two problems with the traditional understanding of

classes:

¢ Granularity of operations tends to be very low. By focusing on attributes of

individual entities, operations allocated to entities become too stretched over

classes. Therefore, classes can no longer give a sense of what they do in

business terms.

¢ The previous problem is partly caused by the nature of relationships between

classes which tend to get mixed up. Analysts must distinguish between

relationships that deal with data structure and relationships that represent

'interactions' between components.

6.4.2.5 Granularity

A cornerstone of 00 is arguably the unification of data and process. Instead of

regarding systems as being composed of separate data and process parts, 00 seeks

to combine data and process into coherent objects - with data in their cores and

processing surrounding them (Booch, 1991 and 1994). Objects also closely reflect

real-life entities and hence it is said to become much more 'natural' and 'obvious' to

think of systems as being made up of collaborating objects. The concept of "object"

seems to work well with objects in application where there is a neat encapsulation of

data by operations. 00 works well with application such as GUI systems

(Shneiderman and Plaisant, 2004). When the concepts are imported into the spheres

of Information System, certain adaptations are made in order to accommodate the

data-oriented nature of the application. Information Systems are largely database­

driven and hence class model of a typical IS has a strong RDB feel and connotation.

Moreover, operations in those classes are so low-grained that it is difficult to

establish what the system might be doing by studying class operations alone,

because these operations tend not to have much resemblance to business operations.

Such diagrams tend to show both data structure and operations and it is hard to find

genuine integration of data and processing in these cases. For example, this has led

Jacobson et al (1992) to invent 'control' objects that absorb operations that will not

naturally sit with "entity objects".

Chapter 6 - NAVIT A Software Architecture 113

6.4 Physical Architecture

6.4.2.6 Class Relationships

The problem of low granularity of operations is often caused by the failure to

distinguish between the nature of class relationships and data structure relationships.

Classes need to represent substantial entities with rich behaviour and a certain

amount of independence. Instead of objects representing real-life entities, class

models are usually laden with details about the structure of information. To illustrate

the problem let us study the following entity/class diagram for a typical library

system.

y
I Book I

Book
Subject

Authorship

In the first diagram, there are two entities/classes and a relationship and in the

second diagram, there are substantially more of both. However, in real terms, they

both represent the same things.

There are two important things to note here. First, even though many new entities

are introduced in the second diagram, these new entities simply elaborate the data

structure, and do not add anything unaccounted for by the first diagram. These new

entities are created for technical necessity, such as to satisfy Relational Data

Analysis constraints (Goodland and Slater, 1995). Second, the relationship between

Reader and Book in the first diagram represents real-life interactions such as

borrowing books, but relationships between say, Copy and Title do not. In a system

therefore, there are entities and relationships that are clearly created to represent the

data structure, and there are entities and relationships that are created to represent

important entities and their relationships in the 'real' world.

Chapter 6 - NAVIT A Software Architecture 114

6.4 Physical Architecture

6.4.2.7 NA VITA Solution

The discussion so far points to a possible solution involving 'classes', based not on

individual entities, but larger structures, possibly containing many entities. The

emphasis is on finding entities with tight relationships representing large objects

with sets of complex behaviour. These 'classes' must therefore take into account

both structural as well as functional considerations, and avoid overstretching

operations over entities.

Figure 6.6 Library System Entity/Class Diagram

Reservation

Loan

In Figure 6.6, even though there are many entities, NA VITA suggests that there are

only two 'classes' in this diagram, as shown in Figure 6.7.

RegisterO
ChangeAddressO
BorrowBookO

Reserve

Loan

AddBookO
BorrowBookO

These classes can better handle both structural and process changes. Altering the

structure such as adding a new reader type, or combining Reader and Address,

would only affect the Reader 'class.' Effects of changing some operations can be

contained: for example, adding an operation for Book Search will affect only the

Chapter 6 - NAVIT A Software Architecture 115

6.5 Component according to NA VIT A

Book 'class', although it affects many entities. Some operations such as the one for

reservation cancellation, may affect more than one class, yet its effects are more

containable. In this way, components become behaviourally richer with a more

coherent lifecycle of states. These 'classes' are the basis for NA VITA components.

6.5 Component according to NAVITA

In CBSD methods like this, the concept of component is the central pillar of the

method. Since the term component is used in many different contexts - both

technical and non-technical - it is impossible to give an authoritative definition of

the multi-faceted nature of the term. One can ask numerous questions about the

nature of the concept: Are components binary units? Are they executable? Are they

non-binary executable units? How are they different from classes and objects? What

are components made up of, in terms of interface, implementation, service and

package? What is the architectural nature of a component? How are components

implemented? How can components be related to business processes? Undoubtedly

there are more questions that can be asked. Instead of attempting to address all

possible concerns, with the danger of getting distracted from the main issues, our

interest is better served by explaining ways in which the term is used in this method

and highlighting the key aspects of "component."

6.5.1 Important Aspects of Component

In non-technical terms, components are building blocks of software applications. In

a component-based software system, a component is a unit of software that has an

interface and an implementation. A good component provides a set of logically

cohesive services and has limited dependency on other components. From a more

technical point of view, NA VITA software components have the following

characteristics:

• A NA VITA component is a package of executable code that

encapsulates a well-defined data structure and provides a set of related

services through its agreed interface

• Each NA VITA component has a container that enfolds the objects if

the component is implemented using an 00 technology, or entity

instances if the component is implemented using non-OO technology.

Chapter 6 - NAVIT A Software Architecture 116

6.5 Component according to NA VIT A

Reusing a component involves reusing the container and the structure

of classes and entities only, excluding objects and entity instances

• NA VITA business components can be plugged into the Backbone

component to share their services

6.5.1.1 Architectural Perspective

As discussed in previous sections, a system can be decomposed along the line of

data entities, and processes. As far as component-based decomposition of a system

is concerned, NAVITA takes the position, described in Section 6.4.2.7, that

components are identified at the point where both data and process decomposition

merge. Components need to be neat encapsulations of a mixture of data, processes

and various constraints, providing a true unification of data and processes. These

components convey a sense of business purpose.

In structural terms, a component has an interface and an implementation of the

interface. This separation of interface from the implementation is clearly not a new

concept; it can be found in previous generations of methods such as 00 and

Structured. Yet, the concept has become essential in CBSD methods. Generally each

component in an application has a published interface that defines the services

provided and required by the component and the implementation of the interface. It

is through these interfaces that components define themselves. Components cannot

do what has not been defined by their interfaces or contravene them. In some

advanced cases, an interface may have many different implementations in order to

allow components to behave differently in different situations.

6.5.1.2 Service Perspective

Logical architecture defines the services of the application; how services are

translated into components in the physical architecture is determined by the system

designer, the method the designer uses, and the availability of exiting components. It

is possible to create one business component per service or one business component

per many services. Often, using a business component per service would be

unrealistic in terms of managing the number of components and their dependencies.

Therefore services need to be grouped together in such a way that a component

provides related services. In these cases, components are defined in terms of services

Chapter 6 - NAVIT A Software Architecture 117

6.5 Component according to N A VITA

they provide. Each component has a published interface that defines the services

provided and required by the component and implementation ofthe interface.

. 68 Ch t· f f t

Component name
Component name Required Services

ComponentName " v

RServiceA "v Required Services

RServiceB

PServiceA "v Provided Services

PServiceB

6.5.1.3 00 Perspective

~------~ ~

ComponentName
RServiceA

RServiceB

PServiceA

PServiceB

t
Provided Services

From an 00 perspective, components are partly similar to and partly different from

classes.

Similarities between components and classes

Like classes, components are 'types' and not instances. Both classes and

components have namespaces, separate interfaces from implementations

(abstraction) and espouse a high level of information hiding. Runtime

materialisation is an instance of the component and each instance will have a

uniquely identifiable identity. Some components may have multiple instances in an

application, while others only a single instance. Therefore, some components may

have permanent states. Szyperski (1998) suggests otherwise, but it is not difficult to

see the need for components having permanent states. Consider a customer

component: if there is a constraint that the total outstanding credit of all customers

must not exceed a certain amount, it the customer component has to have a

permanent state.

Differences between components and classes

One of the main differences between a component and a class is that a component is

has a container, which when instantiated, may contain a number of objects in them.

Another important difference is that components provide services and classes

operations - activities with lower level of granularity. Certain 00 methods advocate

the use of responsibility, something bigger than an operation. However, classes do

Chapter 6 - NAVIT A Software Architecture 118

6.5 Component according to N A VIT A

not have to have these responsibilities; they provide operations not responsibilities,

at least not thought of as fundamental property of classes. Components, on the other

hand, must provide services. Also, responsibility is a role-playing concept confined

to single classes, and services generally encompass more than one class.

Components are generally larger than classes, in the sense that they may contain

many classes. Therefore, components also act as a grouping mechanism.

Components do not expose their own properties, unlike class attributes.

For example, consider Customer as a class and a component. Customer class may

have attributes and operations such as to set the credit limit. Customer component

may not contain entities/classes, and must provide complete services. For example,

it may provide a service to increase the credit limit of everyone by a certain

percentage. This would involve retrieving the current credit limit of every object,

and then calculating the new limits before the credit limits are updated. This is

something an individual customer class cannot do (see the second principle in

Section 13.8.1, which is further discussed in Section 4.1.2 of Appendix III).

6.5.1.4 Paradigm Perspective

The concept of component is also paradigm-neutral in the sense that it does not

imply the need for implementation in 00 languages, although this mostly happens.

As an example, the Customer component could, in principle, be implemented as a

Relational Database table with the services as queries. Component developers then

have the liberty of choosing a specific paradigm. Due to popularity of 00

programming languages and support for component-based applications, 00

languages are assumed to be the default choice for implementation.

6.5.2 Physical Component Communication

In this architectural model components communicate via the Backbone component.

However, during the logical analysis, it has been assumed that components interact

directly. The Backbone component is later introduced to this analysis and the model

is enhanced in the design stage where implementation issues such as the physical

locations of components and the choice implementation languages need to be

considered. The primary role of the communication model is to show the rules for

Chapter 6 - NAVITA Software Architecture 119

6.6 Related Work

dynamic interactions between components. These rules need to be observed by the

components.

6.6 Related Work

Much research has been carried out in the area of software architecture and related

issues. Bahsoon and Emmerich (2003) survey architecture evaluation approaches.

Researchers at Carnegie-Mellon Institute have made a number of contributions with

their publications on a wide range of topics including, evaluation methods (Kazman

et aI, 1998)) and evaluation of architectures (Gallagher, 2000; Barbacci et aI, 1997),

design method (Bachmann et aI, 2000), and architectural connections (Allen and

Garlan, 1994). Shaw has also made a significant contribution to the study of

software architecture (Shaw and Garlan, 1996). There has also been much

development in the area of architectural patterns (Coplien, 1997; Monroe et aI,

1997). Liler and Rosenblum (2001) describe Wren, a development environment for

component-based software.

Chapter 6 - NAVIT A Software Architecture 120

7.1 Introduction

Chapter Seven

NA VITA System Development Process

7.1 Introduction

A valuable lesson that can be learnt from the rise in popularity of the DSDM

framework over more tradition SDPs is that, instead of being either too generic -

such as the classical waterfall model - or too specific - such as a process pattern -

SDPs should deal with development situations with a set of well-defined

characteristics (Stapleton, 1997; Sommerville, 2004; Ambler 1998 and 1999).

Accordingly, NA VITA System Development Process (SDP) should be applied only

to development of applications with certain characteristics. To this end, NA VITA

recognises that there are three general scenarios in CBSD projects. They are:

• An application that exactly or closely matches the users' requirements

is found; therefore, the entire application need not be developed

• Some reusable components are found; other components need to be

developed and then assembled

• No reusable components are found; components for the entire

application need to be developed and assembled

More specific scenarios within these categories are discussed in Section 7.3.

7.2 NAVITA SOP

NA VITA SDP is an iterative and incremental process with five main sub-processes.

They are:

• Background Investigation

• Requirements and System Analysis

• Component Design and Development

• Application Development

Chapter 7 - NAVITA System Development Process 121

7.2 NAVIT A SDP

• Component Search and Acquisition

As shown in Figure 7.1, NA VITA puts the search and acquisition of existing

components at the heart of the development process. All other development

activities are based around this central sub-process.

Logical
Architecture

r:;;;"mena~
System Anal~:~d \

Prototyping

'\i
Detailed Requirements

Analysis K Component Service
~ Specification

Feasibility
Study

Component Search
and Acquisition

Physical Design

-7 ~omponent De'~
4::- and ImPlementa:ronn J
Comp~nent Implementation &

Business
Study & Requirements

Investigation

Testmg ~ Adaptation

~AI"
A I, t' ,. pp IcatlOn

pp Ica Ion ApplIcation A bl IT ' ssem y unmg
Acceptance Development)

Testing~ /

Integration
Testing

7.2.1 Stage 1 - Feasibility Study

In many ways, this stage is similar to the classic feasibility study; it seeks to

establish the viability of the whole project in terms of cost, technology and time.

There is a wealth of material discussing issues arising from this exercise, such as

(Sommerville, 2004), which need not be repeated here. However, there are CBSD­

specific feasibility concerns that need to be considered when the investigation is

carried out. They include:

• Availability of Applications/Components - Feasibility reports for CBSD

projects need to cover availability of relevant applications and/or

components that can potentially be reused in the project.

Chapter 7 - NAVIT A System Development Process 122

7.2 NA VIT A SDP

• Quality, costs and benefits of reusing component - The report should also

attempt to outline how software quality, development costs and benefits are

affected by reusing existing components (DSDM Consortium, 2000).

• Legal issues - The report should clarify the legal positions of both

component supplier and component user regarding ownership and

responsibilities.

• Technological issues - Possible barriers to integration and solutions should

be highlighted in the report.

Before or while establishing the feasibility of a project, the business context and the

users' requirements need to be investigated. The width and depth of this business

and requirements analysis inevitably depends upon the size and complexity of the

application, as well as the analysts' familiarity with the business domain.

Nevertheless, it is clear that Stage 1 and Stage 2 intertwine.

7.2.2 Stage 2 - Business Study and Requirements Investigation

In this stage, the analysts attempt to establish a good understanding of the business

domain and the users' requirements through analyses of the business processes and

the requirements for a new system. During or immediately after the analysis of

business processes through Business Process Modelling (BPM), the analysts attempt

to capture the user's requirements by means of requirements elicitation techniques

(Kotonya and Sommerville, 1998; Sommerville, 2004). Although the requirements

investigation is often preceded by the BPM, the two analyses are done in a cyclic

way. BPM also involves envisaging how the current business processes may be

affected by the new system. Therefore, business process models are often produced

for the current and desired states ofthe business processes.

NA VITA recommends using the BPM techniques discussed by Allen and Frost

(1998) in conjunction with the standard Business Process Modelling Language

(White, n. d.; BPMI, 2004). For the analysis of the users' requirements, NAVITA

provides the Context Diagram (Chapter 8), which is mandatory for most

development situations. If the requirements need to be captured in greater detail, the

Middle-level Functionality Diagram (Chapter 9) can be deployed.

Chapter 7 - NAVITA System Development Process 123

7.2 NA VIT A SDP

7.2.3 Stage 3 - Component Search and Acquisition

This is the one of the most essential activities of CBSD. So far in the development,

analysts would have a) established the feasibility of the project b) understood the

business context and c) found out the functional and non-functional requirements of

the system. Equipped with this knowledge, developers can first look for an

application that may satisfy the requirements. Candidate applications are verified

and validated by developers and users. In early iterations, this need not be a rigid

one-way process: often users' requirements can be renegotiated if similar

application(s) are found (Sommerville, 2004). The development can loop back to the

BACKGROUND INVESTIGATION sub-process a few times.

There are two possible outcomes from this initial search. The first scenario is that a

matching application - perhaps after some renegotiation with the users - is found

and may be adapted, before being verified and accepted by the users. The second

scenario is that no matching application is available or its reuse unviable. In that

case, the system is further analysed and broken down into components, in terms of

their specification, in the REQUIREMENTS AND SYSTEM ANALYSIS sub-process.

After that, developers then look for components satisfying these specifications. Only

those components that are not available or viable for reuse are developed in the

COMPONENT DESIGN AND DEVELOPMENT sub-processes. Once all the necessary

components are acquired, the application is assembled in the ApPLICATION

DEVELOPMENT sub-process.

In a broader sense, the COMPONENT SEARCH AND ACQUISITION stage involves the

following activities:

• provide mechanisms for storing, searching and retrieving existing

applications and components from a range of sources including internal

repositories

• verify applications and components against their specifications

• maintain portfolios and/or libraries of reusable applications and

components

• provide legal and technical expertise necessary for the acquisition of

internal and external components, possibly from independent

component vendors.

Chapter 7 - NAVITA System Development Process 124

7.2 NAVITA SOP

Much research has been done in this area of CBSD. For example, Berglund (2002)

discusses issues related to documentation of component libraries while Zaremski

and Wing (1997) show how formal specifications can be used for specification

matching. Yao and Etzkorn (2004) examine various approaches to component

classification and retrieval before describing how semantic-web can be used for

component classification and retrieval.

7.2.4 Stage 4 - Detailed Requirements Analysis

Once it is clear that reusable applications are either unavailable or unviable, analysts

have to decompose the system in greater detail to uncover the logical components of

the system. Since the initial investigation into users' requirements in the BUSINESS

STUDY AND REQUIREMENTS INVESTIGATION sub-process is not detailed enough,

before the components can be identified, analysts perform more detailed

investigations into the users' requirements. This investigation is supported by

prototyping, usually using pen and paper. For iterative development, the BUSINESS

STUDY AND REQUIREMENTS INVESTIGATION sub-process can be repeated.

The key NA VITA models used in this stage are Middle-level Functionality Model

(Chapter 9), Lower-level Functionality Model (Chapter 9) and Information Model

(Chapter 11).

7.2.5 Stage 5 - Prototyping

Various prototyping techniques can be deployed depending on the development

scenario. For instance, a paper-based mock-up of the user interface (or another form

of throw-away prototype) of the new system can be used when it is likely that the

component will be acquired from a vendor. On the other hand, if it is reasonable to

believe that the component will need to be developed (internally), then a set of

reusable interfaces could be developed. The primary aim of prototyping is to help

capture important user requirements.

NA VITA provides Logical Screen Layout (Chapter 10) and User-System Dialogue

Model (Chapter 10) for this development stage.

Chapter 7 - NAVIT A System Development Process 125

7.2NAVITASDP

7.2.6 Stage 6 - Logical Architectural Analysis

Once the analysts have gained a good understanding of what the system should do,

they are in a position to break down the system into smaller components and specify

them. This is a high-level analysis ofthe application - or part of an application, if an

incremental approach is used - in order to understand the logical composition of the

system and services of the components.

NAVITA Protocol Model (Chapter 12) is used to analyse the interaction between

logical components in this stage.

7.2.7 Stage 7 - Component Service Specification

Following up on the previous stage, analysts bring together various models to

produce precise specifications services of components. Production of the service

specifications will lead to a renewed search for components satisfying these services

as defined in the specifications. There are two main possible outcomes to this

search: the first outcome is that components are found which provide all the required

services and these components need not be modified in any form, and the second

outcome is that all, some or no components are found, and in cases of component(s)

being found, at least some of them will need tuning. The first outcome will lead to

the ApPLICA nON DEVELOPMENT sub-process and second, the COMPONENT

DESIGN AND DEVELOPMENT sub-process.

Models required for service specifications are described in (Chapter 12).

7.2.8 Stage 8 - Physical Design

Once it is established that a component providing particular service(s) cannot be

reused, a new component needs to be designed and implemented. In cases where no

reusable component of any form exists, physical design of components may be

produced from scratch. This involves precisely specifying how the components

should be implemented using particular technology. In cases where an adaptable

component exists, its specification may be used as a starting point for re-design.

Such technology-dependent designs for physical components are produced at this

stage.

Chapter 7 - NAVIT A System Development Process 126

7.2 NA VIT A SDP

NA VITA provides detailed guidelines on production of designs for reusable

components in Chapter 13.

7.2.9 Stage 9 - Implementation/Adapt

If an existing component cannot be found to the specification of a service, then the

component needs to be developed anew. If an adaptable component exists, it is

modified accordingly. Much research is done on issues related to component

adaptation concepts and technologies. Davis (1995), Jacobson et al (1997) and

Atkinson et al (2002) discuss various component adaptation mechanisms, whilst

Campbell (1999) and Heineman (1998) suggest how implemented components can

be adapted.

7.2.10 Stage 10 - Component Testing

Developed components are then tested to see if they do what is intended. This is part

of what is known as unit testing in software engineering (Sommerville, 2004). A lot

of research has been done in this area; for example, see (Wittenberg, 2000; Bertolino

and Polini, 2003; Ramachandran, 2003; Brinkmeyer, 2005)

7.2.11 Stage 11- Application Assembly/Tuning

If a matching application is found, this step. is skipped. If the application needs

tuning (tuning means refining certain aspects of a component/application which does

not require changes to the design), it is done to the application and development

proceeds. If components are either found or developed, they are assembled to create

the application.

7.2.12 Stage 12 - Integration Testing

This is the testing of whether or not components and/or applications communicate

with each other in the predetermined way without deviation.

7.2.13 Stage 13 - Application Acceptance Testing

Alpha and beta tests are carried out at this stage before the final delivery of the

system.

Chapter 7 - NAVIT A System Development Process 127

7.3 NAVIT A SDP Scenarios

7.3 NAVIT A SOP Scenarios

In terms of the nature of development, NA VITA is applicable to CBSD projects

where there is a good opportunity for reusing existing components. This method

covers the following project scenarios.

Similar application found:
Modification/Tuning required

All components found:
Needs assembling

Some components found:
Some needs to be developed, then
assembled

Some! All components need
modification:
Adapt components and assemble

No components found:
All components need to be
developed, then assembled

AddlRemove components from
application:
Analyse implications and perhaps
with some tuning too

Upgrade existing components:
Redesign and adapt components

7.4 Conclusion

By placing the COMPONENT SEARCH AND ACQUISITION sub-process at the centre of

the SDP, NA VITA makes clear that reuse of the entire application is the top priority

after the initial investigation is carried out in the BACKGROUND INVESTIGATION

sub-process. Only when such a reuse is not possible - even after renegotiations of

users' requirements - should the system be analysed in greater detail. Not all CBSD

methods emphasise this important point in their SDPs. When components of a

Chapter 7 - NAVIT A System Development Process 128

7.4 Conclusion

system are identified, SDPs of CBSD methods need to make clear distinctions

between the activities related to the identification specification of components from

the activities related to the design and development of the components. This

distinction should be reflected in the modelling techniques too. NA VITA SDP

reinforces this distinction by dealing with these two sets of activities separately in

the REQUIREMENTS AND SYSTEM ANALYSIS and COMPONENT DESIGN AND

DEVELOPMENT sub-processes respectively. Components may be designed and

developed from scratch or from existing components in the COMPONENT DESIGN

AND DEVELOPMENT sub-process, before they are assembled in the ApPLICA nON

DEVELOPMENT sub-process. These sub-processes can be executed iteratively and

incrementally.

Chapter 7 - NAVITA System Development Process 129

8.1 Introduction

Chapter Eight

NA VITA System Modelling
Context Diagram

8.1 Introduction

The Context Diagram has been used by a number of system development methods,

Structured and 00 alike, to establish the system's boundary, its environment and the

interactions between them. This chapter presents a critical examination of the

Context Diagram as traditionally understood, highlighting its important limitations.

The chapter then discusses how these limitations are tackled in this method by

presenting the concepts, modelling process and technique used in the NA VITA

Context Diagram, and exploring how the development of this diagram fits into the

overall system development process and software architecture.

The Context Diagram is the first system model developed in NA VITA, and it is used

in the investigation and definition of users' requirements. Development of a context

diagram enables analysts to explore:

• the roles ofthe users ofthe new system

• the way users will interact with the system and amongst themselves

• the outline ofthe new system's functionality

• the manual and other procedural aspects of the new system and

possible interface(s) with other system(s).

Chapter 8 - NAVIT A System Modelling - Context Diagram 130

8.2 Context Diagram

8.2 Context Diagram

Before proposing the NA VIT A Context Diagram, it is worth discussing the way the

diagram is used in other methods and limitations of its use. Traditionally, context

diagrams are used to define the system's boundary by means of analysing the

interactions between the system and the entities in its environment, such as external

entities or sources/sinks in Structured methods and actors in 00 methods. Figure 8.1

shows a simple context diagram using a mixture of symbols and concepts from

different methods, ones which both Structured as well as 00 analysts will recognise.

Loan details

Reader

~ IN~~~:~etailJ < > Library System ~ --........

Reserve Book i
Reminder L...-_____ j_-l I
M Librarian

Tge t!:::" Eve~~~";;;'flow i
Source/Sink Outgoing Bi-directional

Event/Data flow Actor Event/Data flow

8.2.1 Limitations of Context Diagram as Traditionally Understood

There are two major assumptions in the traditional way of thinking about context

diagrams.

First, there is an assumption that those who are involved in this analysis would very

quickly, if they had not already, come to conclusions about what is inside and what

is outside the system's boundary; for example, see (Y ourdon, 1989). In other words,

in one of the very first diagrams developed for requirements analysis, the system's

boundary will be established, albeit in somewhat abstract terms. It has been well

documented that because users are often unsure about what can or should be done by

the new system, defining the system's boundary is usually a difficult and lengthy

exercise (Kotonya and Sommerville, 1998; Loucopoulos and Karakostas 1995;

Vliet, 1993). Realising the volatility of the requirements, and the system's boundary

by implication, DSDM for example, has proposed a feature called MoScoW rules,

which is used to prioritise the requirements (Stapleton, 1997). As far as modelling is

Chapter 8 - NAVITA System Modelling - Context Diagram 131

8.3 Context Diagram: Modelling Concepts

concerned, there is a need for a diagram that can help analysts explore the grey area

of the system's boundary and make a conscious decision about what the system will

and will not do.

Second, the traditional approach to developing context diagrams also assumes that

the system exclusively means the 'computerised system'. As pointed out by

Jayaratna (1994), this notion of information system as a system of computerised

processes is unnecessarily restrictive. In fact, it is useful to think of IS as a

computerised system combined with the supporting manual aspects. For example, a

librarian may refuse to register a reader with the system if the reader has not

provided certain documentary evidence. Checking such documents may not

necessarily be part of the computerised system; nevertheless it is an essential part of

the registration process and one that analysts need to take into account when

analysing the information system. Information systems therefore not only include

computerised processes of the system, but also manual procedures and human

decisions too. Often, there are complex and changing interactions between

computerised and manual processes and thorough investigation of the system

functionality requires careful analysis of these interactions.

8.2.2 The NA VITA Context Diagram

The NA VITA Context Diagram is in some ways similar to the diagrams used in

popular Structured and 00 methods, in the sense that it is also used to analyse the

system's environment and interactions with the system. In addition, the NAVITA

Context Diagram also attempts to address the two issues discussed in Section 8.2.1.

This means that the context diagram will emphasise that the definition of the system

boundary involves careful consideration and decisions about what falls and does not

fall within the system boundary and the importance of non-computerised aspects of

the system. The NA VITA context diagram allows analysts to explore these complex

issues.

8.3 Context Diagram: Modelling Concepts

The main concepts used in this modelling are:

• System Boundaries

• Actor

Chapter 8 - NAVIT A System Modelling - Context Diagram 132

8.3 Context Diagram: Modelling Concepts

• Interaction

8.3.1 System Boundaries

The system boundary, represented by a rectangular box, is used to denote the system

under investigation, as well as other systems it interacts with. What is inside the

boundary of the system being analysed is traditionally understood as an information

system, and what is outside, the business environment. The boundary effectively

boxes in the functionality of the information system to be designed and

implemented, as shown in Figure 8.1. NA VITA however suggests another kind of

system boundary, named the 'greater information system boundary', which shows

the system as a whole, inclusive of both the computerised IS as well as manual

processes that are essential to the running of the computerised IS. Since the

boundary of the computerised information system is not necessarily identical to the

boundary of the 'greater' information system, the two boundaries are shown

separately. From this point of view, the boundaries of an information system and a

computerised information system can be depicted as shown in Figure 8.2 .

"" ;'

LibrInfoSys <E---7
~)

Read
~f (

er

Librari~
Check

T
Greater IS
boundary

registration
ocume

"T
i

Computerised IS
process are inside

Manual process
oflS

this box
Computerised
IS boundary

Registry
Database

Other
System

In the diagram, computerised activities are boxed inside the IS boundary,

represented by the single-lined rectangle, while the greater IS boundary is

represented by a double-lined rectangle. The two boundaries sandwich manual

activities, some actors and other system(s). The manual activity Check registration

Chapter 8 - NAVITA System Modelling - Context Diagram 133

8.3 Context Diagram: Modelling Concepts

documents is inside an oval, like a computerised process. The actor Librarian between

the two boundaries is regarded as being part of the greater IS because it is perceived

as such by its business actors, Reader. Librarian acts as the human interface to the

computerised IS. Other external systems that the computerised IS interacts with are

represented by single-lined rectangles, such as the Registry Database. Outside the

greater IS boundary, there are actors transacting with the business.

8.3.2 Actor

Actors are represented by stickman figures, as in UML. Jacobson et al (1992)

explains the concept as follows:

Actors model the prospective users; the actor is a user type or

category, and when a user does something he or she acts as an

occurrence of this type. One person can instantiate (play the roles

of) several different actors. Actors thus define roles that users can

play.

UML v1.5 (OMG, 2003) gives the following definition of actor.

An actor defines a coherent set of roles that users of an entity can

play when interacting with the entity. An actor may be considered to

playa separate role with regard to each use case with which it

communicates.

These definitions are vague about the responsibilities of actors in relation to the

system.

8.3.2.1 Actor Responsibilities

NA VITA recognises that, from the perspective of system functionality, actors have

three important responsibilities. These are to:

(a) Generate (Business) Triggers

Actors generate the business trigger or event leading to the execution of

certain system functionality. Actors may generate triggers by sending data,

time signals or control to the system. Actors in this role are called First

Actors (Allen and Frost, 1998). These actors also serve as a link between

BPM and system modelling.

Chapter 8 - NAVIT A System Modelling - Context Diagram 134

8.3 Context Diagram: Modelling Concepts

(b) Interact Directly with the System

Actors use or directly interact with the computerised system by exchanging

information through some kind of dialogue, either online, otlline or a

combination of both. Actors in this role are called Operator Actors.

(c) Be Served by the System

Actors, mainly representing people for whose requirements the system

functionality aims to satisfy, are duly served by the system. These actors are

called Final Actors.

These three roles are present in the use of every system functionality. In some cases,

the same person or entity can be involved in all of these three roles and it is not

necessary to distinguish roles. In other cases, where different actors play different

roles, it becomes necessary to distinguish the roles of actors. This can be illustrated

by the following three examples.

The first example can be regarded as a simple use case diagram showing a system

functionality Reserve Book Online, which is used by the actor Reader.

Reader

Reserve Book
Online

Reader is the first actor because it is his or her sending of details to reserve a book

which generates the business trigger. Reader is the operator actor because he or she

interacts directly with the system and Reader is also the final actor because the

system is designed to serve such an actor. Therefore, having the actor reader linked

with the reserve book functionality is sufficient. This is the notion of actor envisaged

by OOSE and UML.

{< > {< >~enewwv

Reader Library Assistant

Chapter 8 - NAVITA System Modelling - Context Diagram 135

8.3 Context Diagram: Modelling Concepts

In the second example, the functionality is Renew Loan, designed for readers who

renew their loans by telephoning the library assistant who then renews the loans on

the system.

In this case, Reader is the first actor because it is his or her sending of renewal

details that generates the business trigger, Library Assistant is the operator actor

because he or she interacts directly with the system and Reader is the final actor

because it is for dealing with their needs that the process is carried out.

The third and final example is the situation in which the library system automatically

generates and prints a list of reminders that are collected and sent by library

assistants to readers who did not return their loans on time.

Reader Library Assistant
System Calendar

System Calendar or perhaps another active part of the system that generates the

trigger is the first actor, Library Assistant is the operator actor and Reader,

representing those who have not returned their loans on time, is the final actor

because it is to remind them of overdue loans that the functionality is designed.

8.3.2.2 Actor Types

Actors can be categorised on different basis (Allen and Frost, 1998; Armour and

Miller, 2001). In terms of their placement in the system boundaries, actors can be

divided into three categories: System Actor, OperatorlIntemal Actor and Business

Actor.

System Actor

System Actor represents an active element of a system which is capable of

firing off a trigger to which the system needs to respond. A successful

system response to such a trigger would constitute a piece of system

functionality that is of interest to other actors. System actors are often non-

Chapter 8 - NAVIT A System Modelling - Context Diagram 136

8.3 Context Diagram: Modelling Concepts

human entities, such as internal clocks, active objects (Gomaa, 2000),

signalling devices and subsystems. See for example, the System Calendar

actor in Figure 8.5.

Internal or Operator Actor

Operator Actor represents an entity that is considered as external to the

computerised IS, but internal to, or part of, the greater IS. Human internal

actors work as interfaces between business actors and the computerised IS by

facilitating the interaction between the Business Actors and the system, such

as Librarian in Figure 8.6. In cases of lesser computerisation of business

processes, these actors may carry out part of the activities and decision­

making; for example, a library system in which librarian, rather than the

computerised IS, decides if a book is for short or long term loan. In more

computerised systems, such decisions may be made by the computerised IS.

In the case of total computerisation, these actors will cease to be part of the

system. There will only be direct interactions between business actors and

the computerised IS; for example, e-commerce applications (Ince, 2003).

Business Actors

Business Actors are external to the greater IS, representing business entities

that the IS serves or transacts with. These actors may be either internal or

external to the business organisation. Customer and Supplier are classic

business actors that are external to the business. Employee, in the case of a

payroll system, and Lecturer, in the case of university ISs, are classic

business actors that are internal to the business, yet external to respective ISs.

In Figure 8.6, Reader and Book Supplier are business actors.

8.3.3 Correlations between Actor Responsibilities and Actor Types

The correlations between actor responsibilities and actor types discussed in the

previous two sections are shown in Table 8-1.

Chapter 8 - NAVITA System Modelling - Context Diagram 137

8.3 Context Diagram: Modelling Concepts

Business Actor Operator Actor System Actor

Generate trigger Yes Yes Yes

Use the system Yes Yes No

System aims to serve
Yes No* No them

* Not directly, although it can be argued that they also benefit indirectly by using the
system.

8.3.4 Interaction

Interactions denote the communications between actors, actors and system, systems,

and actors and manual processes, as shown in Figure 8.6. Interactions can be either

unidirectional or bidirectional. Interactions between actor and the system are always

logical because they carry information only. However, interactions between actors

can be physical and/or logical. When naming interactions, the following rules are

applied:

I. arrowheads are appropriately used to indicate the directions of information flow

- single headed from source to target if unidirectional, double headed if

bidirectional

2. interactions are named either from left to right or top down

3. "[a] / [b]" denotes a bidirectional interaction, "a" is input information and "b" is

output information

4. if the interaction is between two actors, "a" and "b" can be either logical

information or physical things

5. "[a] / []" and "[] / [a]" denote input only and output only unidirectional

interactions

Chapter 8 - NAVIT A System Modelling - Context Diagram 138

./

"

8.4 Context Diagram: Modelling Process and Technique

J,.. J,..

[Search Keywords] / [Search Results] j,.

Input data

Output data

Bidirectional
interaction

Read
[Completed Reg Form] /

e< [Book, Rood" IDI\\ [Reader 10]

ook-return date stamped,
Reader 10]

[B

'¥
[Reader Details] /

[Reader No] Lb{ <E :;,.
LibrInfoSys

Assistant <E :;,.
[ISBN, Reader No] /
[Loan Confirmation] 1

[Books] /
' { [Book Dot,;!, II [I Registry

ok Bo
Supp lier

[]
A Database

Lb"ria~ecl< deIiv~
~

A

Unidirectional Manual Process
interaction

Computerised
Greater IS boundary IS b d

oun ary

8.4 Context Diagram: Modelling Process and Technique

Context diagrams are usually developed with user involvement and the process is

often iterative.

CD Step-l Represent the system under investigation using a single-lined

rectangle, with the name of the system inside it. Draw a larger

double-lined rectangle to denote the greater information system.

Internal actors may be identified in many cases; if there are none,

this outer boundary will be removed later.

In the example in Figure 8.6, the system is represented inside a

box and named as LibrInfoSys, and a larger double-lined

Chapter 8 - NAVITA System Modelling - Context Diagram 139

CD Step- 2

CD Step- 3

CD Step-4

CD Step- 5

8.4 Context Diagram: Modelling Process and Technique

rectangle is also drawn for the greater information system.

Identify all potential users and those who will interact with the

system, with the help of various stakeholders from the business

domain through appropriate application of requirements

elicitation techniques such as interviewing, JAD (Wood and

Silver, 1995). Determine the business roles of those who will be

using the system. Confirm the actors and their roles with project

stakeholders.

In the example, the following actors are identified by envisaging

the potential users of the system: Reader, Library Assistant,

Librarian and Book Supplier.

Analyse the type of each potential actor and plot its placement in

the boundaries accordingly.

In this case, Librarian and Library Assistant are operator actors

because they function as part of the IS by facilitating the other

actors interactions with the system, and Reader and Book Supplier

are business actors because they are the entities the business

transacts with. For further explanations, see Section 8.3.2.2.

Identify external systems that the main system may need to

interact with by examining whether the system is part of the large

set of applications, whether any of the data it holds is shared by

other systems and whether it depends on the input from other

systems.

In the example, the Registry Database is regarded as the external

system because it holds detailed information about students who

are potential readers of the library.

Identify the interactions between the various elements identified

so far by looking at flows of information and material goods.

Prototypes of user interfaces, reports and documents are used to

validate the interactions. It should be emphasised that when

Chapter 8 - NAVITA System Modelling - Context Diagram 140

CD Step-6

CD Step-7

8.4 Context Diagram: Modelling Process and Technique

identifying these interactions, and in particular those between the

actors and the system, each interaction should be a neat

encapsulation of detailed exchanges between the actor and the

system to carry out a complete business process. These

interactions will give analysts a sense of what the system will

have to do in dealing with these inputs and outputs.

In the example, [Search Keywords] / [Search Results] neatly sums

up the interactions required between the actor and the system in

order to complete a catalogue search. On closer inspection,

analysts may discover finer details but these are not important. At

this level of abstraction interactions should reflect the system's

functionality such as a catalogue search facility.

Based on the interactions and initial understanding of the system

functionality, identify manual aspects of the system, and other

systems it may interact with. If no internal actors, manual

activities and external systems are relevant to this system, the

greater system boundary should be removed.

In the figure, Book Supplier delivers material books to the

Librarian who may check these books against the order and

delivery notes and examine the books' physical condition, before

entering the information into the system. In this case, the physical

activity is included because, the assumed business rule is that the

details of the book are not to be entered if the above three criteria

are not met. Therefore, it is an important part of the process of

entering new book information to the system, hence, included in

the diagram.

After discussions with the project stakeholders on the boundaries

of the system, remove actors and interactions that are outside the

concern of the project. For example, the external actor Book

Supplier can be removed if the library system does not need to

know anything about the suppliers of the books. In these cases,

Chapter 8 - NAVITA System Modelling - Context Diagram 141

CD Step- 8

CD Step-9

CD Step -10

8.S Context Diagram: Documentation

the associated interaction with the Librarian and the manual

process Check Delivery should also be removed.

Consolidate the actors by ensuring that all actors have distinct

roles. For example, Library Assistant and Librarian should have a

unique set of responsibilities, from the perspective of the IS, to be

regarded as separate actors. In this case, the assumption is that

only Librarians can maintain the book catalogue and the Library

Assistants are for providing reader services. If both actors have

an identical set of roles, they have to be combined, and possibly

given appropriate names.

Consolidate interactions by removing unnecessary input and

output data items from the interactions. For example, it may not

be necessary to input all reader details to register a loan with the

system; reader ID may be sufficient.

Document the diagram using templates such as those suggested in

Section 8.5 and discuss the model with the main stakeholders

from the business domain.

It should be emphasised that because the context diagram focuses largely on the

system's environment and not its functionality, although the interactions may

provide some clues about how the functionality may appear later, what the analysts

can glean about the exact nature of interactions, manual processes and other system

may be somewhat limited. Only when further analysis of system functionality is

carried out, can analysts have better knowledge about these, and so append and

revise this diagram accordingly. Therefore, development of context diagram and

analysis of system functionality go hand in hand, making the process iterative.

8.5 Context Diagram: Documentation

The context diagram is documented mainly by describing the actors, manual

processes, external system(s) if any, and the interactions between these elements.

Authors have proposed different templates for documenting actors, use cases,

classes etc (Cockburn, 2000; Armour and Miller, 2001). Furthermore, CASE Tools

Chapter 8 - NAVIT A System Modelling - Context Diagram 142

8.5 Context Diagram: Documentation

such as Rational ROSE and Poseidon also provide standardised templates for

documenting them (Rational Rose, n. d.; Poseidon, n. d.). Such diversity illustrates

that perhaps there can be no one-size-fits-all solution to this issue; the nature and

complexity of the system will dictate how much detail these descriptions should

contain. It is up to analysts to judge and choose an appropriate documentation

standard or create a customised one if necessary. NA VITA suggests the following

documentation templates.

8.5.1 Documenting Actors

Documentation of actors includes a description of the actor, and their business roles

and responsibilities.

Actor No: ---------

Actor N~V\A..e: --------

, t' Descr~_p ~ov\': ---

'I '~'I' , "Bus~V\,ess R.D~es § ReS_poV\,S~{)~~~hes: -----------------------------

8.5.1.1 Documenting Manual Processes

Manual processes can be documented by describing them in a simple step-by-step

manner.

M~v\'IA.~l 'Process No: ---------

Actor N~V\A..e (s): --------

Descr~_pt~ov\':

~te-p ~: -------------------------

~te-p 2: --------------------

Rel~HoV\,SVl~_p w~tVl FIA.V\,cHoV\,~l~t1:::l vtV\,~t (s): -------------------------

Chapter 8 - NAVITA System Modelling - Context Diagram 143

8.6 Development Process

8.5.1.2 Documenting External Systems

External systems can be documented by describing their main functionality only

from the point of the new system; there is no need to describe aspects ofthe external

system's functionality that are not relevant to it. The nature of interactions between

the system will indicate what functionality is of interest to the system.

stjsteVVt N~ VVte: ---------

Relev~ Vl-t Aspects: ----------------------

8.5.1.3 Documenting Interactions

Interactions can be documented by detailing the purpose of the interaction, and

inputs and outputs.

IVl-ter~ct~oVl- No: ---------

'PIA.Ypose: ---------------------

I Vl-plA.t D~t~ IteVlA.$: -------------------------

OlA.tplA.t D~t~ IteVlA.$: -------------------------

8.6 Development Process

This modelling is used in Stage 1 - Feasibility Study and Stage 2 - Business Study

and Requirements Investigation. This is a mandatory model for all scenarios of

development. It provides the basis for the rest of system modelling.

8.7 Software Architecture

The interactions between the actors and the system, and the system and the external

system described in NA VITA Context Diagram are significant to the software

architecture. These interactions form the basis for identifications of the system

functionality and its interaction with external actors, which the architectural model

must take into account.

Chapter 8 - NAVITA System Modelling - Context Diagram 144

9.1 Introduction

9.1 Introduction

Chapter Nine

NA VITA System Modelling
Functionality Model

One of the main aspects of system development is the production of a precise

requirements specification. The specification itself may take a variety of forms, from

a simple document with a narrative list of various functional and non-functional

requirements to a set of highly formalised mathematical expressions. Like popular

system development methods, NA VITA suggests using semi-formal diagrams

accompanied by detailed documentation. Exactly which diagrams and

documentation make up the requirements specification in NA VITA will vary,

because of the nature of component-based development. It is clear that the context

diagram will be necessary for most scenarios, and in many cases, further analysis

will be required. This chapter examines the most popular requirements modelling

technique at present, use case modelling, and explores its limitations, before

discussing the proposed requirements analysis approach.

The main aims of functionality modelling, or requirements analysis, in NA VITA are

as follows.

• To understand what the users want the new system to do

• To ensure consistency and completeness of the requirements through

rigorous modelling

• To project the requirements into a set of coherent models

Chapter 9 - NAVITA System Modelling - Functionality Model 145

9.2 Functionality Modelling

Context Modelling, discussed in Chapter 8, has established the system's

environment in terms of its boundaries, the roles of various users and the

interactions among the system, its actors, manual processes and other collaborating

systems. An abstract outline of the system, therefore, has been put into place. It is

now important to define clearly what the system will do from the user's perspective.

Requirements elicitation and modelling is known to be a deceptive exercise because

it is a multi-dimensional process involving psychological and political

considerations rooted in ambiguities and uncertainties (Stapleton, 1997) as well as

technical problems. Such non-technical problems are numerous. For example, users

often do not know what they want; how to express what it is that they want;

requirements often change due to organisational and learning-curve factors. There

are also numerous accounts of situations where the developers finish a product only

to find that the users have changed their minds about what the system functionality

should be. This does not, however, diminish the need for capturing requirements;

rather, system development should be seen as, to some extent, an exploratory,

dynamic and iterative process that calls for mechanisms to control changes

introduced to the development process. In this sense, the component-based approach

seems to help resolve the problem, by enabling developers and users to add, remove

and modify the functionality of the system instantaneously.

9.2 Functionality Modelling

There are a number of techniques, from Structured to 00, which help analysts

capture the requirements of the users. In the early days of SDMs, diagrams such as

flowcharts were used to aid analysis of requirements (Boillot et aI, 1995). The Data

Flow Diagram was a popular requirement modelling techniques with Structured

methods, even making its way into earlier 00 methods such as OMT (Rumbaugh et

aI, 1991; Derr, 1995). Since there were thought to be some inconsistencies between

DFD and other 00 models, mainly the class model, methodologists attempted to

come up with a new 00 requirements analysis technique. The publication of the use

case modelling in OOSE (Jacobson et aI, 1992) has attracted major attention due to

its acclaimed simplicity, and the ease with which novice users can learn and

understand the diagram. The inclusion of use case model in UML and the amount of

Chapter 9 - NAVITA System Modelling - Functionality Model 146

9.2 Functionality Modelling

literature produced on the topic is a clear testament of its popularity (Rosenberg and

Scott, 1999; Armour and Miller, 2001; Leffingwell and Widrig, 2003).

Therefore, this research takes the use case modelling as a reference point, and will

now examine it critically and suggest a novel approach that will overcome the noted

deficiencies.

9.2.1 Use Case as Functionality Model

Section 8.3 provides a detailed examination of weaknesses of the two concepts,

actor and system boundary, used by the traditional use case modelling approach.

Now, attention will be turned to the central concept, the use case itself. When it was

first published (Jacobson et ai, 1992), use case was defined as follows.

"A use case is a sequence of transactions in a system whose task is

to yield a measurable value to an individual actor of the system."

Perhaps, the most puzzling thing about the definition and application of the use case

concept is its granularity. A simple example can expose this; Buy a Ticket will be

one use case, and Search Tickets and Pay for Ticket will be two use cases even

though in practice the first single use case and the latter two combined are

semantically equivalent. See Figure 9.1.

Figure 9-1 Problem with granularity of use cases

• • Search tickets

--~yaTiCV
~ay for tiCk0

Customer Customer

To make the matter worse it seems, the concepts of «uses» and «extends»

are used to show dependencies between use cases 7• Often, the concept of use case is

used to model transaction-like processes and at the time same time these stereotyped

relationships allow individual use cases to remain incomplete. For example,

7 When the use case model is integrated into UML, the relationships are often called «include» and

«extend». In addition to these, UML also allows other stereotyped relationships between use cases

(OMG, 2003).

Chapter 9 - NAVITA System Modelling - Functionality Model 147

9.2 Functionality Modelling

Withdraw Cash is a use case, so are Withdraw Cash extending Insufficient Fund, as

shown in Figure 9.2.

{_~. ~ {~ithdrawca~ W1thdraw cash

«extend»

Customer Customer Insufficient fund

The concept of use case is therefore employed to model both complete and partial

sequences of transactions. This strongly indicates that the definition of use case is

self-contradictory. At the same time, Jacobson himself has widened the concept to

model the business processes with the so-called business use case, which is defined

as follows (Jacobson, 1996).

A Business Use Case defines a sequence of events that provide value

to business actors. Business actors are roles fulfilled by individuals,

organizations, or systems that exist external to the business.

In this definition, a use case is no longer 'transactions in a system', but something

that can also include manual aspects too. In another publication, Jacobson goes even

further and suggests that entire application or system can be a use case too, known

as a superordinate use case (Jacobson et aI, 1997), see Figure 9.3.

Customer

The UML Specification vl.5 provides the following definition of use case (OMG,

2003).

The use case construct is used to define the behaviour of a system

or other semantic entity without revealing the entity's internal

Chapter 9 - NAVJTA System Modelling - Functionality ModeJ 148

9.2 Functionality Modelling

structure. Each use case specifies a sequence of actions, including

variants, that the entity can perform, interacting with actors of the

entity.

9.2.2 Main limitations of the concept of use case

After a few years of being practised widely, authors and researchers, such as (Glinz,

2000), have made various criticisms, interpretations, reinterpretations and

suggestions for improvement for use case modelling. Some of these suggestions

often overload rather than clarify the concept. What is clear, however, is that despite

its simplicity and flexibility, the concept of use case modelling is perhaps too

simplistic for modelling rich system behaviour. In summary, use cases have the

following major weaknesses.

• There is an uncertainty about the granularity of use cases.

• There seems to be some contradiction in the definition of use case,

particularly in the light of use case relationships concepts such as

«extends» or «extend», and «uses» or «include».

• There is no concept of decomposition of the system in use case

modelling. When dealing with system functionality of a highly

hierarchical nature, analysts have difficulties expressing such nature.

Often, they are inclined to employ use cases to show this and can do so

because of the loose granularity of use case. For others, it means more

confusion.

9.2.3 NAVITA Functionality Modelling

The NA VITA approach attempts to remedy these problems as follows. NA VITA

uses two separate diagrams for this modelling, Middle-level Functionality Diagram

(MFD) and Lower-level Functionality Diagram (LFD). MFD is a simple diagram in

which the granularity is constant, while LFD is used to describe detailed breakdown

of the processes from MFD. MFD is a user-oriented view of the system

functionality, while the LFD is more analyst-oriented.

Chapter 9 - NAVITA System Modelling - Functionality Model 149

9.3 Middle-level Functionality Diagram: Modelling Concepts

9.3 Middle-level Functionality Diagram: Modelling
Concepts

The main concepts used in MFD are:

• System Boundary

• Actor

• Functionality Unit

• Interaction

Generally UML notations which have been freely modified, as in SELECT

Perspective and other methods, are used in this modelling. The UML version

referred to here is version 1.3.

9.3.1 Actor

See Section 8.3.2.

9.3.2 System Boundary

See Section 8.3.1.

9.3.3 Functionality Unit

In NA VITA, the concept of functionality unit replaces use case for the reasons

explained in Section 9.2.1. Like use cases, functionality units are representations of

functional requirements describing what the user wants the system to do. From the

business point of view, a functionality unit refers to a complete action carried out by

the system to support an Elementary Business Process (EBP). SELECT Perspective

defines an EBP as 'an atomic unit of work done by a person at a place at a time'

(Allen and Frost, 1998). A functionality unit only includes the computerised aspects

of an EBP and excludes the manual processes. Therefore, depending on the nature of

the system, either a partial or a complete EBP may make up a functionality unit.

This notion is similar to a 'function' in structured methods, and a complete use case

in OOSE (Jacobson et aI, 1992). A functionality unit, like a use case, is represented

by an oval; see Figure 9.4. The key difference between a use case and a functionality

unit is the granularity. With use cases, the granularity is variable; with functionality

units, it is fixed. Functionality units have some important qualities that are explained

below.

Chapter 9 - NAVIT A System Modelling - Functionality Model 150

9.3 Middle-level Functionality Diagram: Modelling Concepts

9.3.3.1 Granularity

In tenns of granularity, a functionality unit could be compared with a function or an

event response in Yourdon's tenns (Yourdon, 1989). Each functionality unit makes

sense in business tenns and is easily traceable to business processes, which often

means using meaningful tenns such as Record New Customer, not Create New

Customer Object. A functionality unit must therefore reflect a meaningful business

operation. There should be a general one-to-one correspondence between a business

operation and a functionality unit. Functionality units cannot be low-grained. For

instance, Enter PIN in the ATM example cannot be a functionality unit because

entering PIN itself does not constitute a complete business task since customers only

enter PIN as part of a larger, complete task such as Withdraw Cash. Functionality

units could neither be higher-grained; for example Counter Operations, in the bank

example, is not a functionality unit because it contains many complete tasks such as

Open Account, Transfer Money.

9.3.3.2 Atomicity

Each functionality unit is atomic in the sense that when applicable it is used in its

entirety or not at all, it cannot be left half-done. One either does or does not

withdraw cash. There cannot be a situation where the account is debited and yet cash

is not dispensed to the customer. A functionality unit may be used independently of

other functionality units without leaving the system in an inconsistent state.

9.3.3.3 Execution Time

A functionality unit does not take long to be executed, perhaps a few seconds or

minutes, not hours or days. For example, it should take a few minutes to complete

the functionality units Withdraw Cash or Borrow a Book.

9.3.3.4 Optionality and Immediacy

Functionality units are generally used in a group, which often stretches and obscures

their limits. For example, Record New Order may sometimes require Record New

Customer. Increased flexibility of user interface technology allows users to add new

customers on the go, just when the order is about to be recorded. In such cases,

questions can be asked whether to model them as a single functionality unit or

multiple functionality units and why. NAVITA recognises that there are two aspects

Chapter 9 - NAVITA System Modelling - Functionality Model 151

9.3 Middle-level Functionality Diagram: Modelling Concepts

of functionality units that need to be looked at in such cases: optionality and

immediacy. Optionality deals with the functional dependencies between the

functionality units and immediacy, with the length of possible time gap between

them. In this example, the following specific questions can be asked.

Q1. Does adding a new customer always and immediately lead to

recording a new order?

Q2. Does recording a new order always and immediately require

adding a new customer first?

There are four possible logical outcomes to these questions.

Figure 9.1 Four Possible Outcomes

Al A2 A3 A4

Rec New Order
& Customer

* To avoid confusion, Record New Customer & Order can be renamed as Record First
Customer Order, etc.

A1. Answers to both Ql and Q2 are positive. It means that they are

functionally and temporally inseparable, and therefore they ought to

be regarded as a single functionality unit.

A2. Answers to both Ql and Q2 are negative. It means that they are

functionally and temporally separate, and hence they ought to be

modelled as two distinct functionality units.

A3. Answer to Ql is positive and Q2, negative. In this case Record

New Order is functionally dependent on Record New Customer and the

reverse is not true. The first thing that can be said then is that

Record New Order is a functionality unit in its own right because Q2 is

negative. Record New Customer must also be modelled in such a way

that Record New Order is part of it.

Chapter 9 - NAVIT A System Modelling - Functionality Model 152

9.3 Middle-level Functionality Diagram: Modelling Concepts

A4. Answers to Ql negative and Q2, positive. Record New Customer is

a separate functionality unit and is part of Record New Order.

Further Examples

Take as an example the case of online flight booking processing. There are a number

of stages the applicant has to go through before an application is processed.

Online flight booking

000000
Search Select Confirm Enter Validate Confirm
flights preferred selection personal and booking

flights and accept
payment or reject
info payment

Throughout this whole process, the user may stop and quit the process, but until the

booking is confirmed at the last step, the state of the system or its database does not

change permanently during the processing. There can be situations where the system

remembers a long sequence of interactions with the user during stages before a

commit is made, as in this example. The system seems to have changed its state

during the data entry process but these are not permanent. That is, if the process is

aborted, these temporary changes will be undone and the system will be put back to

the state it was in before. Hence it is essentially a single functionality unit.

In a loan application process situation, the outcome may be different. The following

example is adapted from Armour and Miller (2001).

Loan Application Process

DODD
Apply for
loan

Check
loan

Submit
additional

status info

Accept
loan

Chapter 9 - NAVITA System Modelling - Functionality Model 153

9.4 Middle-level Functionality Diagram: Modelling Process and Technique

Do they make up a single functionality unit or many functionality units? Why?

Armour and Miller (2001) suggest that because they achieve certain goals, they are

separate use cases. From NAVITA's point of view, it is so because each of these

steps is atomic and cannot be carried out partially. Each step has the right level of

granularity in terms of its execution time and cannot last very long although the

whole process would. Each step may take place days or months apart. Furthermore,

after each step, the system is in a valid state.

9.3.4 Interaction

See Section 8.3.4.

Figure 9.4 A MFD for LibrlnfoSys showing some functionality units

[Search Keywords] I
[Search Results]

{
Reader~

'--------3»

[Book, Reader 10]1
[Book-return date stamped,

Reader 10]
Library

Assistant

{ d_----"--~
Book

Supplier

[Completed Reg Form] I
[Reader 10]

[ISBN, Reader No] I
[Loan Confirmation]

'----~~
[Book details] I~

[]

9.4 Middle-level Functionality Diagram: Modelling Process
and Technique

Functionality modelling requires user participation in the process. General

guidelines for the development of the diagram are as follows.

MFD Step-l Produce a MFD based on the interactions and some processes

identified in the context diagram produced in CD Step 1 and CD

Step 2, described in Section 8.4. If a business process is

Chapter 9 - NAVITA System Modelling - Functionality Model 154

MFD Step-2

MFD Step-3

9.4 Middle-level Functionality Diagram: Modelling Process and Technique

supported by the system, it strongly indicates that it is a

functionality unit. A complete set of interactions between an actor

and the system, or the system and another system is also

suggestive of a functionality unit. User's participation and

understanding may be helped by the use of techniques such as

JAD (Wood and Silver, 1995), paper prototyping, or even

discussion around similar applications. For each functionality

unit, add actor(s) who use(s) it, or the system(s) it/they interact(s)

with. Also indicate the input and output information for each

interaction.

The interaction [Search Keywords] / [Search Results] in the

context diagram in Figure 8.6, for example, signifies that there is

a process that deals with searching the catalogue, represented in

Figure 9.4 by the functionality unit Search Catalogue. Other

appropriate functionality units are also added to the diagram.

Ensure that there is consistency between the context diagram the

MFD in terms of the actors, external systems, and their

interactions with the system. This may often call for the

adjustment and expansion of the information provided in the

context diagram. Eliminate the functionality units, manual

processes and actors that are not relevant as a result of the

changes.

The actors and their interactions with the system in the context

diagram in Figure 8.6 and MFD in Figure 9.4 are identical in this

case. Ifthis is not the case at first, attempts must be made to make

them consistent.

Document the MFD using the chosen documentation standard

such as the one suggested by NAVITA. Whatever standard is

used, it is important that at least actors and functionality units are

described in textual format. NA VITA documentation templates

for Actor and Functionality Unit are provided in the following

Chapter 9 - NAVITA System Modelling - Functionality Model 155

9.5 Middle-level Functionality Diagram: Documentation

section.

9.5 Middle-level Functionality Diagram: Documentation

The Middle-level Functionality Diagram is documented mainly by describing the

actors, functionality units and interactions. NA VITA suggests the following

documentation templates.

9.5.1.1 Documenting Actors

See Section 8.5.1.

9.5.1.2 Documenting Functionality Units

Documentation of functionality units includes pseudo-code style descriptions and

the main scenarios in the functionality unit.

Figure 9.5 A Simple Template for Documenting Functionality Units

FUv\'cHolI\,~Ltt!::1 l..{lI\,tt No: ---------

, t' Descr!-_p !-Oll\,: ---------------------

~tep ~ : ------------------------­

~tep 2 : -------------------------

R.eL~HolI\,s~t_ps to liIA.~lI\,u~L _processes (tf ~1I\,!::1): --------------------­

~oll\,str~tll\,ts: ------------------------------

9.5.1.3 Documenting Interaction

See Section 8.5.1.3.

9.5.1.4 Additional Information

With larger systems, extra information about the diagram, such as when it was first

created, who created it and when it is last updated, will be useful. A text box can be

attached to the diagram, describing the date of creation, the author of the diagram

and date of last update. This information can easily be extended as necessary.

Chapter 9 - NAVITA System Modelling - Functionality Model 156

9.6 Lower-level Functionality Diagram

9.6 Lower-level Functionality Diagram

This diagram shows the breakdown of each complex functionality unit, cross­

references between functionality units, their dependencies and common elements. A

number of candidates are considered for this diagram, in particular, Jackson

Structured Chart (Goodland and Slater, 1995) and UML activity diagram. The latter

is chosen as a candidate over the former due to relative simplicity of the diagram

when describing complex flows; see a demo in the Appendix V. The NA VITA

diagram itself is essentially a UML activity diagram with some modifications.

9.7 Lower-level Functionality Diagram: Main Concepts

The main concepts used in LFD are:

• System Boundaries, Actor and Functionality Unit

• Start and End

• Activity

• Flow (Sequence, Selection and Iteration)

• Swimlane

• Synchronisation

• Input and Output Data

9.7.1 System Boundaries, Actor, and Functionality Unit

See Sections 8.3.1, 8.3.2 and 9.3.3 for discussions on System Boundaries, Actor and

Functionality Unit respectively.

9.7.2 Start and End

Like in UML, the beginning and end of the sequence of activities are indicated by a

black circle and a bull's eye, as shown in Figure 9.6.

9.7.3 Activity

Activity represents any action, process, step or task of any granularity lower than or

equal to that of functionality unit. Therefore, activity diagrams can be hierarchical.

Diagrammatically activities are symbolised by a rounded rectangle, as shown in

Figure 9.6.

Chapter 9 - NAVIT A System Modelling - Functionality Model 157

9.7 Lower-level Functionality Diagram: Main Concepts

9.7.3.1 Hierarchical Activities

Activity diagrams can also be used to show further breakdown of complex activities

in a hierarchical manner as shown in Figure 9.6.

9.7.3.2 Common Activities among Functionality Units

Nested hierarchical diagrams are also used to show common elements across

functionality units, as in Figure 9.6.

Diagram A

!
(AC~ryL)

I
I

t

Diagram B

I

------------- ---------~-----------------------

(ACtiv:ry M) nmmnmm

! I
I

t

(ACti~ryX)
------,- ----- --- ----- -- -- ------ --- ---- ------- --

I
I

t
(Ac~ryM) _________ _

I
I

Diagram C

Chapter 9 - NAVIT A System Modelling - Functionality Model 158

9.7 Lower-level Functionality Diagram: Main Concepts

9.7.4 Flow (Sequence, Selection and Iteration)

Sequential flow of activities is symbolised by a clear headed arrow indicating the

direction of flow. A diamond represents the conditional branching, usually a binary

selection. MUltiple conditional branching is also possible, in which case the valid

condition is written along the appropriate arrow; in such cases, the conditions must

be mutually exclusive. The diamond symbol is also used to indicate conditional

repetition of certain interactions. The condition may come either at the beginning or

end of the series of interactions to be repeated. It can therefore cater for both While­

Do-Until and Repeat-Do-Until types ofloop.

Sequence Selection Iteration

I

(ACri:~A)
Y N

(Acrivi~ B) (Activi~ C)

9.7.5 Swimlane

UML Specification vI.S COMO, 2003) provides the following definition of

swimlane.

Actions and subactivities may be organized into swim lanes.

Swimlanes are used to organize responsibility for actions and

subactivities. They often correspond to organizational units in a

business model.

The class may mean either an actor or system in this case. Swimlanes are

represented by dotted horizontal lines in the diagram.

Chapter 9 - NAVITA System Modelling - Functionality Model 159

9.8 Lower-level Functionality Diagram: Modelling Process and Technique

9.7.6 Synchronisation

UML Synchronisation bars are used to show the points of diverging and converging

flows of parallel activities.

9.7.7 Input and Output Data

Input and output data do not exist as a concept in UML, but are represented in

NA VITA by either rounded rectangles (like UML Activity) or preferably,

pentagons. If rounded rectangles are used, it is important to denote each of them

with a stereotype, either «input» or «output» so that they will not be mistaken

for activities. If pentagons are used, it is not necessary to use the stereotypes, but

advisable for the simple reason of readability. A pentagon pointing right indicates

some data coming from the interacting actor to the system, while another pentagon

pointing left indicates some data going out from the system to the interacting actor.

Each data item is given an appropriate name.

Data Name
(output)

9.8 Lower-level Functionality Diagram: Modelling Process
and Technique

LFD Step-l Produce an LFD for each complex functionality unit. Complexity

of a functionality unit is ascertained from the textual description

of the functionality unit in the documentation. Nest the LFD

diagrams if activities are too complex, long or a set of activities

are shared between functionality units. Development of LFD will

help clarify the system's boundary, hence its functionality, by

enabling the analysts to look closely at the processes that sit

along the boundary. User participation will help decide which

parts of the processes are inside the system, and which, outside of

it, i.e. manual processes.

LFM for Register Reader in Figure 9.9 shows the detailed steps

and interactions, including physical interactions, between actors

Chapter 9 - NAVITA System Modelling - Functionality Model 160

LFD Step-2

LFD Step-3

9.8 Lower-level Functionality Diagram: Modelling Process and Technique

and the system. Activities in Reader and Library Assistant

swim lanes indicate manual processes and the activities in System

swimlane are computerised activities. Similarly, interactions

between actors can be physical while those with the system must

be logical.

Maintain the consistency of cross-references between the

business processes, context diagram, MFD, MFD documentation

and LFD. Functionality units in MFD must reflect business

processes. Actors and interactions in context diagram and MFD

must be consistent and documentation of functionality units must

be in line with the activities in LFD. Inputs and outputs in LFD,

MFD and context diagram must also be in agreement.

The interaction between the operator actor and the system

includes Reader Details as input and Reader ID as output, which

is consistent with interactions in MFD and the context diagram.

The manual processes of Reader and Library Assistant are not

shown in the early diagram, which is permissible if they are

deemed insignificant to the system's main operation. In this

example, the Prepare ID activity is carried out by the Library

Assistant on the assumption that the card is manually prepared. If

the system is to produce it automatically, it will be inside the

system's swimlane. That's how the diagram is used to explore the

system's boundary.

Revise both the MFD and the context diagram in the light of

detailed knowledge gained from LFD and also their associated

documentations. In this case, the manual processes of Reader and

Library Assistant may be added to the diagram.

Chapter 9 - NAVITA System Modelling - Functionality Model 161

User

f
Reader

Form

9.9 Lower-level Functionality Diagram: Documentation

Operator

f
Librarian

'V
Prepare
ID Card

'V
Issue) ID Card

Reader
Details

D
System

9.9 Lower-level Functionality Diagram: Documentation

NA VITA does not suggest any specific template for documenting LFD because it is,

in most situations, a diagram that is detailed enough to explain itself.

Chapter 9 - NAVITA System Modelling - Functionality Model 162

9.10 Development Process

9.10 Development Process

This modelling is used in Stage I - Feasibility Study and Stage 2 - Business Study

and Requirements Investigation. As explained, all these diagrams and

documentations may not be necessary for all scenarios of development. In cases

where there is a good chance of reusing an entire application, the MFD and its

documentation is likely to be useful. If the nature of application and availability of

existing applications is such that the MFD and its documentation do not provide

enough detailed information, LFD may be applied limitedly in Step I and Step 2. In

Stage 4 - Detailed Requirements Analysis, however, this modelling is applied in full

scale.

9.11 Software Architecture

Since the diagrams in this modelling help define the user's requirements, their

impact on the software architecture is crucial in the sense that functionality qualities

of individual components and the application as a whole must be in agreement with

the diagrams produced here.

Chapter 9 - NAVITA System Modelling - Functionality Model 163

10.1 Introduction

10.1 Introduction

Chapter Ten

NA VITA System Modelling
System Interaction Modelling

This chapter discusses modelling tools and techniques provided by NA VITA used in

the analysis of the interaction between the system and its users.

Human-Computer Interaction (HCI) is a well established area of study in computer

science. Those who take a close interest in the subject regard it as a design activity

that is concerned with all aspects of usability 'from the abstract design of system

scope, contents, and functionality, to the detailed design of the presentation and

interactivity of the actual concrete user interface to the interactive system'.

However, those from a more 'traditional' software engineering background regard

HCI as less essential in system development (van Harmelen, 2001). User Interface

Design (UID) in NA VITA will decidedly not deal with the many aspects of usability

of HCI for two main reasons. First, arguably such advanced HCI issues as

cognitive, ergonomics and accessibility merit separate research in their own right.

Second, these issues are outside the scope of this research into CBSD methods with

particular emphasis on system analysis and design. Having said this, it is well

recognised that if done properly, logical User Interface Design can lend itself as an

invaluable tool for the identification, analysis, communication and verification of

users' requirements and system design. In this sense UID is absolutely crucial for

system analysis and design, as well as for usability. ISO defines usability as follows

(ISO, 1998):

Chapter 10 - NAVITA System Modelling - System Interaction Modelling 164

10.2 System Interaction Modelling

Usability is the extent to which a product can be used by specified

users to achieve specified goals with effectiveness, efficiency, and

satisfaction in use.

Therefore, UID modelling in NA VITA would exclusively focus on the basic

visualisation of interface, logical data and interaction between the user and the

system, leaving out the usability issues to HeI design methods (Shneiderman and

Plaisant, 2004).

10.2 System Interaction Modelling

There are two diagrams used in this model, Logical Screen Layout (LSL) and User­

System Dialogue Model (USDM).

10.3 Logical Screen Layout

Logical Screen Layout (LSL), produced for each functionality unit, is a loosely­

structured visualisation of the static and simplified interface of the system which

may have little correlation to the layout of the concrete interface, screen flow, menu

and navigation. The main emphasis of the diagram is to capture the data

communicated through the interface, i.e. inputs and outputs, and not the physical

screens' design using a range ofGUI objects offered by the programming languages,

navigability (to other functionality units), user friendliness or similar usability

issues. Usually, there will be a screen layout for each functionality unit. In complex

cases, particularly those with web-based interface, there will be a need to have a few

sub-screens within the screen layout of a functionality unit.

This diagramming could be supported by some simple prototyping. One can use

paper-based prototypes which are quick, easy and inexpensive. This also serves the

purpose of clarifying the users' requirements and their understanding of the system.

In some cases, it is also desirable to have a 'real' prototype, i.e. computer based,

with some kind of simulation, which is more effective in clarifying what the users

want. Nevertheless, it must be remembered that the main emphasis is on the

information that goes in and out, not the user interface design itself. Because it is a

logical design, analysts need not be interested in the type of input/output

mechanisms. In some cases, it would be necessary to indicate the presentation

method, such as textbox, drop-down list or combo-box.

Chapter 10 - NAVIT A System Modelling - System Interaction Modelling 165

10.4 Logical Screen Layout: Modelling Concepts

10.4 Logical Screen Layout: Modelling Concepts

The main concept used in this diagram is the Input and Output Fields.

10.4.1 Input and Output Fields

In NA VITA, Input fields are denoted by a dotted line next to them, and output

fields, asterisks, as shown in Figure 10.1. Although the diagram is usually read from

left to right and top down, the detailed sequences of interaction need not be

emphasised in this diagram as they are explored in great detail in User-System

Dialogue Model (USDM).

Screen Input information Functionality Unit Output information
~ I

I
i

Personal Details: ~
Reader ID: ------------

Reader name: ********
Address: ***********

Loan Details:

Item No Title

I
ir

Borrow Book

Total loan: ***
Total reservation: ***

Total fine: ***

Author(s) Out Date Return Date

**** **1**1** **1**1**

******** **1**1** **1**1**

10.5 Logical Screen Layout: Modelling Process and
Technique

This is a rather informal analysis, which requires extensive user participation. The

main aim is to capture the static logical interface between the system and the user.

Although this modelling can be done using pen and paper, it could also be supported

by an automated form of prototyping. The main aim of these diagrams is to visualise

the user-system interface; in particular the sort of information that the user will

provide to the system and information the system provides to the user. Although it

uses fairly informal notations, these diagrams are important. As this is a logical

view, there is no need to emphasise the implementation-specific details of the

interface or address non-functional issues such as navigability, usability and

security, unless these concerns are critical to the functionality units.

Chapter 10 - NAVIT A System Modelling - System Interaction Modelling 166

LSL Step-l

LSL Step-2

10.6 Logical Screen Layout: Documentation

Start by choosing an appropriate title for the screen, usually the

name of the functionality unit. Sketch out various data items that

are likely to appear on the computer screen, paper report or other

media of communication between the user and the system, with

the help of users, the existing system, similar applications and

documents. Input fields are noted by dotted lines and output

fields by asterisks.

Ensure that the input and output fields tie in with the input/output

data in data flows of context diagram, MFD and LFD.

10.6 Logical Screen Layout: Documentation

NA VITA does not suggest documentation templates for this modelling since these

diagrams are often self-explanatory and need no further descriptions. If necessary,

documentation templates such as Data Dictionary (Goodland and Slater, 1995) can

be used.

10.7 User System Dialogue Model

Whilst LSL shows the visualisation of the static and simplified interface, System

Dialogue Model (USDM) models the dynamic and sequence-oriented interactions

between the system and the user. Many 00 methods, in particular UML, do not

provide diagrams that exclusively focus on the input/output-based interactions

between actors and the system. Interactions between the user and the system through

messages shown in sequence and collaboration diagrams are often obscure and not

detailed enough.

SSADM has 110 Structure Diagram that uses JSD Structured Diagram notations,

which can present a great challenge to those who are new to it. The diagram tends to

get cluttered if nested selections and interactions are introduced. As an example, one

can compare the two figures in Appendix V.

It is clear from these figures that UML Activity Diagram has the similar concepts

used in JSD Structured Diagrams. Furthermore, the UML figure shows the flow

Chapter 10 - NAVITA System Modelling - System Interaction Modelling 167

10.8 User System Dialogue Model: Modelling Concepts

more clearly and UML has more intuitive rules. However, UML activity diagrams

lack the notions of input and output. In NA VITA, UML Activity Diagram notations

are modified and adapted for this purpose. It is a free modification of UML because

UML simply does not have anything equivalent to inputs and outputs of SSADM's

1/0 Structure Diagram.

10.8 User System Dialogue Model: Modelling Concepts

The main concepts used in this diagram are:

• Start and End

• Input and Output Data

• Sequence, Selection and Iteration

• Scenario

10.8.1 Start and End

See Section 9.7.2.

10.8.2 Input and Output Data

See Section 9.7.7.

10.8.3 Sequence, Selection and Iteration

A clear-headed arrow indicates the flow of the interaction; see Figure 10.2

I
I

t

y condition?

(output)

Chapter 10 - NAVITA System Modelling - System Interaction Modelling 168

10.9 User System Dialogue Model: Modelling Process and Technique

10.8.4 Scenario

USDM Scenarios are represented by swim lanes described in Section 9.7.5, see

Figure 10.3. The leftmost swimlane indicates the main successful course of

interactions achieving the user's primary goal of using the functionality unit. There

can also be other scenarios indicating other courses of interactions, shown in the

next swim lane. USDM can be improvised to add further information about the

diagram. For example, it can show how various screens will be organised. Figure

10.3 shows how the main screen and various sub-screens of a functionality unit, and

screens of other functionality units, can be connected. Depending on the nature of

navigations envisaged, flows to screens of other functionality units can be made to

enable resumption at the point the flow quitted the original functionality unit. It must

be emphasised that these extra details may only be necessary in specific

circumstances, such as in cases of paper-based prototyping.

10.9 User System Dialogue Model: Modelling Process and
Technique

USDM Step - 1 Work through 10 fields in LSL to understand the dynamic

sequence of interactions between the actor and the system, and

depict those interactions in a USDM diagram. First show the

primary sequence of interactions that make up the main scenario

in the first swim lane. Then add other scenarios.

LSL for Borrow Book in Figure 10.1 shows that the process

begins when the Reader ID is keyed in. Then the reader details

need to be retrieved and displayed, which involves checking the

reader record first. It is possible that the reader record does not

exist for the 10. In this case a message would be shown and the

system may ask the user to try again. However, the main scenario

assumes that no such error would occur, and reader details would

be retrieved. The entire sequence in the first swim lane therefore

represents the successful scenario for the functionality unit, while

boxes in the middle swim lane represent the possible exceptional

scenarios. The rightmost swim lane represents the screens of other

functionalities to which the user may wish to navigate.

Chapter 10 - NAVITA System Modelling - System Interaction Modelling 169

10.9 User System Dialogue Model: Modelling Process and Technique

Figure 10.3 USDM for Borrow Book

Main scenario
swimlane

Screen of the
main scenario

Borrow Book

Total fine limit
reached?

Other scenarios
swimlane

Sub-screen Screen Title

[Register reader]

Loan(s) overdue

)------+-f-....--, .. -.. -- .-----.. ---.. ---------------.. ------.-----.... ------.-

Excessive Fine

Total Fine + Min
Amt (output)

Loan Limit Reached

Return

Book not allowed
to loan (output)

----------.---

Chapter 10 - NAVITA System Modelling - System Interaction Modelling

Other
functionality

unit swimlane

Register
Reader
Screen

Loan
Return
Screen

Loan
Return
Screen

170

10.10 Development Process

USDM Step - 2 Crosscheck the control structures of the LFD and USDM.

The control structure in of the Borrow Book LFD should match

the control structure ofthe Borrow Book USDM in Figure 10.3.

10.10 Development Process

This modelling is mainly used in Stage 4 - Detailed Requirements Analysis and

Stage 5 - Prototyping.

10.11 Software Architecture

LSL and USDM are vital parts of NA VITA for two main reasons. First, these

models are used to encourage user participation in the development of system

models, which helps ensure the external consistency of the specifications, and

second, the USDM are important to identify the operations involved in component

communication and the structure of the communication.

Chapter 10 - NAVITA System Modelling - System Interaction Modelling 171

11.1 Introduction

Chapter Eleven

NA VITA System Modelling
Information Modelling

11.1 Introduction

NA VITA Information Modelling is based largely on the traditional Entity

Relationship Modelling and Class Modelling. This modelling uses a diagram and a

cross reference matrix, namely Information Model and Functionality Entity Class

Matrix (FEM).

11.2 Information Model: Modelling Concepts

It uses UML Class notations, where the main concepts are:

• Entity Class

• Attributes

• Relationships - Association, Aggregation and Composition

• Inheritance

11.2.1 Entity Class

As discussed in Section 6.4.2.6, entity classes are used not only to represent real-life

objects, but their data structures too. At the early stage of development, NA VITA

entity classes are operationless, like entity in Logical Data Structures, which can be

defined as follows (Goodland and Slater, 1995):

An entity is something of Significance to the system about which

information is to be held.

Only in later stages of development, after a decision is made to implement the

system using an 00 technology, these entities are translated into appropriate 00

classes. UML Specification v1.5 (OMG, 2003) defines Class as follows:

Chapter 11 - NAVITA System Modelling -Information Modelling 172

11.2 Information Model: Modelling Concepts

A class represents a concept within the system being modelled.

Classes have data structure and behaviour and relationships to other

elements.

11.2.2 Attributes

In the context of Information Modelling, attributes are regarded as properties of

entity classes.

11.2.3 Association, Aggregation and Composition

UML Specification vI.5 defines association as follows:

A binary association is an association among exactly two classifiers

(including the possibility of an association from a classifier to itself).

An association may represent an aggregation (Le., a whole/part

relationship). In this case, the association-end attached to the whole

element is designated, and the other association-end of the

association represents the parts of the aggregation. Only binary

associations may be aggregations.

Composite aggregation is a strong form of aggregation, which

requires that a part instance be included in at most one composite at

a time and that the composite object has sole responsibility for the

disposition of its parts. The multiplicity of the aggregate end may not

exceed one (it is unshared).

The specification suggests three kinds of associations: ordinary association,

composite aggregate and shared aggregate. Generally speaking, aggregate

associations denote whole-part relationships; shared aggregate allows 'part' objects

to be shared by 'whole' objects, and composite aggregate does not. Composition is

regarded as an aggregation with strong ownership. See Sections 2.5.4 Semantics and

3.47 Composition of the UML Specification v1.5 (OMG, 2003) for a detailed

treatment of Association, Aggregations and Composition.

11.2.4 Inheritance

UML Specification vI.5 (OMG, 2003) often refers to this as

generalisation/specialisation relationship between model elements.

Chapter 11 - NAVITA System Modelling -Information Modelling 173

11.3 Information Model: Modelling Process Technique

Generalization is the taxonomic relationship between a more general

element (the parent) and a more specific element (the child) that is

fully consistent with the first element and that adds additional

information. It is used for classes, packages, use cases, and other

elements.

Inheritance is used only when the entities are translated into 00 classes as a result of

a design decision to implement the system using an 00 technology; see Section

13.8.

Reader Loan Book

Reader ID 1 Out Date 1 ISBN
Reader Name 0 .. * Out Time Title
Address Due Date 0 .. * Author

Due Time

1 Return Date 1
Return Time

Reservation

Reserve Date

0 .. * Valid until 0 .. *

11.3 Information Model: Modelling Process Technique

As in SSADM v4 (Goodland and Slater, 1995), NA VITA provides two starting

points for the development of Information Model. The first attempt at the diagram

can be called the top-down approach, in which entity classes are identified first,

followed by their relationships and attributes.

1M Step - 1 Identify candidates for entity classes from the descriptions of

functionality units by analysing the keywords in them. Each class

should be of importance to the system, have multiple attributes,

include multiple instances and each instance may be unique.

Attributes describe entity classes; for example, reader ID, name and

address describe Reader.

1M Step - 2 Specify the relationships (association, aggregation etc) between these

Chapter 11 - NAVITA System Modelling -Information Modelling 174

11.3 Information Model: Modelling Process Technique

classes and the cardinalities of relationships. Each relationship must

reflect the real world relationship such as reader borrows a book or the

data structure, such as a title has many book copies. Cardinalities

should mirror the business constraints, such as a reader cannot borrow

more than a certain number of books at a time.

1M Step - 3 Inheritance relationships are identified in two ways. Instances of some

entity classes belong to different categories, such as different types of

readers. Some entities may have common attributes, for example a

student and a reader may have a number of attributes in common. In

both cases, inheritance relationships are required.

This would give the analyst the first overview of the entity classes in the system.

This diagram needs to be neither complete nor accurate at this stage.

The second strand of development of the same model starts from a different and a

more concrete point. The input and output fields in LSL (Section 10.3), and to some

extent, USDM (Section 10.7) and Functionality Modelling (Chapter 9) too, provide

a detailed set of attributes that will be grouped into entity classes.

1M Step - 4 Gather attributes from LSL of each functionality unit. Ensure that LSL

has already been crosschecked with USDM, context diagram and

functionality modelling. Remove duplicated and extraneous classes

and attributes.

1M Step - 5 Identify entities from these attributes through infonnal analysis or

using Relational Data Analysis or Nonnalisation (Goodland and

Slater, 1995).

1M Step - 6 Specify associations between the entity classes producing a fragment

of a global infonnation diagram.

1M Step - 7 Crosscheck the diagram fragment with the initial infonnation diagram

and ensure consistency between the two diagrams.

1M Step - 8 Repeat 1M Step 3 to 1M Step 6 for each functionality unit.

Chapter 11 - NAVITA System Modelling -Information Modelling 175

11.4 Documenting Information Model

11.4 Documenting Information Model

11.4.1 Documenting Entity Classes and Attributes

Entity classes and attributes can be documented using the following template.

61i\,Ht1::J cl~ss N~VlA.e: --------­

DescrtpHoli\,: ---------------------

Ltst of ~ttrtbL{tes ~Ii\,~ ~~t~ t1::Jpes: ---------------

11.4.2 Documenting Relationships

It is not always necessary to document the relationships. However, if the situation

calls for it, the following convention can be adopted.

Rel~Holi\,sVttp N~VlA.e: --------­

Descrtpttoli\,: ---------------------

opHoli\,~ltt1::J ~Ii\,~ c~r~tli\,~ltt1::J: --------------­

otVter cOli\,str~tli\,ts: ------------------

11.4.3 Extra Information

A plain text box describing when the diagram was first created, who created it and

when it was last updated, can be attached to the diagram. This information can easily

be extended as necessary.

11.5 Functionality Entity Class Matrix (FEM)

This matrix is largely borrowed from SSADM and is adapted for this method. The

need for such a matrix is highlighted in our paper (Bielkowicz and Tun, 2001). This

matrix shows the correlations between functionality units, listed in rows, and entity

classes, listed in columns, in terms of the various effects functionality units have on

entity classes. The effects are denoted as follows:

Chapter 11 - NAVITA System Modelling -Information Modelling 176

11.6 FEM Modelling Process and Technique

• I for inserting or creating a new instance ofthe entity class

• M for modification of some attribute value(s) of an instance of the entity

class

•
•

D for deletion of an instance of the entity class

R for reading attribute value(s) of an entity class

• L for linking two instances of one or two entity class(s). Ls are always used

in pairs; each pair can be numbered for clarity ifthere are many of them

• C for cutting links of two instances of entity classes, again used in pairs; each

pair can be numbered for clarity ifthere are many of them

• * is used to denote that the effect applies to more than one instance of the

entity class; for example R * indicates reading from multiple instances of an

entity class

• [] is used to denote optional effect(s)

Reader Loan Reservation Title Copy Author

Register Reader

Add Book IL IL

Add Copy L IL

Borrow Book LM ILL [M] L

Show reader's
R R*

current loans

11.6 FEM Modelling Process and Technique

FEM Step - 1 List all entities from the global Information Model, and all middle­

level functionality units in columns and rows ofFEM respectively.

FEM Step - 2 Identify effects of functionality units by looking at whether each

functionality unit creates or deletes instances of entity classes and

Chapter 11 - NAVITA System Modelling -Information Modelling 177

11.7 Development Process

their relationships, or modifies attribute values of them.

FEM Step - 3 Ensure that each entity class has at least one functionality unit to

create, one to delete its instances; often there are other

functionality units to modify its attributes and links. In some cases,

such as archiving, it may be acceptable to have an entity that is

never deleted. Otherwise, consider adding other functionality units

or removing the entity class. For each functionality unit there is at

least one entity affected. Otherwise consider removing.

11.7 Development Process

1M Step 1 and 1M Step 2 of this modelling is used in Stage 1 - Feasibility Study and

Stage 2 - Business Study and Requirements Investigation and 1M Step 3 to 1M Step

7 are used in Stage 4 - Detailed Requirements Analysis.

11.8 Software Architecture

1M modelling is an essential part of logical component specification (see Section

12.6); this model is used to define the static structure of the system as well as part of

the interfaces of components. 1M, by validating the functionality model through the

FEM, helps ensure that the architecture satisfies the functional requirements.

Chapter 11 - NAVITA System Modelling -Information Modelling 178

12.1 Introduction

12.1 Introduction

Chapter Twelve

NA VITA System Modelling
Architectural Analysis

The main aim of NA VITA architectural analysis is to identify the services used by

logical boundary components that logical business components provide. The main

product of this analysis is a precise specification of these services with minimal

references to the implementation technologies of physical components. The

discussion so far has concentrated on the analysis of the system as perceived largely

by its users, or the external view of the system. Now the focus turns to the internal

details regarding the logical structure of the system, its components, and their

interfaces and interactions.

NA VITA System Architectural Model, as discussed in Section 6.3, assumes that, at

this logical level, for each functionality unit, there would be a boundary component

and a business component. Interactions between these two components realise the

functionality unit. This separation of boundary and business components allows

analysts to explore the demarcation of responsibility between the two types of

component, leading to a clear understanding of what a component needs to do if it is

going to provide or use the service. At this stage, the best scenario that analysts hope

for is finding components that satisfy some or all of these services without needing

to design and implement the components. Therefore, what is necessary at this stage

is some clear specification(s) of interface of services to be offered by components of

the system.

Chapter 12 - NAVITA System Modelling - Architectural Analysis 179

12.2 Architectural Analysis: Diagrams and Concepts

12.2 Architectural Analysis: Diagrams and Concepts

With Logical User Interface Diagram and User-System Dialogue Model, analysts

attempt to analyse in detail the interactions between the user and the system.

Architecture analysis, on the other hand, is concerned with the interactions between

boundary component and business component of each functionality unit. The

interface between the two components is specified by the Protocol Model, which

defines the possible way(s) in which two components interact. Fragments of

Information Model are then developed for each Protocol Model to establish the

underlying data structure within the business component. The main models used in

this analysis are:

• Protocol Model

• Information Model fragment

These models contribute towards the production of logical component

specifications, the main output of this architectural analysis.

12.2.1 Protocol Model

The protocol model is used to analyse the interfaces between two collaborating

components by looking at the way(s) in which the two components communicate to

realise the functionality unit; see Figure 12.1. Generally, the logical business

component will provide a service used by the boundary component. This presents an

opportunity to analyse each functionality unit in isolation.

-

User

User
/

/

/
/

/
/

/

Boundary ~
Component

(

, , ,

)

, , , ,
Business

Component

Chapter 12 - NAVITA System Modelling - Architectural Analysis 180

12.2 Architectural Analysis: Diagrams and Concepts

The main concepts used in this diagram are:

• Logical Component and Logical Component Interface

• Service

• Operation

• Sequence, Selection and Iteration.

12.2.2 Logical Component and Logical Component Interface

The notion of component used in NA VITA is explored in Chapter 6. There are two

types of components at this logical level: business components and boundary

components. Notationally, a component can be drawn using two different

conventions. In one convention, it can be drawn like a UML class; the component

name is written in the top of the three compartments, while the other two

compartments list services the component provides and requires. In the other

convention, required and provided services are represented by plug and socket icons,

as shown in Figure 12.2. These three compartments make up the interface of the

component.

ComponentName" i-"

RServiceA "v
RServiceB

PServiceA " v
PServiceB

12.2.3 Service

Component name

Required Services

Provided Services

Component name Required "pr""N'CI

.-------;y.- ~

ComponentName
RServiceA

RServiceB

PService

PService

t
Provided Services

A service can be defined as a set of operations provided by a component, which

constitute a meaningful business operation. Detailed discussion on service is given

in Sections 6.2.3 and 6.5.1.2. Services are either written in the compartments or

written next to the plug-socket icons.

Chapter 12 - NAVITA System Modelling - Architectural Analysis 181

12.3 Protocol Model: Modelling Process and Technique

12.2.4 Operation

Component services are provided through operations. Service operations are similar

to class operations in terms of their makeup. An operation has a name, may take

some parameters and has a return data type (OMG, 2003). Operations in NAVITA

Protocol Model are represented by circles with the name of the operation next to it.

Figure 12.3 An operation and control structures

OperationName(parameterA, ParameterB, ...) : ReturnDataType 0

12.2.5 Flow - Sequence, Selection and Iteration

See Section 9.7.4.

12.3 Protocol Model: Modelling Process and Technique

PM Step-l

PM Step-2

Assume that each functionality unit is realised by collaboration

between a logical boundary component and a logical business

component. Strictly speaking, the collaboration is between

instances of the two components rather than their types; however,

for brevity, instances are generally referred to as components, and

if the distinction is necessary, it is made clear in the discussion.

In Figure 12.4, two components BorrowBookUI and BorrowBook

are created for the functionality unit Borrow Book.

Identify the operations the business component has to provide to

the boundary component from LFM, USDM and also system

functionality documentation. By going through the steps in USDM,

for example, analysts can question what the system will have to do

at each step. Each atomic task the system has to carry out is

represented by an operation. The parameters of the operations are

determined from the interactions. The flow of these operations

should reflect the structure in LFM, USDM and the descriptions.

Produce a protocol model based on the information gathered.

Chapter 12 - NAVIT A System Modelling - Architectural Analysis 182

12.3 Protocol Model: Modelling Process and Technique

Library Assistant

,----

BorrowBookUI -+-C:J= '
, ,­

...... _-,_
BorrowBook

I

doesReaderExists(ReaderID)
Try again?

N

getReaderDetailsO

anyC)verdueLoansO
getOverdueItemsO

getFineO

isFineLimitReachedO

isMaxLoanNoLirnitReachedO

doesItemExists(BookID)
Try again?

N

getltemDetailsO

isItemReservedByC)therO

BorrowItemO

[no more items to borrow]

Figure 10.3 shows the USDM of Borrow Book. After the input

reader number is accepted by the boundary component, the system

Chapter 12 - NAVIT A System Modelling - Architectural Analysis 183

12.3 Protocol Model: Modelling Process and Technique

has to determine whether the reader information is stored inside the

system, which the boundary component cannot determine by itself.

The boundary component will have to consult the business

component by sending a message or operation call to it. This is

represented by the operation doesReaderExists(ReaderID) in the

protocol model in Figure 12.4.

By sending this operation to the business component, the boundary

component is in effect creating a new 'session' or instance of

communication between them. It means that, from then on, the two

components have committed themselves to the completion of the

entire sequence of operations. Generally speaking, either of the

components may quit the session at anytime, and if the state of the

system has not been updated permanently, which tends to happen

towards the end of the interactions, all temporary changes8 will be

undone and the session unsuccessful. Once the session has started,

both components will remember the status of the session in terms

ofthe stage they are at in the protocol model, and they will proceed

according to it. In the example, after the operation

doesReaderExists(ReaderID) is called, and details of the reader

record are found to exist in the database, these details then need to

be displayed, according to the USDM. Again, the boundary

component needs to get the information from the business

component by sending another operation getReaderDetailsO. If the

reader record is not found in the database, this protocol requires

that the system checks with the user to see whether he or she

wishes to try inputting an ID, or rather quit the process.

It should be noticed that the second operation in the protocol

model, getReaderDetailsO, does not carry the reader ID as a

8 In some cases, it may require committing changes in stages. For example, if the session is stopped

after some fine is paid, it should not be undone. Similarly, quitting in the process of borrowing a book

should not cancel the earlier loan etc.

Chapter 12 - NAVITA System Modelling - Architectural Analysis 184

12.3 Protocol Model: Modelling Process and Technique

parameter. This is so because once the reader has been identified in

business component by the earlier operation, the boundary

component does not need to pass the same parameter when

accessing information relating to it. If in doubt, the parameter can

be passed again.

After displaying the reader details, the system needs to check

whether the reader has any overdue loans, as required by the

business constraints, which is done by the operation

anyOverdueLoansO·

In this way, the analyst will examine the interactions between the

two components step by step, establishing the operations,

parameters, return information (for clarity usually written in the

operation list that follows the diagram rather than in the diagram)

and control structure.

As can be seen in the protocol model, most of the early operations

are about making various checks to ensure the business constraints

are not breached. They can be called query operations. As

indicated, major permanent changes to the state of the database

tend to happen towards the end of the functionality unit, in this

case, the operation BorrowltemO. This operation is more complex

than may appear at first sight. It essentially signals to the system

that a particular book has been borrowed by a particular reader.

First, the system will have to determine the return date for the loan.

Then it will have to record the loan. The system may then have to

update the status of the book and so on. A lot of updating may

happen here, which is also analysed in FEM in Section 11.5.

In this example, most operation calls originate from the boundary

component, which are fired at the business component. This is

because the interface of the application is perceived as user-driven.

This is by no means universal. Indeed, there is a case for a server­

driven operation call, i.e. an operation of the boundary component

called by the business component. In this same example, after

Chapter 12 - NAVIT A System Modelling - Architectural Analysis 185

PM Step- 3

12.3 Protocol Model: Modelling Process and Technique

some fine has been paid using payFine(amount), the control of

execution is passed back to the point before the fine is retrieved

using getFineO. This could be designed differently; the business

component can be made to 'refresh' the amount of the fine

displayed in the boundary component after some of the fine has

been paid by the reader by calling an operation in BorrowBookUr.

Component modularity requires that such mutual dependencies

between components are, if not necessary, to be avoided.

Diagrammatically, the server-driven operation calls can be marked

using thick circles. The operation is added to the required service

compartment of the business component and provided service

compartment ofthe boundary component.

Only one protocol model is produced for Borrow Book, which need

not be the case for every functionality unit. In fact, there can be a

number of protocol models for a functionality unit, if it needs to be

designed to allow different modes of interactions. For example,

there are functionality units that may be used as both online

interactive and offline bulk process. In such cases, the protocol

between the boundary and business objects will be different,

requiring two separate protocol diagrams for the single

functionality unit. If there are multiple interface components, then

the business component may also hold session information

internally.

Produce the operation list from the protocol model. The analyst

will get a list of operations that both the boundary component and

the business component need to call. For these functionality units

that have different protocol models, the list should consolidate the

operations by removing repeated operations.

In the example, the component that offers Borrow Book service and

the component that uses it need to offer the operations listed in

Figure 12.5.

Chapter 12 - NAVITA System Modelling - Architectural Analysis 186

12.4 Operation List

When defining the interface of a logical business component,

analysts are likely to come up with a long list of operations, which

can be rather daunting to manage. One way of dealing with this

effectively is to divide the operations into groups by looking at

them from higher levels of abstraction. LFD allows analysts to

identify common elements among functionality units, and also

express some of the activities in hierarchical manners. When

working on USDM and protocol model, analysts should utilise this

knowledge. For example, in Figure 12.5, the first eight operations,

about ensuring that the reader is cleared to borrow a book, can

collectively be called 'check reader clearance'. The same activity

may be necessary for another functionality unit, say Reserve Book.

In that case, all eight operations can be 'reused'.

At the end of this modelling the analysts would establish the

interface between the two components in terms of operation

signatures, and some dependencies among the logical components.

12.4 Operation List

A list of operations that the service providing component must offer and that the

component requiring the service must use can be derived from the protocol diagram.

This list provides an opportunity to elaborate the signatures of the operations

identified and add documentational comments.

doesReaderExists(ReaderID): Status
getReaderDetailsO: ReaderID, ReaderName, Address, TotLoans, TotRes, TotFine
anyOverdueLoansO: Status
getOverdueItemsO: BookID, Title, Author, DateOut
getFineO: Fine
payFine(amount): ...
isFineLimitReachedO
isMaxLoanNoLimitReachedO
doesItemExists(BookID)
getItemDetailsO
isI temReservedByOtherO
BorrowItemO

Chapter 12 - NAVIT A System Modelling - Architectural Analysis 187

12.5 Information Modelling

12.5 Information Modelling

1M, discussed extensively in Chapter 11, can be used to model the structure of

parameters passed in the operations identified in the protocol analysis. For example,

the operation getReaderDetailsO returns details of the reader, getOverdueltemsO

returns the loaned book details and so on. These parameters can be collected and

analysed according to the technique describe in 1M Steps 5 - 7 of Section 11.3 in

order to ensure that entities have the right attributes.

12.6 Logical Component Specification

By this stage, analysts can produce precise specifications of logical components of

the application in terms of the following:

• Description of the functionality unit - to verify the functionality of both

boundary and business components

• LSL - to verify the visual layout ofthe boundary component

• USDM - to verify the interaction between the boundary component and the

user

• Operation List - to verify the operations of the boundary and business

components

• Protocol Model - to verify the interaction between boundary and business

component

• 1M fragment - to verify that the business component can access the shared

database

12.7 Development Process

This modelling is necessary only when reuse of an entire application is not possible.

In which case, the application is decomposed with the view to identify smaller­

grained components for reuse, and possibly for development too.

12.8 Architecture

One of the main tasks of Application Manager is to define the interfaces of the

components by registering the services and their operations with the Backbone

component (see Section 6.2.2). It is worth remembering that the nature of physical

components is yet to be determined; different components will offer and use

different sets of services. If prefabricated components are to be deployed, the logical

specifications of service components will suffice. When the physical components are

Chapter 12 - NAVITA System Modelling - Architectural Analysis 188

12.8 Architecture

installed, the Backbone component will have to verify their interfaces against the

service specifications of logical components, i.e. operations.

Chapter 12 - NAVITA System Modelling - Architectural Analysis 189

13.1 Introduction

13.1 Introduction

Chapter Thirteen

NA VITA System Modelling
Component Design

Architecture analysis discussed in the previous chapter deals with the breakdown of

the system into logical components and specification of their interfaces.

Specification of an interface, in terms of its functionality, user interface, operation

list, protocol model and data structure only goes so far as describing what a

component providing a particular service unit should do. It is an external view of a

component and does not suggest how the component should be implemented. If the

developers assume that components need to be developed, concrete designs need to

be produced. This chapter deals with issues surrounding the production of physical

designs of those components. Since NA VITA distinguishes between business

components and boundary components, design concepts, modelling process and

techniques for these components will be discussed separately. Discussions in this

chapter will concentrate largely on the business component modelling because reuse

of business components is thought to be of more significance (Allen and Frost,

1998). Guidelines for boundary component design will spell out only the major

steps, providing useful references for further discussions.

13.2 Physical Boundary Component Design

A physical boundary component implements one or more logical boundary

component(s). Apart from usability issues such as user-friendliness of the

components, the main issue here is to package together interface objects that are

shared by related functionality units.

Chapter 13 - NAVITA System Modelling - Component Design 190

13.3 Physical Boundary Component Design: Modelling Concepts

13.3 Physical Boundary Component Design: Modelling
Concepts

The main concepts used in this model are boundary classes and their relationships.

Although the concepts of class and class relationships described in Chapter 11 are

mainly used for modelling business classes, these concepts can also be applied to

boundary classes too.

13.4 Physical Boundary Component Design: Modelling
Process and Technique

Chapter 10 provides discussions on how to produce logical screen layouts

containing various visual objects that users use to interact with the system. If these

objects are to be implemented, the following steps should be taken:

Screen Input information
!

Functionality Unit Output information
...

Personal Details: 1
Reader ID: -----------­

Reader name: ********
Address: ***********

Loan Details:

Item No Title

-------- *********
-------- ******

Borrow Book

Total loan: ***
Total reservation: ***

Total fine: ***

Author(s) Out Date

**** **1**1**

******** **1**1**

BoCD Step - 1 Confirm all LSLs and USDMs with the users.

Return Date

11**

11**

BoCD Step - 2 Identify common visual elements used in functionality units.

In Figure 13.1 for example, reader details such as Reader rD,

Reader name, Address, Total loan, Total reservation, and Total fine

could also appear in other FUs, such as 'Reserve Book'.

BoCD Step - 3 Produce a boundary class diagram for the objects used in the

boundary components, including the common elements. If there

Chapter 13 - NAVITA System Modelling - Component Design 191

1

13.4 Physical Boundary Component Design: Modelling Process and Technique

are a large number of visual objects in the component, packaging

mechanisms such as UML Package Diagram (OMG, 2003) can

be used.

Figure 13.2 shows a partial boundary class diagram indicating

how the GUI objects of Borrow Book can be composed and how

some of these objects can be shared with other functionality units

such as Reserve Book.

ReserveBookWindow

0 .. *

LoanInfoPanel

1
ReaderIDLabel

ItemNoLabel

ReaderIDValue
1

ItemNoValue

ReaderNarneLabel
1

TitleLabel

1 ReaderN arne Value
1

TitleValue

1

BoCD Step - 4 Decide the implementation technology, such as Java, Visual

Basic.

BoCD Step - 5 Revise the design by adding libraries. Design patterns (Gamma et

ai, 1995) can also be applied.

Chapter 13 - NAVITA System Modelling - Component Design 192

13.5 Physical Business Component Design

BoCD Step - 6 List operations in component diagram.

13.4.1 Related Work

There is a wealth of material on UID, for which Shneiderman and Plaisant (2004)

and van Harmelen (2001) provide a good starting point.

13.5 Physical Business Component Design

Section 6.4 discusses the nature of physical components, and Chapter 12 discusses

the models, tools and techniques for producing specifications of logical components.

Since logical specifications are for each functionality unit, implementation of a

service by a component is not realistic in most situations. Not only is it technically

more difficult to deal with a very large number of components, there are also many

other issues such as integrating a large number of dependent components into an

application and reusing small-grained components. Therefore, one of the key

questions in component design is concerned with the composition of logical services

into cohesive physical components.

Component design in NA VITA makes use of the following diagrams:

• Component Diagram

• Sequence Diagram

• State Transition Diagram

13.6 Physical Business Component Design: Modelling
Concepts

The component diagram is used to show statically how physical components make

up an application. The main modelling concepts used in this diagram are:

• Physical Component (Boundary, Business and other components)

• Backbone Component (Section 6.2.1)

• Application Administrator (Section 6.2.3)

13.6.1 Physical component

A physical business component is an implementation of a service, or a set of related

services, defined by logical service specifications. In this diagram, logical services

are translated into physical components in such a way that they address both

business and technical concerns. NA VITA physical components can be notationally

Chapter 13 - NAVITA System Modelling - Component Design 193

13.7 Business Component Physical Design: Modelling Process and Technique

represented by two different conventions. In one convention, the component name is

written in the first of the three compartments, while the other two compartments list

services the component provides and requires. In the other convention, services are

represented by plug-socket icons, as shown in Figure 13.3.

CornponentN arne

RServiceA
RServiceB

PServiceA
PServiceB

Component name

Required Services

Provided Services

Component name Required Services
...---------, ~

CornponentN arne
RServiceA

RServiceB

PService

PService

t
Provided Services

13.7 Business Component Physical Design: Modelling
Process and Technique

As explained, one of the main tasks in this modelling is to translate logical services

into physical business components by grouping related services together. Section 6.4

suggests that there are two main existing approaches to composing components. The

solution also discusses their flaws and proposes the NA VITA solution to these

problems. According to the discussion, NA VITA components must reflect both

business and technical perspectives. It should be emphasised that if components are

defined only from the way their services are used, i.e. the business perspective, they

will not provide a stable basis for component composition because all services are

related in some way, and it is difficult to determine which services should and

should not be included. On the other hand, the technical perspective does provide a

stable basis for component composition, but if the component has no relevance to

the way in which services are used, its reusability is limited. The main issue is to

find the point at which the two perspectives can converge. NA VITA suggests that

FEM holds the key to this. The FEM in Figure 13.4 shows all the major

functionality units and entity classes in the library system together with the effects of

functionality units.

Chapter 13 - NAVITA System Modelling - Component Design 194

13.7 Business Component Physical Design: Modelling Process and Technique

Add Book ILl

Add Copy L IL

Reader

Search Catalogue R* R* R* R*

Borrow Book RLI M [RM] ILl L2 R RL2 R R

Return Book RC I RMC I R RC2 R R

C2

Renew Loan R RM R R R R

Reserve RLI ILl L2 RL2 R R R

Cancel Reservation RCI CI C2 RC2 R R R

D

Show Reader's current R R* R* R* R* R*

loans

Send Reminder R M R R R R

Details RM

De-register Reader RCI C2 CI C2

D

Remove Book RCI C3 RCID RC2 C3 RC2 D

D D

Remove Copy RC RCD R R

Keys:

I = Insert M=Modify D = Delete R=Read

L = Link C = Cut a link * = Multiple effects [] = Optional Effects

Chapter 13 - NAVITA System Modelling - Component Design 195

13.7 Business Component Physical Design: Modelling Process and Technique

BuCD Step-I Rearrange the ordering of the functionality units in the FEM on

the basis of the effects they have on entities. Group together

functionality units which affect the same entity classes.

At first glance, correlations between the services/functionality

units and entity classes in the FEM for the library system may

appear somewhat random, i.e. the way in which services can be

grouped, will not have much bearing on the way entity classes

can be grouped. In fact, the correlations become evident when the

matrix is rearranged by listing FUs that affect the same entities

together (see the order of functionality units in Figure 13.5). It

becomes apparent that certain sets of functionality units affect a

similar set of entity classes and these sets of functionality units

also tend to be related in the business sense. For example, book

operations.

BuCD Step - 2 Examine the nature of relationships between the entity classes. As

discussed in various subsections of Section 6.4.2, certain entities

simply elaborate the data structure of the objects they are

representing, and do not constitute substantial classes in their own

right. Each group of these classes is then listed as a single class,

and effects on the lower-grained classes are combined. Effects

that are entirely internal to the new classes should be hidden.

Title, Copy, Author/Title and Author in Figure 13.4 can be

represented by a single class, such as Book. Furthermore, Loan

and Reservation define complex relationships between Reader and

Book, known as link entities. These entities can be either grouped

with Reader or Book; in this case, the latter is preferable because

the entities define the complex data structure of links books have

to readers. Therefore, there are two main components in the

system as shown in Figure 13.5.

As far as the effects are concerned, Add Book, for example, has

many pairs of Ls in Figure 13.4 which are now completely hidden

Chapter 13 - NAVITA System Modelling - Component Design 196

13.7 Business Component Physical Design: Modelling Process and Technique

Register Reader

inside Book; therefore, the external view of Book for Add Book

only shows that the functionality unit is about adding an instance

of the class. The process of creating instances of multiple smaller

classes and linking them is now hidden. However, if one half of a

pair of effects affects another entity, then the effect needs to be

made externally visible, as for Borrow Book.

Update Reader Details RM

Add Book

Add Copy

Remove Book RD

Remove Copy RD

Search Catalogue R*

Reserve Book RL, IL,R

Cancel Reservation RC, C,DR

Borrow Book RL,M [MJ IL, R

Renew Loan R RM

Send Reminder R MR

Return Book RC, RMC,

De-register Reader RC, C2 D C, C2

Show Reader's current loan R R*

Keys:

I = Insert

L=Link

M=Modify D = Delete R=Read

C = Cut a link * = Multiple effects [] = Optional Effects

It is now clear from Figure 13.5 that related FUs tend to have

effects on similar sets of entity classes. There are three main

Chapter 13 - NAVITA System Modelling - Component Design 197

13.7 Business Component Physical Design: Modelling Process and Technique

groups of related FUs, dealing with maintaining reader

information, book information and information about readers'

activities respectively. The first two groups affect two main

entities, Reader and Book, whilst the last group affects both.

FUs in these groups are not only logically related, in terms of the

way they can be used by the users, but also in agreement with the

underlying structure ofthe system.

BuCD Step - 3 Draw the first sketch component diagram based on the entity

'classes' and services. Represent each class as a component.

The revised entity class diagram now includes only two

significant 'classes' in the system, Reader and Book, and two

relationships between them, Reservation and Loan, which are

largely encapsulated by Book. These classes form the basis for

NA VITA components because they encapsulate tightly coupled

entity classes and also provide a set of related business services.

Reader Component Book Component

Register Reader Add Book
Update Reader Details Add Copy
Borrow Book Remove Book
Return Book Remove Copy
Reserve Book Search Catalogue
Cancel Reservation Borrow Book
Renew Loan Return Book
Send Reminder Reserve Book
Deregister Reader Cancel Reservation
Show Readers Current Loans Renew Loan

Send Reminder
Deregister Reader
Show Readers Current Loans

BuCD Step - 4 List in the bottom compartment of a component all services the

component provides without collaborating with another

component. For FUs that affect mUltiple components, services are

Chapter 13 - NAVITA System Modelling - Component Design 198

13.7 Business Component Physical Design: Modelling Process and Technique

listed in all affected components.

Book Component Component containing
instances of Copy,

Title, Title/ Author and
Author entity classes.

Reader Component

oplO
op20

User

oplO
op20

Backbone Component

Boundary
Component

-«c ..

An instance of an entity
class

Services

In this example, Add Book and Register Reader only affect

individual components, while FUs, such as Borrow Book, affect

both Reader and Book components. Therefore, they are listed in

both components. In these cases, the same service names should

be given to components, but each component will have a different

effect. For example, when a book is borrowed, from the Reader

component point of view, the status of the appropriate reader

needs to be updated. From the point of view of the Book

component, the status of the appropriate book needs to be

updated. As far as the boundary component is concerned, it stills

Chapter 13 - NAVIT A System Modelling - Component Design 199

13.7 Business Component Physical Design: Modelling Process and Technique

carries on communicating with the business components as if

they were one.

It is worth noting that the components shown in the diagram are

not classes in the traditional sense. These components also act as

containers that hold instances of classes, record types and so on.

Therefore, the container itself has responsibilities, such as

maintaining session information.

BueD Step - 5 For FUs that affect multiple components, the operations identified

in the protocol model are split and allocated to appropriate

components. Allocation is based on the information the

operations access (See 13.8.1).

For example, Figure 12.5 shows the list of operations for Borrow

Book. Based on the discussion in Section 13.8.1, operations such

as doesReaderExist(ReaderID) and getReaderDetailO are to be

allocated to the Reader component, while operations such as

doesItemExists(BookID), are to be provided by the Book

component. The division of the protocol model requires revising

of the session structure of each component; each component now

has its own internal session.

Figure 13.8 Splitting Operations Across Components

Reader Component

Borrow Book

doesReaderExists(ReaderID)
getReaderDetailsO
anyOverdueLoansO
getFineO
payFine(amount)
isFineLimitReachedO
isMaxLoanNoLimitReachedO
BorrowItemO
]

Book Component

Borrow Book
[
getOverdueItemsO
doesItemExists(BookID)
getltemDetailsO
isItemReservedByOtherO
BorrowItemO
]

Operations of the Borrow Book
Service in the two components

Chapter 13 - NAVITA System Modelling - Component Design 200

13.7 Business Component Physical Design: Modelling Process and Technique

BuCD Step - 6 Convert relationships between the entity classes into constraints

of individual components. Relationships between components are

therefore implemented locally.

When a book is borrowed, the reader object keeps a reference to

the appropriate book object, and vice versa. Each component

reinforces its own constraints. For example, when a book is

borrowed, the book component ensures that another reader has

not already reserved it whereas the reader component ensures that

the reader has not exceeded the loan limit. (See Section 13.8 for

discussion on rational allocation of operations.)

Another key issue here is ensuring consistency of updates. This

means that if a functionality unit affects two components, the two

updates must be kept in sync with each other. Since, the effects

are atomic, the precedence of updates does not matter. For

example, for Borrow Book, it does not matter whether Book or

Reader components are updated first. What matters is that both or

neither are updated. Therefore, when the boundary component

asks to complete Borrow Book, the Backbone component calls the

BorrowItemO operation. As both Reader and Book components

have the operation BorrowItemO (Figure 13.8), the Backbone

component broadcasts the operation call, so that both components

update their own states. At the end of the service, each

component destroys its own session.

BuCD Step -7 Determine the implementation technology. Then revise the

component diagram by adding implementation-specific

components.

In addition to the business services, business components may

also require other services, in particular data storage services that

hold permanent information in the system. Data services will only

provide basic operations such as saving and retrieving an object

or a record. Therefore, they could be implemented using simple

Chapter 13 - NAVITA System Modelling - Component Design 201

13.8 00 Design for Business Components

text files. If a more advanced DBMS is to be used, all the

services that come with the DBMS will also be available. Note

that access to DBMS operations go through the Backbone

component. That is, all components talk to the same Backbone

component in order to access services of any kind. Services are

added to the middle compartment of each business component

specification to indicate the DBMS services required.

Reader Component Book Component DBMS Component

Store Reader
Retrieve Reader

Register Reader
Update Reader Details
Deregister Reader
Borrow Book
Return Book

User

Store Title
Retrieve Title

Add Book
Add Copy
Remove Book
Remove Copy
Search Catalogue

Backbone Component

Boundary
Component

13.8 00 Design for Business Components

Store Reader
Retrieve Reader
Store Title
Retrieve Title

Since physical architecture or component design is technology-biased, it is necessary

to determine the implementation technology(s) for this design. If a more traditional

development technology, such as structured programming languages and a relational

database, is to be used for implementing the business components, service

Chapter 13 - NAVITA System Modelling - Component Design 202

13.8 00 Design for Business Components

operations can be translated into program modules, and entity classes and their

relationships into relational databases. However, implementation technologies that

are widely used nowadays, such as Java, are mainly 00. Although Java is not a

component-based programming language, it is well recognised for providing a range

of mechanisms to help create components. For this reason, business components

may need to be translated into an OO-based design. If the components are to be

implemented using 00 technology, certain adjustments have to be made, mainly by

allocating operations to entity classes and applying inheritance.

For each business component, analysts now have their service specifications,

entities, and the protocol model. If these are to be converted into an 00 design, the

first thing analysts have to do is to allocate operations to entity classes.

13.8.1 Principle on distribution of operations

One of the main activities of this research is an investigation into the basis on which

allocation of operations to classes can be determined. Since this is an important issue

that has relevance to 00 methods, a detailed investigation has been carried out.

Findings of the investigation are formatted as a journal paper and attached to the

Appendix III. The paper identifies weaknesses in existing 00 methods regarding the

issue and proposes a set of two principles, which provide a rigorous foundation for

rational allocation of operations to 00 classes.

The first principle deals with the basic criteria that need to be met in order to justify

allocation of an operation to a class. The principle states:

An operation allocated to an object must access the properties of the

object in order to justify the allocation. It therefore means that at

least one of the following conditions needs to be met.

Criterion 1: The operation accesses the concrete attribute(s) of the

object.

Criterion 2: The operation accesses the derived attribute(s) of the

object.

Criterion 3: The operation accesses the states of link(s), i.e.

existence or non-existence of links, the object has to other objects.

Chapter 13 - NAVITA System Modelling - Component Design 203

13.8 00 Design for Business Components

Building on the first principle, the second principle states:

Operations of classes have achieved fair distribution of operations if

all of the following criteria are satisfied ubiquitously.

Criterion 1: The operation allocated to an object does not defer what

can be done in the object to another object. What can or cannot be

done by an operation of an object or how much an operation can do

is ascertained from the properties of the object. The amount of work

an operation performs must not transcend the properties of the

object.

Criterion 2: Every operation call between two objects follows the

static associative relationship that exists between the class or classes

of the two objects.

Criterion 3: Control - the task of calling operations - is distributed in

such a way that it reflects the chains of properties that exist among

objects. For each chain of properties, there has to be an object that

serves as the starting pOint of the chain. If there is none, creation of

a control object is necessary.

These principles are observed in NA VITA 00 component design, which uses two

UML diagrams: Sequence and State Transition Diagram. The UML Collaboration

Diagram can be deployed instead of the Sequence Diagram; however, NA VITA

recommends the latter.

13.8.2 Sequence Diagram

This diagram can be used for a number of purposes, such as showing how physical

components communicate realising a specific functionality unit, and how objects

within a component will communicate to realise a specific service.

The main modelling concepts are:

• Components/Objects that participate in the collaboration

• Messages passed between them

• The order of the messages passed

Chapter 13 - NAVITA System Modelling - Component Design 204

~
Library Assistant

a

b

c

d

e

f

g

h

k

~ , , ,
~
~
~
~ ,

~
~
~
~

~
~ ,
,
~ , ,
~ , ,
~
~

~
~
~ ,
~ ,

~
~

~

Borrow­
BookUI

a = doesReaderExists(ReaderID)
b = getReaderDetailsO
c = anyOverdueLoansO
d = getOverdueltemsO
e = getFineO
f = payFine(arnount)

13.8 00 Design for Business Components

b

c

d

e

f

g

h

k

a

Back­
bone

g = isFineLirnitReachedO

Reader
Comp

h = isMaxLoanNoLirnitReachedO
i = doesltemExists(BookID)
j = getItemDetailsO
k = isItemReservedByOtherO
I = Borrow ItemO

Book
Comp

Chapter 13 - NAVITA System Modelling - Component Design 205

13.8 00 Design for Business Components

The main inputs to this modelling are Service Specification, FEM, and the class

distribution principles. For each functionality unit, a service specification shows the

operations, entity classes and protocol model.

SeqO Step-l

SeqD Step-2

For collaborations between components, candidates for

participating components are identified from the 'componentised'

FEM, the FEM with NA VITA components. For collaboration of

objects within a component, candidate classes are identified from

the earlier FEM. Other sources, such as descriptions of the

functionality unit and the 1M fragment produced for the

functionality unit, may also be useful.

Figure 13.10 shows components that are involved in the

realisation of the functionality unit Borrow Book. Participation of

the Reader and Book components in this functionality unit can be

seen in the FEM in Figure 13.5. The sequence diagram in Figure

13.12 shows how objects with the Book component interact to

realise the Add Book functionality unit. Participating objects in

the diagram are identified from the FEM in Figure 13.4.

Operations are taken from the operation list and step-by-step

description of the functionality unit. Effects in FEM can be

analysed for further identification of operations. Draw a sequence

diagram based on the initial allocation of operations.

Figure 13.10 shows interactions between the actor, boundary

component, Backbone component and business components for

the functionality unit Borrow Book. Operations identified in the

protocol analysis in Figure 12.5, are allocated to the two business

components.

Operations of collaborating objects in Figure 13.12 can be

derived by studying the effects on the classes in FEM in Figure

13.4. Title, for example, has one I and two Ls, indicating that a

new instance of the class needs to be created and linked to Copy

and Title/Author. Operations are allocated to appropriate classes

Chapter 13 - NAVIT A System Modelling - Component Design 206

SeqD Step-3

SeqD Step - 5

13.8 00 Design for Business Components

to implement those effects.

By applying the class operation principles, operations are

allocated to entity classes and the control distributed. Revise the

sequence diagram.

The allocation of operations in Figure 13.10 is based on the

principles referred to in Section 13.8.1. For example, the

operation doesReaderExists(ReaderID) is clearly something a

Reader component can do: the component, like a control object

discussed in the operation allocation principles, holds references

to all objects inside. By going through the list of references to the

reader objects, the component can determine whether details of

such a reader exist. Once the object is identified, details of the

reader can be retrieved for the next operation. getOverdueItemsO

is more complex; it may appear that the operation should have

been allocated to the Book component with the reader ID as a

parameter to retrieve details of any overdue loan. However, the

class allocation principles suggest that, since all the interested

loans are linked to a reader object, that object is the starting point

for this query. Reader object only holds references to loan objects

in the Book component. Therefore, through the Backbone

component, the reader object will ask the book component

whether any of the loans it refers to are overdue, and if so, obtain

the book details, as shown in Figure 13.11.

In Figure 13.12, the container of the Book component acts as the

control object, as required by the class allocation principles, and

it creates various instances ofthe classes.

The component diagram is revised by adding the operations to

components and its entity classes.

From Figure 13.11, it is clear the operations IsLoanOverdueO and

getLoanDetailsO need to be provided by the Book component as

part of the Borrow Book service. Figure 13.12 indicates that

Chapter 13 - NAVITA System Modelling - Component Design 207

13.8 00 Design for Business Components

various constructor and link operations need to be added to the

classes in the Book component.

Figure 13.11 Revised Sequence Diagram for Borrow Book Functionality Unit

Library Assistant ~ Borrow­
BookUI

Back­
bone

~

-~~ .~ anyOverdueLoansO ~ ... "-

-----~~-----7 anyOverdue-

LoansO --"

~
~
~

I
------~

~
~
~

~

anyOverdue-

LoansO "

IsLoan­
Ovetdue(lid) *

IsLoan­
Overdue(lid)*

getLoan­
Details(lid) *

getLoan­
Details (lid) *

Chapter 13 - NAVIT A System Modelling - Component Design

Reader
Comp

Book
Comp

208

13.9 State Transition Diagram

addBook
(details)

)

Back­
bone

addBook
(details)

Book
Container

Inside Book Component

Title Copy Author

Link

13.9 State Transition Diagram

Author/
Book

NA VITA State Transition Diagram (STD) is used to show the state changes in the

lifetime of an object or a component. This diagram is largely based on the UML

Statechart Diagram (OMO, 2003).

13.10State Transition Diagram: Modelling Concepts

The main concepts used are:

• Object/Component (Section 11.2.1 and 6.5)

• Event and Transition

• State

Chapter 13 - NAVITA System Modelling - Component Design 209

13.10 State Transition Diagram: Modelling Concepts

13.10.1 Event and Transition

In NA VITA, events are identified from the FEM, in which each functionality unit

with an update effect on the component or object is regarded as an event. The

correspondence is always one-to-one because each functionality unit is atomic.

Transitions of states caused by these events are explored using a state table. Events

and transitions are represented by arrows, as in UML.

Reader with
no loan

!Register Reader

Borrow Book

Return Book
[No of Curr Loans<Max Loans]

[No of Curr Loans=O] ~----:-'--"""

Borrow Book

[DueDate<Today]

Return Book
[No of Curr Loans

Renew Loan > 0]
[status<>reserved]

Return Book
[No of Overdue Loans=O AND

No of Curr Loans>O]
Reader with

overdue loan(s)
'------1 Return Book

[No of Overdue
Loans>O]

Return Book '---__ -.------'
[No of Curr Loans=O]

Reserve Book
[No of Curr Reservation <Max

Reserve Book
Reader with nq<E~---------1

reservation

Borrow Book
[borrowed = reserved]
/ Cancel Reservation

Reservations

Borrow Book / Cancel
Reservation

[No of Curr Reservation>O

Chapter 13 - NAVITA System Modelling - Component Design 210

13.11 State Transition Diagram: Modelling Process and Technique

13.10.2 State

State is the condition of an object or a component, which affects its behaviour.

States of an object are determined by its attribute values and the links the object has

with other objects. States of a NA VITA component are typically determined by

states of a set of objects encapsulated by the component. For example, states of the

Book component are determined by the collective states of a set of Title, Copy,

Title/Author, Author, Loan and Reservation objects representing a single book.

Refer to UML Specification (OMG, 2003) for a more in-depth discussion on the

concepts used in this model, such as sub-states, concurrent states, guard condition,

and so on.

13.11State Transition Diagram: Modelling Process and
Technique

STD Step - 1 Identify the FUs that affect the state of the component/object for

which STD needs to be drawn. FUs with only R effects do not

change the state of the component/object.

For example, Reader is affected by Register Reader, Borrow Book

etc, not Show Reader's Current Loans.

STD Step - 2 Determine the possible states of the component/object before and

after each functionality unit by constructing a simple state table.

Table 13-1 shows the states of the Reader component before and

after being affected by FUs.

STD Step - 3 Draw a STD showing the complete lifecycle of the object or

component.

Figure 13.13 shows STD for the Reader component.

Chapter 13 - NAVITA System Modelling - Component Design 211

13.12SDP

Table 13-1 States of Reader Component Before and After some FUs

"Before" State "After" State Repetition
Register Reader Null Reader with No Loan and None

Reservation
Update Reader Details Not null Same as Before State Many
Reserve Book Reader with no loan Reader with reservation Up to

Reader with loan reservation
Reader with reservation limit
Reader with no reservation

Cancel Reservation Reader with reservation Reader with reservation/ Up to
Reader with no reservation number of

current
reservation

Borrow Book Reader with no loan Reader with loan Up to loan
Reader with loan limit,
Reader with reservation
Reader with no reservation

Renew Loan Reader with loan Reader with loan Up to
renewal no
limit

Send Reminder Reader with overdue loan Reader with overdue loan Up to
reminder no
limit

Return Book Reader with Loan/ Reader with loan! Up to no of
Reader with overdue loan Reader with overdue loan! current loan

Reader with no loan
De-register Reader Reader with no Loan and Null Once

Reservation

13.12SDP

Modelling of physical boundary components and physical business components

occurs in Stage 8 - Physical Design.

13.13Architecture

Modelling of physical components is all about physical architecture. NA VITA

models help analysts carry out a systematic analysis of physical business

components, addressing both business and technical dimensions of reusable

components.

Chapter 13 - NAVITA System Modelling - Component Design 212

14.1 Introduction

Chapter Fourteen

Evaluation of NA VITA

14.1 Introduction

This chapter evaluates the new CBSD method NA VITA by applying the same rigour

and criteria of the MAP framework as used in the evaluation of the existing CBSD

methods. Evaluation results are then compared.

Evaluation of each existing CBSD method in Chapter 4 is preceded by a summary of

the method highlighting its key features. Since NA VITA has been described

extensively in previous chapters, it need not be described here again.

14.2 Evaluation of NAVITA

NA VITA provides all three elements of a method as required by the MAP

framework. The following correlations between the three elements of a method can

be noted.

• Correlations between modelling and SDP stages are made explicit at the end

of each chapter on modelling; for example, Section 8.6.

• The relationships between the system development process and software

architecture are made clear through development steps such as Step 6 and

Step 7, see Sections 7.2.6 and 7.2.7

• The correlations between the modelling and software architecture are made

clear at the end of each chapter on modelling; for example Sections 8.6 and

8.7.

Therefore, there is a high level of interconnectedness between elements ofNA VITA.

Chapter 14 - Evaluation of NAVITA 213

14.2 Evaluation of N A VIT A

14.2.1 Evaluation of System Modelling

Figure 14.1 IPI Matrix for NAVITA Models

A. Context Diagram

9 ,'/
. " 1

(

Information
Axis

5

.A\
I
I
I

B. Middle-level Functionality Diagram (MFD)
C. Information Model (1M)
1. A column in Functionality unit Entity class Matrix (FEM)
2. State Transition Diagram
3. A row in FEM / Logical Architectural Analysis
4. Sequence Diagram

"\\ /

\j
It
~

B Process
Axis

5. A middle-level functionality unit involves an event-level interaction
6. User System Dialogue Model/Lower-level Functionality Diagram (LFM)
7. Implicit in MFM
8.LFM
9. Logical Screen Layout
10. Protocol analysis (IM fragment and Operation List)

The IPI Matrix in Figure 14.1 shows NA VITA models. The following conclusions

can be drawn about the coverage ofthese models:

• The method provides all three global models as required by the MAP

framework.

• There is a high number of abstract contextual models: five out of six.

• The coverage of detailed contextual models in NA VITA is also extensive.

There are no abstract and detailed contextual models in NA VITA that show

how an entity/class relates to one or many interactions. This is largely

because there is a general one-to-one relationship between middle-level

Chapter 14 - Evaluation of NAVITA 214

14.2 Evaluation of NA VITA

processes and interactions - with contextual diagrams showing how one

entity/class is affected by processes (1 and 2) - other diagrams in this case

will be extraneous.

14.2.1.1 Evaluation of Context Diagram

Table 14-1 summarises evaluation of the modelling technique for the diagram.

Modelling technique for this global model is fairly rigorous and many contextual

models make cross-references to and from this diagram.

Table 14-1 Evaluation of the NAVITA Context Diagram Modelling Technique

Criterion

(a) Completeness of
system boundaries

(b) Completeness of
actors

(c) Completeness
interaction

(d) Minimality of system
boundaries

(e) Minimality of actors

(f) Minimality of
interaction

Guidelines

CD Step 1: Two system boundaries are added first, one
of which may be removed later.

CD Steps 2-4: Identification, careful categorisation,
positioning of actors according to their roles, together
with the users' involvement in the process ensure this
completeness.

CD Step 5: A general one-to-one mapping between
interactions and functionality units, subsequence checks
with MFD, LFD, LSL and USDM ensure completeness
and correctness of interactions.

CD Step 6: In specific cases, the greater IS boundary is
removed.

CD Step 7: Actors and interactions are eliminated
according to the changes in the system's boundaries.

CD Step 7.

(g) Correctness of system Implicit in CD Step 7.
boundaries

(h) Correctness of actors

(i) Correctness of
interaction

U) Non-redundancy of
system boundaries

(k) Non-redundancy of
actors

(I) Non-redundancy of
interaction

CD Step 2: User participation in the process ensures that
actors are appropriately represented.

CD Step 5.

Not applicable.

CD Step 8: Consolidation of actor roles removes
redundant actors.

CD Step 9: Redundant elements in input/output data
items are removed.

Total

Chapter 14 - Evaluation of NAVIT A

Rigour

2

2

2

2

2

2

2

2

o

2

20

215

I

14.2 Evaluation of NA VIT A

Strength of the NA VITA context diagram modelling 91
technique

14.2.1.2 Evaluation of Middle-level Functionality Modelling

Since this model and the previous model have many elements in common,

evaluations of common elements are replicated from the previous table. Table 14-2

gives a summary of the evaluation of the MFD modelling technique.

Table 14-2 Evaluation of the NAVITA MFD Modelling Technique

Criterion

(a) Completeness of
functionality units

(b) Completeness of
actors

(c) Completeness
interaction

(d) Minimality of
functionality units

(e) Minimality of actors

(t) Minimality of
interaction

(g) Correctness of
functionality units

(h) Correctness of actors

(i) Correctness of
interaction

U) Non-redundancy of
functionality units

(k) Non-redundancy of
actors

(I) Non-redundancy of
interaction

Guidelines

MFD Step I: FUs are identified from a number of
sources: business processes, prototyping, RAD etc.
They are also cross-checked with the context diagram
and. Furthermore in FEM Step 3, FUs are cross-checked
with entity classes.

See (b) in Table 14-1.

See (c) in Table 14-1.

MFD Step 2 and FEM Step 3.

See (e) in Table 14-1.

See (t) in Table 14-1.

Each MFD is further analysed by LSL and USDM.
Users' involvement in the development of LSL and
UDM can help validate the functionality units.

See (h) in Table 14-1.

See (i) in Table 14-1.

MFD limits itself to 'complete' processes and there is
no explicit analysis of, say, common elements between
functionality units.

See (k) in Table 14-1.

See (I) in Table 14-1.

Total

Strength of the NAVITA MFD modelling technique

Chapter 14 - Evaluation of NAVITA

Rigour

2

2

2

2

2

2

2

2

2

2

22

92

216

14.2 Evaluation of NAVITA

14.2.1.3 Evaluation of Information Modelling

Table 14-3 summarises the evaluation results for this modelling technique.

Criterion Guidelines Rigour

(a) Completeness of
classes

1M Step 1 and 1M Steps 4-7. Classes, attributes and 2
relationships are identified from two lines of analysis - top-
down grammatical analysis of requirements and bottom-up
relational data analysis of LSL - before merging together.

(b) Completeness of
attributes

1M Step 1 and Steps 4-7. 2

(c) Completeness of
associative relationships

1M Step 2 and 1M Steps 4-7. 2

(d) Completeness of
inheritance relationships

1M Step 3. Inheritance relationships are identified, however,
their completeness cannot be guaranteed.

(e) Minimality of classes 1M Steps 4-7. When class diagrams developed separately are 2
merged together, superfluous classes, attributes and
relationships are eliminated.

(f) Minimality of 1M Steps 4-7. 2
attributes

(g) Minimality of Implicit from 1M Step 3. 0
inheritance relationships

(h) Minimality of 1M Steps 4-7. 2
associative relationships

(i) Correctness of classes Attributes gather in 1M Step 4 are based on User Interface
design that are developed in collaboration with the users.
Users are therefore able to confirm the attributes that they
believe are necessary for their business operations. Entity
classes are further based on these attributes. Therefore these
entity classes have a high chance of being correct.

G) Correctness of See (i)
attributes

(k) Correctness of Not provided.
inheritance relationships

(I) Correctness of
associative relationships

(m) Non-redundancy of
classes

(n) Non-redundancy of
attributes

(0) Non-redundancy of

See (i). Class allocation principles in Sequence Diagram
modelling require that class/classes of communicating objects
haslhave associative relationships.

RDA in 1M Step 5 requires removal of entities with similar
sets of attributes.

RDA in 1M Step 5 ensures that derivable attributes are
removed.

Not provided.

Chapter 14 - Evaluation of NAVITA

o

2

2

o

217

14.2 Evaluation of NAVIT A

inheritance relationships

(p) Non-redundancy of 1M Step 5. 2
associative relationships

Total 22

Strength of the NAVITA 1M modelling technique 69

14.2.1.4 Evaluation ofUSDM

Table 14-4 gives a summary of the evaluation of the USDM modelling technique.

Table 14-4 Evaluation of the NAVITA FEM Modelling Technique

Criterion Guidelines Rigour

(a) Completeness of 110 USDM Step I: 110 fields are taken from the LSL which has 2
fields been validated by the user.

(b) Completeness of USDM Step 2: Identified from the LSL, then crosschecked 2
flows with functionality unit's description, LFD.

(d) Minimality of I/O See (a). 2
fields

(f) Minimality of flows See (b). 2

Total 8

Strength of the NA VITA FEM modelling technique 100

14.2.1.5 Evaluation of Protocol Analysis

Table 14-5 gives a summary of the evaluation of the NAVITA protocol analysis

modeIling technique.

Table 14-5 Evaluation of the NAVITA Protocol Analysis Modelling Technique

Criterion

(a) Completeness
operations

(b) Completeness of
flows

(d) Minimality of
operations

(f) Minimality of flows

Guidelines Rigour

PM Step I - 1M Step 2: Operations are identified from the 2
various sources, in particular from USDM. Completeness
however cannot be ensured.

PM Step I - 1M Step 2: Identified from the USDM. 2

See (a). 2

Not provided. 0

Total 6

Strength of the NAVITA FEM modelling technique 75

Chapter 14 - Evaluation of NAVIT A 218

14.2 Evaluation of NA VIT A

14.2.1.6 Evaluation of Sequence Diagram

Table 14-6 gives a summary of the evaluation of the NA VITA Sequence Diagram

modelling technuqe.

Table 14-6 Evaluation of NAVITA Sequence Diagram Modelling Technique

Criterion Modelling Guidelines Rigour

(a) Completeness of participating
objects

(b) Completeness of operations

(c) Completeness of flow

(d) Minimality of participating
objects

(e) Minimality of operations

(t) Minimality of flow

SeqD Step 1. Affected objects/components are
identified from FEM.

SeqD Step 2. Operations are determined from
descriptions of functionality units and effects in
FEM.

SeqD Step 3. The flow is ascertained from the
descriptions of functionality units and class
allocation principles.

Crosschecks in FEM ensure this minimality.

Implicit from (b)

Implicit from (d)

2

2

2

2

2

2

Total 12

Strength of the NA VITA sequence diagram 100
modelling technique

14.2.1.7 Evaluation of State Diagram

Table 14-7 gives a summary of the evaluation of NA VITA STD modelling

technique.

Table 14-7 Evaluation of NAVITA STD Modelling Technique

Criterion

(a) Completeness of states

(b) Completeness of
events/transitions

(c) Minimality of states

(d) Minimality of
events/transitions

Modelling Guidelines

States are identified through FEM and the state
table. The analysis can only guarantee that
essential states - such as after creation, before
deletion - are present, but not much more.

Events and transitions are identified from FEM,
in which FUs with an update effect are taken as
events, and their effects are transitions from one
state to another

Not provided.

FEM requires that at least a set of events are
present so that the object/component can be
created, updated and deleted.

Chapter 14 - Evaluation of NAVITA

Rigour

2

o

219

14.2 Evaluation of NA VIT A

Total 4

Strength of the NAVITA STD modelling 50
technique

14.2.1.8 Evaluation of LFM

Table 14-8 gives a summary of the evaluation of the NA VITA LFM modelling

technique.

Criterion Modelling Guidelines Rigour

(a) Completeness of steps

(b) Completeness of flow

(c) Minimality of steps

(d) Minimality of flow

LFD Steps 1 and 2. LFD steps are initially
identified from the descriptions of functionality
units in MFD. These steps are later cross­
checked with the LSL and in particular USDM
(USDM Step 2).

Control structures of LFD and USDM are cross­
checked.

Implicit from (a).

Implicit from (b).

2

2

Toml 6

Strength of the NA VITA LFD modelling 75
technique

14.2.2 Evaluation of Architecture

Chapter 12 and Chapter 13 provide detailed discussions on NAVITA Software

Architecture. NA VITA provides a reference architecture (Figure 6.1) with great

emphasis on user-driven component pluggability, reuse of high-grained business and

user interface components, and seamless integration of distributed components. The

use of Backbone component as a communication medium and repository for

component services, and Application Manager to maintain components within the

application are unique features of this architectural model.

14.2.2.1.1 Definition of Components

NA VITA does not provide a formal definition of the term "component." Instead it

attempts to illustrate and discusses various key characteristics of NA VITA

components. NA VITA distinguishes between two main types of components:

boundary components and business components. All NA VITA components are

service-oriented and technology-neutral. Boundary components are identified by

Chapter 14 - Evaluation of NAVITA 220

14.2 Evaluation of NA VITA

analysing the aspects of user-system interaction within the functionality unit, while

business components are identified by looking at how related sets of functionality

units affect cohesive sets of entity classes. The discussions on components focus on

business components in NA VITA, as they are thought to be more important than

boundary components. The unique feature of NA VITA is that components are

identified at the point where the technical and business perspectives merge.

14.2.2.1.2 Identification and Verification of components

NA VITA provides concrete guidelines on how to identify business components and

translate them into a design that can be implemented using common 00

programming languages. NA VITA FEM plays a crucial role in identification of

business components, whilst the protocol analysis provides operations that, together

with 1M fragments, LSL and USDM, form the interfaces of components.

14.2.3 Evaluation of System Development Process

Table 14-9 Evaluation of RSE System Development Process

The MAP Criteria NAVITA

Feasibility Analysis One of the first stages of development in NA VITA SDP,
which emphasises the need to address CBSD-specific
feasibility concern such as component availability in addition
the concerns of traditional feasibility analysis.

Business Modelling NA VITA emphasises the importance of BPM, while referring
to BPMN for notation and SELECT Perspective for modelling
technique.

Requirement Analysis NAVITA provides extensive modelling technique for
requirements analysis.

System Analysis A number of modelling techniques are also provided for this
analysis.

Logical Architecture Specification of services provided by logical components is the
main concern of logical architecture in NA VITA.

Physical Design NA VITA provides detailed discussions on how to create
components that address both business and technological
constraints.

Component Search This is a key part of NAVITA SDP, where references to
existing material are provided.

Component Certification This is part of Component Search and Acquisition.

Component Implementation Assuming that applications will be developed using 00

Chapter 14 - Evaluation of NAVIT A 221

14.3 A Comparison of Evaluation Results

technologies, NA VITA provides design techniques to translate
the logical design into component-based 00 design. It does
not however discuss implementation issues.

Application Assembly Only references to existing material are provided.

System Testing Only references to existing material are provided.

System Delivery Only references to existing material are provided.

14.3 A Comparison of Evaluation Results

This section compares the evaluation results of NA VITA, presented in this chapter,

with the evaluation results of the existing CBSD methods, presented in Chapter 4.

14.3.1 Correlations between the Three Elements of Methods

There are correlations between the three elements in both RSE and SELECT

Perspective. Catalysis provides neither a detailed SDP nor a reference architectural

model. As a result, only the correlations between modelling and general stages of

SDP are clear. Although there is no reference architectural model in KobrA,

correlations between the three elements are evident. It is fair to say that correlations

between the three elements are most definitive in NA VITA.

14.3.2 Coverage Models

Chart B sums up the total number of important global and contextual models in

existing CBSD methods and NA VITA. As far as global models are concerned,

KobrA and NA VIT A provide three global models each. Although SELECT

Perspective provides four global models, Logical Data Model and Class Model

occupy the same area of the IPI matrix, indicating overlaps between the two models.

Both RSE and Catalysis lack a global model for interaction. However, none of the

existing methods provide a sufficient number of abstract and detailed contextual

models, meaning that there are few crosschecks between the global models of these

methods. NA VITA makes substantial advances in this area of modelling by

providing five abstract and five detailed contextual models. This is an important

weakness of existing CBSD methods that NA VITA has tackled effectively.

Chapter 14 - Evaluation of NAVITA 222

14.3 A Comparison of Evaluation Results

6,---,
5

4

3

2

O+-----------------~------------------r_----------------~
No. of Global Models No. of Abstract Contextual No. of Detailed Contextual

Models Models

I-+-RSE --- SELECT Perspective -!:r- Catalysis --*- KobrA ~ NA VITA I

14.3.3 Relative Strengths of Modelling Techniques

Chart C compares the strengths of the global modelling techniques in existing CBSD

methods and NA VITA. Techniques of global models are compared on the basis of

the axis of the IPI Matrix that these models are identified with. As the chart

indicates, NA VITA has made substantial progress in improving the rigour of global

modelling techniques.

Chart C Relative Strengths of Comparable Modelling Techniques

100

90

80

70

60

50

40

30

20

10

0
G. Process G. Information G. Interaction

I-+-RSE --- SELECT Perspective -!:r- Catalysis ~ KobrA ~ NAVITA I

Chapter 14 - Evaluation of NAVITA 223

14.3 A Comparison of Evaluation Results

Chart D shows the relative strengths of the detailed contextual modelling techniques

provided by existing CBSD methods and NA VITA. Modelling techniques of

detailed context models are compared on the basis how these models are represented

in the IPI matrixes; for example, models represented by arrows between the

Information and Process axes pointing from the information model towards the

process model. NA VITA, again, has made a leap forward in terms of improving the

rigour of modelling techniques.

Chart 0 Relative Strengths of Comparable Contextual Modelling Techniques

120.---~

100

80

60

40

20

o +---~--_.--------._--1&--~--_4m_--_r--_mr_--._--~--~
Info-Process Process-Info Process- Interaction- Interaction- Info-

Interaction Process Info Interaction

I-+-- RSE --SELECT Perspecti\le ~ Catalysis ~ KobrA -*- NAVITA I

14.3.4 Architectural Models

Catalysis and KobrA do not provide any reference architectural models, while RSE

and SELECT Perspective offer architectural models that are largely reminiscent of

00 systems: layered architecture. NA VITA provides an architectural model that

reflects the nature of component-based applications, which is another improvement

NA VITA has made over the existing methods.

14.3.5 SDP

SDP models of SRE and Perspective describe the CBSD process reasonably well,

while Catalysis and KobrA put relatively little emphasis on this aspect of SDMs.

NA VITA provides a SDP model that is in many ways similar to those in SRE and

SELECT Perspective. This is an area ofCBSD methods that is well-developed.

Chapter 14 - Evaluation of NAVITA 224

14.4 Summary

14.4 Summary

NA VITA has been evaluated by applying the MAP framework. Comparison of the

evaluation results ofNAVITA and existing CBSD methods shows that NAVITA is a

complete CBSD method that overcomes many shortcomings of existing methods.

NA VITA has more models, better coverage and stronger modelling techniques,

while the architectural model closely reflects the nature of component-based

applications. SDP ofNAVITA has a similar coverage to SDPs ofRSE and SELECT

Perspective. These comparison results validate the second hypothesis of this

research.

Chapter 14 - Evaluation of NAVIT A 225

15.1 Introduction

Chapter Fifteen

Research Methodology

15.1 Introduction

This research project is divided into two main stages. The first stage of the project is

concerned with investigating existing CBSD methods, and with evaluating these

methods using an evaluation framework. Based on the evaluation outcomes, stage

two of the project focuses on the development of a holistic method to address

shortcomings in the existing methods. Whilst the research is divided into two stages,

this research is cumulative and evolutionary with a singular aim of contributing to

the improvement of the general quality of CBSD methods. The research

methodology used in this project can be summed up as follows:

Step 1. Initial investigation of existing CBSD methods

Step 2. Investigation of method evaluation approaches and their applicability to

this research

Step 3. Development of a general theory of system development methods, and a

comprehensive framework for evaluation ofCBSD methods

Step 4. Evaluation of existing CBSD methods using the evaluation framework

Step 5. Validation ofthe evaluation results using a repeatability experiment

Step 6. Development of the new CBSD method

Step 7. Demonstration of the new CBSD method using a case-study

Step 8. Evaluation of the new CBSD method using the same evaluation

framework used for the existing methods

15.2 Initial Investigation of CBSD methods

This research began with an initial investigation into the state of affairs of what was

an increasingly prevailing approach to software development, namely, component-

Chapter 15 - Research Methodology 226

15.2 Initial Investigation of CBSD methods

based software development. The initial investigation had identified that, despite the

major advances in software technologies concerning component-based software,

systems development methods available at the time were largely undistinguishable

from their predecessor 00 methods such as OOSE (Jacobson, 1992) and UML. An

informal assessment of the status quo revealed a number of weaknesses in these

methods and a need for a new CBSD method. In addition to taking into account

software component technologies, the new method would have to espouse the reuse

philosophy in every aspect of software development, namely system modelling,

software architecture and system development process, as called for by this new

software development strategy. This initial investigation prompted this CBSD

project.

As far as the research methodology is concerned, there are two main issues it has to

address: first, objective evaluation of the existing CBSD methods; second, creation

of a new CBSD method that demonstrably overcomes the shortcomings found in the

existing methods.

The research methodology recognises that a comprehensive and objective evaluation

of existing methods to expose strengths and weaknesses requires a consistent

application of a rigorous set of criteria. Moreover, the subsequent demonstration of

the relative merits of the new method must be based upon the evaluation results

produced from application of the same set of criteria. Therefore, an appropriate use

of a systematic evaluation approach has been imperative for the success of this

research.

Since this research involves evaluation of existing CBSD methods, creation of a new

method that improves upon the existing methods and demonstration of the relative

merits of the new method over the existing ones, a plain evaluation approach is not

sufficient. Any evaluation approach used in this research must also assist in the

process of new method creation. It is important, therefore, to address the question of

what constitutes a good method. In other words, a theory underpinning the

evaluation and creation of SDM needs to be established before attempting to

evaluate and create CBSD methods. Based on such a theory, a framework for

evaluation and creation of CBSD methods may be derived and applied.

Chapter 15 - Research Methodology 227

15.3 Investigation of Method Evaluation Approaches and their Applicability to this

Research

15.3 Investigation of Method Evaluation Approaches and
their Applicability to this Research

In order to understand and evaluate the existing CBSD methods objectively,

rigorously and consistently, a rational standard for evaluation is required, leading to

an investigation of existing approaches to the evaluation of system development

methods.

This research has identified two basic ways in which methods are evaluated by

academics and practitioners alike. With the first approach, the evaluator uses a set of

criteria that are often subjective, narrowly-focused, and somewhat random. The use

of such an approach is justifiable if the evaluator's interest in the method is limited.

For example, CASE-tool makers may only be interested in diagrammatic symbols,

concepts and modelling rules; their interest in the rigour of modelling techniques, for

instance, may be limited. Another approach to evaluation is the use of what are

commonly known as evaluation frameworks, which range from a set of abstract

principles about what a method should entail to more concrete criteria outlining the

kinds of model that should be supported by a method. These evaluation frameworks

tend to provide commentary on the frameworks' theoretical basis.

Since the object of evaluation in this research is not limited to how certain

characteristics of a method rate, but rather to determining the quality of a method in

its totality, evaluation of system development methods using a loosely arranged set

of criteria would either fail or produce partial and inconclusive results. The strength

of evaluation frameworks over list of criteria is in providing more systematic and

organised approaches to understanding and evaluating methods. From the

perspective of this research, which intends to investigate all major aspects of system

development using CBSD approach, the evaluation approach using a framework is

more appropriate and more likely to produce useful results.

This research has identified two evaluation frameworks that are relevant to this

project, namely, NIMSAD and Wieringa's framework. As discussed in Chapter 2,

NIMSAD does provide a good theoretical basis for understanding and evaluating

system development methods, but suffers from being too generic and process­

oriented. It nevertheless provides the foundation for the new evaluation approach

(Section 3.2). Wieringa's framework provides a similar kind of evaluation criteria,

Chapter 15 - Research Methodology 228

15.4 Development of an SDM theory and the MAP Framework

but is focused exclusively on requirement specification techniques. The new

framework takes onboard elements ofWieringa's framework.

15.4 Development of an 8DM theory and the MAP
Framework

The first major step ofthis research is to establish a theoretical framework to explain

what a method should include and how it should be evaluated. By drawing lessons

from systems thinking, NIMSAD, Wieringa's framework and other criteria

suggested by various authors, this research establishes a theory of system

development method and, based on the theory, a novel approach to understanding

and evaluating existing and new system development methods, named the MAP

framework. This framework, therefore, serves as the archetypal criteria for the rest

of the research. This framework has been established before properly evaluating

existing methods and creating a new method. In this way subsequent evaluation of

existing methods and the new method can be both objective and consistent.

15.5 Evaluation of existing methods using the new
framework

Once the framework for evaluation has been established, existing CBSD methods

are studied again in greater detail. This involves summarising important features of

the methods. A survey paper (Appendix II) has been prepared based on this studl.

The methods are then evaluated using the MAP evaluation framework.

15.6 Validating the evaluation results using an experiment

One of the questions that arose from an attempt to publish the evaluation framework

was whether the evaluation results would be repeatable, i.e. if other evaluators were

to use the framework to evaluate the same method, would they arrive at the

9 Perhaps an informal part of the research methodology is the author's involvement with some

teaching activities both within the London Metropolitan University and outside of it. Part of this

paper, for instance, is an edited version of some lecture notes used for teaching component-based

development and SELECT Perspective for final year BSc degree students. Interactions with students

during lectures and tutorials on a wide range of subjects from UML to SSADM were a source of

insight and inspiration for this author.

Chapter 15 - Research Methodology 229

15.7 Development of the new CBSD method

conclusion this research had reached. In order to establish the repeatability of the

evaluation framework, an experiment was set up involving final year degree students

taking the Advanced Systems Analysis and Design unit at London Metropolitan

University. All students were exposed to key SSADM and UML techniques and

were asked to carry out the evaluation. The majority of the participants came to the

same conclusion that SSADM models have a better coverage and inter-model checks

than UML, confirming that the framework, to a large extent, is repeatable.

15.7 Development of the new eSSD method

Equipped with a general outline of what a good method should entail and the

evaluation results of existing methods, the project has then proceeded to create a

new method that takes into account both strengths and weakness of existing

methods. The process used is iterative, not recursive, since the evaluation framework

provides guidelines for how to move from one stage to another. The main advantage

of using a comprehensive evaluation framework like the one suggested by this

research is this: the framework not only helps identify positive features of various

methods, but it also helps determine the way that weaknesses should be tackled.

Furthermore, this framework, with its great emphasis on integration of different

aspects ofa method, helps in the process of assembling different parts of the method

into a single cohesive one. The result is NA VITA, a systematic synthesis of good

features of existing CBSD and non-CBSD methods, with novel insights into the

nature of system development using the component-based approach.

15.8 Demonstration of the new method using a common
case-study

A case study is used throughout the research for two main purposes: firstly, to

discuss and present modelling concepts ofNAVITA, and secondly, to illustrate how

the modelling approach suggested by the new method will work as a whole. The

second point is also an indication of the completeness of the new method in the

sense that it can be used from requirements analysis down to implementation­

specific system design. The specific application chosen for this study is a simple

student library, named LibrInfoSys. A student library case study is chosen because it

is a popular one used by many authors on system development methods such as

Chapter 15 - Research Methodology 230

15.9 Evaluation of the new CBSD method

(Atkinson, 2002), and one with small, but reasonably complex, business constraints

found typically in many business information systems.

15.9 Evaluation of the new CBSD method

After NA VITA has been constructed and demonstrated using the case study, it is

formally evaluated against the evaluation framework used to assess the existing

methods. The research, therefore, deploys the same yardstick to measure all

methods; any claim made for or against the new method is grounded in clear

evidence, objectivity and consistency.

15.10 Methodological Issues

The methodology ofthis research has the following limitations:

• The software architecture suggested by NA VITA should have been

demonstrated with the use of either a prototype including the major

components or an entire application. However, due to limitation of

time and scope of the research, a decision was made against the plan to

develop such a prototype.

• The formula used to calculate strength of a modelling technique can be

improved; see Section 16.3.

• In the project proposal (Appendix VI), it was suggested that the new

method would be demonstrated by applying it to applications in three

different domains. This became unfeasible because of time constraints

and inappropriate because NAVITA was created for use in

development of enterprise ISs; see Section 5.3. The expert review

approach was not used due to its subjectivity; see 2.3.1.

Chapter 15 - Research Methodology 231

16.1 Research Conclusions

Chapter Sixteen

Conclusions, Contributions and
Areas for Further Research

16.1 Research Conclusions

The first part of this research is mainly concerned with surveying and evaluating

CBSO methods. A theoretical and comprehensive evaluation of these methods

requires a rigorous application of detailed evaluation criteria which most existing

approaches to evaluation of SOM do not provide. This research proposes a novel

evaluation approach to systematic evaluation of SOM, and Component-based SOM

in particular, which is then applied to the CBSD methods surveyed. The evaluation

has identified strengths and weaknesses of these methods, and based on the findings,

a new method is proposed. The new method is then evaluated by applying the same

criteria and rigour used for existing methods. A comparison of evaluation results

shows that the new method overcomes major weaknesses in previous methods, in

particular in the area of system modelling. Therefore, the two objectives of this

research, outlined in Section 1.3 have been achieved.

16.2 Research Contributions

In fulfilling its objectives, this research has made four key contributions for the

advancement of CBSO methods:

(i) Detailed Analytical Survey of CBSD Methods

A detailed investigation of four publicly available CBSD methods has been

carried out in this research and summaries of their key features are presented

in journal paper format in Appendix II. The survey mirrors the development

Chapter 16 - Conclusions, Contributions and Areas for Further Research 232

16.2 Research Contributions

and the status quo of CBSD methods, which can be used as a starting point for

further exploration of CBSD methods by researchers and practitioners alike.

(ii) The MAP framework and its application

Using systems thinking theory and some well-established generic evaluation

frameworks as the starting point, this research has provided a theory of SDMs

and a novel approach to evaluating system development methods. The MAP

framework is superior to existing evaluation approaches in a number of

aspects. It covers all major technical issues of system development methods,

with a strong emphasis on evaluation of models and modelling techniques. IPI

Matrix, underpinned by a general theory of system development methods,

provides a conceptual framework for classifying and analysing relationships

and dependencies between models suggested by system development methods

of all kinds. Using this unique matrix, models can be analysed and evaluated

diagrammatically by looking at how they help analysts gain a complete and

consistent understanding and projection of a problem situation. Most existing

evaluation criteria deal largely with global models, but the MAP framework

places a unique emphasis on the importance of contextual models in ensuring

that the global models are internally and externally consistent. In other words,

models do not contradict each other and fulfil users' real requirements.

Formulation of criteria for evaluation of individual models is based on key

quality characteristics of requirements specifications. These criteria are

uniform and consistent across all models. The framework highlights the

importance of evaluating software architecture, and indicates mechanisms for

the evaluation. Criteria for evaluation of the system development process are a

customisation of an established framework. Therefore, evaluation criteria

generated by the MAP framework are systematic, detailed and highly

organised. Rigorous application of these criteria leads to a clear indication of

the overall quality of a method.

The MAP framework is then successfully applied to existing CBSD methods.

The evaluation uncovers the following key weaknesses:

Chapter 16 - Conclusions, Contributions and Areas for Further Research 233

16.2 Research Contributions

• Existing CBSO methods tend to have few abstract and detailed

contextual models. As a result, global models have few crosschecks

between them.

• Existing CBSD methods do not place enough emphasis upon the need

for capturing user-system interaction at the global level, and integrating

it with other models.

• Rigour of modelling techniques is rather weak because of the lack of

crosschecks between global models and because users are not involved

in modelling. The MAP framework shows that the use of more formal

specification techniques does not automatically lead to production of

specifications that are internally and externally consistent.

The evaluation results confirm the first hypothesis of this research.

Outside the mandate of this research, the MAP framework has been applied to

a popular Structured method, SSADM, and an 00 method, UML (Bielkowicz

and Tun, 2003; Bielkowicz et ai, 2002). Evaluation of these methods using the

MAP framework confirms the suspicion of some researchers that UML

models are fragmented, with little crosschecks between global models. In this

respect, SSAOM is a highly sophisticated method.

This evaluation shows that the MAP evaluation framework can also be used

by others to evaluate various kinds of SOMs. An experiment involving

independent practitioners of the framework supports the repeatability of the

framework.

(iii)New CBSD Method: NA VITA

Application of the framework to CBSO and non-CBSD methods leads to a

critical understanding of what makes a good SOM. This gives the impetus to

synthesise various elements of existing methods with novel insights into

system modelling in order to create this new CBSO method.

SOP of NA VITA ensures that models are produced only when necessary; the

development of models is not required when components are available.

NA VITA recognises that specifications of components must be produced

before they are designed for implementation. NA VITA models allow analysts

Chapter 16 - Conclusions, Contributions and Areas for Further Research 234

16.2 Research Contributions

to produce requirements specifications, component specifications and

component designs only when needed. Reference Architecture for software

applications suggested by NA VITA enables a vast array of components to be

slotted into the application through its Application Manager component.

Components within an application can communicate with each other, in a

technology-independent and location-transparent manner, through the

Backbone component. Practitioners of the component-based approach can

benefit from the rigorous modelling, flexible architectural model, and SDP of

NAVITA.

Models and modelling techniques suggested by NA VITA are based on lessons

learnt from evaluation of existing CBSD and non-CBSD methods alike. This

research has synthesised elements of existing methods with unique insights

into creating models and modelling techniques for the new method. Context

Diagram, as it is traditionally used, is examined critically and important

improvements are suggested in the semantically-richer NA VITA Context

Diagram. NA VITA has tackled the confusion with loose granularity of use

cases by providing the concept of "functionality units." Hierarchical nature of

processes is captured using a separate model, named LFD. NA VITA puts a

unique emphasis on user-system interaction by providing a static and a

dynamic model, LSL and USDM, to analyse this important and often ignored

aspect of the system. Information modelling is supported by FEM, which

serves as a crucial crosscheck between the MFD and 1M. NA VITA 1M is

further crosschecked with LSL through Relational Data Analysis, enabling the

users to validate the models being developed. Protocol Model is another

exclusive feature of NA VITA used for the analysis of component

communication. The component modelling technique provided by NA VITA is

methodical in ensuring that the business components satisfy both technical and

business constraints. FEM plays the key role in identifying components in this

modelling technique. Discussion of component modelling covers how the

components identified can be implemented using standard 00 technologies.

NA VITA models are tightly knit and modelling techniques are detailed.

NA VITA is then subjected to the same kind of evaluation as the existing

CBSD methods. The evaluation results show that NA VITA is demonstrably

Chapter 16 - Conclusions, Contributions and Areas for Further Research 235

16.3 Areas for Further Research

better than existing methods, especially in the area of system modelling. This

is the confirmation for the second hypothesis ofthis research.

(iv)Principles for Rational Allocation of Class Operations

Any rigorous class modelling must deal with two questions. First, for a given

functionality unit, how can analysts determine whether an operation should be

allocated to a class? Second, how can analysts determine the nature of such an

operation? This research has investigated various class modelling techniques

suggested by popular 00 methods, and proposes a rational and deterministic

approach to allocation of class operations in terms of two principles (Appendix

III). These principles may be beneficial to practitioners of both 00 and CBSD

approaches.

16.3 Areas for Further Research

This research raises issues for further investigation that lie beyond the scope of this

project. These include:

(i) Further Refinements of The MAP Framework

In this research, the strength of a modelling technique is derived by calculating

the extent to which the total rigour fulfils the maximum possible rigour for the

technique; see 3.4.3.1. However, in each model some model elements are more

important than others. For example, Content elements of a global model may

be more important than Structural elements; see 3.4.1.4. This means that in a

global information model, entities may be regarded as more important than

entity relationships. Giving an equal weight to all elements of all models

penalises, to a varying extent, those global models that score well for criteria

concerning those important model elements, but not for the many less

important model elements. Since the number of elements in comparable

models does not vary much and most elements have a similar level of

importance, specific weightings have not been used in this research. For future

application of the MAP framework, this can be improved by giving, for

example, criteria for ContentlFunctional elements a weighting of 5, Structural

3 and Overlap 1.

Chapter 16 - Conclusions, Contributions and Areas for Further Research 236

16.3 Areas for Further Research

Furthermore, strengths of all modelling techniques may be added together to

give a single score for all modelling techniques in an SDM. Here again,

different weightings may be used: global models may be regarded as more

important than detailed contextual models, which in tum may be considered

more important than abstract contextual models. A formula such as the one

shown below may be used.

SAMT = (GMW x (~ GMT Strength» + (DCW x (~ DCMT Strength)) + (ACW x (~ ACM»

Where, SAMT = Strength of All Modelling Techniques,

GMW = Global Models Weighting = 5,

GMT Strength = Strength of a Global Modelling Technique,

DCW = Detailed Contextual Models Weighting = 3,

DCMT Strength = Strength of a Detailed Contextual Modelling Technique,

ACW = Abstract Contextual Models Weighting = I,

ACM = Abstract Contextual Model.

(ii) Tools for the MAP framework and NA VIT A

Production of IPI Matrix, generation of criteria for global and contextual

models, and analyses of the matrix and the rigour of modelling techniques can

be supported by an automated tool. NA VITA CASE tool may also be created

by customising an open source UML tool such as ArgoUML (Tigris, n.d.).

(iii)Higher-level Functionality Modelling

There are two main ways in which behaviour of a system or part of a system is

usually described: using procedure-oriented diagrams such as UML Activity

Diagram and using state-oriented diagrams such as UML Statechart Diagram.

Many authors of SDMs claim that dynamic global models can be produced

using diagrams such as UML Statechart (OMG, 2003), Operation Spec/State

chart (Coleman et ai, 1994) and BPM (Allen and Frost, 1998). These authors

often give simple examples to justify their claims. Fusion, for example,

Chapter 16 - Conclusions, Contributions and Areas for Further Research 237

16.3 Areas for Further Research

demonstrates the Operation State/Spec using a simple A TM system. The only

problem is that the diagrams these authors tend to show are either too

simplistic and/or do not capture the business constraints well.

In the course of development of NA VITA, it was hoped that it would be

possible to show the logical order ofFUs, using the same concepts deployed to

show the logical order of steps within a functionality unit, i.e. sequence,

selection and iteration used in LFM. When a 'Higher-level Functionality

Model' as it would be called, was produced for the entire library system, it was

discovered that these concepts cannot capture accurately the constraints

applicable to the high level ordering of functionality units. State-oriented

diagrams do not capture the constraints well either.

The diagnosis of the problem by this author is that, when dealing with state­

dependent behaviour, there tends to be an obvious symmetry if the analysis is

focused upon a single significant part of the system. Therefore, it is not

problematic to show state-dependent behaviour of a system from the

perspective of an individual entity (ELH) or class (state diagram). The general

pattern is that each entity or object is first created, before going through a

midlife cycle of state changes, after which the entity or object is destroyed.

However, if the analysis is to show the behaviour of the system from the

perspective of more than one object or entity, the simple regularity disappears,

rending most control constructs - sequence, selection, control, parallelism,

sub-state etc - incapable of expressing the complex dependencies.

Interestingly, this confirms the suggestion by the MAP framework that

dynamic models are suitable only for contextual modelling, not global

modelling; see 3.4.1.6.

Perhaps this issue can be tackled using a formal or mathematical specification

language. Questions of whether it may be possible to express in a single

diagram dependencies between functionality units of an entire system, and if

so how it can be done, need further investigation.

Chapter 16 - Conclusions, Contributions and Areas for Further Research 238

16.3 Areas for Further Research

(iv)Prototype for the NA VIT A Software Architecture

A prototype of the Reference Architecture for software suggested by NA VITA

should be implemented. This will demonstrate how three key elements of

modern software architecture - software plug-in technology, middleware

architecture and HTTP-like session-based software communication - can be

integrated to delivery flexible architecture for reusable components.

Chapter 16 - Conclusions, Contributions and Areas for Further Research 239

17.1 References

References

17.1 References

Allen, P. and Frost. S., 1998. Component-Based Developmentfor Enterprise
Systems: Applying the SELECT Perspective. Cambridge: Cambridge University
Press/SIGS Books.

Allen, R. and Garlan, D., 1994. Formalising Architectural Connection. In:
Proceedings of the 16h International Conference on Software Engineering,
Sorrento, Italy, 71-80.

Ambler, S., 1998. Process Patterns: Delivering Large-scale Systems Using Object
Technology. Cambridge: Cambridge University Press.

Ambler, S., 1999. More Process Patterns: Delivering Large-scale Systems Using
Object Technology. Cambridge: Cambridge University Press.

Aoyama, M., 1997. Process and Economic Model of Component-Based Software
Development. In: Proceedings of the 5th International Symposium on Assessment of
Software Tools (SAST), 3-5June 1997, Pittsburgh, PA. IEEE Computer Society
Press, 100-103.

Aoyama, M., 1998a. Component-Based Software Engineering: Can it Change the
Way of Software Development? In: Proceedings of20th International Conference
on Software Engineering Vol. II, 19-25 April 1998, Kyoto. IEEE Computer Society
Press, 24-27

Aoyama, M., 1998b. New Age of Software Development: How Component-Based
Software Engineering Changes the Way of Software Development. In: Proceedings
of the 1st workshop on Component Based Software Engineering, April, 1998 Kyoto.
Available from: http://www.sei.cmu.edu/pacc/icse98/papers/p 14.html [Accessed 09
May 2005]

Armour, F. and Miller, G., 2001. Advanced Use Case Modeling: Software Systems
Vol. 1, London: Addison-Wesley.

Ashby, W. R., 1947. Principles of the Self-Organizing Dynamic System, Journal of
General Psychology, 37, 125-128.

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, 0., Laqua, R.,
Muthig, D., Paech, B., Wust, 1. and Zettel, J., 2002. Component-Based Product Line
Engineering with UML. Harlow: Pearson Education Ltd.

Avison, D. E., and Fitzgerald, G., 2003. Information Systems Development:
Methodologies, Techniques and Tools 3rd ed. Berkshire, England: McGraw-Hill.

Chapter 17 - References 240

17.1 References

Avison, D. E., and Fitzgerald, G., 1995. Information Systems Development:
Methodologies, Techniques and Tools 2nd ed. Berkshire, England: McGraw-Hill.

Bachmann, F., Bass, L., Chastek, G., Donohoe, P. and Peruzzi, F., 2000. The
Architecture Based Design Method, Technical Report, Software Engineering
Institute, Carnegie Mellon University. Available from:
www.sei.cmu.eduJpub/documents/ 00 .reports/pdf/OOtrOO 1. pdf [Accessed 13 May
2005]

Barbacci, M. R., Klein, M. H. and Weinstock C. B., 1997. Principles for Evaluating
the Quality Attributes of a Software Architecture. Technical Report, Software
Engineering Institute, Carnegie Mellon University. Available from:
http://www.sei.cmu.edu/publications/documents/03 .reports/03tnO 12.html [Accessed
13 May 2005]

Bashir, A., 2003. A Paradigm Shift: Moving Onto Components; A Management
Perspective. Journal of Conceptual Modelling [online], 28. Available from:
http://www.inconcept.com/JCMlMay2003IBashir.html [Accessed 12 April 2005].

Basili, V. S., Shull, F. and Lanubile, F., 1999. Using Experiments to Build a Body of
Knowledge. Ershov Memorial Conference, Akademgorodok, Novosibirsk, Russia,
July 6-9. 265-282.

Basili, V. R., 1993. The Experimental Paradigm in Software Engineering. In:
Experimental Software Engineering Issues: Critical Assessment and Future
Directives, Proceedings ofDagstuhl-Workshop, September 1992. Available from:
http://www.cs.umd.edu/~basili/papers.html [Accessed 09 May 2005]

Bass, L., Clements, P. and Kazman, R., 1998. Software Architecture in Practice.
Addison-Wesley Longman.

Beck, K., 1999. Extreme Programming Explained: Embracing Change. Harlow:
Addison Wesley.

Bellin, D. and Simone, S. S., 1997. The CRC Card Book. Reading, Mass: Addison­
Wesley.

Bennett, S., McRobb, S. and Farmer, R., 2001. Object-oriented Systems Analysis
and Design Using UML 2nd edition. McGraw-Hill Education.

Bentley, C., 1997. Introducing SSADM 4+. London: Stationery Office.

Bertalanffy, L. von., 1968. General System Theory: Foundations, Development,
Applications. London: Allen Lane.

Bertolino, A. and Polini, A. A Framework for Component Deployment Testing. In:
Proceedings of the 25th International Conference on Software Engineering,
Portland, Oregon, May 03 - 10, 2003. 221 - 231.

Bielkowicz, P. and Tun, T. T., 2003. A Critical Assessment ofUML Using An
Evaluation Framework. In: International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD'03) Velden, Austria June 16-17

Chapter 17 - References 241

17.1 References

Bielkowicz, P., Patel, P. and Tun, T. T., 2002. Evaluating Information Systems
Development Methods: A New Framework. In: Proceeding of the 8th International
Conference on Object-Oriented. Information Systems, Montpellier, France,
September 2-5, 311-322.

Bielkowicz, P, and Tun, T. T., 2001. A Comparison and Evaluation of Data
Requirement Specification Techniques in SSADM and the Unified Process. In:
Proceedings of Advanced Information Systems Engineering, 13th International
Conference, CAiSE 2001, Interlaken, Switzerland, June 4-8,2001,46-59.

Bittner, K. and Spence, I., 2002. Use Case Modelling. Addison Wesley.

Bjorn-Andersen, N., 1984. Challenge to Certainty. In: Bemelmans T. M. A., ed.
Beyond Productivity: Information Systems Developmentfor Organisational
Effectiveness. Amsterdam: North Holland.

Boillot, M. H., Gleason, G. M. and Hom, L.W., 1995. Essentials of Flowcharting.
William C. Brown.

Booch, G., 1991. Object Oriented Design: With Applications. California;
Wokingham: Benjamin/Cummings.

Booch, G., 1994. Object-Oriented Analysis and Design with Applications 2nd
edition. California; Wokingham: Benjamin/Cummings.

Booch, G., Rumbaugh, J. and Jacobson, I., 1999. The Unified Modeling Language
User Guide, Harlow: Addison-Wesley.

Boyd, R., Gasper, P. and Trout, J.D., 1991. The Philosophy of science.
Massachusetts Institute of Technology Press.

Brinkmeyer, H. A New Approach to Component Testing. In: Proceedings of the
Conference on Design, Automation and Test in Europe - vol 1. March 07 - 11. 534
- 535.

Brown, A. W., 2000. Large Scale Component Based Development. Prentice Hall.

Brown, A., 1996. Foundations of Component-Based Software Engineering. IEEE
Computer Society Press.

Brown, A., ed, 1996. Component-based Software Engineering: Selected Papers
from the Software Engineering Institute, IEEE Computer Society Press.

Brown, S., Fauvel, J. and Finnegan, R., ed (1989 reprint). Conceptions of Inquiry: A
Reader. Routledge/The Open University Press.

Bubenko Jr., J. A., 1986. Information System Methodologies - A Research View: in
Olle et al (1991).

Bums, A. and Wellings, A., 2001. Real-time Systems and their Programming
Languages 3rd

ed. Essex, England: Pearson Education Limited.

Chapter 17 - References 242

17.1 References

Business Process Management Initiative (BPMI), 2004. Business Process Modeling
Notation (BPMN) Version 1.0. Available from: http://www.bpmn.org [Accessed 12
April 2005]

Cameron J. R., 1989. JSP & JSD: The Jackson Approach to Software Development
2nd edition. Washington DC: IEEE CS Press.

Campbell, G. H. Jr, 1999. Adaptable Components. In: Proceedings of the 21st
International Conference on Software Engineering, Los Angeles, California, USA,
May 16 - 22, 1999,685 - 686.

Casson, c., 2000. Leveraging the Benefits of Business Process Modellingfor IT
Development to Improve the Alignment Between Business Requirements and
Supporting IT Systems. MSc Thesis, London Guildhall University.

Catchpole, C. P., 1987. Information Systems Design for the Community Health
Services. PhD Thesis, Aston University, Birmingham.

Chavez, A., Tornabene, C. and Wiederhold, G., 1998. Software Component
Licensing: A Primer. IEEE Software. 15(5),47-53.

Cernosek, G. and Naiburg, E., 2004. Value of Modelling. IBM.

Checkland, P., 1999. Systems Thinking, Systems Practice: Includes a 30-year
Retrospective. West Sussex, England: Wiley.

Cheesman, J. and Daniles, J., 2001. UML Components: A Simple Processfor
Specifying Component-Based System. Boston, MA: Addison-Wesley.

Liler, C. and Rosenblum, D.S., 2001. WREN --- An Environment for Component­
Based Development. In: Proceedings of the 8th European Software Engineering
Conference heldjointly with 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering 2001, Vienna, Austria, 207-217

CIDE, 1995. Cambridge International Dictionary of English. Cambridge:
Cambridge University Press.

Coad, P. and Nicola, J., 1993. Object-Oriented Programming. London: Prentice­
Hall.

Cockburn, A., 2000. Writing Effective Use Cases. Addison-Wesley.

Coleman, D., Arnold, P., Bodoff, S., Dollin, D., Gilchrist, H., Hayes, F. and
Jeremas, P., 1994. Object-Oriented Development: The Fusion Method. Prentice-Hall
International.

Collins-Cope, M. and Matthews, H., 2001. A Reference Architecture for Component
Based Development. In: Proceedings of the 6th International Conference on Object
Oriented Information Systems, London, UK, pp. 225-237.

ComponentSource, n.d. www.componentsource.com [Accessed 15 December 2004]

Chapter 17 - References 243

17.1 References

Coplien J. O. (1997). Idioms and Patterns as Architectural Literature. IEEE
Software, 14(1),36-42.

Crnkovic, I. and Larsson, M., 2002. Challenges of Component-Based Development,
Journal of System and Software, 61, 201-212.

Date, C. J., 1995. An Introduction to Database Systems, 6th ed. Addison-Wesley.

Davis, M. J. Adaptable, Reusable Code. In: Proceedings of the 1995 Symposium on
Software Reusability, Seattle, Washington, United States, April 29 - 30, 1995.38-
46.

Derr, K., 1995. Applying OMT: A Practical Step-by-step Guide to Using the Object
Modeling Technique, New York: SIGS Books.

DSDM Consortium, 2000. DSDM and Component-Based Development. DSDM
Whitepaper.

D'Souza, D. F. and Wills, A. c., 1999. Objects, Components, and Frameworks with
UML: The Catalysis Approach. Addison Wesley.

Edelstein, H., 1994. Unraveling Client/Server Architecture. DBMS, 34(7).

Eriksson, H-E and Penker, M., 1998. UML toolkit. Chichester: Wiley.

Evaristo J. R. and Karahanna E., 1997. Is North American IS Research Different
from European IS Research? The DATA BASEfor Advances in Information System,
28(3), 32-43.

Firesmith, D., Henderson-Sellers, B., Graham, I., 1997. The OML Reference
Manual. New York: SIGS Books.

Fowler, M. and Scott, K., 1997. UML Distilled: Applying the Standard Object
Modeling Language. Harlow: Addison-Wesley.

Gallagher, B. P., 2000. Using the Architecture Tradeoff Analysis Methoclm to
Evaluate a Reference Architecture: A Case Study. Carnegie Mellon University,
Software Engineering Institute. Available from:
http://www.sei.cmu.edu/publications/pubweb.html/ [Accessed 12 April 2005]

Galliers, R. D. and Land, F. F., 1987. Choosing Appropriate Information Systems
Research Methodologies. Communications of the ACM, 30(11), 900-902.

Gamma, E., Helm, R, Johnson, Rand Vlissides, J., 1995. Design Patterns:
Elements of Reusable Object-Oriented Software, Reading, Mass: Addison-Wesley.

Garlan, D. and Perry, D. E., 1995. Introduction to the Special Issue on Software
Engineering (Guest Editorial). IEEE Transactions on Software Engineering, 21(4),
269-274.

Glinz, M., 2000. Problems and Deficiencies ofUML as a Requirements
Specification Language. In: Proceedings of the Tenth International Workshop on
Software Specification and Design. San Diego, USA, November 5-7,2000. 11-22.

Chapter 17 - References 244

17.1 References

Available from: http://www.ifi.unizh.ch/groups/req/stafflglinzlactivities.html
[Accessed 09 May 2005]

Glinz, M., Berner, S., Joos, S., Ryser, J., Schett, N. and Xia, Y., 2001. The ADORA
Approach to Object-Oriented Modeling of Software. In: Proceedings of the
Advanced Information Systems Engineering, Proceedings ofCAiSE 2001,
Interlaken, Switzerland, June 4-8, 2001. 76-92. Available from:
http://www.ifi.unizh.ch/groups/req/staff/glinz/activities.html [Accessed 09 May
2005]

Gomaa, H., 2000. Designing Concurrent, Distributed and Real-time Applications
with UML. Addison-Wesley.

Goodland, M. and Slater, C., 1995. SSADM version 4: A Practical Approach,
London: McGraw-Hill.

Graham, I., Henderson-Sellers, B. and Younessi, H., 1997. The OPEN Process
Specification Addison-Wesley.

Hares,1. S., 1994. SSADM Version 4: The Advanced Practitioner's Guide.
Chichester, UK: John Wiley & Sons.

Heineman, G. and Councill, W., 2001. Component-Based Software Engineering­
Putting the Pieces Together. Addison-Wesley.

Heineman, G. T, 1998. Adaptation and Software Architecture. In: Proceedings of
the 3rd International Workshop on Software architecture, Orlando, Florida, USA
November 01 - 05, 1998.61 - 64.

Henderson-Sellers, B., Simons, T. and Younessi, H., 1998. The OPEN Toolbox of
Techniques Addison-Wesley.

Hong, S., Goor, G. van den and Brinkkemper, S. A Formal Approach to the
Comparison of Object-Oriented Analysis and Design Methodologies. In:
Proceedings of the 26th Hawaii International Conference on System Sciences,
January 1993.689-698.

Hutt, A. T., ed, 1994. Object Analysis and Design: Comparison of methods. OMG
Wiley/QED Publication.

Ince, D., 2003. Developing Distributed and E-commerce Applications. Addison­
Wesley.

International Standardization Organisation, IS09241, 1998. Ergonomic
Requirements for Office Work with Visual Display Terminals (VDTs), Part 11,
Guidance on Usability,

Jacobson, I., Booch, G. and Rumbaugh, J., 1999. The Unified Software Development
Process. Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G., 1997. Software Reuse:
Architecture, Process and Organizationfor Business Success. ACM Press/Addison­
Wesley.

Chapter 17 - References 245

17.1 References

Jacobson, I., Ericsson, M. and Jacobson, A., 1994. The Object Advantage: Business
Process Reengineering with Object Technology. ACM Press/Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G., 1992. Object-Oriented
Software Engineering: A Use Case Driven Approach (revised}. ACM
Press/ Addison-Wesley.

Jakes, J. M. and Yoche, E. R., 1989. Basic Principles of Patent Protection for
Computer Software. Communications of the ACM. 32(8), 922-924.

Jayaratna, N., 1994. Understanding and Evaluating Methodologies (NIMSAD): A
Systemic Framework, McGraw-Hill.

Kazman R., Abowd G., Bass L., and Clemens P. (1996). Scenario-Based Analysis of
Software Architecture. IEEE Software, November 1996.

Kircher, M. and Jain, P., 2004. Pattern-Oriented Software Architecture: Patterns for
Distributed Services and Components. John Wiley and Sons.

Kitchenham, B. and Pickard, L.,1995. Case Studies for Methods and Tool
Evaluation. IEEE Software. 12(4),52-62.

Kitchenham, B., 1992. A Methodology for Evaluating Software Engineering
Methods and Tools. Experimental Software Engineering Issues. 121-124.

Kitchenham, B., Pfleeger, S. L. and Fenton N. E., 1995. Towards a Framework for
Software Measurement Validation. IEEE Transactions on Software Engineering.
21(12),929-943.

Kitchenham, B., Pfleeger, S. L., Pickard, L., Jones, P., Hoaglin, D. C., El Emam, K.
and Rosenberg, J. 2002. Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Transactions on Software Engineering. 28(8), 721-734.

Kotonya, G. and Sommerville, I., 1998. Requirements Engineering: Process and
Techniques. West Sussex, England: John Wiley & Sons.

Kozaczynski, W. and Booch, G., 1998. Component-Based Software Engineering
(Guest Editors' Introduction). IEEE Software. 15(5).34-36.

Land, F., 1998. A Contingency Based Approach to Requirements Elicitation and
Systems Development, Journal of Systems Software. 40(1), 183-184.

Leach, R., 1997. Software Reuse: Methods, Models, and Costs. London: McGraw­
Hill.

Leffingwell, D. and Widrig, D., 2003. Managing Software Requirements: A Use
Case Approach. Addison Wesley.

Loucopoulos, P. and Karakostas, V., 1995. System Requirements Engineering.
McGraw-Hill.

Lowe, J., 2002. A Survey of Metaphysics. Oxford: Oxford University Press.

Chapter 17 - References 246

17.1 References

Microsoft Digital Network (MSDN) Microsoft Visual Basic Developer Center,
Available from: http://msdn.microsoft.com/vbasic/default.aspx [Accessed 12 April
2005]

Monroe, R. T., Kompanek, A., Melton, R. and Garlan, D., 1997. Architectural
Styles, Design Patterns, and Objects. IEEE Software, 14(1),43-52.

Mozilla FireFox Available from: http://www.mozilla.org!products/firefox!
[Accessed 12 April 2005]

one, T.W., Hagelstein, J., Macdonald, I. G., Rolland, C., Sol, H. G., Van Assche, F.
J. M. and Verrijn-Stuart, A. A., 1991. Iriformation Systems Methodologies: A
Frameworkfor Understanding 2nd ed, International Federation for Information
Processing! Addison-Wesley.

OMG, 2003. OMG UML Specification version 2. Available from:
www.omg.org!uml [15 May 2005]

OMG, 1999. OMG UML Specification version 1.3. Available from:
www.omg.org!uml [15 May 2005]

Orfali, R. and Harkey, D., 1997. Client/Server Programming with Java and Corba
2nd ed. John Wiley & Sons.

Pfleeger, S. L., 1995. Experimental Design and Analysis in Software Engineering.
Annals of Software Engineering vol. 1.219-253.

Pfleeger, S. L., 1999. Albert Einstein and Empirical Software Engineering. IEEE
Computer. 32(10), 32-37.

Pooley, R. and Stevens, P., 1999. Using UML: Software Engineering with Objects
and Components. Harlow: Addison-Wesley.

Popper, c., 1972. The Logic of Scientific Discovery 6th impression revised. London:
Hutchinson.

Poseidon, Available from: http://www.gentleware.com/[Accessed 14 April 2005]

Pressman, R. S., 2005. Software Engineering: A Practitioner's Approach, 6th ed.
London: McGraw-HilI.

Bahsoon, R. and Emmerich, W., 2003. Evaluating Software Architectures:
Development, Stability and Evolution. In: Proceedings of the ACS/IEEE
International Coriference on Computer Systems and Applications. (Also: UCL-CS
Research Notes RN/02/25) Available from:
http://www.cs.ucl.ac.uklstaff/r.bahsoon/Publications.htm [Accessed 13 May 2005]

Ramachandran, M., 2003. Testing Reusable Software Components from Object
Specification. ACM SIGSOFT Software Engineering Notes. 28(2). 18.

Rational Rose, Available from: http://www.gentleware.com/[Accessed 14 April
2005]

Chapter 17 - References 247

17.1 References

Rosenberg, D. and Scott, K., 1999. Use Case Driven Object Modeling with UML: A
Practical Approach. Addison Wesley.

Rumbaugh, 1., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., 1991. Object­
Oriented Modeling and Design, Englewood Cliffs, New Jersey: Prentice-Hall.

Rumbaugh, 1., Jacobson, I. and Booch, G., 1999. The Unified Modeling Language
Reference Manual, Harlow: Addison-Wesley.

Sametinger, J., 1997. Software Engineering with Reusable Components. London:
Springer.

Sanskrit Dictionary, n. d. http://www.alkhemy.com/sanskritldictl [Accessed 14 April
2005]

SCIPIO, n. d. SCIPIO Method. Available from
http://www.users.globalnet.co.ukl-rxv/scipio/ [Accessed 16 May 2005]

Shaw, M. and Garlan, D., 1996. Software Architecture: Perspectives on an
Emerging DiScipline. Prentice-Hall.

Shaw, M., 1995. Comparing Architectural Styles. IEEE Software. 12(6),27-41.

Shneiderman, B. and Plaisant, c., 2004. Designing the User Interface: Strategies for
Effective Human-Computer Interaction 4th ed. Pearson/Addison Wesley.

Smith, C. and Williams, L., 1993. Software Performance Engineering: A Case Study
Including Performance Comparison with Design Alternatives. IEEE Transactions on
Software Engineering, 19(7), 720-741.

Software Engineering Institute (SEIa), Available from: http://www.sei.cmu.edu/
[Accessed 14 April 2005]

Software Engineering Institute (SEIb), Available from:
http://www.sei.cmu.edu/architecture/definitions.html [Accessed 14 April 2005]

Sommerville, I., 2004. Software Engineering i h ed. London: PearsonlAddison­
Wesley.

Song, X., 1995. A Framework for Understanding the Integration of Design
Methodologies. ACM SIGSOFT Software Engineering Notes. 20(1). 46-54.

Sun Microsystems Enterprise JavaBeans Technology Available from:
http://java.sun.com/products/ejb/ [Accessed 21 April 2005]

Sutcliffe, A., 1988. Jackson System Development. Prentice Hall International.

Szyperski, C., 1997. Component Software: Beyond Object-Oriented Programming.
ACM Press/Addison-Wesley.

Tigris, n. d. Tigris.org: Open Source Software Engineering Tools, Available from:
http://argouml.tigris.org/ [14 May 2005]

Chapter 17 - References 248

17.1 References

Udell, J., 1994. Componentware. Byte. 19(5).

UML Success Stories, n. d., Available from:
http://www.uml.orgluml_success_stories/index.htm [Accessed 21 April 2005]

van Harmelen, M., 2001. Object Modeling and User Interface Design. London:
Addison-Wesley.

Van Hom, R. L., 1973. Empirical Studies of Management Information Systems.
Data Base, 5(2), 172-180.

Vliet, J. C. van, 1997. Software Engineering: Principles and Practice (reprint).
West Sussex, England: John Wiley & Sons.

Waring, A., 1996. Practical Systems Thinking. London: International Thompson
Business Press

Watt, D. A. and Brown, D., 2001. Java Collections: An Introduction to Abstract
Data Types, Data Structures and Algorithms. John Wiley and Sons.

Weaver, P. L., Lambrou, N. and Walkley, M., 1998. Practical SSADMversion 4+:
A Complete Tutorial Guide 2nd ed. London: Financial Times Pitman.

White, S. A. Introduction to BPMN. Available from:
www.bpmn.orglDocuments/Introduction%20to%20BPMN .pdf [Accessed 12 April
2005]

Wieringa, R. A Survey of Structured and Object-Oriented Software Specification
Methods and Techniques. ACM Computing Survey, 30(4),459 - 527.

Wilson, B., 1984. Systems: Concepts, Methodologies, and Applications 2nd ed. John
Wiley & Sons.

Wirfs-Brock, R., Wilkerson, B. and Wiener, L., 1990. Designing Object-Oriented
Software. London: Prentice Hall.

Wittenberg, C. H. Progress in Testing Component-based Software. In: Proceedings
of the 2000 ACM SIGSOFT International Symposium on Software Testing and
Analysis, Portland, Oregon, USA, August 21 - 24,2000. 178.

Wood, J. and Silver, D., 1995. Joint Application Development 2nd ed. New York:
Wiley.

Yao, H. and Etzkorn, L. Towards a Semantic-based Approach for Software Reusable
Component Classification and Retrieval. In: Proceedings of the 42nd Annual
Southeast Regional Conference, Huntsville, Alabama, USA, April 2-3, 2004. 110-
115.

Yoche, E. R. and Levine, A. 1., 1989. Basic Principles of Copyright Protection for
Computer Software. Communications of the ACM. 32(5): 544-545.

Yoche, E. R., 1989. Legal Protection for Computer Software. Communications of
the ACM. 32(2).169-171.

Chapter 17 - References 249

17.1 References

Y ourdon, E., 1989. Modern Structured Analysis. Englewood Cliffs, N.J.: Yourdon
PresslPrentice-Hall.

Zaremski, A. M. and Wing, J. M., 1997. Specification Matching of Software
Components. ACM Transactions on Software Engineering and Methodology. 6(4),
333-369.

Zelkowitz, M.V. and Wallace, D.R., 1998. Experimental Models for Validating
Technology. Computer, 31(5), 23-31.

Chapter 17 - References 250

lB.l Glossary of Acronyms and Abbreviations

Appendix I

18.1 Glossary of Acronyms and Abbreviations

ADORA The Analysis and Description of Requirements and
Architecture Method (Glinz et a12001)

ADT Abstract Data Type

AT AM The Architecture Iradeoff Analysis Method (Kazman et ai,
1998)

CASE ~omputer Aided .software ~ngineering

CBSD Component-I!ased .software Development

ERD ~ntity Relationship Diagram

FEM functionality Entity Class Matrix

GST General .systems Iheory

1M Information Model

IPI Matrix Information, £rocess and Interaction Matrix

IS Information .system(s)

JSD The Jackson .structured Development Method (Cameron,
1989)

Kobr A The KomponentenQasie[l:e Anwendungsentwicklung or
Component-Based Application Development Method

. (Atkinson et ai, 2002)

LFD Lower-level functionality Model

LSL Logical .screen Layout

MAP Framework Model, Architecture and £rocess Framework

MFD Middle-level functionality Model

NAVITA "New component" from the Sanskrit Naviinamh "new" and
GhaTaka "component"

Chapter 18 - Appendices 251

18.1 Glossary of Acronyms and Abbreviations

NIMSAD Nonnative Information Model-based fu'stems Analysis and
Design

00 Object-Orientation or Object-Oriented

OOSE The Object-Oriented ~oftware gngineering Method (Jacobson
et aI, 1992)

Open The Object-oriented £rocess, gnvironment and Notation
Method (Firesmith et aI, 1997; Graham et aI, 1997;
Henderson-Sellers et aI, 1998)

Perspective The SELECT Perspective Method (Allen and Frost, 1998)

RDB Relational DataJ2ase

RSE Reuse-driven ~oftware gngineering (Jacobson et aI, 1997)

SDM fu'stem Development Method

SDP fu'stem Development £rocess

SSADM Structured System Analysis and Design Method

UML Unified Modelling .Language

USDM User fu'stem Dialogue Model

Chapter 18 - Appendices 252

2.1 RSE: Overview

Appendix II:

A Detailed Analytical Survey of

Component-Based System Development Methods

ABSTRACT

This paper presents an extensive analytical survey of major Component-Based
Software Development methods that are freely available in published books. Many
Component-Based methods have their origins in popular Object-Oriented methods­
the authors of which tend to fuse Object-Orientation concepts with various software
reuse approaches. Their justification is that Object-Orientation itself does not deliver
the promised high-level software reuse, and they argue that only by marrying
various peripheral reuse concepts such as Design Patterns, Frameworks, Business
Objects, Domain Engineering with Object-Orientation, the vision of assembling
applications from prefabricated components may be realised. The underlying
assumption is that Component-Based Software Development methods are a natural
evolution from Object-Oriented methods, with a unique emphasis on reuse. In recent
years, there have been accumulated interests - both academic and commercial - in
Component-Based Software Development methods, evident from the growing list of
publications on this topic and widespread commercial availability of component
technologies. Since the late I990s, a few system development methods claiming to
be component-based have appeared in publications. This paper surveys these
published CBSD methods.

Keywords: Component-Based Development, Component-Based Software
System Development, Component-Based Software Development Method,

Development Method, System Analysis and Design

1 INTRODUCTION

In recent years, there has been a growing trend
to emphasise the need for large-scale software
reuse in system development projects. One
strand of this thinking is championed by a
development strategy known as Component­
Base Software Development (CBSD). CBSD is
defined by D'Souza [4] as follows:

An approach to software development in
which all artefacts - from executable code
to interface speCifications, architectures,
and bUSiness models and scaling from
complete applications and systems down to
small parts - can be built by assembling,
adapting, and "wiring" together existing
components into a variety of configurations.

Although CBSD has evolved from Object­
Oriented (00) methods and technologies, it is
hard to ignore that there has been a major shift
in thinking about the nature of software

development, from which many issues arise.
For instance, whilst there is a general consensus
on the essential characteristics of components,
there is no universally-agreed definition of the
term "component". The main aim of this paper
is to highlight the similarities and differences
between the investigated CBSD methods.

In order to present the results of the survey in a
fair and systematic way, three major features of
methods - System Development Process,
System Modelling and Software Architecture -
will be highlighted (see Chapter 3 of the thesis).

System Modelling covers a range of important
matters including modelling artefacts, concepts,
and guidelines on how these models should be
used to capture various aspects of the system.
For example, this includes concepts of object
and class, notations to represent them and
techniques for producing a class diagram and its
related artefacts. System Development Process
deals with the issues of breaking down and

Appendix II - A Detailed Analytical Survey of CBSD Methods 253

ordering the entire system development effort
into stages by providing general guidance on
how the development should be conducted.
Software Architecture, now recognised as an
important part of a method, deals with the issue
of creating a good overall structure of the
system so that it will be reliable, maintainable
etc.

In addition, other important aspects of methods,
such as presumption about the nature of
component, will be considered.

The investigated methods include Reuse-driven
Software Engineering [8], SELECT Perspective
[1], Catalysis [4] and KobrA [2].

Discussions on each of the methods are
organised in chronological order of publication.
For each method, introductory information on
the method background is followed by detailed
discussion of Software Architecture, System
Modelling and System Development Process,
and a short summary. Concluding remarks on
this analytical survey can be found in Section 7,
and the references are listed in Section 8.

2 REUSE-DRIVEN SOFTWARE
ENGINEERING (RSE)

Jacobson et al [8] discuss the concept of Reuse­
driven Software Engineering (RSE). The
component-based reuse approach they describe
draws upon Object-Oriented Software
Engineering - A Use Case Driven Approach
[6], The Object Advantage: Business Process
Reengineering with Object Technology [9],
UML [3][7][10], the concept of domain
engineering and years of experience of applying
reuse strategies by the authors.

2.1 RSE: Overview

In order to make software reuse effective,
Jacobson et al [8], suggest that there are four
dimensions of reuse that need to be addressed.
They are:

business orientation - concerned with the
issue of ensuring that the reuse is
effective both in terms of cost and time­
to-market
engineering orientation - concerned with
the methodological process of creating
components and building applications
out of these components
technical sequence - concerned with the
issue of ensuring that models traceable
from the highest level of abstraction
down to code (since reuse at abstract
modelling level is thought to be more
effective than mere code reuse)
business process engineering
reengineering of business process as well

2.1 RSE: Overview

as the system development process itself
using 00 concepts.

2.2 RSE: Software Architecture

RSE suggests the following model (Figure 2.1)
of layered architecture for systems in which
application families or groups of related
applications share individual components or
sets of components at all levels of
implementation.

In the model, each vertical column at the upper
half of the box represents a distinct application
system - variants of which are shown as
vertical columns in the background. For
example, an application developed for use in a
particular country may need to be adapted with
elements specific to another country if the same
application is to be used elsewhere. Those
elements are variants. Applications with similar
features are grouped into application system
families that share components from the layers
beneath. The business-specific components
layer contains components that are particular to
the type of businesses that use the application.
Middleware components are components that
offer platform-independent services to
business-specific components and application
systems, while system software components are
components that offer Operating System,
networking, hardware interface and other
services.

Figure 2.1 RSE Reference Architecture

Application systems

Business-specific components

2.3 RSE: Modelling

c
o Vl

.~ E
() ~ :.: (/)

0..
o..CIl
<

....
c Vl

~ E
8.~
E ~
OCll
U

RSE and its sister method OOSE [6] regard
software engineering as a systematic model
building process (Figure 2.2). Modelling in
RSE starts with a "requirement capture";
implementation and testing mark the end of the
technical development process. As in OOSE,
RSE suggests the use of the following models
and diagrams:

q Use Case Model - Use case diagram

Appendix II - A Detailed Analytical Survey of CBSD Methods 254

2.3 RSE: Modelling

¢ Analysis Model - Class diagram ¢ Implementation Model - Implementation
¢ Design Model- Se uence diagram ¢ Test Model- Use cased-driven test cases

Figure 2.2 Software Engineering as a model building process

Abstract
System development

Concrete

Require
ments -3> Implementation -3>

model

Requirements
capture

Construction Testing

Manufacturing,
delivery,

installation

UML, has become a popular choice with
developers. Use cases are primarily
employed to capture the system
requirements (Figure 2.3).

OOSE stresses the need to ensure traceability of
models by taking use cases as the basis for
system development, hence the name use case­
driven approach. The same emphasis made in
RSE. Since a number of these diagrams have now
become part of our 00 lingua franca,
descriptions of them will be kept minimal in the
subsequent sections.

Main Concepts

The main concepts in this model are:

It is worth considering what RSE regards as a
component and how this affects modelling in this ¢

method. RSE defines component as 'anything
specifically engineered to be reusable'.
Therefore, any development artefact - be it a
class, a use case, a fragment of a class diagram, a
sequence diagram, a program, a test case, a
project plan, etc - is potentially a component. In
order to maximise granularity of reuse, models
are packaged together. For example, in RSE,
there is a clear thread of development running
from use cases down to coded programs, and
RSE suggests that they can be packaged together
on that basis. Reusing a use case means reusing
all classes analysed in the analysis model (for the
use case), sequence diagram in the design model,
programs in the implementation model and test
cases in the test model.

One major dimension to reuse is genericity. In

Actors - represent the role of those that
interact with the system
Use cases - represent a significant
sequence of transactions performed by a
system, which 'yield observable results of
value to an actor' [6].Use cases can have
two kinds of relationship with other use
cases: «uses» and «extends» which
indicate common and exceptional
behaviour among use cases.

Figure 2.3 A simple use case diagram

Request
statement

order to make something reusable, it is important L ____ ~===~=======~~
to make it generic; the more generic an artefact is
the more reusable it becomes. Therefore, RSE
reminds us of a range of 'variability mechanisms'
that are at the disposal of developers. These
include: Inheritance for classes, Uses and
Extends for use cases, Parameterisation for
classes, Configuration and Module­
interconnection languages and other CASE Tools
related facilities. Using these mechanisms in all
stages of development, RSE intends to make all
artefacts more generic and reusable.

2.3.1 Use Case Model- Use Case Diagram

¢ This model, pioneered by the same main
author in [6] and later integrated into

Technique

Actors are first identified by investigating who
will be using the system and the roles they would
play when they use the system. Following up
from this, the way these actors use the system is
represented as a use case. Once the use cases are
stable, «uses» and «extends» relationships
are applied. Development of use case model is
said to be an interactive, iterative and often
creative process. Later enhancements of this
model include supplementing the diagram with
interface prototypes, JAD sessions etc [275].

Appendix 11- A Detailed Analytical Survey of CBSD Methods 255

2.3 RSE: Modelling

Figure 2.4 Class Analysis in RSE

-----'(_ Withdraw _ ~

// ------ '-,

Customer

Cash
Dispenser

A/ O
U~O
Withdraw
controller

Customer

Account

2.3.2 Analysis Model - Class Diagram 2.3.3 Design Model - Sequence Diagram

This is essentially a class analysis in which
classes are identified for each use case and
categorised into three kinds of stereotyped
classes (Figure 2.4).

Main Concepts

This diagram shows how various objects in the
use case - boundary, control and entity objects -
pass around messages in order to realise the use
case (Figure 2.5).

Main Concepts

¢ Entity classes - have long-lived states and The main concepts are objects and messages.
attributes
Boundary classes - interact with actors
Control classes - 'perform use case­
specific behaviour'

Technique

Descriptions of use cases are analysed in order to
uncover various entity objects that contribute to
the use case. Typically one interface object is
created for each actor and control objects are
created as required by the collaboration.

Technique

The analysis model is taken as a basis for this
diagram. For each use case, the analyst would go
through the description step by step, determining
the messages that need to be passed between
objects in order to achieve what is required in the
use case.

Figure 2.5 A simplified Sequence Diagram for Withdraw Cash

fooooo
Custom ATMUI Cash Withdraw Customer Account

Dispenser controller

Insert card
Veri y

Specify amount Withjraw()
Debit(

Receive cash
Dispense

Appendix II - A Detailed Analytical Survey of CBSD Methods 256

2.4 RSE: Development Process

The system development process is broken down
into four major sub-processes, three of which are
technical processes and the other, a management
?ne. Each of these is a model building process in
Its own right with different emphases in different
processes (Figure 2.6).

Application Family Engineering (AFE) is a
process that determines how to decompose the
overall set of applications into a suite of
application system and supporting component
systems. An application system family is a set of
application systems with common features. There
are thre.e t~pes of application system family: a)
an application system suite is a set of different
application systems that are intended to work
together .b) ~pplication system variants are a type
of application system, which need to be
configured, packaged, and installed differently
for different users and c) some sets of otherwise
fairly independent application systems can be
treated as members of a family, by building them
from the same sets of lower-level reusable
components.

Application System Engineering (ASE) is a
rocess that selects, specialises and assembles

2.4 RSE: Development Process

~omponents from one or more component system
Into complete application systems. It uses
appropriate tools, methods, processes, and
instructions provided explicitly for the
component system.

Component System Engineering (CSE) is a
process that designs, constructs, and packages
components into component systems. The
process will use appropriate code, template,
models, documents and perhaps custom tools. A
component system is a set of related components
that accomplishes some function larger than that
accomplished by a single component. Instead of
dealing with thousands of elements, a reuser can
restrict his or her· scope to a few hundred
components, packaged into a relatively small
number of component systems.

2.5 RSE: Summary

Modelling techniques of RSE are heavily
borrowed from OOSE. Development process is
upgraded from the OOSE counterpart in order to
b:ing it in line with the architecture, which is
Simple and common. RSE has devoted the rest of
its presentation to the importance of the
organisational dimension for reuse business.

Figure 2.6 RSE: Development Process

Customer

End user

Application Family
Engineering

Layered
system

Appendix II - A Detailed Analytical Survey of CBSD Methods

Manufacturer

257

3 SELECT PERSPECTIVE

Component-Based Development for Enterprise
Systems: Applying The SELECT Perspective7M

(or Perspective in short) [1] is the successor to
the 00 method, also called SELECT Perspective
[5].

3.1 SELECT Perspective: Overview

Perspective is defined as a 'collection of
industrial best-practice modelling techniques that
are applied and adapted using process templates
within an architectural framework across a wide

3.1 SELECT Perspective: Overview

Figure 3.1 Layered architectural model of
SELECT Perspective

Business Processes oE;D Business
1----------1 Capability

User Services ~

1-----------1~ Information
Business Services ~V

I---------_--f~ Data
Data Services V

range of developments in a component-based L-_________________ ...J

setting' [1). The principle doctrine of this method
is reuse of service-oriented components (i.e.
code) through tried and tested processes,
architecture and modelling techniques. This
method heavily borrows ideas and concepts from
UML and other 00 methods, including SELECT
Perspective vI [5], BPM, Patterns, the
responsibility-driven approach and service
technology.

3.2 SELECT Perspective: Software
Architecture

The architectural model suggested by Perspective
is neither radically new nor technically complex.
It is a simple three-tiered architectural model,
much like the classic Model-View-Control
(MVC) model. What is interesting, however, is
the integration of the concept 'service' into this
architectural model. The term service is used in
Perspective to mean a 'collection of related
functionality' that can only be 'accessed through
a consistent interface'. In 00 terms, a service
generally means a coherent group of class
operations that is meaningful in business sense.
Therefore, the granularity of a service is typically
higher than normal class operations, coming
somewhere closer to the granularity of a use case.
Alternatively, services are similar to
'responsibility' of the CRC approach [(2).

In order to construct higher-level objects that
provide high-level operations, rather than low­
level class operations, Perspective introduces
control objects [6] that encapsulate groups of
operations and act as a kind of interface for the
services. Therefore, service classes, not ordinary
classes, are the basic material of software
architecture in Perspective. Control classes that
provide at least one service are called service
classes, and each service layer in the Perspective
architectural model is made up of service classes,
see Figure 3.1.

The Data Services layer enables the Business
Services in the layer above to access data in a
technology-independent manner. Business
Services mainly perform data transformations,
and User Services allow the users to enhance
their business capabilities by making use of the
services offered by the system.

3.3 SELECT Perspective: System
Modelling

System modelling in Perspective is preceded by
Business Process modelling. Perspective
emphasises the importance of Business Process
modelling by highlighting the issue of keeping
software solutions in sync with changes in
business processes that are largely caused by
technological advancements. This method
attempts to tackle the issue by integrating
Business Process modelling with traditional
system modelling. Some Business Process
modelling techniques, which Perspective
acknowledges are borrowed from a proprietary
method known as Catalyst, are provided to
capture business requirements diagrammatically.
Guidelines on how the Business Process Model
can be interfaced with system models also given.
Therefore, system modelling in this approach
begins with BPM. Most system models are
UML-compliant, but some extensions to concepts
and notations are introduced together with subtle
changes to existing modelling techniques.

3.3.1 Business Process Model (BPM)

As its name implies, BPM is about modelling
business activities, and is considered to be a
subset of the major disciplines, Business Process
Reengineering (BPR) and Business Process
Improvement (BPI). In Perspective, discussions
about BPM only cover the area that is relevant to
modelling the process. Other important issues
such as process improvement are not covered.

Main Concepts

There are two types of diagram used in this
model: Process Hierarchy and Process-Thread
diagrams. A Process Hierarchy diagram (Figure
3.2) shows the top-down decomposition of the

Appendix II - A Detailed Analytical Survey of CBSD Methods 258

-

3.3 SELECT Perspective: System Modelling

enterprise from the highest level of abstraction - and often groups of EBPs - are shown in the
down to atomic business processes, known as Process-Thread diagram. Therefore, Process­
Elementary Business Processes (EBPs). Since Thread diagrams show non-linear dependencies
Process Hierarchy diagrams can only show the among groups of EBPs - sometimes at a higher
sequence in which the processes happen, more level - that are chained together by triggers.
complex interdependencies mainly among EBPs

Figure 3.2 A simple Process Hierarchy Diagram

Generally, a Process Hierarchy and some
Process-Thread diagrams are first produced for
the current business situation. Together these are
called the As-Is model. After making
improvements to the current business processes,
another set of Process Hierarchy and Process­
Thread diagrams are produced for the envisaged
business model, labelled the To-Be model. [t is
important to note that what has been modelled,
i.e. the business processes, is the context in which
the planned system will operate, not the system
itself, and only by first understanding the new
context of the system, will it be possible to
develop a system that fits into the business
environment.

Modelling Techniques

The concept of business event features
prominently in the way business processes are
identified in this method. A business event is a
stimulus that triggers an EBP, which could
happen by the arrival of some information, a
point in time, or changes in certain conditions.
These events are crucial for the discovery of
business processes in this approach. The
approach is essentially "bottom-up" (Perspective
uses the word "outside-in") rather than top-down.
Based on the events and EBPs, a business process
hierarchy for the existing business process is
built. The non-sequential nature of EBP
dependencies is modelled in the Process-Thread
diagram. No detailed discussion is given as to
how the processes may be improved. Changes
can easily be made to the As_[s diagrams to
create To_Be diagrams.

As indicated, this method provides guidelines on
how to interface the business model and the
system models. The general rule is that for each

EBP that will be automated or partly-automated,
there will be a corresponding use case.
Exceptions occasionally occur when two
connected EBPs are packed into a single use
case, and certain individual EBPs are split into
several use cases.

3.3.2 Use Case Model

Use case modelling is the first system modelling
activity. The model mainly shows the functional
requirements of the system (after the Business
Process Improvement exercise).

Main Concepts

The model is essentially the same as in UML.
The main diagram is the use case diagram that
shows ways in which actors will use the system,
i.e. use cases. The diagram is support by detailed
textual descriptions of all the elements in the
diagram. For an example of a use case diagram,
see Figure 2.3.

Modelling Techniques

Although the model is very similar to the UML
model, the technique used is rather different. This
method proposes two 'routes' to use case
modelling: Business Process Modelling, EBPs
approach and Black Box System Modelling,
Events approach.

Black Box System Modelling approach can be
regarded as the traditional use case modelling
approach, where actors are first identified and
then the system's response to individual events
are designated as use cases. With the BPM
approach, actors and use cases are identified from
the BPM. Generally, business actors become
'system actors' and for each EBP, there will be a

Appendix II - A Detailed Analytical Survey of CBSD Methods 259

use case, although the relationship may not
always be one-to-one. The underlying principle is
that for each atomic business activity there is a
corresponding system activity to support it. In
this sense, a use case is regarded as a subset of an
EBP.

At this stage candidate services are also identified
from use cases.

3.3.3 Class Model

As in many other methods, particularly 00
methods, this model plays a vital role in system
modelling.

Main Concepts

Class models provide the static view of the entire
system in terms its main classes, class attributes,
class operations, and various types of
relationships between these classes. The
Perspective class diagram is same as the UML
class diagram in many regards.

Modelling Techniques

This method identified two strategies for
discovering classes. Many existing techniques for
discovering classes fall under the category of
'business-semantics driver approach' where
grammatical analysis of business requirements
specifications is performed in order to identify
classes. The second approach, named 'service­
driven approach', emphasises the fact that
classes must provide a set of relevant services,
instead of boiling down to low-grained class
operations. Class-Responsibil ity-Collaborator
(CRC) technique [12] is the prime example of
this approach.

3.3 SELECT Perspective: System Modelling

The strategy for creating Sequence Diagrams is
to start with a small number of business objects -
identified from the use case descriptions - and
produce a draft sequence diagram. At the same
time, a sketch Collaboration Diagram that
focuses on the main scenarios and complex
collaborations that cannot be shown in the
Sequence Diagram is created. The initial
Sequence Diagram is then revised and a snapshot
of the Sequence Diagram is then depicted in
another Collaboration Diagram. User Interface
objects are then added. Services are also
identified and reused.

3.3.5 State Model

Main Concepts

The State Model describes how states of objects
with rich behaviour or complex interactions are
affected by various events during their lifetimes.

Modelling Techniques

This method identifies two State Modelling
approaches: the lifecycle approach for modelling
behaviour of Business objects and the behaviour
approach for modelling Control objects. Both
approaches are event-driven. With the first
approach, external events are investigated and a
first-cut state diagram is then produced based on
the template of birth-midlife-death events. Then
detailed scenarios are brought out to enhance the
diagram. In the second approach, Sequence
Diagrams are investigated for Control objects
with a large number of messages passed and
received. The State Model is created based on
these messages.

This method advocates the use of a mixture of 3.3.6 Component Model
both strategies including text analysis, patterns,
and the CRC approach.

3.3.4 Object Interaction Model

Main Concepts

Object Interaction Models show how objects
collaborate in order to realise each use case. They
emphasise the messages passed among the
objects and the timing of those messages. There
are two kinds of diagram used by these models:
Sequence Diagram and Collaboration Diagram.
Both Sequence and Collaboration Diagrams show
the passing of different types of messages among
various class instances, but the Sequence
Diagram emphasises the timing of the messages
passed. This method recommends the use of
Sequence Diagram for the analysis of use cases
and the Collaboration Diagram for the analysis of
class operations.

Modelling Techniques

Perspective focuses on modelling of business­
oriented components. [t suggests that there is a
real benefit to be gained from reusing business
objects - business services to be precise - as
opposed to code from libraries. Component
technology enables reuse of business services.

Main Modelling Concepts

Perspective regards components as executable
code units that provide services through their
published interfaces. Since Perspective views a
system as layers of services in architectural
terms, the concept of service is crucial to
component modelling. Service is defined as a
group of related operations to provide useful
functionality to consumers. See Section 3. I for
further discussion. These services are grouped
into physical units called service packages.
Components implement these services; groups of
components that support a service package are
called a component package.

Modelling Techniques

Appendix II - A Detailed Analytical Survey of CBSD Methods 260

3.4 SELECT Perspective: Development Process

Business-Oriented Component Modelling draws Perspective considers legacy assets as one of the
from a number of sources including domain main sources of components and provides a
knowledge, business process models, solution framework for modelling these assets as
project feedback, generic models and patterns, components, in particular, techniques for
legacy systems and models, legacy database and wrapping the legacy system.
packages.

SELECT Perspective
techniques:

uses the following 3.3.7 Deployment Model

Architectural Modelling: a high-level scoping of
services into service packages, used as a
reference model. For this, a) domain modelling,
b) software architecture modelling, allocation of
services to packages and c) reusable Business
Classes (generic business classes) modelling are
suggested.

Allocation of software components to hardware
devices is shown in this model.

3.3.8 Logical Data Model

Since objects are often stored in Relational
Databases, Perspective offers a simple approach
to converting objects in relational tables
represented by entities of tradition logical data
models. Identification of services: a low-level scoping of

business services to refine the previous 3.4
architectural model. Services are identified either

SELECT Perspective: Development
Process

by using service types or by generic business
processes.

Sowing reuse from solution projects: as the
classes start to mature, candidates for future
components are sowed.

Using generic models and patterns: analysis and
design patters are also reused.

Perspective suggests a dual-process approach, in
which development stages are divided into two
main sub-processes: the Component Process
produces components out of a range of sources
and the Solution Process uses components to
build applications (Figure 3.3).

Figure 3.3 Duel Development Process Model of SELECT Perspective

Specific
Business

Needs

Legacy
System

Legacy
Database

Appendix II - A Detailed Analytical Survey of CBSD Methods

Solution

Components

261

3.4 SELECT Perspective: Development Process

Figure 3.4 The Solution Process

Feasibility

Rollout

User
Acceptance

Each sub-process contains an iterative, ¢

Prototype

Roll out: Install an increment

The Component Process stages are (Figure 3.5):
incremental and prototyped-based development
model. Models for the two sub-processes are
similar and they are both adapted from the 00 ¢

version of Perspective.

The Solution Process stages are (Figure 3.4):

¢ Feasibility: Scope the development ¢

¢ Analysis: Explore the requirements
¢ Prototype: Elicit requirements ¢

¢ Plan Increment: Develop a plan
¢ Design and increment: Construct, ¢

assemble, and test the software
¢ User Acceptance: Ensure acceptance of an ¢

increment

Architectural Scoping: Provide an overall
context
Assessment: Assess needs for reusable
services against the available resources
Plan Services: Develop a plan for a
component project
Design and Build: Construct, assemble,
and test the components
Acceptance: Ensure acceptance and
certification of a set of components
Roll Out: Install a set of components

___ .:...F:.;;igure 3.5 The Component Process

Rollout

User
Acceptance

New path

Appendix II - A Detailed Analytical Survey of CBSD Methods

Architectural
scoping

262

3.5 SELECT Perspective: Summary

Figure 3.6 Orthogonal view of Catalysis

abstraction
precision
pluggable parts

,-r_~_r_in_c_iP_I_eS __ j~

~",'opmen' '\,
Process ~

business ~~
component spec Scope
component design - __ -

..... 1-------.. ~ Con"ru,'
I I collaboration

type
refinement

3.5 SELECT Perspective: Summary

In terms of models used, Perspective is mainly
UML-based. However, techniques for these
models draw from wider sources. Explicit
inclusion of BPM in a system development ¢

method is something new. The architectural
model is perhaps simplistic, while the
development process seems realistic.

Abstraction - this principle suggests that
when dealing with complexity, we need to
focus on essential aspects first. It helps us
produce an 'uncluttered description of
requirements and architecture.'
Precision - this principle promotes the
practice of exposing gaps and
inconsistencies early on. A model can be
both abstract and precise.

4 CATALYSIS Modelling Constructs

Catalysis [4] is said to be the fourth generation Catalysis is based on the three main constructs:
00 method geared towards reuse and Collaboration, Type and Refinement.
component-based development. It draws upon a ¢

number of 'third generation' 00 methods such as
OMT [13], Fusion [14], Syntropy [15] as well as
formal specification languages such as YOM and
Z [16] and other research in this area. In terms of
notation used, Catalysis is broadly UML­
compliant.

4.1 Catalysis: Overview

The main features of Catalysis are summed up in
Figure 3.6. Catalysis is based on the principles of
abstraction, precision and pluggable parts. There
are three main modelling 'constructs' or
concepts: collaboration, type and refinement. The
scope of modelling applies to the business
domain, component specification and component
design.

Modelling concepts, levels of modelling and
principles are applied recursively in Catalysis.
This orthogonal view of the development
suggests that any model is developed for either ¢

business, component specification or component
design, using either collaboration or type
refinement models, and these models must
comply with the principles above.

Principles

Catalysis is founded on three clear principles:

Collaboration - A collaboration diagram
captures action that takes place between
objects assuming roles relative to each
other. The collaboration diagram of
Catalysis is rather different from the
common UML collaboration diagram.
Figure 4.1 is a simple Catalysis
collaboration diagram. Actions are things
- represented by verbs - that happen
between objects. They could be use cases
as in traditional 00 methods, or something
lower in granularity. Actions always imply
involvement of at least two objects: when
modelling the business activities, it could
be participating actors, when modelling
the external context of the system, it could
be that actor and the system itself or two
objects passing messages between
themselves when modelling the internal
dynamics of the system.
Type: Catalysis type is similar to the
concept of class - except that the types are
completely implementation-independent,
while classes are not. Catalysis therefore
can refer to both classes as well as
components (which could contain classes
or even components within it) as types.

Appendix II - A Detailed Analytical Survey of CBSD Methods 263

4.2 Catalysis: Software Architecture

Figure 4.1 A simple collaboration in Catalysis

\ Teacher

Object type Action

<=:> Refinement: A relationship between
abstract and more detailed descriptions of
the same thing. Detailed descriptions are
realisations of abstract descriptions.
Refinement is applied to action and type.
Actions, types and messages are therefore
described in a hierarchical manner.

<=:> Frameworks: These are reusable model
elements used throughout the
development.

Three Levels of Modelling

<=:> Domain modelling - this modelling of the
"outside" is used to understand the domain
terminology, business processes, roles and
collaborations. Models are created for as­
is and to-be situations.

<=:> Component specification this
"boundary" modelling is about
determining the responsibility and
interface of the component (or system
itself)

<=:> Internal design - this "inside" modelling
defines the internal technical design of the
system/component.

4.2 Catalysis: Software Architecture

Catalysis does not believe that there could be an
architectural model to cater for the needs of all
kinds of system. Hence, it suggests the use of
architectural patterns, each of which puts forward
a tried and tested solution for a specific type of
problem. Catalysis lists some architectural
patterns for different kinds of applications such
as client-server applications and MVC
appl ications.

4.3 Catalysis: System Modelling

Modelling in Catalysis is therefore all about
defining and specifying collaborations and types
at different levels of abstraction by reusing all
kinds of generic models whenever possible.
Typically, it will start with domain or business
modelling using a set of collaboration and type
diagrams. The system is treated as a type or
component that interacts with its environment -
its users or actors. The analysis of the
collaboration between actors in the business
domain and the system leads to the discovery of
actions they jointly perform and the sub-types

that interact when those actions are taking place.
Those sub-types are further refined until they
reach a stage where types or classes, as they are
then called, can no longer be further refined. As
the name implies, domain model may include
aspects of the business that mayor may not be
implemented in the system. The main purpose of
business modelling is to understand the business
processes, roles, collaborations, classes and so
on. The precise requirements for the new system
have not been determined at this stage - which is
the main purpose of Component Specification,
the next level of modelling. For this, the analyst
will determine the kind of actions or use cases the
system will provide, and precisely define the
responsibilities and interfaces of the components
and the system itself. At Internal Design level,
the 'how' question is dealt with by defining the
way in which components of the system are to be
implemented. In classical terms, it is the
component/system design.

Catalysis divides its models into three: Static
Models, Behaviour Models and Interaction
Models. For Static Models, Catalysis discusses
two main diagrams: Snapshots and Type
Diagram, placing strong emphasis on capturing
invariants. Snapshots, pre- and post-conditions
and the State Chart are discussed for Behavioural
Models and for Interaction Models collaboration
and interaction diagrams are discussed.

Although Catalysis deploys UML notations, the
models, concepts and techniques it uses are rather
different from those used by many 00 methods.
Therefore, it would be appropriate to give
examples of those new diagrams when necessary.
The diagrams are discussed in the order they are
likely to be used in a typical development project.

4.3.1 Collaboration Diagram

It is fair to say that collaboration diagram (Figure
4.2) is the most prominent diagram in Catalysis.
Despite its name, it has little in common with
collaboration diagrams of many 00 methods. It
has some resemblance to a class diagram with
bits of use cases thrown in. It essentially defines
a set of actions between objects. Since anything
including actors, classes, components and the
system itself is an object and actions are anything

Appendix II - A Detailed Analytical Survey of CBSD Methods 264

4.3 Catalysis: System Modelling

including use case, message, event, interaction show the business activities, system context and
and others, one can show an infinite variety of the internals of the system.
'collaborations' in this diagram. There is little
constraint on what can or cannot be included in
this diagram: some would suggest it grants a lot
of expressive freedom to analysts. It is used to

Catalysis provides a rich set of concepts for this
diagram; in this paper, we will examine only the
key features of this diagram.

Figure 4.2 Actions in collaborations affect object state

f ~ f
Student

Association

Main concepts

¢ Type - see section 5.1.2.
¢ Action - an action is 'anything that

happens'. It is could be 'an event, task,
job, message, interaction'. They are
normally verbs, while classes are nouns.
States of objects change as a result of
actions. Therefore, effect of an action can
be described in terms of state changes of
one or more object/com onent. A grou of

Teacher

Skill

actions that serve a common purpose is an
action type, that is, a use case. In other
words, a use case is composed of actions.

The diagram shows that the action "teach"
involves two actors, "student" and "teacher".
Actions lead to changes in state of object(s). In
this case, when a student is taught successfully,
the student acquires a new skill. Therefore, the
class/type skill is linked to student.

Figure 4.3 Action refinement and composition

f
Client ~

In Catalysis, actions are as important as objects. ¢

The effect of an action on objects/components is
precisely described using OCL-like language
(Object Constraint Language) defined by the
UML. The effect of "teach", where a student gets
a new skill at the end of the action, can be
expressed as follows:

action (student, teacher) :: teach(skill)

post student.accomplishments
student.accomplishments@pre + skill

Seminar
Company

run course

Refinement - refinement is applied to
actions and types.

Refinement of Actions

Actions can be broken down into more and
more detailed actions. The teach action
type, in the example, can be broken down
into "arrange" and "run course" (Figure
4.3).

Interactions between objects are actions
are shown in UML sequence diagrams.
The diagram can be modified. For

Appendix II - A Detailed Analytical Survey of CBSD Methods 265

instance, if there are no arrowheads in the
messages, it means an action is an
abstraction of more detailed interactions.
See Section 5.2.2.

4.3 Catalysis: System Modelling

Refinement of Types

The refinement concept also applies to
types. When types are refined, smaller
types are identified (Figure 4.4).

Figure 4.4 Type abstraction and refinement

(Abstract type

(Refinement

Training I
I I

(Zoomed-in type I student I I teacher I
W skill

action: teach(student, teacher);
post: student gets another skill (or
OCL equivalent)

4.3.2 Interaction Diagrams

Modified versions of UML Sequence diagram
and collaboration diagrams are called Interaction
diagrams, the main difference being that in
Catalysis, messages between objects can be
aggregated into action. For example, Figure 4.5
shows a sequence diagram with aggregated
messages arrangeUava) and runcourseUava),
which will reveal many messages when refined.

Main Concepts

The main concepts are objects, messages and
actions.

Technique

This diagram is a refinement of actions that occur
between objects as analysed in the collaboration
diagram. Catalysis uses the recursive
decomposition technique to translate actions into
messages.

Figure 4.5 Catalysis sequence diagram showing actions as abstraction of messages

object instance

ibm: Client maxell : Seminar Company

arrange Uava)

runcourse Uava) action occurrence

Techniques Verbs indicate actions, use cases, messages and

Nouns in descriptions of the business domain or
so on.

system indicate types, components or classes.

Appendix II - A Detailed Analytical Survey of CBSD Methods 266

4.3.3 Snapshot

Figure 4.6 shows the state of a set of objects
(their attribute vales and links) at a particular
point in time. This diagram is used for a number
of purposes such as visualising the effect of an
action, exploring various business rules and
constraints.

Main concepts

The main concepts used in this diagram are
object, attribute and link between objects. For

4.4 Catalysis: Development Process

example, it can show the state of objects before
and after a student is taught at a course, i.e.
acquired a new skill. Before the student Jean
attended a course, she may have two skills. On
completion of a plumbing course, she would have
acquired a new skill, represented by a link to the
plumbing skill object.

Technique

There is no defined technique.

Figure 4.6 A snapshot showing the state of objects before and after the teach action

Java:Skill

Jean:Student

UML:Skill

4.3.4 Type Diagram

This diagram is similar to the tradition class
diagram. Since Catalysis is based on the principle
of continuous refinement of types and actions,
there may be a number of these diagrams
showing various fragment of the system at
various levels of abstraction. ¢

Main Concepts

Java:Skill

Jean: Student
UML:Skill

Plumbing:Skill

Frameworks - which are generic models
describing a collaboration between some
abstract classes are an integral part of
Catalysis. Design patterns are also used
extensively in Catalysis. Component is
therefore a design concept in Catalysis. All
types are potentially components.
Action - operations of types are often
depicted as actions.

Techniques
Type - a general term for class and
component.
Class - same as 00 classes
Component - components in Catalysis are
not always executable code; there could be
other design artefacts too. Catalysis
defines component as follows.

Component (general) A coherent
package of software artefacts that can
be independently developed and
delivered as a unit and that can be
composed, unchanged, with other
components to build something larger.

Component (in code) A coherent
package of software implementation
that (a) can be independently
developed and delivered, (b) has
explicit and well-specified interfaces
for the services it provides, (c) has
explicit and well-specified interfaces
for services it expects from others,
and (d) can be composed with other
components, perhaps customising
some of their properties, without
modifying the components
themselves.

Components are usually represented as types in
this diagram.

Collaborations again provide the basis for this
static model. Types identified in collaborations
are continually decomposed until they are no
longer decomposable.

4.3.5 State Chart

This diagram is similar to State Charts discussed
by other 00 methods, often under a different
name such as State Transition Diagram. The
main aim is to show the state dependent
behaviour of a type.

Main Concepts

The main concepts are state and event.

Technique

A list of states for a type is first drawn up, and
actions then are examined for events. State chart
is put together on the basis of the states and
events.

4.4 Catalysis: Development Process

Figure 4.7 shows a very high level overview of
system development as envisaged by Catalysis. It
recognises that the development process is not a
one-off process and that typically it is iterative
and incremental. Since different development

Appendix II - A Detailed Analytical Survey of CBSD Methods 267

4.5 Catalysis: Summary

projects requires different kinds of development point, and for specific projects - such as a
process, Catalysis doesn't believe that it is reengineering project, component-based project
possible to produce a grand and detailed process and other kinds of project - Catalysis has
model that could be used in any type of project. produced so-calJed process patterns that are
This model only serves as a general reference customised processes for these different projects.

Figure 4.7 Catalysis System Development Process Model

Reguirements Domain Models

Outside.
plus project
constraints

Understand problem,
system context,
architecture and System Context

I System Specification I
Describe external
behaviour of target
system using probJem

Scenarios

Type Model and
Oneration Seecs

I Architectural Design I
Partition technical and
application architecture
components and their

I compo~:~~~nternal
Design interfaces and
classes for each

4.5 Catalysis: Summary

In terms of system modelJing, Catalysis provides
a wealth of innovative techniques, concepts,
semantic and technical guidance, which are too
extensive to be covered here thoroughly.
However, it seems that there are too many loose
ends in its modelJing approach. Architecture and
development process are not covered in detail.

5 KOBRA: KOMPONENTEN!!ASIEBTE
ANWENDUNGSENTWICKLUNG
('COMPONENT-BASED
APPLICA TION DEVELOPMENT')

KobrA: Component-based Product Line
Engineering was developed as part of a project
funded by the German Federal Ministry of
Education and Research.

Set against many traditional System Analysis and
Design methods, KobrA is unique in one
important aspect: its emphasis on Product Line
Engineering. KobrA espouses a vision in which
applications are developed not from scratch or
even from smalJ components, but from
'frameworks' . In KobrA, it specificalJy means a
generic application complete with alJ necessary
models and documentations, as welJ as possible

variations of features . One may choose a set of
variations in order to render the framework into
an application. In a sense, it is the most audacious
vision of reuse. It is not just about reuse of
objects, or classes, or even packages of classes.
Rather, it is about reusing an entire application in
which very little coding or modelJing is required.

5.1 KobrA: Overview

KobrA suggests that there are three orthogonal
properties of development as shown in Figure
5.1.

Composition/Component Modelling
Dimension

Composition dimension deals with the issue of
recursive decomposition of the system into finer
and finer grained parts. It captures the
hierarchical nature of larger components being
made up of smalJer ones. At the top of this
hierarchy is the system - itself a component -
and at the bottom are components that can no
longer be decomposed meaningfulJy. This
exercise leads to the creation of a containment
tree of nested components.

Genericity/Product Line Engineering
Dimension

Appendix II - A Detailed Analytical Survey of CBSD Methods 268

5.2 KobrA: Software Architecture

Genericity dimension deals with the variant overall development cycle is split into two parts;
features of the system. At one end, there are the first deals with the development of a
generic applications - called frameworks - with framework and the second deals with the
contain elements that are common across all development of an application. The process of
enterprise applications. At the other end are creating frameworks and applications is called
applications with specific features, which are Product Line Engineering.
adapted or extended from the frameworks. The

Figure 5.1 Three orthogonal properties of system development

Abstraction

Composition

Abstraction/Embodiment Dimension

Abstraction dimension deals with representation
of the system at different levels of detail. At a
high level the system will be represented using
some diagrammatic models, and at a low level,
executable codes. Removing abstraction from
models is called (Component) Embodiment.
Embodiment is the 'act of giving a concrete form
to'. The abstract models generated during
component modelling are converted into
executable artefacts. There are two strategies -
reuse and implementation.

KobrA suggests that all component-based
development projects need to deal with these
three issues somehow and failure to distinguish
them often leads to complexity and confusion. In
this method, these three issues are addressed
separately. Most importantly, developers must

know, at any given point during a development
project, the dimension they are working on.
KobrA facilitates such a distinction.

5.2 KobrA: Software Architecture

KobrA does not suggest a reference architectural
model.

5.3 KobrA: Modelling

When discussing modelling of the system, KobrA
uses the terms 'Component' and 'Komponent' -
it is important to differentiate between the two.
'Component' in is a general term used to describe
a cohesive unit of behaviour with a commonly
agreed interface. Some components are called
logical components because they are represented
by abstract model(s). There are also physical
components - components that are executable.
'Komponent', short for "KobrA Component",

Figure 5.2 Features of a KobrA component or Komponent

Appendix II - A Detailed Analytical Survey of CBSD Methods 269

5.3 KobrA: Modelling

Figure 5.2 shows a component that is produced ¢

according to the KobrA approach, i.e. a
component that has:

Parsimony - every artefact should have
'just enough' information, no more or no
less.

¢ A specification - Komponent specification
defines what the component does in terms
of the properties that are externally visible,
dependencies it has on other components
and its state-dependent behaviour.

5.3.1 Structural Model

This model is used for both Komponent
specification and Komponent realisation. When
used for Komponent specification, the emphasis
is on describing 'the externally visible types',
entities or classes, in that Komponent about
which interacting Komponents need to know. It
must contain at least one class diagram, but for
large Komponents more class diagrams can be
created. When used for Komponent realisation,
the emphasis is to show the refinement of the
specification (class) diagram by inclusion of
elements - such as attributes, operations and even
embedded Komponents - that are not visible at
the specification level. A structural model may be
accompanied by more than one object diagram if
necessary.

Main Concepts

The main concepts used in this model are
borrowed from UML, which include:

A realisation - Komponent realisation
defines how the component is internally
designed in order to satisfy the
requirements expressed in the
specification. Realisation of high-grained
components involves identification and
specification of finer-grained components.
Specification and realisation of
components are therefore an iterative and
spiral process. The first model produced is
a realisation model of the system's context
- leading to specification of the system's
main components. Those Komponents are
then realised producing specification of
finer Komponents - and so goes the
process until Komponents are no longer
decomposable. All Komponents have their
specification and realisation expressed

¢
using models.

¢
An implementation - It transforms the

Class
Attribute

¢
abstract, non-executable components into

¢
Operations only for realisation models
Association executable ones. A realisation may be

¢
implemented in different ways Komponent

Containment hierarchy
A range of artefacts, including models,
produced for Komponent specification
Komponent realisation.

are
and Semantics of these concepts are broadly in line

with UML.

A Komponent specification may contain up to six
artefacts. They are: Structural Model, Functional
Model, Behavioural Model, Data Dictionary,
Quality Documentation and Decision Table. Of
these, the first three are primary artefacts and the
rest, auxiliary ones.

A Komponent realisation may contain up to six
distinct artefacts: Structural Model, Activity
Model, Interaction Model, Data Dictionary,
Quality Documentation and Decision Table.
Again, the first three are primary artefacts, and
the rest, auxiliary.

Modelling Technique

KobrA provides the guidelines for developing a
structural model.

First, a draft specification class diagram is
created for the Komponent. List operations of the
Komponent and adorn it with the stereotype
«subject». Then add appropriate attributes and
associations to classes. When the functional
model and behavioural model are available,
check them against the structural model to ensure
consistency between them in terms of classes,
attributes and associations.

KobrA is based on four basic modelling Optionally, object diagrams can be deployed in
principles: cases of complex Komponents.

Uniformity - every behaviour-rich entity
is regarded as a Komponent, no matter
what the granularity is
Encapsulation - the description of what
the software does is separated from how it
does it
Locality - all artefacts represent the
properties of a Komponent from a local
perspective

5.3.2 Functional Model

This model is used to describe 'the externally
visible effects of the operations' of the
Komponent in terms of what it does, rather than
how it is done. Il includes a set of operations
specifications. Each specification can contain up
to 11 parts/clauses - out of which there are two
important clauses: Assume (pre-condition) and
Result (post-condition).

Appendix II - A Detailed Analytical Survey of CBSD Methods 270

5.3 KobrA: Modelling

Main Concepts The main concepts of UML activity diagram are:
Activity, Object, Swimlanes, Sequence, Selection

Operation - operation of Komponent and Iteration.
Assumes - declarative description of
minimum condition that must be true to Modelling Technique
ensure successful execution of the
operation
Result - describes the condition that
becomes true after correct execution of the
operation.

When producing these specifications, a number
of notations from informal text to formal
languages can be used depending upon the nature
of the application domain.

Modelling Technique

Operations of a Komponent are identified by
looking at the messages its instances receive. For
each operation, an initial description of Assumes
and Result clauses are developed by investigating
the parameters, return data types, effects of the
operation on the object(s), and appropriate
assumptions. After these two clauses are
developed, Receives, Returns, Reads, Changes,
Sends, and Rules clauses are derived from the
information gathered for the previous two
clauses. The process is then repeated until intra­
diagram, inter-diagram and clientship rules are
satisfied.

5.3.3 Behavioural Model

This model is used to show how the Komponent
behaves in response to external stimuli.

Main Concepts

It uses either UML statechart diagrams, or
statechart tables. Important concepts are: events,
operations and states.

Modelling Technique

First, choose between a statechart diagram or
table. Then identify the 'externally visible logical
states' of the Komponent. Identify the class
attributes in the structural diagram which
correspond with the state attributes. Then identify
the valid operations in each state. The process is
then repeated until intra-diagram, inter-diagram
and clientship rules are satisfied.

5.3.4 Activity Model

Activity diagram shows a hierarchical
decomposition of Komponent operations into
activities. It is a flowchart-oriented view of the
algorithm used to realise an operation. For each
operation, participating objects are listed in
swim lanes of UML activity diagram. Activities
are then drawn within these swimlanes to show
what each object does and the order of execution.

Main Concepts

First, the operation is broken down, as in
functional decomposition, into activities. Then
the flow of activities is analysed before allocating
them to swimlanes based on the data types the
activities use. Activities are further broken down
into sub-activities (to be allocated to embedded
classes). Based on the granularity of the
activities, if they are 'appropriate', activities are
allocated to Komponent as operations. Otherwise,
further decomposition is necessary.

5.3.5 Interaction Model

This diagram reconciles the structural and
activity-oriented views of the system by means of
illustrating how instances interact to realise a
Komponent operation. This diagram is rather
similar to the activity diagram, but the focus here
is the flow of messages passed from the
perspective of objects.

Main Concepts

Concepts of UML collaboration (or sequence
diagram, collaboration diagram being a preferred
choice) diagram, object and messages are used.

Modelling Technique

Identify an initial collaboration from the
hierarchy activities and objects in the activity
modelling. Adjust data types, activities and
allocations. Repeat this until the allocation
becomes stable. Ensure that messages received
by objects correspond with class operations.

Other Models and Rules

There are, of course, detailed discussions on an
array of rich modelling concepts (generally
UML-compliant), guidelines, and consistency
checking rules. Other important issues such as
project management, measuring quality attributes
of models, and how to organise a large repertoire
of model artefacts.

6 KOBRA: DEVELOPMENT PROCESS­
PRODUCT LINE ENGINEERING

Domain Engineering lends itself as a good
strategy for high-level reuse and has some
influence on Product Line Engineering. Although
Domain Engineering proves to be a step forward,
KobrA argues that there are significant
limitations. In particular, it says, Domain
Engineering has problems with scoping the area
of concern - it is often either too small or too
large, hence it does more harm than good. KobrA
argues that Domain Engineering covers areas that
mayor may not be affected by Information

Appendix II - A Detailed Analytical Survey of CBSD Methods 271

5.3 KobrA: Modelling

Systems. Therefore, if the domain chosen is too framework are instantiated by resolving the
small, it could fail to address important issues, decision models. Most of the time, the
and if it is too large, then it may not be cost instantiated specific framework (or application)
affective. Product Line Engineering solves this needs further adaptations. In that case, regular
problem by limiting the concerns by using the development techniques are to be used.
characteristics of existing, planned or future
products. Everything required by the product is
inside the area of concern and the rest outside it.
The limitation of Product Line Engineering is
that it is only useful when an organisation
develops several systems in one application
domain. One main task in Product Line
Engineering is the identification and
documentation of commonality and variability
across many products or applications of the same
application family.

~ Commonality: Determination of whether
a characteristic is a commonality or
variability is often a strategic decision
rather than an inherent property of the
product family.

~ Variability: All variables can be described
in terms of alternatives. This can be
difficult and involve: a) decision-making
on whether a variability will be realised as
a development time variability or a run­
time variability, Product Line Engineering
is only concerned with development time
variabilities and b) representing
development time variabilities at the right
level of detail and presentation style

~ Decision Models: the core role of the
decision model is to show which
variabilities are associated with which
products. It consists of a hierarchy of
decisions that relate user visible options to
specific system features

Framework Engineering

In KobrA, frameworks are created using the same
basic concepts, artefacts and activities as those
used in development of applications, but are
generalised to cover family of applications.

There are of course certain activities that are
unique to this engineering, such as identification
of Commonalities, Variabilities, and
Komponents. Commonalities are identified using
a simple scope definition table that lists various
features of all members of the application family.
Variabilities are identified by adopting a "product
line-oriented" mind-set when introducing new
elements to the model. Analysing and
encapsulating the variabilities that characterise a
product line provides valuable insight into
consolidating functionality into good, reusable
building blocks.

Application Engineering

As far as the modelling is concerned, there is not
much to do. First generic artefacts in the

Appendix II - A Detailed Analytical Survey of CBSD Methods 272

1. Principal Doc­
trine

2. Is the doctrine
observable or
evident in all
aspects of the
method?

3. What is
component?

4. Reuse Strategy

5. Modelling

RSE

Maximising reuse
through changes
in organisational
culture and ad­
aptation of the
development
process. This is
evident in SOP of
RSE. The Archi­
tectural model
and modelling
have strong 00
flavour.

Yes, especially
the process and
architecture.
Modelling
techniques are
akin to 00
modelling

Anything that is
reusable - a class,
a use case, a
model, a test
case, or a
combination of
any of them

PERSPECTIVE

Component-based
(code) reuse
through tried and
tested SOP,
architecture and
modelling.

The method
deploys a range of
popular modelling
techniques. From
modelling point of
view, it is very
influenced by 00
methods. Some
attempt to model
components and
services. The
notion of
assembling
components is not
evident

Components are
executable code,
'larger' than
classes, and they
provide services

Through internal Trough legacy
library of system,
components - commercial
mainly applicable packages etc.
to very large
organisation with
huge IT resources

UML notation
but techniques
are largely
adapted from
OOSE, the use
case driven

Largely UML,
both notation and
techniques.
Business Process
Modelling is
integrated. Some

5.3 KobrA: Modelling

CATALYSIS

Precise specifica­
tion of (model)
components
through rigorous
modelling

The method
attempts to show
that it is a
rigorous
modelling
method founded
on firm
principles. There
are some loose
modelling
techniques. As far
as reuse is
concerned, it
mainly talks
about patterns
and framework,
i.e. model reuse

Component is a
software artefact
i ndependentl y
developed and
delivered as a
unit and can be
composed with
other components
to build
something larger

Patterns and
framework (not
like KobrA)

Notation is
largely UML, but
semantics and
techniques are
quite different.
The main concern

KOBRA

Development of
generic applica­
tions (or frame­
works) and in­
stantiation of
frameworks to
create applica­
tions through
Product Line
Engineering

Yes, though the
applicability of
this approach to
different
scenarios of
software
development is
open to question

A logical
component is 'a
cohesive unit of
behaviour with a
commonly
agreed interface',
while physical
components are
executable code

Frameworks

Notation is
largely UML, but
the approach is
the recursive
modelling of the
system using

Appendix 11- A Detailed Analytical Survey of eBSD Methods 273

5.3 KobrA: Modelling

RSE PERSPECTIVE CATALYSIS KOBRA

approach. throw-ins of is to identify and consistent models
techniques such as specify and techniques.
CRC, event components from
modelling and ER the outset. Top-
modelling. down recursive

modelling.

6. Support for Emphasis the A simple BPM Suggest using the The need for a
business process need for business described and same models. kind of domain
modelling process show how it can modelling is

modelling that is be integrated with mentioned, no
discussed in system modelling. specific
another book techniques
written by provided.
Jacobson - The
Object
Advantage.

7. Development Similar to The duel-process A template like Separation of the
Process Perspective, also highlights the minimal model. process into two:

include a process nature of CBSD. Process patterns framework
to deal with provided for engineering and
breakdown of specific application
sets of development engineering.
appl ications. scenarios. Little further

details given.

8. Architecture A good high- Simple three tier No reference Lack
level view of how architecture. architectural architectural
application model, some model.
families and their patterns given.
composition

9. Strengths Good balance of Simple and Some interesting A perfectionist
models, accessible new concepts approach to
arch itecture, proposed reuse; the only
development way to create an
process and application is to
management instantiate a

framework.
Highly organised
reuse is a way of
life

10. Weaknesses Notion of More object- Effectiveness of Probably not
component is oriented than top-down realistic. It is
vague and component-based, recursive difficult to
modelling especially modelling imagine how this
techniques are modelling. Belong approach is approach can
unexciting to early generation questionable. work with large

of CBD methods Mainly devoted and complex
to modelling applications
system
components,
patterns and
frameworks.
Literature not
approachable

Appendix II - A Detailed Analytical Survey of CBSD Methods 274

7 CONCLUSIONS

This paper has systematically analysed and
summarised a catalogue of CBSD methods
readily available in popular literature. It is 3.
possible that there are other CBSD methods that
are yet to receive wider attention. However, it is
surprising that, despite its perceived significant 4.
potential, there have been relatively few
published methods on this subject, in contrast
with tens or possibly hundreds of object-oriented
methods. It is perhaps an indication of the
embryonic stage that CBSD methods are in at 5.
this moment. It could also be that CBSD is seen
as a natural extension of object-orientation, rather
than an overthrow of an existing way of thinking. 6.

This survey has shown that early CBSD methods
are hugely influenced by UML and other object­
oriented methods. Only KobrA offers a different
vision of reuse. In terms of modelling techniques,
all methods surveyed use the standard 00 7.
models, use case, class, sequence, collaboration
and state models. Only Catalysis offers some
different modelling techniques. There has been
very little technical innovation in this area. The 8.
same can be said about architecture: no CBSD
method has provided fresh ideas on this issue.
Only Perspective and RSE have offered detailed
and realistic models of the development process.

5.3 KobrA: Modelling

Paech, B., Wust, J. and Zettel, J., 2002.
Component-Based Product Line Engineering
with UML. Harlow: Pearson Education Ltd.

Booch, G., Rumbaugh, J. and Jacobson, I.,
1999. The Unified Modeling Language User
Guide, Harlow: Addison-Wesley.

D'Souza, D. F. and Wills, A. C., 1999.
Objects, Components, and Frameworks with
UML: The Catalysis Approach. Addison
Wesley.

Frost S. (1995). The Select Perspective
version 4. O. Select Software Tools White
Paper.

Jacobson, I., Christerson, M., Jonsson, P. and
Overgaard, G., 1992. Object-Oriented
Software Engineering: A Use Case Driven
Approach (revised). ACM Press/Addison­
Wesley.

Jacobson, I., Booch, G. and Rumbaugh, J.,
1999. The Unified Software Development
Process. Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P. and
Overgaard, G., 1997. Software Reuse:
Architecture, Process and Organization for
Business Success. ACM Press/Addison­
Wesley.

Jacobson, I., Ericsson, M. and Jacobson, A.,
1994. The Object Advantage: Business
Process Reengineering with Object
Technology. ACM Press/Addison-Wesley.

As far as the definition of component is 9.
concerned, a standard definition is yet to be
agreed. Although there is some consensus on the
importance of separation of interfaces from
implementation and the need to standardise them,
this is not the case with executability, granularity
and object-orientedness of components. In terms

10. Rumbaugh, J., Jacobson, I. and Booch, G.,
1999. The Unified Modeling Language
Reference Manual, Harlow: Addison­
Wesley. of emphasis on reuse, only KobrA is bold enough

to make application-reuse the first priority. Other
methods are fairly lukewarm about reuse at high
level. They give a strong impression that systems
still need to be modelled in great width and depth
- which is contradictory to the notion of
assembling developed components.

11. Wood, J. and Silver, D., 1995. Joint
Application Development 2nd ed. New York:
Wiley.

12. Bellin, D. and Simone, S. S., 1997. The CRC
Card Book. Reading, Mass: Addison-

There are encouraging signs that dissemination of
CBSD new methods and technologies is slowly 13.
gathering momentum. For example, there have

Wesley.

Rumbaugh, J., Blaha, M., Premerlani, W.,
Eddy, F. and Lorensen, W., 1991. Object­
Oriented Modeling and Design, Englewood
Cliffs, New Jersey: Prentice-Hall.

been an increased number of research papers,
workshops, conferences, chapters in books, and
courses. Perhaps these are the final pieces falling
into place for the CBSD jigsaw. 14. Coleman, D., Arnold, P., Bodoff, S., Dollin,

D., Gilchrist, H., Hayes, F. and Jeremas, P.,
1994. Object-Oriented Development: The
Fusion Method. Prentice-Hall International.

8 REFERENCES

I.

2.

Allen, P. and Frost. S., 1998. Component­
Based Development for Enterprise Systems:
Applying the SELECT Perspective.
Cambridge: Cambridge University
Press/SIGS Books.

Atkinson, C., Bayer, J., Bunse, C., Kamsties,
E., Laitenberger, 0., Laqua, R., Muthig, D.,

15. Cook, S. and Daniels, J., 1994. Designing
Object Systems: Object-Oriented Modelling
with Syntropy. Prentice Hall.

16. Harry, A., 1997. Formal Methods Fact File:
Vdm and Z. John Wiley and Sons.

Appendix II - A Detailed Analytical Survey of CBSD Methods 275

1.1 The Problem

Appendix III

Foundation for Rational Allocation of Class
Operations

ABSTRACT
Class models are perhaps the most crucial models in Object-Oriented
system development endeavours. These models, traditionally
instituted at the very beginning of development stages and
progressively enhanced and refined towards later stages, directly feed
into implementation. Since incorrect class models can only result in
unworkable solutions, the need to get class models right is crucial. As
the class model evolves, operations are designated to classes in order
that their objects can collaborate appropriately to realise the system
functionality. Following research into the approaches for allocating
operations to classes suggested by popular 00 methods, it is
concluded that these approaches are generally vague and ineffective,
mainly because these techniques seem to assume that allocation of
operations to classes is essentially an arbitrary process. An extensive
series of case study-based experiments on the nature of object
collaborations is conducted. Findings indicate that the allocation
process may be reasoned and well-structured. This paper presents a
systematisation of observations on object collaborations into a
coherent set of principles providing a rigorous foundation for rational
allocation of operations to classes.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques - object­
oriented design methods.

General Terms
Design, Experimentation, Languages, Theory.

Keywords
Object-Oriented Methods, Unified Modelling Language, Class Modelling,
Use Case Realisation, Collaboration Diagram, Sequence Diagram.

1. INTRODUCTION
Object-oriented systems analysis using approaches
such as [6] and [7] typically begins with development
of a use case model to capture user requirements. It is
often accompanied, or soon followed by, construction
of an initial class model exploring the main business
and/or application concepts. Through iterative
enhancements, the use cases then reach a level of
maturity at which they can be taken as a fair reflection
of what the users really want. At the same time, classes,
their attributes and their relationships are refined
through analysis of descriptions of the requirements
such as textual analysis [2], [5], and [15]. Compared to

classes, attributes and relationships, operations are
more difficult to identify at this stage [6]. The two
models are then brought together to demonstrate how
objects from the class model support or realise the
functionality expressed in the use case model through a
process known as "use case realisation" in UML [3],
[7] and [12]. For this, analysts draw collaboration
and/or sequence diagrams for each use case. Following
approaches such as [6] and [7], analysts would a)
identiry objects from the class model which are
stereotyped as entity objects, b) invent a few other
objects stereotyped as boundary and control objects
appropriately, and c) show how messages are passed
across these objects to realise the use case.

Appendix III - Foundation for Rational Allocation of Class Operations 276

1.1 The Problem
In the process of identifying entity objects, inventing
boundary and control objects, and designating
messages to these participating objects, the invention
of boundary objects is relatively straightforward. In
many cases, simply making up a boundary object per
actor suffices. However, there are two fundamental
issues that analysts have to grapple with when it comes
to the other two types of objects, entity and control
objects.

a) The first issue is concerned with identification of
entity objects that participate in a given use case
realisation. Regarding this issue, analysts can ask
questions of the following kinds: -

How does one know, or determine, if an object of a
class from the class diagram, i.e. an entity object,
participates in a use case realisation? How does one
distinguish an entity object that participates in a use
case realisation from others that do not? What are the
conditions or factors that influence the decision on
inclusion or exclusion of an entity object from a use
case realisation?

b) The second and more complex issue is generally
concerned with the nature of operations allocated to
participating entity objects and the use of control
objects in object collaborations. The following
questions characterise this issue: -

If an object is thought to participate in a use case
realisation, one then has to designate operation(s) to
the object. In this case, how does one determine the
nature of the operation(s) to be allocated? How does
one logically arrive at what an operation can do, cannot
do, should do and should not do? How does one decide
whether or not an object should take part in a use case
realisation either actively by invoking operations from
other objects, or passively by being invoked by other
objects only? When is it necessary to create a control
object? Other related questions also emerge from this
area, but ultimately, the question is: how does one
distribute intelligence fairly and rationally across all
participating objects?

1.2 Organisation of paper
The rest of the paper explores answers to these
questions. In the next section, the paper briefly reports
on the general state of the situation regarding these
issues and offer conclusions on why existing methods,
to a large degree, have been less than effective in
answering these questions incisively. Section 3 gives
background information on the experiments we carried
out which led to the synthesis of principles for
allocation of class operations. Principles are discussed
in Section 4 while conclusions and references can be
found in Sections 5 and 6 respectively.

1.1 The Problem

2. Current state of affairs
In the attempt to answer these questions, a survey of
the range of suggestions, techniques and heuristics put
forward by a number of object-oriented methods
including the ones discussed in [1], [2], [5], [6], [7],
[8], [11] and [14] has been conducted. This paper will
not present summaries of each of these approaches due
to limitation of space. However, general comments on
these methods are offered, in particular for the two
currently popular schools of thinking on this issue: the
"use case-driven" approach, first discussed by
Jacobson et al in [6] and the "Class, Responsibility,
Collaboration (CRC) Cards, or responsibility-driven"
approach, usually attributed to Beck and Cunningham,
and popularised by literature such as [1], [13] and [14].

The approach Jacobson et al introduced in [6] and later
integrated into the Unified Process [7] has gained
increased popularity with the spread of UML. Although
the use case-driven approach has popularised a number
of important concepts, guidelines for allocation of
operations are rather vague. For instance, Jacobson et
al [6] have identified the two possible extreme
situations in fair distribution of intelligence as 'fork
structure' and 'staircase structure'. Their general
suggestion was to use a combination of these two
structures, to 'yield a stable and robust structure'.
However, it seems that methodical guidelines need to
be more prescriptive.

The responsibility-driven approach suggests that
responsibilities of classes are identified from the
requirements specification, and through role-playing,
collaborations between objects are worked out. Again,
guidelines given by this approach do not deal with
fundamental questions such as "how does one know if
a class is responsible for a certain action?"

The main weakness of these techniques is their
tendency not to offer concrete guidelines on how to
allocate operations. With these techniques, no object
collaboration can be considered wrong, or judged to be
good. Anything seems to be acceptable.

From the survey it may be concluded that a) existing
methods fail to tackle two main issues (Section 1.1)
rigorously and b) problems arise from basic confusion
and haziness about the logical principles that underpin
allocation of operations to classes.

3. Experiments - background to the
principles
In order to understand the principles underlying the
allocation of operations to classes, experiments have
been carried out with a number of use case realisation
diagrams. Two case studies, a library system and a
stock management system, have been designed. For
each use case in these systems, a number of use case
realisation diagrams are produced by considering all
possible ways in which operations could be allocated.

Appendix III - Foundation for Rational Allocation of Class Operations 277

The implications of each style of allocation are then
examined and compared with basic object-oriented
principles on encapsulation, data hiding and
inheritance. From these experiments, it has become
clear that there are certain patterns that run through all
allocations that sustain a good sense of object­
oriented ness, i.e. there is a good degree of
encapsulation, protection of data, cohesiveness of
classes and so on. The principles proposed in Section 4
are a systematisation of the knowledge, insights and
experiences gained from these experiments.

Before discussing these principles, the following points
should be noted:

a) The following case study scenario is used to
illustrate discussions in this paper. It is a simple
ordering system, named ACME Ordering System, and
some use cases of the system are shown in Figure I. It
is not a complete listing of use cases in the system.
More details about the system are given where
necessary.

The minimal class diagram showing classes, attributes
and relationships, of the system is given in Figure 2.
Operations are omitted in the diagram as it is unlikely
that they will be discovered at this early stage, as
mentioned above.

t
Place an order

f/

/~ Find customer by
ountry

Customer

Co""'" tot~ Manager
ali customer orde

Figure I. Use Case Diagram for ACME Ordering System

Order Customer

OrderOate : Date
1 Name: String

0." Country: String
Date-ot-birth: Date

01

1."

OrderLine StockItem

Order-Qty: Integer
1

Name: String
Price: Integer 0." Price: Integer

IStock-Qtv:-lnteaer

Figure 2. Initial class diagram for ACME Ordering
System

b) The terminology used in this paper will refer to the
terms attribute, concrete attribute, derived attribute,
state, link and property. The terms are used in the
following sense: object has attributes that hold

1.2 Organisation of paper

data/information about the object or references to other
objects. An attribute of an object can be either concrete
or derived. Concrete attributes are attributes that can be
thought as being persistent, e.g. Name and Date-of­
birth attributes of the Customer class. Derived
attributes are attributes ascertained from other, mostly
concrete, attributes and can be regarded as transient.
Derived attributes may be obtained from other
attribute(s) of the same object. For example, Age is a
derived attribute that can be calculated from the Date­
of-birth attribute of Customer. Derived attributes may
also be drawn from attributes of other objects too. For
example, order total is an attribute that is derived from
price and order quantity attributes of OrderLine
objects. Most objects have Iink(s) to other objects
through references. For example, a customer object can
be linked with a number of order objects. State of an
object is determined by the attributes - both concrete
and derived - of the object and the Iink(s) the object
has to other objects. For example, a stock item could
be in such a state that it needs to be reordered
immediately. All attributes, states and links of an object
are collectively known as the properties of the object.

c) An obvious point that is worth repeating is that when
an operation is allocated to a class, every instance of
the class gets the operation. Therefore, if the operation
OperXO is allocated to the class Customer, all
instances of the class, i.e. all customer objects, can be
thought of as having their own 'copy' of the operation
and OperXO of each customer object may directly
access its own object properties only). Furthermore,
since it is often useful to think at instance rather than
class level, 'allocation of operation to an object' will
be mentioned as well as 'allocation of operation to a
class'. It follows that if an operation is allocated to an
object, the same operation is allocated to other objects
of the same class. Hence, the two expressions, one to
help contemplate at concrete instance level, and the
other at a more generic level, practically mean the same
thing.

4. Principles
Observations on the general patterns that run through
sensible allocations of operations are embodied in two
principles. The first principle deals with the criteria for
determining whether an operation can be allocated to a
class and the second principle helps determine an
optimal level of responsibilities across collaborating
objects. The first principle is prescriptive, the second
principle descriptive. These principles are generic and
independent of the allocation technique that analysts
may use. Any class operation technique that

) OMG UML Specification version 1.3 [9] does not allow
operation compartment for objects to be shown. However,
it is helpful often to think of objects with their own sets of
operations.

Appendix III - Foundation for Rational Allocation of Class Operations 278

4.1 Principle 1: Concerning the criteria for operation allocated to a class

sufficiently takes into account these principles can be
regarded as a rigorous technique.

Although application of these principles is primarily
restricted to entity and control classes/objects in this
paper, there is strong evidence that are also applicable
to other types of objects, including boundary
classes/objects. This paper does not report on the
evidence.

4.1 Principle 1: Concerning the criteria
for operation allocated to a class
This principle sets out the basic conditions that must be
satisfied in order for an operation to be allocated to a
class.

An operation allocated to an object must access the
properties of the object in order to justify the allocation. It
therefore means that at least one of the following conditions
needs to be met:

Criterion I: The operation accesses the concrete attribute(s)
of the object.

Criterion 2: The operation accesses the derived attribute(s) of
the object.

Criterion 3: The operation accesses the states of link(s), i.e.
whether or not link(s) to object(s) exist(s).

Note: Access means update or enquire.

The first criterion is simple - the operation either reads
or changes the concrete attribute values of the object.
In the ACME case study, allocation of an operation
such as getNameO to a Customer object to access the
concrete attribute Name is justified. Allocating an
update operation such as changeCountry(aCountry) to
Customer class to change the address of individual
Customer objects is also warranted (Figure 3).

The second criterion covers two cases involving
derived attributes. As said, a derived attribute may
depend on attribute(s) of either same object or different
object(s). In both cases, if the operation accesses the
derived attribute of an object, the allocation is
legitimate. For example, an operation accessing the
derived attribute Age in a customer object, which
depends on the concrete attribute Date-of-birth,
satisfies the criterion, see Figure 4.

Customer

Name: String
Country: String

getNameO
changeCountry(aCountry)

Figure 3. Operations accessing concrete attributes of a
class

Likewise, Order line total is a derived value that draws
from two concrete attribute values of Price and Order­
Qty of the same object. Hence, allocation of an

II

operation to calculate order line total to OrderLine
class is permissible. Order total, i.e. total value of an
order, is another derived attribute that depends on
attributes of many other objects, namely, order line
totals. Allocation of an operation that calculates order
total to Order is in agreement with the criterion. See
Figure 5.

Customer

Date-of-birth: Date

getAgeO

Figure 4. Operation accessing a derived attribute based
on another attribute of the same class

The third criterion covers operations that change or
enquire about the state of link(s), i.e. existence or non-
existence of links, with other objects. For example,
allocation of an operation to Customer to check the
number of orders placed by a customer satisfies the
criterion. It is so because such an operation will have to
inspect the number of links that exist between a given
customer object and any number of order objects.

OrderLine Order

Order-Qty: Integer 0." <> OrderDate : Date
Price: Integer 1 calcOrderTotalO
getlineTotalO

Figure 5 Operations accessing derived attributes of the
same class and different class

This principle pointedly disallows allocation of
operations to classes if the operation does not access
properties of objects. For example, allocation of the
operation RunO to the Customer class, simply because
customers as persons may run when the attributes of
the class are Name, Country and Date-of-birth and the
relationship is to the Order class, is an incorrect
allocation. None of the attributes or relationships is
affected in any way by such an operation. Hence, either
the operation should be eliminated or necessary
attributes and/or relationships added to the class(s).
The first principle, therefore, forces analysts to tie in
operations with properties of the object.

Order Customer

OrderDate : Date
1

Name: String
0."

getCustomerOrdersCountO

Figure 6. Operation that accesses state of links between
objects

The principle also covers two other kinds of operations
that all classes have: constructor and destructor.
Constructor operations set initial values to attributes
and effectively bring objects to 'life' and destructor
operations do the reverse. Both operations affect the

Appendix 111- Foundation for Rational Allocation of Class Operations 279

I

4.1 Principle 1: Concerning the criteria for operation allocated to a class

properties of objects; hence allocation of constructor
and destructor operations to classes is in line with the
criterion.

4.1.1 Implications of Principle 1
This first principle therefore provides a rational
approach to determining the involvement of entity
object in object collaboration. This principle demands
that an object participates in an object collaboration
only if: a) the object is created or destroyed by the
collaboration b) the object has its relationships with
other objects established or removed c) attribute values
of the object are set or read and existence or non­
existence of objects and relationships are checked. If
no known properties of the object are affected, then
questions can be raised about missing elements in the
object's properties and the relevance of the operation
for that object.

An important assumption this principle makes is that
only (perhaps normalised) attributes and relationships
of classes provide a stable foundation for determining
the allocation of class operations. Whilst some analysts
may cast doubt on this assumption, it can be argued
that it is a logically sound assumption totally compliant
with other fundamental object-oriented principles.

The general suggestion against this assumption is the
proposition that class operations or responsibilities or
behaviour should be determined first because
operations are innate to classes. Once responsibilities
of classes are established, class attributes can be
identified easily. It is often emphasised that the exact
formulation of attributes is unnecessary, at least at the
analysis stage, because the internals of the objects are
hidden away.

Let us first discuss the point that operations are innate
to classes. The point is used to imply that operations
are not invented out of necessity for the system
functionality but rather appear naturally when classes
are conceived.

The logical conclusion of the point that there is no need
to assign operations to classes depending on the
functionality of the given system seems counter­
intuitive. It is conceded that there are highly specialised
objects, typically found in embedded and control
systems, that are ubiquitous and with sets of often
simple and distinct states. For example, it is obvious
from mundane experience that a simple switch, unless a
highly unusual one, can be turned on and off (by
someone or something). When the switch is turned on,
it will be on, and when turned off, it will be off, in
normal circumstances. States and behaviour of such
objects are so obvious that when a switch object is
mentioned, most analysts rarely think of other states
and behaviour for that object. To describe the
behaviour of such object as innate is agreeable in a
sense that these states and behaviour are not laboured

out after a lengthy intellectual exercise. This is the
farthest reach of the argument. To expect multi­
purpose objects, such as entity objects to have
operations that are so obvious that investigation of the
functionality of the system becomes unnecessary
underestimates this issue. Let us think of a customer
object, very common among business objects, and
examine what is innate to it. At an abstract or generic
level, one may say customers, as the name suggests,
would buy or somehow use products or services
provided by the business, for which they would
probably pay. However, there is nothing concrete
enough to be translated into class operations. A
customer of a bank may withdraw cash from her
account held by the bank, and a customer of a coffee
shop may not. A customer of a bookshop may purchase
a book, but a customer of a library may not. It is clear
therefore that if analysts do not know the business
domain of the object, little can be taken as innate for a
customer object, totally unlike the switch object. Even
a customer object of a particular bank may have
behaviour that is not applicable to a customer object of
another bank, where different banks offer different
services to their customers. Even within a bank, a
customer may behave differently if the bank decides to
offer new services or discontinue services offered in
the past. The point is that the concept of customer is
ubiquitous across many businesses; to claim that there
is something of significance inherent to any customer
object anywhere is totally unfounded. Therefore, the
only way to determine the operations of any customer
object is to investigate the business context of the
object. This is not a straightforward exercise and
requires careful thinking.

Let us now turn to the argument that class operations or
behaviour are more important than their attributes. An
object, by its very definition, is an entity of attributes
with operations manipulating them [3], [6], [7], [9],
[II] and [12]. Objects have states, attributes and links
that are queried and changed through operations of the
objects. Properties of an object are the existential cause
for an operation being assigned to the object. In other
words, it is to query or change properties of objects
that operations are allocated, not that states or
attributes are created to justify the allocation of
operations. This argument, therefore, seems to put the
cart before the horse.

Suppose that objects essentially are behavioural units
that need not have a cohesive cycle of states. Objects
will become stateless behavioural units without state­
dependent behaviours. These objects do not aspire to
the typical nature of systems and this is certainly not a
vision of systems promoted by the object-oriented
paradigm. The presumption that the behaviour of
objects can be determined without sound knowledge
about their states, attributes and links is evident in
specialist objects with universally understood discrete

Appendix III - Foundation for Rational Allocation of Class Operations 280

4.1 Principle 1: Concerning the criteria for operation allocated to a class

states. However, the claim that this concept can be
effortlessly transported to the world of multi-purpose
business objects is unfounded.

In fact, the object-oriented paradigm broadly favours
the property-centred allocation of operations. The
principle of information hiding, for example, is all
about how properties of objects should not be directly
exposed to other objects but rather accessed through
their appropriate operations revealing as few attributes
as possible. This principle implies that states or
attributes exist before operations are designated to
protect them. All this supports the basic assumption of
this paper that when modelling classes, attributes serve
as firm ground upon which the rest of development of
the class model can be succeeded. Moreover, if
Relational Data Analysis principles are properly
followed, there can be few or no ambiguities about the
placement of attributes in classes [4] and [10]. It is
therefore sensible that the part of an object that can be
defined relatively easily and that provides a good basis
for the rest analysis should be analysed first.

However, this does not mean that behaviour should be
regarded as irrelevant when modelling classes. Indeed,
the overall system behaviour ultimately determines
states of the objects. It simply does not follow that
behaviour of classes can be determined first. Attributes
and links first need to be broad-brushed, then refined as
operations are allocated, as advocated in [6].

Operations of classes can conform to the first principle
and yet be in the spirit of object-orientation. For
example, by way of making the system object-oriented,
analysts may simply allocate 'get' and 'set' operations
for all the attributes in the 'classes'. If an object­
oriented system is a system of collaborating objects
passing messages amongst themselves, it is hard to
imagine how one could espouse this vision by simply
depriving important objects of any intelligence. If it is
indeed true that using dumb entity objects is
acceptable, which is essentially what the Structured
approach suggests, the need for the whole object­
oriented paradigm must be challenged. This paper
acknowledges the pragmatists' argument that because
classes in the end are mostly implemented as relational
tables due to a number of reasons - including lack of
popular object or object-oriented databases and,
simplicity and ubiquity of relational databases - there
is no apparent benefit in allocating intelligent
operations to entity classes. In this case, it would seem
most sensible to abandon class modelling completely
and switch to Entity Relationship Modelling. It is
beyond the scope of this research to consider the
interesting issue of usefulness of class modelling over
Entity Relationship Modelling and vice versa.
However, this paper emphasises that where there is a
need to develop a class model in the genuine and full
sense of the term, analysts have to create a class model
that takes into account the issue of spreading system

intelligence fairly across all objects. Principle 2
concerns itself with this issue.

4.1.2 Principle 2: Concerning the criteria for
fair/rational distribution of functionality
Achieving a fair distribution of functionality over
classes is important for ensuring that classes have
desirable quality attributes such as stability, reusability,
maintainability, extendibility and so on [I], [2] and [6].
Many authors on 00 methods speak of the fair
distribution as an aesthetic quality - and indeed it is an
intellectually pleasing characteristic. Moreover, there is
a strong logical rationale behind such distribution. In
this paper, three main characteristics of such
allocations are suggested.

Operations of classes have achieved fair distribution of
operations if all of the following criteria are satisfied:

Criterion I: The operation allocated to an object does not
defer what can be done in the object to another object. What
can or cannot be done by an operation of an object, or how
much an operation can do, is ascertained from the properties
of the object. The amount of work an operation performs
must not transcend the properties of the object.

Criterion 2: Every operation call between two objects follows
the static associative relationship that exists between the
class or classes of the two objects.

Criterion 3: Control - the task of calling operations - is
distributed in such a way that it reflects the chains of
properties that exist among objects. For each chain of
properties, there has to be an object that serves as the starting
point of the chain. If there is none, creation of a control
object is necessary.

The first criterion defines that properties of an object
ultimately determine the maximum and minimum scope
of an operation that could be assigned to it. An
operation is over-responsible if it is entrusted to
perform things that go beyond what can reasonably be
supported by properties of the object. An operation is
under-responsible if it is not entrusted to perform
things that could be done with support of its properties.
In a complex object collaboration, over-responsibility
in one object consequently leads to under­
responsibility in others. Only if all objects are neither
over- nor under-responsible, can there be a fair
distribution of operations.

Customer

Date-ot-birth: Date
Country: String

getDate-ot·birth()

getCountry()

Customer

Date-ot-birth: Date
Country: String

getAge()

IsFrom(country)

Figure 7. Operations that defer what can be done within
the object to callers and operations that do not

There are some examples to demonstrate this criterion,
starting with a simple operation that needs to calculate
the age of a customer mentioned previously. In this

Appendix III - Foundation for Rational Allocation of Class Operations 281

4.1 Principle 1: Concerning the criteria for operation allocated to a class

case, analysts could allocate an operation that retrieves
the Date-of-birth attribute and let the caller object work
out the age; alternatively, analysts could allocate an
operation that carries out the calculation of age itself,
as shown in Figure 6.

calcOrderTotalO
----"---.,.-"-, getPriceO'

getOrder-QtyO'

Figure 8. OrderLine objects deferring what they can do to
Order objects

~ ~

calcOrderTotalO

Figure 9. OrderLine objects deferring what they can do to
Order objects

it is clear that calculation of age based on its own
attribute is something a customer object can do itself;
hence there is no need to delegate the task to other
objects, according to the first criterion. Therefore,
allocation of the operation getAgeO is preferable.
Similarly, if there is a need to check whether a
customer is from a given country, analysts could either
allocate an operation that retrieves the country attribute
and let the caller object make the decision or allocate
an operation that takes in the country as a parameter
and tells the caller object if the customer is from that
given country. Again, the amount of intelligence
attached to the second operation is appropriate from
the point of view of the properties of the customer
object. it is a simple point, but in a complex
collaboration, it is highly significant.

In the next example, when calculating order total,
analysts could allocate operations to OrderLine objects
which simply retrieve Price and Order-Qty from order
line objects (Figure 7). Alternatively, analysts can
allocate operations that calculate order line totals in
order line objects, where only the order total is
calculated in the order object (Figure 8).

Again, calculating order line totals is something order
line objects can do. Delegating that calculation to the

order object would wreck the balance of responsibility
between objects of the two classes.

The final example for this criterion highlights a
common mistake that analysts tend to make when
allocating operations. If there is a need to find a
customer by country, then there will be a tendency to
allocate the operation to the customer class.

Customer

Country: String

find6yCountry(country)

Figure 10. An over-responsible operation

This is a good example of making objects over­
responsible. This allocation implies that each customer
would have to know the countries that all other
customers live in, i.e. access to country attribute values
of all other customer objects, and find the interested
ones. A customer object can only know its own country
attribute value; therefore attributes of the customer
object cannot support such an operation. This example
will be revisited shortly.

In essence, this criterion emphasises the need to tie in
operations with object properties and limit unnecessary
exposure of object properties. It is a meticulous
reinforcement of the object-oriented principle on data
hiding.

The second criterion requires that if an object is to call
directly an operation of another object, in the sense that
there will be no other agent between the two objects,
the caller object must know the identity of the
receiving object [7]. For an entity object to know the
identity of another business object, the appropriate
class or classes of the objects need(s) to have a static,
usually bi-directional, relationship. Operation calls
among entity objects therefore must follow the static
relationships identified among the classes of those
objects. If two entity classes do not have a static
relationship, objects of the classes cannot make
operation calls to each other. Therefore, for the class
diagram shown in Figure 2, only the following basic
operation calls are permitted between entity objects.
Let us assume that x -~ y represents an operation call
from object x to y.

:Order -~ :Customer, :Customer -~ :Order,

:Order -~ :OrderLine, :OrderLine -~ :Order,

:OrderLine -~ :Stockitem, and :Stockitem -~
:OrderLine.

Multiplicities of relationships must also be taken into
account. If a number of orders can be placed with a
customer, as indicated in the class diagram, a customer
object may call operations from a number of order
objects. On the other hand, since there is only one

Appendix III - Foundation for Rational Allocation of Class Operations 282

4.1 Principle 1: Concerning the criteria for operation allocated to a class

customer for an order, an order object may call
operations of only one customer object.

These basic operations can be concatenated. For
example: -

:Customer -~ :Order -~ :OrderLine

:Order -~ :OrderLine -~ :StockItem

According to this criterion, the following operation
calls are invalid given the relationships in the class
diagram in Figure 2.

:Customer -~ OrderLine, OrderLine -~ :Customer

:Customer -~ StockItem, Stockltem -~ :Customer

:Order -~ :StockItem and :StockItem -~ :Order

operAO

I
:Order I ~I :Customer

I ~ I
operBO'

operDO t ~ operCO'

operEO

I
:OrderLine I ~ I :Sto!;;kltem I

I ~ I
operFO'

Figure 11. All possible operation calls between entity
objects of ACME Ordering System which satisfy the

second criterion

The validity of operation calls is better seen in
collaboration diagrams that show links between
objects, where it can easily and visually be compared
against the class diagram. The following collaboration
shows all possible valid operation calls among the
entity objects in ordering system.

I :Customer I

getCustomer
OrdersTolalO
__ -i.~r--L,g·elorderTolaIO

:OrderLine

gelOrderLine
TolalO'

Figure 12. Distribution of control that reflect the chain of
property

new Order(...) addNewOrder(OrderRef)
~

:Customer

Figure 13. Distribution of allocation mirroring the
dependency of properties of objects

In the previous example of allocation, an operation to
the Customer class to find customers from a given
country would require a static link between the
customer object and the rest of the customer objects in
the class. According to this criterion, there would have
to be self-referring relationship with the 1 and 1..'"
multiplicities in the Customer class. If such a
relationship existed, this would have been mechanically
possible. However, such allocation is not desirable
from the point of view of responsibility.

When more than one entity object participates in a use
case, it becomes necessary to determine which object
or objects will call operations of other objects. This is
called distribution of control and the third criterion
helps determine the way in which the distribution
should be performed.

Objects, as mentioned, have sets of attributes, links and
states, which are collectively known as properties.
Properties of objects are connected to each other
(through links) in the way that accessing properties of
an object often requires accessing properties of related
or linked objects. Here, they are referred to as
"property chains". The third criterion suggests that the
distribution of control must reflect the dependencies in
the property chains.

For example, accessing total value of an order is
dependent on prices and quantities of many order lines
related to that order object. Therefore, the operation
that calculates the order total must call the operations
from order line objects to access required attributes.
Allocation of operations in Figure 9 satisfies the third
criterion of this principle.

Similarly, calculating total value of all orders placed by
a customer is dependent on the calculation of the total
value of each order, which is in turn dependent on the
calculation of the total value of each order line of the
order.

:AIIOrdersTotal :OrderLine

getAll

OrdersTolalO gelOrderTolalO' GetOrderLine

TotalO'

Figure 14. Control object that acts as the starting point
for the property chain

Appendix III - Foundation for Rational Allocation of Class Operations 283

4.1 Principle 1: Concerning the criteria for operation allocated to a class

Similarly, adding a new order object for a customer
requires updating the customer object's links to order
objects. Therefore, the operation that creates a new
order object, i.e. the constructor operation, must call an
operation from the customer object to add a reference
to the new customer object.

:AIIOrdersTotal
BeforeDate

GetAliOrders

TotalBefore(da e) IsBefore(date.

•

Figure 15. Criteria of principles are applied pervasively

In the previous examples, chains of property converge
at a single value, usually a derived attribute of an entity
object. The total value of a single order, the total value
of all orders of a customer and the reference to a new
order object in a customer object, are all single values
that can be attributed to individual entity objects.
Often, these single values do not necessarily belong to
any known entity object. For example, consider the
total value of all orders placed by all customers. In this
case, the total value does not belong to any entity
object as a derived attribute. In such circumstances, the
principle suggests control objects need to be created.

:Supplier

IsFrom(Country)
----... .,...-L..,

getNameO·

Figure 16. Control objects can be used when access to
random groups of entity objects, which cannot be

accessed through existing links among entity objects, is
required

In this case, the control object serves as an object that
holds a derived attribute or a property that does not
belong to any known entity object. To be in line with
the second criterion of Principle 2, the class of this
object will have to have a I to 1 .. * relationship with the
Order class.

If one is only interested in calculating the total value of
all orders placed before a given date, since no known
entity object is thought to have such a property,
analysts must also invent another control object. This
new control object has to filter out orders that are not
placed before the given date. To do this, analysts can
retrieve the date from each order object and determine
whether the order was placed before the given date.
Alternatively, as discussed in Section 4.1.1, analysts
can pass the date as a parameter to order objects and
see if they are pre-dated. Where this is the case,
another message can be passed to retrieve the total
value from the order object.

Finally, to find customers from a given country, an
object that holds references to all customer objects is
required. There is no such entity object in existence;
hence, it is necessary to create a control object (Figure
16).

Overall, the second principle ensures that operations of
an object do not carry out tasks beyond the object's
properties.

4.1.3 Inheritance
The concept of class inheritance plays a crucial role in
object-oriented analysis and design. The principles
discussed in this paper are largely concerned with the
distribution of operations over classes of similar
abstraction (i.e. low abstraction), and do not
specifically discuss the distribution of operations over
generalised and specialised classes. There are two
possible scenarios regarding inheritance. In the first
scenario, the specialised classes have their own distinct
attributes. It is clear from the two principles that any
operation that requires access to the attribute in the
specialised class has to be allocated to the specialised
class. Otherwise, it is likely to be assigned to the
generalised class.

In the second scenario, the specialised classes may not
have their own distinct attributes, i.e. all the attributes
they have are the same as the generalised class. In this
case, the principles discussed here will not apply.
However this limitation of the principles is not a major
problem. Having at least two classes with exactly the
same attributes that behave differently means that
analysts are certain about the purpose of each of the
classes. Therefore, if there is an operation that should
be allocated to one of many such classes, it would be
very obvious to analysts where the operation belongs.

5. Conclusion
It is fair to suggest that the class model is the single
most important model in development of most object­
oriented systems. Despite its overwhelming
importance, class models are treated in a relatively lax
manner by object-oriented methods. This is particularly
true when applied to allocation of operations to classes.
Techniques, guidelines and other forms of instructions

Appendix III - Foundation for Rational Allocation of Class Operations 284

4.1 Principle 1: Concerning the criteria for operation allocated to a class

are often not instructive. The basis of the problem, it
seems, is that there are no hard and clear rules based on
which allocations of operations can be carried out.
There are, however, general principles of object­
oriented paradigm that govern class models. Clear
interpretation and conscious application of those
principles in object collaborations are required. The
experiments here uncover specific principles that
underpin object collaborations espousing the vision of
object-orientation. The first principle deals with the
issue of determining participation of objects in an
object collaboration, and the second more prescriptive
principle deals with the rational basis for distributing
intelligence fairly. The principles are demonstrated in
this paper mainly by using entity and control objects
from a small case study. When criteria of the two
principles are applied, allocation of operations
becomes a rational process; allocated operations are
intelligent, fairly distributed and aesthetically elegant.
This gives rise to the wider hypothesis that these
principles are universal, applicable to any type of
object including interface objects. This is a matter for
further research.

6. REFERENCES
[1] Bellin D. and Simone S. S. The CRC Card Book.

Addison-Wesley, Reading, Mass, 1997.

[2] Bennett S., McRobb S. and Farmer R. Object-oriented
systems analysis and design using UML. McGraw-Hill,
London, 2002.

[3] Booch G., Rumbaugh 1., and Jacobson 1., The Unified
Modeling Language User Guide. Addison-Wesley,
Reading, Mass, 1999.

[4] Date C. J. An Introduction to Database Systems (7th
Edition). Addison Wesley Longman, Inc., 2000.

[5] Derr, K. W., Applying OMT: A Practical Step-by-step
Guide to Using the Object Modeling Technique, SIGS
Books, New York, 1994.

[6] Jacobson 1. et a1. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison­
Wesley, Reading, Mass, 1993.

[7] Jacobson 1., Booch G., Rumbaugh J., The Unified
Software Development Process. Addison-Wesley,
Reading, Mass, 1999.

[8] Maciaszek L. A. Requirements analysis and system
design developing information systems with UML.
Addison-Wesley, Harlow, 2001.

[9] Object Management Group, OMG Unified Modeling
Language Specification version 1.3. Available at
http://www.omg.org

[10] Robinson K. and Berrisford G. Object-oriented SSADM.
Prentice Hall, 1994.

[11] Rumbaugh J. et ai, Object-Oriented Modeling and
Design. Prentice Hall, Englewood ClifTs, 1991.

[12] Rumbaugh 1., Jacobson 1., and Booch G., The Unified
Modeling Language Reference Manual. Addison­
Wesley, Reading, Mass, 1999.

[13] Wilkinson N.

[14] Wirfs-Brock R., Wilkerson B., Wiener L., DeSigning
Object-Oriented Software Englewood. Prentice Hall,
Englewood ClifTs London, 1990.

[15] Yourdon E., Object-Oriented Systems Design: An
Integrated Approach. Prentice-Hall International,
Englewood ClifTs, N.J, 1994.

Appendix III - Foundation for Rational Allocation of Class Operations 285

LibrInfoSys

Appendix IV:

LIBRINFOSYS CASE STUDY

LibrInfoSys is a typical student library with the following key functionality:

.:. Add Book

.:. Add Copy

.:. Register Reader

.:. Search Catalogue

.:. Borrow Book

.:. Return Book

.:. Renew Loan

.:. Reserve Book

.:. Cancel Reservation

.:. Show Reader's current loans

.:. Send Reminder

.:. Update Reader Details

.:. De-register Reader

.:. Remove Book

.:. Remove Copy

The following pages contain a selection ofNA VITA diagrams developed for this
application.

Appendix IV - LibrlnfoSys Case Study 286

LibrlnfoSys

This is the NA VITA Context Diagram for LibrlnfoSys.

-

Reader
[Book] I[]

[Book] I[]
/ [Reader 10] I[] \

//------"==~~\l
[Reader Details] I

[Reader No]

'-- ~ Libra
()

LibrInfoSys

Book
Supplier

[Books] I
[]

Assistant ()
[ISBN, Reader No] I

~ ~BOOk Details] I []

11\

" I [BooklD]/[]

Libra~an I

~eCkdeliVV

Reader

[ReaderlO] I

[Loan Info]

[Res 10] I [Cancel
Confirm]

Appendix IV - LibrlnfoSys Case Study

1
Registry
Database

287

LibrInfoSys

The following is the MFD for LibrInfoSys,

[Search Keywords] /
[Search Results]

J Reader~, ___ ----,,>
-)

[Book, Reader ID]!
[Book-return date stamped,

Reader ID]
Library

Assistant

J [~---'---
Book

Supplier

[Book details] / []

J
Librarian

[Book details] / [Res
Conf]

Reader

[Books] / [J

Librarian
J [R details] / []

[Book details] / []

Appendix IV - LibrInfoSys Case Study

[Completed Reg Form] /
[Reader 10]

[ISBN, Reader No] /
[Loan Confirmation]

Register Reader

[Book details] /~
[]

~ ___ ~) Add Book

[Book details] / ~

'------[-]...:::;. ~

[Book details] / []

288

This is the LFD for Borrow Book functionality unit.

~
Reader

Hand in Book
to borrow & 10

Book &
10

~
Librarian

(Ente\~eader r

J

J

'---,-----'

(Ente~~OOk r
~ ~-,--~

Receive Book
&10

Appendix IV - LibrInfoSys Case Study

Stamp and Rem
Book & 10

LibrInfoSys

D
System

Check
Reader 10

Check Overdue
loans

Check BOOk)

'V

Check status

289

LibrInfoSys

The following is a simple LSL for Register Reader functionality.

Register Reader

Personal Details:

Reader name: ********
Address: ***********

Other Details: ***

Reader JD:

Main entities in the LibrInfoSys, together with their relationships are shown in the
following diagram.

Reader Loan Book

Reader ID 1 Out Date 1 ISBN
Reader Name 0 .. * Out Time Title
Address Due Date 0 .. * Author

Due Time

1 Return Date I
Return Time

Reservation

Reserve Date

0 .. * Valid until 0 .. *

Appendix IV - LibrInfoSys Case Study 290

LibrInfoSys

This diagram captures the dynamic interaction between the user and the system for
Update Reader Details functionality unit.

Borrow Book

~
Reader No
(input)

Reader exists? y ?N
Reader Details

I (output)

~
New Reader
Details (input)

Updated Details
(output)

®

Appendix IV - LibrlnfoSys Case Study

.-.-.... - ~ -.... --.. ---.. ---........... -.-.. -.. - .. -...... -.. ~-_ -··----1
Reader not found I

Reader doesn't !
exist (output) I

[el{---1ry again] I
I

@ [Register reader] J
.............. _-- .. _ ..

I Confirmation l
I

Confirm Update
(output)

[Try again] I ? [else]
I

[OK]
I

@

:,
:

Register
Reader
Screen

291

LibrlnfoSys

This is a protocol analysis for the communication between a boundary component and
a business component for the Reserve Book functionality unit.

Reader /
/

/

/

/
/

/ " "

ReserveBookUI
",-----....

-+0= "
" ,/

doesReaderExis ts (ReaderID)

getReaderDetailsO

anyOverdueLoansO

searchBook(keyword

isMaxResN oLimitReachedO

doesBookExists(BookID)

getBookDetailsO

isBookOnLoanO

............. _,-,..
I

1 y

~
9
~ o
1

ReserveBookO

9 Anymme? -0(

" " " " "
ReserveBook

Try again?

N

getOverdueItemsO

Try again?

N

Jno more items to reserve]

@

Appendix IV - LibrInfoSys Case Study 292

LibrInfoSys

This FEM matrix captures the effects of functionality units on entity classes in
LibrInfoSys.

I: ~
0 .t::

... .~ t ...
Q) i:: 0 0

"0 CI) § ~
>-. ..c: -5 '" en C. -~

Q) 0 i= 0 ~ ~ ~l u
Add Book ILl L3 ILl I L2 L3 I L2

Add Copy L IL

Register Reader I

Search Catalogue R* R* R* R*

Borrow Book RLIM [RM] ILl L2 R RL2 R R

Return Book RC I RMC I R RC2 R R
C2

Renew Loan R RM R R R R

Reserve Book RLI ILl L2 RL2 R R R

Cancel Reservation RC I CI C2 RC2 R R R
D

Show Reader's current R R* R* R* R* R*
loans

Send Reminder R M R R R R

Update Reader Details RM

De-register Reader RC I C2 CI C2
D

Remove Book RC I C3 RCID RC2 C3 RC2D
D D

Remove Copy RC RCD R R

Appendix IV - LihrInfoSys Case Study 293

LibrInfoSys

The following diagram describes the physical architecture of LibrInfoSys application.

Reader Component

Store Reader
Retrieve Reader

Register Reader
Update Reader Details
Deregister Reader
Borrow Book
Return Book

Book Component

Store Title
Retrieve Title

Add Book
Add Copy
Remove Book
Remove Copy
Search Catalogue

Backbone Component

Borrow Book
Boundary

Component

Return Book
Boundary

Component

Library
Assistant

Appendix IV - LibrlnfoSys Case Study

Add Book
Boundary

Component

DBMS Component

Store Reader
Retrieve Reader
Store Title
Retrieve Title

Search Catalogue
Boundary

rnmnnnpnt

Reserve Book
Boundary

rnmnnnpnt

Reader

294

LibrlnfoSys

This is a partial sequence diagram for Reserve Book showing how the backbone,
Reader and Book components communication to realise the functionality unit.

I

Reader ~
Reserve­
BookUI

~
-----------~~

getReservedBooksO ~ ~------~~

------------~
~etReserved­

!Books 0 "-
/'

Back­
bone

Reader
Comp

getReserved­
BooksO

f-----------~"-r--/'

... >~

Appendix IV - LibrlnfoSys Case Study

anyReservation
(lid)
./

"-

IanyReservation
(lid)

"-

getReserv­
Details (lid) *

getReserv -
Details(lid)*

Book
Comp

295

LibrInfoSys

This STD shows the state changes in the Book component caused by various events.

@! Remove, Add Copy
Copy

Return Book

Renew
[RenewalNo<=3]

Not on loan" "-
~--~------~--~~I

On loan

1\

Cancel
Reservation

[NoOfRes=O

Borrow Book ;'

Borrow Book
1\

Cancel
Reservation

[NoOfRes=O

Reserve Book
[different reader]

Held for /'
~~~---=--~-----pickup I' Return Book [ Re,erved~ 

rid 
Cancel Reserve Book 

Reservation [different reader] 
[NoO fRes >01 

Appendix IV - LihrInfoSys Case Study 296 

~--------------------------------------------------------------------------------------- -



A Comparison ofUML Activity-like Diagram and Structured Diagram 

Appendix V: 

1 A COMPARISON OF UML ACTIVITY-LIKE DIAGRAM AND STRUCTURED 
DIAGRAM 

Two relatively simple diagrams can be used to illustrate that UML activity diagrams 
are less cluttered and easier to read than Structured diagrams. The following is a 
UML-activity like diagram used in NA VIT A. The diagram is almost self-explanatory. 

_. __ .... _ .. _--------_._-_ .... _ ...... _------ ----1 Borrow Book 

!< I 

I Reader No I 
I 

(input) I 

I 
I 

! 
ad" exists? r? y N 

Re 

Reader Details 
(output) 

~ -" 

"' 
New Reader I 
Details (input) 

Updated Details ./ 

" (output) 

~ I 
I 
I L._ 

• ••• w ••••••• 

Reader not found 
Reader doesn't 
exist (output) 

[elKry again] 

@ [Register reader] 
••••••• M •••••• _ •••••••••• _ ............................................... _-_ .... - ................... __ .. _ .... 

Confirmation 

Confirm Update 
(output) 

[Try again] 

[OK] ? [else] 

@ 

'" 
Register 
Reader 
Screen 

Appendix V - A Comparison of UML Activity-like Diagram and Structured Diagram 297 



A Comparison ofUML Activity-like Diagram and Structured Diagram 

If the above diagram is converted into a Structured diagram, a diagram such as the 
following one will be necessary. With mUltiple quits and resumes, Structured diagram 
is relatively much more difficult to read than the previous UML Activity-like 
diagram. For this reason, the UML notation was preferred over the Structured one. 

Updated Reader 

Appendix V - A Comparison ofUML Activity-like Diagram and Structured Diagram 298 



Appendix VI: Raw Data From The Repeatability Experiment 

Appendix VI: Raw Data From The Repeatability Experiment 299 



SSADM 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 
Information-Interaction Contextual Models 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 

UML 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 
Information-Interaction Contextual Models 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 
Commentary on comparison 

No of students in the group 

Overall Grade (out of 16) 

Group 1 
DFD 
LDM 
Context Diagram 
EEM, ELH 
None 
None 
None 
ECD, User Role Matrix 
None 

Use Case 
Class Diagram 
Activity 
None 
Sequence and Collaboration Diagrams 
None 
None 
State diagram, activity diagram 
None 

2 or 3 

Same coverage and both equally strong 

Page 300 

Group 2 
DFD 
ER Diagram 
Context Diagram 
ELH,EAM 
10 Structur, Elementary process description 
EAP, Enquiry function definition 
ECD and EAM 
None 
None 

3 3 
3 3 
2 4 
1 1 
2 4 

Use Case 
Class Diagram 
None 
Activity and State Diagrams 
Sequence and Collaboration Diagrams 
None 
None 
None 
None 

1 

31 2 
2 

2 2 
o 0 
2 2 
2 1 or 2 

4 
6 

SSADM has better coverage, UML has no 
interaction global diagram 

2 
6 



SSADM 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 
Information-Interaction Contextual Models 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 

UML 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 

G3 
DFD 
ER 
EAM 
EAM col, ECD 
Entity, events in context diagram 
UPM, entity 
UPM, Entity 
EAP, data store 
None 

Use Case 
Class Diagram 
None 
entities in use case realisation, collaboration diagrm 
entities in collaboration/sequence diagrams, state diagram or activity diagram 
None 
None 
None 

Information-Interaction Contextual Models I None 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 11 or 2 
Commentary on comparison SSADM has better coverage, but UML concepts are advanced 

No of students in the group 

Overall Grade (out of 16) 

Page 301 

3 
2 
4 
1 
4 

G4 
DFD 
LDM 
Context Diagram 
ELH,EAP 
ECD, EEM Column 
None 
None 
None 

,None 

Activity Diagram 
Class Diagram 
State diagram, Use Case diagram 
None 
None 
Sequence and Collaboration diagrams 
None 
None 
None 

3 
3 
1 
1 
3 
2 

2 4 
2 3 
1 2 
1 0 
3 0 

3 
6 

o 
SSADM has good coverage and inter­
model checking. UML Diagrams are 
fragmented 

3 
5 



SSADM 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 
Information-Interaction Contextual Models 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 

UML 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 
Information-Interaction Contextual Models 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 
Commentary on comparison 

No of students in the group 

Overall Grade (out of 16) 

G5 
DFD 
ER 
Context Diagram 
ECDand EAP 
ECDand EAP 
DFD and Context diagram 
DFD and Context diagram 
Context and ER diagrams 
Context and ER diagrams 

2 or 3 

Use Case 
Class Diagram 
Deployment diagram 
Diagram no name 
Sequence and Collaboration diagrams 
Activity Diagram 
None 
None 
None 

1 or 2 
SSADM provides all three global models, context 
diagram is unique. UML has fewer contextual diagrams 

Page 302 

3 
3 
6 

2 
2 

3 
2 
3 
o 
2 

4 
10 

G6 
DFD 
ERD 
Context Diagram and Univesal Functional Model 
EEM column, ELH 
ECDand EAP 
None 
None 
None 

,None 

Use Case 
Class Diagram 
Package Diagram 
Collaboration and Sequence Diagram 
None 
None 
None 
None 

,None 

4 
3 
1 
1 
3 
2 

3 
3 
o 
o 
2 
o 

Both have good number of global models, but UML 
has fewer crosschecks. 

4 
8 



SSADM 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 
Information-Interaction Contextual Models 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 

UML 
Global Process Model 
Global Information Model 
Global Interaction Model 
Information-Process Contextual Models 
Process-Information Contextual Models 
Process-Interaction Contextual Models 
Interaction-Process Contextual Models 
Interaction-Information Contextual Models 
Information-Interaction Contextual Models 
Total Global Models Shown in the matrix 
Acceptable Global Models in the matrix 
Total Abstract Context Models 
Acceptable Abstract Context Models 
Total Detailed Contextual 
Acceptable Detailed Contextual 
Commentary on comparison 

No of students in the group 

Overall Grade (out of 16) 

G7 G8 G9 
DFD DFD DFD 
LDS LDS LDS 
Context Diagram Context Diagram Context Diagram 
EEM column, and ELH ELH? ECDand EAP 
None ELH EEM, LDS-Entity Cross References, ELH 
None 1/0 Structure None 
None None None 
1/0 Structure and ECD None User Role-Function Matrix, 10 Structure 
None None None 

3 3 3 
3 3 3 
2 3 3 
0 1 1 
2 2 3 
0 22 or 3 

Activity Diagram Use Case and Activity Diagram Use Case Diagram 
Class Diagram Class Diagram Class Diagram 
Use Case Diagram None None 
None Sequence and Collaboration diagrams Activity and State Diagrams 
Sequence and Activity Diagrams State and activity diagram Sequence and Collaboration Diagrams 
None None None 
None None None 
State and Collaboration Diagram None None 
None None None 

2 3 2 
1 2 or 3 2 
2 2 2 
1 1 0 
2 2 2 

1 or 2 
No attempt to show comparison, Similar in terms of coverage and consistency UML has fewer contextual diagrams 
only generaly commentary checking, but SSADM is marginally better 

3 3 3 
10 12 9 

Page 303 


	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	000027
	000028
	000029
	000030
	000031
	000032
	000033
	000034
	000035
	000036
	000037
	000038
	000039
	000040
	000041
	000042
	000043
	000044
	000045
	000046
	000047
	000048
	000049
	000050
	000051
	000052
	000053
	000054
	000055
	000056
	000057
	000058
	000059
	000060
	000061
	000062
	000063
	000064
	000065
	000066
	000067
	000068
	000069
	000070
	000071
	000072
	000073
	000074
	000075
	000076
	000077
	000078
	000079
	000080
	000081
	000082
	000083
	000084
	000085
	000086
	000087
	000088
	000089
	000090
	000091
	000092
	000093
	000094
	000095
	000096
	000097
	000098
	000099
	000100
	000101
	000102
	000103
	000104
	000105
	000106
	000107
	000108
	000109
	000110
	000111
	000112
	000113
	000114
	000115
	000116
	000117
	000118
	000119
	000120
	000121
	000122
	000123
	000124
	000125
	000126
	000127
	000128
	000129
	000130
	000131
	000132
	000133
	000134
	000135
	000136
	000137
	000138
	000139
	000140
	000141
	000142
	000143
	000144
	000145
	000146
	000147
	000148
	000149
	000150
	000151
	000152
	000153
	000154
	000155
	000156
	000157
	000158
	000159
	000160
	000161
	000162
	000163
	000164
	000165
	000166
	000167
	000168
	000169
	000170
	000171
	000172
	000173
	000174
	000175
	000176
	000177
	000178
	000179
	000180
	000181
	000182
	000183
	000184
	000185
	000186
	000187
	000188
	000189
	000190
	000191
	000192
	000193
	000194
	000195
	000196
	000197
	000198
	000199
	000200
	000201
	000202
	000203
	000204
	000205
	000206
	000207
	000208
	000209
	000210
	000211
	000212
	000213
	000214
	000215
	000216
	000217
	000218
	000219
	000220
	000221
	000222
	000223
	000224
	000225
	000226
	000227
	000228
	000229
	000230
	000231
	000232
	000233
	000234
	000235
	000236
	000237
	000238
	000239
	000240
	000241
	000242
	000243
	000244
	000245
	000246
	000247
	000248
	000249
	000250
	000251
	000252
	000253
	000254
	000255
	000256
	000257
	000258
	000259
	000260
	000261
	000262
	000263
	000264
	000265
	000266
	000267
	000268
	000269
	000270
	000271
	000272
	000273
	000274
	000275
	000276
	000277
	000278
	000279
	000280
	000281
	000282
	000283
	000284
	000285
	000286
	000287
	000288
	000289
	000290
	000291
	000292
	000293
	000294
	000295
	000296
	000297
	000298
	000299
	000300
	000301
	000302
	000303
	000304
	000305
	000306
	000307
	000308
	000309
	000310
	000311
	000312
	000313
	000314
	000315
	000316
	000317
	000318
	000319
	000320

