
A Neural Network Computer Model

of the Hydrodynamical Flow in the River Medway Estuary

at its Confluence with the River Thames

by

Lyn Hugh Rees

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

London Metropolitan University

Department of Computing, Communications Technology and Mathematics

June 2008

Declaration

The candidate confirms that the work submitted is his

own and that the appropriate credit has been given

where reference has been made to the work of others.

Acknowledgements

I would like to thank my supervisor Prof. Hassan Kazemian for his expert advice and

guidance during this period of study.

I would also like to thank two visiting senior research fellows, London Metropolitan

University - Dr. Brian D'Olier (my second supervisor) for his encouragement during this

period and, Dr. Bryan Johns for his invaluable advice with regards to the hydrodynamics.

Not least but last, to my late wife Carol for her patience during this period prior to her

untimely death in 2003 and to my present wife, Valerie, without whose encouragement this

work would not have been completed.

Abstract

A neural network computer model

of the hydrodynamical flow in the River Medway estuary

at its confluence with the River Thames

A one dimensional, linearized, shallow water model finite difference scheme was developed

to generate data representing both depth averaged velocities and depth fluctuations above or

below the still water level in a river. After applying suitable boundary conditions based on

the theory of characteristics, the model was then tested against another numerical model.

An artificial neural network (ANN) model for both depth and velocity with zero bottom

friction was designed to use as a precursor to a full friction model. The model was

extensively trained and tested over a 600 Km length, using generated data, to obtain

information on the optimum structure of the neural network and various parameters. The

model was then finally trained and validated over a 1200 Km length to avoid the danger of

overfitting.

Using this frictionless model, it was extended to incorporate the effects of bottom friction.

However, it was observed that the ANN was incapable of simulating rapid changes in the

data close to the downstream boundary because of possible conflict between the non-

linearized bottom friction and linearized boundary conditions. To overcome this difficulty,

the standard bipolar activation function was replaced by a modified LeCun activation

function. Subsequently, the neural networks were then re-trained and re-validated.

Prior to applying the ANNs to the confluence of the rivers Thames and Medway, the

networks were tested for their adaptability to a variation of certain parameters. The models

demonstrated good universal approximation capabilities when varying the imposed

velocities, still water depths and friction coefficients.

Apart from minor discrepancies in generated depth and velocity data at the precise juncture

of the two rivers, the networks showed more than adequate performance when simulating

the flow in the two rivers.

Index
Section Page No.

1 Introduction

Himoricalbackground

The Application of Artificial Intelligence

1.2.1 Justification for the use of artificial neural networks

1.3 Aim and objectives of the research

1

3

4

5

5

1.1

1.2

1.4 Outline of the thesis

2 Application of Artificial Intelligence

2.1

2.2

2.3

2.4

2.5

Introduction to artificial neural networks 8

The Brain - the biological neural network 8

Simple Artificial Neuron 10

2.3.1 The input layer of source nodes 11

2.3.2 A set of synapses 11

2.3.3 An adder 11

2.3.4 An activation function 12

2.3.5 Scaling 15

The artificial neural network 15

2.4.1 Neural Network Architectures - Feedforward 16

2.4.2 Neural Network Architectures - Feedback 20

2.4.3 Number of hidden layers 21

2.4.4 Number of neurons in the hidden layer 21

Training the neural network 22

2.5.1 Selection of weights 22

2.5.2 Learning rate 23

2.5.3 Momentum term 23

2.5.4 Local minima 23

2.5.5 Incremental updating 24

Section 11 Page

2.5.6 Epoch based learning 24

2.5.7 Training set 25

2.5.8 Early stopping 25

2.5.9 Hold out 26

2.5.10 Supervised Learning 27

2.5.11 Unsupervised Learning 28

2.6 Advantages and Limitations of neural networks 28

2.6.1 Advantages 29

2.6.2 Limitations 29

2.7 Brief history of neural networks 30

3 The hydraulic model

3.1 Introduction 32

3.2 Previous Research 32

3.2.1 Water Resources and sediment transfer 33

3.2.2 Offshore modelling 34

3.2.3 River/estuaIy modelling 35

3.2.4 Theoretical hydrodynamic applications of

neural networks 39

3.2.5 Hydrodynamic support vector machine applications 39

3.3 Shallow water theory 40

3.4 A simple hydrodynamic model 41

3.5 Finite difference scheme - zero bottom friction model 42

3.5.1 Stability of the finite difference scheme 44

3.5.2 Compatibility of the finite difference scheme 46

3.6 Boundary conditions 48

3.7 Data generation for zero tidal flow 51

3.8 Data generation for flood tide flow 55

3.9 Data generation for ebb tide flow 57

Section 111 Page

3.10 Convergence of the finite difference scheme 58

3.11 Domain analysis extension 59

3.12 Finite difference scheme - bottom friction model 61

3.13 Data generation for the bottom friction model 62

3.14 Conclusion 64

4 Neural network model without bottom friction

4.1 Introduction 66

4.2 Model neural network architecture 66

4.3 Training Schema 69

4.4 Backpropagation algorithm 71

4.5 Application of the backpropagation algorithm 72

4.5.1 Forward pass 72

4.5.2 Backward pass 73

4.6 Error measures 75

4.7 Software programs used in the simulations 77

4.8 Training the depth network (zero bottom friction) 78

4.8.1 Pseudo code of the depth training program 79

4.8.2 Evaluation of the number of neurons in the hidden layer 82

4.8.3 Optimum learning rate and momentum term parameters 87

4.9 Simulation of the depth over 1200 Km 92

4.10 Validation of the depth simulation 96

4.10.1 Pseudo code of the depth validation program 97

4.11 Training the velocity network (zero bottom friction) 100

4.11.1 Optimum learning rate and momentum term parameters 102

4.12 Simulation of the velocity over 1200 Km 103

4.13 Validation of the velocity network 107

4.14 Comparison with other models 109

4.14.1 Comparison with the training results 110

Section IV Page

4.14.2 Comparison with the validation results 112

4.15 Conclusion 113

5 Neural network model with bottom friction

5.1 Introduction 115

5.2 Training and validating the network with bottom friction 116

5.2.1 Training the depth network 116

5.2.2 Training the velocity network 117

5.2.3 Validation of the depth network 118

5.2.4 Validation of the velocity network 120

5.3 A change of architecture 121

5.3.1 A change to the hidden layer 121

5.3.2 A change of activation function 123

5.4 Re-training and validation of the networks 125

5.4.1 Training the depth network 125

5.4.2 Training the velocity network 128

5.4.3 Validating the depth network 131

5.4.4 Comparison with standard bipolar activation 132

5.4.5 Finalized weights of the depth network 132

5.4.6 Validating the velocity network 133

5.4.7 Comparison with the standard bipolar activation 134

5.4.8 Finalized weights of the velocity network 135

5.5 Testing the networks with different parameters 135

5.5.1 Variation of the still water depth 135

5.5.2 Variation of the coefficient of bottom friction 139

5.5.3 Variation of the downstream (estuarine) velocity 144

5.5.4 Variation of the upstream velocity 147

5.5.5 Variation of both upstream and downstream velocities 152

Section v Page

5.6 Application to the confluence of the Rivers Thames

and Medway

5.6.1 River Thames

5.6.2 River Medway

Conclusion

157
159
169
1755.7

6 Conclusion

6.1 Discussion

6.2 Results

References

Appendix A Nomenclature

Appendix B Finite Differences

Appendix C Computer code

Appendix D Support Vector Machines

Appendix E History of the River Thames

Appendix F Map of the rivers Thames and Medway confluence

178
184
185
194

195
198
229

238

242

1

Chapter 1
Introduction

1.1 Historical Background

Since the estimation of river flows can assist in water management, protection from water

shortages and flood discharges, such studies can have significant economic impact and the

importance of such knowledge was realized by the inhabitants around rivers in early times.

From earliest history, the recording by certain societies of river levels has been taking place

and in fact according to Atiya et.al. [7], there are records of the flow level of the River Nile

dating back to as far as 3000 B.C. Certainly inmodem times, of all of the forecasting type of

problems that have interested scientists, river flow is one of the earliest to have been

considered.

As a consequence of many natural phenomena, surface water hydrographs (flow rate or flow

discharge against time) of rivers exhibit large variations so that a common approach for

interpreting and extending a stream flow record is to fit the observed data with some form of

deterministic or statistical model. However, such models may not necessarily represent the

flow process adequately, since such models are based on many simplifying assumptions

about the physical processes that influence river flows.

Since dendritic (tree like) river systems are rather complex, the modelling of these systems

has at present, involved both rainfall-runoff and river flow routing simulations. Of the

conventional river routing models that have been developed, most are SISO models (single

input - single output, i.e. one input from the upstream and one output from the downstream).

Examples are the hydraulic river routing model derived from the St. Venant equations,

Mujumdar [SI] and hydrological models such as the Muskingum model, Chadwick and

Morfett [19]. Unlike their hydraulic counterparts, hydrological routing models not being

distributed models, frequently lack the flexibility to predict flows at multiple ungauged sites

along a river. Hence, to develop a model for dendritic river systems that are essentially

Chapter 1 2 Introduction

MISO in nature (multiple input - single output), rainfall-runoff models need to be integrated

with hydraulic routing models.

Unfortunately, to develop such integrated models, a large amount of data from numerous

sites along the river reaches is needed to provide sufficient representation of the hydraulic

characteristics that may change over the length of the river. This is both time consuming and

expensive, so that some recent research has focussed on establishing linear MISO models.

MISO models can generally be expressed in terms of two explicit characters: One

pammeter, referred to as a cascade character, represents different hydrographs at sepamte

cascade points along the river, and a second parameter that describes the multiple inputs. As

previously mentioned, a hydrograph is a time record of discharges of rivers or watershed

outlets, the main input to a watershed being typically rainfall whilst output is the

streamflow. Thus a hydrograph is a time representation of how a watershed responds to

rainfall.

However, these models are all linear models and hence when operated in real time, the

responses (the watershed output response to rainfall) tend to become unstable. That is, the

predicted model discharges (the flow rates) are inconsistent with the actual measured

values. Consequently, current research is focussing on developing a non-linear modelling

methodology to represent the dendritic river systems that are by their very nature, highly

non-linear and non-stationary. In fact, much research on these problems has been conducted

at the University of Bristol by various researchers such as Hammond and Han [39], Han et.

al. [41] and Yang and Han [110].

The practice of rainfall-runoff modelling, Chadwick and Morfett [19], was in essence the

result of the availability of extended records of rainfall and other climatic data, from which

stream flow data could be obtained. Whilst physically-based (or conceptual) models may be

important to understand the underlying hydrological processes, in many situations where the

primary concern is to be able to make accurate predictions at specific locations without

necessarily understanding these processes, machine learning models can be utilized. In other

words, a 'black box' approach can be used.

Chapter 1 3 Introduction

1.2. The Application of Artificial Intelligence

The method of river flow forecasting has traditionally been addressed using techniques such

as nonlinear regression, Kachroo et. al. [56] and Kachroo et. al. [55] or computer models

involving approximation techniques such as finite differences, Lin and Falconer [66].

However, artificial neural networks (ANNs) have the advantage of being able to use field

data directly without any simplification, unlike regression analysis wherein some

assumption has to be made a prior} as to the form of the equation. Further, neural networks

are capable of executing parallel computations and can simulate non-linear systems (a

common feature of hydrodynamic problems) that are difficult to describe using traditional

modelling methods.

Although ANNs have been in existence for approximately sixty years, McCulloch and Pitts

[77], it is only in the last two decades that there has been a resurgence of interest in them.

ANNs are in essence an attempt to replicate in a computerised manner the way the human

brain solves complex problems. They have been applied successfully to pattern recognition,

optical character recognition, voice recognition, petroleum surveys, short term rainfall

forecasting, waste water treatment of toxic chemicals, signal processing, oceanographic,

Agrawal and Deo [3], hydrodynamic, Dibike and Abbott [27], hydrological, Cigizoglu [23]

hydraulic engineering, Sonnenborg [98], and statistical problems such as non-linear

regression and time series analysis.

Most ANNs used in forecasting are of the multilayer network type trained using the

backpropagation algorithm, and this is certainly true for river flow forecasting. In addition,

in this particular field of interest, many of the models only give a one-day ahead forecast

which is simpler to calculate but less useful than a ten-day ahead or one-month ahead

forecast.

Atiya et. al. [7], observed (at least at the time of publication), that there seemed to be only

one application of neural networks related to the problem of river flow forecasting, namely,

that for the Huron River in Michigan, Karunanithi [57]. A literature research by this

researcher has found only four papers explicitly dealing with river flow modelling using

neural networks, prior to the publication of their paper, namely Dibike and Abbott [27],

Chapter i 4 introduction

Karunanithi et. al. [57], Thirumalaiah and Deo [101] and Zealand et. al. [111]. However, in

the last decade, the application of neural networks to this field has proliferated, there being,

discounting any related to support vector machines (SVMs), at least nineteen published

papers since that of Atiya. Additionally, it would appear that the application of support

vector machines (a new tool from the Artificial Intelligence Field) to this type of problem is

at the same stage that neural networks were a decade ago, since the same literature research

has so far revealed only two applications of support vectors to river flow forecasting. ANNs

are discussed in Chapter 2 whilst SVMs (since they are not employed within this research)

are instead dealt with briefly in appendix D for possible use by other researchers.

From the literature surveyed so far, it would appear that traditional computer techniques are

prone to difficulties when trying to model multiple input flows with a single output flow.

This is almost exactly (ignoring tidal reversal flows) the type of regime that is the subject of

this research, since the Thames-Medway confluence is a multiple input site. The situation is

complicated even further if tidal reversal is included since the MISO scenario oscillates

between MISO and SIMO (single input - multiple output). Hence, it is proposed to use the

techniques of ANNs to develop a computer model of this area. Unfortunately, as there is

little available observed data in this region, it is proposed to first develop a suitable one-

dimensional finite difference scheme based on the shallow water theory. From this, artificial

data will be generated which will then be used to train a suitable neural network. Most

importantly, to ensure the data and models are as realistic as possible, the effects of bottom

friction will be included. To this researcher's knowledge, the inclusion of such effects in a

neural network model as described in particular in Chapter 5, has not been performed

before. A detailed summary of work conducted by researchers in this particular field of

hydrodynamics is included at the beginning of Chapter 3.

1.2.1 JustifICation for the use of artificial neural networks

As has been described, river modelling has to overcome difficulties from sources such as:

• Lack of complete measured data or incomplete data

• Very complicated hydrodynamical equations to be modelled analytically

• Multiple input - single output and single input - multiple output flows

Chapter 1 5 Introduction

• Inability to model these hydrodynamical equations particularly where turbulence is

involved without some form of averaging of the measured quantities with hence an

attendant loss of accuracy.

Since neural networks can simulate directly from the given data, without any a priori

equations, they can overcome most if not all of these difficulties.

1.3. Aim and objectives of the research

The aim is to develop an artificial neural network (ANN) incorporating bottom friction to

model flow parameters such as velocity and depth in the area of confluence of the rivers

Thames and Medway. To achieve this, the research has the following objectives to pursue:

1. Develop a finite difference model based on the one dimensional shallow water

equations to generate data to use for training and testing of the ANN.

2. Develop and test different ANNs with zero bottom friction to obtain information on

the optimum network structure and parameters.

3. Using the zero bottom friction model as a template, extend the network to include

the effects of bottom friction.

4. Test the universal approximation capabilities of this bottom friction model with a

variation in the values of the upstream and downstream imposed velocities, still

water depth and coefficient of bottom friction.

5. Finally, apply this model to the confluence of the rivers Thames and Medway.

1.4. Outline of the thesis

In Chapter 2 the fundamentals of neural networks are discussed in preparation for their use

in Chapters 4 and 5. A description of a simple artificial neuron and its analogy with the

biological network is provided. Activation functions and various types of neural network

architecture are described, followed by a discussion of the various methods of training the

network. The advantages and limitations as well as the history of neural networks are

perused.

Chapter 3 essentially focuses on the development of two finite difference schemes, one

without bottom friction and the other with it. An introduction to shallow water theory is

given from which the finite difference equations can be developed. Stability, convergence

Chapter i 6 introduction

and compatibility of these equations are analysed and the necessary boundary conditions are

discussed. The generation of artificial data for both models, with and without bottom

friction, is developed and discussed extensively.

Chapter 4 consists of a discussion of the development of a neural network to model the

river flow where there is zero bottom friction. A description of the chosen network

architecture and the reasons for this choice are described extensively. The backpropogation

algorithm is the selected method of training and reasons for this selection are discussed

therein. The algorithm is described in detail. Two networks are actually developed since

both the depth and velocity of flow need to be modelled. After discussing several measures

of error, training of the depth network is described. This involved evaluating the optimal

parameters such as the number of hidden neurons as well as the learning rate and

momentum terms, A similar procedure was used to evaluate these parameters for the

velocity network. Both networks were trained over an artificial 1200 Km length of river of

fixed depth in ebb tide mode. The networks were then validated using (unseen) flood tide

data. Finally, the chapter concludes with a comparison of the two networks with the

numerical models of another researcher, Johns [51].

Chapter S is concerned with probably the most important objective of this research. It

describes, to this researcher's knowledge a completely novel use of neural networks. That is,

the development of a neural network model for both depth and velocity, but unlike the

previous chapter, to include the effects of bottom friction. For consistency, the procedure

followed that of the zero friction model with training performed over 1200 Km in an ebb

tide regime. This was followed by validation using generated flood tide data. It was

observed that the model displayed inadequate performance near to the estuarine boundary as

a consequence of the nonlinear bottom friction effects. A re-appraisal of the architecture and

parameters was conducted resulting in the application of an alternative activation function,

in this case, a novel use of the LeCun activation, LeCun [64], LeCun [63] and LeCun et. al.

[65]. The networks were then re-trained and re-validated and compared against the results

obtained using the original standard bipolar activation function. Having finalized the

models, comparisons were then made between variations of the different flow parameters to

Chapter 1 7 Introduction

evaluate the performance of the two finalized networks. Finally, the research focussed on

the application of these two models to the area encompassing the confluence of the rivers

Thames and Medway.

Chapter 6 is a discussion of the results and conclusions with recommendations as to

possible avenues of further research. It is noted that objectives 1 to 4 were achieved

satisfactorily. Objective 5 was partially successful in that there were some minor

discrepancies in the generated data at the juncture of the two rivers. This apart, the actual

neural network simulations themselves were successful.

Several appendices follow:

Appendix A is a listing (nomenclature) of the various terms used throughout the thesis.

Appendix B is a mathematical description of the finite difference schemes involved.

Appendix C is a complete listing of the code of the various neural network programs.

Appendix D contains a description of support vector machines that may prove useful for

other researchers following this avenue of investigation.

Appendix E is a description of the ThameslMedway confluence as well as a brief history of

its formation.

Appendix F is a detailed plan of the area showing the bathymetry of the area of confluence.

8

Chapter 2
Application of Artificial Intelligence

2.1 Introduction to Artificial Neural Networks

This chapter is essentially a description of the fundamentals of artificial neural networks

(ANNs). The development of neural networks has its roots in the study of the human brain

and as a consequence, many of the technical terms have biological equivalents. It was

intended that these computational structures would emulate the brain so that tasks at which

brain was very efficient at processing, the neural network should be able to exhibit similar

capability. Conversely, any processing tasks that the brain could not do very well, a neural

network should likewise perform poorly on them. To differentiate between the biological

and the artificial (computing) networks, the latter are often referred to as artificial neural

networks, neurocomputers or connectionist networks. To put this into perspective, a brief

discussion follows on the human brain and its artificial counterpart.

2.2 The Brain - the biological neural network

The brain consists of approximately 1010 neurons (nerve cells) and an estimated 6xlO13

neural connections since each neuron may have on average, connections with up to about

104 different neurons. It is a highly complex, non-linear parallel computing system with the

ability to reorganize its structural components (the neurons) to perform certain computations

many times faster than existing digital computers. Such examples are pattern recognition

(human vision) and analogue signal analysis (bat sonar).

At birth, the brain is structured with the ability to build its own 'rules', that is to learn

through experience, with the most significant development taking place in the first two

years. A property called 'Plasticity', Haykin [43], permits the development of the nervous

system to adapt to its environment. In the brain, the neurons are the information processing

units. Fig.2.1 that follows, is a simplistic representation of a biological neuron (nerve ceil).

Chapter 2 9 Artificial Intelligence

Figure 2.1:Biological Neuron

Inbound neuron connections are called dendrites whilst the outbound ones are called axons.

Where the axon of one neuron connects with the dendrite of another neuron there is a small

biochemical 'connection' called a synapse. When electrical signals travelling down the

axons arrive at the synapse they are converted to chemicals. Much like a capacitor in

electrical systems, the biochemical level represents the desire to fire, i.e. 'excitation', (the

opposite being referred to as 'inhibition') on the neurons that follow.

When this level reaches a certain point (from the sum of all the other incoming

connections), the neuron converts these chemicals at the synapse into one big electrical

pulse (sometimes referred to as action potentials or spikes) and fires it down its axons. This

pulse is then converted to chemicals at the other neurons' synapses and in this way, the cycle

continues. Interestingly, as opposed to firing continuous signals of varying strength over

short or long periods of time, the neuron sends a pulse and resets the synapse. Since there is

a mesh of interconnected neurons, this results in a storm of firing neurons that continues all

the time. This is referred to as 'brain activity'.

If each neuron is regarded as a switch or microprocessor, the brain is quite slow in

comparison to a modem computer. Neurons fire about once every 60th or 70th of a second,

whereas silicon based devices work at speeds in orders of nanoseconds. However, it is the

massive parallelism of the brain that enables it to compete with the silicon microprocessor,

at least for the moment. Further, the brain has some key self-modifying abilities that are

Chapter 2 10 Artificial Intelligence

difficult to replicate in a computer. New connections are continuously being made and

broken between the neurons, a process that is often referred to as self modification (or

'learning'). This ability also gives rise to the property of 'fault tolerance' wherein nearby

neurons can take over the duties of a damaged neuron. Although there are many definitions

of an artificial neural network, one of the most well known is that attributed to Haykin [43]:

HA neural network is a massively parallel distributed processor made up of simple

processing units, which has a natural propensity for storing experiential knowledge and

making it available for use. It resembles the brain in two respects: Knowledge is acquired

by the network from its environment through a learning process. Interneuron connection

strengths, known as synaptic weights, are used 10 store the acquired knowledge. "

Biolo2ical - the brain Artificial Neural Network
Soma (nerve cell or neuron) Node
Dendrite Input
Axon Output
Synapse Weight
Slow speed Fast Speed
Many Neurons (thousands of millions) Few neurons (up to hundreds of thousands)

Table 2. I: relationship between the brain and an artificial neural network.

2.3 Simple Artificial Neuron

An artificial neuron can be linear or non-linear the latter property being needed if the

physical phenomena to be modelled are non-linear (e.g. speech).

r-----, QApJ
netk Pc:INIIial Y k

j--__:;_--+I tirdkrI <p

XO=+1

Wtk

•
•
•
•

Figure 2.2: Artificial Neuron

Chapter 2 11 Artificial Intelligence

Fig. 2.2 is a representation of a simple non-linear model of an artificial neuron and depicts

four basic elements:

2.3.1 The input layer of source nodes

This is the raw data and if it is not digital, but analogue input such as text, sound or

graphics, it will need to be pre-processed first into digital (numeric) equivalent form

generally in the format of binary numbers. In figure 2.2, Xn is the input signal associated

with the nth synapse for a particular neuron, in this case the kthneuron.

2.3.2 A set of synapses (connecting lines)

Each has a corresponding weight (strength) of its own. Here the weight Wnk refers to the

weight for the x, input to the kth neuron. These weights may be modified during training

according to the ANN's specific topology or learning rules. It should be noted from figure

2.2, that there is a weight Woknown as the 'bias' that is applied to the input xo, the latter

being always = +1. This bias unit x, is optional but it has the effect of lowering or increasing

the net input of the activation function dependant upon whether the net input is positive or

negative respectively and so sometimes helps the network to converge to an acceptable level

of accuracy.

2.3.3 An adder (or summation function)

Sometimes referred to as a linear combiner, this function sums the weighted inputs. For

example, with a value of always +1 for the input x, and some bias wo, then the net input to

the kthneuron
n

net, = Wo+ LWikx;
;cl

(2.1)

can be written more succinctly as
n

net, =L Wik x,
;=0

(2.2)

It should be noted that this simple summation function may well be more complex

dependant on the nature of the network architecture and paradigm. In addition to basic

product sums, this function may well involve the use of minimum, maximum, majority,

average, normalized or Boolean logic values.

Chapter 2 12 Artificial Intelligence

2.3.4 An activation function

Frequently referred to as a squashing function or transfer function, Haykin [43], here the

result of the summation function determines the activation level of the neuron and

dependant upon the latter, whether or not the neuron produces an output. It should be noted

that this dependency may be linear or non-linear. The purpose of the activation function is to

limit the amplitude of the output to within a certain reasonable range, usually [0,1] or [-1,1],

a necessity if the output is passed on to another neuron in the network. There are many types

of activation (transfer) functions in use, the most frequently used ones being:

Threshold Function

{
I if nett ~O

Yk = ¢(netk) = .o if nett < 0
(2.3)

which is essentially a Heaveside type function, Abramowitz and Stegun [2], where Yk is the

output of neuron k, ¢ is the activation function and netk is the weighted sum of the inputs.

rp(netk)

1

net;

Figure 2.3:Threshold Function

Sigmoid Functions

An'S' shaped curve with minimum and maximum values at the asymptotes, it can be

represented by the logistic function:
1

Yt=rp(netk)= ,
1+ exp(-Dx nett)

r, E [0,1] (2.4)

Chapter 2 13 Artificial Intelligence

0.2 sigmoid acIMIIton function

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1

·5 o 5

Figure 2.4: Sigmoid Function

where usually D = 1.

Tanh Function (or hyperbolic function or bipolar sigmoid function)

2
Yk =rp(netk)= -1,

1+ exp(-2 x netk)
Yk E[-I,l] (2.5)

which has a similar S shaped graph to the sigmoid. The outputs are centred around zero

which some researchers have noted results in faster training due to the better numerical

conditioning, Sarle [92].

0.8

0.6

0.4

0.2

o
-0.2

-0.4

-0.6

-0.8

(
/

I
,I
;

) tanh activation function

-5 o 5

Figure 2.5: Tanh Function

Gaussian Function

Yk =rp(netk)=exp(-(netk)2), Yk E(O,I], net, E(-«>,OO) (2.6)

Chapter 2 14 Artificial Intelligence

Other sigmoid functions
netk

Yk = 1+ Inetk I'
netk 05

Yk = 2(1+lnet
k
l) + . ,

YkE[-l,l]

(2.7)
Yk E [0,1]

Sarle [92], both of which are quick to compute but approach the extreme (target) values

slowly.

Linear Activation Function

y v Dx (2.8)
This is sometimes referred to as the identity activation function.

When the inputs are signals that could be represented by a Fourier series, Picton [85] notes

that some researchers have claimed improved performance if the transfer function is

replaced by a trigonometric one such as sin(x) or tan(x). In regression problems where the

output is attempting to match a real number rather than a yes/no decision as in classification

problems, the transfer function is often a linear one since this is purported to model the

system better.

Picton [85] further notes that if the inputs could be represented by a Fourier series, a

possible candidate for an activation function could be sin(x). The primary purpose of

activation functions, in contrast to linear transfer functions, for the hidden units (discussed

later) is to introduce a non-linearity into the neural network. A neural network without any

non-linearity is representative of simple, weak perceptrons that contain just inputs and

outputs. He [Picton] also further comments that any non-linear function (except those of

polynomial form) will suffice for backpropagation (discussed fully in Chapter 4) provided it

is differentiable and preferably bounded. Picton also adds that some authors have suggested

that arctan might be better than tanh. Thus, if a non-linear property such as bottom stress

(the subject of Chapter 5) is to be modelled, then a network using the identity activation

function will not be suitable.

Chapter 2 15 Artificial Intelligence

2.3.5 Scaling

It should be noted that if the raw data (be it input, target or both) needs to be scaled to fit the

range of the activation functions, then the following formulae can be used:

x, = x, - 0t (x-: + Xi") such that x, E [-1,1 J for the bipolar sigmoid
0.5 Xmax xmin

(2.9)

or

Xs = (X; - :min) where x s E [0,1] for the sigmoid
Xmax xmin

(2.10)

and x.,», are the scaled and unsealed values of the raw data respectively, whilst

Xmax' xmin are the maximum and minimum values of these sets of raw data. The formulae can

be 'inverted' to rescale the data back to the original values after training. However, in many

cases such as a multilayer perceptron (MLP) where the input data are combined linearly,

theoretically at least, Sarle [92], it is not strictly necessary to do so.

2.4 The Artificial Neural Network

Artificial Neural Networks (ANN) are software programs (or sometimes dedicated firmware

burnt into a silicon chip) that attempt to allow the computer to emulate the process by which

the human brain stores and recalls information. Not surprisingly then, the software system

consists of many thousands of (or even millions of) neurons (data cells or nodes) that, when

an input stimulus is received, send output signals to the nodes to which they are connected.

Each connection has a value, or weight, which determines the 'strength' of the signal sent to

a receiving node. When several nodes are stimulated simultaneously, the learning

algorithms are able to modify the weight values accordingly. Neural networks can be

classified in terms of type based on the following:

Learning Methods

• Supervised

• Unsupervised

Connection Type

• Feedforward (sometimes referred to as static)

Chapter 2 16 Artificial Intelligence

• Feedback (sometimes referred to as dynamic)

Topology (architecture)

• Single layer

• Multilayer

• Recurrent

• Self-Organized (SOM)

Applications

• Classification

• Function approximation

• Prediction

2.4.1 Neural Network Architectures - Feedforward

Each ANN is a collection (clustering) of artificial neurons (the processing elements)

grouped in layers as depicted in fig. 2.6. This is an example of a single layer network so

called because the single layer refers to the output layer of neurons depicted by the hollow

circles and not the source nodes (solid circles). It is within the hidden (where they exist) and

output layers that the computation is performed, Throughout the rest of this chapter, the

convention is that the nodes/layers where computation is performed will be represented by

hollow circles in the figures that follow.

Figure 2.6: Single layer feedforward network

Chapter2 17 Artificial Intelligence

Unlike the single layer network above, it is more usual to have a hidden layer in the

architecture such as in fig. 2.7 that follows, Gurney [38]:

XI

>Cl, VI = irp,m
Wi,W=VIoEigm
L=Sl.I'1TTIIIIIon flrdion = LVIM

lC!

Figure 2. 7: Multilayer feedforward network

The example shown, a multilayered network, depicts an ANN with one hidden layer and so

would sometimes be referred to here as a 7-3-1 network. Unfortunately, this can be

ambiguous as some authors refer to the weights as layers. To avoid ambiguity, it is better to

refer to this example as an ANN with one hidden layer. There are three main layers in this

example: the input layer, the intermediate (or hidden) layer and the output layer. This is a

typical example of the multilayered perceptron (MLP). The addition of a hidden layer(s)

enables the network to extract higher-order statistics and is particularly important when the

size of the input layer is very large, Sarle [92].

Different architectures have different numbers of neurons in both the input and output layers

from the example shown above and further, may have more than one hidden layer (fig. 2.8),

Gurney [38]. Usually though, one hidden layer is sufficient (see Section 2.4.3).

Chapter 2 18 Artificial Intelligence

Figure 2.8: Feedforward network with two hidden layers

To complicate matters even further, some architectures do not have full connectivity as

shown in fig. 2.9, Gurney [38]. In this example, three of the input neurons are not connected

to all of the nodes in the hidden layer. This might occur where the designer has some a

priori knowledge of the problem domain.

Xi. Y1 .. 1rfUB
Wj. W=1MIIItD
L= 8I.IT1T1Iticn fI.rdicn *'LWVi

Figure 2.9: Network notfully connected

A final complication is that the network might be non-layered (where one or more input

neurons bypass the hidden nodes and connect directly to the output layer), Gurney [38].

Chapter2 19 Artificial Intelligence

Xi. Vi = il1US
Wi. VIA: VII!IistU
L=SU'lT1'1ltial flrdion =LWYi

Figure 2.10: Non-layered network

This is exemplified in fig. 2.10 above where two of the input neurons not only connect to

some of the hidden nodes but also have direct connections to the output node. All of the

architectures so described, figs. 2.6 to 2.10, are examples of 'feedforward' structures in that

they do not have any loop back mechanism to the input layer, in other words, neuron outputs

are always fed forward to subsequent layers. There are two main classes of single layer

feedforward networks, namely Rosenblatt's [90] perceptron and Widrowand Hoff's [109]

adaptive filters. The former is based on the non-linear neuron model of McCulloch and Pitts

[77] and is ideal for pattern classification whilst Widrow and Hoff's model (using the LMS

algorithm) has been applied in fields such as communications, radar and seismology.

Feedforward networks are useful for solving pattern recognition, classification and

generalization problems such as for example, quality control and loan evaluation. Examples

of this type of network are: single layer perceptrons, multilayer perceptrons, radial basis

functions, support vector machines, committee machines and stochastic machines. Radial

basis function networks are non-linear layered networks that are particularly useful for

solving multivariate statistical interpolation and complex pattern recognition problems.

Examples of stochastic machines are Boltzmann and Helmholtz machines whilst Committee

Chapter 2 20 Artificial Intelligence

machines are based on the 'divide and conquer' principle with complex tasks being split up

into smaller ones before applying a neural network solution to it.

Typical algorithms used for training purposes of feedforward networks are backpropagation,

Madeline III and Least Mean Squares, Sarle [92]. The backpropagation algorithm is

discussed more fully in Chapter 4.

2.4.2 Neural Network Architectures - Feedback

In contrast to the previous section (cf. Section 2.4.1), fig. 2.11 that follows is an example of

a feedback (or recurrent) architecture, Callan [17] and Skapura [96], where at least one or

more output nodes has a direct feedback to one or more input nodes. It is implemented using

a time step delay procedure as represented by the Z-I notation in the figure.

t

Figure 2.11: Recurrent network

Recurrent networks are useful for solving dynamic time dependent problems such as sales

forecasting, and process analysis, examples of this type of network being Hopfield Nets and

Recurrent Multilayer Perceptrons. Typical algorithms used for training purposes of recurrent

networks are: backpropagation through time, true time and real time recurrent learning.

Chapter2 21 Artificial Intelligence

2.4.3 Number of hidden layers

Kolmogrov's Existence Theorem, Lippmann [67], provides a useful guide to the required

number of hidden layers, that effectively states that any three-layer network with n(2n+ 1)

nodes where n is the number of nodes in the input layer, should suffice. This was further

supported by the work of Lapedes and Farber [62], who argued that no more than two

hidden layers were necessary, although they did qualify this argument by indicating that this

would not necessarily be the most efficient arrangement. However, two hidden layers can

lead to more problems with local minima. Further research, Hornik [45], supports the

argument that only three layers are needed. It provided a theoretical proof that three layer

perceptrons with a sigmoid output function are universal approximators, the accuracy of the

approximation being dependant on the number of neurons in the hidden layer.

2.4.4 Number of neurons in the hidden layer

Although there are no specific formulae for the determination of the number of required

hidden units, the number is often obtained by experimentation. Some researchers have used

the guideline that if n is the number of input neurons and m the number in the output layer,

then the required number is Jnm . Other researchers have used the guide InM where M is

the number of different input patterns. Needless to say, too few hidden units and the

network will fail to train correctly due to underfitting, that is, the network is insufficiently

complex for the problem at hand, whilst too many hidden units and the network will fail to

generalize (it tends to memorize). In other words, it is suffering from overfilling. Too many

units also of course lead to increased computational effort. However, it is possible to

remove superfluous units by examining the weight changes during the course of training.

Two or more inputs usually require more than one hidden units to realize a fit to a wider

spectrum of functions.

Chapter2 22 Artificial Intelligence

2.S Training the neural network

As to the required number of patterns for training, there is no rigorous rule. However,

various researchers, Sarle [92], use the following guidelines:

• Number of training patterns should be greater than ten times the number of inputs

• Number of training patterns should be greater than thirty times the number of

weights

Once a network structure has been designed for a particular application, the learning process

or training can be implemented. This essentially consists of three main parts:

• compute the outputs

• compare the outputs with the desired target values

• adjust the weights and repeat the process

Learning algorithms are used to modify these weights in an orderly fashion to achieve a

desired objective of 'accuracy'. At present there are more than a hundred learning

algorithms available for different network configurations and applications, the learning

process itself being classified as supervised or unsupervised. One of the most widely used

algorithms for training a multilayer perceptron is the 'Backpropagation algorithm' (or

Generalized Delta Rule), which as previously mentioned, will be employed in Chapter 4.

The backpropagation algorithm, Haykin [43], Picton [85], Tarassenko [99] et. al., being

essentially a gradient descent process wherein the weights are adjusted in a particular way,

uses two parameters called the learning rate and momentum term, the latter being optional.

After learning is complete, testing takes place and is a typical 'black box' scenario usually

with results better than 70% accuracy. If the accuracy is insufficient, the network can be

retrained or quickly reorganized.

2.5.1 Selection of weights

There are no fixed rules for choosing the weights. However, if a training algorithm such as

backpropagation is used, the initial weights should ideally be chosen randomly. This is

because the magnitude of the errors backpropagated are proportional to these weights and as

Chapter2 23 Artificial Intelligence

such the weights would be updated by the same amount. Further, to avoid saturation of the

activation function, the initial weights should be distributed within a small range of values.

2.5.2 Learning Rate
The learning rate parameter " controls the amount by which the weights are updated during

each backwards pass of the backpropagation cycle. The value of this parameter determines

the speed of convergence to a solution but if not chosen wisely, there is a possible tendency

for the training to become entrapped in local minima. There being no precise formula for the

optimum value of this parameter, it depends on the particular problem at hand and is usually

obtained by experimentation. Where these minima are broad, indicated by small gradient

values, then larger values of this parameter lead to faster convergence. However, when these

minima are narrow, indicated by large gradient values, smaller values need to be chosen to

avoid overshooting the solution and becoming trapped in local minima. Unfortunately, this

latter argument results in more computational effort. Sometimes, researchers begin with a

chosen value for the parameter and increase it or decrease it (as in stochastic approximation

or adaptive learning), Sarle [92], carefully as the training progresses. Frequently, values

between [0.001, 10] are chosen but more usually between [0.01, 1]. Some researchers use

n « _1_ where n :: no. of input neurons and when the bi-polar sigmoid is used, the value
n+l

of the training parameter can be doubled, Picton [85].

2.5.3 Momentum Term
The function of the (optional) momentum parameter a, which usually E [0.1,0.8], is to aid

the convergence of the backpropagation algorithm. It uses a fraction of the most recent

weight adjustment and tends to keep the weight changes going in the same direction as well

as smoothing out the gradient descent path. This prevents wild oscillations about the error

surface.

2.5.4 Local Minima

One of the difficulties inherent in training a network using backpropagation is, as previously

noted, the propensity to get 'trapped' in local minima. A two dimensional error surface with

one local minimum, is shown below in the following figure:

Chapter 2 24 Artificial Intelligence

1c::x3

90tBI
nirinunera

sufaoe

Figure 2.12: Error Surface

As the backpropagation network (BPN) is a pure gradient descent process, the error signal

can easily become trapped in the local minimum, since only steps with a negative gradient

can be taken on the error surface. This can sometimes be remedied by using a different

learning parameter, a different momentum term (if present) and/or repeating the training

with different random weights. The latter option is equivalent to starting the network at a

different point on the error surface.

Dependant upon the problem being considered and the available data, training of the

network can take place using two different strategies:

2.5.5 Incremental Updating

In this method, weight adjustments are made after the presentation of each single pattern

with the patterns themselves being chosen randomly from the training set.

2.5.6 Epoch based learning

In this alternative strategy, sometimes referred to as 'cumulative weight adjustment', the

complete set of training patterns are presented to the network, an average error calculated

from this and then weight adjustments made accordingly. Although computationally more

efficient, it is more susceptible to the problems of local minima. It is also more demanding

of computer resources.

Chapter 2 25 Artificial Intelligence

2.5.7 Training Set

Whilst training, the error (referred to as the error function) between the actual and desired

(target) outputs is measured with the aim of reducing this error to an acceptably low level by

adjusting the weights. Once training has 'finished', the network is presented with the test set

comprising data it has never seen before and its performance measured. It has been observed

that a neural network never performs on a test set as well as it did on the training set, a

phenomenon know as 'over-training' wherein the network is said to have overfitted the

training data. It is classifying the training set very well but classifying the test set rather

poorly. In other words, it is not generalizing very well.

2.5.8 Early Stopping

This problem of 'overfitting' can be overcome by splitting the original data set into three

parts rather than two as mentioned above (cf. Section 2.5.7). The training set is used to

measure the error between the output and the target data and reduce it by adjusting the

weights. However, whilst training, the test set is also presented to the network and the error

noted, but no adjustment of the weights is made. During this process of training, as for the

training set, the error in the test set should also fall but be higher than that of the training set.

When the error in the test set data stops falling (perhaps even starts to rise), the point at

which overtraining has started has been reached. If training is stopped at this point,

overtraining can be avoided. Usually a compromise solution is adopted such that the

performance on either set is equal.

Finally, the network is presented with the validation set and its performance measured on

this unseen data. It should be noted that this method requires many hidden units to avoid

local minima, Sarle [92]. Further, Sarle notes that if there are at least twice as many training

cases as there are weights in the network, there should be little overfitting. If the data is not

noise free, then it should be thirty times as much, a point also alluded to by Haykin [43]. In

fact, the data generated by the finite difference scheme will not be noise free since the data

will contain truncation errors from the finite difference modelling. As will be seen later, this

implies a river length (of data) about 1200 Km long, based on the spatial distance in the

Chapter 2 26 Artificial Intelligence

finite difference scheme of Chapter 3, or alternatively, much smaller spatial distances and

time steps. A simple example of early stopping is depicted in fig. 2.13:

2.5.9 Hold Out

stop trairirg
t'l3f1

testdaa

~ __ trairirg daa

Figure 2.13: Early Stopping

In this alternative method, the training data is used to train several different architectures Le.

different numbers of hidden units in the hidden layer. The validation set is then used to

select the best architecture based on a comparison of the error functions from the different

networks. Finally, a test set is used to verify the final choice.

There is however, some confusion over the definition of training and validation sets. Some

training methods such as 'early stopping' as mentioned above (cf. Section 2.5.8), require a

validation set during this phase, though other methods do not. Ripley [89] and Bishop [9]

have produced authorative and virtually similar definitions of these different sets of data. In

essence, they state that:

• Training Set - used to minimize the error function on SEVERAL networks and

hence tune parameters such as the weights.

• Validation Set - used to evaluate the performance of each of these several networks

using an unseen data set. It is essentially used to choose the architecture such as the

number of hidden units. The network with the smallest error is then selected. This

method is called the 'hold out' method.

Chapter 2 27 Artificial Intelligence

• Test Set - as this 'hold out' method could also lead to some overfitting to the

validation set, the test set is used to measure the performance of the final selected

network.

As to whether or not to have a validation set that is just that and not also used for training

will depend on the amount of available data sets. In other words, is there sufficient data

available to have a training set, validation set and test set or alternatively, just a training set

and test set? Some researchers, Sarle [92], have noted that training a net with 20 hidden

units requires anything from 150 to 2500 training cases.

The feed-forward network is good at generalization with regard to interpolation of related

data but not at extrapolation (i.e. data that is not related to the training set). When the

training data set is 'noise' free, that is the data is devoid of degradation or inaccuracies,

sometimes the addition of noisy data can help convergence. Some suggested causes of

overfitting by various researchers, Sarle [92], are:

• Too many weights or weights are too large

• Number of weights being far greater than the number of training patterns.

and some suggested means of avoiding it being:

• Use of 'regularization' or weight decay

• Use at least 30 times as many training cases as there are weights or 5 times as many

if the data is noise free (as previously noted).

2.5.10 Supervised Learning

By far, the majority of networks are trained using supervised learning. In this mode of

learning, both inputs and desired (target) outputs are provided to the network and after

processing, the network compares the actual resultant outputs with the desired outputs. The

network is able to evaluate these differences (errors) and adjust the initial weights

accordingly so that on each iteration of processing, these differences are reduced.

When a desired accuracy, as determined by the user of the system, has been achieved, the

training is considered to be complete. These idealized weights are then 'fixed' for use of the

application on other data sets. It should be noted that training can be very time consuming

Chapter2 28 Artificial Intelligence

and a large number of data sets are needed for the training to be effective. Some networks

never learn, the training suffering from various deficiencies such as 'local minima',

'overfitting', (as previously mentioned), poor 'convergence' and insufficient or unrelated

data. Further, for multilayered networks with multiple nodes, there is the danger of

'associative memory' developing. In fact, after learning has taken place, it is possible to

recall the complete original pattern even with incomplete or inexact input. It is important

that the network has learned the general patterns in the data rather than memorizing the

actual data itself.

Once the training is over, a test set of data that the network has not seen before is presented

to it. The outputs from this when compared to the actual target outputs determine if the

system needs further training. The network is not self-organizing and does not use a

competitive learning rule method but instead uses supervised learning algorithms such as

'error-correction learning'.

2.S.11 Unsupervised Learning

Here only the inputs of a data set are provided to the network. The actual target outputs are

not presented to it. The system looks for trends and regularities in the data and makes

adaptions accordingly, the network being internally self-organizing. However, strictly

speaking, it is only semi-automatic since a human must at some stage examine the results to

determine when the training needs to stop. Weights and other parameters are adjusted once

the output has been examined. A competitive learning rule algorithm is used wherein only

the weights belonging to a 'winning' processing node will be updated. Other learning

algorithms frequently used are 'reinforcement learning' and 'Hebbian Learning'. Well

known examples of networks that use unsupervised learning methods are 'Adaptive

Resonance Theory' (ART) and Kohonen's 'Self-Organizing Feature Map' (SOM).

2.6 Advantages and limitations of neural networks

The advantages and limitations of using neural networks can be summarized, by no means

exhaustively, as follows:

Chapter2 29 Artificial Intelligence

2.6.1 Advantages

They are very useful in solving unstructured and semi-structured problems and excel at

pattern recognition even from incomplete information, Turban and Aronson [102]. They are

very adept at classification and abstraction, and are good at generalization, meaning they

have the ability to produce reasonable outputs from inputs not encountered during training.

In contrast to the serial nature of processing in conventional computer systems, by the very

nature of their construction, there are large numbers of interconnected neurons (processing

units) all working on the same problem in parallel resulting in high speed processing.

A very useful quality of ANNs is their ability to adapt to changes in the environment. In

other words, they can be easily retrained on new data. Further, they have the facility to cope

with fault-tolerance situations. That is. even if a neuron or its surrounding connections are

damaged, because of the distributed nature of information storage and processing, the

performance is only slightly degraded. For the performance to be seriously impaired, the

damage would need to be extensive. In fact, a neural network can also modify its own

topology - thus emulating the restructuring of synaptic connections in the brain.

2.6.2 Limitations

Neural networks are not particularly good at performing tasks that involve complex

numerical calculations and data processing. Such tasks are best addressed using

conventional computer programs. In many respects, they are 'black box' scenarios in that

there is an inherent lack of explanatory capability with no obvious interpretation of the

connection weights and subsequent changes after training.

By their very nature, they need a vast amount of data for training and currently training (and

hence retraining) times can be excessive and tedious making frequent retraining impractical.

Most applications are restricted to software simulations as the cost of, and limitations of,

current hardware render it not economically viable for 'hardwiring'.

Chapter 2 30 Artificial Intelligence

2.7 A brief history of neural networks

The development of neural networks has been influenced by several fields of research

namely, neuroscience, psychology as well as engineering.

The first neural network investigation was conducted by Alexander Bain (1873). Strictly

speaking, however, this was a biological analysis of the neural network in the brain rather

than an artificial one. As a result of Bain's work and that of William James (1890) et. al.,

the concept ofa neuron was conceived between 1890 and 1910.

The earliest research into ANNs was in the 1940's when in that decade, physiologists

McCulloch and Pitts (1943) developed the first artificial neural network based on their

understanding of neurology. Their networks were based on simple neurons, which were

considered to be simple logic functions with fixed thresholds. In other words, the Boolean

functions AND and OR. Towards the end of the decade, Donald Hebb (1949) published

some work based on simulations of a simple connected network. Based on the work of

Hebb, Farley and Clark (1954) investigated simple pattern classification networks.

Following this, in the 1950's, the physiologist Rosenblatt [90] designed a two-layer network

called 'the perceptron' wherein the weights were adjusted in a trial and error method. To

improve upon this, Selfridge (1958) introduced the idea of gradient descent to the

perceptron to adjust the weights. Although the perceptron was successful in classifying

certain patterns (by adjusting the connection weights), it had its limitations. It could not for

example, solve the classic XOR problem (Minksy and Papert, [79]) and such limitations led

to a decline in the development of neural networks. Notwithstanding this, the perceptron

was the cornerstone for later research into neural computing although ironically, the

perceptron is not as good a model of the electrochemcial processes within the neuron (of the

brain) as the model of McCulloch and Pitts (Anderson and Rosenfeld, [5]). Following

similar lines of research to Hebb, Widrowand Hoff [109] also developed a learning rule,

now often referred to as the Delta learning rule. This rule was later extended and became

known as the Generalized Delta Rule (frequently referred to as backpropagation). The

training process is similar to that of the delta rule for the simple perceptron. The

Chapter 2 31 Artificial Intelligence

Generalized Delta Rule will be discussed further in Chapter 4 when the neural network

model of the fluid flow is analysed.

In the 1970's, multi-layer neural networks were studied. Werbos [107] developed the back

propagation learning method, in essence, a perceptron with multiple layers, different

threshold function and a more robust learning rule. Further, other researchers showed

renewed interest in neural networks in the early 1980's with the development of Boltzmann

machines, Hopfield nets, competitive learning models, multilayer networks, and adaptive

resonance theory (ART, Carpenter and Grossberg, [18]) models.

In the 1990's, neural networks became 'legitimate' as a computing tool and entered the field

of mainstream applications. Since they are good at pattern recognition and are particularly

useful in identifying patterns or trends in data, they are in use in such diverse applications

as: OCR, speech recognition, stock market analysis, credit card approval, bankruptcy

prediction, sales forecasting, customer research, data validation, risk management, target

marketing, industrial process control and robotics. Further, the field of medicine is a

particularly flourishing area of research for ANNs and of late, civil engineering, hydrology

and hydrodynamics. In fact, of late, neural networks are now even being applied to climate

modelling, Dibike and Coulibaly [32].

32

Chapter 3
The Hydraulic Model

3.1 Introduction

The prime difficulty with modelling river and estuarine flows is the lack of authentic

measured data as it is extremely expensive to obtain this data by direct observation.

Therefore, the main thrust of this chapter, after reviewing some previous research work, is

to design a model that will generate this data (albeit in an artificial form) that can then be

used to train and test artificial neural network models of the river flow. Thus, this chapter

revolves around the development of a finite difference scheme based on the one dimensional

St. Venant equations (shallow water theory), Dibike [31] and Vreugdenhil [106], from

which a model without bottom friction and then a second model, with bottom friction, are

developed. Although some non-linear terms such as advection are ignored, the shallow

water equations represent a very useful and popular method of obtaining simplified models

of river flow.

3.2 Previous Research

The mathematical modelling of river flow has been investigated by many researchers and

where research has taken place into river hydrodynamics, it has often been far up stream

well away from the estuarine areas. Some notable exceptions to this are Johns [50], Lin and

Falconer [66], Kachroo [53], Kachroo and Liang [54], Kachroo et. al. [56], Kachroo et. al.

[55] and Matalas [75]. All these researchers used 'classical' mathematical modelling

techniques rather than neural networks. Lin and Falconer [66] developed a three-

dimensional model using finite difference methods to predict sediment fluxes in the

estuarine and coastal waters of the Humber River. Kachroo [53], Kachroo and Liang [54]

investigated the modelling of river flow forecasting using methods such as linear

perturbation theory with, in the latter paper, an analysis of multiple input / single output

regimes using least squares techniques. Kachroo et. a1. [56], Kachroo et. al. [55] further

extended this investigation into the same problem with an emphasis on linear modelling

Chapter 3 33 The Hydraulic Model

techniques. Bose and Jenkins [10], and Delleur et. al. [26] also applied classical methods

(no neural network applications) to hydrographic time series models. The rest of the

reviewed papers in this section have been grouped according to the area of application of

neural networks.

3.2.1 Water resources and sediment transfer:

Bowden et. al. [12] applied neural networks to the modelling of water resources whilst

Aitkenhead et. al. [4] applied them to environmental systems. Abrahart and White [1] and

Cigizoglu [24] investigated the neural network modelling of sediment transfer in rivers and

in a similar vein, Maier and Dandy [68] and Bowden et.al. [13] studied the transfer of salt in

rivers. They [Maier and Dandy] applied neural network modelling to the forecasting of

salinity in the River Murray near Adelaide, Australia to minimize the damage caused by salt

intrusion. They obtained results that were rather encouraging with an absolute percentage

error of just 6.8% for a 14-day forecast. They noted that this was somewhat better than the

previously used time-series model.

Sandhu et. al. [91] applied analytical hydrodynamical modelling techniques in the

Sacramento-San Joaquin Delta to obtain real time estimates of salinity and pollutant

concentrations in the water. It was noted that the models had only limited success since

being a delta, the flow was of a highly 'multiple input / single output' (MJSO) nature. They

later applied the techniques of ANNs to their models and calibrated them against salinity

measurements taken at various points in the delta. They observed that much greater

'flexibility' was possible in the models in that they were not confined to very restricted pre-

determined hydrodynamic methods. They were able to model more accurately multiple

inputs (that is at a river junction) rather than single input flow and other flows from around

physical obstructions. Furthermore, there was a much greater accuracy in terms of real time

estimates of the salinity concentration.

ANNs have also been used by the Delft Research Institute in Holland, Schleider and Cser

[93], and the Groundwater Research Centre of the Technical University of Denmark,

Sonnenborg [98]. The research at Delft has concentrated mainly on hydraulics, beach

Chapter 3 34 The Hydraulic Model

erosion and wind 'events' whilst the research in Denmark was aimed principally at solving

the problem of saltwater intrusion into coastal freshwater supplies.

3.2.2 Offshore modelling:

Somewhat slightly divorced from the theme of river investigations, the next group of

researchers concentrated on offshore modelling. Agrawal and Deo [3] applied neural

networks to the problem of wave analysis and the interrelationships between certain

characteristics of wave parameters. They investigated the usage of neural networks in order

to capture the non-linearity (of the mathematical relationships between the parameters) in a

matrix of weights and bias values during the learning process. The network was trained

using observed data from an offshore site along the east coast of India.

EI-Rabbany et. al. [35] considered the difficulties of tidal prediction using the traditional

standard harmonic method of using existing tidal records. To overcome the inaccuracies in

the data, a modular, three-layer, feedforward neural network trained using the back-

propagation algorithm was developed. They found that the maximum prediction error in the

tidal height was approximately 20 em, whilst most of the residual errors fell within the +/-10

em range. Comparing the results with a sequential least squares method for tidal prediction,

it was noted that the neural network model demonstrated an improvement by a factor of five

over the least squares method, even when long tidal records were unavailable.

Huang et. al. [46] discuss the application of a neural network to, as with El-Rabbany et. al.

[35], the prediction of coastal water levels, in this case, at coastal inlets along the south

shore of Long Island, New York. They were particularly interested in coastal hydrodynamics

sediment transport. Due to the complex coastal and estuarine topography and shallow water

effects, it was often difficult to obtain a good linear regression relationship between water

levels from two different monitoring stations. They employed a three-layer, feed-forward,

backpropagation structure, the training method being optimized using a conjugate training

algorithm. They obtained very good long-term predictions of both non-tidal and tidal water

levels at the regional coastal inlets.

Makarynskyy [69] investigated the use of artificial neural networks to predict wave heights

offshore of the Irish coast. It was found that both the accuracy of the simulations and the

Chapter 3 35 The Hydraulic Model

ability of neural networks to improve the initial forecasts (estimated in terms of the

correlation coefficient, root mean square error and scatter index), depended on buoy

location. In a further communication, Makarynskyy [70] provides much more detail on the

work in [69]. Makarynskyy et. al. [71] extended the work of [69] to model wave predictions

off the west coast of Portugal.

3.2.3 River/estuary modelling:

Atiya et. a1. [7] studied river flow forecasting with two goals in mind. Firstly, they applied a

neural network technique to the forecasting of river flows in the river Nile. Secondly, they

used the time series data to benchmark different neural network model approaches to this

river flow forecasting. The research involved simulating the time series (of flow data) using

4000 iterations and a neural network architecture with three hidden nodes. It was observed

that varying the number of hidden nodes between two and eight made little difference to the

results.

Chang and Chen [20] applied a radial basis function neural network to construct a water

stage forecasting model for an estuary under high flood and tidal effects. Data from the

Tanshui River in China was used for the training of the network.

Cigizoglu [22] considered the more unusual case of intermittent river flow i.e. wet (flow)

and dry (no flow) periods. In his work, a neural network was used to forecast the daily

intermittent river flows for a river in Turkey. Comparing the forecasted time series with the

observed ones, it was noted that there was a good measure of agreement between the two

with regard to the dry periods so that it would appear that the neural network was able to

capture the transition between wet and dry periods. Further, the neural network approach

was superior to classical regression in this particular study. Following on from his previous

work [22], Cigizoglu [23], further investigated the applicability of neural networks to the

forecast, estimation and extrapolation of the daily flow data of other rivers in the Eastern

Mediterranean region of Turkey. The main objective was to compare a multi-layer

perceptron model with that of a conventional statistical/stochastic model of the daily flow.

He concluded that the superiority of the neural network over conventional methods could be

Chapter 3 36 The Hydraulic Model

attributed to the ability of the network to capture the non-linear dynamics and generalise the

structure of the whole data set.

Dibike and Solomatine [30] studied the applicability of neural networks for downstream

flow forecasting in the Apure river basin, Venezuela. Using both a multi-layer perceptron

and the radial basis function, they found that the results for river flow forecasting were

slightly better than those obtained using a conceptual rainfall-runoff model. Rainfall-runoff

models are described fully in Chadwick and Morfett [19]. Dolling and Varas [33]

investigated streamflow prediction using artificial neural networks. They further considered

in the modelling, aspects such as input variable selection, model architecture and the

learning process. Their work has been mentioned in particular because of the succinctness

and clarity of their paper.

Imrie, Duncan and Korre [47] investigated the limitations of a neural network that had been

trained on a dataset containing a limited range of values. They applied a modification of the

cascade-correlation learning architecture during training to improve the network's

generalization capabilities. Using data from three tributaries of the river Trent, they

observed that the cascade-correlation algorithm was easier to use and produced better ANN

models than those obtained using the standard backpropagation algorithm. Further, they

noted that a function with a cubic polynomial format in the output layer might be necessary

for ANNs to capture extreme values. In addition, since the transfer functions they applied at

the hidden layer were bounded, the limits of these values (propagated from the hidden layer

to the output layer) must be largely determined by the scaling of the input data.

Jain and Kumar [49] presented a de-trended and de-seasonalised time series dataset of the

river flow in the Colorado River to a (three layer) feed forward multi-layer perceptron neural

network. From their work, they concluded that the neural networks were able to capture the

relationships among the historical flow data and the future flow data much better than some

conventional time series models.

Karunanithi et. al. [57] investigated the application of a neural network as a predictor for

flow prediction of the Huron River, Michigan. They addressed issues such as neural

Chapter 3 37 The Hydraulic Model

network architecture selection, correct training algorithm as well data input, by using the

cascade correlation algorithm.

Kerh and Lee [58] studied the forecasting of flood discharge upstream of the Kaoping River

in Taiwan. Using a 21-15-1 back propagation neural network model, they observed that it

performed relatively better than a conventional Muskingum method. The Muskingum

method is fully described in Chadwick and Morfett [19]. The evaluation criteria used were:

RMSE indices; efficiency coefficients; peak discharge errors; and peak time errors. The

dominant factors affecting the accuracy were flood discharge and water stage (water level

above a given datum).

Kisi [59] studied the potential of using a neural network for river flow modelling of the

Goksudere River in Turkey. Using a three-layer back propagation neural network trained

using a gradient descent algorithm, he was able to compare predicted monthly flows with a

more conventional method. Based on the results, he noted that in general, the neural

network predictions were better than those obtained using conventional approaches.

Kocjancic and Zupan [60] completed a very rigorous study of the influence of training set

selection as well as the modelling technique used. Using conventional regression methods

such as multiple linear regression and partial least squares regression as well as a feed-

forward neural network (with the error back-propagation and Levenberg-Marquardt

learning algorithm), they generated 125 regression models.

Kumar et. al. [61] compared the application of two different neural networks, namely a feed

forward neural network and a recurrent neural network, to the prediction of river flow for

the River Hemavathi in India. The recurrent neural network was trained using the method of

ordered partial derivatives whilst the feedforward network was trained using the

conventional backpropagation aIgorithm. They noted that the recurrent network

outperformed the feedforward one and further, the architecture size and training time were

smaller.

Moradkhani et. aI. [80] compared a radial basis function with other algorithms and differing

neural architectures for the forecasting of daily streamflow in the Salt River, Colorado. They

noted the absence of any authoritative procedure to suggest how to partition a data set and

Chapter 3 38 The Hydraulic Model

hence used cross-validation, which has the benefit of reducing the danger of overfitting.

Riad et. al. [88] applied a neural network based model to predict river flow for the Ourika

River basin using a multi-layered perceptron trained using the back propagation algorithm.

Sivakumar et. al. [95] completed a study of river flow forecasts of the Chao Phraya River in

Thailand. They concluded that a better type of ANN architecture other than the MLP would

be more suitable for longer lead-time forecasts, the selection of the training set was crucial

and also the influence of noise on the forecast accuracy needed to be further studied.

Thirumalaiah and Deo [101] studied the application of neural networks to real-time

forecasting using three different algorithms. They used the backpropagation, cascade

correlation, and conjugate gradient methods. They observed that the cascade correlation

algorithm took only a small fraction of time to train the network in comparison to the

backpropagation and conjugate gradient methods.

Zealand et. al. [Ill] applied ANN s to the simulation of short term forecasting of streamflow

comparing also this methodology to that of more conventional approaches. They studied

issues such as the type and size of the input data, sizes of the hidden layers and capabilities

of the neural network to model complex non-linear relationships. Applying the model to the

Winnipeg River system in Northern Ontario, Canada, their model outperformed a

conventional Winnipeg Flow Forecasting System (WIFFS) model during the verification

(testing) phase. It was noted that the greatest difficulty was in determining the appropriate

model inputs and so they concluded that it was important to determine the dominant model

inputs in order to reduce the size of the network and training time and improve its

generalization ability. They achieved RMSE accuracies of 32.5 ems. Nayak et. al. [83] used

fuzzy neural network techniques for river hydrograph analysis whilst Tawfik [100]

concentrated on the applications of neural networks to river modelling of the River Nile.

Izquierdo et. al. [48] compared different models used in the water industry. Their research

concentrated on comparisons between numerical, statistical and neural network techniques

as well as fuzzy network methodologies.

Chapter 3 39 The Hydraulic Model

3.2.4 Theoretical hydrodynamic application of neural networks:

Dibike and Abbott [27] studied the simulation of two-dimensional flows whilst Oibike and

Minns [29] considered the application of neural networks to the generation of wave

equations. Following on from the earlier work of Dibike et. a1. [28] and Dibike and

Solamatine [30], Dibike [31] studied the possibility, in the case of simple problems i.e. one

and two dimensional flows, as to whether a generic neural network could 'construct itself

by learning from existing numerical hydraulic models. Applying the study to various types

of bathymetries and time steps, he concluded that the neural network provided acceptable

results and further, a well-trained network could even replace the finite difference schemes

frequently used in numerical hydrodynamic modelling. However, most importantly, the

effects of bottom friction had not been included. It should be noted that as he used linear

activation functions (cf. Chapter 2), it would not have been possible to represent the non-

linear effects of this bottom stress.

3.2.S Hydrodynamic support vector machine applications:

Asefa et. a1. [6] applied the methodology of support vector machines (SVMs) to multi-time

scale predictions of stream flow in the Sevier River basin, near the Great Salt Lake. They

noted the ability of SVMs to generalize, given small data sets and observed that Transfer

Function Noise (TFN) models gave a smoother prediction, specifically for annual flow

volumes, whilst the SVMs gave overall better Root Mean Square (RMSE) error values.

Han and Yang [42] studied the application of support vector machines to river flow

modelling. In their paper, they tried to demonstrate the potential of support vector machines

to dendritic river modelling. They noted that the empirical performance of support vector

machines is generally as good as the best artificial neural network solutions.

Han et. al. [40] investigated flood forecasting using support vector machines in the Bird

Creek catchment area at Owasso in the USA. They observed that SVMs like artificial neural

networks, also suffered from over-fitting and under-fitting but further, the selection of

various input combinations and parameters was very problematic. Notwithstanding this,

they obtained quite credible performance from the SVMs.

Chapter 3 40 The Hydraulic Model

3.3 Shallow water theory

Numerical models based on non-linear shallow water theory are potentially very efficient in

terms of speed of simulation, the type of wave being classified according to the relative

depth ratio WL, where H is the water depth and L the inshore wavelength as follows:

RatioofWL Type of wave

WL<=0.05 Shallow Water Waves (Long

Waves)

0.05 < WL < 0.5 Intermediate Depth Waves

HIL > 0.5 Deep Water Waves (Short Waves)
Table 3.1,' Wave Classification According to Relative Depth

In the area of interest in this research, the lower reaches of the Thames at its confluence with

the river Medway, the average depth of water is approximately 15 m. The wavelength is

equal to the tidal period Tp times the phase speed (celerity) c, where the tidal period is 12.4

hours and c is equal to Jiii .Hence,
L = Tp xc = 12.4 x 3600x "/9.81 x 15 = 541.51Km.

Thus H = 15 = 0.000028 approximately and so a shallow water equation system is
L 541510

valid in the area of interest.

The non-linear hyperbolic shallow water equations can be derived from the depth-averaged

Navier-Stokes equations of hydrodynamics, Ponce and Simons [86], wherein the

conservation of mass and momentum of fluids are represented. In non-linear shallow water

theory, stresses such as wind shear are ignored, the main assumptions adopted in the

derivation of these (shallow water) equations being:

• the vertical velocity is small in comparison to horizontal velocity;

• the pressure distribution in the vertical is hydrostatic.

Further, the one dimensional variant of these shallow water equations (the Saint-Venant

system), Gerbeau and Perthame [36], Ponce and Simons [86], originally developed to model

near horizontal, free-surface channel flows such as rivers and near coastal regimes, assumes

Chapter 3 41 The Hydraulic Model

a small bed slope that usually incorporates a simplified bed shear stress term, Sometimes an

extra system equation is added to model the transport of pollutant (or temperature).

3.4 A simple hydrodynamic model

The primitive equations of de Saint Venant (1850), Dibike [31], for a one-dimensional

nearly horizontal free surface flow (in Eulerian form) can be written:-

Continuity (mass conservation):

en au en
-+H-+u-=Oat Ox Ox

(3.1)

Momentum:

au au oH
-+u-+g-=Oat Ox Ox

(3.2)

where t and x represent time and distance (along the river) respectively, g is the gravitational

acceleration, H is the water depth of the channel and u is the depth-averaged water velocity.

It is assumed that the slope of the channel bottom is constant and horizontal.

If the waves are very long with amplitudes that are relatively small compared to the water

depth, the advection terms

au oHu- and u-
Ox Ox

in (3.1) and (3.2) are of a lower order than the other terms. This is certainly true of the area

of interest in the ThameslMedway confluence where the channel depth is of the order of

15m so that the velocity u is much less than .[iii .Consequently, these two equations can

be simplified to a first order linearized approximation as:

en au
-+H-=Oat Ox

(3.3)

au en
-+g-=Oat Ox

Following the arguments of Vreugdenhil [106], set H = h +~where h is the still water

(3.4)

depth and q«h. The latter condition is tantamount to saying u«.[iii as previously

noted. Then (3.3) and (3.4) become

Chapter 3 42 The Hydraulic Model

au o~-+g-=oat Ox

where l; is the amplitude of the wave height as can be seen in fig. 3.1:

...1 ...1

Figure 3.J: Fluctuations above/below still water level

3.5 Finite Difference Scheme - zero bottom friction model

A two level time scheme as shown in fig. 3.2 is used

t

(3.5)

(3.6)

since knowledge of the system is only available at one time level. at time t = O. A mesh

system that is staggered in space and time, and commonly referred to as a leapfrog scheme,

is used to develop a finite difference scheme for equations (3.5) and (3.6) as follows:

~----+-----~----~------~----4~3

~----+-----~----~------~----4~2

~::::::::"_--_'-----=~"""":::::"__--I"_---= -------l j -.x
ax

i-1 i+3i+1 i+2 i+4

u u u

Figure 3.2: Leapfrog Mesh

Chapter 3 43 The Hydraulic Model

From equations (B12) to (B15) appendix B (finite difference notes), usmg a forward

difference scheme for time and a central difference scheme for the distance along the river

i.e. x, where the mesh size is now 2&, the continuity and momentum equations (3.5) and

(3.6) can be represented by the following explicit difference scheme

):,}+I):,} } J

':Ii -':Ii + h Ui+1 - Uil = 0
6t 26x

(3.7)

}+I }):,j+1):,}+I

Ui+1 - Ui+1 + g ':Ii+2 - ':Ii = 0
st 20x

(3.8)

As can be seen from fig. 3.2, initial values for t and U need only be known at one time level.

Since there is no a priori knowledge of the flow other than the imposed flows at the

boundaries and assumed zero values for the velocities at time zero, only a two level time

scheme such as that in the fig. 3.2 could be used. It is now necessary to rearrange these two

formulae into a suitable format for computation. For an explicit hydrodynamic scheme to be

stable, it is required that the Courant number, denoted by Cr and which is dimensionless, to

be <=1. Here er =c Of where c, the wave celerity (or phase speed), is, as previously noted,ax
defined by c' = gh. In fact, with g = 9.81, h = 15 m, the only requirement therefore is that

t5t 1 1-<-= =0.082437.
6x - c v'9.81 x 15

A reasonable choice for the spatial interval was & = 500 m which would provide 60

velocity and 60 depth sections over a 60 Km-length of river. Further, this was the spatial

interval used in a numerical model of Johns [51] (see Chapter 4) used to verify some of the

work in this research. This choice of spatial interval implies that

6t:s;0.0824376x = 41.2185 secs.

Although therefore in principle the temporal interval could be quite small, 5 secs. for

instance but which would incur many time levels and hence long simulation times, it was

decided to adopt IX = 30 secs. This value thus results in Cr = 0.7278.

After a little rearrangement, (3.7) becomes

Chapter 3 44 The Hydraulic Model

j:J+1 _ j:J h al (j J)
~, - ~i - 2ax UHI - U,_I

-~J c' 01 (j J)- ---- U -U, g 20x i+1 ,-I

-j:J Cr fE(J J)=». -"2Vg UHI - U,_I

(3.9)

and (3.8) transposes to

J+I j at (j:J+1 j:J+I)
UH) = U'+I - g 2ax ~H2 - ~i

= j _{~(j:J+I _ j:J+I)
Ui+I h 20x ~,+2 ,:>,

= j _ Cr ri(j:J+I _j:J+I)
UH1 2 Vh ~,+2 ~,

(3.10)

These final forms Le. (3.9) and (3.10) are the finite difference schemes used in the

computations for the cases where there is no bed friction. To generate the test data, ~ has to

be evaluated using (3.9) at all alternate grid points at time level 0+1). Then, U has to be

similarly evaluated using (3.10) at the other alternate grid points at time level (j+1). Once

complete, the process is then repeated at time level 0+2) and so on.

It should be noted that in a similar development, Dibike [31] has incorrectly formulated the

coefficients in (3.9) and (3.10) above. He had Jf instead of l and vice versa which was

obviously a typographical error.

3.5.1 Stability of the Finite Difference Scheme

The stability of a finite difference scheme depends on whether or not errors are magnified as

computation proceeds up the time levels. Provided these errors are not magnified but

bounded, the scheme can be regarded as stable. The analysis of such stability relies on the

use of the Von Neumann method, Vreugdenhill [106], wherein the errors can be represented

in the form of a Fourier series. In essence that is, the variables ~ and u can be represented in

terms of harmonic functions by setting ~j == H j etiA. and ut == U j eta where k =H and

A is some arbitrary variable. Note that H J and U j are the height and velocity amplitudes at

time level 'j'.Hence rearranging (3.9) and (3.10) and making these substitutions gives

Chapter 3 45 The Hydraulic Model

(3.11)

(3.12)

After a little manipulation, (3.11) and (3.12) simplify respectively to

(3.13)

and

(3.14)

The characterisation of the variables in terms of harmonic functions enables the application

of the further substitutions U' = p'U and Hi = pi H . The variable p represents the so

called amplification factor and is a measure of how the errors are amplified from one time

level to the next during the calculations. Ideally, the requirement is that Ipl~ 1. Here U and

H are the amplitudes at the initial time level. Making these substitutions, (3.13) and (3.14)

become

and

which upon division by pi .simplify even further still to

pH-H+Cr lUkSin.t=o (3.15)

and

pU -U +crjfPHkSinA. =0 (3.16)

The last two equations (3.15) and (3.16) are a pair of linear homogeneous equations that can

be written in matrix form as:

Chapter 3 46 The Hydraulic Model

p-l
(3.17)

crJfpksinA

which has a non-zero solution only if the determinant of the coefficients is zero. Bearing in

mind that having previously defined k as the imaginary number ~, the determinant of

(3.17) gives

(3.18)

which upon expansion results in a quadratic in p with two roots, one real part and the other

a complex one. The real root represents a physical wave whilst the complex one is of a

purely numerical origin that would give rise to a wave of an oscillatory character and as

such needs to be bounded. Analysis of the complex conjugate part results in the boundness

condition:

(3.19)

r

Since this condition must hold for even the most unfavourable value for A, A = !:....say, then
2

Ipl2 == pp = 1 provided ICrl ~ 2. The obtained value for Cr = 0.7278, (cf. Section 3.5),

obviously therefore satisfies this requirement.

3.5.2 Compatibility of the Finite Difference Scheme

The various terms in equations (3.9) and (3.10) can be expanded as follows in a Taylor's

series:

J oq (OX)202q 3
q;+1 ==~(x+ox,t)=~(x,t)+ox-(x,t)+----2 (x,t)+O«8x»,Ox 2! Ox

oq (0/)2 02q
qtl == q(X,t+O/) = ~(X,/)+Ot-(x,/)+----2 (x,/)+O«oti)'at 2! at

Chapter 3 47 The Hydraulic Model

c: == ~(X + 2b"x,t +&) == ~(x,t) + 2b"X; (x + 2b"x,t +&)

2(b"X)2 if~
+ 2 (X+2b"x,t+b"t)+O«b"xi)

2! Ox
a~ (b"t)2 a2~

+&-(x + 2b"x,t +&)+ ----2 (x + 2b"x,t + b"t)
at 2! at

+0«&)3)

U(== U(X,t),

au (b"X)2a2u
U(+J == u(x + b"x,t) == U(X,t)+b"x-(X,t)+----2 (x,t) +O«ax)3),

Ox 2! Ox

au (OX)2 a2u
U:+~l== u(x+ox,I+O/) = u(x,/)+ ox-(x+ OX,I+ 01)+----2 (x+ oX,1+0/)+0«OX)3)ax 2! ax

au (bli (iu
+ Ol-(X+ox,t +01)+----2 (x +OX,I+OI)+ 0«0/)3).al 2! at

Inserting these expansions into (3.9) and (3.10) and subtracting the original differential

equations (3.5) and (3.6), it is possible to obtain the truncation errors for both difference

equations. The truncation error 'T' in both cases was of first order in both ot and b"x, that

IS:

T = O(t5t) +O(ox)

This is as it should be since the original differential equations, that is equations (3.5) and

(3.6) contained only first order partial derivatives. The finite difference equations, equations

(3.7) and (3.8) are therefore 'compatible' with the original differential equations (3.5) and

(3.6). This compatibility is an absolute requirement. Further, as a result of this compatibility,

Smith [97], and the analysis earlier on the stability and amplification criteria, the implication

is that as the mesh size Ol,ox gets smaller, then the finite difference scheme should

approach (converge to) the true solution of the differential equations themselves.

Vreugdenhill [106] had performed a similar analysis for a three level time scheme using

centred differences in both time and spatial intervals and as a result obtained ICrl ~ I It is

usual in practice to use this latter bound and this has been adopted in this research, the

Chapter 3 48 The Hydraulic Model

actual value of Cr being determined, subject to these constraints, by the choice of 'sensible'

values for Of and ox as previously discussed earlier. Classical theory indicates that explicit

finite difference schemes are only conditionally stable if Cr <=1. This, however is for 'non-

mixed' schemes, that is where there is only one variable such as ~ or h. However, the

difference scheme in this research involves the use of two variables ~ and h in both

equations (3.5) and (3.6).

3.6 Boundary Conditions

The adopted convention is that U, represents the imposed velocity at the upstream end of

the river and VL the (forcing tidal) velocity at the downstream (estuarine) end of the river.

Writing the tidal input this way is more convenient than using the wave amplitude.

However. since the amplitude is sinusoidal, a positive or negative value will 'flip' the

direction by 1800 and cause the tidal wave to reverse direction. A further adopted

convention is that the velocity is positive when flowing from the upstream to the

downstream end. The initial value of U, is assumed constant and positive so that it

represents normal input into a river at source or a gauge station.

It would appear at first sight that the model adheres to the 'law of the wall'. The latter refers

to the representation of the velocity profile in the turbulent boundary layer adjacent to the

floor of the river. Gerbeau and Perthame [36] developed a 'Saint-Venant system with

friction' by maintaining the viscous terms in the original Navier-Stokes equations. Their

model therefore includes friction effects (not to be confused with bed friction - see Section

3.12) and as such obeys the 'law of the wall'. If there is a region close to the bed where

viscosity is important and that the bottom shear stress (due to viscosity) is the important

constraint on the flow. the following functional relationship for the velocity distribution may

be obtained:

}!_=f(YUr
)

u, v

where y is the distance from the bottom, v is the kinematic viscosity and UT is the shear

stress (frictional velocity in the boundary layer). That is, if y~ is plotted against ~ for
v UT

many different flows. there will be a single curve. This is tantamount to saying that the

Chapter 3 49 The Hydraulic Model

average velocity of a turbulent fluid at a point is proportional to the logarithm of the

distance from the point to the bottom. However, unlike the model of Gerbeau and Perthame

[36], the model as described by equations (3.3) and (3.4) does not contain the effect of

viscosity as this was eliminated in the course of a first order linearization. That is, apart

from 'bottom friction' (see Section 3.12), the model investigated in this research is assumed

to be strictly frictionless and so does not obey the 'law of the wall'.

UL can be entered as positive or negative during data entry in the simulations, the type of

resultant flow being dependant on whether the first half (e.g. 25 hours) or second half (e.g.

25.5 hours) of a cycle has been selected. The advantage of being able to specify an ebb tide

immediately is that the simulation does not need to cycle all the way through the first half of

a cycle, the flood tide, to get to an ebb tide. The relationship is as follows:

Entered value First half of a cycle e.g. Second half of a cycle e.g.

ofUL 25, 25.125, 25.25, 25.375 25.5, 25.625, 25.75, 25.875

UL= positive Flood Ebb

UL= negative Ebb Flood
Table 3.2: Flood and Ebb Tidal Cycles

The smallest fraction of a tidal cycle that can be selected is 0.0625.

This restriction on the fraction size is a consequence of the Matlab code (see

VenantDataGenerator2 in Appendix C). The number of time steps in a tidal cycle with a

temporal interval of 30 secs. is:

Tp = 12.4 x 3600 = 1488
Of 30

Within the code, the range of the loop counters must be integers. Consequently selecting

25.1 tidal cycles for example would give:

25.1 x 1488 = 37348.8

which is clearly unsatisfactory as it is a non-integer whilst

25.0625 x 1488 = 37293

Chapter 3 50 The Hydraulic Model

satisfies the integer requirement. With the tidal cycle Tp = 12.4 hours, 0.0625 equates to

46.5 minutes. It should be noted that this fraction size depends on the size of the temporal

interval.

Water depths after verious cycle portions

E
c

R
Q)
"'0...
~

o 100 200 400 500 600300
Distance along centre of river in Km

Velocities afterverious cycle portions

Distance along certre of rIwr in Km

Figure 3.3: Flood and Ebb Tidal Cycles

From fig. 3.3 it can be seen that at 0 Km the water depth is about 15.7 m at tidal cycle 25.5

hours. Halfway through this ebb cycle, that is at 25.75 hours, the water depth has dropped to

about 14.82 m. Similarly, at 0 Km the velocity is around -0.05 mls indicating the flow is

upstream even though this is an ebb phase. This is not unusual since there is always a little

delay before the velocity approaches zero and then switches direction. Finally, the velocity

is about 0.63 mls halfway through the ebb phase at 25.75 hours. Since it is positive, it is in

the direction of the estuary and so entirely consistent with an ebb flow scenario.

To use the model as given by (3.9) and (3.10) above would lead to spurious wave reflections

from both the upstream boundary at x = 0 as well as a similar reflection at the downstream

boundary at x =L.To allow water to flow freely either way through these boundaries

Chapter 3 51 The Hydraulic Model

requires suitable boundary conditions based on the Theory of Characteristics e.g. Smith

[97]. In a private communication with Johns [50], suitable boundary conditions based on

characteristics were formulated.

At the upstream boundary x = 0, the condition is

(3.20)

whilst at the downstream boundary x = L, it is

(3.21)

where uO'u" are the imposed velocities at the upstream and downstream boundaries

respectively, UO,UL are the depth averaged velocities at (or near to) these boundaries and

Tp represents a typical tidal period in seconds. The tidal period in the case of the Thames is

12.4 hours as noted earlier.

The finite difference forms for the boundary conditions are then respectively:

(3.22)

q-J+I ~(2 . (27t(j-l)8t) -J)
I = - Ut sm +U/,, , Tg p

(3.23)

It is noted that the values of ~ at the boundaries have to be computed first at each time level.

The domain of analysis to be initially considered is 600 Km in length. In this way,

Vreugdenhil [106], the boundaries can if necessary be moved well away from any particular

area of interest within this domain.

3.7 Data generation for zero tidal flow

The Matlab (filename:VenantDataGenerator2) code used to generate the test data and

subsequent plots is in appendix C. The program can generate data with or without the

effects of bottom stress. The pseudo code is as follows:

Chapter 3 52 The Hydraulic Model

Filename: VenantDataGenerator2
COMMENT: The initial conditions are that velocity = 0for all x and 1 = 0 excepl at x = 0

where there must be some basic input to start the system going. This is equivalent to a

hydrographic input (boundary condition) at the river end of the estuary.

COMMENT: This program computes using FDS, the height above still water level and

associated velocities, at the centre of the river given this boundary hydrographic velocity

input at the river end of the estuary and a value for the average depth (still water level) of

the channel. Since a staggered grid is being used, the spatial interval is 2 x deltax.

Velocities are stored in U(j,n) and the height values are stored in H(j,n). Using two separate

matrices like this means that each matrix will have alternate rows containing nothing other

than zeroes (even after computing) as a consequence of the finite difference scheme

staggered method

COMMENT: The j index represents the rows of velocity and height respectively whilst the

n index represents the lime iteration levels.

COMMENT: There are velocity and depth estimates (sections) obtained using a given

number of time iterations. The number of tidal cycles (for time iteration) and upstream and

downstream velocities are selectable. This model covers a length of (sections-J)/2 km along

the river.

COMMENT: Note, for stability of the FDS scheme, the time spatial grid has been chosen

so that the Courant number is less than one.

COMMENT: Suitable boundary conditions as suggested by B.Johns are used to avoid wave

reflection.

PROCESS initialize data

INITIALIZE space, time tidal cycle variables

GET model length, velocity boundary conditions, still water depth

INITIALIZE velocity and depth arrays

INITIALIZE parameters g, c, Cr, k, m, I, p, r, q

END

PROCESS_calculate depths and velocities

LOOP_on tidalcycles

LOOP_on timesteps

calculate depths at upstream and downstream boundaries

Chapter 3 53 The Hydraulic Model

LOOP on sections

calculate depths at odd numbered sections

END

LOOP on sections

calculate velocities on even numbered sections

END

END

IF no. of tidal cycles has not been surpassed

LOOP on odd sections

transfer latest depth iteration to previous timestep

END

LOOP on even sections

transfer latest velocity iteration to previous timestep

END

END

END

LOOP on sections

convert velocities to depth averaged velocities

END

END
PROCESS _plot depth graphs

calculate average depth

plot average depth

plot depth

END
PROCESS _plot velocity graphs

calculate average velocity

plot average velocity

plot velocity

END

PROCESS save data

save velocities and depths to afile

END

Chapter 3 54 The Hydraulic Model

All of the simulations to generate the data were run over a 25 tidal cycle period which is

approximately equivalent to 12.92 days of real tidal flow in the Thames. As noted earlier,

the speed of the disturbance is Jiii so that any disturbance flowing from the upstream end

of the river can reach the 50 Km point of interest in approximately 1.14 hours which is

about 0.09 tidal periods (Tp). Hence, a simulation over 10 tidal cycles would have been

more than adequate. However, to see an extended area of interest as depicted later in figs.

3.11, 3.12 and 3.13, the disturbance would require 13.7 hours (or approximately 1.1 tidal

cycles) to cover a distance of 600 Km and so a 120 tidal cycle period was chosen for the

simulation shown in that figure. Three different scenarios of water depths were chosen

namely:l0 m, 15m and 20 m. Further, at each of these depths, different configurations were

chosen for the imposed inflow at the river end (such as would be represented by a

hydrograph) and that at the estuarine boundary which would represent an imposed tidal

oscillation. The depths were computed at sections along the river at 0, 2, 4... 50 Km and

velocities at 1, 3, 5.. .49 Km since the spatial interval is 2 x 500 m. Graphs of the water

depths and velocities at the 15m scenario for different configurations follow.
Weier depth eftar 25 lIdal cycles

E 153092

c:

:§_
(])~
L..

~ 15.3091

0~~5~~1~0--~15~~~~~~~~3~0--~35~-4~0--~4~5~~
DiSl8nCe aong came of river in Km

Figure 3.4a: Depth under zero tidal flow
VeloCIty eftar 25 tidal cycles

0.2502
(I)

E 0.2501
c:
~ 0.25
·0
o 0.2499
(j)
> 0.2498

o 5 10 15 20 25 30 35 40 45
Distance along ceme cl river in Km

Figure 3.4b: Velocity under zero tidal flow

Figs. 3.4a and 3.4b depict the water depths and velocities at different locations in the River

Thames after 25 tidal cycles. Although the graphs appear rather 'jagged', this is purely due

Chapter 3 55 The Hydraulic Model

to the horizontal/vertical scaling. Classical Laplacian theory of hydrodynamics indicates that

the water depth should level off to a steady state value of about 15.309 m (a personal

communication from Johns [50]) which as can be seen above, the finite difference model

does indeed do, oscillating about this mean value. Similarly, the velocity should also

approach a mean of 0.25 mis, again as depicted above. The figures represent a situation

where there is no tidal inflow from the estuary whilst there is a constant inflow of 0.25 mls

at the river end, in other words, a steady state problem. A somewhat artificial case since

there is always input into or output from the system at the estuarine end in the Thames.

Although the scheme does not converge precisely to 15.309, it is stable with an oscillation

about the mean of less than +1- 1 cm.

3.8 Data generation for flood tide flow

The following 'italicized' data is a typical example of the computer output and refers in

particular to figs. 3.5a and 3.5b with the user response in bold:

Wave celerity = sqrugravity x still water depth).

So for still water depth = 20m, celerity = 14 m/s, for depth = 15m, celerity = 12.13 m/s,

depth = 10m, celerity = 9.9m1s

As the number of required tidal cycles needs to be iterated through about ten times, then as

a guide:

no. of cycles for 501an = 10, no. of cycles for IOOIan= 20, no. of cycles for 200 Ian = 40, no.

of cycles for 600 km = 120 etc.

How many tidal cycles do you wish to iterate over (note 12.4 hours = one tidal cycle) ? 25

tida/cycles = 25

Enter no. of sections required (must be odd). e.g. 101 spans 50 Km, 201 spans 100 Km etc.}

? 101

Enter a value for the still water depth 1j

Enter a value for the upstream velocity .25

Enter a value for the downstream velocity .25

Enter a value for the friction coefficient, say zero for no bottom stress or for example

0.0026

Value? 0

Chapter 3 56 The Hydraulic Model

E
.£ 1525£i .
a.
Q)
"t:l

~ 15.2

S

Water depth atter 25 tidal tydes

Distance along certre of river in Km

Figure 3.5a: Depth with flood tideflow of -0.25 mls.
Velocity after 25lidal cycles

0.38

0.36
IIIE 0.34

:~ 0.32
g 03
OJ> 0.28

026

Distance mong centre cl nver InKm

Figure 3.5b: Velocity with flood tide flow of -0.25 mls.

Figs. 3.5a and b represent a configuration where there is an opposing forcing tidal inflow of

-0.25 mls at the estuary and a river input to the system at the x = 0 boundary of 0.25 mls ..

Water depIh eftet' 25lidel cycles

E 1525
.s 152
, 15.15
"t:lj 15.1

> 15.05
15

Distance along ceme cl nWl' in Km

Figure 3.6a:Depth with flood tide flow of -0.j mls.
VeIodty after 25 tidal cycles

05

~ 0.45

.s 0.4

.~
u
o 0.35
~

03

0.25 "-_'-- ______ '----:':----!-:----:'_---J_---1___.:::'O

o 5 10 15 20 25 30 35 40 45
DIstance along ceme of river InKm

Figure 3.6b: Velocity with flood tide flow of -0.5 mls.

Chapter 3 57 The Hydraulic Model

Figs. 3.6a and b depict the case of an inflow of 0.25 m1s at the river end and a larger forcing

inflow of -0.5 m1s at the estuarine end.

3.9 Data generation for ebb tide flow

E 15.45

£
~ 154
"0

115.35

Water depth after 25 tidal cycles

o 10 5020 30 40
Distance along cenlre of river in Km

Figure 3. 7a Depth with ebb tideflow 0/0.25 mls.
VeloCity atter 25 tidal cycles

0.24

~ 0.22

.5: 0.2

.~ 018
u
~ 0.16
> 0.14

o .12 ~----'~--:,::-----:,::----:,-_--,-_~_~,-------'-_--'::-____'o 10 15 20 25 30 35 40 45
Distance along cenlre at river in Km

Figure 3. 7b Velocity with ebb tide flow 0/0.25 mls.

Similarly, figs. 3.7a and b above represent the case where there is again a river inflow of

0.25 mls but now a forcing tidal outflow of 0.25 mls.

E 15.6
.5: 15.55

~ 15.5
"0 15.45I15.4

15.35

Water depth after 25 bdal cycles

o 30 4010 20
Distance along c8I'II'e at river In Km

Figure 3.8a Depth with ebb tideflow 0/0.5 mls.

Chapter 3 58 The Hydraulic Model

Velocity after 25 bdal cycles

0.2
(/)--E 0,15
,£
;~ 0.1u
0
ID 0,05>

0

Distance along centre of river tn Km

Figure 3.8b Velocity with ebb tide flow ofO.5 mls.

In the last set of figures above, figs.3.8a and b, the scenario is similar to that of figs. 3.7, but

now the forcing tidal velocity at the estuarine end is twice as large i.e. 0.5 mls outflow.

3.10 Convergence of the Finite Difference Scheme

The next set of figures that follow demonstrate the convergence of the finite difference

scheme at the upstream and downstream boundaries as wen at the midpoint along the river

as the number of tidal cycles of iteration is increased for various combinations of upstream

and estuarine velocities. Figs. 3.9a and b depict the flow when the upstream boundary

inflow is 0.25 mls and the downstream forcing boundary flow (estuarine end) is -0.25 m/s.

/ JV\IV

10 l!:) JQ

OW2~---- ,
Figure 3.9a: Convergence of the FDS - flood tide

o ..

o It

Figure 3.9b: Convergence of the FDS -flood tide

Chapter 3 59 The Hydraulic Model

Correspondingly, figs. 3.10a and b represent the opposite flow, that is an ebb tide one where

now the forcing velocity at the estuarine end although of the same magnitude, is now in the

opposite direction.

=li 15G1JSl

.g I,·r?~

~ lS41e9

"~ 1,41Cili

l~~Jer
IS47

Iv W I() «)

Figure 3.JOa: Convergence of the FDS - ebb tide

1 :Seft~ttn .. ~llMlI:OOt¥n----
l~Jlllr,\(VVw 1"11118

1 1"8

~
1.,.11 '$

1 31"

~'''l
IJ zo ICl 04() ::;0 ;.'(I ;,0 ~()

I) 1?e~O-7:,:J:---:::!Il:-=----:'.:30:--~"':':'--:.
~d.~"~

Figure 3. JOb: Convergence of the FDS - ebb tide

3.11 Domain analysis extension

It would appear from figs. 3.5 to 3.8 that the relationship of velocity (and depth) to distance

along the river is a linear one. This is not the case since these figures only show the first 50

Km of the river where as previously noted, the wavelength is 541.51 Km for a river depth of

15 m. Extending the domain analysis of the finite difference scheme to a length of 600 Km,

a more extensive picture emerges:

Chapter 3 60 The Hydraulic Model

E 158

.£: 156

R 154
w
""C 152
'-w
1\1 15

~ 148

0 100 300 400 500
Dostaoce 8IOnO centre 01 rMf" In Km

VeIoci1V alief 25 ti daI cycles

06
(I)

E 04
.£:
.~
u
0
Q)

>
-02

0 100 200 300 500

Figure 3.11.- 600 Km domain at 15 m depth

The domain analysis can be restricted to 50 Km but it must be borne in mind that the

relationship between the depth (and velocity) to distance is not linear due to the influence of

the imposed sinusoidal velocity at the estuarine boundary. Fig.3.11 depicts a forcing ebb

(downstream) flow ofO.5 mls at the estuary and an upstream flow ofO.25 mls.

The next set of figures depict the flows at a depth of 10m and 20 m respectively with

exactly the same values for the upstream and downstream forcing velocities:

WfJIJ(~ 8fter 25 Dde! cycles

E 10.6
.£:
"§_ 10.4
Cl) 10.2""C
'-

~
10

98
0 100 300 400 SOD 600

Distance atong Cen1r8 cA nver 10 Km

VelOCity after 25 bdal ~

VI aeE
.5 0.4
.€ 0.2u
0

~ 0

100 200 300 400 500
Dl5ISICe alOng came cl river in Km

Figure 3_12: 600 Km domain at 10m depth

Chapter 3 61 The Hydraulic Model

W811lr depth a1t&r 25 bdel cycles

21
E 20.8
.!:£; 20.6g- 20 4 __. .___________________________ _

"C 20.2

§
> 198

o 100 200 300 400
Distancealongcarve Iiriver In Km

Velocity alter 25 belal cycles

500 600

~
0.6

.!: 0_4

.~ 02u
0
ID

0>
-0.2

0 100 200 300 400
Distancealongcne Iiriver ,n Km

Figure 3.13: 600 Km domain at 20 m depth

3.12 Finite Difference Scheme- bottom friction model

So far the effects of bottom friction have been ignored. Bottom friction is essentially a

resistance to movement of the flow. A main objective is to develop a neural network model

incorporating these effects and so the research will return to an investigation of bottom

friction in Chapter 5.

If the non-linear bed friction term is included, then equation (3.6) can, Vreugdenhil [106],

be written:

(3.24)

where CD is a coefficient of friction and p is the density of seawater. Noting that the

velocities 'u' in this bed friction term have to be depth averaged, this will give rise to a h2

term. Provided the density is homogeneous throughout, that is a density of 1 (freshwater) is

assumed, then the density term can be ignored. Hence, from equation (3.24), equation (3.10)

becomes

J+l _ J Cr Jg(j:J+l j:J+l) C 1+11J IOf
U;+1 - U;+1 - 2Vh <;';+2 - <;,; - DUi+l Ui+1 h2

which after a little manipulation becomes

Chapter 3 62 The Hydraulic Model

(3.25)

From a private communication with Johns [50]. a suitable value for CD is 0.0026. The FDS

model to include bottom stress is therefore (repeating equation (3.9) for convenience):

;:1+1_;:1 h t5t (1 J)
'::>i - '::>i - 2t5x Ui+1 - Ui_1

-q,1 c' t5t (j J)- ---- u -u, g 2t5x ;+1 i-I

. er fE(· .)
=~J - 2fi U(+I - U(_I

(3.9)

UJ _ er Jf(J:l+1 _ ;:l+l)
1+1 2 h '::>1+2 ,::>,

J+I _
Ui+1 - ---=-~'----. -15=-(--

1+0.0026IU(+11h2

(3.26)

subject to the boundary conditions (3.22) and (3.23).

3.13 Data generation for the bottom friction model

To conclude this chapter, two further figures, figs. 3.14 and 3.15 depicting the effect of

bottom stress on the flow follow. Although the effects of bottom friction in a neural network

model will not be considered until Chapter 5, it is worth noting the effect of bottom friction

at this stage and hence its importance in river flows. Fig. 3.14 depicts an ebb flow with an

upstream velocity ofO.25 mls and a downstream velocity ofO.5 mls. Contrastingly, fig. 3.15

shows the flow with the same magnitude velocities but now in a flood tide mode. As can be

seen from the figures, there is a tendency for the bottom friction to 'dampen' the properties

of the flow. As a result of the 'resistance' due to this friction, the deviations of the wave

height from the still water level are reduced.

Chapter 3 63 The Hydraulic Model

Water deptll after 25 odel cycles

Distance along centre of river in Km

06
(/)

E 0.4.s
.~
u
0
"iii>

·02
0

Velocity alter 25 tidal cycles

mean velocity (witllout stress)

._- --._-- _.1_ .._ __.

'\ot- -without bottom stress

100 200 300
Distance along centre of river In Km

Figure 3.14: Effects of bottom stress during ebb flow

W:JI.erdeptll after 25 ~del cycles

158
E
.!: 156

:6
154c.w

-c._
152w

+-'ro
~ 15

148

0

wilhoUl boaom stress

._-_._ .._ ..._.__ .._,. __ ._..._ ...__ .._ .._ ..._-

mean deptn

100 200 300 600
DIstance along centre of river in Km

Velocity alter 25 tidel cycles

~
.!:
.~
uo
~

mean velocity (wilholJ: bottom stress)

1 with bottom stress

_.-.__ ..._ -...-.- ...-.~--.----.--...----, ..------.-
--·--··------·1·-····--··-·-·--·-··· ...

mean veloctty (IIIIIth bottom stress)
o

Distance along centre of river in Km

Figure 3. J 5: Effects of bottom stress duringjloodflow

The bottom friction effectively due to the drag effect, tends to work in the opposite direction

of the flow. This results in the velocities being restricted to a narrower range of values. It

Chapter 3 64 The Hydraulic Model

should be noted that this damping effect is proportional to the value of CD so that if a larger

value was chosen, the damping effect shown in figs 3.14 and 3.15 would be even greater. It

can also be seen from equation (3.16), that the effects of bottom friction diminish as the

water depth increases.

3.14 Conclusion

In this chapter a brief discussion of previous research into hydrodynamical modelling of

river flows and in greater detail, the applications of neural networks to this field was

provided. Shallow water theory was described and in particular, why this theory could be

applied in this research. Based on the de Saint Venant equations (3.1) and (3.2), a simple

hydrodynamical model was developed. From this a one level, leapfrog, finite difference

scheme was constructed, equations (3.9) and (3.10), to represent a linearized flow (no bed

friction). Using the Von Neumann method of stability analysis, it was shown that the

scheme was stable provided IpI2 == PP = 1 and also, by examination of the truncation errors

in the scheme, the latter was indeed found to be compatible with the original differential

equations. Suitable boundary conditions based on the Theory of Characteristics were applied

to the finite difference scheme resulting finally in equations (3.22) and (3.23). Data

containing depths and velocities was then generated using three different depth scenarios in

an ebb tide regime over a length of 600 Km using 25 tidal cycles. It was observed that with

no downstream imposed velocity (estuary end) the resulting depth converged to the value

predicted by classical Laplacian theory.

The finite difference scheme was then extended to include non-linear terms such as bottom

friction resulting in equation (3.26). Although the stability of this new scheme was not

analysed because of the extra complexity, it was suspected that the addition of bottom

friction would 'dampen' out any instabilities. This was demonstrated by the generation of

data for the bottom friction model that followed wherein there was a tendency for the

friction to level out both the depths and velocities. Figs. 3.14 and 3.15 depict the significant

effects of bottom friction in modelling river flows.

It should be emphasised that there are finite difference schemes other than that specified by

equations (3.9) and (3.26) that involve implicit as well as explicit terms or schemes using

Chapter 3 65 The Hydraulic Model

two initial time levels rather than one. However, one of the objectives of this research is to

test the feasibility of using a neural network in a scenario involving bed friction (Chapter 5)

and not a comparison of different finite difference methods. Notwithstanding this. the

scheme compared favourably with the numerical model of Johns [51] (Chapter 4).

66

Chapter 4
Neural network model with zero bottom friction

4.1 Introduction

In this chapter the research concentrates on the development of a neural network to simulate

the depths and velocities of a hydrodynamical model without bottom friction (cf. Chapter 3).

Although the ultimate goal is the development of a model including bottom friction, the

approach adopted here is to obtain some idea as to the architecture and other parameters

involved in this simpler structure. In this chapter the methodology of the backpropagation

training algorithm is discussed and the various measures of error are described. Various

training and validation simulations are performed to assess the most suitable network

architecture, and this is further refined by attempting to determine the optimum values for

other parameters such as the momentum term and the learning rate. Finally, a comparison of

the neural network simulations is made with a numerical model of Johns [51].

4.2 Model neural network architecture

The type of ANN to be used to model the hydrodynamical problem, discussed in Chapter 3,

is a multilayer perceptron (MLP). This form of ANN architecture was briefly analyzed in

Chapter 2 and in particular, depicted in fig. 2.7. It was decided to use a MLP network since

it is frequently used by researchers in the hydrodynamics field and most importantly, used in

one of the main papers referenced in this research and so readily available for comparison.

As much of the work using measured hydrodynamic data involves some form of regression

analysis whilst MLPs themselves are closely related to statistical regression, Sarle [92], this

form of architecture was a natural choice. Further, MLPs are very good at learning functions

that contain little or no discontinuities. Generally, hydrodynamic equations are if anything,

'smooth' and continuous mathematically.

As can be seen from the hydrodynamical model finite difference schemes equations (3.9)

and (3.10), from the previous chapter, repeated here for clarity, there will be three inputs and

just one output:

Chapter4 67 Model with zero bottom friction

j:J+l _ j:J h t5t (j J)
,:>, - ,:>, - 2t5x U'+1 - U'_1

-~J c
2

t5t (J J)- ---- U -U, g 2t5x '+1 '-I

-j:J er fI(J J)
-,:>, - 2Vg U'+1 - Ui-l

(4.1)

J+1 _ J t5t (j:J+1 j:J+1)
U'+1 - U'+I - g 2t5x ':>'+2 - ,:>,

=u! _ i__!_t_(j:J+l _ j:J+l)
1+1 h 2t5x ':>1+2 ,:>, (4.2)

=uJ _ er fg (j:/+l _ j:j+l)
1+1 2 'II; ':>1+2 ':>1

Hence an ANN structure of three inputs and one output was adopted for the modelling. By

Kolmogorov's theorem (cf Chapter 2), Marques de Sa [74], Hornik [45], provided there are

enough neurons in the hidden layer, only one hidden layer (or at most two) should be

sufficient to ensure that the structure has the properties of a 'universal approximator' for this

particular problem. Further, Marques de Sa [74], the number of neurons in the hidden layer

would most likely be 2N + 1 where N is the number of neurons in the input layer. If there

are too few hidden units there will be both a high training error and generalization error due

to underfitting and high statistical bias. Correspondingly, too many hidden units result in a

low training error but still in a high generalization error due to overfitting and high variance.

Hornik [45] indicates that for the MLP to have this universal approximation property where

there are hidden layers in the architecture, then there must be bias terms present. However,

he does provide the caveat that in the case of the usual sigmoid activation functions, a fixed

non zero bias term can be used instead of a trainable bias term.

There will in fact be two networks to develop as can be seen from equations (4.1) and (4.2)

above. The first network will have the inputs ~j, u/+I and uLI with an output of ~J+1 , the

updated depth that will feed into the second network. The inputs to this second network will

then be u/+1, ~~;Iand ;tl from which the output UL~I, the updated velocity, is obtained. A

possible network architecture is therefore outlined below in fig. 4.1, the actual number of

neurons in the hidden layer to be verified during the course of this research.

Chapter4 68 Model with zero bottom friction

Figure 4.1: Possible network architecture

In relation to the fig. 4.1 above, for the first (depth) network, the inputs are
~ J J ~~
~; ~ XI' U;_I ~ x2' U;+I ~ x3' Z ~ ~;

and for the second (velocity),
j ~j+1

U;+I ~ XI' ~; ~ X2'

That is, the first network is trained using a combination of two previous velocities and one

previous depth with the target value being the latest depth. Conversely, in the second, the

training uses a combination of one previous velocity and two latest depths where the target

value is now supplied by the latest velocity.

Chapter4 69 Model with zero bottom friction

4.3 Training Schema

The complete scheme is outlined in fi .4.2:

Set tirre lew! j = 1

Figure 4.2: Training schema

With respect to the training of the network, this was performed using the backpropogation

algorithm in incremental mode rather than batch mode for the possibly faster (in terms of

convergence) second derivative methods such as standard conjugate gradient or Levenberg-

Marquardt algorithms could not be used since they are essentially batch algorithms. The

algorithm was applied with learning rates and momentum terms and initially, the bi-polar

activation function.

.------jl1~ j = j+1 I)

First reMa1c LSe as irplJs, L(i-1,j), l;(i,j) crd L(i+1,j) irto tte
Al\Nto get al 0lJplt fa'i;(i,j+1)

Vttlere i= 2, 4, 6....seciia'l5r2

Sec:orcJ reMa1c LSe as il'"fllJs L(i+1j),l;(ij+1) crd l;(i+2,j+1)
irto tte AI\N to get an0lJplt fa' L(i+1,j+1}

Vttlere i= 2, 4, 6,sec:::tia'&-2

Yes
j < til' esteps?

Chapter4 70 Model with zero bottom friction

Although the model equations (3.3) and (3.4) have been linearized to first order so that in

principle a simple linear threshold would suffice, the addition of the non-linear boundary

conditions (3.20) and (3.21) as well as the non-linear bed friction terms require a non-linear

threshold function. The bi-polar function, which was chosen (as mentioned) as its output is

restricted to the range [-1, 1] which matches that precisely of the depths and velocities since

the depth variation q E [still water level ± 11and u E [mean velocity ± 1]. In fact, as the

amplitude of the wave A ~ Ul.it can easily be seen that for still water depths of 20 m or

less and a velocity U of 1 m/s, the maximum amplitude would be +1- 0.7 m from the still

water level. Exceptions to this of course would be situations involving 'bores' such as the

famous one that travels up the Severn Estuary. The outputs from the finite difference model

therefore fall within the range [-1, +1]. In practical terms therefore, it was better to use this

activation function [hi-polar] rather than the sigmoid and since the inputs were of the same

order of magnitude as the target, no scaling of the inputs or outputs was therefore necessary.

In fact, it is not unusual to not scale the data, for example, in the neural network modelling

of time series. The equations to perform such scaling, equations (2.9) and (2.10) were

briefly discussed in Chapter 2. However, this was investigated using these scaling equations

and it was observed that much better agreement between the target and output variables was

obtained when scaling was not employed. Further, it was observed on analysis that all of the

variable values fell within the bipolar range when, with Uo = river initial velocity and UL =

initial estuarine velocity (cf. Chapter 3):

still water depth = 20 m, no bed stress

IUol + lULl ~ 0.7

with bed stress

still water depth = 15 m, no bed stress

IVol + IVL Is 0.8
with bed stress

Chapter4 71 Model with zero bottom friction

still water depth = 10m, no bed stress

IUol+IULI ~ 0.95

with bed stress

4.4 Backpropagation Algorithm

Most of the concepts used in the rest of this chapter i.e. activation functions, hidden layers,

learning rates, momentum terms, underfitting, overfitting, incremental and epoch based

learning were discussed in Chapter 2 and so will not be repeated here.

The backpropagation technique is essentially a gradient descent process and is one of the

most widely used algorithms for training a MLP. In the MLP, a feedforward network as

discussed in Chapter 2, the connections between the different layers are bi-directional in the

sense that errors can be propagated back from the output layer to the input layer so that all

weights are modifiable. Essentially a pattern of weighted inputs is presented to a hidden

layer (if there is one), activated upon via the transfer function and then forwarded on with

new weights to the output layer where these 'inputs' are further activated upon using the

same (but not necessarily so) transfer function. The differences between the desired sample

(or target) outputs and the actual outputs are then used to generate 'error signals' which can

be used to modify the weights between the output and hidden layers, and then subsequently

between the hidden and input layers. The ultimate goal of the process is to reduce these error

signals to an acceptably low value.

The rule by which this is accomplished is called the 'Widrow-Hoff' rule or 'Least Squares

Rule' (LMS) or 'Generalized Delta Rule'. The latter name refers to the fact that the original

'delta rule' was applicable only to a single layer perceptron (as mentioned in Chapter 2) and

not to a MLP and so had to be amended. The full mathematical derivation of this rule can be

found in any standard text on neural networks such as Haykin [43], Picton [85], Tarassenko

[99] et. al. The process of pattern presentation to the network is repeated many times, each

time errors signals being generated and the weights adjusted accordingly. When the error

signals approach an acceptably small value, the so called training is stopped and the weights

are then 'frozen'. To aid convergence to these acceptable values and to avoid local minima

Chapter4 72 Model with zero bottom friction

and overfitting, learning rates and momentum terms are added to the mathematical

formulation of the rule.

Consider a MLP consisting of just one hidden layer such that there are in total, N input

units, L hidden units and Woutput units represented by the subscripts i,j and k respectively

for each set of training patterns presented to the network. It should be noted that different

authors use a different ordering of the subscripts i, j, k on the weights particularly on the

backward pass through the algorithm. Gurney [38], Browne [14], Haykin [43], Skapura [96]

for example use the ordering kj and ji whilst Tarassenko [99] and Callan [17] use jk and ij.

Whichever annotation is used, it is important to be consistent in terms of the weight

matrices and their transpose. The following algorithm (with some important modifications)

is based on the work of Browne [14].

4.5 Application of the backpropagatiea algorithm

4.5.1 Forward Pass

• present a net (weighted) input to each unitj in the hidden layer

N=. = LWijx;
;=1

(4.3)

where {x.} represent {input units}, {Wij} represents {weights from input unit i to

hidden unit j}.

• Pass this net result through a transfer (activation) function

(4.4)

for each of the hidden units j, where the" J ,.means activation (not integration in

the standard sense of calculus) to give an activated result Obj,

• Present the set of weighted (using new weights) activated outputs from the hidden

layer to the output layer.

L

net, =LwjkOhj
j=1

(4.5)

• This results in the following:

(4.6)

Chapter4 73 Model with zero bottom friction

which are the activated values of the 'inputs' to the output layer.

4.5.2 Backward Pass

The activated outputs {OOk} from step (4) are compared with the desired target activation

values {dk} from which the error signals are generated and further, from which a t5 quantity

(hence the 'delta' rule) can then be calculated for each of the output units.

• For each output unit,

(4.7)

• The t5term for each output unit is

So, = (d, -OOk)Ook(l-OOk) (4.8)

• As for the output layer, error signals are then calculated for each unit in the hidden

layer.
w

error signal = Lso,Wik
k=l

(4.9)

• from which can be calculated the t5 term for each of the hidden units
w

t5hj = (Oh)(1- Oh) Lt50kwjk
k=l

(4.10)

• To change the weights between the output and hidden layers, weight error

derivatives are calculated for each of the weights between the output and hidden

layers according to the formula

(4.11)

The weights are then adjusted using the formula

wjk (1+1) = wjk (t)+ TJwedjk (4.12)

where wjk(H 1) represents the adjusted weight to be used in the next iteration of the

forward pass. The quantity TJ is the learning rate. If a momentum term a is

included, the equation is:
wjk (1+1)= Wjk (1) + TJwedjk (1) + awedjk (1 -1) (4.13)

so that now the weight error derivative from the previous cycle is used as well.

If some form of regularization is employed (to aid convergence) such as weight

decay, Bishop [9], then equation (4.13) becomes:

(4.14)

Chapter4 74 Model with zero bottom friction

where d3 is the (one) decay constant from the units in the hidden layer to the output

layer.

If a bias unit is included, remembering that the activation of a bias unit is usually I,

the weight error derivative for the bias is

(4.15)

with the weights being adjusted by:

wk(t + 1)= wk(t) +'lwedk(t)+awed/c(t-I) (4.16)

If again, weight decay is employed, (4.16) becomes:

wk(t + I) = wk(t) + 'lwedk(t) + awedk(t-l) -d4 wedk(t) (4.17)

where d, is the (one) decay constant from the bias to the output layer.

• Similarly, weight error derivatives are calculated for the weights between the hidden

and input layers:

(4.18)

and these weights between the hidden and input layers are amended in a similar

fashion using

wij(t + 1) = wij(t) + 'lwedij (4.19)

or

(4.20)

or

(4.21)

For bias units attached to the hidden layer, in a similar fashion as for the output

layer,

the weight error derivative is:

(4.22)

and the weight adjusted by:

wit + I) = wj(t) + 'lwedj(t) + awedit -1)-d2wedit) (4.23)

Chapter4 75 Model with zero bottom friction

It should be noted that the four decay constants do not have to be necessarily the same and

also, equations (4.8) and (4.10), as written, are only valid when the transfer function is the

sigmoidal (logistic) one since if
1

f(x) = 1 -x then f'(x) = f(x)[l- f(x)].
+e

Ifhowever, the transfer function is the tanh function, then with
eX _e-x

f(x) = _ we have f'(x) = 1- [f(X)]2 .
e' +e x

This implies that equations (4.8) and (4.10) must, if using the tanh transfer function, be

amended to:

so, = (dk -Ook)(1-[Ook]2) (4.24)
w

tShj =(l-[OhJf)l:tSotwJk
k=1

(4.25)

respectively.

The training of a neural network using the backpropagation algorithm was briefly discussed

in Chapter 2, where concepts such as local minima, incremental updating and training sets

were introduced. It should be noted that if a weight decay is employed then the inputs and

targets usually have to be standardized and the bias terms preferably omitted, Sarle [92].

4.6 Error Measures

There are essentially four measures of error considered in this work: the mean error which

gives some measure of the bias on each output and the root mean square error (RMSE)

which is basically an indicator of the strength of relationship between the input and output

as well as the amount of noise in the data, the error standard deviation and also the relative

percentage error. With e; = z; - I; = the individual errors of n patterns where zp I, represent

the outputs and targets respectively, then the four following error measures, equations (4.26)

to (4.29) are:

1 n
mean (absolute) error Me = - Lie; I

n ;=1
(4.26)

Sometimes referred to as the mean absolute deviation, it is usually similar in magnitude to,

but slightly smaller than, the root mean squared error. If the data sets are small or limited,

the mean (absolute) error is the preferred method. In contrast, the mean error (that does not

Chapter4 76 Model with zero bottom friction

use absolute values) is not a measure of accuracy since large errors of equal magnitude but

opposite sign can cancel each other out.

1 n

root mean squared error = ± - Le,2 •
n ;=1

(4.27)

This is a measure of dispersion and in regression analysis is referred to as the standard error

of the estimate. It is more sensitive than other measures to the occasional large error since

the squaring process gives disproportionate weight to very large errors. Squaring equation

(4.27) and multiplying by n gives the 'total squared error loss' frequently abbreviated in

statistics to 'SSE'. If equation (4.27) was just simply squared, the 'mean squared error loss'

often abbreviated to 'MSE' is obtained. In classification problems in the field of neural

networks, the MSE is often referred to as 'Empirical Risk'.

error standard deviation se =± I ~) el - Me)2
(n -1) 1=1

(4.28)

relative percentage error: E,." =.!..t{~Iell} x 100% .
n 1=1 1/

(4.29)

The latter is also sometimes called the mean absolute percent error and if the error is large, it

implies the 'fit' is not a particularly good one. By subtracting this value from 100, a type of

measure of 'correctness' in percentage terms is derived. With u2 representing the variance

of the errors, the mean error and the root mean squared error are related in such a way that

(4.30)

For the sake of brevity, within tables in both this chapter and the next (Chapter 5), these

error measures will be abbreviated to: ME, RMSE, ESD and RPE. It should be noted that

many researchers just consider the one error measure, RMSE. To complicate matters further,

sometimes the square root is not taken so that the values being quoted are actually the MSE

(mean squared error).

In the work that follows, it was observed that generally:

Chapter4 77 Model with zero bottom friction

ME--~±O.75,
RMSE

ESD ~ ±0.03 and
RMSE

RPE ~±5
RMSE

It is noted that for the last ratio, the units have not cancelled out and so for the depth

analysis it will be m-I and for the velocity analysis, m?s .

4.7 Software programs used in the simulation

There are five Matlab programs used in this research:

VenantDataGenerator2 - generates the depths and velocities (with or without bottom

stress) from the finite difference schemes as discussed in Chapter 3.

DepthSolution - trains the neural network using back propagation on the depths and

velocities generated by the previous program, VenantDataGenerator2, to obtain a simulation

of the depths. This program is also used to select between different architectures i.e. the no.

of hidden units

DepthSolutionValidation - (using fixed weights pertaining to each of the different

architectures) validates the different architectures against an unseen data set (re-created by

VenantDataGenerator2.) This program is also used once more using a third re-created (and

unseen) data set to test the final selected network over a reduced data set i.e. 60 Km (see

Chapter 5 Section 5.6, in particular, sub section 5.6.1).

VelocitySolution - trains the neural network on the velocities and depths generated by

DepthSolution to obtain a simulation of the velocities. This program is also used to select

between different architectures.

Velocitysolution Validation - as for DepthSolution Validation.

Chapter4 78 Model with zero bottom friction

4.8 Training the depth network (zero bottom friction)

Generate data using VenantDataGenerator2.m

Methodology for depth
simulations

Train NN for depths
using
DepthSolution. m

y Plot training and test
RMSE graphs using
RMSETest.m

y

Testlvalidate with
DepthSolutionValidation

Generate validation
~-----l data using

VenantDataGenerator2. m

y Save data for
>--~ velocity simulations

Figure 4.3: Training and testing methodology

The overall methodology of the depth training and testing is depicted in fig. 4.3.

Chapter4 79 Model with zero bottom friction

The first network, that is the one for solving for the depths as indicated by equation (4.1)

and fig. 4.1, was trained using data generated by the finite difference schemes outlined in

Chapter 3. The Matlab program to generate this data is VenantDataGenerator2 as

mentioned in the previous section (cf. Section 4.7) whilst the Matlab program to perform the

training is DepthSolution. Both programs are listed in appendix C. The latter program also

has the facility to either have the weights entered manually or entered automatically by

MATLAB using the random number generator. The automatic process was the preferred

method.

4.8.1 Pseudo Code of the Depth training program

Briefpseudo code of the DepthSolution program follows:

Filename: DepthSolution
COMMENT: USE THIS PROGRAM ALSO FOR VALIDATING DIFFERENT NEURAL

NETWORK ARCHITECTURES. This is a single hidden layer MLP using the sigmoid or

tanh activation functions and the bac/cpropagation algorithm. THIS PROGRAM SOLVES

FOR THE HEIGHTS ABOVE THE STEADY STATE WATER LEVEL. THIS PROGRAM

USES THE DATA FILE VenantOriginal to acquire the original data created by

VenantGenerator2

PROCESS _get inital data

GET type of activation function, learning rate and momentum term

GET desired rmse, no. of neurons in hidden layer and no. of iterations

LOAD file containing hydraulic data computed using the VenantDataGenerator2

END

PROCESS _initalize arrays

INITIALIZE pattern, input layer and output layer arrays

INITIALIZE arrays to hold weights, weight error derivatives, delta adjustments,

activation results, targets and error signals

INITIALIZE variables bias, iteration counter, mean error, max rmse and outer

counter

END

Chapter4 80 Model with zero bottom friction

PROCESS _get weights

SWITCH_enter weights manually?

CASE weights entered automatically by system

create matrices of randomized weights

OTHERWISE

LOOP

enter weights for input layer to hidden layer

END
LOOP

enter weights for hidden layer to output layer

END

LOOP

enter bias weights to hidden layer

END

LOOP

enter bias weights to output layer

END
END

END

END

PROCESS_copy

COPY weight matrices

END

PROCESS transfer data

LOOP

fill target matrix witth data from file

jill pattern matrix with data from jile

END

END

PROCESS _start of main computation

LOOP_outer loop using outercounter

LOOP_inner loop using innercounter

select input pattern

Chapter 4 81 Model with zero bottom friction

select target pattern

PROCESS _start of forward pass

pass weighted input data to the hidden layer

apply chosen activation function to the hidden layer

pass activated data from hidden layer to the output layer

apply chosen activation function to the output layer

END
PROCESS _start of backward pass

calculate error signal and delta term for output layer

calculate error signal and delta term for hidden layer

compute weight error derivatives and adjust weights between

hidden and output layers

compute weight error derivatives and adjust weights between

input and hidden layers

compute quantities for rmse, mean error and ANN training

END

END
PROCESS calculate errors

calculate rmse and mean errors

check for maximum rmse

plot rmse

save rmse to array

END

IF rmse < specific value

EXIT (computation has achieved desired accuracy)

END

END

END

PROCESS_depths

plot original water depths

plot ANN estimates of water depths

END

PROCESS _print summary

Chapter4 82 Model with zero bottom friction

print rmse, mean error, weight matrices, weight changes, targets, ANN estimates

SA VE new data

END

4.8.2 Evaluation of the number of neurons in the hidden layer

Initially, numerous simulations were performed with differing learning rates, momentum

terms and number of hidden neurons to obtain some idea as to the magnitudes of the RMSE

(cf. table 4.1). To reduce the computational workload at this stage, the simulations were

conducted over a 600 Km length of river and 10000 iterations. An ebb tide regime was used

i.e. a down stream velocity at the river end of 0.25 mls and at the estuarine end, a forcing

velocity of 0.5 mls . The still water depth h for this training set was chosen to be 15m, the

average depth of the Thames at the Medway confluence. Since the spatial difference

between the sections was 0.5 Km (cf. Chapter 3), this meant there were 1800 inputs (two

velocities and one depth at alternating sections) into this first network with 599 simulated

outputs of depths.

The values in bold (in table 4.1 that follows) represent RMSE plots that were either highly

oscillatory (and hence unstable) in the first 4000 iterations but did converge at the end of

10000 iterations, or converged but only in the latter 3000 iterations. The worst 'offenders'

seemed to be when the momentum term was about 0.4 (for certain learning rates) and

displayed instability due to their highly oscillatory nature. This was a point that Haykin [43]

alluded to. Pragmatically, it is necessary to appreciate the significance of the data in the

table 4.1. These values relate to a range of [I.I, 5.3] mm variation in the surface of the water

level.

Chapter4 83 Model with zero bottom friction

RMSE D thresu ts- ept trammg
3 hidden 5 hidden 7 hidden 9 hidden 11 hidden
neurons neurons neurons neurons neurons

Learning 10,000 10,000 10,000 10,000 10,000 Momentum
Rate iterations iterations iterations iterations iterations Tenn
0.05 0.0033 0.0017 0.0027 0.0032 0.0019 0.4
0.1 0.0020 0.0018 0.0017 0.0023 0.0025 0.4
0.15 0.0025 0.4
0.2 0.0019 0.0025 0.0015 0.0018 0.0019 0.4
0.25 0.0020 0.0012 0.4
0.3 0.0035 0.0020 0.0013 0.0022 0.0020 0.4
0.05 0.0053 0.0037 0.0042 0.0023 0.0029 0.5
0.1 0.0018 0.0014 0.0072 0.0022 0.0039 0.5
0.15 0.0039 0.5
0.2 0.0021 0.0027 0.0034 0.0021 0.0025 0.5
0.25 0.0037 0.5
0.3 0.0014 0.0012 0.0018 0.0020 0.0017 0.5
0.4 0.0014 0.0026 0.0039 0.0020 0.0018 0.5
0.5 0.0011 0.0020 0.0011 0.0014 0.0009 0.5
0.05 0.0014 0.0035 0.0064 0.0019 0.0026 0.6
0.1 0.0025 0.0024 0.0019 0.0016 0.0021 0.6
0.15 0.0025 0.6
0.2 0.0019 0.0015 0.0019 0.0031 0.0019 0.6
0.25 0.0016 0.0025 0.0031 0.0058 0.0011 0.6
0.3 0.0023 0.0013 0.0012 0.0018 0.0012 0.6
0.4 0.0014 0.0022 0.0012 0.0012 0.0014 0.6
0.5 0.0014 0.0010 0.0010 0.0012 0.0008 0.6
0.05 0.0033 0.0042 0.0031 0.0057 0.0043 0.7
0.1 0.0023 0.0023 0.0020 0.0034 0.0021 0.7
0.15 0.0020 0.0054 0.0019 0.0025 0.0019 0.7
0.2 0.0020 0.0019 0.0017 0.0016 0.0017 0.7
0.25 0.0012 0.0016 0.0019 0.0015 0.0012 0.7
0.3 0.0012 0.0017 0.0016 0.0012 0.0012 0.7
0.4 0.0012 0.0011 0.0014 0.0013 0.0022 0.7
0.5 0.0011 0.0010 0.0012 0.0012 0.0018 0.7
0.05 0.0016 0.0023 0.0038 0.0019 0.0022 0.8
0.1 0.0021 0.0018 0.0036 0.0020 0.0017 0.8
0.15 0.0022 0.8
0.2 0.0020 0.0018 0.0018 0.0016 0.0016 0.8
0.25 0.0019 0.0021 0.0017 0.0019 0.0019 0.8
0.3 0.0019 0.0016 0.0019 0.0012 0.0017 0.8
0.4 0.0014 0.0015 0.0015 0.0018 0.0016 0.8

Table 4.1: Evaluation of no. of hidden neurons

Chapter 4 84 Model with zero bottom friction

After training, with ebb tide data, the network was presented with unseen data of a flood

tide nature. This was easily obtained by regenerating the depth data using a change from the

estuarine velocity of 0.5 mls to one of -0.5 mls. Plots of different hidden layer architectures

i.e. 3,5, 7, 9 and 11 follow:

Water depth

15.8

15.6

E
c 15.4
:5
Q_
Q)

0 15.2

15

14.8

UL = -0.5

3 tidden neurons
learning rate = 0.3
momentum term = 0.7

100 200 300 400 SOD 600
Distance along certre et river in Km

Figure 4.4: Hidden layer with three neurons

From the above figure, fig. 4.4, it can be seen that a hidden layer with three neurons is

underestimating at 460 Km by about 0.1 m. It is correspondingly overestimating in the 200

Km region by about 0.025 m. The Admiralty have produced limited numerical hydrographic

data of the Thames/Medway area. From Admiralty Chart no. 1185 (1997), used to produce

the plan in Appendix F, it is observed that depths are quoted to the nearest 0.1 m and

velocities to the nearest 0.1 knots. In other words, the Admiralty use accuracies of the order

of +/- 0.05 m and +/- 0.0257 mls. On this basis, the difference at 460 Km is definitely

significant. Throughout the rest of this chapter (and also sections 5.1 to 5.4), where these

differences are significantly greater than the measurement errors of the Admiralty data, then

it will be argued that these differences are clearly not acceptable.

Chapter 4 85 Model with zero bottom friction

Water depth

15.8

15.6

E
15.4c

..ca.
Q)

0 15.2

15

14.8

5 hidden neurons
learning rate = 0.3
momentum term = 0.7

UL = -0.5

100 200 300 400 500
Distance along centre of river in Km

Figure 4.5: Hidden layer withfive neurons

600

For a layer with five hidden neurons, (fig. 4.5), the network is overestimating in the 200 Km

by about the same error as that of the three hidden neuron network. However there is an

approximate 50% improvement on the underestimation at about 460 Km which is now of

the order of 0.05 m. Also, this time the difference is not quite so significant at 460 Km

being of the same order as that of the Admiralty value. It is still though, slightly larger than

that obtained by Dibike (see Section 4.10.1).
WcJ:.er depth

15.8

15.6

E
15.4c

..ca.
Q)

0 15.2

15

14.8

7 IJdden neurons
I.eaming rate = 0 3
momentum term = 0.7

UL = -0.5

200 300 400
Distance along certre ot river in Km

Figure 4.6: Hidden layer with seven neurons

100 500 600

Chapter 4 86 Model with zero bottom friction

It can be seen that the 7 hidden neuron network, (figure 4.6), has approximately the same

accuracy as that of the 5 hidden one in the region of 460 Km. However, there is a significant

improvement in the agreement of the curves in the region of 200 Km, with a slight

oscillation between underestimation and overestimation there. The same comments with

regard to significance of the difference at 460 Km for the five neuron network also apply

here.
Water depth

15.8

15.6

E
15.4c

:5
Cl.
ID
0 15.2

15

14.8

Target
UL = -0.5

9 hidden neurons
learning rate = 0.3
momentum term = 0.7

100 200 300 soo 600
Distance along certre of river in Km

Figure 4. 7: Hidden layer with nine neurons

Although the agreement for the 9 hidden neuron layer network, (fig. 4.7), appears to be as

good as that for the 7 hidden one in the 200 Km region, the agreement at 460 Km has

deteriorated markedly with an underestimation of about 0.12 m. Once more the difference at

the 460 Km region is significant. It is nearly 2.5 times the Admiralty measurement error.

Chapter4 87 Model with zero bottom friction

Water depth

15.8

15.6

E
15.4c

s:......
o,
Q)

0 15.2

15

14.8

UL = -0.5

11 hidden nwrons

learning rate = 0.3
mometurn term = 0.7

ANN

100 200 300 400 SOD 600
Distance along cenre of river in Km

Figure 4.8: Hidden layer with eleven neurons

Agreement at the 200 Km point has continued to deteriorate, as can be seen from fig. 4.8,

with also a marked increase in the underestimation to about 0.15 m at 460 Km. Again a

significant difference being now, three times the Admiralty measurement error.

It would appear then that the best results seem to be obtained with a hidden layer of seven

neurons. This is in agreement with the relationship 2N+ 1 where N is the number of units in

the input layer, Marques de Sa [74].

4.8.3 Optimum learning rate and momentum parameters

It is however, fairly clear from table 4.1, that there is no significantly obvious indication of

an optimum value for either the learning rate or momentum term. It was decided therefore to

use the guidelines of Haykin [43] (pp. 193 - 197) to obtain data on these optimal values. To

this end, the number of neurons in the hidden layer was maintained at seven and to avoid

overfitting, a 1200 Km length of river was modelled. A model river length of 1200 Km with

a spatial interval of 500m would provide 1199 data records not including the boundaries.

Hence, by Sarle [92], this should ensure that the validation would not be very susceptible to

'overfitting', since with 36 weights in the network, 1080 records (30 x 36) would be

required. Each of the 1199 generated records would contain two velocities and one depth

Chapter 4 88 Model with zero bottom friction

(cf. equation 4.1). A suitable possible guideline proposed by Haykin for obtaining the

optimal values of the learning rate and momentum constant was:

The 17 (learning rate) and a (momentum term) that on average yield convergence to

a local minimum in the error surface of the network with the least number of epochs'

Essentially this is saying that the optimum learning rate and momentum term are obtained

by inspecting the RMSE curves to see which of these curves reaches a convergent point

first. Accordingly, the RMSE values per iteration were investigated for different parameter

values of the learning rate and momentum term. The first figure, fig. 4.9, shows a plot of the

RMSE for a fixed learning rate of 0.05 and momentum terms of 0.4, 0.5, 0.6, 0.7 and 0.8.

The other figures, figs. 4.10 to 4.14, display results for learning rates of 0.1, 0.2, 0.3, 0.4 and

0.5 respectively with varying momentum terms:

Plot of the Root Mean Square Error v No. of Iterations (Epochs)

0.8
Neurons = 7.Ir = 005

s 0.6
..,-
x
if)

~ OAer:

mt - 0.5

0.2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
No. of epochs

Figure 4.~:Learning rate 010.05

It can be seen from the above figure that a momentum term of 0.4 gives a plot that

converges more quickly than the others, converging to a minimum at about 2500 iterations.

Chapter 4 89 Model with zero bottom friction

Plot of the Root Mean Square Error v No. of Iterati ons (Epochs)
1

Neurons = 7, Ir =0.1
0.8

mt= 0.6
0
0 0.6'<""""

x
(j)

0.4Z
et:

0.2

0
2000 4000 6000

No. of epochs
8000 10000

Figure 4.10: Learning rate of 0.1

Plot of the Root Mean Square Error v No. of Iterations (Epochs)

Neurons = 7, Ir = 0.2
0.8

0
0
,,-
x
(j)

0.42
er:

0.2

0
2000 4000 8000 100006000

No. of eoochs

Figure 4.11: Learning rate of 0.2

Plot of the Root Mean Square Error v No. of Iterations (Epochs)

2000 4000 8000 100006000
No. of epochs

Figure 4. J 2: Learning rate of 0.3

12000

12000

12000

Chapter4 90 Model with zero bottom friction

Figs. 4.10 to 4.12, for learning rates of 0.1,0.2 and 0.3, again indicate that a momentum

term of 0.4 is the optimum value with all of the said curves converging before 2000

iterations.

Plot of the Root Mean Square Error v No. of terations (Epochs)
1

0.8
C)
0 0.6..-
x
(f)

0.42
0:::

0.2

0

Neurons = 70 Ir = 0.4

4000 8000 10000 120006000
No. of eoochs

Figure 4.13: Learning rate 0/0.4

Plot of the Root Mean Square Error v No. of Iterations (Epochs)

0.8

D
0.6D..-

x
(J)
L
0::

0.2

0

Neurons = 7, Ir = 0.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

No. of epochs

Figure 4.14: Learning rate 0/0.5

Figs. 4.13 and 4.14 seem to imply that the momentum terms of 0.8 and 0.6 respectively are

the optimum values for learning rates of 0.4 and 0.5. Following the method of Haykin, these

learning rates and respective optimum values for the momentum term were then recalculated

(over a shorter iteration period) and re-plotted. These plots were then used to finalize the

choice of learning rate and momentum term. The learning rates / momentum terms of

0.4/0.6 and 0.5/0.6 proved to be highly oscillatory and unstable up until approximately

Chapter 4 91 Model with zero bottom friction

5,500 iterations and so were discarded. The finalized choices and their plots follow

(conducted over 6000 iterations):

Optimum learning rate and momentum term parameters with associated errors

Learning Momentum RMSE ME ESD RPE

Rate Term

0.05 0.4 0.0017 0.002 0.00009172 0.0129

0.1 0.4 0.0015 0.0013 0.00007262 0.0086

0.2 0.4 0.0025 0.000811 0.0000464 0.0052

0.3 0.4 0.0012 0.000872 0.00005015 0.0056

Table 4.2: Optimum learning rates and momentum terms

Plot of the Root Mean Square Error v No. of Iterati ons (Epochs)
1

0.8 ;

0
0.60~

x
(j)

2 0.4
0:::

0.2

0

Neurons = 7

Ir = 0.1 , mt = 0.4
Ir = 0.2, mt = 0.4

Ir = 0.3, mt = 0.4

1000 3000

No. of epochs

Figure 4.15: RMSE plots of optimum parameters

2000 4000 5000 6000

Following the arguments used in Section 4.6, the error ratios (using the values from table

4.2 above) are consistent with the values quoted there except for ME/RMSE relating to the

first entry representing a learning rate of 0.05. This results in a ratio of l.1765. In other

words, contrary to the comment following equation (4.26), although the ME is of a similar

magnitude, it is now larger than the RMSE for this particular case. Although the scenario of

a learning rate of 0.2 and momentum term of 0.4 appear to give the best error measure

results overall, it is fairly obvious from fig. 4.15 that the optimum values are a learning rate

Chapter 4 92 Model with zero bottom friction

of 0.05 and a momentum term of 0.4 since it is this curve that converges first. These values

are used throughout the rest of the research in this section on the depth analysis.

4.9 Simulation of the depth over 1200Km

Having decided upon optimum values for the learning and momentum parameters, the depth

was again modelled with 12000 iterations using the program (previously discussed)

DepthSolution and an upstream velocity of 0.25 mls and downstream (estuarine) ebb

velocity of 0.5 mls. The following 'italicized' listing is from the computer output requesting

data to generate the depth profile (Le. the target data) with user response in bold:

How many tidal cycles do you wish to iterate over (note 12.4 hours = one tidal cycle)? 240

tidal cycles ::::::240

Enter no. of sections required (must be odd). e.g., 101 spans 50 Km, 201 spans 100 Km etc.)

? 2401

Enter a value for the still water depth 15

Enter a value for the upstream velocity .25

Enter a value for the downstream velocity -.5

Enter a value for the friction coefficient, say zero for no bottom stress or for example

0.0026

Value? 0

The next listing is again a computer output requesting data but now for the training of the

neural network. Note that the LeCun option (cf. Chapter 5) was added later:

This NN is designed to use two possible types of activation functions

1- The sigmoid (logistic) function

2 - The tanh function

Your choice/or the activation/unction i.e. lor 2from above? 2

Choice for learning rate e.g. usually 0.1101 ? .05

Value for the momentum term e.g. usually O.lto 0.8?4

Required value for the root mean square error e.g. 0.01 ? .000000000005

No. 0/neurons in the hidden layer e.g. 3 ? 7

How many iterations do you require? 12000

Chapter 4 93 Model with zero bottom friction

The pattern of final and penultimate velocities and depths has now been loaded

Enlargement factor for rmse plot e.g. IOta 100 ? 100

1-Enter the weights manually?

2 - Let the system automatically apply randomized ones?

3 - Load saved weights for early stopping evaluation on a previously trained system ?

Your choice for the weights i.e. 1, 2 or Sfrom above? 2

Fig. 4.16 that follows is a plot of the 'raw' depth profile and the associated neural network

simulation of it. The fit is extremely good and it is rather difficult to discern one graph from

the other.
Water depth

15

15.8

15.6

Ec 15.4

t
Q) 15.2o

14.8

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 4.16: 15 m depth ebb tide simulation

OKm 254Km 526Km 796Km 1066Km 1199Km

ANN 15.9108 14.6921 15.9245 14.6906 15.9243 15.3216

Target 15.9134 14.6924 15.9271 14.6920 15.9270 15.3212

Difference -0.0026 -0.0003 -0.0026 -0.0014 -0.0027 0.0004

Table 4.3: ANN and target variations

As the last figure and table 4.3 demonstrate, there is an extremely good agreement between

the neural network output and the finite difference scheme data. All of the differences are

within 3 mm. The following table contains an extract from the results - there are 1201 of

Chapter4 94 Model with zero bottom friction

them including the boundaries, so only the first 20 are listed. Note that the figures in the

body of the table represent deviations above or below the 15 m still water level

Calculated value(s) of the output layer Target value(s) of the output layer
0.9108 0.9134
0.9096 0.9118
0.9084 0.9101
0.9072 0.9085
0.9059 0.9067
0.9045 0.9048
0.9029 0.9027
0.9013 0.9009
0.8996 0.8986
0.8977 0.8965
0.8957 0.8941
0.8936 0.8919
0.8914 0.8894
0.8891 0.8871
0.8866 0.8841
0.8841 0.8819
0.8814 0.8788
0.8787 0.8762
0.8757 0.8731
0.8728 0.8703

Table 4.4: ANN and target variations

The error measures, equations (4.26) to (4.29) during the course of the training were noted

and were as follows:

Errors from training

RMSE ME ESD RPE

0.0014 0.00104272 0.000041074 0.0067

Table 4.5: Training errors

The error ratios (cf. Section 4.6) were respectively,

ME _ ±0.745 ESD ~ ±0.029 and
RMSE 'RMSE

RPE
---±4.79
RMSE

Chapter 4 95 Model with zero bottom friction

As can be seen from table 4.5, the 'fit' is extremely good with a mean absolute error of less

than 2mm. After training had finished, the following finalized table of weights were

obtained (tables 4.6a to 4.6f), the original values at the start of training also included for

comparison:

Note that these tables need to be read in conjunction with fig. 4.1.

-0.6954 0.0138 0.9624 0.4104 -0.4838 -0.063 -0.1689
-1.1591 -1.5399 0.168 -0.699 1.0089 0.043 1.2015
0.6334 0.8051 0.5357 0.2734 -1.2898 -0.982 2.5339

Table 4.6a Final weights from input layer to hidden layer

-0.4326 0.2877 1.1892 0.1746 -0.5883 0.1139 -0.0956
-1.6656 -1.1465 -0.0376 -0.1867 2.1832 1.0668 -0.8323
0.1253 1.1909 0.3273 0.7258 -0.1364 0.0593 0.2944

Table 4.6b Original weights from input layer to hidden layer

-0.2629 -0.2739 -0.2268 0.2358 0.1045 -0.177 -0.0733
0.5065 -0.3935 0.2056 -0.5123 -1.1742 -1.0237 2.0338
0.5081 -0.3859 0.2084 -0.4524 -1.1534 -1.0413 2.2395

Table 4.6c Change from original

Final weight matrix Original weight matrix Change from original:
from Bias unites) from Bias unites)
to hidden layer: to hidden layer:

-1.3613 -1.441 0.0796
0.4138 0.5711 -0.1574
-0.406 -0.3999 -0.0061
0.5709 0.69 -0.1191
0.5846 0.8156 -0.231
0.4392 0.7119 -0.2727
1.8361 1.2902 0.5458

Table 4.6d Weight matrixfrom Bias unit to hidden layer

Chapter4 96 Model with zero bottom friction

Final weight matrix Original weight matrix Change from original:
from hidden layer from hidden layer
to output layer: to output layer:

-1.4809 -1.3362 -0.1448
0.3651 0.7143 -0.3492
0.2931 1.6236 -1.3304
0.524 -0.6918 1.2157
-0.1231 0.858 -0.9811
0.3632 1.254 -0.8908
-2.1884 -1.5937 -0.5947

Table 4.6e Final weights from hidden layer to output layer

Final weight matrix priginal weight matrix Change from original:
from Bias unit(s) from Bias unit(s)
to output layer: to output layer:

0.6952 0.6686 0.0266

Table 4.6/ Weight matrix from Bias unit to output layer

It is interesting to note that (tables 4.6a and 4.6b) just under half of the weights have been

reduced in size (ignoring sign) by the backpropagation algorithm whilst the remainder have

been magnified in size. The average magnification factor was 2.98, the smallest being 0.048

and the largest, 16.56. The changes to the bias weights to the hidden layer (table 4.6d) were

much less dramatic. No changes of sign occurred and the average magnification factor was

0.896. Considering table 4.6e, it can be seen that there were some dramatic changes to the

weights from the hidden layer to the output layer. Two of the weights changed sign whilst

the average magnification factor was 0.623. For the last connection weight, table 4.6f, from

the bias unit to the output unit, the change was minimal in comparison. It seems then that

the major changes have been to the weights from the input layer to the hidden layer and then

to a lesser degree, that from the hidden layer to the output layer.

4.10 Validation of the depth simulation

Validation was accomplished using a large data file (again 1201 records) to ensure limited

overfitting as previously mentioned. The data, again as previously mentioned whilst

discussing the initial investigations over a 600 Km, was easily obtained by changing the

downstream parameter from an ebb tide regime to that of a flood tide one. Hence for the

Chapter 4 97 Model with zero bottom friction

validation, the parameters were an: upstream velocity of 0.25 m/s, downstream velocity of

-0.5 mis, still water depth of 15 m, river length of 1200 Km, learning rate of 0.05 and a

momentum term of 0.4. The data file for this flood tide was created using the

VenantGenerator2 program again and then to test the network, a program entitled

DepthSolutionValidation was used to verify the results. The program of course uses the

(fixed) weights from the training session. This program is listed in appendix C.

4.10.1 Pseudo Code of the depth validation program

A listing of the pseudo code is appended below:

Filename: DepthSolution Validation

COMMENT: This program is used to validate the weights and solution of the DepthSolution

ANN program. It uses the weights created by the DepthSolution program stored in a data

jile DepthValidation. It also requiresfor validation purposes, unseen data created and

saved using another different run ofthejile VenantDataGenerator2.

PROCESS _get data and initialize arrays

LOAD file containing original hydraulic data computed using

VenantDataGenerator 2

LOAD file containing ANN simulation of the depths and related weights

INITIALIZE pattern, input layer and output layer arrays

INITIALIZE arrays to hold weights

INITIALIZE variables bias, iteration counter, mean error, max rmse

LOOP

fill target matrix with data from file

jill pattern matrix with datafromfile

END

END

PROCESS

LOOP iteration counter

select input pattern

seleci targel pattern

PROCESS_start offorward pass

Chapter4 98 Model with zero bottom friction

pass weighted input data to the hidden layer

apply chosen activaiion function to the hidden layer

pass activated data from hidden layer to the output layer

apply chosen activation function to the output layer

END
PROCESS

calculate rmse and mean errors

check for maximum rmse

plot rmse

save rmse to array

END

END

END

PROCESS_depths

plot original water depths

plot ANN estimates of water depths

END
PROCESS _print summary

print rmse, mean error, weight matrices, weight changes, targets, ANN estimates

SA VE new data

END

Fig. 4.17 that follows is a plot of the 'raw' depth profile of the flood tide regime and the

associated neural network simulation of it. As with the ebb tide regime (fig. 4.16), it is again

an extremely good 'fit' and it is rather difficult to discern one graph from the other.

Chapter 4 99 Model with zero bottom friction

Water depth

15.8

15

Uo = 0.25

UL = -0.5
15.6

E 15.4
c

:§_ 15.2
(J)
o

14.8

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 4. J 7: J 5 m depth flood tide simulation

OKm 253Km 526Km 793Km 1066 Km 1199Km

ANN 14.6972 15.9211 14.6854 15.9211 14.6853 15.2933

Target 14.7045 15.9274 14.6923 15.9272 14.6922 15.2944

Difference -0.0073 -0.0063 -0.0069 -0.0061 -0.0069 -0.0011

Table 4.7 ANN and target variations

Table 4.7 provides a clearer indication of the agreement between the two curves at different

points along the river length. The neural network is underestimating the target data but still

within a very acceptable 8 mm.

Errors from validation

RMSE ME ESO RPE

0.0065 0.0043 0.00028695 0.0360

Table 4.8: Validation errors

Comparing the errors in the validation of the network (table 4.8) with that of the training

(table 4.5); the RMSE, ME, ESD and RPE have been 'magnified' by approximately 4.6, 4.1,

7 and 5.4 respectively. Dibike [31] in a slightly similar model (with a little bed slope),

obtained an RMSE of 0.0048 and by estimation from the graphs in his paper, a mean error

ofO.04 m.

Chapter4 100 Model with zero bottom friction

The error ratios are now:
ME

RMSE - ±0.66, ESD _ ±0.044 and
RMSE

RPE -±5.54
RMSE

Finally, after validating the network, the following table of weights is obtained. This table

needs to be read in conjunction with fig. 4.1:

Final weie:ht matrix from input layer to hidden layer:
YI Y2 Y3 Y4 Y5 Y6 Y,

Xo -1.3613 0.4138 -0.4060 0.5709 0.5846 0.4392 1.8361
XI -0.6954 0.0138 0.9624 0.4104 -0.4838 -0.063 -0.1689
X2 -1.1591 -1.5399 0.168 -0.699 1.0089 0.043 1.2015
X3 0.6334 0.8051 0.5357 0.2734 -1.2898 -0.982 2.5339

Final wei ~ht matrix from hidden layer to output layer:
Yo YI Y2 Y3 Y4 Y5 Y6 Y,

Z 0.6952 -1.4809 0.3651 0.2931 0.5240 -0.1231 0.3632 -2.1884

Table 4.9: Final weight matrices

4.11 Training the velocity network (zero bottom friction)

The methodology of the velocity training and validation is similar to that of the depth (fig.

4.3) and so will not be repeated here. In addition, the pseudo code of the VelocitySolution

program is virtually the same in structure as that of the DepthSolution program and so has

been omitted.

The Matlab program to perform the training is VelocitySolution and is listed in appendix C.

As for the analysis of the depth simulations, some initial investigations were made with

regard to the RMSE values during velocity simulations over a period of 10000 iterations.

The table below lists the results:

Chapter4 101 Model with zero bottom friction

RMSE - velocity trainin
3 hidden 5 hidden 7 hidden 9 hidden II hidden
neurons neurons neurons neurons neurons

Learning 10,000 10,000 10,000 10,000 10,000 Momentum
Rate iterations iterations iterations iterations iterations Term
0.05 0.0013 0.0012 0.0018 0.0022 0.002 0.4
0.1 0.002 0.0014 0.0011 0.0013 0.0019 0.4
0.2 0.0013 0.0023 0.0011 0.0008 0.0009 0.4
0.3 0.0013 0.002 0.0007 0.0028 0.001 0.4
0.4 0.0009 0.0013 0.0013 0.0019 0.0013 0.4
0.05 0.0014 0.0022 0.0023 0.0023 0.002 0.5
0.1 0.0011 0.0011 0.0012 0.0017 0.0019 0.5
0.2 0.0014 0.0017 0.0016 0.0011 0.0015 0.5
0.3 0.0014 0.0008 0.0011 0.0014 0.0018 0.5
0.4 0.0012 0.0016 0.0016 0.002 0.0019 0.5
0.05 0.0024 0.002 0.0011 0.0044 0.0026 0.6
0.1 0.0015 0.0022 0.0027 0.0019 0.0011 0.6
0.2 0.002 0.0014 0.0025 0.0026 0.0017 0.6
0.3 0.0019 0.0019 0.0026 0.0019 0.0012 0.6
0.4 0.0011 0.0013 0.0006 0.0016 0.0014 0.6
0.05 0.0033 0.0026 0.0009 0.0017 0.0047 0.7
0.1 0.0024 0.0013 0.0012 0.0015 0.0061 0.7
0.2 0.0029 0.0009 0.0013 0.0012 0.0038 0.7
0.3 0.0012 0.0017 0.0008 0.0027 0.0007 0.7
0.4 0.0015 0.0056 0.0011 0.0023 0.0013 0.7
0.05 0.0021 0.0013 0.0023 0.0031 0.0021 0.8
0.1 0.0016 0.0028 0.0023 0.0134 0.0016 0.8
0.2 0.0023 0.001 0.0016 0.0012 0.0018 0.8
0.3 0.0022 0.0012 0.0009 0.0016 0.0035 0.8
0.4 0.0014 0.0016 0.0018 0.0013 0.0018 0.8

Table 4.10: Evaluation of no. of hidden neurons

By inspection of the table above, it was noted that the lowest RMSE average occurred for a

hidden layer with seven neurons which in itself was desirable in order to be consistent with

the architecture of the depth network. The RMSE averages for 3, 5, 7, 9 and 11 neurons

were respectively 0.0017,0.0018,0.0015,0.0024 and 0.0021. However, as before with the

depth simulations, suitable choices for the learning rate and momentum parameters were not

obvious. Consequently, the guideline (cf. Section 4.8.3) promoted by Haykin as used

previously, was applied again.

Chapter4 102 Model with zero bottom friction

4.11.1 Optimum learning rate and momentum term parameters

After running the simulations for the learning rates of 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 with

associated momentum values, the four best combinations that were obtained (simulated over

8000 iterations) are listed in the table below followed by a plot of their RMSE graphs. The

graph of the learning rate / momentum term of 0.5/0.4 was discarded as it was highly

oscillatory until about 6000 iterations.

Optimum learning rate and momentum term parameters with associated errors

Learning Momentum RMSE ME ESD RPE

Rate Term
0.05 0.4 0.002 0.001495619 0.0000569 0.0078000

0.1 0.4 0.0026 0.001720766 0.0000740 0.0113000

0.2 0.7 0.0021 0.001177212 0.0000615 0.0085000

0.3 0.4 0.0024 0.001333333 0.0000698 0.0094000

0.4 0.5 0.0024 0.001531957 0.0000696 0.0097000

Table 4.11: Optimum learning rates and momentum terms

Plot of the Root Mean Square Error v No, of Iterati ons (Epochs)
1r----.----~----_r----~----,_----._----._--_.

Ir = 0.05. ml = OA Neurons = 7
Ir = 0 . mt =0.7

Ir = 0.05. mt =0.6 .4, mt = .5
Ir = 0.1. mt = 0.4

0,8:

~ 0.6]
(J) .,

~ 04 !er. . ,

0.2

1000 2000 3000 4000 5000 6000 7000 8000
No. of epochs

Figure 4.18: RMSE plots of optimum parameters

From table 4.11, the average error ratios are:

ME +--~_0.63,
RMSE

ESD ~ ±0.029 and
RMSE

RPE
--~±4.05
RMSE

Chapter4 103 Model with zero bottom friction

By inspection of the fig. 4.18, it can be seen that the RMSE graph with a learning rate of

0.05 and momentum term of 0.4 converges before any of the others at approximately 3,500

iterations. It also has the smallest RMSE error. On this basis, it was decided to choose

optimum values for the learning rate and momentum term to be 0.05 and 0.4 respectively as

before for both the depth and velocity simulations.

4.12 Simulation of the velocity over 1200 Km.

Using these optimum values for the learning and momentum parameters i.e. 0.05 and 0.4

respectively, the velocity was modelled using the program (previously discussed)

VelocitySolution with an upstream velocity of 0.25 mls and a downstream (estuarine) ebb

tide velocity of 0.5 mls. Fig. 4.19 that follows is a plot of the velocity profile and the

associated neural network simulation of it. As with the depth profiles, the 'fit' is extremely

good and it is rather difficult to discern one graph from the other.
Depth averaged velocities

~ 0.4

0.6 Uo= 0.25

UL = 0.5

.~

.~ 0.2
o

~ o

200 400 600 800 1000 1200

Distance along centre of river in Km

Figure 4.19: Velocity ebb tide simulation

OKm 252Km 525Km 793Km 1065 Km 1200 Km

ANN -0.2240 0.7520 -0.2500 0.7517 -0.2502 0.2467

Target -0.2394 0.7520 -0.2500 0.7519 -0.2501 0.2477

Difference -0.0154 0.0000 0.0000 0.0002 0.0001 0.0010

Table 4.12: ANN and target variations

Chapter4 104 Model with zero bottom friction

Further, it can be seen from table 4.12, that this 'fit' is supported by the extremely good

agreement between the finite difference scheme data and the neural network output. The

largest discrepancy is less than 16 mm. The following table contains an extract from the

results -as for the depth results, there are 1201 of them, and so only, the first 20 are listed.

The figures in the body of the table represent actual velocities (not deviations) in mls.

Calculated value(s) of the output layer Target value(s) of the output layer
-0.2240 -0.2394
-0.2252 -0.2382
-0.2399 -0.2368
-0.2500 -0.2356
-0.2442 -0.2341
-0.2292 -0.2327
-0.2200 -0.2310
-0.2238 -0.2296
-0.2332 -0.2278
-0.2363 -0.2262
-0.2287 -0.2242
-0.2182 -0.2225
-0.2136 -0.2204
-0.2171 -0.2187
-0.2217 -0.2164
-0.2209 -0.2144
-0.2136 -0.2122
-0.2063 -0.2100
-0.2039 -0.2076
-0.2060 -0.2053

Table 4.13: ANN and target variations

During the course of training the velocity network, the error measures (4.26) to (4.29) were

noted and were as follows:

Errors from training

RMSE ME ESD RPE
0.0011 0.0006179 0.0000328 0.0035

Table 4.14: Training errors

giving error ratios of:

Chapter 4 105 Model with zero bottom friction

ME--~±0.56,
RMSE

ESD ~ ±0.030 and
RMSE

RPE ~ ±3.18
RMSE

Although different quantities (that is, depth and velocity) are being compared here, it is

interesting to note, from tables 4.5 and 4.14, that the ratios of velocity RMSE I depth RMSE

and velocity ESD/depth ESD are both virtually the same with a value of 0.79. In other

words, these two errors in the depth training have been reduced by about 20% in the velocity

training. The ME for the velocity is about 60% of the corresponding value for that of the

depth and similarly, the RPE for the velocity is about 52% of that for the depth.

After training had finished, the following finalized table of weights were obtained (tables

4.15a to 4.15f), the original values at the start of training also included for comparison. As

for the depth training, these tables need to be read in conjunction with fig. 4.1:

-1.0205 -0.4243 1.4289 0.6306 0.1276 -0.8628 0.4027
-0.9043 1.4488 -0.7761 0.4766 0.5726 0.2918 0.4835
-1.3480 1.4992 0.1519 -1.7906 -0.8769 -0.7283 -0.4055

Table 4.15a Final weights from input layer to hidden layer

-0.3775 -0.2340 1.4435 0.7990 0.2120 -0.7420 0.3899
-0.2959 0.1184 -0.3510 0.9409 0.2379 1.0823 0.0880
-1.4751 0.3148 0.6232 -0.9921 -1.0078 -0.1315 -0.6355

Table 4.15b Original weights from input layer to hidden layer:

-0.6430 -0.1903 -0.0146 -0.1685 -0.0844 -0.1208 0.0128
-0.6084 1.3303 -0.4251 -0.4643 0.3348 -0.7905 0.3955
0.1271 1.1844 -0.4713 -0.7985 0.1309 -0.5968 0.2300

Table 4.15c Change from original:

Chapter4 106 Model with zero bottom friction

Final weight matrix Original weight matrix Change from original:
from Bias unit(s) from Bias unit(s)
to hidden layer: to hidden layer:

-1.0827 -1.1878 0.1051
-2.0203 -2.2023 0.182
0.8822 0.9863 -0.1041
-0.9457 -0.5186 -0.4271
0.3006 0.3274 -0.0268
0.1823 0.2341 -0.0517
0.0238 0.0215 0.0023

Table 4.15d: Weight matrix from Bias unit to hidden layer

Final weight matrix Original weight matrix Change from original:
from hidden layer from hidden layer
to output layer: to output layer:

-1.9955 -0.5596 -1.4359
-0.2137 0.4437 -0.6574
-0.0025 -0.9499 0.9474
1.2238 0.7812 0.4426
0.1276 0.569 -0.4414
0.0324 -0.8217 0.8541
0.0977 -0.2656 0.3633

Table 4.15e: Final weights from hidden layer to output layer

Final weight matrix Original weight matrix Change from original:
from Bias unit(s) from Bias unit(s)
to output layer: to output layer:

-0.8717 -1.0039 0.1323

Table 4.15f Weight matrix from Bias unit to output layer

Inspecting the weights (as was done for the depth simulation), it can be seen that the weights

between the input layer and the hidden layer (tables 4.15a and 4.15b) have been magnified,

ignoring sign, by the backpropagation by approximately on average, a factor of 2.38. The

weights from the bias unit to the hidden layer showed little evidence of change, there being

no sign changes and a magnification factor of just 1.050. Of the hidden to output layers

weights there were three sign changes with on average, a multiplication factor ofO.895. The

largest factor was 3.57 and the smallest, 0.003. Finally, the bias to output displayed just

Chapter4 107 Model with zero bottom friction

moderate changes with a magnification factor of 0.868. Comparing this with the results for

the depth, it is noted that the same pattern is being repeated here. The magnification factor

acting on the weights between the input layers and hidden layers is about two to three times

that of the factors between the other units and further, individual changes to the weights are

sometimes much more dramatic.

4.13 Validation of the velocity network

In similar fashion to the method adopted for the depth network validation, a large data file

(1201 records) was employed to ensure limited overfitting. The data was easily obtained by

changing the downstream parameter from an ebb tide regime to that of a flood tide one.

Hence for the validation, the parameters were an: upstream velocity of 0.25 mis,

downstream velocity of -0.5 m/s, still water depth of 15 m, river length of 1200 Km,

learning rate of 0.05 and a momentum term of 004. The data file for this flood tide was

created using the VenantGenerator2 program again (as for the depth) and then to test the

network, a program entitled VelocityDepthSolution Validation was used to verify the results.

The program of course uses the (fixed) weights from the training session. This program is

listed in appendix C. The pseudo code of the VelocitySolutionValidation program is almost

identical in structure to that of the Depthsolution Validation program and so has been

omitted.

Fig. 4.20 that follows is a plot of the velocity profile from the finite difference scheme of the

flood tide regime and the associated neural network simulation of it. As with the ebb tide

regime (fig. 4.21), it is again an extremely good 'fit' with just discernible discrepancies at

250 Km and 800 Km.

Chapter 4 108 Model with zero bottom friction

Velocity

0.7 learning rate = 0.05

momentum term = 0.4
0.6

0.5

Vl 0.4--E
.!;

.e- 0.3
u
CJw 0.2>

0.1

0

-0.1

-0.2

Uo = 0.25, UL = -0.5

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 4.20: Flood tide simulation

OKm 253Km 523Km 793Km 1065 Km 1200 Km

ANN 0.7390 -0.2306 0,7485 -0.2306 0.7484 0.2509

Target 0.7397 -0.2501 0,7518 -0.2500 0.7518 0.2502

Difference 0.0007 -0.0195 0.0033 -0.0194 0.0034 -0.0007

Table 4.16: ANN and target variations

From table 4,16, which depicts the agreement between the two curves at different points

along the river length, it can be concluded that the neural network is overestimating the

target velocities at 253 Km and 793 Km. However, all of the errors in estimation are within

a very acceptable 20 mmls

Errors from validation

RMSE ME ESD RPE

0.0079 0.006723 0.000264 0.0433

Table 4.17: Validation errors

Chapter4 109 Model with zero bottom friction

The error ratios are:

ME -±0.56
RMSE '

ESD _ ±0.030 and
RMSE

RPE _ ±3.18
RMSE

Dibike [31] obtained a RMSE of 0.0085 and by estimation from graphs in his paper. a mean

error of 0.05 mls. Comparing the errors in the validation of the network (table 4.17) with

that of the training (table 4.14), it seems that the RMSE, ESD and RPE were 'magnified' by

approximately 7,8 and 12 respectively. The ME has been magnified by approximately 10.8.

This is a reasonable result since it is well known that performance on a test set is never as

good as that on a training set. However, the major discrepancy (as has already been noted) is

localized at 253 and 793 Km and it is this that has incurred a magnification of the training

errors. Finally, after validating the network, the following table of weights is obtained, a

table that must be read in conjunction with fig. 4.1 :

Final weight matrix from input layer to hidden layer:
YI Yl Y3 Y.. Ys Y, Y,

x, -1.0827 -2.0203 0.8822 -0.9457 0.3006 0.1823 0.0238
Xl -1.0205 -0.4243 1.4289 0.6306 0.1276 -0.8628 0.4027
Xl -0.9043 1.4488 -0.7761 0.4766 0.5726 0.2918 0.4835
X3 -1.3480 1.4992 0.1519 -1.7906 -0.8769 -0.7283 -0.4055

Final weight matrix from hidden layer to output layer:
Yo YI Yl Y3 Y.. Ys Y, Y,

Z -0.8717 -1.9955 -0.2137 -0.0025 1.2238 0.1276 0.0324 0.0977

Table 4.18: Final weight matrices

4.14 Comparison with other models

It would be useful at this stage to compare the model for accuracy with a model totally

unrelated to neural networks before proceeding to the primary aim, a neural network

incorporating bed stress. The neural network models in this chapter, that is, the depth model

as given by fig. 4.1 and table 4.9 and the velocity as indicated by fig. 4.1 and table 4.18,

were compared with a model (coded in FORTRAN) of Johns [51]. It is a model based

purely on the basic hydrodynamical equations of momentum and continuity and an

appropriate finite difference scheme with a zero Coriolis parameter. His model does not

allow for bed friction and represents propagation of a Kelvin wave through a wide channel.

Chapter 4 110 Model with zero bottom friction

However, with the Coriolis parameter set to zero, the model assumes the degenerative form

representing a simple shallow water wave in a one-dimensional channel. It is in this form

that his model is used in the comparison with the neural network.

John's model was modified slightly to run over a length of 1200 Km. This was necessary

since the neural network needed to be validated over that length for reasons already stated.

The model was further modified to work on 1488 time steps in a 12.4 hour tidal period

rather than 1200 over a 12 hour tidal period. In the tables that follow, tables 4.19 to 4.22,

only the first ten results are shown that is, the first 10 Km. However, EXCEL plots (figs.

4.21 to 4.24) of these comparisons are included to indicate the degree of agreement over the

full 1200 Km.

Two comparisons were made, the first using the training results (tables 4.19 and 4.20) and

the second, using the results of the validation with unseen data (tables 4.21 and 4.22). The

training was performed using a learning rate of 0.05, a momentum term of 0.4 and a hidden

layer with seven units, as usual. The still water depth was 15 m as before.

4.14.1 Comparison with the training results

The training data was created using an imposed constant input river velocity at the upstream

end of 0.25 mis, whilst the corresponding quantity at the estuarine end was 0.5 mls

(signifying an outgoing ebb tidal flow). It should be noted that in the FORTRAN model, the

estuarine value that should be entered is -0.618274208, since that model is defined by the

wave amplitude there. This value is simply UL x..Jhl g.

Depth· Training

Distance along centre of river in Km

Figure 4.21: Ebb tide depth comparison

Chapter 4 111 Model with zero bottom friction

Velocity - Training
1.1)00

0.9 0
(I)

---E 0.6(10

C
0.400

.~
U O.lOO
0
(l)

0.0 0>
-0,200

-0.<100

Distance along centre of river in Km

Figure 4.22: Ebb tide velocity comparison

In table 4.19 that follows, the first two columns are the fluctuations above or below the 15

m still water level, the first being the Fortran model and the second, the neural network

model. The data relates to the first ten Km points at one Km intervals. The third column lists

the absolute differences between these columns. The average and maximum absolute

differences for all 1201 values (column 3) were 0.007 and 0.013 m respectively.

Fortran ANN Absolute

Model Model value of

Depth Depth difference

0.912 0.912 0.001

0.910 0.911 0.001

0.908 0.910 0.002

0.906 0.909 0.002

0.905 0.907 0.003

0.902 0.906 0.004

0.900 0.904 0.004

0.898 0.903 0.005

0.896 0.901 0.005

0.894 0.899 0.005

Table 4.19 (Depth network)

Fortran ANN Absolute

Model Model value of

Velocity Velocity difference

-0.237 -0.232 0.005

-0.236 -0.233 0.003

-0.235 -0.240 0.006

-0.233 -0.245 0.011

-0.232 -0.238 0.006

-0.230 -0.226 0.004

-0.229 -0.222 0.006

-0.227 -0.230 0.003

-0.225 -0.238 0.013

-0.223 -0.234 0.011

Table 4.20 (Velocity network)

Chapter4 112 Model with zero bottom friction

The description of table 4.20 is the same as that for table 4.19 other than that it refers to

actual values of velocity rather than fluctuations. The corresponding average and maximum

absolute differences again for all 1201 results were 0.002 and 0.021 m/s. In practical terms

then, there is very good agreement between the two models.

4.14.2 Comparison with the validation results

The validation data was generated using an imposed constant input river velocity at the

upstream end of again 0.25 mis, but now the corresponding quantity at the estuarine end was

·0.5 rn/s (signifying a flood tidal flow).

Depth - Validation

?; 1.000

0
Q.) o.eoo
_Cl -
-- Q.)Q.) > 0.600> Q.)0-
_Cl ~

0.400ro Q.).......
(/) ro
c ~ 0.2000_
'p =-=ro

0.000:::J (/)....... EU.2L.C) 0.200
LL ...-

-0.400

Distance along centre of river in Km

Figure 4.23: Flood tide depth comparison

VelocilY· valldatloll

0.S60

0.600
(/)-- O.~OOE
c
.G- 0.200
·w
0 0.000
Q.)

>

Distance along centre of river in Km

Figure 4.24: Flood tide velocity comparison

Chapter 4 113 Model with zero bottom friction

In table 4.21 that follows, the average and maximum absolute differences for the full 1200

Km were 0.012 and 0.033 m. Correspondingly, for the velocity (table 4.22), these

differences were 0.008 and 0.023 m/s. As expected, the network is not quite as accurate in

the validation as it is in the training, although again, in practical terms, the difference

between the performance of training and validation here is insignificant.

Fortran ANN ABS

Model Model Value of

Depth Depth Diff.

-0.295 -0.267 0.028

-0.293 -0.266 0.028

-0.292 -0.265 0.027

-0.290 -0.263 0.027

-0.288 -0.262 0.026

-0.286 -0.260 0.026

-0.284 -0.259 0.025

-0.282 -0.257 0.025

-0.280 -0.256 0.024

-0.278 -0.254 0.024

Fortran ANN ABS

Model Model Value of

Velocity Velocity Diff.

0.737 0.726 0.011

0.736 0.725 0.011

0.735 0.724 0.011

0.733 0.723 0.010

0.732 0.722 0.010

0.730 0.721 0.009

0.728 0.720 0.009

0.727 0.718 0.009

0.725 0.717 0.008

0.723 0.716 0.008

Table 4.22 (Velocity network)Table 4.21 (Depth network)

4.15 Conclusion

In this chapter, two networks, for depth and for velocity were developed as depicted by fig.

4.1 and specified mathematically by equations 4.1 and 4.2. Training was performed using

the backpropagation algorithm and a bipolar sigmoid activation function. Using some

generated ebb tide data, the simulations were first performed for the depths over a length of

600 Km in order to obtain information about a suitable architecture for the hidden layer.

Results indicated a suitable architecture would be one with seven neurons in the hidden

layer. Following this, further simulations were performed over 1200 Km (in order to avoid

overfitting in the training) to obtain optimum values for the learning rate and momentum

term which were 0.05 and 0.4 respectively. With the depth network fully specified, the

Chapter4 114 Model with zero bottom friction

training simulations were performed again with an error (difference between the neural

network simulation and the finite difference scheme generated data) of less than 0.003 m

and a RMSE ofO.0014. It was noted that the major changes to the weights in the network as

a result of training were limited mostly to those between the input and hidden layers.

Validation of the depth network was again performed over 1200 Km using this time, some

flood tide (unseen) generated data. The maximum difference between the generated data and

the simulation was this time less than 0.008 m. The RMSE and ME were respectively

0.0065 and 0.0043 which compared favourably with that of Dibike [31] using a slightly

similar model who obtained 0.0048 for the RMSE and 0.04 for the ME. The depth network

is fully specified by fig.4.1 and the weights in table 4.9.

The process of determining the architecture for the velocity network followed the same

procedure as that for the depth network. In the course of training, the maximum discrepancy

between the neural network and the generated ebb tide data was less than 0.016 mls and a

RMSE of 0.0011. As for the depth training, it was observed that the changes to the input to

hidden layer weights were much more dramatic than changes to the weights on the other

connections. In fact, the changes between the input and hidden layers were about two to

three times the changes between the other units. Validation of the velocity network was as

for the depth, using flood tide data regenerated again over 1200 Km. An extremely good fit

was obtained with a maximum error of 20 mm/s. The RMSE and ME values of 0.0079 and

0.0067 again compared favourably with the model of Dibike [31] who obtained 0.0085 and

0.05 for the RMSE and ME respectively.

Finally, the neural network simulations were compared with the numerical model of Johns

[51]. Using the training phase results, the average and maximum differences in depth were

0.007 m and 0.013 m whilst for the velocity, they were 0.002 mls. and 0.021 mls. The

corresponding results for the validation phase were 0.012 m and 0.033 m for depth and

0.008 mls and 0.023 mls for the velocity. The neural network simulation was therefore a

very good 'fit' to the numerical model.

The velocity network is fully specified by the weights in table 4.18 and fig. 4.1.

115

Chapter 5

Neural network model with bottom friction

5.1 Introduction

The neural network model developed in the last chapter was somewhat idealized in that it

ignored the effects of bottom friction (cf. Chapter 3). In this chapter, the investigations

attempt to correct for that admission and in so doing, create a model that is much more

representative of river flows. In fact, although the one dimensional shallow water equations

(St. Venant Equations) are widely used to represent river flows and indeed have been

simulated using neural networks, these simulations have not included the effects of bottom

friction. In the work discussed here on the models with bottom friction, the methodology

and pseudo code of the previous chapter are also applicable to this chapter. Consequently,

they will not be reproduced at this juncture. Additionally, the same values for the learning

rate, momentum term and number of neurons in the hidden layer were reused in this

analysis. Further, the same computer programs as discussed in the previous chapter are also

reused for the models with a bottom friction, the latter having a value of 0.0026 unless

otherwise indicated. In this chapter the work concentrates on the development of a neural

network model incorporating the effects of bottom friction and the subsequent training and

validation of the model. However, due to a rather inadequate performance by the network, a

re-examination of the parameters and architecture is required followed by re-training and re-

validation. Having established a network with suitable performance, this network is then

tested further with a variation of the (non-architectural) parameters. The chapter concludes

with the application of the network to the confluence of the rivers Thames and Medway.

Chapter 5 116 Model with bottom friction

5.2 Training and validating the neural network with bottom friction

5.2.1 Training the depth network

After running a simulation for 12000 iterations in an ebb tide regime, that is an estuarine

velocity of 0.5 m/s, the following plots of the depth (target and ANN estimate) were

obtained:

Water depth

15.6

E 15.5

.~ 154
~ .
C3 15.3

15.2

15.1

Uo = 0.25, UL = 0.5
learning rate = 0.05

momentum term = 0.4

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 5.1: Ebb tide simulation of the depth

with depths at various points along the river being:

OKm 349Km 542Km 866Km 1086 Km 1199 Km

ANN 15.6483 15.3390 15.6262 15.0583 15.6721 15.1829

Target 15.6624 15.3390 15.6262 15.0585 15.6721 15.1827

Difference -0.0141 0.0000 0.0000 -0.0002 0.0000 0.0002

Table 5.1: Ebb tide depth variations

and a table depicting the errors in training:

Errors from training

RMSE ME ESD RPE

0.00083299 0.00026694 0.000025282 0.0017

Table 5.2: Ebb tide depth training errors

Clearly from fig. 5.1 and tables 5.1 and 5.2, the ANN is appearing to perform well during

the training phase of the depths with error ratios of:

Chapter 5 117 Model with bottom friction

ME
---±0.321,
RMSE

ESD _ ±0.030 and
RMSE

RPE _ ±2.041
RMSE

5.2.2 Training the velocity network

The simulation was run again for 12000 iterations in an ebb tide regime (with the same

hydrodynamical data) resulting in the following plot of the velocities of the target and ANN

estimate:
Depth averaged velodtJes

0.2

(/) 0_1E_~
.€ 0
(.)
0
Iii .Q.1>

-0.2 learning rate = 0.05, momentum term = 0.4

UL = 0.5
Uo = 0.25

200 400 600 800 1000 1200
Distance along centre of river In Km

Figure 5.2: Ebb tide simulation of the velocity

a table containing velocities at various locations:

OKm 310Km 542Km 835Km 1078 Km 1200 Km

ANN -0.0279 0.1644 -0.0950 0.2620 -0.2737 0.1338

Target -0.0356 0.1644 -0.0950 0.2621 -0.2736 0.1354

Difference 0.0077 0.0000 0.0000 -0.0001 -0.0001 -0.0016

Table 5.3: Ebb tide velocity variations

and a table of errors:

Errors from training

RMSE ME ESD RPE

0.0004944 0.00021267 0.000015547 0.0014

Table 5.4: Ebb tide velocity training errors

The error ratios were:

Chapter 5 118 Model with bottom friction

ME ~±0.43
RMSE '

ESD ~ ±0.031
RMSE

and RPE ~ ±2.832
RMSE

Although different quantities (that is, depth and velocity) are being compared, it is

interesting to note, from tables 5.2 and 5.4, that the velocity RMSE and velocity ESD are

both about 60% of their depth counterparts whilst for the ME and RPE, they are

approximately 80% of the depth equivalents. This is encouraging since (cf. section 4.1) any

errors occurring in the first (depth) network are propagated into the second (velocity)

network. However, as previously noted, the effects of bed friction may well be helping to

curtail any such error propagation.

Again, as for the depths, from fig. 5.2 and tables 5.3 and 5.4 it can be observed that the

neural network is performing well on this second stage of the training phase. It now

remained to test the networks on unseen data to verify that the model of Chapter 4, wherein

bed friction was absent, to see if it could generalize to this more realistic scenario.

5.2.3 Validation of the depth network

As for the validation of the models in Chapter 4, a flood tide regime with an estuarine

velocity of -0.5 mls. was adopted. Over a validation period of 12000 iterations, the

simulation produced the following results:

Water depth

15.6

15.5

15.4

E 15.3
c
.c0. 15.2
(])

0
UL = -0.515.1
Uo = 0.25

15 leaming rate = 0.05

14.9 momentum term = 0.4

14.8

1000 1200
Distance along centre of river in Km

Figure 5.3: Flood tide simulation of the depth

Chapter 5 119 Model with bottom friction

OKm 88Km 270Km 609Km 814Km 1122 Km 1199 Km

ANN 15.4414 15.4171 15.6339 15.2258 15.6214 14.8235 15.0312

Target 15.4446 15.4197 15.6428 15.2284 15.6222 14.7239 15.0325

Diff. -0.0032 -0.0026 -0.0089 -0.0026 -0.0008 0.0996 -0.0013

Table 5.5: Flood tide depth variations

Errors from validation

RMSE ME ESD RPE

0.0457 0.0209 0.0013 0.1394

Table 5.6: Flood tide validation depth errors

Although the error ratios of:

ME -±0.457
RMSE '

ESD _ ±O.028 and
RMSE

RPE -±3.050
RMSE

are of the correct order of magnitude (cf. Chapter 4), it is misleading as all of the errors have

been magnified from the training phase to the validation phase. The depth training RMSE,

ME, ESD and RPE have been magnified respectively by about 55, 78, 51 and 82. This can

only be due to the inaccuracy found at around 1122 Km. It can be seen from fig. 5.3 that the

ANN has a very acceptable performance until about the 1100 Km location from whence its

accuracy decays to a minimum at 1122 Km (table 5.5). Here, the error is rather large, being

of the order of 0.1 m. Elsewhere, the errors overall are reasonable. The problem is that the

ANN as it stands, cannot cope with the anomaly resulting from the nonlinear bottom friction

effects near to the linearized radiation boundary condition (cf. Chapter 3) at 1199 Km. It

may well be that the problem is becoming ill-conditioned at this point even though one of

the attractive features of using a bipolar sigmoid activation function is its ability to help to

keep a problem well conditioned. Using the same arguments as in Section 4.8.2 (Admiralty

measurement errors), it can be seen from table 5.5 that the difference is only really

significant at the 1122 Km point where it is almost twice the measurement error of the

Admiralty.

Chapter 5 120 Model with bottom friction

5.2.4 Validation of the velocity network

To check that the anomaly was not just peculiar to the depth network, a similar simulation

was run for the velocities, which produced the following results:

Velocity

.0.1

UL = -0.5
Uo = 0.25

learning rate = 0.05
momentum term = 0.4

Target
0.3

Ul

E 0.2
.£
z-'u
o
~ 0.1

o

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 5.4: Flood tide simulation of the velocity

OKm 45Km 270Km 573Km 813Km 1082 Km 1200 Km

ANN 0.1458 0.1478 -0.0506 0.1959 -0.1456 0.3014 0.0277

Target 0.1402 0.1417 -0.0597 0.1997 -0.1535 0.4034 0.0382

Diff. 0.0056 0.0061 0.0091 -0.0038 0.0079 -0.1020 -0.0105

Table 5.7: Flood tide velocity variations

Errors from validation

RMSE ME ESD RPE

0.0128 0.0099 0.00042433 0.0656

Table 5.8: Flood tide velocity validation errors

As for the depth analysis, although the error ratios of:

Chapter 5 121 Model with bottom friction

ME -±0.773
RMSE '

ESD _ ±O.033 and
RMSE

RPE _ ±5.l25
RMSE

are within the range of expected values, again all of the errors have been increased from the

training phase to the validation phase. The velocity training errors RMSE, ME, ESD and

RPE have been respectively magnified by factors of approximately 25, 47, 27 and 47. This

can be attributed to the anomaly at about 1100 Km.

From fig. 5.4 it can be seen that the performance was slightly worse than that for the depth

up until approximately 900 Km with the anomaly getting even slightly greater [than the

depth one] at about 1100 where it is of the order of 0.1 mls. Again using the arguments of

Section 4.8.2, it is noted that the difference at the 1082 Km location is very significant being

of the order of four times the Admiralty measurement error in velocity.

5.3 A change of architecture

The radiation boundary condition cannot be altered but a possible solution would have been

to let the bottom friction term (cf. equation 3.26) decay towards zero as the boundary was

approached. This could possibly solve the difficulty as then the model would degenerate

into the one [zero bottom friction] model, near to the boundaries, simulated successfully in

the previous chapter.

5.3.1 A change to the hidden layer

However, rather than follow this line of enquiry, it was preferred that a further examination

of the architecture of the ANN for this friction model as well as other parameters such as the

learning rate and momentum term would be carried out. Simulating with different learning

rates and momentum terms it appeared that the choice of 0.05 and 0.4 for these two

parameters using the method suggested by Haykin (cf. Chapter 4) was right. It remained

therefore to examine the architecture of this friction model again to see if changing the

number of neurons in the hidden layer would help. This in fact seems a reasonable

assumption because figs. 5.3 and 5.4 suggest that the networks (as they stand) lack the

flexibility to generalize on this more complex (bottom friction) model than the one in the

previous chapter.

Chapter 5 122 Model with bottom friction

The model was simulated using three, five, seven, nine, eleven and thirteen (not shown)

neurons and a plot of their RMSE curves over 2000 iterations (fig. 5.5) was obtained.

Plot of the Root Mean Square Error v No. of Iterations (Epochs)
':.

.. ",-
r:

0.8.\
N=9

g 06.".,...
x
(j)

2: 0.4
0:::

N=5
N=7

N = 11

0.2

oL_~~--~~--==~~==~~~
200 400 600 800 1000 1200 1400 1600 1800 2000

No. of epochs

Figure 5.5: RMSE plots of different architectures

It is apparent that the curves representing seven and nine neurons are the best. The depth and

velocities were also re-simulated using these different architectures and apart from that with

nine neurons, all of these different architectures aggravated the problem, in particular, for an

architecture of eleven neurons, the depth anomaly was almost doubled. The plots of the

simulations (validation) for the depth and velocity using seven and nine neuron architectures

follow:
WocerdePih

15

9

15.6

15.5

15.4

15.3
E

.~

=R 15.2
(])o

15.1
No of neurons in hidden layer

UL = -0.5
Uo = 0.25

14.9
Ir= 0.05, ml = 0.4

14.8

200 400 600 800

Distance along centre of river in Km

Figure 5.6: Flood tide depth simulations for different architectures

Chapter 5 123 Model with bottom friction

velOCity

0,3 UL = -0,5
Uo = 0,25

Ir= 0,05.mt = 0,4

0.2
III

E
.s
,~

u 0.10
Q3
>

° 7

No. of neurons in the hidden layer

9

·0.1

100 200 300 400 500 600 700 800 900 1000 1100 1200

Distance along certre 01river in Km

Figure 5. 7: Flood tide velocity simulations for different architectures

It can be seen from figs. 5.6 and 5.7 that an architecture with seven neurons is marginally

better throughout the domain of interest until the anomaly at about 1100 Km is approached,

at which point the nine neuron model reduces the discrepancy by about 50%. Once again

using the arguments of Section 4.8.2, it is noted that depth differences are significant at the

1100 Km location. Here they are of the order of twice (seven neurons) and one and a half

(nine neurons) times the depth measurement error of the Admiralty. Similarly, the velocity

differences there are also significant since they are four (seven neurons) and three (nine

neurons) times the Admiralty velocity measurement errors. Since the difference between the

two architectures really only manifests itself at this location, it would be consistent with the

model in Chapter 4 if the seven neuron architecture could be retained. To this end, the

enquiry was widened to include a possible change of activation function.

5.3.2 A change of activation function

An alternative version of the bipolar sigmoid is that of LeCun et. al. [65], LeCun [63] and

LeCun [64]. The function has the following formula:

atanh(bx) == aC + ~-2bX -1) where a = 1.7159 and b = 2/3 (5.1)

Chapter 5 124 Model with bottom friction

A comparative plot of the two sigmoids produces:

1.5

05

o bipolar sigmoid activation functi n

-0,5
LeCun activation function

-1 1--------''----

-1.5

-5 o 5

Figure 5.8: Comparison of LeCun and standard bipolar

The coefficient 'a' in equation (5.1) determines the slope of the activation function.

Increasing the value of 'a' increases the slope and vice versa. A high value for 'a' results in

a form similar to the step function whilst a low value tends to retard the convergence rate. A

value of 1.5 aids rapid convergence. A further attractive feature of this activation function

(also true for other bipolars) is that its derivative does not significantly increase the

computational workload. The Matlab code was amended to incorporate this change of

activation function and subsequently tested. The LeCun activation function was

incorporated into the code for the forward pass but the backward pass part of the algorithm

remained using the standard bipolar activation function code. Unfortunately, it produced

plots of the neural network estimates of the depth that were highly oscillatory resembling a

classic tan curve 'cropped' at the top and bottom. This immediately indicated that some of

the weighted values from the output unit were exceeding the upper and lower limits of the

function. Indeed, upon writing a small piece of test code using the weights being generated

by the original software, it was observed that the output was similar in shape to a standard

Heaveside type function with upper and lower limits of 1.7159 and - 1.7159 respectively.

Although the initial weights generated by Matlab were random and normally distributed,

they were probably, initially too large. After some experimentation, it was found that

Chapter 5 125 Model with bottom friction

dividing all of these initial weights by a factor of ten resolved the problem. This was

probably because large weights were giving rise to an excessive variance in the output.

5.4 Re-training and validation of the networks

5.4.1 Training the depth network

The depth network was retrained using the architecture and parameters of the previous

section but now with the initial weights (randomly generated by Matlab), to the hidden

layer, divided by a factor of ten. Fig. 5.9 and tables 5.9 to 5.11 depict the results of this

training:
Water depth

15.6

E
15.5

c:
15.4.c:.......a.

(]) 15.30 he = 15ANN ef = 0.002615.2 Uo = 0.25
15.1 UL = 05

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 5.9: Re-trained ebb tide depth simulation

The network appears to be able to simulate the target depth very well with just small

deviations at the locations as shown in table 5.9 below. All of these deviations appear to be

less than 0.01 m and tend to be an underestimate, except at 350 Km, where the network is

ov ti tieres ima mg.

OKm 350Km 543 Km 867Km 1086 Km 1200 Km

ANN 15.6534 15.3427 15.6210 15.0524 15.6636 15.1753

Target 15.6624 15.3390 15.6262 15.0585 15.6721 15.1753

Diff. -0.0090 0.0037 -0.0052 -0.0061 -0.0085 0.0000

Table 5.9: Ebb tide depth variations

Chapter 5 126 Model with bottom friction

It is noted now that none of the differences are significant in comparison to the Admiralty

measurement errors (see Section 4.8.2).

Errors from training

RMSE ME ESD RPE

0.0042 0.0037 0.00017 0.0241

Table 5. J 0: Ebb tide depth re-training errors

The error ratios:

ME -±0.881
RMSE '

ESD -±0.041 and RPE - ±5.738
RMSE RMSE

were in the expected range. After the training was finished, the following results (tables

5.11a to 5.1lf) depicting the weights were obtained. These tables need to be read in

conjunction with fig. 4.1 :

0.0617 0.1059 0.2186 0.4297 0.3041 -0.1442 -0.2701
0.0474 -0.0044 0.1414 0.3984 -0.1224 0.0593 -0.0936
-0.0825 -0.0669 -0.3487 ·0.1564 -0.1789 -0.0341 -0.0955

Table 5.J 1a Final weights from input layer to hidden layer

-0.0637 -0.1054 0.1373 0.1634 0.0672 0.0269 0.1536
-0.1003 -0.0072 0.0180 0.0825 ·0.0508 0.0625 0.0434
-0.0186 0.0279 -0.0542 0.0231 0.0856 -0.1047 -0.1917

Table 5.J1b Original weights from input layer 10 hidden layer

0.1254 0.2113 0.0813 0.2663 0.2369 -0.1711 -0.4236
0.1477 0.0028 0.1234 0.3159 -0.0716 -0.0032 -0.1370
-0.0640 -0.0948 -0.2945 -0.1795 ·0.2646 0.0707 0.0962

Table 5.11c Change from original

Chapter 5 127 Model with bottom friction

Final weight matrix Original weight matrix Change from original:
from Bias unites) from Bias unites)
to hidden layer: to hidden layer:

0.1452 0.1789 -0.0337
0.0429 0.0391 0.0039
-0.0961 0.0020 -0.0981
-0.0826 -0.0406 -0.0420
-0.1761 -0.1535 -0.0226
0.0158 0.0221 -0.0063
-0.1418 -0.1374 -0.0043

Table 5.11d: Matrix of we ights for Bias unit to hidden layer

Final weight matrix Original weight matrix Change from original:
from hidden layer from hidden layer
to output layer: to output layer:

0.4258 0.0470 0.3788
0.2121 0.1274 0.0846
0.7122 0.0639 0.6484
0.8188 0.1381 0.6807
0.3569 0.1320 0.2249
-0.1294 -0.0909 -0.0385
-0.4629 -0.2306 -0.2323

Table 5.lle: Matrix of weights from hidden layer to output layer

Final weight matrix Ioriginal weight matrix Change from original:
from Bias unites) from Bias unites)
to output layer: to output layer:

0.0660 -0.0839 0.1499

Table 5.1If Matrix of weights from Bias unit to output layer

Inspection of tables 5.11a to 5.lIc indicate that nine weights have changed sign with the

largest change in value being -0.4236. Comparing the final weights to the original, the

original weights have been 'magnified' overall by a factor of approximately 2.861, the

largest factor being 6.771 and the smallest, 0.3257. Continuing, comparing the original and

final weight values for the bias unit to the hidden layer, it is noted that only one weight

changed sign, in fact the one whose value was magnified the most. The original value of

0.0020 changed sign and was magnified by a factor of about 48. The smallest weight

Chapter 5 128 Model with bottom friction

magnification was 0.715 but on average, the original weights were magnified by a factor of

around 7.84l. A comparison of the original and final weights from the hidden layer to the

output layer indicate that the changes were more modest with not a single change of sign.

The smallest weight magnification was around 1.424, the largest, 11.146 and overall, 4.848.

In contrast, the change to the weight from the bias unit to the output layer was minimal with

just a change of sign and a magnification factor ofO.787.

5.4.2 Training the velocity network

The velocity network was retrained as per the depth one using the same parameters. Fig.

5.10 and tables 5.12 to 5.13 depict the results of this training:
Velocity

0.2

vi 0.1
E

UL = 0.5.~ 0.e- Uo = 0.25u
0 ho = 15ID -0.1> ef= 0.0026

-0.2

200 400 600 800 1000 1200

Distance along centre of river in Km

Figure 5.10: Re-trained ebb tide velocity simulation

The network appears to be able to simulate the target velocity very well with just small

deviations at the locations as shown in table 5.12 below. All the deviations are less than

0.01 m and tend to be a mixture of over and under estimations. The greatest deviation

occurs at 1079 Km.

OKm 311 Km 544Km 835 Km 1079 Km 1200 Km

ANN -0.0355 0.1650 -0.0946 0.2617 -0.2689 0.1354

Target -0.0356 0.1644 -0.0950 0.2620 -0.2736 0.1354

Diff. 0.0001 0.0006 0.0004 -0.0003 0.0047 0.0001

Table 5.12: Ebb tide velocity variations

Chapter 5 129 Model with bottom friction

Again it is noted that none of the differences are significant in comparison to the Admiralty

measurement errors (see Section 4.8.2).

Errors from training

RMSE ME ESD RPE

0.0012 0.00066 0.00003 0.0044

Table 5.13: Ebb tide velocity re-training errors

The usual error ratios are then:

ME
RMSE - ±0.550, ESD _ ±0.025 and

RMSE
RPE _ ±3.667
RMSE

which are within the expected range. Completion of the re-training of the velocity network

resulted in the following results for the weights, tables 5.14a to 5.14f, that need to be read in

conjunction with fig. 4.1 :

-0.1619 -0.3614 0.6041 -0.0880 -0.3048 0.3586 0.1948
0.0098 0.0171 0.0139 -0.0174 -0.3835 0.0995 0.0971
0.0615 0.0487 -0.2536 -0.0745 -0.0372 -0.1048 -0.1039

Table 5.14a Final weights from input layer to hidden layer

-0.0209 -0.1345 0.1870 -0.0767 -0.0964 0.0257 -0.0117
0.0756 0.1482 -0.1209 -0.0107 -0.2379 -0.0184 0.0168
0.0376 0.0033 -0.0783 -0.0977 -0.0838 -0.0168 -0.0501

Table 5.14b Original weights from input layer to hidden layer

-0.1410 -0.2268 0.4171 -0.0113 -0.2084 0.3329 0.2065
-0.0658 -0.1311 0.1348 -0.0066 -0.1456 0.1179 0.0802
0.0240 0.0455 -0.1753 0.0232 0.0467 -0.0880 -0.0537

Table 5.14c Change from original

Chapter 5 130 Model with bottom friction

Final weight matrix Original weight matrix Change from original:
from Bias unit(s) from Bias unit(s)
to hidden layer: to hidden layer:

-0.0839 -0.0890 0.0051
0.0076 0.0139 -0.0064
-0.0310 -0.0236 -0.0074
0.0023 -0.0075 0.0099
-0.0074 -0.0359 0.0284
-0.1856 -0.2078 0.0221
-0.0135 -0.0144 0.0008

Table 5.14d: Matrix of weights for Bias unit to hidden layer

Final weight matrix Original weight matrix Change from original:
from hidden layer from hidden layer
to output layer: to output layer:

-0.1502 -0.0705 -0.0797
-0.2962 0.0508 -0.3470
0.5653 -0.0421 0.6074
-0.0535 0.0229 -0.0764
-0.3987 -0.0959 -0.3028
0.3630 -0.0146 0.3776
0.2346 0.0745 0.1601

Table 5.14e: Matrix of weights from hidden layer to output layer

Final weight matrix Original weight matrix Change from original:
from Bias unit(s) from Bias unit(s)
to output layer: to output layer:

0.0836 0.1393 -0.0557

Table 5.14f Matrix of weights from Bias unit to output layer

Analysing tables 5.14a to 5.14c, containing the weights from the input to hidden layers, the

largest magnification factor was 16.65, the smallest, 0.115 and the average, 4.405. The

network training changed the signs of three of the weights. There were no dramatic changes

in size of the weights, the largest change being 0.4171 and the smallest being 0.0066

(ignoring sign). For the changes to the bias to hidden weights (table 5.l4d), changes were

much more moderate with just one sign change. The average magnification factor, a

reduction in this case, from the bias to the hidden layers, was 0.735. The changes to the

Chapter 5 131 Model with bottom friction

weights between the hidden and output layers were much more dramatic, involving four

sign changes. The smallest magnification was 2.130 and the largest, 24.863, with an average

magnification of7.985.

As for the bias unit to the hidden layer, the change was quite modest involving a reduction

in size using a factor of 0.600

5.4.3 Validating the depth network

As usual a flood tide regime was used for the validation with an estuarine velocity of -0.5

mls. simulated over a period of 12000 iterations which resulted in the data as depicted in fig.

5.11 and tables 5.15 and 5.16.
Water depth

15.4
E
c
:5 UL = -0.5
a.

Uo = 0.25(])

0 15
ho = 15
et = 0.0026

14.8

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 5.11: Re-trained flood tide depth simulation

Once more it is noted that none of the differences are significant in comparison to the

Admiralty measurement errors (see Section 4.8.2).

OKm 89Km 270Km 609Km 8I5Km 1119Km 1200 Km

ANN 15.4450 15.4231 15.6357 15.2296 15.6179 14.7054 15.0393

Target 15.4450 15.4197 15.6427 15.2284 15.6222 14.7233 15.0393

Diff. 0.0000 0.0034 -0.0070 0.0012 -0.0043 -0.0179 0.0000

Table 5.J5: Flood tide depth variations

As can be seen from fig. 5.11, the neural network is performing well on the unseen data.

The maximum difference between the target value and the ANN value appears to be around

the usual point, 1119 Km, but is of a very reasonable sized 0.0179 m. It is about twice the

Chapter 5 132 Model with bottom friction

size of the maximum difference in the training phase. In fact, generally all of the differences

are of the order of twice those in the training phase.

Errors from training

RMSE ME ESO RPE

0.0071 0.0052 0.00024 0.0345

Table 5.16: Flood tide depth re-training errors

The error ratios, from table 5.16, are:

ME ~±0.732
RMSE '

ESD ~ ±0.034 and
RMSE

RPE ~±4.859
RMSE

which are again of the expected magnitudes. Comparing the errors in table 5.16 with those

from the training session, table 5.10, the ME, ESO and RPE are approximately 1.4 times the

size of their corresponding values in the training session whilst the RMSE is about 1.7 times

the corresponding value.

5.4.4 Comparison with depth results using standard bipolar activation

Interestingly, on comparing table 5.15 with table 5.5, the latter containing the validation

results using the standard bipolar activation function, it is seen that the maximum difference

(the anomaly) of 0.0996 at 1122 Km has been reduced by about a factor of 5.5. Further,

comparing table 5.16 with table 5.6, the RMSE, ME, ESO and RPE have been reduced by

factors of 0.155, 0.249, 0.185 and 0.247 respectively.

5.4.5 Finalized weights of the depth network

After validating the network, the following table of weights, that needs to be read in

conjunction with fig. 4.1, was obtained:

Chapter 5 133 Model with bottom friction

Final weight matrix from input la ver to hidden layer:
YI Y2 YJ Y4 Ys Y6 Y7

x, 0.1452 0.0429 -0.0961 -0.0826 -0.1761 0.0158 -0.1418
Xl 0.0617 0.1059 0.2186 0.4297 0.3041 -0.1442 -0.2701
X2 0.0474 -0.0044 0.1414 0.3984 -0.1224 0.0593 -0.0936
XJ -0.0825 -0.0669 -0.3487 -0.1564 -0.1789 -0.0341 -0.0955

Final weight matrix from hidden layer to output laver:
Yo Y. Y2 YJ Y4 Ys Y6 Y7

Z 0.0660 0.4258 0.2121 0.7122 0.8188 0.3569 -0.1294 -0.4629

Table 5.17: Finalized weights of the re-trained depth network

5.4.6 Validating the velocity network

Using the same parameters as for the depth validation, the velocity was validated over a

period of 12000 iterations with resultant data as in fig. 5.12 and tables 5.18 and 5.19.
Velocity

0.4
UL = -0.5

0.3 Uo= 0.25ui-- ho = 15E 0.2.s: 0= 0.0026
;:;.

0.1Ti
0
Qj
> 0

-0.1

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 5.12: Re-trained flood tide velocity simulation

Again it is noted that none of the differences are significant in comparison to the Admiralty

measurement errors (see Section 4.8.2).

OKm 43Km 270Km 574 Km 811 Km 1089 Km 1200 Km

ANN 0.1407 0.1423 -0.0595 0.2002 -0.1525 0.3975 0.0370

Target 0.1402 0.1417 -0.0597 0.1997 -0.1535 0.4044 0.0382

Diff. 0.0005 0.0006 0.0002 0.0005 0.0010 -0.0069 -0.0012

Table 5.18: Flood tide velocity variations

Chapter 5 134 Model with bottom friction

Fig. 5.12 demonstrates that the neural network has performed well on the unseen validation

data, the maximum difference between the target value and the ANN value being less than

0.007 m. This occurs at approximately the same position of the anomaly in the velocity

validation using the standard bipolar function (fig. 5.4). This maximum deviation ofO.0069

is about 1.5 times the maximum deviation in the training phase (cf. table 5.12). In fact, most

of the deviations in table 5.18 are more or less 1.5 times their equivalents from the training

phase data in table 5.12.

Errors from training

RMSE ME ESD RPE

0.0019 0.0010 0.00006 0.0066

Table 5.19: Flood tide velocity re-training errors

The error ratios, from table 5.19, are:

ME -±0.526
RMSE '

ESD _ ±0.032 and RPE _ ±3.474
RMSE RMSE

which are again of the expected magnitudes. Comparing the errors in table 5.19 with those

from the training session, table 5.13, the ME and RPE are approximately 1.5 times the size

of their corresponding values in the training session whilst the RMSE is about 1.6 times the

corresponding value and the ESD twice the training value.

5.4.7 Comparison with velocity results using standard bipolar activation

Comparing table 5.18 with table 5.7, the latter containing the validation results using the

standard bipolar activation function, it can be seen that the maximum difference (the

anomaly) of 0.1020 at 1082 Km has been reduced by about a factor of 15. In fact, the

differences have been reduced by factors between 8 and 15. Further, comparing table 5.19

with table 5.8, the RMSE, ME, ESD and RPE have been reduced by factors of 0.15, 0.1,

0.15 and 0.1 respectively.

Chapter 5 135 Model with bottom friction

5.4.8 Finalized weights of the velocity network

After validating the network, the following table of finalized weights was obtained:

Final weight matrix from input layer to hidden layer:
YI Y2 Y3 Y4 Y5 Y6 Y7

x, -0.0839 0.0076 -0.0310 0.0023 -0.0074 -0.1856 -0.0135
Xl -0.1619 -0.3614 0.6041 -0.0880 -0.3048 0.3586 0.1948
X2 0.0098 0.0171 0.0139 -0.0174 -0.3835 0.0995 0.0971
X3 0.0615 0.0487 -0.2536 -0.0745 -0.0372 -0.1048 -0.1039

Final weight matrix from hidden layer to output layer:
Yo YI Y2 Y3 Y4 Y5 Y6 Y7

Z 0.0836 -0.1502 -0.2962 0.5653 -0.0535 -0.3987 0.3630 0.2346

Table 5.20: Finalized weights of the re-trained velocity network

5.5 Testing the networks with different parameters

So far a neural network has been developed, as specified by fig. 4.1 and tables 5.17 and

5.20, that performs well for a particular still water depth, a fixed upstream (forcing) velocity

and two different instances of the downstream velocity, namely, the tidal and the ebb flow

velocities. It would be useful to test the system at this point, using different parametric

values for the depth, friction and forcing velocities to analyse its 'universal approximation'

capabilities. Strictly speaking, changing the still water depth or coefficient of bottom friction

should require a complete retraining of the neural network. Five groups of tests were

considered involving changes to the still water depth, coefficient of bottom friction,

upstream velocities and downstream velocities as well as combinations of the two

velocities.

5.5.1 Variation of the still water depth

Simulations were conducted with the still water depth changed first to 10m and then 20 m

for both flood tide and ebb tide regimes. The error measure results are depicted in table 5.21

at the end of this section.

Ebb tide: 10 m depth

With an upstream (forcing) velocity Vo ofO.25 mis, a downstream (estuarine) velocity UL of

0.5 mls and the friction coefficient set to 0.0026, as in the training phase, the still water

Chapter 5 136 Model with bottom friction

depth was changed to 10m. Fig. 5.13, depicts the result of the simulations for the depth and

velocity.

Water depth

10.5

10.4
E
c UL = 0.510.3:5 Uo=0250..
(J) no = 100 10.2 et = 0.0026

10.1

200 400 600 1000 1200

Distance along centre of river in Km
Velocity

0.2

VJ 0.1"-
E
.!;

4- 0'u
0w> -0.1

-0.2

200 400 600 800 1000 1200

Distance along centre of river in Km

Figure 5.13: 10m ebb tide depth and velocity simulations

There appears to be an extremely good agreement between the neural network simulation

and the [mite difference scheme plot, the velocity simulation being more accurate than that

of the depth.

Flood tide: 10m depth

With the parameters exactly as in the previous case but now with the downstream velocity

UL changed to one of a flood tide, in this case, -0.5 mis, the simulation was run again. As

can be seen from fig. 5.14 the velocity agreement is again very good but the depth is not

quite as accurate as in the previous case between 1000 Km and 1200 Km.

Chapter 5 137 Model with bottom friction

Water depth
105

104

E 10.3
c 10.2 UL = -0.5s:... 101 Uo = 0.250.
Q) ho = 100 10 et= 0.0026

99
98

200 400 600 800 1000 1200
Distance along centre of river in Km

Velocity

03

en 02--E
.!;

~ 0.1'u
Q

ID> 0

-0.1
200 400 600 800 1000 1200

Distance along centre or river in Km

Figure 5.14: 10m flood tide depth and velocity simulations

Ebb tide: 20 m depth

These 'test' simulations follow exactly the same procedure as for the 10m case.

Water depth
20.8

E 20.6
UL = 0.5

c Uo = 0.25

:5 204
ho = 20

0. Cf =0.0026
Q)

0
20.2

200 400 600 800 1000 1200
Distance along centre of river in Km

Velocity
03.

en-E o 1.£
.~ 0
U
Q

ID -01>
-02

200 1000 1200
Distance along centre of river in Km

Figure 5.15: 20 m ebb tide depth and velocity simulations

Chapter 5 138 Model with bottom friction

Flood tide: 20 m depth
Water depth

. 20.6
E
c 204
J::0. 20.2
(])

o 20
UL = -0.5
Uo = 0.25
ho = 20et = 0.0026

ANN

~19.8

200 400 600 800
Distance along centre of river in Km

Velocity

200 400

04
(I)-- 03E
.~ 0.2.e-
u 0.10
Qj
> 0

·0.1

600 1000 1200
Distance along centre of river in Km

Figure 5.16: 20 m flood tide depth and velocity simulations

With the downstream velocity VL changed to a flood value of -0.5 mIs, the simulation

results are depicted in fig. 5.16.

As can be seen from equation (3.25), as the depth increases, the effects of the bottom

friction diminish. Hence if the bottom friction tends to 'dampen' out any errors in the neural

network, then the simulation for a 20 m depth would be less accurate than that for a 15 m

depth. The converse would be true for a 10 m value.

ho Vo VL ME RMSE ESD RPE
0.5 Depth 0.00820 0.01160 0.00050 0.0400

Velocity 0.00110 0.00180 0.00005 0.0053
20 0.25 -0.5 Depth 0.01110 0.01420 0.00067 0.0545

Velocity 0.00160 0.00300 0.00011 0.0079
0.5 Depth 0.00370 0.00420 0.00017 0.0241

Velocity 0.00066 0.00120 0.00003 0.0044
15 0.25 -0.5 Depth 0.00520 0.00710 0.00024 0.0345

Velocity 0.00100 0.00190 0.00006 0.0066
0.5 Depth 0.00360 0.00380 0.00008 0.0350

Velocity 0.00041 0.00057 0.00002 0.0041
10 0.25 -0.5 Depth 0.00490 0.00620 0.00021 0.0479

Velocity 0.00057 0.00096 0.00004 0.0056

Table 5.21: Comparison of errors for different depths

Chapter 5 139 Model with bottom friction

In comparing the ebb tide (UL = 0.5) data for the depths, from 10m through to 20 m, the

ME values are respectively 0.00360,0.00370 and 0.00820. The ME is obviously increasing

with increasing depth and the attendant loss of friction as expected. It is also noticeable that

the greatest loss occurs from 15 to 20 m depth and is not a linear relationship. Continuing in

a similar manner, considering the RMSE and the ESD, for the ebb tide depths, a very similar

trend is observed. The RPE however does not display this consistent trend since it has

values of 0.0350, 0.0241 andO.0400. This may well be because the middle value (0.0241)

relates to the training phase and so should necessarily be more accurate.

In a likewise fashion, the inspection of the ebb tide velocities again reveals (including the

RPE) a trend such as that for the ebb tide depths. Further, performing a similar analysis first

for the flood tide (UL = -0.5) depths and then the flood tide velocities respectively, the same

consistent trends are observed for the error measures. In conclusion as expected, apart from

the RPE for the flood tide depths, the error measures increase consistently in accordance

with the increase in still water depth.

5.5.2 Variation of the coefficient of bottom friction

Here the intention was to see the effect of changing the friction coefficient Cr on the neural

network simulation. The value was decreased from the training value of 0.0026 to 0.0015,

0.0010 and finally 0.0000 respectively. The last value would of course result in the zero

friction model of Chapter 4 but for the fact that the neural network is now employing

different weights and a different activation function. Plots of the simulations for 0.0015,

0.0010 and 0.0000 follow (figs. 5.17 to 5.22). The simulations were performed as usual, for

both an ebb tide, UL = 0.5 mls and a flood tide, UL = -0.5 mls.

Chapter 5 140 Model with bottom friction

Ebb tide: coefficient = 0.0015
Water depth

15.6

E
c 15.4 ANN
.c
Q_
Q)

15.20

15
200

0.3
(/)-- 0.2E
.S: 0.1e;-
Li 00
ai> -0.1

-0.2

-0.3
200

UL = 0.5
Uo = 0.25
ho = 15
Cf=0.0015

400 600 800 1000 1200
Distance along centre of river in Km

Velocity

600400
Di stance along centre of river in Km

Figure 5.17: Ebb tide depth and velocity simulations with 0.0015 coefficient

Flood tide: coefficient = 0.0015

Water depth

15.6

E 15.4
c
E 15.2 ANN
0.
Q)

0 15 Uo = 0.25
ho = 15

14.8 Cf=OOO15 UL = -0.5

200 400 600 800
Distance along centre of river in Km

VelOCity

0.4
(/) 03--E
.!: 0.2
.~ 0.1u
0
ai
>

-0.1

200 600 1000 1200400
Distance along centre of river in Km

Figure 5.18: Flood tide depth and velocity simulations with 0.0015 coefficient

Chapter 5 141 Model with bottom friction

Ebb tide: coefficient = 0.0010

Water depth

15_6 UL = 0.5
E
c

15.4.c.....
o,
(])

0 152

15

200 400 600 800 1000 1200

Distance along centre of river in Km
Velocity

0_3

(/) 0_2--.
E
.!: 0_1

.~ 0u
0

-0103>
-0_2

-0_3
200 400 600

Distance along centre of river in Km

Figure 5.19: Ebb tide depth and velocity simulations with 0.0010 coefficient

Flood tide: coefficient = 0.0010

156
E
c 15.4
.c..... 15.2o,
(])

0 15

14.8

(/) 0.4
--.
E
.!: 0.2
.~
u
0
03 0>

-0.2

Water depth

UL = -0.5
Uo =0.25
ho = 15
Cf=00010

200 400 600
Distance along centre of river in Km

Velocity

200 400 600
Distance along centre of riller in Km

Figure 5.20: Flood tide depth and velocity simulations with 0.0010 coefficient

Chapter 5 142 Model with bottom friction

Ebb tide: coefficient = 0
Water depth

15,8

E 15,6
c

15,4.c......
Q 15,2Q)

0
15

14,8

UL = 0,5

200 400 600 1000 1200
Distance along centre of river in Km

Velocity

(f)
0.6

-..
E 0,4,£
~

0,2'u
0
Qj
> 0

-0,2

Distance along centre of river in Km

Figure 5.21: Ebb tide depth and velocity simulations with zero bottom friction

Flood tide: coefficient = 0
Water depth

15,8
E 15,6
c
.c 15,4......
Q 15,2Q)

0

14,a

UL = -0.5

200 400 600 aDo 1200
Distance alon~ centre of river in Km

eloclty

(f) 0,6-..
E
,£ 0.4
,~ 0,2o
0
Qj
> 0

-0,2
200 400 1000 1200

Distance along centre of river in Km

Figure 5.22: Flood tide depth and velocity simulations with zero bottom friction

The inclusion of the error measures from the training and validation phases (cf. figs. 5.9 to

5.12) results in the following table of errors:

Chapter 5 143 Model with bottom friction

Cf UL ME RMSE ESD RPE
0.50 Depth 0.00370 0.00420 0.00017 0.0241

Velocity 0.00066 0.00120 0.00003 0.0044
0.0026 -0.50 Depth 0.00520 0.00710 0.00024 0.0345

Velocity 0.00100 0.00190 0.00006 0.0066
0.50 Depth 0.00520 0.00630 0.00028 0.0336

Velocity 0.00110 0.00180 0.00005 0.0072
0.0015 -0.50 Depth 0.00620 0.00810 0.00036 0.0407

Velocity 0.00170 0.00340 0.00012 0.0109
0.50 Depth 0.00630 0.00830 0.00037 0.0408

Velocity 0.00160 0.00260 0.00008 0.0103
0.0010 -0.50 Depth 0.00740 0.00940 0.00043 0.0483

Velocity 0.00240 0.00480 0.00017 0.0160
0.50 Depth 0.01660 0.02280 0.00110 0.1072

Velocity 0.01250 0.02100 0.00084 0.0801
0 -0.50 Depth 0.01570 0.02160 0.00099 0.1017

Velocity 0.01440 0.02260 0.00094 0.0924

Table 5.22: Comparison of errors for difJerentfriction coefficient

It can be seen that apart from the depth errors for the flood tide, all the other errors are

monotonically decreasing with increasing value of the coefficient of friction. This is as

would be expected from equation (3.25). The maximum absolute depth errors for the flood

simulations deviate slightly from this monotonicity. Apart from the results for the zero

friction where they are of the order of 0.05 m and 0.05 mis, all the errors are less than 0.02

m and 0.02 mls so that the model appears to be able to cope reasonably well with changes in

the friction parameter. This is particularly interesting as it was assumed that the density of

the water is homogeneous (cf. equations 3.24 and 3.25). In practical terms this would not be

the case further down river towards the estuary where the density, due to salinity, would be

increasing. It may well be that the model will not be able to display a similar 'flexibility'

towards changes in the density. As previously stated, strictly speaking, changes to the

density and friction should require re-training. However, unlike the friction, the salinity

concentration is the result of a gradual change rather than an abrupt one (unless a salt wedge

is present on the flood tide) and so it would be impractical to continually keep retraining the

system to represent different locations in the river.

Chapter 5 144 Model with bottom friction

5.5.3 Variation of the downstream (estuarine) velocity

Keeping the forcing upstream (river end) velocity at its value as used in both training and

validation, that is, 0.25 m/s, the coefficient of friction at 0.0026 and the still water depth at

15 m, three simulations were conducted involving different downstream (tidal) velocities

from those used in the training and validation phases. The downstream estuarine velocities

used in the training and validation were 0.5 and -0.5 mls respectively The first new

downstream value is 0.25 mls which corresponds to an ebb flow. The second value for

simulation is -0.25 mls which represents a flood tide of exactly the same magnitude as the

first one but now in the opposite direction. The third test velocity is zero. That is, the tide is

'on the turn'. Plots of these three simulations as well as a table of the error measure results

follow:

Ebb tide: UL = 0.25
Waterdeplh

15.5

E
c
..c 15.4......
o,
(J)

UL = 0.250 15.3
Uo = 0.25
ha = 15

15.2 CI= 0.0026

200 400 600 800 1000 1200

Distance along certre ~ river in Km
Velocity

0.2

(f) 0.15---..
E
.£ 0.1
.e-
g 0.05

~ o
-0,05

-0.1 ~ __ ...J.- __ ---L -L- __ _'_ .J__;",,",,-_....::I

Distance along CeRre ~ river in Km

Figure 5.23: Ebb tide depth and velocity simulations with 0.25 mls tidal velocity

Fig. 5.23 demonstrates that the network is able to cope extremely well with this change to

the downstream velocity. The mean deviation between the target depth and the ANN

Chapter 5 145 Model with bottom friction

simulation was less than 3 mm. The agreement between the target velocity and the ANN

result would appear to be even better. In fact, the mean deviation was less than 1 mmls.

Flood tide: UL = -0.25
Water depth

15.5

E 15.4

c

:S
15.3 UL = -0.25

Cl.
ID 15.2 UO=025
0

ho = 15
15.1 er = 0.0026

15

200 400

0.25

(f) 0.2
E
.£ 0.15z-.(3

0.10
ID> 0.05

0

-0.05

600 800

Distance aklng centre of river in Km
Velocity

200

Figure 5.24: Flood tide depth and velocity simulations with 0.25 m/s tidal velocity

Distance eking centre of river in Km

It would appear from fig. 5.24 that the simulation of the velocity is as good as that for the

previous test using a velocity of 0.25 m/s. The mean deviation was again less than 1 mm/so

The depth simulation on the other hand, although still excellent, is not quite as good as the

previous test. It is certainly as good up until approximately 1100 Km but then becomes

slightly worse. However, the mean deviation was still less than 4 mm.

Chapter 5 146 Model with bottom friction

Zero tidal flow: UL = 0

Water depth

15.45

15.4
E

Uo = 0.25c 15.35
:S UL = 0
a. 15.3 ha = 15Q)

0 ef = 0.002615.25

15.2

200 400 600 800 1000

Distance along centre of river in Km
Velocity'

0.124

~ 0.1235
.s
?;- 0.123
uo
~ 0.1225

0.122

Distance along centre of river in Km

Figure 5.25: Depth and velocity simulations for zero tidal velocity

It can be seen from fig. 5.25 that the depth simulation is very good with a ME less than

0.003 m. The simulation for the velocity appears not to be as good. However, account has to

be taken of the scaling. At around 1 Km the error is about 0.0005 mls. The ME in fact was

less than 0.0004 mls. The velocity simulation also demonstrates the immediate effects of

bottom friction on the forcing velocity close to 0 Km by almost halving it. If the error

measure values for the simulations used for training and validation are included, that is

when the estuarine velocities were 0.5 and -0.5 respectively, and are collated into a table, a

clearer picture emerges as to the effect of this estuarine velocity on the simulations:

Chapter 5 147 Model with bottom friction

UL ME RMSE ESD RPE
Depth 0.00370 0.00420 0.00017 0.0241

0.5 Velocity 0.00066 0.00120 0.00003 0.0044
Depth 0.00290 0.00320 0.00006 0.0188

0.25 Velocity 0.00036 0.00040 0.00001 0.0024
Depth 0.00270 0.00300 0.00004 0.0175

0 Velocity 0.00036 0.00038 0.00000 0.0023
Depth 0.00390 0.00470 0.00017 0.0256

-0.25 Velocity 0.00041 0.00051 0.00002 0.0027
Depth 0.00520 0.00710 0.00024 0.0345

-0.5 Velocity 0.00100 0.00190 0.00006 0.0066

Table 5.23: Comparison of errors for diffirent tidal velocities

The value of Ui,= 0.5 here as noted, represents a maximum velocity for the ebb flow, that is

the flow downstream into the estuary. Correspondingly, to reiterate, the value of UL = -0.5 is

the flood flow, that is flowing upstream. When UL = 0, the tide is 'on the tum'. From table

5.23, it is observed that as the flow velocity UL decreases from one of a maximum ebb flow

down to a value of 0, the four error measures also decrease in value. Similarly, as the flow

now becomes a flood flow and 'decreases' to a value of -0.5, so the error measures once

again increase. This behaviour is, intuitively, to be expected. Also, it is noticeable that the

values of these measures when UL = 0.5 are all less than their counterparts when UL = -0.5.

This might possibly be explained by the fact that the upstream velocity Uo is combining

with the flood flow and so is susceptible to more errors. That is, Uo and UL are now

opposing each other and so the generated combined flow is more 'erratic' making it more

difficult for the neural network to simulate it as accurately.

5.5.4 Variation of the upstream velocity

Unlike the forcing (estuarine) velocity UL which is tidal and sinusoidal (cf. Chapter 3), the

upstream velocity Uo is the result of the input from various tributaries, groundwater and

flow through various gauge stations. Although subject to fluctuations as the result of

seasonal effects, over short periods of time, it does not vary significantly, unlike UL which

decreases and then reverses every half tidal period. The training and validation values for

Uo, that is 0.25 mis, are reasonable (but assumed) estimates for this flow. Further, this is the

value used in the model of Johns [50] and so it was readily available for comparison. More

Chapter 5 148 Model with bottom friction

simulations were performed in four different scenanos (other than the training and

validation sessions) using two new values for the upstream velocity Un, Investigations were

conducted first for both the flood tide and the ebb tide regimes with a value of 0.1 for Uo

and then secondly for the same two regimes but now with a value of 0.4 for Uo. These two

different values, 0.1 and 0.4, could hypothetically represent the different seasonal flows.

Ebb tide: Vo = 0.10
Water depth

E 15.5
c 15.4

:S 15.3a.
~ 15.2
)j) 15.1
~ 15

14.9L-.__I- __ -l ...L-__ --C::;:::::;~_..L_ __ _J

UL = 0.5
Uo = 0.1
no= 15
ct = 0.0026

200 400 600 800 1000 1200
Distance alon~ centre 01river in Km

elocity

0.2
Ul.._
E 0.1
c
>. 0......
(3

~ ·0.1
> .0.2

·03
200 400 600 800 1000 1200

Distance along centre of river in Km

Figure 5.26: Ebb tide simulations with 0.10 mlsfreshwater flow

From fig. 5.26 it would seem that the maximum deviation for the depth is 0(0.02) m around

850 Km but apart from that, the accuracy of the simulation is extremely good with a mean

absolute error of less than 0.006 m. The simulation of the velocity is even better with a

mean absolute error less than 0.002 m.

Chapter 5 149 Model with bottom friction

Flood tide: Uo= 0.10

154
E
c 15.2
.£:......a..

UL = -0.5Q) 15-0
'- Uo :::0.1
Q) hO:;: 151i5 14.8S Cf= 0.0026

14.6
200 400

Water depth

Distance along centre of river in Km
Velocity

(J) 0.3
E
c 0.2
>.
~ 0.1
o
ID 0>

-0.1

200 400 600
Distance along centre of river in Km

Figure 5.27: Flood tide simulations with 0.10 mlsfreshwater flow

Fig. 5.27 indicates that the simulations for both the depth and velocity are also very good for

the flood tide situation. The maximum deviation for the depth appears to be 0(0.02) m

again but this time around 1100 Km. Once again, the accuracy of the velocity simulation

appears to be better than the depth. The mean absolute error of the depth simulation was less

than 0.008 m whilst that for the velocity, as it was for the ebb tide regime, was less than

0.002 m.

Ebb tide: Uo = 0.4

In the previous two tests, the upstream forcing velocity U, was much smaller than the

forcing tidal velocity UL and so it is to be expected that the tidal term would have much

greater influence on the flow and hence the accuracy of the ANN estimations. Intuitively

therefore, increasing the upstream velocity to near that of the downstream one should give

rise to a completely different scenario with resultant effects on the ANN estimations.

Chapter 5 150 Model with bottom friction

Water osptn

15.9
E

UL = 0.5c 15.8
.r:: 15.7 Uo = 0.4
a. ho = 15
ID 15.6 Cl =0.0026"0

0> 15.5-(U 15.4~
15.3

200 400 600 800 1000 1200
Distance along centre of nver in Km

Velocity

tn

E
c 01
>.-(3 0
0
0)
> -0.1

-0.2
200 400 600 800 1000 1200

Distance along centre of nver in Km

Figure 5.28: Ebb tide simulations with 0.4 mlsfreshwater flow

The depth simulation as depicted in fig. 5.28 has three significant deviations in the

estimation of the depth, at around 1 Km, 550 Km and 1050 Km although in reality, they are

fairly small being of 0(0.07), 0(0.05) and 0(0.03)m respectively. The mean absolute

error was less than 0.02 m. The velocity simulation by contrast is very much better with a

mean absolute error less than O.OOlm, which is interesting, as any errors in the depth are

propagated into the velocity network as noted earlier.

Chapter 5 151 Model with bottom friction

Flood tide: Do = 0.4

Water depth

E
15.8

c 15.6
£; ANNg- 15.4
"0

UL = -0.5,_
(I) 15,2 Uo = 0.4"tU
S 15 ho = 15

ef= 0,0026

200 400 600 800
Distance along centre of river in Km

Velocity

004
(J)

0,3--E
c
>. 0.2
......
'0 0,10
05
> 0

-0,1
200 400 600 1000 1200

Distance along centre of river in Km

Figure 5.29: Flood tide simulations with 0.4 mls freshwater/low

From fig. 5.29 it would appear that the depth simulation has two significant deviations in

the depth estimation at around 250 Km and 800 Km. However they are not particularly large

being of 0(0.05) and 0(0.03) m respectively. The mean absolute error was again less than

0.02 m. The velocity simulation as in the previous test, is very much better with a mean

absolute error less than 0.002 m.

Collating the error measure results, including those obtained during the course of training

and validation, leads to the following table:

Chapter 5 152 Model with bottom friction

VD VL ME RMSE ESD RPE
0.4 0.5 Depth 0.01690 0.0228 0.00110 0.1070

Velocity 0.00057 0.0011 0.00003 0.0038
0.25 0.5 Depth 0.00370 0.0042 0.00017 0.0241

Velocity 0.00066 0.0012 0.00003 0.0044
0.1 0.5 Depth 0.00580 0.0069 0.00029 0.0387

Velocity 0.00110 0.0015 0.00006 0.0071
0.4 -0.5 Depth 0.01720 0.0228 0.00110 0.1100

Velocity 0.00110 0.0022 0.00008 0.0070
0.25 -0.5 Depth 0.00520 0.0071 0.00024 0.0345

Velocity 0.00100 0.0019 0.00006 0.0066
0.1 -0.5 Depth 0.00750 0.0091 0.00040 0.0504

Velocity 0.00120 0.0019 0.00008 0.0078

Table 5.24: Comparison of errors for different freshwater flows

Considering the depth results (table 5.24) in the ebb tide case first, that is VL = 0.5. it can be

seen that all four error measures decrease slightly as the upstream velocity VD is increased

from 0.1 to the training velocity of 0.25. Increasing Vo from 0.25 to 0.4 shows a dramatic

five fold increase in the values of the error measures. The same observations apply to the

depth results in the flood tide case, VL = -0.5, where increasing Vo beyond 0.25 results in a

three to five fold increase in the values of these error measures.

Performing a similar inspection of the velocity results firstly in the ebb tide case, then apart

from the RMSE result, there is a small but noticeable decrease in their values when

increasing from Vo = 0.1 to Vo = 0.25. Thereafter, there is no significant change. For the

flood tide situation, the same trend prevails but to a smaller extent.

Recalling that the training value for Vo was 0.25, it would appear that any decrease in this

value has a much larger influence on the ability of the neural network to accurately simulate

the depth than an increase beyond this training value. The same argument applies to the

velocity but is of a much smaller nature.

5.5.5 Variation of both upstream and downstream (estuarine) velocities

The scenario here is a more complicated situation to that in the previous test. In these tests,

there will be a variation of the upstream velocity Vo from its training value of 0.25 as well

Chapter 5 153 Model with bottom friction

as changing the value of the downstream (estuarine) value U L from its training and

validation values of 0.5 and -0.5.

Ebb tide: Uo = 0.4, UL = 0.7
Water depth

E
c 15.8
.c:a.
~ 15.6
(0 ANN
~ 15.4

200 400 600 800 1000 1200

03
(f) 02"'-E
c 0.1
:>,

0......
.(3
0

-0.1ID
> .0.2

·0.3

Distance along centre of river in Km

Velocity

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 5.30: Ebb tide depth and velocity simulations

The depth simulation as depicted in fig. 5.30 is very similar to that with UL = 0.5 (cf. fig.

5.28). Again, there are three significant deviations in the estimation of the depth, namely at

around 1 Km, 550 Km and 1050 Km. In reality, again they are not very large being of

0(0.08), 0(0.06) and 0(0.06) m respectively. The mean absolute error was less than 0.03

m. The velocity simulation again (cf. fig. 5.25), contrastingly is much better having a mean

absolute error less than 0.002 m.

Chapter 5 154 Model with bottom friction

Flood tide: Uo = 0.4, UL = -0.7
Water depth

UL = -0.7
uo;; 0.4
ho::1S
Cl = 0.0026

200 400 600 800 1000
Dlstance along centre of river In Km

Velocity
0.5

(J)
0.4'-

E
c 0.3
>. 0.2:t::'o
0 0.1Qj
> 0

-0.1

200 400 600 800 1000 1200
Distance along centre of river in Km

Figure 5.31.' Flood tide depth and velocity simulations

From fig. 5.31 can be seen the similarity with that of Ui, = -0.5 (cf. fig. 5.29). Once again,

the depth simulation has two significant deviations in the depth estimation at around 250

Km and 800 Km. However once more they are not particularly large being of 0(0.08) and

0(0.05) m respectively. The mean absolute error was less than 0.03 m. The velocity

simulation as in the previous test (cf. 5.29), is very much better with a mean absolute error

of less than 0.002m.

Chapter 5 155 Model with bottom friction

Ebb tide: Uo= 0.1, UL= 0.7

Water depth

E 15.6
c
E 15.4
0..
ID

~ 15,2

~ 15

UL = 0.7
Uo = 0.1
ho e 15
er;: 0.0026

200
Distance along centre of river in Km

r.n 0,1

E
c
.c -0,1
'0
o
(j)
>

Distance along centre of river in Km

Figure 5.32: Ebb tide depth and velocity simulations

From a close inspection of fig. 5.26, it is possible to see the similarity in the accuracies of

both the depth and velocity simulations with that of fig. 5.32. From the latter, the maximum

deviation for the depth is 0(0.02) m around 850 Km whilst that for the velocity is also of

the same order at around 1050 Km. The mean absolute errors were 0.0068 and 0.0018 for

the depth and velocity respectively. This contrasts well with that of fig. 5.26 where the

errors were 0.0058 and 0.0011.

Chapter 5 156 Model with bottom friction

Flood tide: Do = 0.1, DL = -0.7
Water depth

15.5

E
c
..c....a.

15Q)
"0 UL = -0.7
L.
Q) Uo=O.1....
tu ho = 15~ Cf=00026

14,5
200 400 600 800 1000 1200

Distance along centra of river in Km

Velocity

0,4
OJ 0,3'-
E
c 0,2
>. 0.1.....
'0
0 0ID
> ·0.1

·0.2
200 400 600 1200

Distance along centre of river in Km

Figure 5.33: Flood tide depth and velocity simulations

The similarity between fig. 5.33 and fig. 5.27 appears to be even greater than that between

fig.5.32 and fig. 5.26. The mean absolute errors for the depth and velocity are respectively,

0.0074 and 0.0019 whilst those relating to the simulation in fig. 5.27 were 0.0075 and

0.0012.
Uo UL ME RMSE ESD RPE

0.7 Depth 0.02390 0.03220 0.00150 0.1508
Velocity 0.00130 0.00280 0.00008 0.0087

0.4 -0.7 De_pth 0.02250 0.02990 0.00140 0.1436
Velocity 0.00190 0.00420 0.00015 0.0124

0.5 Depth 0.00370 0.00420 0.00017 0.0241
Velocity 0.00066 0.00120 0.00003 0.0044

0.25 -0.5 Depth 0.00520 0.00710 0.00024 0.0345
Velocity 0.00100 0.00190 0.00006 0.0066

0.25 0 De_l)th 0.00270 0.00300 0.00004 0.0175
Velocity 0.00036 0.00038 0.00000 0.0023

0.7 Depth 0.00680 0.00800 0.00036 0.0447
Velocity 0.00180 0.00370 0.00011 0.0123

0.1 -0.7 Depth 0.00740 0.00860 0.00038 0.0491
Velocity 0.00190 0.00360 0.00014 0.0122

Table 5.25: Comparison of errors for different VD and UL

Chapter 5 157 Model with bottom friction

Varying both the upstream and the downstream velocities at the same time necessarily

makes it more difficult to draw conclusions. However, after some analysis of the error

measures in table 5.25, it would appear that the trends as observed in the previous tests, of

varying Do only, also apply here. The effect of changing Do has much more influence than

changing UL which is rather fortuitous since the estuarine velocity would, since it is tidal, be

continually changing as previously noted.

5.6 Application to the confluence of the Rivers Thames and Medway

Having investigated the effect of the two neural network models over a length of 1200 Km,

the investigation now focuses on the smaller area encompassing the Thames / Medway

confluence. The domain of the Thames will be restricted to a section length of 60 Km

starting from approximately its junction with the Ingreboume river at which is located the

last river gauge before the estuary is reached. The other end of the section is at an arbitrary

point but sufficient enough to ensure the boundary is beyond the junction with the Medway

following the arguments of Vreugdenhil [95] (cf. Chapter 3). This location in the Thames

(at 60 Km) is also convenient as it is approximately the point at which the Yantlet Dredged

Channel in the Thames converges with the Medway Approach Channel (also dredged).

Similarly, for the Medway, a section length of 35 Km is considered, from this juncture

running through the Medway down to approximately the town of Rochester, a distance of

about 25 Km from the confluence of the two rivers. Again, this is an arbitrary but

convenient point. This juncture is fully depicted in fig. 5.34 that follows. The last gauge on

the Medway before reaching the Thames is located at Teston. Flow data in the form of

'cumsecs' for these two gauge stations, Jngreboume and Teston, is available from the

National Rivers Authority.

Chapter 5 158 Model with bottom friction

Thames Section
60Km· .

Ingreboume River/Gauge
SOKm·

-,

Thames

(Sheerness

Allington Lock

Teston

Plan
I (not to scale)
.----~---.~- -.----.- __ _ _ .

Figure 5.34: Confluence of the Rivers Thames and Medway

Although this research has assumed a model with a constant horizontal bed, it should be

noted that in reality, this is of course not true for the two rivers. At Jngrebourne, the depth is

about 10m. Proceeding down river towards the estuary a distance of 30 Km from

Jngrebourne, the average depth in the main channel of the Thames is around 15 to 20 m. The

Medway, likewise, has a depth that increases with a progression down river towards the

Thames. Near Rochester the Medway is quite shallow. Proceeding down river from

Rochester, its depth increases to about 6.5 m at 13 Km from the mouth reaching 12 m at

approximately 6.5 Km from the mouth. At the junction with the Thames itself, the depth is

about 20m. However, this said, it was observed (cf. Section 5.5.1) that within limits, the 15

m depth model is quite flexible in terms of variations of the still water depth. A map

showing the detailed bathymetry of the area at the confluence of the two rivers is included in

Appendix F.

As for the investigations over the 1200 Km-length, simulations were performed using

different velocities at both the upstream and downstream ends of the Thames in both flood

Chapter 5 159 Model with bottom friction

tide and ebb tide modes. Six different combinations were applied to the Thames and two to

the Medway. In all cases, unlike the investigations in the previous section, the only

parameters that were varied were the velocities.

5.6.1 River Thames

The initial data was generated over a 25 tidal cycle period to ensure any disturbance had

completely travelled the full length (cf. Chapter 3). Further, keeping the time interval (30

sec.) and the spatial distance (500 m) the same, implied that there would be 61 depth and 60

velocity sections to ensure the same Courant value (cf. Chapter 3). In the simulations that

follow, the zero Km-point is at the Ingreboume river junction. The error measures for all of

the simulations are listed in table 5.26 at the end of this section.

Ebb tide: Do = 0.25, DL = 0.5

E 15.65
.s 15.6
:g_ 15.55
~ 155
~ 15.45

~ 15.4
15.35

UL = 0.5
__=0.05
mt=OA

10 20 30 40
Distanc& along CGnIf&(j river in Km

velOcity

50 60

Distance along CGnlre(j river in Km

Figure 5.35: Ebb tide simulations in the River Thames

It was noted that the maximum absolute errors for the depth and velocity were 0.0137 m and

0.0040 mls respectively whilst the error ratios were, for the depth,

ME _ ±0.74I
RMSE '

ESD _ ±0.I85 and
RMSE

RPE -±4.759
RMSE

and for the velocity:

Chapter 5 160 Model with bottom friction

ME
---±0.521,
RMSE

ESD _ ±0.128 and
RMSE

RPE _ ±3.407
RMSE

It would appear at first sight that the data generated by the finite difference scheme for this

60 Km-length of the Thames would be the same as that generated for a 1200 Km, the latter

being used in the training (cf. Sections 5.4.1 and 5.4.2). Hence, it would be data seen by the

networks before and so be useless for any form of testing or validation. However, from an

inspection of fig. 3.2 and equations (3.9) and (3.10), it can be seen that the depth and

velocity are used respectively to calculate the updated data on the next time level and most

importantly, in terms of the argument here, the 'influence' progresses both upwards and

backwards with progression through the succeeding time levels. In other words, a depth

value at 60.5 Km is used to calculate the velocity at 60 Km on the time level above and then

this same velocity is then subsequently used to calculate the depth at 59.5 Km on the next

time level after that. As a result, the depth at 60.5 Km will, using a double grid interval of 1

Km, be influencing the calculations at the zero Km-boundary in less than 61 iterations, that

is time level 61. Similarly, the depth at 1200 Km-boundary will have exerted an influence

on the calculations at the zero Km-boundary by the time the 1200th time level has been

approached. However, when the data is generated, as it is in this section, in isolation from

the river beyond 60 Km there are no such 'external influences' so that 'isolation' here is a

sufficient condition for the data to be different from the training data.

Flood tide: Uo = 0.2S, UL = -O.S

The maximum absolute errors for the depth and velocity were respectively 0.007 m and

0.0085 mls. It can be seen that on comparing the maximum errors from fig. 5.35 and fig.

5.36, that the flood tide error is about half that of the ebb tide whilst the opposite is almost

exactly the case for the velocity.

Chapter 5 161 Model with bottom friction

Water depth

E
.~ 15.15
.c UL = -0.5......a. Uo = 0.25(])
-0 15.1 ef" 0.0026
I-
(])......
(U

~ 1505

10 20 30 40 50 60
Distance along centre of river in Km

Velocity

045
(rJ
'-.. 0.4E
c 0.35
>.......
(3 0.3
0as 0.25>

0.2

10 20 30 40 50 60
Distance along centre of river in Km

Figure 5.36: Flood tide simulations in the RiverThames

The error measure ratios for the depth and velocity are respectively:

ME--~±0.880,
RMSE

ESD -±0.240
RMSE

and RPE - ±5.800
RMSE

ME
RMSE - ±0.732, ESD -±0.211

RMSE
and RPE - ±4.780

RMSE

Comparing these ratios with those of the previous (ebb tide) simulation they are about 20 to

60 % larger. This presumably is due to the much better fit of the velocity simulation in fig.

5.35. Either way, the neural network estimates of the data for both flood and ebb scenarios

are very good.

Comparing the error measures for the last two simulations (cf. table 5.26) with those of the

training (tables 5.10 and 5.13) and validation (tables 5.16 and 5.19) on the full 1200 Km-

length, then apart from the ESD results, it was possible to draw the following average

comparisons:

RMSE60 =1.15xRMSEI2oo

ME60 = 1.35 X MEI200

RPE60 = 1.33 X RPE1200

Chapter 5 162 Model with bottom friction

The ESD results however have in comparison, been magnified by approximately a factor of

seven. These results are encouraging considering that the network is having to simulate with

only 5% of the data of the 1200Km-model.

Ebb tide: Uo = 0.25, U L = 0.7

As expected, since the modelling IS departing in this simulation from the training

downstream velocity UL of 0.5 m/s, the accuracy is not quite as good as the two previous

scenarios. The maximum absolute errors were 0.0357m and 0.0121m/s for the depth and

velocity respectively, the maximum for the depth obviously occurring at the zero Km part of

the simulation.
Water depth

.~ 15.7

R{g 15.6
'-
1M 15.5

S 15.4

UL = 0.7
Uo = 0.25
Cf= 0.0026

10 20 30 40 50 60
Distance along centre 01river In Km

Veloci~

(J) 0.2._
E
.~ 0.1
.a
·0 00
ID
>

·0.1

10 20 30 50 60
Distance along centre of river in Km

Figure 5.37: Ebb tide simulations in the River Thames

The error measure ratios were, for the depth,

ME +--~_O.699,
RMSE

ESD ~±O.216
RMSE

and RPE ~ ±4.431
RMSE

and for the velocity,

ME ~±0.374
RMSE '

ESD ~±0.126
RMSE

and RPE ~ ±2.529
RMSE

Chapter 5 163 Model with bottom friction

Flood tide: Do = 0.25, DL = -0.7

The maximum absolute errors were 0.0114 m and 0.0171 mis, both occurring towards the

beginning of the simulations. The depth error has been reduced by about a factor of three

whilst the velocity error has increased marginally from the simulations in the corresponding

ebb tide situation.
Water depth

E 15.15

.~ 15.1

.c
g.15.05
'0
'- 15
2

~ 14.95 b===:::lC::;;~~~====-_I._-~~~--=,::--_J

Target

UL = -0.7

10 20 30 40 50 60
Distance along centre of river in Km

velocity

~ 0.5

.~ 0.4

.2-g 0.3
<i5
> 0.2

10
Distance along centre of river in Km

Figure 5.38: Flood tide simulations in the River Thames

As before, the depth error measure ratios are,

ME---~ ±0.920,
RMSE

ESD ~ ±0.239 and
RMSE

RPE ~ ±6.136
RMSE

whilst those for the velocity give,

ME
--~±0.723,
RMSE

ESD ~ ±0.205 and
RMSE

RPE ~ ±4.700
RMSE

Comparing the ratios with those of the corresponding ebb tide (fig. 5.37), it was observed

that the ratios of the ebb tide have been 'magnified' by between a factor 1.1 and 1.4 for the

depth and between 1.6 and 1.9 for the velocity. This degradation of accuracy is easily

observed by comparing the velocity simulations of figs. 5.37 and 5.38.

Chapter 5 164 Model with bottom friction

Ebb tide: Uo = 0.25, UL = 0.25

The maximum absolute recorded errors were 0.0032 m and 0.001 m/s for the depth and

velocity respectively indicating an extremely good 'fit' as exemplified by fig. 5.39:
Water depth

c
E 15.5 ANN

UL = 0.25
Uo = 0.25
Cf= 0.0026

:5 1545
o,
Q)

"0 15.4
l-
Q)

~ 15.35

10 20 30 40 50 60
DIstance along centre of river in Km

Velocity

UJ.__
E 0.2
c
:>.13 0.15
0
(i5
> 0.1

10 20 30
Distance along centre of river in Km

Figure 5.39: Ebb tide simulations in the River Thames

The error ratios for the depth were

ME +---_0.962,
RMSE

ESD-- - ±O.039 and
RMSE

RPE _ ±6.192
RMSE

and for the velocity,

ME
---±0.960,
RMSE

ESD _ ±0.036 and
RMSE

RPE ~ ±6.383
RMSE

Flood tide: Uo = 0.25, UL = -0.25

In this particular simulation the maximum absolute errors were 0.0019 m for the depth and

0.0020 m/s for the velocity. From fig. 5.40, it is observed that most of the depth errors

occurred at the beginning and near the end (close to the estuary).

The usual error ratios for depth are

ME +--~_0.841,
RMSE

ESD ~ ±O.l70 and
RMSE

RPE ~±5.568
RMSE

and for the velocity

Chapter 5 165 Model with bottom friction

ME +--~_0.798,
RMSE

ESD ~±0.202
RMSE

and RPE ~ ±5.213
RMSE

Water depth

E 15.24
c
:5 15.22
Cl.
~ UL = -0.25
~ 15.2 Uo:; 0.25
"tU a:; 0.0026
~ 15.18 b....._-===!!!!~=-L---:L:- __ ...L-__ ~ __ _J

10
Distance along centre of river in Km

Velocity

c 0.3

10 20 30 40 50 60
Distance along centre of river in Km

Figure 5.40: Flood tide simulations in the River Thames

From figs. 5.40 and 5.39 it can be seen that the flood tide simulations are of the same order

of accuracy as the ebb tide ones. In fact, comparing the error ratios, other than ESDIRMSE,

the ratios for the flood tide are approximately 0.8 to 0.9 times those of the ebb tide.

However, for the ESDIRMSE ratios, the ebb ratios have been magnified by factors of

between 4.2 and 5.7.

Ebb tide: Uo = 0.5, UL = 0.25

In this simulation where the freshwater flow is obviously more dominant than the estuarine

flow, the recorded maximum absolute errors were 0.0464 m and 0.01 m/s for depth and

velocity. The velocity simulation is very good but the depth neural net estimation is weak at

the start of the section. Even so, the difference is only of the order ofO.OSm.

Chapter 5 166 Model with bottom friction

Water depth

15.85
E
c 15.8 lJL= 0.25
:5 15.75 Uo = 0.50.
(])

15.7 ef:: 0.0026'0 ANN
'-'* 15.65
S 15.6

10 20 30 40 50 60

Distance along ceJtre of river in Km

Velocity

0.45
Ul.......
E

0.4c
.c
'0

0.350
(j)
>

0.3 10 20 30
Dista'lce along certre of river in Km

Figure 5.41: Ebb tide simulations in the River Thames

As before, the depth ratios are

ME--~±0.904,
RMSE

and velocity:

ME--~±0.963,
RMSE

ESD ~ ±0.243 and
RMSE

ESD ~ ±0.259 and
RMSE

RPE ~±5.732
RMSE

RPE ~±6.296
RMSE

Flood tide: Uo = 0.5, UL = -0.25

The observed depth and velocity maximum absolute errors were 0.0084 m and 0.0137 m/s.

The simulations produced the depth error ratios

ME--~±0.795,
RMSE

and velocity ratios

ME
--~±0.946,
RMSE

ESD ~ ±O.223 and
RMSE

ESD ~ ±O.250 and
RMSE

RPE ~ ±5.154
RMSE

RPE ~ ±6.098
RMSE

Chapter 5 167 Model with bottom friction

Water depth

15.56
E
.~ 15.54
:5

UL = -0.250..
~ 15.52 Uo;: 0.5._
ID 15.5+-'
<.U

S
15.48

10 20 30 40 50 60
Distance along centre or river in Km

Velocity

0,52
en
E 05
c 0.48
>. 0.46+-'
(3

0.440
Q)

0.42>
0.4

10 20 30 40 50 60
Distance along centre of river in Km

Figure 5.42:Flood tide simulations in the River Thames

Comparing the data relating to fig. 5.41 and fig. 5.42, it is noted that the absolute depth error

for the flood tide is about 20% that of the corresponding ebb tide whilst the absolute

velocity error for the flood tide is only slightly worse than that of the ebb tide.

In spite of the seemingly rather 'large' error in the depth close to the zero Km boundary (cf.

fig. 5.41), the ebb and flood tide simulations are of similar accuracy. In fact, all of the error

ratios of the ebb tide have been 'reduced' by factors of between 0.88 and 0.98 in comparison

to the flood values.

In addition to the simulations just described, other simulations were performed with Uo =

0.1 and 0.4. The results are included in table 5.26 overleaf:

Chapter 5 168 Model with bottom friction

Uo UL RMSE ME ESD RPE

0.5 Depth 0.00540 0.00400 0.00100 0.02570

Velocity 0.00059 0.00031 0.00007 0.00200

-0.5 Depth 0.00500 0.00440 0.00120 0.02900

Velocity 0.00410 0.00300 0.00086 0.01960

0.7 Depth 0.01530 0.01070 0.00331 0.06780

Velocity 0.00170 0.00064 0.00022 0.00430

0.25 -0.7 Depth 0.00880 0.00810 0.00210 0.05400
Velocity 0.00830 0.00600 0.00170 0.03900

0.25 Depth 0.00260 0.00250 0.00010 0.01610

Velocity 0.00047 0.00045 0.00002 0.00300

-0.25 Depth 0.00088 0.00074 0.00015 0.00490

Velocity 0.00094 0.00075 0.00019 0.00490

0.5 Depth 0.00370 0.00330 0.00027 0.02150

Velocity 0.00064 0.00058 0.00015 0.00390
0.1 -0.5 Depth 0.01290 0.01230 0.00330 0.08300

Velocity 0.00210 0.00170 0.00048 0.01120

0.5 Depth 0.02550 0.02110 0.00580 0.13380

Velocity 0.00230 0.00170 0.00047 0.01130
0.4 -0.5 Depth 0.00170 0.00140 0.00012 0.00890

Velocity 0.00910 0.00740 0.00210 0.04770

0.25 Depth 0.02800 0.02530 0.00680 0.16050

Velocity 0.00540 0.00520 0.00140 0.03400
0.5 -0.25 Depth 0.00390 0.00310 0.00087 0.02010

Velocity 0.00920 0.00870 0.00230 0.05610
Table 5.26: Comparison of simulation errors for River Thames

It was observed that on plotting the four error measures respectively for the ebb depths from

table 5.26, they all demonstrated an identical type of line graph with the RPE showing the

largest monotonic increase. Overall, the best results (smallest error) occurred when Uo = UL

= 0.25 mls. The worst results were when Uo was close to 0.5 mls. Inconsistent patterns were

noted for the flood depths, the best results occurring when Uo = 0.25 mls and UL = -0.25

mls. The largest error was when Uo = 0.1 mls and UL = -0.5 mls. Again, as for the ebb

depths, the RPE showed the largest variation in response to changes in Uo and UL.

The same procedure was applied to the velocities from the table. Again when plotting each

of the error measures for the ebb scenarios against Uo and UL, each error measure plot

showed similar shaped patterns. The smallest errors occurred when Uo = UL = 0.25 mls. The

Chapter 5 169 Model with bottom friction

worst results occurred for Uo = 0.5 mfs and UL = 0.25 mfs. Applying the same form of

analysis to the velocities in the flood flow, apart from the RPE, the different error measures

displayed identical patterns with the smallest error being when Uo = 0.25 mfs, UL = -0.25

mfs and the largest when Uo = 0.5 mfs and UL = -0.25 mfs. Again, as for the depths, the RPE

showed the greatest sensitivity to changes in the values of Un and UL.

5.6.2 River Medway

As for the Thames, the initial data was again generated over a 25 tidal cycle period and the

time and spatial data remained the same. The latter [time and spatial data] thus implies the

model will have 36 depth and 35 velocity sections. The zero Km-point upstream is near

Rochester. Before a neural network simulation can be performed for different Uo (at the

Rochester end) and UL at the 35 Km-point (at the confluence of the two rivers), it was

necessary to check the matching of the depths and velocities of the generated data from the

Medway with that of the Thames. The values of Uo near Rochester would be just arbitrarily

prescribed but necessarily smaller than the Uo used for the Thames. It must be remembered

of course that the generated velocities at the boundaries are not the same as the values of Uo

and UL• As previously mentioned (cf. Chapter 3), Uo is a constant (over a short period of

time) freshwater input forcing velocity whilst UL is the forcing velocity due to sinusoidal

type gravitational tidal effects. In the cases that follow, as before, the generated depth and

velocity values near the boundaries for both rivers were obtained by simple inspection of the

data output.

Ebb tide: Uo= 0.25, UL = 0.5

This case corresponds to the Thames one as depicted by fig. 5.35. The generated depth and

velocity in the case of the Thames at the 60 Km-location were 15.3154 m and 0.2486 mfs.

However, generating data for the Medway starting at 0 Km (near Rochester) and finishing at

the 35 Km-point, equivalent to the 60 Km-location in the Thames model, revealed

differences in the two sets of data. The depth and velocity values generated at the estuarine

end of the Medway were respectively, 15.3091 m and 0.2435 m/s. The depth was therefore

down by 0.0063 m and the velocity by 0.0051 m/s.

Chapter 5 170 Model with bottom friction

The maximum recorded absolute difference between the neural network simulation and the

target data in the depth was 0.0029 m whilst that for the velocity was 0.0009 mls.
Weter depth

~ 155

=R 1545
(])
"0
L.. 154

"*$: 1535

UL = 0.5
Uo= 0.25
Cl :0,0026

5 10 15 20 25 30 35
Distance along centre or riller in Km

Velocity

c

5

-E(i)
0.2

>.13 015
o
(j)
> 0.1

Distance along centre of river in Km

Figure 5.43: Ebb tide simulations in the River Medway

The error measure ratios were, first for the depth:

ME ~±0.905
RMSE '

ESD ~ ±0.100
RMSE

and RPE ~ ±5.762
RMSE

and then the velocity:

ME ~±0.865
RMSE '

ESD ~±0.081
RMSE

and RPE ~ ±5.676
RMSE

Flood tide: Do = 0.25, D L = -0.5

This data generation and simulation corresponds to that depicted In fig. 5.36 (for the

Thames). The generated depth and velocity for the Thames at the 60 Km-location were

15.1952 m and 0.1645 mls. Likewise, those for the Medway at the 35 Km-point were

15.2525 m and 0.2109 mls. Hence, the discrepancies between the generated data sets were

0.0573 m and 0.0464 mis, approximately ten times larger than those for the ebb tide case.

With regard to the neural network simulation, the maximum absolute difference in depth

was 0.0031 m whilst that for the velocity was 0.0040 mls.

Chapter 5 171 Model with bottom friction

Water depth

15.24
E
c 15.22

..c 152......
Q.
ID 1518
"0
I- 15.16ID
"tU 15.14
~

1512

UL = -0.5

10 15 20 25 30 35
Distance along centre of river In Km

Velocity

5 10
Distance along centre of river In Km

Figure 5.44: Flood tide simulations in the River Medway

The usual error ratios were, for the depth:

ME -±0.824
RMSE '

ESD -±0.253
RMSE

and RPE -±5.529
RMSE

and the velocity:

ME
---±0.737,
RMSE

ESD _ ±0.279 and
RMSE

RPE _ ±4.947
RMSE

Ebb tide: Uo= 0.15, UL = 0.5

The depth and velocity generated in the Thames at 60 Km (cf. fig. 5.35) were 15.3154 m

and 0.2486 mls whilst the corresponding values for the Medway at 35 Km were 15.1892 m

and 0.1466 mls. The discrepancies between the generated data are now 0.1262 m and 0.1020

mls. These discrepancies are now significant being on average twenty times as large as the

first case considered here for the Medway.

As for the neural network simulation, maximum absolute differences in depth and velocity

were 0.0044 m and 0.0017 mls.

Chapter 5 172 Model with bottom friction

Water depth

E 15.4
c
~ 15.35

Targe! UL = 0.5.......a. Uo = 0 15ID 15.3-0
'-
IDtu 15.25

S
15.2

5 10 15 20 25 30 35
Oistence along centre or river in Km

Velocity

(J).._
0.1E

c
>. 0.05.....
'0
0
(j)

0>

5 10 15 20 25 30 35
Distance along cenre of river in Km

Figure 5.45: Ebb tide simulations in the River Medway

The depth error ratios were:

ME--~±0.875,
RMSE

ESD ~±0.085
RMSE

and RPE ~ ±5.656
RMSE

and similarly, for the velocity:

ME ~±0.736
RMSE '

ESD ~±0.272
RMSE

and RPE ~ ±4.848
RMSE

Flood tide: Uo = 0.15, UL = -0.5

Generated depth and velocity for the Thames at 60 Km (cf. fig 5.36) were 15.1952 m and

0.1645 mls whilst those for the 35 Km-location in the Medway were 15.1469m and 0.1254

mls. The depth and velocity discrepancies were therefore 0.0483 m and 0.0391 mls.

The discrepancies here are of the same order as those in the second case considered for the

Medway. The maximum absolute differences in the neural network simulation for the depth

and velocity were respectively, 0.0096 m and 0.0018 mls.

Chapter 5 173 Model with bottom friction

Water depth

15

UL = -0.5
c 15.1
E

:S
0.
~ 15.05

10 15 20 25
Distance along centre of river in Km

Velocity

30 35

Ul 0.3
E
.S 0.25
.c
'0
o 0.2
(j)
>

5 10 15 20 25
Distance along centre of river in Km

30

0,15

Figure 5.46: Flood tide simulations in the River Medway

The simulation resulted in the following error ratios, firstly for the depth:

ME ~±0.885
RMSE '

ESD ~ ±0.311 and
RMSE

RPE ~±5.934
RMSE

and secondly for the velocity:

ME ~±0.686
RMSE '

ESD ~ ±0.259 and
RMSE

RPE ~ ±4.468
RMSE

The following table summarises the error measures for the Medway simulations:

Do/DL RMSE ME ESD RPE
0.25/0.5 depth 0.00210 0.0019 0.00021 0.01210

velocity 0.00037 0.00032 0.00003 0.00210
0.25/-0.5 depth 0.00170 0.00140 0.00043 0.00940

velocity 0.00190 0.00140 0.00053 0.00940
0.15/0.5 depth 0.00320 0.00280 0.00027 0.01810

velocity 0.00045 0.00033 0.00012 0.00220
0.15/-0.5 depth 0.00610 0.00540 0.00190 0.03620

velocity 0.00072 0.00049 0.00019 0.00320

Table 5.27: Comparison of simulation errors in the River Medway

The error measures for the depth, both flood and ebb, decreased in value as Do increased

from 0.15 mls to 0.25 mis, the RPE showing the greatest relative decrease. As regards the

Chapter 5 174 Model with bottom friction

ebb velocity, the error measures displayed a similar pattern. However, for the flood velocity.

the error measures increased in response to a positive increase in the value of Uo

A comparison of tables 5.26 and 5.27, for compatible scenarios, that is

{Uo = 0.15, VL = -O.S} and {Un = 0.15, VL = O.S}

revealed that the error measure values for the Thames are on average 2.5 times larger than

those of the Medway. This inequality may be due to the longer length of simulation in the

Thames as compared to that in the Medway, that is 60 Km as compared to 35 Km. The

longer length may well present greater opportunities for the neural network simulation to

deviate from the target data.

Returning to the discrepancies in the generated depths and velocities between the Thames

and Medway at the point of merger (cf. figs. 5.35,5.43,5.36 and 5.44) where Uo is 0.25 m/s

in both cases, as previously noted, the differences were 0.0063 m and 0.0051 mls for the ebb

flow and 0.0573 m and 0.0464 mls for the flood flow. These discrepancies are due to the

difference in length of the two models, that is 35 Km for the Medway and 60 Km for the

Thames. However, if the prescribed velocity Uo for the Medway (near Rochester) is much

less than that for the Thames, say 0.15 mis, a not unreasonable assumption, then (cf. figs.

5.35, 5.45, 5.36 and 5.46) the discrepancies in the generated depth and velocities at the point

of merger are now 0.1262 m and 0.1020 mls for the ebb flow and 0.0483 m and 0.0391 mls

for the flood flow. This will undoubtedly require some modification to one of the finite

difference equations to enable the matching of the depths and velocities as per a suggestion

by Johns [50] or possibly using perturbation methods, Nayfeh [84] or asymptotic

expansions, Rees [87]. This is worthy of further investigation (see Chapter 6). This would

not have been a problem if real observed data had been available for both the Thames and

Medway.

Notwithstanding the aforementioned comments, the neural network performed well on the

simulation of the generated target data for the Medway.

Chapter 5 175 Model with bottom friction

5.7 Conclusion

A neural network model incorporating bottom friction, trained using the backpropagation

algorithm with a bipolar sigmoid activation function, was first developed. The depth

network was trained over 1200Km in an effort to avoid overfitting (cf. Chapter 4) in an ebb

tide regime, producing satisfactory results with a RMSE < 0.00084 and a maximum

deviation between the target depth and the neural network simulation < 0.015 m. This

maximum deviation occurred near the 0 Km-boundary. The velocity network was similarly

trained producing satisfactory results once again with a RMSE < 0.0005 and a maximum

deviation less than 0.0078 mls near the 0 Km-boundary.

Following the same procedure as in Chapter 4, the validation of both networks was

performed using the unseen flood tide data. The accuracy of the simulation of both networks

decreased rapidly around the 1100 Km location producing errors of -0.1 m and -0.1 mls

and a RMSE - 0.046, as a consequence of the nonlinear bottom friction effects near the

linearized boundaries. As a result, the architecture and parameters of the two networks were

re-examined in an effort to develop a model that could cope more adequately with these

errors at the 1100 Km location. After some degree of experimentation, it was decided to

change the activation function to the LeCun version with appropriately modified weights.

There was little significant improvement during training to the errors in the depth

simulations, the deviation between target and simulation reducing from 0.15 m to 0.1 m but

with some increase in the RMSE.

However, validation of the depth and velocity networks with the LeCun activation function

produced significant improvements in the accuracies of the simulations. At approximately

the 1100 Km location, the deviations in depth and velocity were reduced to less than 0.018

m and 0.007 mls respectively. The deviations were then compared with the results of

simulations using the original bipolar sigmoid activation function. The deviations from the

latter had been reduced by a factor of five in the case of the depth network and a factor of

fifteen for the velocity network. The finalized depth network is fully specified in fig. 4.1 and

Chapter 5 176 Model with bottom friction

the weights in table 5.17. Similarly, the finalized velocity network is fully specified by the

weights in table 5.20 and fig. 4.1

To check the 'universal approximation' properties of these two finalized neural networks,

the models were tested using a number of different scenarios. Varying the depth between 10

m and 20 m indicated that the models coped well at 10m. and to a lesser degree, at 20 m.

There was much better agreement between 10m and 15 m than between 15 and 20 m as

expected. The models were also tested with different values of the coefficient of friction.

Again the results were satisfactory except for a zero coefficient where errors of 0.05 m and

0.05 mls were produced. The model was then tested using three different sets of values for

UL. The variation in the values had little effect on the errors, the maximum being 0.004 m

for the depth tests.

Following this, simulations were then performed to see the effects of varying the value of

the upstream velocity Vo. It was noted that a decrease in the value of Uo from its training

value of 0.25 produced more significant changes in the size of the errors than an increase

beyond the training value. Even so, the maximum error in the depth was no larger than

about 0.05 m. The increase in the errors in velocity were less significant. Finally, the model

was tested by varying the values of Vo and VL at the same time. It was observed that the

maximum error again occurred with the depth simulations, being of the order ofO.08 m, the

velocity errors being smaller. It appeared that changing the value of Ue had a much more

significant effect on the accuracy of the simulation than changing VL.

This chapter concluded with an application of the model to the area encompassing the

confluence of the Thames and Medway rivers. The ebb tide simulations of the depth and

velocity of the Thames, using the 1200 Km training values for Vo and UL, produced errors

with maximum values of 0.0137 m and 0.004 mis, the corresponding errors for the flood

tide being 0.007 m and 0.0085 mls. Increasing or decreasing the magnitude of UL produced

corresponding increases or decreases in the errors. Apart from the RPE, the other error

measures displayed consistent behaviour in response to changes in the values of Vo and UL.

The most accurate simulations were when Vo was near to 0.25 mls (the training value) as

Chapter 5 177 Model with bottom friction

expected but most inaccurate when Uo approached the magnitude of the training value of Ui

that is, 0.5 mls. This is as it should be indicating that the freshwater input tends to uniquely

determine the flow. Apart from the ESD, the error measures were between 1.15 and 1.35

times that of the 1200Km simulations.

The simulations of the Medway produced maximum errors of 0.0029 m and 0.0009 mls in

the depth and velocity respectively when performed using the training boundary velocities

of the ebb cycle. In flood tide mode with the same boundary values, the maximum errors

were 0.0031 m and 0.0040 mls. Using a smaller freshwater input that is, Uo = 0.15, the

errors in the ebb tide were 0.0044 m and 0.0017 mls and correspondingly in the flood tide,

0.0096 m and 0.0018 mls.

Comparing the neural network simulations of both the Thames and the Medway, it was

noted that the depth and velocity error measure values for the Thames were approximately

2.5 times greater than the corresponding values for the Medway. Further, a comparison of

the generated depth and velocity data at the precise confluence of the two rivers revealed

discrepancies in the depths and velocities ranging from 0.0063 m to 0.1262 m and 0.005 t

mls to 0.1020 mls. This may well necessitate some form of 'matching' between the finite

difference models at this location.

178

Chapter 6
Discussion and Results

6.1 Discussion

Current research is focussing on developing a non-linear modelling methodology to

represent river systems and in particular, the use of artificial neural networks (ANN). The

latter have the advantage of being able to use field data directly without any simplification,

unlike regression analysis wherein some assumption has to be made a prior} as to the form

of the equation. Most ANNs used in river modelling are of the multilayer type, trained using

the backpropagation algorithm and it is this model architecture and training paradigm that is

used in this research. Thus, the aim of this research was to develop a neural network model

and apply it to river flows, in particular, the confluence of the rivers Thames and Medway.

Although the neural network modelling was reasonably successful, a main obstacle to the

research work was the lack of available measured flow data in the area of interest. To

overcome this, much effort was diverted into developing software to generate artificial data

against which the models could be trained and validated. A main difficulty encountered

when training neural networks is that they are prone to 'overfitting' if the amount of data is

limited. However, as it was necessary to generate artificial data, as much data as was

required could be created so that this 'difficulty' was totally negated. In fact, the arguments

of Sarle [92] were used when generating this data to ensure overfitting was either limited or

indeed eliminated.

Limiting the research to a narrower field, a one dimensional shallow water model was

developed using finite differences based upon the St. Venant Equations wherein the

advection terms are ignored. Stability, convergence and compatibility of the scheme were

subsequently analysed mathematically. With no data available beyond the first time level,

the leapfrog method was an obvious and sensible choice for the explicit finite difference

scheme used in the research. The finite difference scheme model was then used to generate

depth and flow data using three different depth scenarios in an ebb tide regime over a length

of 600 Km using 25 tidal cycles. Without any imposed tidal velocity, the resulting depth

Chapter 6 179 Discussion and Conclusion

converged to the value as predicted by Laplacian theory. The results were in excellent

agreement with that of a numerical model developed by Johns [51]. The finite difference

scheme was then extended to include non-linear terms such as bottom friction wherein the

variable density of the seawater was included. However, this proved to be difficult and so

the density was set equal to a constant, the density of freshwater in this case. It was noted

that, as suspected, the addition of bottom friction although converting the regular sinusoidal

curve to an irregular one, it tended to 'dampen' out the curve and any possible errors in the

finite difference scheme computation.

Having constructed a finite difference scheme model that could generate data with or

without bottom friction, the research progressed towards the development of a neural

network to simulate the depth and velocity of the river flow without bottom friction. Much

experimental work ensued in order to obtain information on the optimum architecture of the

hidden layer and the parameters such as the learning rate and momentum term. At this point,

some concern arose over the problem of 'overfitting' when training the neural network over

a length of 600 Km. Following the method of Sarle [92], 1080 data records would be

required to ensure this was not a problem. However, this would have necessitated reducing

the time step (30 s) and spatial distance (500 m) accordingly to maintain the Courant

number within the correct limits to ensure the stability of the finite difference scheme. A

simple analysis revealed that over 37000 time levels would be needed in the finite difference

scheme but this required more computer memory than was available. The solution was

relatively simple and solved by extending the length of simulation to 1200 Km and leaving

the time and spatial values of the leapfrog grid as they were. This implied longer simulation

times before a solution was reached.

With the depth network fully specified, the training simulations were performed with an

error of less than 0.003 m and a RMSE of 0.0014, the major changes to the weights in the

network being limited mostly to those between the input and hidden layers. Validation of

the depth network was performed using flood tide (unseen) generated data. The maximum

error was less than 0.008 m and the resultant RMSE and ME were respectively 0.0065 and

Chapter 6 180 Discussion and Conclusion

0.0043 that compared favourably with that of Dibike [31]. During the training of the

velocity network, the maximum error was less than 0.016 mls with a RMSE ofO.OOll. The

major changes to the weights were between the input and hidden layers that were about two

to three times the changes between the other units. Validation of the network generated a

very acceptable maximum error of 20 mmls with RMSE and ME values of 0.0079 and

0.0067 that also compared favourably with the model of Dibike [31]. Finally. the two neural

network simulations were compared with the numerical model of Johns [51] producing very

good agreement.

The neural network developed initially was somewhat idealized in that it did not include the

effects of bottom friction. Thus this model (a novel approach) was extended to include the

effects of bottom friction so that it was much more representative of river flows. Although

the one-dimensional shallow water equations have been widely used to represent river flows

and in some cases, simulated using neural networks, the latter have not included bottom

friction. The new models were trained (as for the zero friction models) using the

backpropagation algorithm with a bipolar sigmoid activation function. The ebb tide depth

training produced very satisfactory results such as a RMSE < 0.00084 and a maximum

deviation < 0.015 m whilst the velocity training errors were a RMSE < 0.0005 and a

maximum deviation less than 0.0078 m. In both cases concerning depth and velocity, these

maximum errors occurred near the 0 Km-boundary.

Although very satisfactory results were obtained during the training phase. the validation

was more difficult. The validation was performed as for the zero friction models using

unseen flood tide generated data. However, the accuracy of the simulation of both networks

decreased rapidly around the 1100 Km-location producing errors of -0.1 mls and a RMSE -

0.046. This was a consequence of the nonlinear bottom friction effects near the linearized

boundaries. Both the architecture and parameters of the two networks were re-examined and

found to be satisfactory. Attention was then focussed on the activation function and after a

considerable degree of experimentation, a novel implementation of the LeCun version with

appropriately modified weights was employed. There was little significant improvement

Chapter 6 181 Discussion and Conclusion

during training to the errors in simulations; however, there were significant improvements in

the validation. At approximately the 1100 Km-location, the deviations in depth and velocity

were reduced to less than 0.018 m and 0.007 mls respectively. In fact, the deviations were

reduced by a factor of five in the case of the depth network and a factor of fifteen for the

velocity network.

The two finalized networks were then tested in a number of different scenarios to evaluate

their 'universal approximation' properties. The scenarios involved varying quantities such

as the still water depth, the coefficient of friction CD,the tidal forcing velocity UL and the

imposed freshwater flow Uo. The networks coped very well with a change of the still water

depth to 10 m but not quite so well at 20 m. Testing the models with different values of the

coefficient of friction were satisfactory except for CD = 0 when errors of 0.05 m and 0.05

mls were produced. The next set of tests involved variation of UL, which displayed little

change to the errors, the maximum error being 0.004 m for the depth tests. Varying the

value of the upstream velocity Uo had a much more significant effect on the accuracy of the

simulations than varying UL. Decreasing Uo from its training value of 0.25 had a more

significant effect on the depth errors than increasing it beyond the training value.

Notwithstanding this, the maximum error in the depth was no larger than about 0.05 m.

Changes to Uo had less significant effect on the errors in the velocity. Varying Uo and UL at

the same time, it was observed that the maximum error again occurred with the depth

simulations being of the order of 0.08 m, the velocity errors being smaller.

Applying the neural network models to the River Thames (using now a length of only 60

Km) resulted in errors with maximum values of 0.0137 m and 0.004 mls for the depth and

velocity respectively in ebb tide mode, the corresponding errors for the flood tide being

0.007 m and 0.0085 mls. Variation of Uj, produced corresponding and consistent changes in

the errors. The most accurate simulations were when Uo was near to 0.25 mls but most

inaccurate when Uo had a magnitude of 0.5 mis, indicating for a fixed value of UL, the

freshwater input tends to uniquely determine the flow. The error measures were between

1.15 and 1.35 times that of the 1200 Km simulations. The simulations of the Medway (over

Chapter 6 182 Discussion and Conclusion

a 35 Km-length) resulted in maximum errors of 0.0029 m and 0.0009 mls in the depth and

velocity in ebb tide mode with Uo = 0.25 mls. In flood tide mode the resultant errors were

0.0031 m and 0.0040 mls. Using a smaller freshwater input than that of the Thames, Uo was

changed to 0.15 mls. The ebb tide errors increased by about a factor of 1.5 to 0.0044 m and

0.0017 mls. The flood tide error in depth increased markedly to 0.0096 m whilst the velocity

decreased to 0.0018 mls.

Comparing the errors in the simulations of both rivers, the error measure values for the

Thames were about 2.5 times the corresponding values for the Medway. Further, on

comparing the generated (not simulated) depths and velocities at the precise confluence of

the two rivers revealed discrepancies ranging from 0.0063 m to 0.1262 m and 0.0051 mls to

0.1020 mls. It should be noted that this is related to the finite difference modelling and not

the neural network simulation. This may well necessitate some form of 'matching' between

the generated data at this location as part of the finite difference scheme. These

discrepancies apart, it was gratifying to observe the adaptability of the friction models with

respect to variations in depth and coefficient of friction.

The simulations were performed on a 64-bit dual processor machine. the code being

developed in a Matlab environment. Training with 1080 records in 12000 iterations took on

average, 5 minutes, whilst the validation took less than a second.

Possible avenues of further research

• A useful direction would be to convert the friction models as developed in this

research into a time series predictor of river flow depths and velocities. As it stands.

the models will predict these quantities for every 1116th• of a time cycle (cf. Chapter

3, fig. 3.3) but with a fixed freshwater input Uo, the cycle will be just repeated.

Variable freshwater input in the form of a hydrographic time series would be

required.

• The inclusion of variable density by varying the salinity. This would require a

modification to equation (3.25) and could prove worthwhile. The friction model

Chapter 6 183 Discussion and Conclusion

coped reasonably well with variation in depth and friction and so it would be useful

to assess its ability to varying density.

• Application of the neural network developed in this research to a three dimensional

numerical model of the Thames such as that of Johns [52]. This model incorporates

both variable depth and breadth as well as bottom friction. In addition, the nonlinear

advection terms, equations (3.1) and (3.2), have been retained. This model generates

higher tidal harmonics and so would be an interesting test of a neural network based

on the research in this thesis.

• To investigate the slight disparity in the generated values from the finite difference

scheme at the precise confluence of the rivers Thames and Medway. This might be

possibly achieved using a matching technique of Johns [50] or by using asymptotic

expansions, Rees [87]. This in no way affects the ability of the neural network model

to simulate the rivers individually.

• The development of a support vector machine model would be an obvious

continuation of this work. Structurally it is similar to a neural network so that the

friction models could serve as a basis for its design. This could then be used for

comparison with the neural network results and performance. To this end, a brief

introduction to support vector machines has been provided in appendix D to aid in

further research.

Chapter 6 184 Discussion and Conclusion

6.2 Results

The aim was to develop an artificial neural network (ANN) incorporating bottom friction to

model flow parameters such as velocity and depth in the area of confluence of the rivers

Thames and Medway.

A finite difference model based on the one dimensional shallow water equations was first

developed to generate data to use for training and testing of the ANN. This was achieved

with some considerable success. Comparison of the model with that of Johns [51] showed

excellent agreement in both the velocity and depth generated data

Following this, different ANNs with zero bottom friction were developed and tested in order

to obtain information on the optimum network structure and related parameters. In

particular, using guidelines suggested by Haykin [43], Marques de Sa [74], Hornik [45] et.

aI., after much simulation, a 3-7-1 MLP was developed. The model was trained using the

backpropagation algorithm and demonstrated quite acceptable agreement with both the

numerical model of Johns [51] and the neural network model of Dibike [31].

Using this zero bottom friction model as a template, the network was extended to include

the effects of bottom friction. The model's activation function was replaced by a novel

modified LeCun version to overcome conflicts near to the boundaries. After this change of

activation, the network performed as it should near to the linearized boundaries.

The bottom friction neural network displayed good flexibility when confronted with a

variation in the upstream and downstream imposed velocities. This 'universal

approximation' capability was demonstrated even further when the still water depth or

coefficient of bottom friction was altered.

Although there was a slight disparity in the generated (finite difference scheme) values for

the depth and velocities at the precise confluence of the two rivers, individually, the network

was able to simulate satisfactorily the river models over their different lengths.

185

References
1. Abrahart R and White S. Modelling sediment transfer in Malawi: Comparing

backpropogation neural network solutions against a multiple linear regression

benchmark using small data sets. Phys. Chem. Earth (E) 2001 ;26: 19-24.

2. Abramowitz M and Stegun I A. Handbook of Mathematical Functions. New York:

Dover Publications Inc; 1972.

3. Agrawal J and Deo M. Wave parameter estimation using neural networks. Marine

Structures 2004:536-50.

4. Aitkenhead M, McDonald A, Dawson J, Couper G, Smart R, Billett M, Hope D and

Palmer S. A novel method for training neural networks for time series prediction in

environmental systems. Ecological Modelling 2003:87-95.

5. Anderson A and Rosenfeld E. Neurocomputing: foundations of research. Cambridge

MA: MIT Press; 1988.

6. Asefa T, Kemblowski M, McKee M and Khalil A. Multi-time scale stream flow

predictions: The support vector machines approach. Hydrology 2005;xx: 1-10.

7. Atiya A F, EI-Shoura S M, Shaheen S Iand EI-Sherif M S. A comparison between

neural-network forecasting techniques - Case Study: river flow forecasting. IEEE

Transactions on Neural Networks 1999; 10:402-9.

8. Bertsekas D. Nonlinear Programming. Belmont, Massachussetts: Athenas Scientific;

1995.

9. Bishop C M. Neural Networks for Pattern Recognition. Oxford: Oxford University

Press; 1995.

10. Bose G and Jenkins G. Time Series Analysis Forecasting and Control. San

Francisco: Holden Day; 1970.

11. Boser B, Guyon I and Vapnik V. A training algorithm for optimal margin classifiers.

Fifth annual workshop on computational learning theory; 1992 p. 144-52.

12. Bowden G, Dandy G and Maier H. Input determination for neural network models in

water resources applications. Hydrology 2004:75-92.

References 186

13. Bowden G, Dandy G and Maier H. Input determination for neural network models in

water resources applications. Hydrology 2005 :93-107.

14. Browne A. Neural Networks - personal communication.

15. Burges C. Simplified support vector decision rules. Proc. 13th. International

Conference of Machine Learning; 1996 p. 71-7.

16. Burges C. A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery 1998;2: p. 121-67.

17. Callan R. The Essence of Neural Networks. London: Prentice Hall (Europe); 1999.

18. Carpenter G and Grossberg S. The ART of adaptive pattern recognition by a self

organizing neural network. Computer 1988;21 :77-90.

19. Chadwick A and Morfett J. Hydraulics in Civil and Environmental Engineering.

London & New York: SPON Press; 1998.

20. Chang F and Chen Y. Estuary water-stage forecasting using radial basis function

neural network. Hydrology 2003: 158-66.

21. Cherkassky V and Mulier F. Learning from Data: Concepts, theory and methods.

New York: John Wiley & Sons, Inc.; 1998.

22. Cigizoglu H K. Intermittent river flow forecasting by artificial neural networks.

DEVELOPMENTS IN WATER SCIENCE 2002;47:1653-60.

23. Cigizoglu H K. Estimation, forecasting and extrapolation of river flows by artificial

neural networks. HYDROLOGICAL SCIENCES JOURNAL 2003;48:349-62.

24. Cigizoglu H K. Estimation and forecasting of daily suspended sediment data by

multi-layer perceptrons. Advances in Water Resources 2004:185-95.

25. Cortes C and Vapnik V. Support Vector Networks. Machine Learning 1995;20:273-

97.

26. Delleur J, Tao P and Kavvas M. An evaluation of the practicality and complexity of

some rainfall and runoff time series model. Water Resources Research 1976; 12:953-

70.

27. Dibike Y and Abbott M. Application Of Artificial Neural Networks To The

Simulation Of A Two Dimensional Flow. Hydraulic Research 1999;37:435-46.

References 187

28. Dibike Y. Solomatine D and Abbott M. On the encapsulation of numerical-hydraulic

models in artificial neural network. Hydraulic Research 1999;37.

29. Dibike Y, Minns A and Abbott M. Applications of artificial neural networks to the

generation of wave equations from hydraulic data. Hydraulic Research 1999;37:81-

97.

30. Dibike Y and Solmatine D. River Flow Forecasting Using Artificial Neural

Networks. Phys. Chern. Earth (B) 2001;26:1-7.

31. Dibike Y. Developing generic hydrodynamic models using artificial neural

networks. Hydraulic Research 2002;40: 183-90.

32. Dibike Y and Coulibaly P. Temporal neural networks for downscaling climate

variability and extremes. Neural Networks 2006; 19:135-44.

33. Dolling 0 and Varas E. Artificial neural networks for streamflow prediction.

Hydraulic Research 2002;40.

34. Drucker H, Burges e, Kaufman L, Smola A and Vapnik V. Support vector

regression machines. Advances in Neural Information Processing Systems; 1997;9 p.

155-61.

35. El-RAbbany A, El-Diasty M and Raahemifar K. Report: Sequential Tidal Height

Prediction Using Artificial Neural Network Dept. of Civil Engineering, Ryerson

University, Toronto 2003

36 Gerbeau J F and Perthame B. Derivation of viscous Saint- Venant system for laminar

shallow water: Numerical validation. Discrete and Continuous Dynamical Systems -

Series B 2001; 1:89-102.

37. Girosi F. An equivalence between sparse approximations and support vector

machines. AI Memos 1997.

38. Gurney K. An Introduction to Neural Networks. London et.al.: eRe Press; 1997.

39. Hammond M and Han D. Recession curve estimation for storm event separations.

Hydrology 330, 3-4, 573-585, 2006.

40. Han D, Chan L and Zhu N. Flood forecasting using support vector machines.

Hydroinformatics 2007:267-276.

References 188

41. Han D, Cluckie I D, Karbassioun D, Lawry J and Krauskopf B. River Flow

Modelling Using Fuzzy Decision Trees. Water Resources Research 16, 6; 431-445.

2002.

42. Han D and Yang Z. River Flow Modelling Using Support Vector Machines.

Proceedings of the congress - international association for hydraulic research

200I;CONF 29; VOL C:494-9.

43. Haykin S. Neural Networks: a comphrensive foundation. New Jersey: Prentice Hall

International; 1999.

44. Hearst M, Dumais S, Suna E, Platt J and Scholkopf B. Support Vector Machines.

IEEE Intelligent Systems 1998:18-28.

45. Hornik K. Multilayer Feedforward Networks are Universal Approximators. Neural

Networks 1989;2:359-66.

46. Huang W, Murray C, Kraus N and Rosati J. Development of a regional neural

network for coastal water level predictions. Ocean Engineering 2003:2275-95.

47. Imrie C, Durucan S and Korre A. River flow prediction using artificial neural

networks: generalisation beyond the calibration range. Hydrology 2000:138-53.

48. Izquierdo J, Perez R and Iglesias P. Mathematical models and methods in the water

industry.Mathematical and Computer Modelling 2004:1353-74.

49. Jain A and Kumar A. Hybrid neural network models for hydrological time series

forecasting.Applied Soft Computing 2006.

SO. Johns B. Expert Lectures in coastal hydrodynamics - personal communication.

51. Johns B. One dimensional numerical river model - personal communication.

52. Johns B. Three dimensional numerical river model - personal communication.

53. Kachroo R. River flow forecasting. Part 1. A discussion of the principles. Hydrology

1992;133:1-15.

54. Kachroo R and Liang G. River flow forecasting. Part 2. Algebraic development of

linear modelling techniques Volume 133, Issues 1-2, April 1992, Pages 1-15.

Hydrology 1992;133:17-40.

References 189

55. Kachroo R, Sea C, Warsi M, Jemenez H and Saxena R. River flow forecasting. Part

3.Applications of linear techniques in modelling rainfall-runoff transformations..

Hydrology 1992;133:41-97.

56. Kachroo R, Liang G, Kang W and Yu X. River flow forecasting. Part 4.

Applications of linear modelling techniques for flow routing on large catchments.

Hydrology 1992;133:99-140.

57. Karunanithi N, Grenney W J, Whitley D and Bovee K. Neural Networks for River

Flow Prediction. JOURNAL OF COMPUTING IN CIVIL ENGINEERING

1994;8:201-20.

58. Kerh T and Lee C. Neural networks forecasting of flood discharge at an unmeasured

station using river upstream information. Advances in Engineering Software 2005: I-

ll.
59. Kisi O. River Flow Modelling Using Artificial Neural Networks. Journal of

hydrologic engineering 2004;9:60-3.

60. Kocjancic R and Zupan J. Modelling of the river flowrate: the influence of the

training set selection. Chemometrics and Intelligent Laboratory Systems 2000:21-34.

61. Kumar K D, Srinivasa Raju K and Sathish T. River Flow Forecasting using

Recurrent Neural Networks. Water resources management -dordrecht 2004;18:143-

61.

62. Lapedes A and Faber R. How Neural Nets Work. Neural Information Processing

Systems 1988:442-56.

63. LeCun Y. Generalization and network design strategies; Technical Report,

University of Toronto 1989.

64. LeCun Y. Efficient Learning and Second-Order Methods, a tutorial.. Neural

Information Processing Systems; 1993.

65. LeCun Y, Bottou L, Orr G and Muller K. EfJicient BackProp. Berlin: Springer-

Verlag 1998.

66. Lin B and Falconer R. Numerical modelling of three-dimensional suspended

sediment for estuarine and coastal waters. Hydraulic Research 1996;34:435-56.

References 190

67. Lippmann R. An introduction to computing with neural nets. IEEE ASSP Magazine

1987:4-22.

68. Maier H R and Dandy G C. Forecasting salinity using neural networks and time

series models. National Conference Publication - Institution 0/ Engineers. Australia

1994

69. Makarynskyy O. Improving wave predictions with artificial neural networks. Ocean

Engineering 2004:709-24.

70. Makarynskyy O. Improving wave predictions with artificial neural networks. Ocean

Engineering 2005: 101- 3.

71. Makarynskyy 0, Pires-Silva A A, Makarynska D and Ventura-Soares C. Artificial

neural networks in wave predictions at the west coast of Portugal. Computers &

Geosciences 2005 :415-24.

72. Mangasarian O. Linear and Nonlinear separation of patterns by linear programming.

Operations Research 1965;13:444-52.

73. Mangasarian O. Multi-surface method of pattern separation. IEEE Transactions on

Information Theory 1968;IT 14:801-7.

74. Marques de Sa lP. Pattern Recognition. Concepts. Methods and Applications.

Berlin, Heidelberg, New York: Springer-Verlag; 2001.

75. Matalas N. Mathematical assessment of symmetrical hydrology. Water Resources

Press 1967;3:937-45.

76. Mattera D and Haykin S. Support vector machines for dynamic reconstruction of a

chaotic system. Cambridge MA: MIT Press; 1999.

77. McCulloch W S and Pitts W. A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biology 1943; 5:115-133

78. Mercer B. Functions of positive and negative type, and their connection with the

theory of integral equations. Transactions 0/ the London Philosophical Society

1909;209:415-46.

79. Minsky M and Papert S. Perceptrons. Cambridge, MA: MIT Press; 1969.

References 191

80. Moradkhani H, Hsu K, Gupta H and Sorooshian S. Improved streamflow forecasting

using self-organizing radial basis function artificial neural networks. Hydrology

2004:246-62.

81. Mujumdar P P. Flood Wave Propagation - The Saint Venant Equations. Resonance.

Indian Academy of Sciences 2001 :6(5): 66-73.

82. Muller K, Smola A, Ratsch G, Scholkopf B, Kohlmorgen J and Vapnik V.

Predicting Time Series with Support Vector Machines. ICANN'97; 1997;1327 p.

999-1004.

83. Nayak P, Sudheer K, Rangan D and Ramasastri K. A neuro-fuzzy computing

technique for modelling hydrological time series. Hydrology 2004:52-66.

84. Nayfeh A H. Perturbation Methods. Wiley, J. 1973

85. Picton P. Neural Networks. Basingstoke: Macmillan; 2000.

86. Ponce V M and Simons D B. Shallow wave propagation in open channel flow.

Journal of the Hydraulics Division, ASCE 1977;103:1461-1476.

87. Rees L H. An asymptotic expansion approach to a model simulating dissipative

waves on a plane beach. MPhil thesis. London Guildhall University 1994

88. Riad S, Mania J, Bouchaou L and Najjar Y. Artificial neural networks models for

river flow prediction. TRIBUNE DE L EA U 2004;57: 19-24.

89. Ripley B D. Pattern Recognition and Neural Networlcs. Cambridge: Cambridge

University Press; 1996.

90. Rosenblatt F. The Perceptron:A probabilistic model for information storage and

organization in the brain. Psychological Review 1958;65:386-408.

91. Sandhu N, Finch R and Chang F. Modelling flow-salinity relationships in the

Sacramento-San Joaquin Delta using artificial neural networks. Technical

Information Record OSP-99-1 California Dept. of Water Resources, Sacramento.

C.A.1999.

92. Sarle W. Neural Network FAQ; Available from URL:

ftp://ftp.sas.comlpub/neurallFAQ.html

or

References 192

http://vision.eng.shu.ac.ukineuraIIFAQIFAQ.html

93. Schleider 0 and Cser J. Joint Workshop on Neural Networks in Civil Engineering

April 1999, Delft; Available from URL:

http://pcl.bauinf.tu-cottbus.de/veranstaltungenlNeuraI99

94. Scholkopf'B, Burges C and Smola A. Advances in Kernel Methods - Support Vector

Learning. Cambridge, Massachussetts: MIT Press; 1998.

95. Sivakumar B, Jayawardena A and Fernando T. River flow forecasting: use of phase-

space reconstruction and artificial neural network approaches. Hydrology 2002:225-

45.

96. Skapura D. Building Neural Networks. New York: ACM Press; 1996.

97. Smith G. Numerical Solution of Partial Differential Equations. London: OUP; 1974.

98. Sonnenborg T O. Groundwater Research Centre Annual Report. Dept. of

Hydrodynamics and Water Resources, Technical University of Denmark, 1998

99. Tarassenko L.A Guide to Neural Computing Applications. London: Arnold; 1998.

100. Tawfik M. Linearity versus non-linearity in forecasting Nile river flows. Advances in

Engineering Software 2003;34:515-24.

101. Thirumalaiah K and Deo M C. River Stage Forecasting Using Artificial Neural

Networks. JOURNAL OF HYDROLOGIC ENGINEERING 1998;3:26-32.

102. Turban E and Aronson J E. Decision Support Systems and Intelligent System: New

Jersey:Prentice-Hall; 2001.

103. Vapnik V and Lerner A. Pattern recognition using generalized portrait method.

Automation and Remote Control 1963;24.

104. Vapnik V and Chervenenkis A. On the uniform convergence of relative frequencies

of events to their probabilities; 1971.

105. Vapnik V. Statistical Learning Theory. New York: Wiley & Sons.; 1998.

106. Vreugdenhil C. Computational Hydraulics. New York: Springer-Verlag; 1989.

107. Werbos P. Beyond regression: New tools for prediction and analysis in the

behavioural sciences. Cambridge MA: Harvard; 1974.

108. Wheeler A. The Tidal Thames. Oxon Routledge & Kegan. 1979

http://vision.eng.shu.ac.ukineuraIIFAQIFAQ.html
http://pcl.bauinf.tu-cottbus.de/veranstaltungenlNeuraI99

References 193

109. Widrow B and Hoff M. Adaptive switching circuits. IRE WESCON Convention

record 1960:96-104.

110. Yang Z and Han D. Derivation of unit hydrograph usmg a transfer function

approach. Water Resources Research 42; 2006.

111. Zealand C, Burn D and Simonovic S. Short term streamflow forecasting using

artificial neural networks. Hydrology 1999:32-48.

194

Appendix A - nomenclature

a

c

g

CD
Cr

u

x, t

T

1,]

0(.)

ANN
MLP

SVM

ESD

ME

RMSE

RPE

MISO

SISO

SOM

Freshwater (upsteam) forcing velocity

Tidal (downstream) imposed forcing velocity

still water level depth

water level abovelbelow still water level

density of water

Momentum tenn

Learning rate

Wave celerity

Tidal cycle

Gravitational acceleration

Coefficient of friction

Courant number

Depth averaged velocity

Distance, time

Truncation error

subscripts

Order

Artifical neural network

Multilayer perceptron

Support vector machines

Error standard deviation

Mean absolute error

Root mean squared error

Relative percentage error

Multiple input single output

Single input single output

Self-Organizing Map

195

Appendix B
Finite Difference Formulae

Notation for a function of one variable

Given that a function f and its derivatives are single valued, finite and continuous functions

ofx, then by Taylor's theorem:

h2 h3

f(x +h) = f(x)+hf'(x)+-f"(x)+-f"'(x)+O(h4)+ ...2! 3! (Bl)

and

h2 h3

f(x - h) = f(x) - hf'(x) + -f"(x) - -f"'(x) +O(h4) +...2! 3! (82)

where the notation f'(x), f"(x) represent the derivatives !,Z etc. and h is a small

change in the value of x. Note that many authors use the notation Ax and not h.

Addition and subtraction of equations (Bl) and (B2) result in respectively:

h2

f(x +h) + f(x - h) = 2f(x) + 2-f"(x) +O(h4) +...2!
(83)

h3

f(x +h) - f(x - h) = 2hf'(x) +2-f"'(x) +O(hs) +...3!
(84)

Equation (B3) gives after some rearrangement

f"(x)= f(x+h)-2f(x)+ f(x-h)
h2 (85)

ignoring terms of the O(h4) so that there is a leading error term of O(h2
), whilst equation

(B4) gives

f'(x)= f(x+h)- f(x-h)
2h

ignoring terms of the O(hS
) where again there is a leading error term of O(h2

) •

(86)

Equation (B6) is referred to as a central difference approximation. From equation (Bl) can

be deduced the following forward difference approximation:

f'(x)= f(x+h)- f(x)
h

(87)

Appendix B 196 Finite Difference Formulae

and from equation (82), the backward difference approximation:

/'(x)::: /(x)- /(x-h)
h

(88)

Notation for a function of two variables

If/is now a function of two variables, say x (for distance) and t (for time) and divide the x-I

plane into sets of equal rectangles (a mesh) such that at = h and lit = k; then the coordinates

(x,t) for a mesh point P are

x = ih and t = jk

1

i+1,j+2

i,j+1
k

P i+2,j

j+2

j+1 (j+2)k

h
j

i+1 i+2
(i+1)h

Figure RI: Leapfrog mesh

With this notation, then from equation (BS) if/is a function of both x and I:

(
82/) .=I"(x) .. :::1[(i+l)h,jk]-2/[ih,jk]+ I[(i-l)h,jk]
ax2 . I,j h2

I,J

(89)

which is usually abbreviated to

(BI0)

Appendix B 197 Finite Difference Fonnulae

As before, equation (BI0) has a leading error term of O(h2). Note that some authors use a

more cumbersome annotation. They do not use superscripts and so would have written

equation (BI0) thus:

Using similar arguments, equation (BS) gives in terms of the other independent variable t

(Bll)

with a leading error term of O(k2
).

Using the same notation for x and t, the central difference approximations are:

(af) = J;~I- J;~I
ax .. 2h

I,j

(BI2)

(if) J;J+I - f/-'- == I ,at .. 2k
I,j

(BI3)

the forward difference approximations:

(BI4)

(af) rr- f/_ ==' Iat .. k
I,j

(BlS)

and the backward difference approximations:

(BI6)

(
af) J;J - J;J-I
- - I Iat - k

I,j

(BI7)

198

Appendix C:
Matlab Computer Code

The following programs are listed in this appendix. All Matlab comments are shown in

italics for clarity. All tokenized words are in bold. Each program contains several lines of

comments at the beginning indicating the purpose of each program and so will not be

repeated here.

1. Filename: VenantDataGenerator2.m

Creates both depth and velocity data for training and validation of the neural

networks.

2. Filename: DepthSolution.m

Used to train the depth neural network.

3. Filename: Velo~itySolution.m

Used to train the velocity neural network

4. Filename: CombinedNetwork.m

This file replaces the two program files DepthSolutionValidation and

VelocitySolution Validation. This speeds up the validation and reduces the workload

on the hardrive.

s. Filename: DepthWeightFileCreation.m

Used to manually create neural network weights where required. There is also a

companion file VelocityWeightFileCreation that is not listed as the code is almost

identical. A note to that effect is included at the end of this program listing.

6. Filename: RMSTest.m

Used to check and plot the RMS calculations.

Appendix C 199 Computer Code

% Filename: VenantDataGenerator2.m
% L.HRees Feb 2007
% Code to generate test datafor Saint Venant Equations. Amended to convert the
% velocities to depth averaged ones i.e. in these equations, change u to U/(H(i,j)+ho)
% etc. The results agree perfectly with those of B.Johns.
% This is aID model. Initial condition is at t = 0 i.e. n = 1. Boundary conditions are at
% x = 0 i.e. j = 1 and x =(sections-I)/2 Km i.e. j = sections. Hence initial conditions
% are that velocity = 0for all x and t = 0 except at x = 0 where we must have some
% basic input to start the system going. This is equivalent to a hydrographic input
% (boundary condition) at the river end of the estuary. This program computes using a
% FDS, the height above still water level and associated velocities, at the centre of the
% river given this boundary hydrographic velocity input at the river end of the estuary
% and a value for the average depth (still water level) of the channel.
% As we are using a staggered grid, the spatial interval is 2 x deltax. Velocities are
% stored in U(j,n) and the height values are stored in HO,n). Using two separate
% matrices like this means that each matrix will have alternate rows containing
% nothing other than zeroes (even after computing) as a consequence of the finite
% difference scheme staggered method The j index represents the rows of velocity and
% height respectively whilst the n index represents the time iteration levels.
% The velocity and depth estimates (sections) are obtained using a given number of
% time iterations. The number of tidal cycles (for time iteration) and updstream and
% downstream velocities are user selectable. This model covers a length of
% (sections-I)!2 km along the river. Note, for stability of the FDS scheme. the time and
% spatial grid has been chosen so that the Courant number is less than one.
% Suitable boundary conditions as suggested by B.Johns are used to avoid wave
% reflection. NOTE: AMPLITUDE = UL·SQRT(H!G) at the downstream boundary
% in B.Johns Fotran model.
% NOTE: on various lines of the code, a term called a divisor is used to calculate the
% depth averaged velocities (by dividing the velocities by it) where divisor represents
% the depth of the water at or near to the point of interest.
% With h = 15m and g = 9.81 then wavelength = tidal period x phase speed = (J2.4 x
% 3600) x sqrt(g x h) = 541.5 Km approx.
% This program will generate data with or without bottom friction.
% ---.---
% GET INITIAL DATA
%-------------------------
deltax=500; % 1 Km x 50 sufficient for the Thames!Medwa

area
deltat=30; % 30 seconds time interval
Tp = 12.4 • 3600; % one tidal cycle converted to seconds
disp('Wave celerity = sqrt(gravity x still water depth).')
disp('So for still water depth = 20m, celerity = 14 mis, for depth = 15m, celerity = 12.13
mis, depth = 10m, celerity = 9.9m1s')
disp('As the number of required tidal cycles needs to be iterated through about ten times,
then as a guide:')
disp('no. of cycles for 50km = 10, no. of cycles for l00km = 20, no. of cycles for 200 km =
40, no. of cycles for 600 km = 120 etc.')
disp(' ')

Appendix C 200 Computer Code

tidalcycles = input ('How many tidal cycles do you wish to iterate over (note 12.4 hours =
one tidal cycle)? ')
time steps = Tp/deltat; % calculate the no. of timesteps required per tidal

% cycle to fit the oscillatory wave
% i.e. so that the sine wave oscillation changes sign
% at 6.2 hours to reflect a tidal change

extratimesteps = (tidalcycles-fix(tidalcycles»*timesteps;
% calculates extra timesteps needed ifmore than an
% exact no. of tidal cycles.

sections=input{'Enter no. of sections required (must be odd). e.g. 101 spans 50 Km, 201
spans 100 Km etc.) ? ');
H=zeros(sections, timesteps+extratimesteps);
U=zeros(sections-l ,timesteps+extratimesteps);
ho = input ('Enter a value for the still water depth ');

% assumed initial condition at t = 0
velocity 1 = input ('Enter a value for the upstream velocity ');

% assumed boundary condition at t = 0, x = 0
velocity2 = input ('Enter a value for the downstream velocity ');

% assumed boundary condition at t = 0, x = 50km
% gravitational acceleration
% wave celerity: shallow water waves approximation
% Courant no. which must be < = 1for stability

g=9.81;
c=sqrt(g*ho);
Cr=c*deltatldelta.x;
k=Cr/2*sqrt(ho/g);
m=-k;
1=1;
p=Cr/2*sqrt(glho);
r=p;
q=l;
disp('Enter a value for the friction coefficient, say zero for no bottom stress or for example
0.0026 ');
Cf = input ('Value? ');
bottomstress = 0;
% CALCULATE THE DATA FOR THE DEPTHS AND VELOCITIES FOR MATRIX H
% AND V FOR A WHOLE NVMBER OF TIDAL CYCLES
%--
zl = fix(tidalcycles);
for z=1:zl;

for n =1:timesteps-l ;
divisor = H(3,n)+ho; % calculating total depth at/or close to the

% upstream boundary
H(t ,n+ l)=sqrt(ho/g)*(2*velocityl-U(2,n)/divisor); % using depth

% average velocity i.e. VO/divisor
%Bryan John's upstream boundary condition

divisor = H(sections-2,n)+ho; % calculating total depth at/or close to
% downstream boundary

H(sections,n+ 1)=sqrt(ho/g)*(2*velocity2*sin(2*pi *(n-
1)*deltatITp)+U(sections-l ,n)/divisor);

% using depth averaged velocity - Bryan John's
% downstream boundary condition

Appendix C 201 Computer Code

for j = 3:2:sections-2;
divisor = H(j,n)+ho;
H(j,n+ 1)= l*H(j,n)+(k*U(j-I ,n)+m*U(j+ 1,n»/divisor;

% stores depths for all the interior points
end;
for j=I :2:sections-2;

divisor = H(j+ 2,n+ 1)+ho;
ifn> 1

bottomstress = 1 + Cf*abs(U(j+I,n-
1»*deltatl(divisor*divisor);

% calculate the bottom stress (density = 1)
% note double division here as it is u * abs(u)

else
bottomstress = 1;

end
U(j+ 1.n+ 1)=q*U(j+ 1,n)+(p*H(j,n+ 1)+r*H(j+2,n+ 1»*divisor;

% stores the velocities for the interior points
UO+1,n+ 1)=UO+ 1,n+ 1)Ibottomstress;

end;
end;
ifz <= zl % check to see if no. of required WHOLE tidal

% cycles has been surpassed
j=[l :2:sections];

H(j, 1)=HO,n+ 1); % if not, transfers latest iteration from
% previous cycle to next one

j=[2:2:sections-1];
U(j,I)=UO,n+I); % if not, transfers latest iteration from

% previous cycle to next one
end;

end;
% CALCULATE THE DATA FOR THE DEPTHS AND VELOCITIES FOR MATRIX H
AND U FOR THE PORTION OF A TIDAL CYCLE
%---
z2 = tidalcycles - zI;
ifz2--=O

for n =timesteps-I :timesteps+extratimesteps-I ;
divisor =H(3,n)+ho; % calculating total depth atlor close to the

% upstream boundary
H(I ,n+ I)=sqrt(ho/g)*(2*velocity l-U(2,n)/divisor); % using depth averaged

% velocity i.e. UOldivisor - Bryan John's upstream
% boundary condition

divisor = H(sections-2,n)+ho; % calculating total depth atlor close to
%downstream boundary

H(sections,n+ 1)=sqrt(ho/g)*(2*velocity2*sin(2·pi ·(n-
I)·deltatITp)+U(sections-l ,n)/divisor); % using depth averaged

% velocity - John's downstream boundary condition
for j = 3:2:sections-2;

divisor = HO,n)+ho;

Appendix C 202 Computer Code

HG,n+ 1)= l*HG,n)+(k*UG-I .nj+m=Utj+ 1,n»/divisor;
% stores depths for all the interior points

end;
for j=I :2:sections-2;

divisor = HG+2,n+ 1)+ho;
ifn> 1

bottomstress = 1 + CfI'abs(UG+ I,n-
1»*deltatl(divisor*divisor);

% calculate the bottom stress (density = /)

else % double division here as it is u * abs(u)
bottomstress = 1;

end
UG+ l,n+ l)=q*U(j+ 1,n)+(p*H(j,n+ 1)+r*H(j+2,n+ 1»*divisor;

% stores the velocities for the interior points
UG+1,n+ 1)=U(j+ 1,n+ 1)Ibottomstress;

end;
end;

end;
%CONVERSION OF VELOClTIES TO DEPTH AVERAGED ONES
%---
for j = 1:2:sections-2; % having completed the iteration of the tidal cycles,

divisor = HG,timesteps+extratimesteps)+ho; % afinal total depth is calculated
%for each section and then

UG+1,n+ 1)=UG+ 1,n+ 1)/divisor; % all the final iterated velocities
% are converted to depth averaged ones.

UG+1,n)=UG+ 1,n)/divisor; % also all the penultimate final iterated
% velocities are converted to depth averaged
% ones - needed for the ANN.

end;
%PLOT THE DEPTH GRAPH
%----------------------------------
averagedepth=O;
for j=l :2:sections;

averagedepth=averagedepth+HG,timesteps+extratimesteps);
% sum up all the calculated depths

end
averagedepth = averagedepth/tjsections+ 1)/2)+ho; % obtain an average depth

% throughout the length of the river
j=[1:2:sections);

LatestDepth=[HG,timesteps+extratimesteps)]; % hold depths for plotting
PreviousDepth=[HG .timesteps+extratimesteps-I)];
distance = round(G/2)*2*deltaxil 000)-1 ;

% calculate the distances for plotting
subplot(2,1, I), plot (distance,LatestDepth+ho,'k -')

%plot of water depth along centre of river at different distances
hold on;
subplot(2,1, 1),line(roundG/2)-1 .averagedepth);

%plot the average depth throughout the length of the river
axis ([-inf, inf, -inf, inf])

Appendix C 203 Computer Code

xlabel (,Distance along centre of river in Km')
ylabel ('Water depth in metres')
title (['Water depth after', num2str(tidalcycles), 'tidal cycles'])
% PLOT THE VELOCITY GRAPH
%--------._---------.----.-------------
averagevelocity=O;
for j=2:2 .sections-I ;

averagevelocity=averagevelocity+U(j,timesteps+extratimesteps);
% sum up all the calculated velocities

end
averagevelocity = averagevelocity/usections-I)/2);

% obtain an average velocity throughout the length of the river
j =(2:2:sections-l);

LatestSpeed=[U(j,timesteps+extratimesteps)]; % hold velocities for plotting
PreviousSpeed=[UG,timesteps+extratimesteps-1)];
distance = round«(j/2)*2*deltax/l 000)·1;

% calculate distances for plotting
subplot(2,1,2), plot (distance,LatestSpeed,'k-')

%plot velocity along centre of river at different distances
hold on;
subplouz.l ,2),line(round(j/2)-1 ,averagevelocity);

%plot average velocity throughout the length of the river
axis([-inf inf -inf inf])
xlabel ('Distance along centre of river in Km')
ylabel (,Velocity in metres per sec')
title ([,Velocity after', nwn2str(tidalcycles), ' tidal cycles'])
% SAVE DEPTH AND VELOCITY DATA TO A FILE
% -------- ••_----_._---------_.__._------------------------_.-
depthsize = size(LatestDepth);
speedsize = size(LatestSpeed);
save VenantOriginal ho speedsize depthsize LatestSpeed PreviousSpeed LatestDepth

PreviousDepth; % save data for later use with the NN

Appendix C 204 Computer Code

% Filename DepthSolution.m
% Filename DepthSolution. m
% L.HRees March 2007
% USE THIS PROGRAM ALSO FOR VALIDATING DIFFERENT NEURAL
% NETWORK ARCHITECTURES (DIFFERENT NOS. OF HIDDEN NEURONS).
% This is a single hidden layer MLP using the sigmoid or tanh activation
% functions using the backpropogation algorithm, learning rate and momentum
% terms. Designedfor file input of data and incremental updating
% THIS PROGRAM SOLVES FOR THE HEIGHTS ABOVE THE STEADY STATE
% WATER LEVEL. SEE VelocitySolution.m FOR THE VERSION THAT SOLVES
% THE VELOCITIES.
% THIS PROGRAM USES THE DATA FILE VenantOriginal to acquire the original
% data created by VenantGenerator 2.
% GET INITIAL DATA ETC.
%--
prompt! = 'This NN is designed to use three possible types of activation functions';
prompt2 = '1 - The sigmoid (logistic) function';
prompt3 = '2 - The tanh function';
prompt4 = '3 - The LeCun tanh function';
disp(prompt 1), disp(prompt2), disp(prompt3), disp(prompt4)
disp(' ')
activation = input('Your choice for the activation function i.e. I, 2 or 3 from above? ');
disp(' ')
eta = input('Choice for learning rate e.g. usually 0.1 to 1 ? ');
disp(' ')
alpha = input('Value for the momentum term e.g. usually 0.1 to 0.8 ? ');
disp(' ')
decay I = input('Value for weight decay rate from the input to hidden layer e.g. 0 to 0.005 ?
');
disp(' ')
decay2 = input('Value for weight decay rate from the bias to hidden layer e.g. 0 to 0.005 ? ');
disp(' ')
decay3 = input('Value for weight decay rate from the hidden to output layer e.g. 0 to 0.005 ?
');
disp(' ')
decay4 = input('Value for weight decay rate from the bias to output layer e.g. 0 to 0.005 ? ');
disp(' ')
requiredrms = input('Required value for the root mean square error e.g. 0.01 ? ');
disp(' ')
LI = input('No. of neurons in the hidden layer e.g. 3 ? ');
disp(' ')
epochs = input('How many epochs Le. iterations, do you require ? ');
disp(' ')
load VenantOriginal ho speedsize depthsize LatestSpeed Previous Speed LatestDepth
PreviousDepth;
disp('The pattern of final and penultimate veloocities and depths has now been loaded')
disp(' ')
NI = 3; % No. of neurons in the input layer

Appendix C 205 Computer Code

PI = I; % No. of neurons in the output layer
factor = inputt'Enlargement factor for rms plot e.g. 10 to 100? ');

% multiplier to enlarge rms plots since some might not show
% SETUP AND DIMENSIONALIZE ARRAYS
%---
BiasHidden = zeros(LI,I); % Contains the weights of the bias units for the hidden layer.
Value of bias is +1
BiasOut = zeros(PI,I);
Value of bias is +1
Patterns = zeros(depthsize(I,I)-2,NI); % Input data matrix holding all the patterns
Win = zeros(NI,Ll); % Weights for the input to hidden layers matrix

% Each row separately, must represent all of
% the weights for a given input unit
% Weights for the hidden to output layers matrix
% Each row separately, must represent all of the
% weights for a given hidden unit

Tg = zeros(depthsize(1,I),PI); % Target data matrix.
NetIn = zeros(LI,depthsize(1,I)-2); %Matrix to present summation results to the

% hidden layer
% Same dimensions as Netlnl. Used to store
% activated values of Netlni
% Weight error derivatives for output to hidden
% layers.
% Weight error derivatives for hidden to input layers.
% Weight error derivatives for output to hidden layers
%from previous calculation for use with momentum
%terms.
% Weight error derivatives for hidden to input layers
%from previous calculation for use with momentum
% terms
% error signals for hidden to input weight adjustments
% delta adjustment term for hidden to input weight
% modifications
% Contains the old delta values to use with the hidden
% bias units and the momentum term.
% error signals for output to hidden weight
% adjustments
% delta adjustment term for output to hidden weight
% modifications
% Contains the old delta values to use with the output
% bias units and the momentum term.

Wout = zeros(L I,P 1);

Oh = zeros(NI,LI);

WedOut = zeros(LI,PI);

WedIn = zeros{N 1,L1);
OldWedOut = zeros(LI,PI);

OldWedIn = zeros(NI,LI);

ErrorHidden = zeros(LI,l);
DeltaHidden = zeros(L 1,1);

OldDeltaHidden = zeros(LI,I);

ErrorOut = zeros(PI,I);

DeltaOut = zeros(P 1,1);

OldDeltaOut = zeros(PI,I);

% Contains the weights of the bias units for the output layer.

NetOut = zeros(PI); % Matrix to present summation results to the output
% layer. Only one unit at present.

00 = zeros(PI); % Same dimension as NetOut. Used to store activated
% values of NetOut. Only one unit at present.

Resultl = zeros(depthsize(I,I),I); % Stores final values at the output layer for each
%pattern. Only one unit at present.

OuterCounter = zeros(epochs, 1);
bias = 1;

Appendix C 206 Computer Code

iterationcounter = 0;
meanerror = 0;
errorsd = 0;
rms = 0;
reierror = 0;
% SET THE VALUES OF WEIGHTS USING THE RANDOM NO. GENERATOR. EARLY
% STOPPING WEIGHTS OR ENTER THE WEIGHTS MANUALLY
%--
prompt! = '1 - Enter the weights manually?';
prompt2 = '2 - Let the system automatically apply randomized ones ?';
prompt3 = '3 - Load saved weights for early stopping evaluation on a previously trained
system ?';
disp(prompt 1), disp(prompt2), disp(prompt3)
disp(' ')
weightchoice = input('Your choice for the weights i.e. I, 2 or 3 from above? ');
if weightchoice = 1

disp(' ')
prompt = 'Now enter the weights for the INPUT neurons to the HIDDEN layer ONE

AT A TIME:';
disp(prompt)
disp(' ')
for j = l:NI

prompt I = 'neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(promptl ,prompt2);
disp(prompt3)
for k =l:Ll

promptl = 'weight No.';
prompt2 = int2str(k);
prompt3 = strcat(promptl ,prompt2);
disp(prompt3)
Win(j,k) = input('Weight? ')

end
end
disp(' ')
prompt = 'Now enter the weights for the HIDDEN neurons to the OUTPUT layer

ONE AT A TIME:';
disp(prompt)
disp(' ')
for j = l:LI

prompt! = 'neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(prompt 1,prompt2);
disp(prompt3)
fork =I:PI

promptl = 'weight No.';
prompt2 = int2str(k);
prompt3 = strcat(promptl ,prompt2);
disp(prompt3)

Appendix C 207 Computer Code

Wout(j,k) = input('Weight? ')
end

end
disp(' ')
prompt = 'Now enter the weights for the BIAS neurons to the HIDDEN layer ONE

AT A TIME:';
disp(prompt)
prompt! = 'Enter zero if it does not exist';
disp(prompt 1)
disp(' ')
for j = l:Ll

prompt! = 'bias to hidden neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(promptl,prompt2);
disp(prompt3)
BiasHidden(j) = input('Weight? ')

end
disp(' ')
prompt = 'Now enter the weights for the BIAS neurons to the OUTPUT layer ONE

AT A TIME:';
disp(prompt)
prompt! = 'Enter zero if it does not exist';
disp(prompt 1)
disp(' ')
for j = l:Pl

prompt! = 'bias to output neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(prompt! ,prompt2);
disp(prompt3)
BiasOut(j) = input('Weight? ')

end
elseif weightchoice = 2

Win = randn(Nl .Ll)/10
Wout = randn(Ll,Pl)/lO;
BiasHidden = randn(Ll,l)/lO;
BiasOut = randn(Pl,l)/lO;

% division by 10 needed to reduce instability;

else
load DepthEarlyStopping OriginalWin OriginalWout OriginalBiasHidden

OriginalBiasOut;
Win = Original Win;
Wout = OriginalWout;
BiasHidden = OriginalBiasHidden;
BiasOut = OriginalBiasOut;

end
% SAVE ORIGINAL WEIGHTS FOR LATER COMPARISON
% --
if weightchoice -= 3

Original Win = Win;
OriginalWout = Wout;

Appendix C 208 Computer Code

OriginalBiasHidden = BiasHidden;
OriginalBiasOut = BiasOut;

end

% PREPROCESSING OF THE DATA
% --
% for future development
% SETUP PAITERN AND TARGET MATRICES
% ---
Result 1 = LatestDepth;
Tg = Result1;
for j = 2:depthsize - 1

Pattems(j,l)=PreviousDepth(j, 1);
Patterns(j,2)=PreviousSpeed(j-I, 1);
Pattems(j,3)=PreviousSpeed(j, 1);

%pattern matrix _r'. neuron in input layer
% pattern matrix - 2'"'. neuron in input layer
%pattern matrix _3,d. neuron in input layer

end
%MAIN BODY - START OF LOOP
%--
for outercounter = 1:epochs

difference = 0;
difference 1 = 0;
for innercounter = 2:depthsize-l % No. of patterns in the input space

X = Pattems(innercounter:innercounter,:);
% Select a particular pattern for presentation from the input data

X=X';
Z = Tg(innercounter:innercounter,:);

% Select a particular patternfor testingfrom the target data
Z=Z';
% START OF FORWARD PASS
%-----------------------------------
NetIn = Win'*X + BiasHidden; % net data to the hidden layer
Oh=NetIn;
if activation = 1 % Apply activation function to the hidden layer

fork= l:Ll
Oh(k,l) = 1/(1+exp(-Oh(k, 1)));

end
elseif activation -2

for k = l:Ll
Oh(k,l) = 2/(I+exp(-2*Oh(k,1)))-I;

end
else

for k = l:Ll
Oh(k,l) = 1.7159*(2/(1+exp(-4/3*Oh(k,1)))-1);

end
end
NetOut = Wout'*Oh + BiasOut;

% activated data from hidden layer to the output layer
00 = NetOut; % Note: currently only designed/or one output unit

Appendix C 209 Computer Code

if activation ==1 % Apply activationfunction to the output layer
fork= I:Pl

Oo(k,l) = l/(l+exp(-Oo(k,I)));
end

elseif activation =2
fork= I:Pl

Oo(k,l) = 2/(I+exp(-2*00(k,I)))-I;
end

else
for k = I:Pl

Oo(k,l) = 1.7159*(2/(1+exp(-4/3*Oo(k,1»)-1);
end

end
% START OF BACKWARD PASS
%-------------------------------------
ErrorOut = Z - 00; % Calculate error signal and Delta

% term for output layer
for j = I:Pl

if activation =1
Deltafnitrj) = Errorfhnfj) * 000)*(1-000));

% Using sigmoid transfer function
else

Deltaouttj) = BrrorOuuj) * (1-(000))1\2);
% Using tanh transfer function

end
end
ErrorHidden =Wout*DeltaOut; % Calculate error signal and Delta

% term for hidden layer
for j = l:Ll

if activation = 1
Deltajliddentj) = OhO,I)*(l-OhO,I))*ErrorHiddenO);

% Using sigmoid transfer function
else

Deltalliddentj) = (1-(Oh(j,1»1\2)*ErrorHidden(j);
% Using tanh transfer function

end
end
Temp = DeltaOut*Oh'; % Compute Wed and adjust weights

% between hidden and output layers
WedOut = Temp';
Wout = Wout + eta*WedOut +alpha*OldWedOut - decay3*WedOut;
OldWedOut = WedOut;
BiasOut = BiasOut + eta*DeltaOut + alpha*OldDeltaOut - decay4*DeltaOut;
Temp =DeltaHidden*X'; % Compute Wed and adjust weights

% between input and hidden layers
WedIn = Temp';
Win = Win + eta*WedIn +alpha*OldWedIn - decayl*WedIn;
OldWedIn = WedIn;

Appendix C 210 Computer Code

BiasHidden =BiasHidden + eta*DeltaHidden + alpha*OldDeltaHidden-
decay2*DeltaHidden;

difference = difference + (Tg(innercounter) - 00(1»"2;
% used to calculate the RMS

difference! = difference I + abs(Tg(innercounter) - 00(1»;
% used to calculate the mean error

Result1(innercounter) = 00(1); % usedfor plotting
end
rms = sqrt(difference/tinnercounter-l j);
meanerror = differencel/(innercounter-l);
subplot(2,1,1),plot (outercounter,factor*rms); % messy location but needed at

% this point rather than later to save on memory
OuterCounter(outercounter) = rms;
hold on;
if rms < requiredrms

break
end

end
% POSTPROCESSING OF THE DATA
%--
% for future development!!!
% PLOT THE RMS GRAPH
% ------------------------------
axis ([-inf, inf, 0, 1])
xlabel ('No. of epochs')
ylabel (['RMS x',int2str(factor),' 'D
title (['Plot of the Root Mean Square Error v No. of Iterations (Epochs)'])
% PLOT THE DEPTH GRAPH
%----------------------------------
j = [2:depthsize]

subplot(2,1,2),plot (LatestDepth(j)+ho); %plot of original water depth along
% centre of river at different distances

hold on;
subplot(2, 1,2),plot(Resultl (j)+ho,'k'); %plot of the ANN water depth

% throughout the length of the river
hold on;

axis ([-inf, inf, -inf, inf])
xlabel (,Distance along centre of river in Km')
ylabel ('Depth inmetres')
title (['Water depth abovelbelow still water level'])
% CALCULATION OF MORE STATISTICS
%--
for j = 2:depthsize-1

errorsd = errorsd + «Result1 (j,l)-Tg(j, I» - meanerror)"2;
relerror = relerror + abs(Resultl(j,I)-Tg(j,I»/abs(Result1(j,I)+ho);

end
errorsd = (errorsd? .5)/(depthsize(1,1)-3);
relerror = relerror* 100/(depthsize(1, 1)-2);
%SUMMARYOF RESULTS

Appendix C 211 Computer Code

~ -------------------------------
disp('Summary of the results')
disp('--')
disp('Calculated value(s) of the output layer'), disp(Resultl), disp('Target value(s) of the
output layer'),disp(T g)
disp('rms'),disp(rms),disp('mean error'),disp(meanerror)
disp(,error standard deviation '),disp(errorsd), disp('relative percentage error '),disp(relerror)
disp('No. of iterations to satisfy the rms requirement'), disp(outercounter)
disp('Final weight matrix from input layer to hidden layer:'),disp(Win)
disp('Original weight matrix from input layer to hidden layer:'),disp(OriginaIWin)
disp('Change from original is:'),disp(Win - Original Win)
disp('Final weight matrix from Bias unites) to hidden layer:'),disp(BiasHidden)
disp('Original weight matrix from Bias unites) to hidden layer:'),disp(OriginalBiasHidden)
disp('Change from original is:'),disp(BiasHidden - OriginalBiasHidden)
disp('Final weight matrix from hidden layer to output layer:'),disp(Wout)
disp('Origiinal weight matrix from hidden layer to output layer:'),disp(OriginalWout)
disp('Change from original is:'),disp(Wout - OriginalWout)
disp('Final weight matrix from Bias unites) to output layer:'),disp(BiasOut)
disp('Original weight matrix from Bias unites) to output layer:'),disp(OriginalBiasOut)
disp('Change from original is:'),disp(BiasOut - OriginalBiasOut)
disp('---')
~ SAVE DATA FOR USE WITH THE VELOCITY ANN PROGRAM AND DEPTH
~ VALIDATION PROGRAM
~ ---
save Depth Validation activation L1 Win Wout BiasHidden BiasOut;

~ save for use with the depth validation program
save DepthEarlyStopping Original Win OriginalWout OriginalBiasHidden OriginalBiasOut;

~ save for use with the early stopping option
save NewDepth Resultl;
disp(' ')
s = "; ~ must be a single character to hold the result!!!
question = ' ';
question = input('Do you wish to save the rms results to a training file YIN ? ','s');
switch question

case 'Y'
save TrainingRMS OuterCounter;

case 'y'
save TrainingRMS OuterCounter;

end
disp(' ')
s = "; ~ must be a single character to hold the result!!!
question = ' ';
question = input('Do you wish to save the rms results to a test file YIN? ','s');
switch question

case 'V'
save TestRMS OuterCounter;

case 'y'
save TestRMS OuterCounter;

end

Appendix C 212 Computer Code

% Filename VelocitySolution.m
% L.HRees March 2007
% USE THIS PROGRAM ALSO FOR VALIDATING DIFFERENT NEURAL
% NETWORK ARCHITECTURES (DIFFERENT NOS. OF HIDDEN NEURONS).
% This is a single hidden layer MLP using the sigmoid or tanh activation functions
% using the backpropogation algorithm, learning rate and momentum terms.
% Designedfor file input of data and incremental updating (not epoch i.e. batch
% learning). THIS PROGRAM SOL VES FOR THE VELOCITIES. SEE
% DepthSolution.m FOR THE VERSION THAT SOLVES THE HEIGHTS ABOVE
% THE STEADY STATE LEVEL. THIS PROGRAM USES THE DATA FILE
% VenantOriginal to solve for the velocities.
% GET INITIAL DATA
%------------------------
promptl = 'This NN is designed to use three possible types of activation functions';
prompt2 = 'I - The sigmoid (logistic) function';
prompt3 = '2 - The tanh function';
prompt4 = '3 - The LeCun tanh function';
disp(promptI), disp(prompt2), disp(prompt3), disp(prompt4)
disp(' ')
activation = input('Your choice for the activation function i.e. 1,2 or 3 from above? ');
disp(' ')
eta = input(,Choice for learning rate e.g. usually 0.1 to 1 ? ');
disp(' ')
alpha = input('Value for the momentum term e.g. usually 0.1 to 0.8 ? ');
disp(' ')
decayl = input('Value for weight decay rate from the input to hidden layer e.g. 0 to 0.005 ?
');
disp(' ')
decay2 = input('Value for weight decay rate from the bias to hidden layer e.g. 0 to 0.005 ? ');
disp(' ')
decay3 = input('Value for weight decay rate from the hidden to output layer e.g. 0 to 0.005 ?
');
disp(' ')
decay4 = input('Value for weight decay rate from the bias to output layer e.g. 0 to 0.005 ? ');
disp(' ')
requiredrms = input('Required value for the root mean square error e.g. 0.01 ? ');
disp(' ')
LI = input('No. of neurons in the hidden layer e.g. 3 ? ');
disp(' ')
epochs = input('How many epochs Le. iterations, do you require? ');
disp(' ')
load VenantOriginal ho speedsize depthsize LatestSpeed Previous Speed LatestDepth
PreviousDepth;
load NewDepth Resultl ;
disp('The pattern of final and penultimate veloocities and depths and also ANN estimates of
the depths from the sister program has now been loaded')
disP(")
NI = 3; % No. of neurons in the input layer

Appendix C 213 Computer Code

PI = 1; % No. of neurons in the output layer
factor = input('Enlargement factor for rms plot e.g. 10 to 100 ? ');

% multiplier to enlarge rms plots since some might not show
% SETUP AND DIMENSIONALIZE ARRAYS
%---
BiasHidden = zeros(LI,I); % Contains the weights of the bias units for the

% hidden layer. Value of bias is +}
% Contains the weights of the bias units for the
% output layer. Value of bias is +l

Patterns = zeros(speedsize(1,I),NI); % Input data matrix holding all the patterns
Win = zeros(Nl,LI); % Weights for the input to hidden layers matrix

% Each row separately, must represent all of
% the weights for a given input unit
% Weights for the hidden to output layers
% Each row separately, must represent all of
% the weights for a given hidden unit

Tg = zeros(speedsize(I,I),PI); % Target data matrix.
Netln = zerostl.Lspeedsizet l.Ij); % Matrix to present summation results to the

% hidden layer
% Same dimensions as Netlnl . Used to store
% activated values of Netlnl

% Weight error derivatives for output to hidden layers.
% Weight error derivatives for hidden to input layers.
% Weight error derivatives for output to hidden layers
%from previous calculation for use with momentum terms.

OldWedIn = zeros(Nl,Ll); % Weight error derivatives for hidden to input layers from
%previous calculation for use with momentum terms

% error signals for hidden 10 input weight adjustments
% delta adjustmenllerm for hidden to input weight
% modifications
% Contains the old delta values to use with the hidden

BiasOut = zeros(P 1,1);

Wout = zeros(L I,P 1);

Oh = zeros(NI,LI);

WedOut = zeros(L I,P I);
WedIn = zeros(Nl,Ll);
OldWedOut = zeros(LI,PI);

ErrorHidden = zeros(L 1,1);
DeltaHidden = zeros(Ll,I);

OldDeltaHidden = zeros(LI,I);
% bias units and the momentum term.

ErrorOut = zeros(PI,I); % error signals for output to hidden weight
% adjustments

DeltaOut = zeros(PI,l); % delta adjustment termfor output to hidden weight
%modifications

OldDeltaOut = zeros(Pl,I); % Contains the old delta values to use with the output
% bias units and the momentum term.

NetOut = zeros(PI); % Matrix to present summation results to the output
% layer. Only one unit at present.

00 = zeros(PI); % Same dimension as NetOut. Used to store activated
% values of NetOut. Only one unit at present.

Result2 = zeros(speedsize(l,l),I); % Stores final values at the output layer for each
% pattern. Only one unit at present.

OuterCounter = zeros(epochs, I);
bias = I;
iterationcounter = 0;
meanerror = 0;
errorsd = 0;

Appendix C 214 Computer Code

rms = 0;
relerror = 0;
% SET THE VALUES OF WEIGHTS USING THE RANDOM NO. GENERATOR. EARLY
% STOPPING WEIGHTS OR ENTER THE WEIGHTS MANUALLY
%--
prompt! = '1 - Enter the weights manually?';
prompt2 = '2 - Let the system automatically apply randomized ones ?';
prompt3 = '3 - Load saved weights for early stopping evaluation on a previously trained
system ?';
disp(prompt!), disp(prompt2), disp(prompt3)
disp(' ')
weightchoice = input('Your choice for the weights Le. 1, 2 or 3 from above? '):
if weightchoice = 1

disp(' ')
prompt = 'Now enter the weights for the INPUT neurons to the HIDDEN layer ONE

AT A TIME:';
disp(prompt)
disp(' ')
for j = l:Nl

promptl = 'neuron No.';
prompt2 = int2strG);
prompt3 = strcat(promptl,prompt2);
disp(prompt3)
for k =l:LI

promptl = 'weight No.';
prompt2 = int2str(k);
prompt3 = strcat(promptl,prompt2);
disp(prompt3)
WinG,k) = input('Weight? ')

end
end
disp(' ')
prompt = 'Now enter the weights for the HIDDEN neurons to the OUTPUT layer

ONE AT A TIME:';
disp(prompt)
disp(' ')
for j = l:Ll

promptl = 'neuron No.';
prompt2 = int2strG);
prompt3 = strcat(prompt 1,prompt2};
disp(prompt3)
fork =l:Pl

prompt! = 'weight No.';
prompt2 = int2str(k);
prompt3 = strcat(promptl ,prompt2);
disp(prompt3)
WoutG,k) = input('Weight? ')

end
end

Appendix C 215 Computer Code

disp(' ')
prompt = 'Now enter the weights for the BIAS neurons to the HIDDEN layer ONE

AT A TIME:';
disp(prompt)
promptl = 'Enter zero if it does not exist';
disp(prompt 1)
disp(' ')
for j = I:LI

promptl = 'bias to hidden neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(prompt 1,prompt2);
disp(prompt3)
BiasHidden(j) = input('Weight? ')

end
disp(' ')
prompt = 'Now enter the weights for the BIAS neurons to the OUTPUT layer ONE

AT A TIME:';
disp(prompt)
prompt! = 'Enter zero if it does not exist';
disp(promptl)
disp(' ')
for j = l:PI

promptl = 'bias to output neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(promptI,prompt2);
disp(prompt3)
BiasOut(j) = input('Weight? ')

end
elseif weightchoice = 2

Win = randn(Nl,LI)/IO;
Wout = randn(LI,Pl)/lO;
BiasHidden = randn(L 1,1)/10;
BiasOut = randn(P 1,1)/10;

% divison by 10 needed to reduce instability

else
load VelocityEarlyStopping Original Win OriginalWout OriginalBiasHidden

OriginalBiasOut;
Win =Original Win;
Wout = OriginalWout;
BiasHidden = OriginalBiasHidden;
BiasOut = OriginalBiasOut;

end
% SAVE ORIGINAL WEIGHTS FOR LATER COMPARISON
%--
if weightchoice --= 3

Original Win = Win;
OriginalWout =Wout;
OriginalBiasHidden = BiasHidden;
OriginalBiasOut = BiasOut;

end

Appendix C 216 Computer Code

% PREPROCESSING OF THE DATA
%--
% for future development
% SETUP PATTERN AND TARGET MATRICES
%---
Tg ::;LatestSpeed;
for j = 1.depthsize-I

Patterns(j, 1)= PreviousSpeed(j);
Patterns(j,2)= Result! (j);
Patterns(j,3) = Result! (j+ I);

end
%MAIN BODY - START OF LOOP
%---------------------------------------
for outercounter = 1:epochs

difference = 0;
difference 1 = 0;
for innercounter = 1:speedsize % No. of patterns in the input space

X = Patterns(innercounter:innercounter,:); % Select a particular pattern
% for presentation from input data

X=X';
Z = Tg(innercounter:innercounter,:); % Select a particular pattern

%for testingfrom the target data
Z=Z';
% START OF FORWARD PASS
%-----------------------------------
NetIn = Win'*X + BiasHidden; % Present net data to hidden layer
Oh = Netln; % Apply activation junction to hidden layer
if activation =1

for k = I:Ll
Oh(k, 1) = lI(1+exp(-Oh(k, 1»);

end
elseif activation =2

fork = l:Ll
Oh(k,l) = 2/(1+exp(-2*Oh(k,1»)-I;

end
else

for k = l:Ll
Oh(k,l) = 1.7159*(2/(1+exp(-4/3*Oh(k,I»)-I);

end
end
NetOut =Wout'*Oh + BiasOut;

00 =NetOut;

% Present activated data from hidden
% layer to the output layer

% Note: currently only designedfor one
% output unit
% Apply activation junction to output layerif activation =1

for k = l:PI
Oo(k,l) = l/(l+exp(-Oo(k,I»);

end

Appendix C 217 Computer Code

elseif activation =2
fork= I:Pl

Oo(k,l) = 2/(1 +exp(-2*00(k, 1»)-1;
end

else
for k = I:Pl

Oo(k, 1) = 1.7159*(2/(1 +exp(-4/3*00(k, 1»)-1);
end

end
% START OF BACKWARD PASS
%-------------------------------------
ErrorOut = Z - 00; % Calculate error signal and Delta term

%for output layer
for j = I:Pl

if activation = 1
Deltafluttj) = Errorfnittj) * 000)*(1-000»;

% Using sigmoid transfer function
else

Deltafhmj) = ErrorOutO) * (1-(000»"2);
% Using tanh transfer junction

end
end
ErrorHidden = Wout*DeltaOut; % Calculate error signal and Delta

% term for hidden layer
for j = I:Ll

if activation =1
Deltalliddentj) = OhO, 1)*(I-OhO, 1»*ErrorHiddenO);

% Using sigmoid transfer function
else

Deltalfiddentj) = (1-(OhO,I»"2)*ErrorHiddenO);
% Using tanh transfer junction

end
end
Temp =DeltaOut*Oh'; % Compute Wed and adjust weights

% between hidden and output layers
WedOut = Temp';
Wout =Wout + eta*WedOut +alpha*OldWedOut - decay3*WedOut;
OldWedOut = WedOut;
BiasOut = BiasOut + eta*DeltaOut + alpha*OldDeltaOut - decay4*DeltaOut;
Temp = DeltaHidden*X'; % Compute Wed and adjust weights

% between input and hidden layers
WedIn = Temp';
Win = Win + eta*WedIn +alpha*OldWedIn - decay I *WedIn;
OldWedIn = WedIn;
BiasHidden = BiasHidden + eta*DeltaHidden + alpha*OldDeltaHidden -

decay2 *DeltaHidden;
difference = difference + (Tg(innercounter) - 00(1»"2;

% used to calculate the RMS
differencel = differencel + abs(Tg(innercounter) - 00(1»;

Appendix C 218 Computer Code

Result2(innercounter) = 00(1);
% used to calculate the mean error
% used for plotting

end
rms = sqrt(difference/innercounter);
meanerror = difference 1/innercounter;
subplot(2,1,1).plot(outercounter,factor*rms);% messy location but needed a

% this point rather than later to save on memory.
OuterCounter(outercounter) = rms;
hold on;
if rms < requiredrms

break
end

end
% POSTPROCESSING OF THE DATA
%--
% for future development!!!
% PLOT THE RMS GRAPH
%-------------------------------
axis ([-inf inf, O. I])
xlabel ('No. of epochs')
ylabel (['RMS x',int2str(factor),' 'D
title (['Plot of the Root Mean Square Error v No. of Iterations (Epochs)'])
% PLOT THE VELOCITY GRAPH
%--------------------------------------
j = [l:speedsize)

subplot(2,1,2),plot (LatestfSpeedtjj); %plot of original water velocities
% along centre of river at different distances

hold on;
subplot(2, 1,2).plot(Result2(j), 'k'); %plot of the ANN water velocities

% throughout the length of the river
hold on;

axis ([-inf, inf, -inf, inf])
xlabel ('Distance along centre of river in Km')
ylabel ('Velocity in metres per sec.')
title (['Depth averaged velocities'])
% CALCULATION OF MORE STATISTICS
%--
for j = 1:speedsize

errorsd = errorsd + «Result2(j,I)-Tg(j,I» - meanerror)A2;
relerror = relerror + abs(Result2(j,1)-TgG.I»/abs(Result2(j.l)+ho);

end
errorsd = (errorsd" .5)/(speedsize(1,1)-1);
relerror = relerror* 1OO/speedsize(1,1);
% SUMMARY OF RESULTS
%-------------------------------
disp('Summary of the results')
disp('--')
disp('Calculated value(s) of the output layer'), disp(Result2). disp('Target value(s) of the
output Iayer'j.dispfIg)

Appendix C 219 Computer Code

disp('nns'),disp(nns),disp('mean error'),disp(meanerror)
disp('error standard deviation '),disp(errorsd), disp('relative percentage error '),disp(relerror)
disp('No. of iterations to satisfy the nns requirement'), disp(outercounter)
disp('Final weight matrix from input layer to hidden layer:'),disp(Win)
disp{'Original weight matrix from input layer to hidden layer:'),disp(OriginaIWin)
disp('Change from original is:'),disp(Win· OriginalWin)
disp('Final weight matrix from Bias unites) to hidden layer:'),disp(BiasHidden)
disp('Original weight matrix from Bias unites) to hidden layer:'),disp(OriginaIBiasHidden)
disp('Change from original is:'),disp(BiasHidden • OriginalBiasHidden)
disp('Final weight matrix from hidden layer to output layer:'),disp(Wout)
disp('Origiinal weight matrix from hidden layer to output layer:'),disp(OriginalWout)
disp('Change from original is:'),disp(Wout - OriginalWout)
disp('Final weight matrix from Bias unites) to output layer:'),disp(BiasOut)
disp('Original weight matrix from Bias unites) to output layer:'),disp(OriginalBiasOut)
disp('Change from original is:'),disp(BiasOut - OriginalBiasOut)
disp('-.-.------.----------------.- ••-.-- •••••---- •••••••--- ••----.')
% SAVE DATA FOR USE WITH THE VELOCITY VALIDATION ANN
% PROGRAM AND TestRMS
%---------_._----.------_._--
save VelocityValidation activation L1 Win Wout BiasHidden BiasOut;

% save for use with the velocity validation program
save VelocityEarlyStopping Original Win OriginalWout OriginalBiasHidden
OriginalBiasOut;
save NewSpeed Result2;
disp(' ')
s = "; % must be a single character to hold the result!!!
question = ' ';
question = input('Do you wish to save the nns results to a training file VIN ? ','s');
switch question

case 'V'
save TrainingRMS OuterCounter;

case 'y'
save TrainingRMS OuterCounter;

end
disp(' ')
s = ";
question = ' ';
question = input('Do you wish to save the nns results to a test file VIN ? ','s');
switch question

case 'V'
save TestRMS OuterCounter;

case 'y'
save TestRMS OuterCounter;

% must be a single character to hold the result!!!

end

Appendix C 220 Computer Code

% Filename CombinedNetwork.m
% L.HRees March 2007
% This program is used to display the depths and velocities of the combined network
% It works independently of the FDS and training programs.
% All that is needed to start it off is some initial data from the
% VenantDataGenerator2 program.
% GET INITIAL DATA
%------------------------
load VenantOriginal ho speedsize depthsize LatestSpeed PreviousSpeed LatestDepth

PreviousDepth; % initial data to start it off
load DepthValidation activation LI Win Wout BiasHidden BiasOut;

% load fixed weights from the depth training phase.
Depth Win =Win;
Depth Wout = Wout;
DepthBiasHidden =BiasHidden;
DepthBiasOut = BiasOut;
load VelocityValidation activation L I Win Wout BiasHidden BiasOut;

% load fixed weights from the velocity training program
VelocityWin =Win;
VelocityWout =Wout;
VelocityBiasHidden = BiasHidden;
VelocityBiasOut = BiasOut;
NI =3;
PI = 1;
Patternsl = zeros(depthsize-2,Nl);

Patterns2 = zeros(speedsize,Nl);

Tgl = zeros(depthsize,PI);
Tg2 = zeros(speedsize,PI);
Result2 = zeros(speedsize,l);

Netlnl = zeros(Ll,depthsize-2);

Ohl = zeros(Nl,Ll);

NetOutl = zeros(PI);

001 = zeros(Pl);

Netln2 = zeros(Ll,speedsize);

0h2 = zeros(Nl,Ll);

NetOut2 = zeros(Pl);

002 = zeros(Pl);

%No. of neurons in input layer
% No. of neurons in output layer
% Input data matrix holding all patterns
%for depth network
% Input data matrix holding all patterns
%for velocity network
% Target data matrix for depth network
% Target data matrix for velocity network
% Stores final values at the output layer
%for each pattern. Only one unit at present.
% Matrix to present summation results to
% the hidden layer
% Same dimensions as NetInl. Used to
% store activated values of NetInl
% Matrix to present summation results to
% the output layer. Only one unit at present.
% Same dimension as NetOut. Used to
% store activated values of NetOut
% Only one unit at present.
% Matrix to present summation results to
% the hidden layer
% Same dimensions as Netlnl. Used to
% store activated values of NetInl
% Matrix to present summation results to
% the output layer. Only one unit at present.
% Same dimension as NetOut. Used to

Appendix C 221 Computer Code

% store activated values of NetOut.
% Only one unit at present.

depthmeanerror = 0;
depthrms = 0;
deptllerrorsd=O;
depthrelerror = 0;
velocitymeanerror = 0;
velocityrms = 0;
velocityerrorsd = 0;
velocityrelerror = 0;
roSTART OF CALCULATIONS
%------------------------------------
% SETUP PATTERN AND TARGET MATRICES FOR DEPTH UPDATING
%---
Result 1 = LatestDepth;
Tg 1 = LatestDepth;
Result2 = LatestSpeed;
Tg2 = LatestSpeed;
for j = 2:deptllsize-1

Patterns 1G,1)=PreviousDeptll(j, 1);

Patterns 1G,3)=PreviousSpeed(j, 1);

% complete pattern matrix =first
% neuron in input layer
% complete pattern matrix - second
% neuron in input layer
% complete pattern matrix - third
% neuron in input layer

Patterns 1G,2)=PreviousSpeedG-l, 1);

end
% START OF LOOP TO UPDATE DEPTHS
%--
depthdifference = 0;
for j = 2:deptllsize-l

Xl = Patternsl(j:j,:);
% No. of patterns in the input space

% Select a particular pattern for presentation
%from the input data

Xl = Xl';
Netlnl = DeptllWin'*Xl + DepthBiasHidden;

Ohl = NetInl;

% Present the net data to the
% hidden layer
%Apply activation function to
% the hidden layer

if activation = 1
fork = l:Ll

Ohltk.l) = lI(l+exp(-Ohl(k,l»);
end

elseif activation =2
for k = l:Ll

Ohl(k,I) = 2/(1+exp(-2*Ohl(k,l»)-I;
end

else
for k = l:Ll

Ohl(k,I) = 1.7159*(2/(1 +exp(-4/3*Ohl(k, 1»)-1);
end

Appendix C 222 Computer Code

end
NetOutl = DepthWout'*Ohl + DepthBiasOut; % Present activated data from

% hidden layer to the output layer
% currently only designed for one output unit
% Apply activation function to the output layer

001 = NetOut!;
if activation ==1

for k = I:PI
001(k, 1) = 1/(1 +exp(-Ool (k, 1»);

end
elseif activation =2

for k = I:Pl
Ool(k,l) = 2/(1 +exp(-2*00 l(k, 1»)-1;

end
else

for k = I:Pl
Ool(k, 1) = 1.7159*(2/(1 +exp(-4/3*00 l(k,l »)-1);

end
end
depthdifference = depthdifference + abs(Tgl(j) - 001(1»; % used to calculate

% the mean error
Resultl(j) = 001(1);

end
% CALCULATION OF DEPTH STATISTICS
%---
depthmeanerror = depthdifference/depthsize(1,I);
for j = 1:depthsize

depthrms = depthrms + (Result! (j) - TgI (j»1\2; % NOT rms per epoch
deptherrorsd = deptherrorsd + «Resultl(j)-Tgl(j» - depthmeanerrorjoz;
depthrelerror = depthrelerror + abs(Resultl (j)-Tgl (j»/abs(Resultl (j)+ho);

end
deptherrorsd = (deptherrorsd? .5)/(depthsize(1,1)-1);
depthrelerror = depthrelerror*l OO/depthsize(l, 1);
depthrms = (depthrms/depthsize(1,1»" .S;
% SETUP PAITERN AND TARGET MATRICES FOR VELOCITY UPDATING
%---
for j = 1:depthsize-l

Patterns2(j, 1)= PreviousSpeed(j);
Patterns2(j,2)= Result! (j);
Patterns2(j,3) = Resultl 0+ 1);

%LatestDepthO)
%LatestDepthO+ J)

end
% START OF LOOP TO UPDATE VELOCITIES

% ---
velocitydifference = 0;
for j = 1:speedsize

X2 = Patterns2(j:j.:);
% No. of patterns in the input space
% Select a particular pattern for
% presentation from the input data

X2 =X2';
Net1n2 = VelocityWin'*X2 + VelocityBiasHidden; % Present the net data

% to the hidden layer

Appendix C 223 Computer Code

Oh2 = NetIn2;
if activation = 1 % Apply activation function to the hidden layer

for k = l:LI
Oh2(k,l) = 1/(I+exp(-0h2(k,I»);

end
elseif activation ==2

for k = I:LI
Oh2(k,l) = 2/(1+exp(-2*0h2(k,I»)-I;

end
else

fork = I:LI
Oh2(k,l) = 1.7159*(2/(1+exp(-4/3 *Oh2(k, 1»)-1);

end
end
NetOut2 =VelocityWout'*Oh2 + VelocityBiasOut; % Present activated

% data from hidden layer to the output layer
% currently only designed for one output unit
% Apply activation function to the output layer

002 = NetOut2;
if activation = 1

fork = I:PI
002(k,l) = 1I(1+exp(-002(k, 1»);

end
elseif activation =2

for k = l:PI
002(k,1) = 2/(1+exp(-2*002(k, 1»)-1;

end
else

for k = I:PI
Oo2(k,1) = 1.7159*(2/(1 +exp(-4/3*Oo2(k, 1»)-1);

end
end
velocitydifference = velocitydifference + abs(Tg2(j) - 002(1»;

% used to calculate the mean error
Result2(j) = 002(1);

end
% CALCULATION OF VELOCITY STATISTICS
%---
velocitymeanerror = velocitydifference/speedsize(l, 1);
for j = 1:speedsize

velocityrms = velocityrms + (Result2(j) - Tg2(j»)"2; % NOT rms per epoch
velocityerrorsd = velocityerrorsd + «Result2(j)-Tg2(j» - velocitymeanerror),,2;
velocityrelerror = velocityrelerror + abs(Result2(j)- Tg2(j»/abs(Result2(j)+ho);

end
velocityerrorsd = (velocityerrorsd".5)/(speedsize(1, 1)-1);
velocityrelerror = velocityrelerror* 1OO/speedsize(1,1);
velocityrms = (velocityrms/speedsizet l.Ijjo.S;
%PLOTTHEDEPTHGRAPH
%----------------------------------
j = (2:depthsize)

Appendix C 224 Computer Code

subplot(2,l,l), plot (Result! (jj+ho.k-'); %plot of ANN depth along centre
% of river at different distances

hold on;
subplot(2,l,l),plot(Tg 1(j)+ho); %plot of target depth throughout

% the length of the river
hold on;

axis ([-inf inf, -inf, inf])
xlabel (,Distance along centre of river in Km')
ylabel ('Water depth in metres')
title (['Water depth'])
%PLOT THE VELOCITY GRAPH
%--------------------------------------
j = [l:speedsize)

subplot(2,1,2), plot (Result2(j),'k-'); %plot of ANN velocity along centre
% of river at different distances

hold on;
subplot(2,1 ,2),plot(Tg2(j»; %plot of the target velocity throughout

% the length of the river
hold on;

axis([-inf inf -inf inf])
xlabel ('Distance along centre of river in Km')
ylabel ('Velocity in metres per sec')
title (['Velocity'])
% SUMMARY OF RESULTS
%--------------------------------
disp('Summary of the depth results')
disp('-----~---~--')
disp('mean error of the depth calculations '),disp(depthmeanerror),disp('rms of the depth
calculations '),disP(depthrms)
disp('error standard deviation of the depth calculations '),disp(deptherrorsd),disp('relative
percentage error of the depth calculations '),disp(depthrelerror)
disp(' ')
disp('Summary of the velocity results')
disp('--')
disp('mean error of the velocity calculations '),disP(velocitymeanerror),disp('rms of the
velocity calculations '),disP(velocityrms)
disp('error standard deviation of the velocity calculations
'),disp(velocityerrorsd),disp('relative percentage error of the velocity calculations
'),disp(velocityrelerror)
disp(' ')
disp('--')

Appendix C 225 Computer Code

% Filename DepthWeightFileCreation.m
% L.HRees March 2007
% This program is designed for entering weights etc for the depth program
% for validation.
%---
prompt! = 'This NN is designed to use three possible types of activation functions';
prompt2 = '1 - The sigmoid (logistic) function';
prompt3 = '2 - The tanh function';
prompt4 = '3 - The LeCun tanh function';
disp(promptI), disp(prompt2), disp(prompt3), disp(prompt4)
disp(' ')
activation = input('Your choice for the activation function i.e. 1, 2 or 3 from above? ');
disp(' ')
Ll = input('No. of neurons in the hidden layer e.g. 3 ? ');
disp(' ')
load VenantOriginal ho speedsize depthsize LatestSpeed PreviousSpeed LatestDepth
PreviousDepth;
disp('The pattern of final and penultimate veloocities and depths has now been loaded')
disp(' ')
Ml = depthsize(l,l)-2; % No. of patterns. Two less because cannot include

% velocities outside of the two boundaries
NI = 3; % No. of neurons in the input layer
PI = 1; % No. of neurons in the output layer
% SETUP AND DIMENSIONALIZE ARRAYS
%---
BiasHidden = zeros(Ll,l); % Contains the weights of the bias unitsfor the

% hidden layer. Value of bias is +1
BiasOut = zeros(Pl,l); % Contains the weights of the bias units for the

% output layer. Value of bias is +1
Win = zeros(Nl,Ll); % Weights for the input to hidden layers matrix

% Each row separately, must represent all of the
% weights for a given input unit

Wout = zeros(Ll,Pl); % Weights for the hidden to output layers matrix
% Each row separately, must represent all of the
% weights for a given hidden unit

% SET THE VALUES OF WEIGHTS USING THE RANDOM NO. GENERATOR, EARLY
% STOPPING WEIGmS OR ENTER THE WEIGIllS MANUALLY
%--
disp(' ')
prompt = 'Now enter the weights for the INPUT neurons to the HIDDEN layer ONE AT A
TIME:';
disp(prompt)
disp(' ')
forj = l:Nl

promptl = 'neuron No.';
prompt2 = intzstnj);
prompt3 = strcat(promptl,prompt2);
disp(prompt3)

Appendix C 226 Computer Code

for k =1 :Ll
promptl = 'weight No.';
prompt2 = int2str(k);
prompt3 = strcat(promptl,prompt2);
disp(prompt3)
Win(j,k) = input('Weight? ')

end
end
disp(' ')
prompt = 'Now enter the weights for the HIDDEN neurons to the OUTPUT layer ONE AT

A TIME:';
disp(prompt)
disp(' ')
for j = l:LI

promptl = 'neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(promptl ,prompt2);
disp(prompt3)
fork =l:PI

promptl = 'weight No.';
prompt2 = int2str(k);
prompt3 = strcat(promptl ,prompt2);
disp(prompt3)
Wout(j,k) = input('Weight? ')

end
end
disp(' ')
prompt = 'Now enter the weights for the BIAS neurons to the HIDDEN layer ONE AT A

TIME:';
disp(prompt)
promptl = 'Enter zero if it does not exist';
disp(prompt!)
disp(' ')
for j = l:LI

prompt! = 'bias to hidden neuron No.';
prompt2 = int2str(j);
prompt3 = strcat(promptl,prompt2);
disp(prompt3)
BiasHidden(j) = input('Weight? ')

end
disp(' ')
prompt = 'Now enter the weights for the BIAS neurons to the OUTPUT layer ONE AT A

TIME:';
disp(prompt)
promptl = 'Enter zero if it does not exist';
disp(prompt 1)
disp(' ')
for j = l:PI

promptl = 'bias to output neuron No.';

Appendix C 227 Computer Code

prompt2 = int2strG);
prompt3 = strcat(promptl,prompt2);
disp(prompt3)
BiasOutG) = input('Weight? ')

end
% SAVE DATA FOR USE WITH THE VELOCITY ANN PROGRAM AND DEPTH
% VALIDATION PROGRAM
%--
save DepthValidation activation Ll Win Wout BiasHidden BiasOut;

Note: a companion program to this one allows creation 01 weights lor the
velocity validation program. It is identical in all respects to the depth one
save lor the last line 01 code above which should read:

'save VelocityValidation activation Ll Win Wout BiasHidden BiasOut;'

Appendix C 228 Computer Code

% Filename RMSTest.m
% L.HRees April2007
% This program compares the RMS from the training data against the RMS STORED
% IN THE FILE TestRMS.
%---
factor = input('Vertical scale factor e.g. lOO? ');
load TrainingRMS OuterCounter;
for j = 1:size(OuterCounter)

rms = OuterCounter(j);
plot (j,rms*factor);
hold on;

end
dispf'Training RMS = ');
disp(rms);
load TestRMS OuterCounter;
for j = 1:size(OuterCounter)

rms = OuterCounter(j);
plot (j,rms*factor);
hold on;

end
disp('Test RMS = ');
disp(rms);
axis ([-inf, inf, 0, 1D
xlabel ('No. of epochs')
ylabel (['RMS x ',int2str(factor),' '])
title (['Plot of the Root Mean Square Error v No. of Iterations (Epochs)'])

229

Appendix D
Support Vector Machines - an alternative paradigm

D.I Introduction

Mathematically, support vector machines (SYMs) are a range of classification and

regression algorithms formulated from the principles of Statistical Learning Theory

developed by Vapnik [105]. They have been applied successfully to classification tasks such

as pattern recognition, OCR and more recently, to regression and time series. In recent

years, a number of non-linear classification and regression variants of SYMs have been

developed and these have been benchmarked against artificial neural networks (ANNs). It

has been found that the empirical performance of SYMs is generally as good as the best

ANN solutions. It has been hypothesised, that this is because there are fewer model

parameters to optimise in the SYM approach so that the latter is not so prone to 'over

fitting', a situation that arises when there is insufficient data for training. However, Han et.

al. [40] (cf. Chapter 3), found that SYMs did suffer from overfitting and underfitting as

much as conventional neural network models.

In comparison to physically based hydrodynamic models, SYMs are data parsimonious, a

property that Asefa et. al. [6], noted. Support vector machines are state-of-the art machine

learning methodology with some very important features. Using a hypothesis space of linear

functions in a kernel induced higher dimensional feature space, the SYMs are trained using

a learning algorithm from optimization theory. The principle of SVMs is to minimize the

generalized model error (risk) rather than aiming to minimize the mean square error over a

training set. Further, because of Mercer's condition [78] on the kernels, the corresponding

optimization problems are convex so that local minima are avoided. However, SVMs do

have their drawbacks. The selection of suitable kernels as well as hyper-parameters is

currently still rather heuristic, and as a consequence therefore problematic, a difficulty

referred to by Han et. al. [40). As for artificial neural networks, support vector machines can

be represented as a one hidden layer network where the weights from the input to hidden

layer are non-linear and those from the hidden to output layer are linear.

Appendix D 230 Support Vector Machines

However, a major distinction between the two techniques is with regard to the choice of

parameters in the training algorithm. Using gradient or clustering-based approaches, neural

networks generally adapt all of the parameters whilst in contrast, support vector machines

choose the parameters for the first layer to be the training input vectors thus minimising the

VC-dimension, Vapnik and Chervenenkis [104]. SVMs contain a large class of certain

neural networks, RBF networks and polynomial classifiers as special cases. The discussion

in this appendix will therefore concentrate in order on: support vector learning. hyperplane

classifiers; features spaces and kernels; support vector machines; implementation and

historical development.

D.2 Support Vector Learning

The support vector algorithm can be analysed mathematically because it has a

correspondence with a linear method in a high dimensional feature space that itself is non-

linearly related to the input space. In practice. the computations do not take place in the

feature space but instead. using kernels. all the necessary computations are performed

directly in the input space.

The objective here is to estimate/find a function f:!Rn
~ {±l} using input-output training

data (xI'Yt) ... (xn,Yn) E R" X {±l} such that new (unseen) data sets will be correctly

classified by the function! That is.f(xt) = Y;' v.: (",.y,)' It is assumed here that the new

data belongs to the same population (that is generated from the same underlying probability

distribution P(X, y)) as the training data.

Noting that if the class of functions. from which the estimated required /. is not restricted.

then even if this estimated function f performs well on the training data, it may not

necessarily generalise well to unseen (test) examples. In other words. since only the training

data is available. it is not possible to determine which one of a set of functions is the best

choice. Thus minimisation of the training error (sometimes called empirical risk) alone

usmg

(Dl)

Appendix D 231 Support Vector Machines

will not necessarily imply a small expected test error (called risk) where the latter is defined

by the indefinite integral

Rill = J~I/(x)- y~P(x,y) (D2)

In fact, statistical learning theory, Vapnik [105], dictates that it is vital to restrict the class

of functions to one with a capacity that is suitable for the amount of available training data.

In fact, VC theory provides bounds on the test error, the minimization of which [bounds]

depends on both the empirical risk and the capacity of the function class.

D.3 Hyperplane classifiers

It appears then that to design suitable learning algorithms, it is necessary to find a class of

functions for which the capacity can be computed. Some researchers (including Vapnik)

therefore considered the class of hyperplanes (wT.x) + b = 0, WE IRn,be IR that

corresponds to decision functions of form

I(x) =sgn«wT .x)+b) (D3)

for which it would be possible to construct the function/for a given separable problem, that

is, one where it is possible to distinguish between two classes of data. It can be seen that

amongst all the possible hyperplanes separating two classes, the one leading to a maximum

margin of separation between the two classes is unique and is hence referred to as the

optimal hyperplane:

max {min{lIx-x;II:(wT.x)+b =0,
.. ,b

i e N+,X,W e IRn,b eRn (D4)

where. the larger the margin size. the smaller the required capacity. Continuing,

Appendix D 232 Support Vector Machines

margin width = 21 ~ II .____ ~x lUI for
~ ... ----------------- diamonds/-- , \" -----------.,'

""'--. ,. ,.------:,..: -,-' '
\ x, ---,It' "<. \. !)f = +1
\ "-__ <, " x :
I -, "''_ 1 :

'\. <, -::----- i, '-'<:~__=<] {x:(wT.x) + b = +1}
\\" 1; = -1 -c -; "'" ' "~

...' .. ,.... '
\7"0,,,> ..,.'

corwex lUI for /
bals / (x:(w~x) + b = 0}

(x:(w~x) + b = -1} the opimal

hyperplane

Figure DJ: The optimal hyperplane

using the arguments of Burges [16] and Scholkopf et. al. [94], consider a simple separable

(binary) classification problem on separation of toy balls from toy diamonds as depicted in

fig. D 1. It can be seen that the optimal hyperplane is orthogonal to the shortest line

connecting the convex hulls of the two classes. Further, it intersects this line at the mid-

point. There is a weight vector w and a threshold value b such that y; «wI' -x.) +b) > O. If

now wand b are rescaled, so that point(s) closest to the hyperplane, in the fig. Dl XI and X2

for instance, satisfy l(wT .x;) +bl= 1, then a closed (canonical) form (w, b) for the

hyperplane is obtained of form

(05)

Since

(wT .x,)+b =+1 and (wT .x2) +b = -1

this => (wT
.(x, - x2)) = 2

which :·~((~S-(I,-X2)h!1
(06)

the latter result describing the width of the margin as measured perpendicularly to the

hyperplane. Hence, to maximize this margin, it is necessary to minimize Ilwll subject to

equation (05) which is in effect, a constrained quadratic optimisation problem.

Appendix D 233 Support Vector Machines

Following the method of Scholkopf et. a1. [94], introduce the Lagrange multipliers

{aj : aj ~ O] which gives rise to the Lagrangian operator of form:

(07)

where L has to be minimized with respect to the primal variables W and b and maximized

with respect to the dual variables a; (the Lagrange multipliers). This effectively means

looking for a saddle point at which oL (w,b,a) = oL (w,b,a) =o.
ob Ow

Since ~wf=W·W , differentiating equation (07) with respect to these conditions gives

n n

La;Yi =0 and W= Laiyjxj. (08)

From equations (D8), it can be seen that the solution vector W to the optimal hyperplane is

therefore comprised of a subset of the training patterns, that is, those patterns for which

aj =I' o. This subset of patterns { Xj } that lie on the margin, such as XI and x2 in fig. D 1 are

the so-called support vectors and they contain all the relevant information about the

classification problem. The hyperplane is determined completely by the patterns closest to

it. Substituting equations (D8) into equation (D7), it is possible to obtain the dual of the

optimization problem, Scholkopf et. al. [94], wherein the primal variables have been

eliminated to leave one equation in terms of the dual variables, {a,}, only. After some

manipulation, it becomes, subject to the first condition in (08):

(09)

As a result of the second condition in (D8), the hyperplane decision function can then be

written as:

(010)

where b is computed from the Karush-Kuhn- Tucker (KKT), Bertsekas [8], complementary

conditions a, (y;(wT .xj)+b)-I) = 0 i = I,...n.

Appendix D 234 Support Vector Machines

It is worth noting that at this juncture, the one crucial property of both the quadratic

programming problem and the hyperplane decision function, is that both of these functions

depend only on the inner (scalar) product between patterns and it is this property that allows

generalisation to non-linear cases.

D.4 Features spaces and kernels

Fig. D2 that follows depicts the basic concept behind the support vector machine:

• the training data in the input space is mapped via a non-linear mapping function <P

into a higher dimensional feature space then,

• a separating hyperplane with a maximum margin is constructed in this feature space

(following the arguments of the previous section and fig. Dl) and

Input Space Feature Space

•
<>

<>

•
• •

Figure D2: Input andfeature spaces

• as a consequence, a non-linear decision boundary is obtained in the input space so

that

• finally, using a kernel function, it is possible to compute this separating hyperplane

without actually carrying out an explicit mapping into the feature space.

In essence then, the training data is mapped into some other inner product vector space, as

mentioned above, called the feature space F using a non-linear mapping <I>: JRn -+ F and

then a linear algorithm is applied in F. Unfortunately, if F is highly dimensional, evaluation

of these products can be 'expensive' in terms of computer time and/or capacity. However, it

can be seen that the construction of the optimal hyperplane in F, equation (D9) and the

Appendix D 235 Support Vector Machines

corresponding decision function (DI0) require just the evaluation of inner products such as

<1>(x)e<l>(y) but not the mapped pattern <1>(x) in explicit form. This is a critical property

since in certain cases, the inner products can be evaluated with a simple Mercer, [78] kernel

such as k(x,y) = <1>(x)e<1>(y). For example, the polynomial kernel k

(D11)

corresponds to a mapping Cl>where

<1>:(XT ey t ~<l>T (x)e<1>(y)

In fact, if d = 2 and x,y E]R2 , then

(D12)

k(x,y) = (XT eyt
=[(;Jt:))'
= (xtYt + X2Y2)2

= (x;Y; + 2XtYtX2Y2 + x;Y;) (DI3)

-[~IX' H~Y' 1
= <1>1'(x).Cl>(y)

Scholkopf et. al. [94], point out that for every Mercer kernel that gives rise to a positive

'matrix' ofform

(DI4)

then a non-linear mapping Cl> can be constructed such that the kernel k(x,y) = <l>(x).<J>(y) is

valid. Other kernel functions apart from (D11) are used in practice dependent upon the

problem at hand, some examples of which are, respectively, RBF kernels and sigmoid

kernels such as

(-~:;f)
k(x,y)=e , and k(x,y)=tanh(K(XT.y)+B)

where in the latter, 1C is the gain and 9 is the threshold.

Appendix D 236 Support Vector Machines

D.5 Support vector machines

All the tools necessary to construct a non-linear classifier (as shown in fig. D2) such as

<I> have now been discussed. In essence, the mapped result <I>(xi) is substituted for each of

the {Xi} from the training set (in the input space) and then the optimal hyperplane algorithm

(as indicated by fig. Dl and associated notes) is applied in the feature space. In the trivial

example that was explored, equation (013), it would be necessary to first perform the

substitution

(XI X2)i with (x~ J2XIX2 xi),
Since kernel functions and associated inner (scalar) products are being used, non-linear

decision functions of form (cf. (010»

f(x) =Sgn(t v,k(x, I,) +b1 (015)

are realized where the parameters Vi are obtained from the solution to the quadratic

programming problem, for example: Vi= Yiai for pattern recognition, v, = ai' - a, in

regression estimation. It is noted that, in the input space, the hyperplane corresponds to a

non-linear decision function, the form of which would be determined by the kernel function

used.

So far, essentially only classification has been considered. However, Hearst et. al. [44],

points out that it can be generalised to regression estimation where the objective is to

estimate some Y E JR. Essentially then, an algorithm is used to construct a linear function in

the feature space such that the training points lie within some neighbourhoods, e E JR+ .

Using similar arguments as for classifiers, this results in a quadratic programming problem

in terms of the kernels, resulting in a non-linear regression estimate of form

n

[(x) = LVik(x,xJ+b
i=1

(016)

The similarity to (015) is noted. To apply the algorithm. it is necessary to either specify Ea

priori or fix an upper bound on the fraction of training points that are allowed to lie outside

of the neighbourhood distance E from the regression estimate.

Appendix D 237 Support Vector Machines

D.6 Implementation and Development

Most usefully, it is it practical tool in that it reduces to a quadratic programming problem

that has a unique solution. By a suitable choice of kernel functions, it is possible to construct

different architectures. For example, RBF classifiers, polynomial classifiers and three layer

neural networks could be represented respectively by:

(-II-YI
2

)

k(x,y)=e ~, k(x,y)=(xT.yt and k(x,y)=tanh(K(xT.y)+B)

Research is currently being conducted into better training methods for speeding up the

solution to Q.P. problems and also into speed improvement in evaluation of the decision

function, Burges [15]. Research is currently being pursued, Girosi [37], into the selection of

suitable kernels and the associated feature spaces. Scholkopf et. al. [94], however, notes that

the choice of kernels might not be so significant and they reservedly point out. that is does

not imply that support vector methods will significantly outperform all other applications, or

for that matter, solve a problem that has so far been intractable.

D.7 History of Support Vector Machines

The support vector (SV) algorithm is a non-linear generalization of an algorithm that was

developed in Russia back in the sixties, Vapnik and Lerner [103]. A similar approach was

taken by Mangasarian [72] and [73], in the USA. The development of the SVM gave rise to

a class of algorithms, known as Kernel machines, for pattern recognition. The SVM was

developed at AT&T Bell Laboratories by Vapnik and co-workers, Boser, Guyon and

Vapnik. [11], Cortes and Vapnik, [25], being first introduced at a Conference on Learning

Theory in 1992 (COLT -92).

Since their initial excellent perfonnance as classifiers, SVMs have been shown to have

similar performance in both regression, Scholkopf et. al. [94], as well as time series

prediction applications, Muller et. al., [82], Drucker et. al., [34], Mattera and Haykin, [76].

Further, standard SVM toolboxes are also being developed, Cherkassky and Mulier, [21].

238

AppeodixE
History of the Thames

E.I Historical Development

The River Thames was initially formed between 170 and 140million years ago as the result

of the earth movements of the Jurassic Period. During the last glacial period, which ended

about 18,500 BP when Great Britain was physically connected to Continental Europe, sea

levels were much lower than they are today and the southern and central North Sea became

land. At this time, the Thames was effectively a tributary of the River Rhine, the estuary of

the latter being situated in what is referred to today as the Southern Bight of the North Sea.

The Thames, the Rhine, the Medway as well as other rivers in the area fed a large freshwater

lake situated in the Southern Bight. However, with temperatures slowly rising, the ice

retreating and sea levels rising, the Thames became separated from the Rhine, the Straits of

Dover became a marine channel and Britain became an island. Due to rising sea levels, the

River Medway, instead of being an entirely freshwater tributary of the Thames, became a

lower river source/estuarine tributary of the Thames.

E.2 ThameslMedway Physiograpby

From its now officially accepted source at Trewsbury Mead in the Cotswolds, the River

Thames flows for approximately 67 Km through the southern counties to the Greater

London area and on to Dartford Creek in the east before in essence, it can be regarded as

estuarine. For approximately half of its length it is tidal in nature, the tidal influence starting

at Teddington Lock (weir) 30.4 Km above London Bridge. If the River Medway is included

as a tributary of the Thames, then the latter drains a total catchment area of some 12935.77

squareKm.

The Thames estuary has the classic basic shape and characteristics. It is roughly bell shaped

with freshwater entering it at the narrow upstream end (over Teddington weir in this case)

and from any tributaries into it. Twice a day, the tides flow into the Thames as well as its

tributaries. The volume of water varies with the amount of freshwater flowing into the

Thames and the height of the tide. The physical characteristics of the tidal stream are very

Appendix E 239 History of the Thames

different to the freshwater that flows over Teddington weir: it is saline, cooler (at least at the

mouth of the river), quite well oxygenated, heavier and heavily silted.

In contrast to a freshwater river system wherein the flows are downstream all the time, in an

estuary where tidal motion gives rise to water entering the system from the seaward end, the

system becomes very complicated. As a consequence, the same water particles may flow

back and forth for days and even weeks, before they reach the sea. Wheeler [108] notes that

under certain conditions, centered around London Bridge, these particles may oscillate back

and forth over a distance of between 12.9 and 14.5 Km. In the textbook situation where

saltwater meets freshwater, the latter flows over the former as freshwater being less saline

and hence not so dense, is lighter. However, where the two layers of water come into

contact, mixing takes place with a gradual increase in the salinity of the freshwater.

However, the Thames does not conform to such a textbook scenario. It is in fact 'well mixed

vertically'. That is, on average, the salinity declines gradually in the upstream direction. It

has been suggested, Wheeler [108], that its nonconformity is caused by the series of bends

in the river course between Teddington and Gravesend. There are in fact, 25 sharp bends

between Teddington and the sea. Although the maximum tidal velocity is usually in

midstream, at bends as the result of friction, it follows the outside curve of the river.

Consequently, the main tidal stream is continually switching from one side of the river to

the other at such bends. This results in the freshwater and saltwater becoming thoroughly

mixed so that at slack water, there is little difference between the salinity of the water near

the bed and that at the surface. However, the overall salinity does gradually increase in a

seaward direction. There are some small areas where little mixing has taken place for

example at pronounced bends in the river where the tidal stream has been forced into eddies.

In addition to the freshwater flow over the Teddington weir, there are a number of

tributaries, which flow into the tidal Thames that themselves are also tidal (referred to as

tidal creeks). With two exceptions, they are not very large. These tributaries include the

River Crane, the River Brent, the rivers Beverley Brook, Wandie, Ravensbourne and

Quaggy from the south side, the rivers Lea, Roding, Beam and Ingrebourne from the north

Appendix E 240 History of the Thames

side and the rivers Darent and Cray (combined at Dartford Creek) from the south side. The

River Lea is without doubt the major tributary of the tidal Thames.

The freshwater flow over Teddington Weir is normally maintained at about 800 million

litres/day although in the summer or severe drought conditions, it can be as low as 200

million litres/day. The mean flow (as measured over a 25 year period) is about 520 million

litres/day. The difference in water level between Mean High Water and Mean Low Water

(Mean Range) at London Bridge varies from 4.6 metres at Neap tides to 6.6 metres at Spring

tides.

The River Medway has its source near Turners Hill, in West Sussex. It is tidal from

Allington Lock to its confluence with the Thames, a distance of approximately 40 Km. The

non-tidal length of the river to its source is approximately 50.5 Km (which includes Weir

wood Reservoir of length 3.4 Km). The main tributaries of the Medway are: the rivers Eden,

Bourne, Teise and Beuilt and the minor ones: Len, Loose and Shode. The headwaters of

some of these tributaries are fed by springs that, in turn are fed by aquifers. The width of the

Medway varies considerably with some sharp bends in its course. It is therefore a well

mixed estuary. The Medway and the Eden rivers have a long history of flooding, especially

the area of the upper Medway with its many tributaries. As a consequence, a flood barrier

was constructed in the Tonbridge area.

Apart from the gauge station at Kingston (on the Thames) and that at Teston (on the

Medway), all the other gauge stations that are used to estimate the freshwater flow into these

major rivers, feed directly into them as there aren't any lock obstructions on route.

It can be seen from the CAD plan in appendix F that the bathymetry in the area surrounding

the confluence of the two rivers is quite varied. In the Thames itself there are various

sandbanks such as the Great Nore and Nore Sand. Other wetlands/sandbanks include

Chapman Sands, Southend Flat and Maplin Sands on the northern side of the river and

Blyth Sands, Yantlet Flats, Grain Spit and Jacobs Bank on the southern side. The main

approach channel, that is dredged, is the Yantlet Dredged Channel. The Medway is

approached via the Medway Approach Channel over a sandbank called the Little Nore

Appendix E 241 History of the Thames

opposite Garrison Point. Proceeding up river leads to mud flats such as Stoke Ooze and to

the south, an extensive area encompassing further mud flats and marsh lands such as Ham

Ooze, Bishop Ooze, Tailness Marshes and Chetney Marshes.

242

Appendix F

Map of the confluence of the rivers Thames and Medway

Southend-On-Sea

Leigh-On-Sea

Black Grounds

Shoeburyness
_______ T_ho-..:rpeBay

ambridge Town

Canvey Island

Blyth Sands
The Warp

Yantle! Dredged Channel

The Cant

2

of Grain
Sank

~ Ganison Pt.

'" Sheerness
Sheemess Harbour

Isle of Sheppey Scale = approx. 1/77500

Based on Admiralty Chart no. 1185
(scale 1125000) 1997

Legend

aelow ••• level

All depth contours are in metric and reduced
to chart datum.

5

10
Chart datum is approximately the level of the
lowest astronomical tide (2.90m below OD).

L.H.Rees May 200620

