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ABSTRACT 

We revisit Taylor's problem and discuss some model test problems both through Tay- 

lor's approach and other numerical methods such as a 'Finite approximation method' 

and 'Green's function technique'. The solutions generated by each method are com- 

pared for consistency. The objective lies in the fact that the more difficult generaliza- 

tion of Taylor's problem where the sea floor is in the form of a slope may be reduced 

to a sequence of problems, each of which may be approached by the techniques de- 

scribed above. 

The Taylor's problem is effected with three mutually independent techniques in order 

to get insight of the problem and to obtain consistent solutions by these methods. 

The problem of a propagation of a Kelvin wave over a step-bottom in a semi-infinite 

canal closed at one end is considered. 

The solution obtained is compared with that generated by the long-time limit of a 

numerical solution for the time dependent initial value problem. A mean square error 

analysis indicate gOod agreement. 

Diagrams for co-range and co-tidal lines are displayed and it is found that the am- 

phidromic points align along the central axes of the channel. This accounts for non- 

dissipation of wave energy. 

Two methods of solution are presented for the problem of a Kelvin wave propagation 

over a step in an infinite channel open at both ends. 

One of the methods is the 'collocation method' which was first used by Defant (1960). 

The second method is a Fourier series method where the Kelvin wave system is first 

expanded as a half-range Fourier series. This idea was first used by Taylor(1921) 

in the analYtical representation of the reflection of a Kelvin wave in a senii-infinite 
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channel closed at one end. 

Similar solutions are obtained and diagrams for 'co-range' and 'phase lines* are dis- 

played. It is found that the amphidromic points are displaced from the central axis 

towards the east and this is attributed to a loss of reflected energy in that region. 

Finally the problem of a Kelvin wave propagation over a step is generalized by assurn- 

ing a sloping sea bed instead and treating the problem as two semi-infinite channels 

connected by a slope-like bottom topography. A technique is proposed to solve this 

system for the simplest configuration but in principle the technique should be extend- 

able to deal with a more general situation. 
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Introduction 

This work is concerned with the analysis of tidal motion in models simulating the 

North Sea. The main objective is to develop an analytic or semi-analytic model of 

the chief (M2) tidal constituent which takes account of the North-South shoaling 

nature of the sea'bottom. This is an area poorly understood at present and any ana- 

lytical progress can potentially be a great aid to the increasing number of computer 

models currently being developed. 

The various frequencies of orbital forcing which contribute to tidal variations are 

called constituents. In most locations, the largest is the 'principal lunar semidiurnal' 

constituent, also known as the M2 tidal constituent. Its period is about 12 hours and 

25.2 minutes, exactly half a lunar day. 

The gravitational forces of the earth, of the moon, and of the sun act upon a mass 

element dm of the ocean. The greatest part of the gravitational forces of the moon and 

of the sun are compensated by the centrifugal forces originating from the revolution 

of the earth-moon and earth-sun systems around their respective center of gravity 

[25]. The remaining forces are called tide generating forces. 

The tidal potential of the moon or sun is 

ýD(oj Alt) = 
mjR 11 (1 - 3sin 20)(1 

-3 sin 
26 

i)+ sin 20 sin 26i cos(wit +A+ aj) 23 

Cos 
20 

COS2 6i cos(2wit + 2A + 2ai)] 

mi=M or S for the moon or sun respectively, (0.1) 

where, R is the radius of the earth (6371km), A is the longitude of the observational 

point, 0 is the latitude of the observational point, a is a phase angle, t represents 
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time and w is the angular velocity of the earth, M is the mass of the moon, ro is the 

distance from center of the earth to the center of the moon, v is the gravitational 

constant and 6 the declination. 

The first term of the tidal potential includes a time- independent as well as a long- 

period part, the period of which is approximately 14 days (constant moon tide or 

lunar fortnightly tide MO). The corresponding solar tide is a semi-annual tide So. 

These cause a depression of the sea level at the pole of about 20 cm and an elevation 

at the equator by about 10 cm. 

The second term in (0.1) describes diurnal tides whose period is 24 hours 50-47 

minutes.. 

The third term in (0.1) describes semi-diurnal tides whose period is 12 hours and 25.2 

minutes. 

Tides are created as a result of gravitational attraction between the Eaxth and the 

Moon as well as the Earth and the Sun although this is to a lesser extent. 

The surface of the Atlantic is pulled approximately half a meter from its mean level, 

once when the moon is immediately overhead and once when the moon is on the 

opposite side of the earth. 

When the moon is immediately overhead it pulls the water causing a high water, 

however when the moon is on the opposite side it pulls the earth again causing a high 

water on the other side of the earth. An equivalent depression is created when the 

moon is on either horizon, thus creating a tidal wave. 

Although this tidal wave generated in the deep ocean, this wave passes over the con- 

tinental shelf and, once on the continental shelf itself, increases in amplitudes because 

of the conservation of mass. Similarly the tidal velocities also increase on the conti- 
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nental shelf The tidal flow over the continental shelf region is much faster than the 

flow in the deep sea. Usually the tidal currents in the shelf regions are about ten 

times stronger than currents from other sources [101. 

V- 
Pur the formulation of this equation (0.1) please see W. Krauss [251 (p. 25). 

Although we are concerned with the main tidal constituents, the ocean also responds 

to excitation over a much broader range at higher frequencies such as wind waves 

(sea, swell, capillaries) as described by Platzman [311 

.< 
tides >ý 

I --I- IIIII 

10- 
8 

1OF 
" 

10- 
4 

16-2 1 10 
2 

10 4 
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planetary shelf swell sea capillaries 

waves waves wind waves acoustic 

storm tsunamis waves 

surges 

Figure 0.1: Platzman; Tides are at the low-frequency end of a broad range that 
spans much diverse activity in the oceans. 

The simplified hydrodynamical equations obtained after low pass filtering approxi- 

mations that suppress resonances at frequencies higher than 10-' cycles per second 

(cps) are called 'long-wave' equations. That is, Platzman explains that by suppressing 

resonances at frequencies higher than 10-2 cps we can obtain long wave equations. 

Platzman adds that the word 'long' refers to wave length as well as period which 

we adopt for 'the pragmatic reason that they offer the only mathematically tractable 

basis for a theory of tides'. As Platzman points out, by suppressing resonances at 

frequencies higher than 10-' cps, we are left with the dynamical effects of (a) gravity 

operating on the pressure field, (b) the earth rotation. We must therefore consider 

resonances modified or controlled by dynamical effects of the Earth's rotation as they 

naturally fall into this range of tidal frequencies. 
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The North Sea and Irish Sea are examples of shallow seas. By shallow sea we mean, 

H << 1 where L denotes the average width of the sea and H denotes the average L 

depth of the sea. The M2 tides in these shallow water regions originate from the 

Atlantic Ocean. It can be shown that the M2 tide in these regions is induced by 

the M2 tide in the Atlantic Ocean by solving the equations of hydrodynamics for a 

model of the region, assuming external motion at the open boundary. Such work was 

undertaken for other areas, see e. g., 

As early as in 1833 Whewell ([15]) recognized that maps of the amplitude and phase 

of the tide reveal an explicit pattern characteristic of tides. Kelvin (1879) [22] intro- 

duced the concept of a type of wave motion in which the Coriolis acceleration exerted 

on the current field is balanced by a transverse gradient in the surface displacement. 

This means that this type of wave is characterized by increased amplitude on the 

right-hand side and by small amplitude on the left-hand side looking in the direction 

of travel of waves in Northern Hemisphere. The practical reason for this assumption 

is that otherwise, the transverse component of the current must be retained, leading 

to much heavier mathematics (Poincare, 1910) [191. 

The two possible types of solutions obtained from the same basic set of equations, 

came to be known as Kelvin and Poincare waves. 

These waves can be analyzed through the equations of hydrodynamics. 

We refer to the depth averaged equations of motion and continuity equation from 

chapter 1. 

au 
- fv = -g a( 

& ax, 
av + fu = -g a( (0.2) 
& 19Y 
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a( au au 
at (ax 

ax) 
(0-3) 

We take f= 2w sin 0,0 is the latitude, and note that the horizontal axes (x, y) are 

arbitrary and not necessarily (east, north) - 

For a Kelvin wave propagated in the x-direction, the variation with y is exponential. 

Hence the Kelvin wave solution can be found by putting v=O in the equations. We 

look for a solution of the above equations with v=O. 

Thus, 

au a( 
at = -g5x, (0.4) 

fu = -gL( (0.5) 
ay, 

ac 
+h c')u 

= o. (0-6) 
at ax 

The equations (0.4)- (0.6) are shallow water equations, (with v=O), derived using the 

hydrostatic approximation. 

The equations (0.4) and (0.6) govern ( and u variations on any line y= constant, 

and contain no Coriolis force and thus the wave motion is identically the same as 

the non-rotating shallow water motion. Thus in the vertical plane of the bounding 

wall and in any parallel vertical plane, the motion is exactly the same as that in a 

non-rotating system and hence the wave is a shallow water gravity wave. 

The depth-averaged linearized model that describes the tidal wave is obtained from 

(0.4) and (0-6), 

a2( 492( 
at2 9 

(qX2 
(0.7) 

Thus we have general solution of (0.7) consisting of the sum of two non-dispersive 
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waves travelling in the opposite directions, namely, 

A, (y) F, (x - -, lg-ht) + A2 (Y) F2(X + N7ght), 

U 
gA, (y)FI(x %I-g-ht) - A2(Y)F2(X + %79ht) hýh 

where A, and A2 are functions with properties to be determined. The way the 

functions A, and A2 vary with y can be found from the one remaining equation, 

namely (0.5). 

By using (0.5) we arrive at two Kelvin waves travelling in opposite directions given 

by, 

(=e- -Ag 'F, (x - %lg-h t) +e-, 7ýgT'F2 (x + �lg-ht), (0.8) 

the speed of propagation being \, Fg-h. 

The wave, represented by F1, if f>0 decays exponentially in the positive y direction, 

whereas the other decay exponentially in the negative y direction. This exponential 

behavior is very similar to that of the Lamb wave (Gill(1982), page 378) and so the 

Kelvin wave is also among the class of waves called boundary waves, edge waves, 

trapped waves, or surface waves (see Gill(1982)) [11] 

As Kelvin (Thomson, 1879) [22] remarked, 'the velocity of propagation is the same' 

as for the non-rotating case, and 'the influence of rotation is confined to the fac- 

tor' exp(-y/a), where 'a' is a length scale of fundamental importance, defined by 

a= vfgTIf, and denoted the Rossby radius of deformation (or simply called 'Rossby 

radius'). 'Many interesting results follow from the interpretation of this factor'. The 

important property is, of course, the scale of a. Typical values of a for barotropic 

(constant density) Kelvin waves are 2000 km for the deep sea and about 200 km for 

coastal waters and shallow seas. But, in the case of baroclinic Kelvin waves (which 
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are important in the description of coastal upwelling) the values of a are only about 

30 km 

Since the wave amplitudes are exponential in the y direction, we must limit this direc- 

tion by imposing a coastline or boundary, say at y=O. The boundary condition v=O 

.v is then automatically satisfied, and the solution e- a F, (x - -, Fg-ht) represents a 

Kelvin wave in the region y>0 moving in the positive x direction along the straight 

coast. We note that C -+ 0 as y -* oo. In addition, in the Northern Hemisphere the 

wave travels with the boundary to the right of its direction of propagation, since 

0 in this case. In the Southern Hemisphere the boundary lies to the left of the 

direction of propagation. 

Thus, the Kelvin type of tidal wave is one that can be propagated in a rotating 

channel. As the wave progresses along the length of an infinite long uniform straight 

channel, a horizontal pressure gradient is created because the amplitude of wave is 

greater on one side of the channel than on the other. This gradient force is counterbal- 

anced by the Coriolis force due to the earth's rotation. In the Northern Hemisphere 

the deflecting force is balanced by a pressure gradient provided by an increase in the 

amplitude of the wave on the right hand side of the channel (following the propaga- 

tion). 

-c- ---- F2 F, 

low free surface high free surface 

(Northern Hemisphere, f> 0) 

low free surface high free surface 

u 

(Southern Hemisphere, f< 0) 

Here F, is the gradient force and g is the Coriolis force 

Figure 0-2: Balance of Coriolis force and pressure gradient 
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In particular, when F, is sinusoidal in character, then the complete Kelvin-wave so- 

lution takes the form 

Coe -y/a COS( 
ax- 

Olt), u= (g/h)12 Coe -y/a COS( 
ax-0,01 (0-9) 

-7g; =h 
vlgj-h- 

Now consider the energy of a Kelvin wave of the form (0.9). 

If a coast is put at y=0, then the amplitude of the wave at the coast is Co. Since 

the solution for 4 fixed value y is as in the non-rotating case, the energy of a Kelvin 

wave is partitioned equally between the kinetic and potential forms. 

The mean value (denoted by over line) per unit length of coast is given by, 

00 1 
Kinetic energy (K. E) -pHii%) 

fo 
2 

and 
00 

Potential energy (P-E) = 
10 

2 pgZ: %, 

where, H denotes the depth. 

Hence, 
00 00 11 

(02. 

o2 
pHU2dy = 

fo 
2 pgZ7idy =8 apg (0-10) 

The average value of the energy flux along the coast is 

f 00 1 pg 
2 H(02 

o 
pHu(dy -4 Ifl 

This formula (0.11) is of interest when a Kelvin wave moves through a region in which 

H varies. 

IM_ 
Fur the energy flux to remain constant, the amplitude (0 must vary in proportion 

.1 with 
(1h) 2. For a local sea (f=constant) this amplitude varies inversely with vT- to H 

maintain the energy flux constant. 
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It is of our interest to note that the Kelvin wave component of the tide entering the 

North Sea then moves down the west side into even shallower water in the Southern 

Bight, this providing a means of enhanced tidal amplitudes in this region. 

Now consider retention of the transverse component of the current, and take a pro- 

gressive shallow water wave, i. e., one for which (, u, and v are proportional to 

exp i (mx + ny - ot) - 
(0.12) 

The plane wave, given by (0.12), is sometimes given the special name of Sverdrup 

wave (see Platzman, 1971) [311. The polarization relations, i. e., the relations between 

amplitudes and phases of C, u, and v, can be obtained by substituting this form of 

dependence on (x, y, t) in the governing equations (0.2) and (0.3). 

However, we first assume a time factor e-'at in the field quantities (u, v, () , then we 

have the following set of equations obtained from (0.2) and (0.3). 

-iuu - fv -g 
a( 

19x, 
a( 

-iorv + fu - ay 
aa -ior( + ax 

(hu) + ýjy-(hv) = 0, 

resulting in the wave equation 

v2 (+=0, 

gh 

02 02 
---y , ---I where, a= 27r/(period of tidal oscillation), andV2H 9x &y 

In the wave equation (0.13) it has been assumed that the depth h is constant. As- 

suming a solution of the form (=e imx+iny-iat in terms of constants n, m, then we 

must have the condition 

m2+n22- 
gh 
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=(M2 2)-1 Taking kH +n2 as the magnitude of the horizontal wave number vector 

kH : --- (m, n), 

the dispersion relation is written as 

01 2= f2 +k2 gH. (0.14) 

A. E. Gill [11], in his book, refers to all waves with dispersion relation (0.14) as 

Poincare waves, although the name is sometimes reserved for the subset that satisfies 

the boundary conditions for a channel. 

Thus plane Poincare waves are only possible for a>f. That is , such that their 

period 
2' < 2=Tp the half pendulum day. Thus locally (Lej a constant ) energy af 

can be transferred by plane waves independently of boundaries, without attenuation, 

only if it is in the form of short period waves (Tp=24hours at 0= 30', Tp=17hours 

for the North Sea). 

Equations (0-13) also yield the following relations for u and v in terms of C 

j-2 H(ma + inf 
k2H 

(no, - imf)(. (0-15) 
HH 

Thus we can infer that if a Kelvin wave is moving along an isolated boundary such 

as a semi-infinite coastline, on diffraction it can lose no energy if o, <f and will 

eventually have the same amplitude. If or > f, the amplitude is less after diffraction 

has taken place because energy will be lost in the form of Poincare waves propagated 

-I to infinity (with an amplitude going to zero like r`2` as distance r from the origin 

becomes large) - 

Poincare waves are dispersive since a wave can be written in the form 

7k (kH!:.! I-ot) e'(k(T"Ily)-'t) = e' (0-16) 
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where kH : '-- (m 2+ 
n 

2)1/2 
,n is a unit normal to the wave front, and thus lies along the 

direction of propagation. The distance between wave crests is 27r/kH, and the period 

-- Kw P. W 

<-K. W 

Figure 0.3: Kelvin wave along an isolated boundary. 

is 27r/a, thus the speed of the wave is U== o-IkH- kH a 

i. e., 

U= 
Vf 2+ gUH2 Vg-h. 

kH 

The speed of the wave is greater than the corresponding value for the non-rotating 

system. 

Finally we note that if m= or/c, n2=k2- M2=_f2/C2. H 

Thus, by taking in= -f /c, (0.16) yields the Kelvin wave, 

""'Oe"I')", 

which travels with a speed U=c= Vfg-h 

During the process of this investigation of tides in the North Sea, the question arises 

as to what are the important factors which determine the basic tidal structure of the 

North Sea and outer Thames Estuary. 

The interaction between the Southern Bight and Straits of Dover could be an impor- 

tant factor. 
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rr :k 

6v- 

ell- 

I;,. 
(b) 

k. 

(0) 

Figure OA: (Gill, 1982); (a) Co-tidal lines for the Northern Adriatic, [After Polli 
(1960); from Hendershot and Speranza (1971), Fig-7] (b) Co-tidal lines for a simple 
model with depth increasing quadratically with distance from the end. The phase 
difference between the solid lines is 302. The phase on the broken lines differs by 1012 
from that on the axis. 

Frictional effects are also found to be significant according to the thoughts of many 

authors, i. e., [34]. 

The importance of the earth's rotation has been discussed to a reasonable extent in 

absence of boundaries at the side. An important feature of rotating fluid behavior is 

the geostrophic adjustment process in which the pressure and velocity fields adjust 

to each other to reach a geostrophic balance. When the balance is achieved, the flow 

at any level is along the isobars (see Gill, 1982, page 371) 
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Now, we suppose a boundary is placed so that it crosses the isobars. Then, further 

adjustment would take place because no flow is possible across the boundary. The 

presence of the boundary makes the long-shore component of the Coriolis accelera- 

tion to vanish so that the mutual adjustment of the long-shore velocity field and the 

pressure field along the boundary would occur. The situation is more like that in 

non-rotating field than like that in a rotating one. 

In sufficiently narrow channels, gulfs or estuaries there are two boundaries close to- 

gether, thus the effect of rotation may be ignored as a first approximation because 

the motion is mainly along the channel, gulf or estuary. This implies the component 

of Coriolis acceleration in this direction is negligible. The solutions for seiches and 

tides in many channels, gulfs, estuaries and lakes can be found on the assumption 

that the motion is everywhere parallel to the axis of the channel. Such solutions have 

been found to give good approximations to the behavior of seiches and tides in many 

channels, gulfs, estuaries etc, i. e. see (Gill, 1982, page 373) 

At the next order of approximation, rotation modifies in two ways, one is to give 

a cross-channel pressure gradient in order geostrophically to balance the long-shore 

flow. The other is to produce a shear whenever surface elevation departs from its 

equilibrium level, this being required in order that potential vorticity be conserved. 

The potential vorticity is defined as X= -(f IH)(, where H is the depth. 

Suppose in a narrow channel the solution to a first approximation has the form 

Unr (X 
j 

t) 
i(-: -- (nr (X 

i 

where the subscript '7ir' denotes non-rotating. 

(0.1-1) 

Here the solution is a non-rotating one as the Nvalls of the channel force the flow to 

be everywhere parallel to the walls. 
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Now our objective is to see what effects the rotation will have when these effects are 

small. 

First of all, because of the adjustment, there will be a Coriolis acceleration fUnr 

directed across the channel which must be balanced by small surface slope. The 

approximate form of the y component of the momentum equation is 

fu = -gac (0-18) 
ay, 

Choosing the origin of y, this integrates to give 

( : --- (nr (X 
i t) -9 -'fU�r (X, t) Y- 

for the corrected surface elevation. 

But for small correction 

u= O(/(g/H))(. 

Using this, the correction term in (0.19) can be written as 

g-lf (g1H) 1/2(nrW 

where H is the depth of the channel, W is the channel width. The condition for the 

correction term to be small relative to (,,, is obtained as 

g-lf (g1H) 1/2W <1i. e., (Wla):! ý 1, (0.20) 

where a is the Rossby radius. 

In other words, the condition for rotation effects to be small is that the width of the 

channel be small compared with the Rossby radius. 

The corrected surface elevation in the form (0.19) can give a considerable improvement 

to the non-rotating solution. 
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The interesting new feature added by rotation is the crest of the tide, as given by 

(0.19), now moves cyclonically around the basin. 

This is illustrated by an analytical solution which gives a good approximation to the 

northern end of the Adriatic taken as a channel of uniform width, W=135 km. The 

depth of the channel, which is assumed by a formula, H= -y x' (-y = 6.5 x 10-lom-1), 

increases quadratically with distance, x, along the channel. 

The Adriatic sea extends north west from 40 2 to 452 N with an extreme length of 

about 770 km. It has a mean breadth of about 135 km. The tidal movement is slight 

with an amphidromic point just off the north-western shore, near Ancona. 

In the model Adriatic, the end of the channel (Venice) is situated at x= xO = 150 

km. The Adriatic occupies the region x> xO. A median value of the Rossby radius 

is 250 km, so that the condition (0.20), Wla <1 is satisfied. For the solution and 

further discussion see (Gill, 1982) [111 and (Hendershott and Speranza, 1971) [341. 

The usual way of displaying the tidal variations is in terms of the amplitude A and 

phase 6. That is, if the elevation of the free surface C is expressed in the form 

C=A sin(at - 6), 

then (i) Contours of A are called co-range lines, on which the range 2A is given in 

meters, (ii) Contours of 6 are called co-tidal lines and the phase is given either in 

degrees or as the time of high water in hours. 

The Fig ( 0.4a) shows the observed co-tidal lines whereas Fig ( 0.4b) shows the cor- 

responding diagram from the model for the Northern Adriatic Sea. 

The seiches in the Adriatic axe of importance because they are responsible for the 

flooding of Venice. The fundamental seiche has a period of 22 hours. The effect on 

Venice depends a great deal on whether or not the times of maximum seiche are close 
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to the times of high tide. 

The narrow-channel approximation can be applied with success to studies of tides 

and seiches in gulfs, estuaries, and lakes, and even to the tides in the Atlantic Ocean. 

Now the questions arise as to what happens when the two sides of the channel are 

close together, and to how far from the shore the long-shore component of the Coriolis 

force can be neglected. For the narrow channel approximation to be valid the width 

of the channel must be small compared with the Rossby radius. For a wide channel 

there is a special form of adjustment near the boundary by means of a wave whose 

amplitude is only significant within a distance of the order of the Rossby radius from 

the boundary. This wave is called a Kelvin wave and some of its properties were 

discussed above. 

The presence of boundaries also affects the Poincare waves. As Kelvin remarked 

a plane progressive Poincare wave cannot satisfy all the boundary conditions at a 

boundary. But obliquely directed two such waves of equal amplitude can satisfy 

the condition. We can expect such a situation from reflection of a plane wave at a 

straight boundary. As an example we consider the reflection of plane Poincare waves 

at a boundary (see Fig(O. 5)). 

It is convenient to choose the x-axis in the direction of the bisector of the angle be- 

tween the two wave number vector, and choose the origin of y on the line of symmetry 

for v, i. e., a line on which av/c9y vanishes. 

The combination of the two plane Poincare waves can be constructed but with a shift 

29 



x 

Figure 0.5: Wave-number vectors of incident and reflected waves. 

in the origin of y so that avlay will vanish at y=O. Then the solution is 

2(o 
(mf cos ny + an sin ny) cos(mx - at), (M2 + n2)1/2 01c) 

U 
2g(o 

(mn sin ny + (orf IgH) cos ny) cos(mx - at), 
( 

(M2+ n2 ) 1/2 OIC 

) 

V 
2ac(o 

cos ny sin(mx - at), (0.21) 
(M2+ n2)1/2H) 

where, o,,,, defined by 

orc =f2+n2 gH, (0.22) 

is the minimum frequency a wave with given n can have. Hence the dispersion relation 

is written in the form 

2=2+ M2 gH. OIC (0.23) 

A Poincare wave can satisfy the boundary condition of no normal flow in a channel 

of uniform width W provided that 

n=r( 
' )) r= 1) 2,3,4 . .......... w 

(0.24) 

V- 
Fur each r, there is a minimum frequency a, that is necessary for propagation. 
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Using (0.24) the relation (0.22) can be written as 

2 f2 r2W2 gH Orr- c=+ W2 Ir= 112,3 

This minimum frequency increases with r, so the smallest value is o,,,. 

From (0.23) we can see that a varies with m, thus 

(0.25) 

(1) if m-1 < (gH) 1/2/0, 
" then the waves are only weakly dispersive and propagate 

along the channel at speed close to (gH) 1/2 (phase velocity slightly more; group ve- 

locity slightly less), 

(2) if m-1 > (gH) 1/2/0, 
C, then the waves have relatively small group velocity and the 

frequency is close to or,, 

(3) When m=0, the wave does not propagate, but represents a standing wave span- 

ning the channel. 

In fig (0.6) we have shown propagation of a progressive wave of the form (0.21). In 

the northern hemisphere (f > 0), for an observer moving in the direction of the wave, 

the amplitude tends to be higher on the left side of the channel, and the particle tra- 

jectories are ellipses. The orbital motion is anticyclonic except for a region near the 

right bank that occupies a fraction of the channel width that is always less than a half. 

The possible propagating modes in a channel of width W are Poincare modes given by 

(0.21) and (0.24), and the two Kelvin waves associated with the two sides of channel. 

The dispersion curves form for these modes are shown in Fig (0.7) 

(1) When the the channel is not too wide, W< 7ra, then in Fig (0-7a), the picture is 

not too different from that for the limit of no rotation. 

(2) As the width of the channel increases, the critical frequencies a, for propagation 

of Poincare modes all approach f, and so the picture becomes more like that seen in 
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Divect. on of p"Wagation 
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Figure 0.6: (Gill, 1982); The progressive Poincare wave in a channel of width W= 
7ra. The cross-channel scale is n= 1/a = c1f, so the minimum frequency, 01, =V1*r2_f 
The scale m-1 in the direction of propagation is V! 

2 c1f, so a= 
Vý3f 

and io, = 21m. 
The signs are those for the northern hemisphere, so the greatest elevations are found 
on the left side of the channel (facing in the direction of propagation), where particles 
move anticyclonically. The nodal line is about 65 percent of the way across the 
channel. Contours are of surface elevation, arrow indicates currents.. 

Fig (0-7b) 

Kelvin's discussion of waves in a channel was confined to the modes that now bear 

his name. He noted that the more approximately nodal character of the tides on the 

north coast of the English channel than on the south or French coast is probably to 

be accounted for on the principle represented by this factor, e-y/', taken into account 

along with frictional resistance, by virtue of which the tides of the English channel 

mky be roughly represented by more powerful waves traveling from west to east, com- 

bined with less powerful waves traveling from east to west. 

The above description explains reasonably the tides in the English Channel which 

can be seen in Fig (0.8) 

Kelvin also gave the solution for 'the problem of standing oscillations in an endless 
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Figure 0.7: (Gill, 1982); Dispersion curves for a channel of uniform width W, rn 
being the wave number component parallel to the sides of the channel. In case (a), the 
width is 0.3a and the dispersion relation, given by (0.22)-(0.24), becomes (O-W)2 - 
(f W)2 + (r7)2 + (, rnW)2. Rotation effects which are represented by the constant term, 

C 

C f W)2 
=0.09, are barely discernible. In case (b), the width of the channel W=27raand 

the dispersion relation is (Or/f)2 =1+ (r/2 )2 + (ma) 2, if the width increased further, r- 

the coefficient of r2 becomes smaller, so the curve move downward on the diagram 
and become more densely packed. 

Figure 0.8: (Gill, 1982); Co-tidal lines (solid) with time in lunar hours, and co-range 
lines (dotted with values in meters) for the English Channel. [From Proudman (1953, 

p. 262); after Doodson and Corkan (1931). ] 

rotating canal. ' 

The solution for two Kelvin waves of equal amplitude travelling in opposite directions 
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is given as 

C=HI e-yl' cos(mx - ort) - eyl' cos(mx + ut) I, 

u= (gH) 1/2 le -y/acos(mx - ort) -e 
y/a COS (MX + ort) I, 

v=O. 

He also noted the difficulty that arises in solving the problem by adding ends to the 

canal. 

In discussing waves in an infinite canal, Poincare (1910) considered the solutions 

(0.21) in his discussion. 

He noted that the addition of the Poincare wave does not solve the problem of finding 

the solution in a channel with an end, because the wave form (0.21) cannot undergo 

regular reflection. 

But, this problem of dealing with the end condition was eventually solved by Taylor 

(1921) [12]. The new feature is the introduction of solutions like (0.21) with imaginary 

m so that this solution would have exponential fall-off away from the end of the 

channel. Then these terms influence the details of the solution near the end but do 

not affect the Kelvin waves except in the determination of the phase of the reflected 

Kelvin wave relative to that of the incident one. 

The reflection is subject to a delay that increases with the width of the channel. As 

Taylor put it, the Kelvin wave progresses down one side of the channel, taking some 

time to cross the end of the channel before returning the other side. 

If a<a,, (this is true in most natural channels when a is the tidal frequency), the 

above assumption is true and no propagating Poincar6 waves are possible. If a 

then the condition a< aic is automatically satisfied. 
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If a>f then from (0.25), it can also be written 

w2 < 
7r2gH 

- (a 2- f2) 

This means that the width of the basin should not be too large relative to the square 

root of the depth. If a>f, then at least one Poincare mode should be included in 

the description of the solution [see Brown, (1973)] [3]. 

In Fig(O. 9), the solution obtained by Taylor is shown for a channel of 460 km wide 
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Figure 0.9: Solution obtained by Taylor(1921; Fig. 1) for reflection of a Kel,.,, in wave 
at the end of a channel with dimensions similar to those of the North Sea. Solid lines 
are co-tidal lines with time given in hours, and dotted lines show co-range lines. 

and 73 in deep which resembles in dimensions and depth the North Sea. The value of 

c is 27 m s-1. Since or = 1.4 x 10-4, f=1.2 x 10-41 the Rossby radius a= 230 km 

and therefore IT'=2 a. Therefore the above condition is well satisfied. In comparing 
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this solution with that for a narrow channel shown in Fig (0.4) we find that the con- 

figuration of co-tidal lines is similar. But the rate of progression of the phase around 

the head of the channel is very much slower than that in a narrow channel and also 

not very different from the rate progression along the sides. 

Taylor(1921) states: In the lower part of the basin at a distance greater than about 

250 miles from the closed end, the co-tidal lines and the motion of the particles corre- 

spond very nearly to two equal Kelvin waves moving up and down the channel. The 

tidal streams are very nearly parallel to the sides of the channel and the co-tidal lines 

move in along the right hand shore. The tidal wave then sweeps round the end wall 

of the basin at a rate rather greater than the velocity of the Kelvin wave, and moves 

back along the opposite shore to that along which it approached the end. In turning 

at right angles in order to cross the end of the channel, the wave produces a bigger 

rise and fall of the tide at the two corners than anywhere else in the field. On the 

scale chosen the range of the tide at the corners is represented by the number 1.95, 

whereas the greatest range in the distant parts of the channel, far from the influence 

of the end , is represented by 1.61. 

To show more conspicuously the nature of the motion, the co-tidal lines have been 

drawn with heavy lines in the region where the rise and fall is greater than 1. The 

way in which the heavily marked parts of the co-tidal lines move down the left side 

of the diagram, cross the end and move up the right side, is conspicuous. 

In the distant parts of the channel the tidal streams are parallel to the shores at 

all states of the tide. At distances less than the width of the channel, however the 

particles of water move in ellipses, except in regions close in shore they continue move 

parallel to the shore. The direction in which the particles move round the ellipses is 
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the same as that of the rotation of the earth. 

The currents near the central part of the basin are considerably smaller than those 

close to the shore. 

A particular interest is the behavior of a Kelvin wave at the channel end. A conve- 

nient way of describing the solution is in terms of a single Kelvin wave that propagates 

around the corners at the end of the channel without loss of energy, but with adjust- 

ments in phase produced by the process of turning the corner. This idea can be used 

in study of storm surges. 

The wind can causes severe effects at the boundaries. The long-shore component 

of the wind stress causes an Ekman (wind exerts frictional drag on water surface, 

setting a thin layer of water at surface in motion) flow in the sea toward or away from 

the coast. In shallow seas, flow toward the coast produces piling up of water there 

and therefore abnormally high sea levels. This phenomenon is called a storm surge 

and it can play a major part in determining the shape of many coastal features. 

Many early attempts to produce analytical solutions to tidal problems took the earth's 

rotation into account by incorporating the Coriolis parameter. In these investigations, 

basins of finite extent were employed as models and many approximations were in- 

voked. By virtue of the closed nature of the basins the solutions of the tidal equations 

are solutions to eigenvalue problems. There are numerous examples of this, notably 

Lamb [181, who solved for circular basins in terms of Bessel functions and Taylor [121, 

who solved for rectangulax basins in terms of exponential and circular functions. 

The eigenfrequencies obtained in these cases are sufficient to show the possible fre- 

quencies of the tidal motion which would result if the sYstems were forced by an 
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external stimulus. Thus, without further information these solutions are not fully 

determinate [ 14]. 

Taylor [121 solved the co-oscillating tidal problem analytically in a rectangular basin 

open at one end so as to allow an incoming wave propagating from infinity to com- 

municate with the basin. The resulting tide is then a forced oscillation and is said to 

'co-oscillate' with the external tide. His solution represents the reflection of a Kelvin 

wave in a closed semi-infinite channel. Taylor's albeit simple model describes some 

of the essential features of the North Sea tides. He pointed out in his study 'Tidal 

Oscillations in Gulfs and Rectangular Basins' that streams in the south channel of 

the Irish Sea move backwards and forwards in a straight line. The rotation of the 

earth plays an important part in causing the rise and fall of the tide which is found to 

be four times greater on the Holyhead side of the channel than it is on the Irish side, 

but apparently without any elliptic motion of the water particles in the channel. He 

also pointed out that the tidal observations taken on both sides of the channel and 

the observations of tidal streams at various points across the channel indicate tidal 

waves of 'Kelvin' type moving in opposite directions up and down the channel. 

Taylor further pointed out that in the southern entrance to the Irish Sea there exist 

two Kelvin waves moving inward and outward in the channel so that the Irish Sea 

acts as a reflector which reflects back the incoming Kelvin waves into waves of the 

same type. In this reflection the incoming Kelvin wave is greater on the shore that 

lies on the right hand side of the observer facing inwards while the outgoing wave is 

greater to his left. 
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Partial differential equations with elaborate boundary conditions can be solved nu- 

merically using finite element methods to yield very accurate solutions. There have 

been many computer simulations of tidal motion in the North Sea. The earliest was 

by Hansen (1956)[17]. Banks (1974) [20] investigated tide, surge and their interaction 

in the Thames-Southern North Sea region. The fig (0.10) illustrates the accuracy 

obtained and the amount of detail displayed using these computers. 

Figure 0.10: (Banks, 1974) Co-tidal lines for the M2 tide. -, Phase of tide in degrees, 

taken from Admiralty Chart 301; -, computed by means of Morass. 

Davies(1994) [8] dealt with computation of large scale homogeneous tidal flow iii 

the Irish Sea using two mutually exclusive methods. The models are three dimen- 

sional hydrodynamic numerical models. For an exhaustive list of contributions see 
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Davies (1994) [8]. 

Sand-Bank formation and the distribution and movement of sediment occur in the 

outer Thames Estuary. These processes are influenced by the tides and thus mathe- 

matical. tidal models were considered by many authors initially in specific areas such 

as the outer Thames Estuary and the Southern Bight of the North Sea in conjunc- 

tion with the Thames Estuary and the North Sea as a whole. Our present work is 

primarily concerned with tidal models in the North Sea taken as a whole. 

Hunt and Johns (1963) [21] had extended the method used by Rayleigh and Schlicht- 

ing in their investigation of non-linear effects in oscillatory boundary layers. It is 

suggested that the oscillatory tidal motion in shallow seas or oceans induces steady 

bottom currents, which contribute to the circulation within the North Sea and the 

movement of loose bed material by steady currents in conjunction with tidal oscil- 

lations lead to important changes in bottom topography. The movements of the 

Goodwin Sands and the Brake Bank provide well documented examples. The Nor- 

folk Sandbanks (in the North Sea at 532N, 22E ) are an example of tidal current 

ridges [29]. They are about 40km long and 2 km broad and rise to within 10 metres 

of the sea surface. Between the sandbanks (9km apart) the channels are fairly flat 

with a depth of about 40 metres. The tidal currents are approximately parallel to 

the sandbanks. 

Hall and Davies (2004) [161 use a three-dimensional model to examine the influence 

of change in depth on the distribution of tidal bed stress. The geographical area they 
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covered is northwest European Shelf region and some parts of the Atlantic ocean. 

The direction of bed stress is an indicator of sediment movement as the bed load and 

various regions of convergence and divergence are in agreement with observations. 

Initially the model is forced by only the M2 tides but subsequently they used other 

constituents such as S2, N2, K, and 01 for tidal forcing. When water depths are 

reduced such that the North Sea and English Channel are separated then there is 

a significant change in the tidal distribution in the shallow Southern Bight which 

influences bed stress distribution and hence bed load sediment transport in the area. 

By applying a two-dimensional, non-linear hydrodynamic numerical model incorpo- 

rated with a semi-empirical equation for bed load sediment transport, Piney, Carbajal 

and Rivera (2005) [28] investigated the influence of geometry on the formation of sand- 

banks. The simplest configuration is a rectangular basin representing Taylor's prob- 

lem as the solution of Taylor's problem explains fundamental properties associated 

with the propagation of tidal waves in semi-enclosed basin. Their aim is to extend the 

Taylor problem dynamics to the generation of sandbank patterns. They performed 

a numerical simulation for a rectangular basin 500 km long, 250 km wide and initial 

constant depth of 40 m. The geographical position of this basin corresponds to that of 

the North Sea. The basin was forced by a M2 tidal wave with amplitudes and phases 

corresponding to the open northern boundary of the North Sea. After a simulation of 

5 years the results reveal the formation of a group of sandbanks located in a small re- 

gion at the closed boundary. These sandbanks occur where the incident Kelvin wave 

is reflected. Near the open boundary there is also a perturbation process which is 

related to the forced oscillation. As a result Poincare waves are generated in this area. 
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Brown (1973) [3] generalized the Taylor's problem by carrying out a series of calcula- 
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Figure 0.11: Sandbank patterns in the area of the Southern Bight of the North Sea. 
This plot was taken from Van de Meene and van Rijin (2000a, b). 

tions for a fixed basin but with varying frequencies of the forced tides. For large wave 

lengths, the Poincare modes are trapped at the closed boundary of a semi-enclosed 

basin. As the wave length of the incident wave decreases these modes can propagate 

towards the open boundary. The energy can then radiate in the form of Kelvin and 

Poincare waves and the flow pattern in the basin varies as a function of the frequency 

of the forcing tide. One would expect that these flow structures influence the gener- 

ation of sandbanks. In this investigation they found that with largest wave lengths, 
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Figure 0.12: (Dyke, 2007); Cotidal and co-range lines, denoted by full and dotted 

lines respectively. The associated numbers give the values of 0 (in degrees) and of A 
(i n cm) 

the sandbanks are generated more easily. 

Near the southern boundary of the North Sea 
, particularly in the area where the 

Southern Bight and the North Sea are connected, there are a lot of sandbanks and 

shore- face-co n nected sand ridges. The plot in fig(O-11) was taken from Piney, Carba- 

jal and Rivera (2005) [28]. A group of sandbanks extends across the sea between the 

land section and the peninsula is denoted by A. Similarly B and D can be related. 

The group of sandbanks located to the east of C are related to the Poincare waves 

generated in the region where the English Channel and the Southern Bight of the 
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North Sea meet. 

A closed rectangular channel can be considered as one formed by two right angled 

corners. Brown [41 in his work examined the works done by Buchwald (1968)[71 and 

in the same year by Packharn & Williams (1968) [30] on the 'effect of a sharp corner 

on the passage of a Kelvin wave. Buchwald considered the case of a Kelvin wave in- 

cident at a right-angled corner whereas Packham & Williams generalized Buchwald's 

work by considering the diffraction of a Kelvin wave at a corner of an arbitrary angle. 

It is shown that depending on the frequency, the Kelvin waves are either propagated 

around the corner without attenuation or alternatively they are propagated with re- 

duced amplitude but with the addition of cylindrical waves called 'cylindrical Poincare 

waves7 which radiate from the corner at the expense of the diff-racted Kelvin waves. 

Webb & Pond (1986) [35] used Taylor's method to investigate the behavior of the 

Kelvin wave incident upon a bend in a channel. The solution is expressed as a trun- 

cated series of Kelvin waves and several evanescent cross-channel Pioncare modes. 

Previous models of Kelvin waves propagating around bends have not included an 

opposite wall: they have bends in straight coastlines. In Buchwald's model a right- 

angled bend has been considered whereas Packham and Williams solved the problem 

of a bend at a general angle. Because there was no opposite wall, a reflected Kelvin 

wave was not possible and any energy not transmitted as a Kelvin wave had to be 

radiated as cylindrical Poincar6 waves from the corner. A Kelvin wave with a certain 

frequency may be transmitted completely whereas Packham & Williams found there 

was only complete transmission for certain angles. 

In the work of Webb & Pond (1986) they used linearized wave equations in a flat- 
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bottomed channel of rectangular cross-section. The incoming Kelvin wave incidents 

upon a bend. 

In their method of solution they split the analysis domain into three regions- two 

straight channels (regions 1 and 3) and a sector of an annulus of a variable angle 

(region 2). The solutions in regions 1 and 3 are expressed as a sum of a Kelvin wave 

propagating away from the boundary with the region 2, and truncated infinite series 

of Poincare modes, which decay away from the same boundary. The solution has 

a further component, namely an incident Kelvin wave of unit amplitude and zero 

phase. In region 2 (bend-region) the solution is expressed as a superposition of 'ra- 

dial' Kelvin wave and Poincare modes. Polar co-ordinates (r, O) which are used to 

solve this problem. 

There is a good account of discussion of 'Waves and Flows around Islands' using polar 

c-ordinates. This can be seen in (Dyke, 2007, page 351) [10]. 

Brown [4] considered some models incorporating the two effects of coastal curvature 

and friction. 

His main aim was to extend the number of known analytical solutions to the first 

order equations by generalizing Taylors' model. 

Taylor's model of Kelvin wave reflection in a closed semi-infinite is a simple ba- 

sic mathematical model representing the tidal flow in the North Sea. However the 

method of solution is complicated as it requires the inversion of an infinite matrix. 

The difficulty arises from the mixed boundary conditions caused by the Coriolis ef- 

fect. Despite its restrictive assumption the model proved successful in predicting the 

existence of amphidromic points and associated rotatory tides which are essential 
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features of the North Sea tides. 
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However, Brown(1987) [5] pointed out that there are important features that Taylor's 

model fails to explain. For example, Taylor's model predicts that the tide would take 

nearlY 3 hours to cross the channel at its closed end whereas from fig(O. 12) Nve can 

see that the actual tide takes only one hour or so to cross the Southern Bight. Also 

we see that the tide in the ýVash leads the Heligoland tide by approximately 5 h. 

Moreover, Taylor omits the effect of the strong tidal currents at the open southern 
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end of the North Sea. The strong influence of the oscillations in the Dover Strait 

or in Southern Bight on the reflection of the Kelvin wave in the North Sea is not 

considered. Brown extended Taylor's model to find the solution to the problem of 

perfect Kelvin wave reflection at an oscillating boundary which is representative of 

the Dover Strait or the Southern Bight. His solutions are found to be in much closer 

agreement than Taylor's with the actual tides in the North Sea. C) 
Taylor considered a semi-infinite channel defined by x> xj, -lir <y< lir, where 2-2 

(x, y) are horizontal co-ordinates. The value of x, has to be determined from the 

analysis. The depth of the channel is assumed uniform of depth h and rotate, about 

the vertical axis with an angular velocity of if, where f is the Coriolis parameter. 2 

The long-channel and cross channel component velocity are given, respectively, by 

(u, v). 

The system is 'Two equal Kelvin waves of angular frequency o, moving in opposite 

directions are combined with an infinite number of non-propagating Poincare modes'. 

The superposition of these two systems of waves is such that the resultant long- 

channel velocity vanishes at the closed end x= xj. The system is solved and the 

value of x, is found. The cotidal lines of Taylor's model are given in fig(O. 13). 

Thus, to incorporate the effects of the Dover Strait or the Southern Bight Brown 

(1978) generalized Taylor's problem by considering an oscillating boundary F(y)e-'O` 

at the finite end of the semi-infinite channel x, <x< oo. 

The corresponding boundary condition for the long-channel velocity component then 

becomes 

u(x, y, t) = F(y)exp (-iut) on x=x,. 

The function F(y) is chosen to simulate the boundary flow. He found solutions for 
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any complex valued function F(y) which has a Fourier expansion and showed that 

perfect reflection does not generally occur as some energy is lost or gained through 

the moving barrier at the end. 

If the function F(y) is real and even then 

F(y) = Fi(y) + F3(3y) + F5(5y) . .......... ) 

where, 
2 

2 7r 

7r 2 
w 

F(y) cos mydy. 

I 
7r <y :51 7r) 

2 

(m odd) 

Taylor's analysis can then be carried out, resulting in the determinental equation for 

xj. From this equation the value of x, can be found. The value of x, determines the 

relative phase of both the reflected Kelvin wave and the oscillating boundary with 

respect to the incoming Kelvin wave. 

In the development of Taylor's model it is taken that F(y) is real and even but this 

does not preclude F(y) from taking on negative values. The inhomogeneity in the 

model produces a new feature. Thus a second solution can be obtained by replacing 

F(y) by - F(y). Now, there are two situations which represent perfect reflection and 

a corresponding zero energy flux across the boundary. The two solutions obtained 

with simulating functions F(y) and -F(y) respectively thus gives us two phases of 

the boundary oscillations which effect perfect reflection for a given flow profile. 

Brown showed that all other phases of the boundary oscillation result in non-zero 

energy flux across the boundary. He further showed all such cases of imperfect reflec- 

tion can be derived from the two perfect reflection solutions considered above. 

He considered two simple profiles to simulate the boundary flow. Taking F(y) = 

a cosy where a is the maximum strength of the flow as a boundary layer oscillation 
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he applied Taylor's analysis and obtained the corresponding value of xi; (xl=0.9834, 

Similarly by considering the profile F(y)=-acosy, he obtained the value as 

( x, =-0.1280, a=-l). The corresponding co-tidal charts are given in fig(O. 14) and 

fig(O-15). Clearly these two are independent solutions of perfect Kelvin wave reflec- 

tion, at an oscillating boundary of given profile. 

In fig(O. 14) it can be seen that the amphidromic point has been shifted southwards 

relative to Taylor's model fig(O. 13) and the tide takes nearly 5h to cross from one side 

to the other side at the southern end. This amphidromic point corresponds closely 

to the Northern amphidromic point in the North Sea fig(O. 12). 

The amphidromic point in fig(O. 15) on the other hand has been shifted northwards rel- 

ative to Taylor's model and the tide takes less than 2h to cross the southern end. This 

corresponds closely with the North Sea southern amphidromic point in the southern 

Bight fig(O. 12). 

It is remarkable that the value of xl=0.4278 in Taylor's solution is the arithmetic 

mean of the corresponding values (0.9834, -0.1280) in Brown's two solutions. Thus 

Taylor's model describes the 'mean' of the above two solutions. Brown tested with 

several representative profiles for the boundary function F(y). For details of the in- 

vestigation see (Brown, 1978,1987,1989) [4], [5] and [6]. 

In general, Taylor's formulation is not very practicable and thus Brown reformulated 

the model so that solutions can be directly obtained for any amplitude and phase of 

the boundary oscillation. He followed the formulation of Brown(1973) and adapted 

the collocation method to find a solution. For a given incoming wave and boundary 

flows, by varying the phase of the boundary oscillation he examined the effect on the 

reflected Kelvin wave and hence on the amphidromy. He added a set of Poincare 
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modes to the Kelvin wave system and set the boundary condition as 

u(O, y, t) = F(y)exp(i(wt + E)). 

where 6 is the phase of the boundary flow. He used a simple boundary profile 

F(y)=asin(! 
j2), a=parameter and I=width of the channel. 

In fig (0.16) the plot of co-tidal lines at hourlý, intervals is given for the case a=0.3. 

Only the amphidromic point nearest the boundary is drawn in the figures. 

Brown's investigation successfully accounts for the strong influence of the Dover Strait 
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or the Southern Bight. The method used may be called an indirect method because 

perfect reflection was first assumed and then the boundary located. In a cause and 

effect situation the reflected wave is treated as a cause rather than an effect. 

In summary, Brown considered the effect of an oscillating boundary on the reflec- 

tion of a wave and obtained analytical solutions. 

The problem was well-posed because when the amplitudes and phases of the incom- 

ing wave and oscillating boundary are specified then the amplitude and phase of the 
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outgoing wave is determined. 

Furthermore he found there was a range of values which the reflection coefficient could 

take and thus perfect reflection does not generally occur. 

If the reflection coefficient is less than unity the channel loses energy through the 

boundary and if the reflection coefficient is greater than unity the channel absorbs 

energy from the boundary. The direction of energy flow depends on the relative phase 

between the incoming wave and the oscillating boundary. 
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One of the important features of the ocean is the variety of bottom topography 

possessed by even a small basin such as the North Sea. It is notable that not 

enough is known about the interactions between ocean currents and waves and topog- 

raphy; and many analytic theories of ocean waves and currents generally ignore 

variations in depth. One of the reasons is that the interactions between oceanic 

flows (currents/waves) and topography are too complicated even in an idealized situ- 

ation, to allow much analytic progress. 

Energy can be propagated across the sea by a Kelvin wave system. In this prop- 

mation waves are trapped or guided by a barrier or a coastline. The period of these 

waves is not restricted, Bondok(1980) [2]. 

Miles (1972,1973) [261, [27] considered the diffraction of a Kelvin wave by varia- 

tion in alongshore topography, such as the Earth's curvature and coastline geometry. 

Miles showed that alongshore varying topography can cause substantial changes in 

the amplitude and phase speed of Kelvin waves. The wave energy is approximately 

conserved for a Kelvin wave over a slowly varying topography along the coastline. 

The Kelvin wave evolves according to Green's law; that is the vertical displacement 

of the free surface is inversely proportional to the square root of the depth of the fluid 

and a phase that is given by the integral of the wave number. Miles showed that if the 

topography varies abruptly as a step, the Kelvin wave diffraction can be calculated 

by solving a singular integral equation whose solution is intractable without further 

approximation. 

Killworth (1989a, b) [23] [241 generalized the problem by considering the Kelvin wave 

over a smooth ridge that is extending uniformly away from the coastline. The width 
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of the ridge is compaxable to the Rossby radius. 

Some work has been done e. g. Taylor(1921), Hendershott and Speranza (1971), 

T. Brown(1978), P. J. Brown(1973) on tides in small bays, gulfs etc such as the Adriatic 

Sea, Gulf of Califonia, Irish Sea and North Sea. These oceanic areas are too narrow 

and too deep for Poincare modes to propagate energy, and Poincare waves exist 

mainly as trapped waves in these regions. Thus the co-oscillating semidiurnal tidal 

energy in these areas primarily consists of superposition of Kelvin waves travelling in 

opposite directions. 

In most of the works discussed, the depth of the sea is assumed uniform and the 

resulting co-tidal lines are drawn in the basin where a Kelvin wave is being reflected. 

In the case of the works of T. Brown, 1978 [41 and Hendershott - Speranza(1971) [341 

the displacement of amphidromic points away from the central axis of the bay be- 

come a unique measure of certain physical quantities (ie. energy loss) in contrast to 

Taylor's model in which he assumed perfect reflection of the Kelvin Wave. 

More recently, S. Rizal (2002) [32] revisited the Taylor's problem and experiments 

were performed with channels at different geographical latitude with varying friction. 

Real and virtual (degenerate) amphidromic points were obtained and their displace- 

ment from the central axis of the channel accounted for the dissipation of tidal energy. 

The friction dependence of the amphidromic point on latitude strongly increases with 

decreasing latitude. 

Our proposed work, focusing on the North Sea area, will be a development of the 
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work of previous authors, e. g. [121, Hendershot - Speranza (1971) but more partic- 

ularly Brown, 1978 [41, with a view ultimately to developing a semi-analytic model 

with a sloping bottom. For practical purposes the North Sea will be assumed about 

550,000 km 2 in area, about 1000 km long and 640 km wide at its widest section. The 

bottom of the sea is not uniform but it generally slopes down from south to north 

and a broad section of the sea bed has irregular depths. Thus we propose to take 

possible 'depth changes' in the bottom of the sea into account in our model which we 

hope will result in closer agreement with observed values. 

Taylor, in his paper determines the reflection of tidal waves from the closed end 

of a rectangular channel, which is infinite in one direction. This model represents an 

idealized North Sea where its depth is assumed to be uniform and coastline aligned 

North-South. But in a real situation the sea is not uniform. Towards the Danish 

coast the depth of the sea is about 37 m(120 ft). The water near the English coast is 

about 15 m (50 ft) deep. The greatest depth in the North Sea is found off the coast 

of Norway. Thus, by considering these variations in the depth of the sea, in a real 

situation, we cannot simply ignore effects of the bottom relief. Taking depth variation 

into account we look for a model of the sea, which is more realistic than that of Taylor. 

As matter of simplicity we consider a simpler generalization to Taylor's problem 

wherein, two inter-communicating semi-infinite channels of different uniform depths 

meet at a boundary, say at x= xi. 

This may be regarded as the simplest model having some variation in bathymetry. 

The problem will be treated semi-analytically with a view to supporting other com- 
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putational models of the North Sea. 
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Chapter 1 

Preliminaries 

1.1 Equations of fluid motion on a rotating earth: 

The equations of motion and continuity equation for a particle of water on a rotating 

earth of radius R rotating with angular velocity w may be written in the form [4] 

z 

in+ 

S 

Figure 1.1: Rotating earth with angular velocity (0, w cos 0, w sin 0), where 0 is 

the latitude. 

du 11 P2 + ! 2G +X 
dt -2wsin(O)v+2wcos(O)w- (R+z) cos 0 

IP 

o9x ax 
I 

dv II ýp + ! ýG +y 
, ý-t + 2w sin(O)u (R+z) 

[p 

o9(P a(p 
I 

dw U _lap _ aG +Z 
6. dt - 2ýý cos(0) p az az 

and 
ap 

+ diN, (pq) 
at 
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where 

(u, v, w) and w =- (0, w cos 0, w sin 0) 

The symbols u, v and w represent the easterly, northerly and vertical components of 

the velocity q respectively and 0,0 and z are longitude, latitude and height of the 

water particle with respect to an origin fixed on the surface of the earth and moving 

in a circle of radius R cos, 0, where R is the earth radius along the line of latitude 0 

= constant. 

The term G is defined by 

A r)2 (1.3) 

where T= gz is the gravitational potential due to the earth's attraction and Q is 

the potential due to the disturbing planetary forces. The blanket terms X, Y and Z 

include all other possible effects such as friction, turbulent stresses and wind. 

The above equations (1.1) and (1.2) are non-linear owing to the term q-V in 

Lagrangian accelerations 
cýq 
Tt 

1.2 Approximations 

In order to find time-dependent solutions to the system defined by (1.1) and (1.2) 

above there are some useful approximations which can be used either separately or 

in some combination. In this section we shall deal with those which we shall have to 

resort to at one stage or another in this work. 

As an immediate approximation we can ignore the small centrifilgal term 1 (ýýAj: )2 
2 
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in the equation (1.3) or alternatively it can be absorbed into the gravitational poten- 

tial T thereby obtaining an 'apparent gravity' [4]. 

The North sea area is relatively shallow and occupies a small volume in compar- 

ison with the world ocean. The height of the Lunar equilibrium tide in an open 

boundless ocean is about 0.5 meter ( Wood, 1969)[37]. Thus the direct effect of the 

moon and the sun in the North Sea is negligibly small. We may thereby neglect Q in 

equation (1.3). 

The z-component of the equation of motion(l. 1) can now be written as 

dw 
- 2w cos(O)u 

1 ap 
dt p Oz 

(1.4) 

Clearly, the extraneous forces and the gravitational effects due to the moon and the 

sun in the vertical direction can be neglected in comparison with the earth's gravity 

[4]. 

Usually in equation (1.4) it is assumed that 

12wcos(O)ul << IgI 

As an example at latitude 0= 53' if the North Sea experiences a tidal velocity 

u= lm/sec, we have for the I. h. s. approximately 
27r 

x1x0.00036361 24x6Ox6O 2 

9.81. 

Clearly, the vertical Coriolis force can be neglected from equation(l. 4), since ap- 
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proximately 

2wu cos <4x 10-5. 
9 

The vertical acceleration in equation (1.4) can also be neglected. This can be tenta- 

tively justified for a progressive tidal wave. If we integrate equation (1.4) with respect 

to z from an arbitrary point z to the free surface elevation C we obtain 

(dwdz+pg((-z)=(p-p,, 
) 

dt 

(where p,, is the atmospheric pressure at the free surface) 

We assume for convenience z=0 as the undisturbed free surface and we take the 

maximum vertical acceleration of the water particle as a. Then we have in equation 

(1.5) 

pah + pg( = (P - Pa) 

where h is the undisturbed depth of water. 

In equation (1-6), if we have 

a h<<g( 

then the equation (1.4) can be further simplified to 

01 
ap 

+ (1-8) 
p az 

It follows that terms 22 and pg are always almost balanced. This is the near Oz 

balance in the vertical between the gravity force and the vertical pressure gradient, 

called the hydrostatic approximation and expressed by 

ap 
- _P9. Oz 

(1.9) 
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The equation(l. 9) states that the pressure deviation from atmospheric at a point is 

given by the weight of fluid above that point. 

The balance of forces expressed by this equation is correct to a very high order of 

approximation for most large-scale oceanic phenomena including those considered 

here in the North Sea. 

If the period of the wave is given by A, where A= wave length and c= wave speed c 
(given by the formula c2= gh), then, provided the wave slope is small everywhere, 

the vertical velocity is of the order of -ý( and the vertical acceleration is similarly of A 

the order of 
C2 C. Here ( denotes maximum elevation. AT 

Thus the condition (1.7) is satisfied provided 

h2 
A2 (1.10) 

The inequality (1.10) is called the long wave condition and is certainly satisfied for 

tides in the North Sea. This condition may be satisfied also for open ocean tides 

where the depth of the ocean may be several miles. The hydrostatic approximation 

is a successful and useful assumption in the theory of tides. 

1.3 North Sea: 

Here, we consider the relevant features of the North Sea. The North Sea is the epicon- 

tinental sea containing water separating Great Britain from Belgium, the Netherlands, 

Germany, Denmark, Sweden and Norway. It is a shallow Sea described as a North- 

eastern arm of the Atlantic Ocean open to the North Atlantic in the North, extending 

from the edge of the continental shelf north of the Shetland Islands, southward to the 

Strait of Dover which leads into the English Channel and to the Skagerrak, a channel 

to the Baltic Sea in the east. 

The area of the North Sea, is about 570,000 kM2 
1 

1000 km long and 600 km wide 
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Figure 1-2: map showing the locations of the places mentioned in this work 

at its widest point with an average depth about 100 meters. The greatest average 

depths are found in the North (360 feet to 600 feet; 110 meters to 180 meters ) and 

in a peculiar trench, the Norway Deep (or Gut) which runs parallel to the Norwegian 

coast depths generally decrease southward and between England and Denmark lies 

a plateau, Dogger Bank, over which depths of less than 60 feet (18 meters) occur in 

an area exceeding 250 square miles (650 sq km). That is, the bottom of the sea 

slopes steadily down to the north from south although south of the Dogger Bank, 

there is a broad area of irregular depths. In the south western portion of the North 

Sea specifically off the Norfolk coast in the outer Thames estuary and near the Dover 

straits we can see long straight sand banks which are linear and fairly stable and are 
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mainly orientated with the strong tidal currents. Some are exposed at low water. 

We can divide the North Sea into four regions according to temperature and salinity 

stratification [4]. Along the Norwegian coast haline stratification is present the whole 

year. 

Further out there is a region where haline stratification is still present but the annual 

salinity changes are irregular. The central region is homohaline throughout the year 

but thermally stratified seasonally. But throughout the whole year, the southern por- 

tion. is both homohaline and essentially hornothermal. 

In the North Sea tides are primarily semi-diurnal. The ratio of diurnal to semi- 

diurnal waves along the coast varies from 0.1 to 0.2 (Defant, 1960)[9]. 

Tidal waves mainly enter the North Sea from the North Atlantic ocean through the 

opening between Scotland and Norway. Most of the wave energy propagates south- 

wards and is reflected by the Heligoland coast or transmitted into the Southern Bight 

of the North Sea. A small portion of the wave energy passes through the Kattegat 

into the Baltic Sea. Tidal current also enters the North Sea into the Southern Bight 

through the Straits of Dover. 

In fig (1-3) it can be seen clearly that there are two amphidromic points, one is 

situated in the Southern Bight (52.7N, 31E) and the other one is situated in the 

east of Dogger Bank (55YN, 5YE). Around these two amphidromic points, co-tidal 
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lines are rotating in the anti-clockwise direction. It is also found, off the southern 

coast of Norway, a crowding of co-tidal lines indicating a virtual amphidromic point 

inland. These are also important features for the North Sea. 

Tidal range along the Scottish coast is about from 3 to 5 meters, along the east 

coast of England and at the Straits of Dover is about from 4 to 7 meters. Along the 

Heligoland coast the tidal range is about from 2 to 3 meters but in the open sea it is 

about from 0 to 2 meters. 

Tidal currents near the Straits are higher (1.5 m sec' to 2.5 m sec-') than those 

in the open ocean (1 m sec-I to 1.5 m sec-1). 

The North Sea area is relatively shallow and occupies only 2.5 x 10-' percent of the 

world oceanic volume. 

The principal constituent of the North Sea tides is the lunar semi-diurnal tide thereby 

the North Sea receives its tidal energy by co-oscillating with the external Atlantic tide 

at the M2 frequency, see Brown [4]. 

On considering the size of the North Sea in comparison with the world ocean the 

sphericity of the earth can be neglected and the Coriolis parameter f= 2w sin 0 is 

taken as a constant. Then we can replace 1 '9 by -ý2- and 0 by A (R+z) cos ON) 09X (R+z) 570 av 

in the first and second of the momentum equation (1.1) and the North Sea can be 

regarded as a plane rotating with angular velocity if. 2 

The density p in equation (1.2) may be taken as a constant as our present work 

is primarily concerned with the southern portion of the North Sea which is not strat- 
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Figure 1.3: Defant, 1960, Lines of the same time interval between upper culmination 
of the moon in Greenwich (solar hours) and high water. 

ified. Therefore, the equation (1 
-2) can be reduced to 

dzv(q) = 0, 

NvIiich can be written in the rectangular co-ordinate system as 

au av Ow 
ax ay az (1.11) 

If we denote the average depth of the North Sea as 'H' and the average width of the 

North Sea as 'L' Nve have, 

H 
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Similarly, if we denote the average velocities in the vertical and horizontal directions 

by W and V or U respectively then by the virtue of the condition (1.11) we infer that 
uv 
Ty and llý are of the same order. Hence 7HI 

>> (1.12) 

Thus, by (1.1ý), we can neglect the term 2w cos(O)w in comparison with the term 

2w sin (0) v in the first momentum equation of (1.1). 

Finally, the hydrostatic approximation (1.8) enables us to express the pressure in 

our first two momentum equations of (1.1) in terms of the free surface elevation, 

namely 

P: = Pa + Pg« - 

Having made all these approximations and simplifications, the field equations can be 

written as 
ou 

- fv -90C +X at 09X 

av 
-9! 

2ý + Y, zit +fu ft 1 
9u + ! Lv + '9W =o Ox ft az 

The rotation of the earth is an important factor and it has an influence even on 

an area as small as the outer Thames Estuary. This effect manifests itself as an am- 

phidromic point (a point in the sea which experiences no tide itself but around which 

the high water sweeps) in the Southern Bight. This amphidrornic point can be seen 

in figs (1.3) and (0.10). This suggests that the Southern Bight and outer Thames 

Estuary in the North sea can be usually treated as a single entity. 
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The occurrence of amphidromes does not depend purely on earth's rotation because 

according to Krauss, 1973 (page 145) [36] the simplest amphidromic system can be 

formed by suitably combining waves at right angles. However, with regard to the 

Southern Bight, this possibility is ruled out because the Southern Bight receives tide 

only from the North and the South. 

The importance of the earth's rotation reflects from another finding (Hydraulic Re- 

search Station, 1974) [4]. From the results of the numerical modeling of the outer 

Thames Estuary, the hypothetical effect of reversing the Coriolis force was examined. 

The results were shown in fig (1.4) and fig (1.5) for the low water interval. The dif- 

ferences observed in these two figures are striking evidence to show the importance 

of the earth's rotation. Thus, in most of our work, we do not neglect the effects of 

earth's rotation (i. e f). 

Figure 1.4: (Hydraulics Research Station, 1974), (Browii, 1978) 
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Figure 1.5: (Hydraulics Research Station, f 974), (Brown, 1978) 

1.4 The fundamental solutions: 

In this section we consider oscillatory solutions to the basic tidal equations with (i) 

no earth's rotation (ii) earth's rotation. 

Case of no rotation: 

Here, we consider the nature of the tidal waves in the absence of the earth's rotation 

(i. e. the Coriolis force is neglected ). 

By ignoring the non-linear terms and extraneous forces (X, Y) in the system (1.13), 

the first two equations of the system can be written as 

au a( 
at ax 

av a( 
at 

(1.14) 
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We choose a sinusoidal plane wave solution of the form, 

C=A sin(kx - at), 

where, 

A= Amplitude of the wave, 

a= angular frequency of the oscillation, 

wave number. 

(1.15) 

Without loss of generality, the wave (1.15) has been chosen to propagate in the x- 

direction. 

On inserting the solution (1.15) into the system (1.14) we obtain 

U= 
gAk 

sin(kx - at) 
a 

v=O. (1.16) 

We assume that the undisturbed depth of the ocean, h, as a constant. Then, in the 

absence of a steady current, on integrating the continuity equation in the system 

(1.13), we obtain 
Agk' 

w=_ (z + h) cos(kx - at) 

where 

w=0 at the sea floor z= -h. 

The free surface condition requires that on z= 

0( 

Using (1.15) the condition (1.18) can be written as 

-Au cos (kx - ort), 

(1.18) 
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which, on introducing (1.17), yields a relation, 

Vg-h. 

For a given frequency the relation (1.19) gives us the value of the wave number k 

and hence also the wavelength This shows that the plane wave is possible for k 

any given frequency but the waves are horizontally crested and the particle motion is 

rectilinear. 

The relation (1.19) is called the dispersion relation although no dispersion occurs 

in this case because the phase speed A/g-h is independent of the wave length. 

Here, we see that the horizontal velocity is independent of depth whereas the vertical 

velocity depends on h and decreases linearly with depth. 

Thus, the trajectory of a fluid particle is given by the ellipse 

)2 + 
(Z 

- ZO )2 gk)2 (X 
- XO 

)2 
=(A2 

k2 (Zo+ hu 

where, (xO, yo, zo) denotes the equilibrium position of the fluid particle. 

This elliptical orbit is highly oblate since kh << 1, which is the long wave require- 

ment. 

This elliptical path degenerates into a straight line on reaching the sea floor. 

This type of non-rotating plane waves can propagate in the open ocean. Since the 

lateral particle velocity vanishes identically it can propagate along a straight coast 

line or in a rectangular channel provided the boundaries are parallel to the x-axis. 

According to (Arx, 1962) [11 combination of this type of wave in all directions crudely 
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accounts for the three dimensional behavior of the oceans. 

Since our primary concern in this work is restricted to semi-diurnal frequency waves, 

it is interesting to investigate how the non-rotating and rotating systems indepen- 

dently account for the properties of tidal waves. 

We consider two plane waves with same amplitude and frequency but travelling in 

opposite directions: 

(i = A, sin(kx - at), 

(2= A2 sin (- kx - at). 

The resultant wave is given by 

C= (1 + (2= 
-A cos (kx) sin (at). (1.22) 

As all points on this resultant wave (1.22) are either in phase or anti-phase we call 

this wave a standing wave. 

Now the system is defined by 

C= (I + (2= 
-A cos (kx) sin (at) 

u= ILk sin(kx) cos(ort) 

v=0 

W= _AgK2 (z + h) cos(kx) cos(at). a 

The longitudinal velocity vanishes for all time in the nodal plane, 

x=n (M) where n is an integer, k 

(1.23) 

Thus, if a barrier inserted at x=0, say, the above motion would be undisturbed. 

We can then say that the constituent waves travelling towards the barrier is perfectly 

reflected. 

We have seen that a sinusoidal plane wave solution to the system defined by (i) and 

71 



(ii) of (1.14) travelling in the x-direction impinge on a barrier at x=0 perfectly 

reflected. The resultant wave is a standing wave. 

Now a rectangular sea closed at one-end (x = 0) communicating with the open ocean 

at the other end x=1, at which it is subjected to a periodic oscillation given by 

(= cos at. 

The sinusoidal wave solution of the above system in this rectangular sea subjected to 

the relevant boundary conditions can be written as 

cos(uxl, \I-g-h) Cos at 
cos(ull, V-g-h) 

uA 
sin(ax/v/g-h) 

sin at, and v=0. (1.24) 
F(gh) 

cos(al/VgK) 

1.4.2 Rotating system: 
Open Ocean: 

When we account for the rotation of the earth, the relevant equations of motion are 

Momentum equations: 

au - fv = it- ex 

av + fu = -9.9( Ft ay 

and the Equation of continuity 

au av ew 

ex ey az 

(1.25) 

(1.26) 

If equation(l. 26) is integrated with respected to the z-co-ordinate; making use of the 

boundary conditions at z=-h and z=O we obtain 

(-'Ou 
+ -ov 

)=-2 
-(- (1.27) 

ax c9y & 
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We try again a plane wave solution of the form 

C=A sin(kx - at). 

On inspection of the equations from (1.25) to (1-27) we gather that the field variables 

u and v also should be of the same form 

B sin(kx - at) 

v=C cos(kx - at) where B and C are constants. 

On substitution of these in these equations (1.25), (1.26)and(l. 27) we obtain 

B or A 
kh 

cfA and k2= 
(6 2_ f2) 

kh gh 

Thus a plane wave solution is possible if and only if 

a (1.28) 

(i. e., wave frequency is greater than inertial frequency due to the rotation of the 

earth) 

Sometimes this condition is expressed as Tp < TF where Tp is the period of oscillation 

and TF is half a pendulum day. 

(A pendulum day is the period of revolution of a Foucault pendulum which is equal 

to 
27r 

where 0 is the latitude) 
wsino 

This wave is known as Sverdrup wave [41 is in contrast with the non-rotating plane 

wave where the currents in a Sverdrup wave continuously change direction 'cum sole' 

(clockwise direction in the Northern Hemisphere and anti-clockwise direction in the 

Southern Hemisphere). The horizontal particle velocity of a Sverdrup wave never 

vanishes at any point or at any time. Thus a single Sverdrup wave can only propagate 
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in the open Ocean. Sverdrup waves are sometimes called horizontally- crested waves I 

or rotatory waves. 

The phase velocity of a Sverdrup wave is given by 

(, 
VFf 

-2 
01 + k2gh) 
kk 

(1.29) 

whereas the phase velocity for the corresponding non-rotating plane wave system is 

xfg-h-. The equation (1.29) implies that the phase velocity for a Sverdrup wave system 

exceeds the phase velocity for the corresponding non-rotating plane wave system. 

Furthermore, the equation (1-29) indicates that the phase velocity of Sverdrup waves 

depends on the wave-length of the waves and thus Sverdrup waves are dispersive 

waves and their group velocity is given by 

du kgh 
dk Vff-i + k2gh 

which is less than vlg-h-. 

(1.30) 

It clear from above that in the case of no rotation of the earth (ie f == 0) Sverdrup 

waves reduce to non-rotating plane waves. 

Kelvin waves: 

We look for a solution of equations (1.25) and (1.27) with the transverse particle 

velocity v vanishes identically. This is equivalent of introducing a horizontal bound- 

arv so that it coincides with the x-axis and that a semi-infinite ocean is contained in 

the half-plane y>0. 
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Thus equations (1.25) and (1.27) become 

19U 
= -gac at ax, 

fu = -9 
a( 

(1.32) ay, 

h 
au a( 

(1-33) ex &* 

On differentiating (1-33) with respect to t and (1.31) with respect to x we obtain the 

wave equation for C by eliminating u from the two resulting equations. 

a2 (= 

gh 
a2 ( 

(1.34) 
(qt2 aX2 

Thus the solutions of(1-34) which satisfy (1.32) are given by 

e-, 
AgYFI(x 

- N/gh t) + eVgCKYF2(x + Vg-h t). (1-35) 

and 

-f 

he 
79t'Fi (x - \lg-h t) - 

gh 
e- 

A-q 

'F2(x + %lg-h t). 

where F, and F2 are arbitrary functions. 

In the Northern Hemisphere the Coriolis parameter, f>0. Since exponentially large 

values are not physically acceptable we take F2=- 0. Thus we obtain the solution as 

(=e-, A. 
Q 'F, (x -- ýIg-h t) , (1.37) 

which represents a Kelvin wave in the region y>0 moving in the positive x-direction 

along the straight coast. The speed of propagation is V(g-h. Since this speed is 

independent of the wave length, the waves are not dispersive, and thus it maint . ns 
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its shape in motion. The motion is rectilinear and the transverse wave profile is 

exponential. That is C --+ 0 as V --+ oo. In addition, in the Northern Hemisphere the 

wave travels with the boundary to right of its direction of propagation, since f>0 in 

this case. In the Southern Hemisphere the boundary lies to the left of propagation. 

Thus we should expect such a wave moving northwards up the Californian coast, or 

northwards along the Atlantic Argentinian coast. The longitudinal wave profile in 

(1.37) is given by F, which can be regarded as a Fourier synthesis of many frequency 

components. As we are primarily concerned with the semi-diurnal frequency wave in 

this work, F, in (1.37) is replaced by a sinusoid of semi-diurnal frequency. Thus a 

harmonic Kelvin wave is obtained in the form 

C=e-, Ag'sin( 0' 
x-ot), Vg=h 

u=q( and v=O. (1-38) Vh 

If we put f=0 in the Kelvin wave system (1.38) it reduces to a non-rotating plane 

wave. 

The current velocity here is positive. Thus we should expect the force due to earth's 

rotation to be to the right of the current motion. This is in fact so, for we can see 

that such a force is balanced by the slope of the sea surface in the y direction. 

Infinite Channel: An infinite channel can be considered as a region bounded by 

two infinite straight coastlines. In such a region Kelvin wave motion is possible as the 

transverse velocity is identically zero. Though the length of the channel is infinite, the 

width of the channel is finite and thus Kelvin waves can propagate in either direction. 

The solutions implied by equation (1-35) are both admissible. 

In particular we can add two harmonic Kelvin waves travelling in opposite directions 
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but with equal amplitudes, 

C= Ae(flc)y cos[(olc)x + ot] - Ae-(fl')y cos[(ulc)x - ot], (1-39) 

where c= Vg--h-. 

We take the x axis to coincide with the central axis of the channel. This in fact has 

the effect of shifting the origin along the central axis to coincides with a point of zero 

amplitude-an amphidromic point about which the cotidal lines rotate. 

On differentiating (1-39) partially with respect to time and setting 0, we obtain 

tanh(f /c)y 
- ,, (at + 7r/2), tan(u/c)x 

(1.40) 

which defines the lines of high (and low) water. This equation (1.40), in the neigh- 

borhood of the origin, can be written as 

y= (olf ) tan(at + ir/2), 
x 

(1.41) 

The equation (1.41) shows that the line of high water rotates 'contra solem' about 

the origin. 

Amphidromic points occur along the central axis of the channel at x=. where n 

is an integer. 

In fig (1.6) we can see co-range and co-tidal lines as given by Defant(1960) [9]. The 

standing wave pattern of the non-rotating system implied by equations (1 
. 23) is com- 

pletely lost. Instead the wave is split up into cells consisting of star-shaped distrib- 

ution of co-tidal lines called 'amphidromes'. Along the central axis the wave retains 

its standing character. 

Poincare waves: 

Besides Kelvin waves another type of wave can propagate in an infinite channel. 
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Figure 1.6: Defant, 1960 Superposition of two Kelvin waves travelling in opposite 
directions in a canal with a uniform rectangular section. Period: 12 hrs (Southern 
Hemisphere) 

We assume the following representation of wave in an infinite channel where the walls 

of the channel are taken as y=0 and y=b. 

(= Z(y) cos(at - kx), 

U(y) cos(ort - kx), 

V(y) cos(at - kx). (1.42) 

On substitution of these expressions into the equations (1.25) and (1.27) we obtain 

d 21 

2, 
+( 

01 2- f2 

_ 
A, 2)1 -= 01 (1.43) 

dy gh 
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dV U(Y) = 
0,2 -l k2gh 

(kgh 
dy _ afv) (1.44) 

and 

h dV Z(Y) = 
a2 - k2gh 

(or 
dy - kfV) (1.45) 

The possible solutions of (1.43) which satisfy the condition of no flow through the 

boundaries are 

V(y) = An sin 
wr 

Y, (1.46) 
b 

where 
2-f2-k 

2= (nir)2 (1.47) 
gh nb 

Since the value of k depends on n where n takes integer values, k has been subscripted 

as k,,. 

These waves are called Poincare waves and can propagate in either direction depend- 

ing on the sign of k. 

Since the quantities involved in (1.47) are all real, the equation (1.46) can be a valid 

solution for n= 1)2)3 .... p say where each value of n corresponds with a Poincare 

mode. But the equation (1.46) may not possess a real solution for any integer value 

of n. Defant(1960) [91 states that plane Poincare waves are only possible for 

or >f (1.48) 

and from (1.47) 

01 > nir 
-v/g-h (1.49) 

b 

Thus the Poincare wave can exists only if the period of the wave is shorter than half 

pendulum day and also shorter than the natural period of n-nodal transverse wave 

of the channel. These conditions are necessary but not sufficient for a Poincare mode 

to exist. 
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The necessary and sufficient condition for the existence of an n-Poincare mode can 

be obtained from (1.47) as 
01 2_ f2 

>( 
nir)2 

gh b 
(1.50) 

The condition (1.50) implies that the channel must be sufficiently wide or shallow for 

the propagation of Poincare waves. 

The word 'sufficiently' is a relative term and it takes into account of the depth of the 

channel and the frequency of the wave. Brown ([41) in his thesis describes Poincare 

waves as a Sverdrup wave undergoing multiple reflection between two parallel bound- 

aries. 

Semi-infinite channel: 

When a Kelvin wave is moving into a rectangular channel closed at one end it cannot 

be reflected at the barrier in the usual sense but it is undergoing interesting tidal 

behavior. For the superposition of two Kelvin waves of any amplitudes moving in 

opposite directions does not result in zero horizontal velocity at any cross- section 

of the channel. Thus it is impossible to erect a barrier in the transverse direction 

which would not otherwise affect the motion. We shall follow this problem in details 

in Chapter-2 when we revisit Taylor's problem. Brown ([4]) in the analysis in his 

thesis about the propagation of Poincare waves in an infinite channel discusses about 

the existence of another type of oscillation. For the imaginary solutions of the equa- 

tion (1.47) there exists a type of oscillation in a 'sufficiently narrow' channel which 

is a standing wave in nature and exhibits exponential behavior in the longitudinal 

direction. He names this wave as 'Taylor wave' after Taylor (1921) who first used 
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these waves by applying them to closed channel. He states that when a Kelvin wave 

approaches a solid barrier in a semi-infinite channel it induces Taylor waves in the 

vicinity of the barrier which enable the Kelvin wave to be reflected. When we suppose 

two Kelvin waves of equal amplitudes moving in the opposite direction the resultant 

longitudinal velocity is given by UK (X) y). Brown explains that by combining an in- 

finite number of Taylor modes he obtains a second solutionUT(X, y) and by setting 

this solution equal to the Kelvin wave at a certain location obtains 

UT(XI i Y) ý UK(XI) 

where x=x, is some cross-section of the channel. The difference of these two 

solutions is also a solution. 

That is, the solution 

UK(Xi Y) - UT(X) Y) 

satisfies the condition that the longitudinal flow is zero at x=x, and therefore de- 

scribes the flow in the region x> xl. 

In the analytical representation of the reflection of the Kelvin wave in a semi-infinite 

channel, Taylor expanded the Kelvin wave system UK (X, Y) in terms of an undeter- 

mined half- range Fourier series. It is necessary to invert an infinite matrix which 

Taylor achieved by approximating numerically with considerable accuracy without 

the use of computers. The Taylor's idea of expanding Kelvin wave system in terms 

of Fourier series is used in the present work. 

Defant (1960) [91 greatly simplified the method of Kelvin wave reflection by syn- 

thesising UT(Is Y) with reasonable accuracy using only the first four Taylor modes of 
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uT (x, y) and required the equation equivalent to the condition UT (X1 
i Y) " UK (X1) Y) 

to be satisfied for only five values of y across the channel. He determined values for 

unknowns and these values agreed approximately with those found by Taylor. This 

method is called collocation method or 'point matching', this method is used by P. J. 

Brown (1973). 

If in contrast the condition for 'sufficiently narrow' channel is not met then Poincae 

wave modes will exist at the expense of Taylor wave modes. Thus a Kelvin wave 

approaching a transverse barrier in a wide channel will induce Poincare wave at the 

barrier and this wave is a progressive wave with un-diminishing amplitude, will carry 

away energy from the barrier. Hence the amplitude of the reflected Kelvin wave cor- 

respondingly reduced. 

In 1973 Brown investigated the phenomenon of imperfect Kelvin wave reflection in 

wide channels by keeping the geometry of the channel fixed and allowing the fre- 

quency of the incoming Kelvin wave to vary until the critical frequency has been 

exceeded. Here, increasing the wave frequency is equivalent to widening the channel. 

The critical frequency a, is defined as 

0,2 _ 
f2 

c 

gh b 

where h is depth of the channel and b width of the channel. 

Surely imperfect Kelvin wave reflection should occur for a>a,. Brown's results are 

reproduced in figure (1.7). Clearly the diagram A represents perfect reflection and is 

similar to Taylor's (1921). The diagrams B-D still represent perfect reflection but the 

frequency approaching the critical frequency. The phase of the reflected wave under- 

going changes which results in displacing the amphidromic points towards the closed 

end. The influence of the Taylor waves in the channel distorted several amphidromies. 

82 



In diagrams E-H the frequency of the wave exceeded the critical frequency and thus 

the amplitude of the reflected wave is severely reduced. Poincare waves manifest 

themselves as the dominant reflecting mechanism and highly asymmetrical oscilla- 

tions result. 
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Figure 1.7: Brown, 1973 
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Channels of different cross-sections can be joined together or a single channel as- 

sociated with an abrupt change in depth or width represent interconnecting channels. 

If the channel is 'sufficiently' narrow Taylor waves are produced at the discontinuities 

of the channel or alternatively Poincare waves emanate from the discontinuity if that, 

condition is not met. Moreover the numerical computations are very much simplified 

if the channels are 'very' narrow. Brown [4] treats 'sufficiently' narrow and 'very' 
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narrow are two distinct physical terms. As our work is primarily concerned with the 

semi-diurnal tides of the North Sea we use the second condition. That is, 

01 2« 
(7r)2. 

gh b 

This is the equivalent of saying that the width of the channel is very much less than 

the representative wavelength of the waves. 

Parameters a and f in the North Sea: 

The principal constituent of the tidal motion is M2 tide. Here we have given the 

values for a and f of M2 tide at a location in the north sea where latitude =W and 

the period of the wave T=12 hrs 25 mins. Thus 

2x 27r sin(56) 
= 1.21 X 10-4 s-1 and a= 

27r 
= 1.41 x 10-45-1 

24 12.25 

Clearly a>f which is a condition for Poincare waves to exist. 
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Chapter2 

Revisiting Taylor's Problem 

2.1 Taylor's solution of co-oscillating tides in a rectangular 
basin. 

In order to make this work more self-contained, we revisit the Taylor problem (1921) 

where he derived a semi-analytic representation of the reflection of a Kelvin wave 

in a closed semi-infinite rectangular channel. This model successfullY predicted the 

existence of amphidromic points and associated rotatory tides in the North Sea which 

are indeed the principal features of the North Sea tides. 

In conjunction with his study (1919) of tides in the Irish Sea Taylor explained how 

the tide in the North Sea consists fundamentally of an incoming Kelvin wave from 

the North which is reflected at a rigid boundary in the South. He solved the problem 

using the usual shallow water equations with rotation for a long channel with uniform 

depth. The system was linearized and the f-plane approximation was invoked. 

Assuming the flow quantities u, v and ( have an e'O" dependence, using the depth 

averaged (2HH) model, the momentum equations and continuity equation of tides in 

a rotating channel of uniform depth h are given by 

io, u -fv= -g(., (2.1) 

lo-V +fu= -g(y (2.2) 

io, ( + h(u., + vy) =0 (2-3) 

85 



V 

x) 

x=xI 

- 71 

V=o 

Figure 2.1: Schematic representation of the cross-section of the sea 

where x and y are the long and cross channel directions, u and v are components 

of velocity parallel to x and y respectively, C is the elevation of the free surface, h is 

the depth of water assumed uniform, a= 27r/period of tidal oscillation, t is time, g is 

acceleration due to gravity and f is the Coriolis parameter. 

We indicated in equations (2.1) and (2.2) that momentum is conserved in the hori- 

zontal. The breadth of the channel is taken as 7r and the sides of the channel are the 

lines y= ±17r. 
2 

On solving for u, v respectively from the two momentum equations we have 

k 2U 
x+ f( y (2.4) 

hk 2V 
= ior(x _ 

f(y (2.5) 

where k' =22 and c2 = gh is the velocity of the long waves in the absence of 

earth's rotation. 
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Using (2.4) and- (2.5) Taylor obtained from (2.3) 

(Vk 2)( 
= (2.6) 

for the free surface elevation in a homogeneous channel of constant depth h. Since 

the expressions for u and v are linear it is evident that u and v also satisfy the same 

equation (2.6). That is, 

(V2 +k 2) 
v (u) ýl- 

The boundary conditions which have to be satisfied are that v shall vanish at y=±1 ir 2 

and that u shall vanish at the closed end of the channel, which is to be taken arbitrar- 

ily as the line x=x, - For a non-rotating channel, superposing of two equal 'plane 

wave trains' moving up and down the channel respectively there are points along the 

channel at which we can find planes perpendicular to its length across which there is 

no motion. At any one of these planes a barrier could be erected without affecting the 

motion on either side of it. The motion can then be confined to one side of the barrier, 

and it consists of a wave train which moves up the channel and is reflected at the end. 

For a channel with rotation however, the superposition of two Kelvin waves, what- 

ever their amplitudes, moving in opposite direction cannot result in zero horizontal 

velocity at any cross-section of the channel. It is therefore impossible to erect a solid 

transverse barrier which would not interfere with the motion. That is, we cannot find 

perfect reflection of the Kelvin waves in the channel without additional modes. 

The principle on which the solutions could be found for a rotating channel is to 

construct an appropriate combination of a number of special solutions obtained from 

equation (2.6) which all satisfy the boundary conditions, v=0 at y= ±17r but which 2 
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do not satisfy the second boundary condition, u=0 at x= xl. This combination of 

such special solutions can, however, make it possible to satisfy both boundary condi- 

tions. 

We now review how Taylor achieved the analytical representation of the reflection 

of a Kelvin wave in the case of a rotating channel. 

Let the incoming wave be given by 

uj, = exp 
fy - iax 

+ iolt 
cI 

and 

v1=O. 

The reflected wave is taken as 

UR I-- eXP 
-fy + iorx 

+ iort 
fcI 

VR ý 

The incident wave is a Kelvin wave having the boundary wall at y= 17r to the right 2 

of its direction of propagation, the outgoing wave is another Kelvin wave having the 

wall at y= -17r to the right of its direction of propagation. On superposing these 2 

two wave systems it can be found that, even though there are a number of points in 

the channel at whichUI+UR = 0, there exists no value of x for whichUI +UR =0 for 

all values of y and t. Thus it is impossible to have a fixed barrier across the channel 

without altering the motion. 

Taylor overcomes this difficulty by superposing a tidal motion up satisfying the bound- 
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ary condition v=0 at y 17r on the two Kelvin waves so that up (UI + UR) for 2 

all y and t at a certain value x, of x. 

A barrier is then erected across the channel at x=x, without affecting the mo- 

tion on either side of the barrier. The resultant motion represents an incident and 

reflected wave train. 

The superposed motion up will be found to diminish rapidly away from the bar- 

rier and so the reflection of a Kelvin wave is achieved in the generalized sense that for 

large x the motion is essentially a combination of incoming and outgoing Kelvin waves. 

The resultant longitudinal velocity due to the superposition of two Kelvin waves, 

incident and reflected waves can be written, after being multiplied by a constant 

quantity ! Si, as 2 

U=1 'l) U*I)), Si(UI+UR)=S(cosh(ay)sin(C' -isinh(ay)cos( 2cc 

where a= 1* 
c 

The transverse velocity associated with this u vanishes identically. 

The problem now is to find the velocity components v and u for the superposed tidal 

motion such that v=0 at the walls y=±! 7r and U= -'Si(UI + UR) at the barrier 22 

X1. 

To find the velocity component v for the superposed motion we consider the equation 

(V2 +k 2)V 
= 
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A particular solution of this equation is 

v= exp(-smx + imy) (2.7) 

where s2= M2 -k2 is real and m is taken as an integer. m 

The possible forms of the solution (2.7) are as follows 

m2<k2 S2 k2_m2m is even, v Dm cos(smx) sin(my), 
)mm is odd, v iCm sin(smx) cos(rny), 

m2>k2 S2 M2 -k2m 
is even, v Dme-'m'sin(my), (2-8) 1mm is odd, v iCme-s--x cos(my), 

where now s,,, is real in all cases. 

V- 
. L. br the longitudinal velocity u we assume the following forms 

m2<k2, u=A,, sin smx cos(my) + iB,,, cos smx sin(my), 

m2>k2, u= Ame-'m'cos(my) + iBme---'sin(my). (2.9) 

The coefficients A,,, and B,,, must be chosen such that the equations (2.1) arid (2.2) 

are satisfied. 

Eliminating ( between (2.1) and (2.2) gives 

. au au av Ov 
zo, - -f-= ior- +f- ey ax ax ay * 

(2.10) 

Substituting for u and v from (2.8) and (2.9) in equation (2-10), the coefficients of 

cos(my) and i sin(my) on the two sides of the equation are equated. The two resulting 

equations determine C,, and D.. in terms of A,,, and B,,. A relationship between A,, 

and B,,, can also be established so that v is of the above form 
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Now we write the relationships as: 

m2<k2 

m2>k27 

where r.,, =- 
fo, 

2 msmc 

Am -1 B, 
A rm 

B, 
A,,, 
B 

ýý 
M 

Bm - - rl 

m is even, 
m is odd, 

m is even, 
m is odd, 

The constants C,, and D,,, are then given as 

Dm =M Am -f Bm; 
8m 01 

(2.11) 

m is even 

2<k2 

Cm = 
ýA�, 

+m Bm; 
or sm 

Dm M Am - 
ýBm; 

sm 

m is odd 

m is even 

2>k2 

Cm = 
! 

A,,, -MB,,; or sm 
m is odd. (2.12) 

The following tasks remain: 

To choose a series of values for A.. and B,,, so that the value of u is formed by 

the sum of all the terms is equal to ISOI + UR) for all values of y at some value x, 2 

of x. 

(2) Since the value of u for any value of x is expressed as a Fourier series in cos my 

and sin my it is necessary to express I Si (UI + UR) by means of a similar Fourier series. 2 

To achieve this, first write down the trigonometrical series expressing cosh(ay) and 

sinh(ay) in terms of cosines of even and sines of odd multiples of y respectively 

1 between the limits y= ±pr. 

These are 
cosh(ay) ! *- sinh *' (-' -2+ w2 2aý a +4 

(2.13) 
3 

sinh(ay) cosh ++ 

I 

Ir 2 
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Using (2.13) the value of u for the original pair of Kelvin waves is given as 

1 4Sa a7r . ux Cos my Si (UI + UR) sinh sin -2 2 ir 2cI 2a2 + 1: (- 1) 
a2 + M2 m even 

4Sia sin my 
- co 

7r 
(2.14) 

Ir 
sh 

a- 
cos 

O'x 1: (_, )m 
2+ M2 2c 

tm 

odd 
ce 

In this expression (2.14) it can be noted that only cosines of even multiples of y and 

sines of odd multiples of y occur, but in (2.9) every term contains either sines of my 

or cosines of my. Thus it becomes impossible to equate the coefficients of cos my and 

sin my in these equations directly. Similarly in (2.13) the series for cosh ay contains 

no cosines of odd multiples of my and the series for sinh ay contains no sines of even 

multiples of my. 

In order to overcome this difficulty Taylor writes the following trigonometrical se- 

ries for a cosine of an odd multiple of y and a sine of an even multiple of y in terms 

of cosines of the even multiples of y and the sines of the odd multiples of y respectively; 

(- 1). 1 (S- 1) 
-M Cos Sy + cos 2y 

-c 4s 2s 22-S2 c ý-t4 +6 
-6sy . ....... s is odd 2s 

eos 
442-s 22 

(2.15) 
1 

(-1)2 sin 331f 1 sin 
is 

5 s sn4 

. sin sy = -l., - -- - .9 
32-82 

+5 
-S2 ........ Is is even. 

Now, by using (2.15), add the multiples 31,03,05) ..... 1 
081 

...... of cos sy (s odd) and 

the multiples -y2,74,76) ...... y, ..... of sin sy (s is even) to the series for I Si (UI + UR) Of 2 
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(2.14) and subtract the corresponding trigonometrical series from it. It is found that 

1 
SOI + UR) = sinh 

a7r 
sin 

ax [1- cos 2y 
+ cos 4y 

22c 2a2 a2+22 a2 + 42 

+ 
1: 6,1 (- 1) "2' 

8 odd 

air ax 
-i cosh cos - 2c 

+2 ir sin sy 
4s 

s even 

where Oand -y, are yet to be found. 

1 -n 74 76 

Q2+M2 M2-22 M2 -42 M2-62 

At the section x= xl, the motion given by a series of terms of the forms (2.9) rep- 

resent the same value of u as (2.16). The ratio of the coefficients of cos(my) to the 

coefficients of i sin(my) are obtained from (2.9). By substituting for the ratios 
A 17L B, 

from (2.11) we obtain 

coefficient of cos my 
coefficient of i sin my 

- tan s,,, x 
r, n tan s,,, xl 

I 
rm 

-r,,, 

when m2<k2 and m 
when m2<k2 and m 
when m2>k2 and m 
when m2>k2 and m 

is even 
is odd 
is even 
is odd 

(2.17) 

The condition is that, at the section x= xl, the ratio of the coefficient of cos(my) to 

the coefficient of i sin(my) in (2-16) are equal to the above ratios. Rom this condition 

we can obtain 

when m is odd 

when m is even 
_ 

'ym7r 

coth 21 cot "I tan s,, xl 4mr,. 2C 

= 
-ym7r 

coth Al cot "I 4mr,,, 2C 

when (m 2>k 2) 

2<k 2) 

2>k 2) 

For any given value of x, the above equations (2.18) enable us to obtain the 8, and 

Cos Sy 1+ cos 2y cos 4y 
4s 

(2.52 

22 -S2 42 -S2 
. 

..... 

sin y sin 3y 
+ sin 5y 

Cj2 + 11 Cj2 +32 Ce2+52 

_( 
sin y sin 3y 

+ sin 5y (2-16) 12 - S2 32 - 82 52 -S2 
.... 

) 11 

- -16-' tanh 2-' tan "I cot s,,, xi when (m 2<k 2) 
4mr, n 2C 

- "3, n' tanh s-- tan "I 
4mr, n 2c 

1 Ol 
J63 '05 

a2+m2 
+ 

M2-12 
+ 

M2 -32 

(2.18) 
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, y,. The temis which are independent of y in (2.16) must vanish. This provides an 

extra equation. 
1 

131 
33 05 

0 ýji 12 32 52 

= 
ol 

On elimination of 3's and -y's between equations (2.18) and (2.19) we get an equation 

for x, in the form of an infinite determinant; 

1 

CK2 
-1 
12 

0 -1 
32 

0 
52- 

a. 3+j2 
Llz 

12-22 
0 1 

12-42 
0 

1 

a2+22 
1 

22-12 
-M2 

Z 
1 

22-32 
o 1 

2 2 ýl- -5 

a2 
12 

+3 
0 

32-1-2-7 
L3z 

32-42 
0 

1 

a2+42 
1 

2-12 4 
0 1 

2---, -1 43 
-M4 

Z 42 -52 

I ... ... ... ... 

where z= tan("') and c Lm 
= -( 

7r ) tanh(. la7r) cot(smxl), 4mrm 2 
7r ) tanh(la7r), 4mrm 2 

Mm 
= 

(; 
ý7; 

rr- )cothQla7r) tan(smxl), 4mrm 2 
7r ) coth(. la7r), 4mr, 2 

(2.19) 

(2.20) 

(m is odd and m' < k' 
(m is odd and m' > k' ) 

2 

ý2 
(2.21) (m is even and m<k 

M2 2 (m is even and >k 

In the case when k' <1 we can obtain from (2.20) an equation for z. That is, 

11 -1 12 
00... 00 

C7 32 12 32 0... 

0lI1 -1 L, l0l 12 22 12 42 a2+12 12-22 12-42 

z 

11 
-M 

10 
a2+22 22-12 2 22 32 

00 
32 22 

L., 
32 42 

-110 PT-4-7 42-12 42 32 -M4 --- 

0 
22 

1 

12 -M2 22132 
0 

-1 11 

a2+32 
0 

32-22 
L3 

32-42 

(1 1 
U 42_12 

1- 
42-37 -M4 --- 

Using the equation (2.22) tan("') can be found. Having obtained xj, its value may C 

be substituted in equation (2.18) and the resulting equations for, 8's and -y's are solved 

(2.22) 
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numerically. 

In the case when k' <1 the Poincare modes are represented by 

u=E (A 
.. e-smx cos. (my) + iBme--x sin(my)) 

m 

and 

v D,,, e-*-'sin(my) (m is even), 

v iC,,, e-'-'cos(my) (m is odd) 

where s2= M2 -k2 m 

These Poincare modes (due to the interaction of Kelvin waves with the barrier) de- 

crease indefinitely at great distances from the closed end. Kelvin waves are thus 

reflected perfectly. 

In the case when k' > 1, some of the L's and M's in (2.21) contain tan(s,,, xi), 

or cot(smxl). The equation (2.20) can't therefore, be reduced to a simple equation 

for z. The equation (2.20) may be solved numerically by assuming various values for 

x, and finding when the determinant (2.20) changes sign. 

In this case, ie. when k' > 1, at least one of the terms in the expressions in (2.8) and 

(2.9) contains sines and cosines of a multiple of x. These terms are finite for infinite 

values of x. Thus, in this case, perfect reflection of Kelvin waves cannot take place. 

The channel appears to be too wide to force the reflected tidal wave back into the 

condition in which the particles of water move only parallel to the walls. These terms, 

which occur when k' > 1, and contain sines and cosines of multiples of x, represent 

a pair of waves which were independently discovered by Poincare and Proudman [4]. 
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2.2 Numerical solution 

The solution obtained of the motion in a region where tidal waves are being reflected 

from the end of the channel is so complicated in its form that it would be difficult to 

discuss the tidal regime in a general way. Thus Taylor considered a particular case 

for which k=0.5) a=0.7. This corresponds with the reflection of a tidal wave of 

period 12hr in North Sea with 250 miles width and 40 fathoms depth and centered 

in lat-53 Q N. Moreover this case where k belongs to a range, 0-1, in which perfect 

reflection occurs, assumed to give typical features of a North Sea M2 tide. 

Taylor calculated the values of A, B, C, D, for 10 terms up to Alo, Bio, Cio and 

Dio. 

Furthermore, the quantities such as ýcl I s, r,,,, Lm I 
M,, which appear in the equations 

are first determined and were inserted in the equation (2.22). 

These quantities are functions of a and k only. We now recall them. 

V(a2+ k2)= 0.860, 

m2k2 

rm :=- 
2f or 

2 MSrnC 

Lm =(;; ý 
,) 

tanh(ý'air), (m is odd) 4mrm 2 

M,,, 
=( 

7' ) coth(la7r), (m is even) 4mr, 2 

These quantitieý, are calculated and tabulated below. 
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2 3 4 5 
sm rm L, mm 

1 0.866 0.695 0.905 - 
2 1.937 0.155 - 3.15 
3 2.96 0.0680 3.09 - 
4 3.97 0.0380 - 6.14 
5 4.98 0.0242 5.19 - 
6 5.98 0.167 - 9.72 
7 6.99 0.0123 7.30 - 
8 7.99 0.0094 - 12.98 
9 9.00 0.0074 9.40 - 
10 1 10.00 1 0.0060 16.25 

In order to evaluate the first approximate value of z we take only two rows and 

columns for each determinant in (2.22). 

That is, 
1 -1 -1 W2- -1-2 

0 
12 

z 
(0-905) 

1 0.49 1.49 0 L, 
Ct2+1- 

L, 

An approximate value of z=0.363 is obtained. 

Similarly by taking successively, 3,4 and 5 rows and columns in each determinant, the 

values 0.383,0.385 and 0.385 are obtained. Therefore, this method of approximating 

to the value of z seems to converge. 

Now we have 

orxj Q 
tan( 

C 
0.385 

C 
213' = 0-367 (in circular measure) 

or 

-=0.860 C 
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therefore, x, = 0.427 

Inserting the value z= tan() = 0.385 in the first equation of (2.18) we obtained c 

0.348ß, - 0.333-y2- 0.0667-y4- 0.0286-y6- 0.0159-y8 - 0.0101-yl() - 0.6711 = 0. 

The first approximate value of 31 is taken as 

0.6711 
= 1.93 0.348 

The second equation of (2.18) is then written down 

0.223 + 0.333ß, - 8.19-y2- 0.2ß, 3- 0.048ß5 = 0. 

The first approximate value of y2 is found as 

72 = 
(0.333p, + 0.223) 

= 0.106 
8.19 

Thus we can obtain, in this way, the first approximations for all the 3's and -y's. 

These values are then inserted in equations (2.18) and a new value is found for 61. 

That is , 

, 
31 = 2.03 

This is then used to obtain a better approximation for -y2, and so on. This process 

is repeated several times until convergence is achieved. Thus by repeatedly updating 
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the estimates for 0, and -y, we eventually arrive at their true values. 

In order to obtain A, B,,,, C, and D, we rewrite the boundary condition at x=x, 

in full. 

a7r OIXJ cos 2y cos 4y 
sinh - sin + 2c 2Ce2 a2 + 22 a2 + 42 

+E0, 
ý(-1)821 7r Cos Sy 1+ cos 2y cos 4y 

s odd 
4s 

(2s 
22 - S2 42 - S2 

a7r sin y sin 3y sin 5y 
-i cosh - cos 2+ 11 Ce2 

+ 
2c ce +32 Ct2 + 52 

1.9, sin sy sin y sin 3y sin 5y 2 + 
4s 12 - S2 32 - S2 

s even 
52 - S2 

00 

-E (A, e-rnxl cos(my) + zB, e-'-xl sin(my)) = 0. (2.23) 
m 

It is convenient to transfer the origin of the co-ordinate system to the mid-point of 

the end of the channel in which case it follows from equation (2.23) after a slight 

re-definition that 

Am 21 
(M -') 

Om " 

4m sinh( ) 2 sin("') c 
(m is odd) 

Bm 2 'Ym7r 
4m cosh( ý2-r) 2 cos("') c 

(m is even) 

(2.24) 

The values of A,, for m even and B, for m odd are then obtained from equation 

11). The values of C, and D,, are found from the formulae (2-12). 

Finally, the values of 3,,,, A, B,,,, C,,, and D, are then easily calculated for m 

varies from I to 10 and tabulated in tables below. 
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I Om I 

-ym I 1 2.03 
2 - 0.108 
3 0.07140 - 
4 - 0.0124 
5 0.0165 - 
6 - 0.0035 
7 0.0064 - 
8 - 0.0015 
9 0.0030 - 
10 - 0.0007 

Iml A, B .. 
I C, D, 

1 0.765 -1.100 1.892 
2 -0.427 0.066 - -0.495 
3 -0.0090 0.132 -0.138 - 
4 0.1000 -0.004 - 0.103 
5 0.0012 -0.050 0.510 - 
6 -0.0425 0.0007 - -0.043 
7 -0-0003 0.027 -0.027 - 
8 0.0245 -0.0002 - 0.024 
9 0.0001 -0.017 0.017 - 
10 -0.0147 0.0001 - -0-015 

From the continuity equation Taylor obtained the tidal range, i. e., 

19U av 
ax ay) 

Finally, the whole motion in the semi-infinite channel is thus approximately repre- 

sented by 

u=1.122 lcosh(O. 7y) sin(O. 860(x + 0.427)) -Z sinh(O. 7y) cos(O. 860(x + 0.427))l 

- E,,,: 'lo A,, e-s-`ý cos(my) + iB,,, e-'-' sin(Tny) 
M=l 

V= Em 
even 

D .. c-l-'siii(my)- Z 
Em 

odd 
c 

77te-sm 
27 COS (MY) 

(2.25) 

ýý = 0.965 sinh(O. 7y) sin(O. 860(x + 0.427)) +i cosh(O. 7y) cos(O. 860(x + 0.427))l 
h 

+ Em 
odd 

I (- Bmsm - mCm)e-'m' sin(my) + ismA, e--5m' cos(my) I 

+ Em 
even 

I-Bme-'-'sin(my) + I(smAm - mDm)e--'cos(mY)l 

(_ 7r <y :5 Zý 
,X> Xj 

Verification of the solution 

The value of u at x=0 should be 0 for all values of 
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(a) x=0 and y= 

10 

u=0.403 - A,, u=0.403 - 0.3953 = 0.0077 

Thus u very nearly vanishes at the mid-point of the end of the channel. 

(b) x=0 and y= 11, (i. e., at the corner) 2 

the value of u due to the incident and reflected Kelvin waves is calculated as 

0.67 - 1.40i 

but part due to Poincare modes is 

(A2-A4+A6- A8)- i(Bi - B3+B5- B7 +B9 =-0.61+1.33i 

So percentage error approximately 

10-06 
x 100 =x 100 ; z: ý 5% 10.671 11.41 

Thus u nearly vanishes at the corner, (0, M), of the channel. 2 

Hence at (0,0), (0, E) the two motions very nearly neutralize one another. 2 

Therefore, we can conclude that, (2.25) represents the tidal motion approximately. 

2.3 Result: 

Contour (2.2) depicts the wave form of the tides at a particular instant of time. Ani- 

mations can be created for values of 0 differing by M which corresponds to 1 hour and 5 

12 min's difference in the state of the tide. Then we see from the diagram the motion 

of the tidal wave down one side of the channel; and the way in which it sweeps round 

the end to return along the opposite side. 
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Figure 2.2: Co-range lines: Solution obtained by Taylor (1921; fig. 1) for reflection of 
a Kelvin wave at the end of a channel with dimension similar to those of the North 

sea. 

We express the value of ýý at any point as h 

P+ ZQ where P= real part and Q= imaginary part. h 

The phase, 0, of the tide is given by 

tan (0) = 

The co-tidal lines are lines of constant 0, i. e., lines at all points of which it is high water 

simultaneously. In fig (2.3) co-tidal lines have been drawn for values of 0 d1fferlng by 

7r which correspond to Ihour and 12 mins' difference in the state of tide. 
5 
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Figure 2.3: Co-tidal lines: Solution obtained by Taylor (1921; fig. 1) for reflection of 
a Kelvin wave at the end of a channel with dimension similar to those of the North 

sea. 
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Chapter3 

Model Problems 

3.1 Solutions to model problems 

We consider the following boundary value problems to illustrate how Fourier series 

may be used to solve problems of a type we might encounter in shallow water Kelvin 

wave theory. The solutions to these model problems are adopted from [33]. 

Problem I 

Let us consider first the following problem on a square S as illustrated in fig (3.1); 

the boundary values are discontinuous. The purpose of this is to get a feel for the 

kind of accuracy we can expect with a truncated trigonometrical series solution. 

Yt\ 

ý (X, I) =0 

(0, Y) =0S (1, Y) =I 

O(X, O) 0 

Figure 3.1: 

The equation to solve is: 

a2o 
+ 

a2o 

(9.1-2 09Y 
2 

The solution niust satisfy the following boundary conditions. 

0(0, Y) =0 O(x, 0) =: 0 (3-2) 
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This is a standard problem which can be easily solved by the method of separation 

of variables. 

The general solution is obtained by using the principle of superposition following 

separation of variables and the homogeneous boundary conditions. 

We obtain 
00 

O(x, y) =: E A, sinh(n7rx) sin(n7ry). 
n=l 

The inhomogerieous boundary condition 0(1, y) =1 leads us to 

00 
E A, sinh(n7r) sin(n7ry) 
n=l 

Using the theory of Fourier series, we then have 

An -2 
fol sin(n7ry)dy 

sinh(n7r) 

Thus the exact solution is given by 

Oo 

O(x, y) == E A,, sinh(n7rx) sin(niry), (3.3) 

n=l 

where the Fourier coefficients A,, of the half-range sine series for f=I are given by 

21 sin(n7ry)dy An = -0 sinh(n7r) 

2[l - (-l)n] 

n7r sinh(n7r) 
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Equipotentials in problem 1 

0.1 

0. 

0. 

Figure 3.2: In this figure is given the graphical representation of the solution (3.3). 

Problem 2 

Because the hydrodynamic tidal problems will involve the Helmholtz operator, we 

now consider the Helmholtz equation (V2 + \2)0 =0 which can be solved in a similar 

way, with the same boundary conditions. 

The general solution is obtained as before using the principle of superposition: 

00 

O(x, y) A' sinh(ý, f(-n2r2- \2)x) sin(n7ry) n 
n=l 

The boundary condition 0(1, y) =1 implies that 

00 

A' sinh (V-(-n27r2- A2)) sin(n7ry) n 
n=l 

Using again the theory of Fourier series, we have 

A, ', sinh(N, /-(n2 -7r2- A2)) =2 sin(n7ry)dy 1 (_l)nl 2 I 

n7r 0 

Thus the solution to Problem 2 is given by 

00 

Ol, x, y) A' sinh(V-(-n2iT2- A2)x) sin(niry) (3.4) 
n 

n=l 
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where 
11 

- 
(-l)nl 2 

A' = nr 
n 

sinh(,, /-(-n2ir2- A2)) 

Problem 3 

Let us now introduce a further difficulty into the model equation which is of a type to 

be encountered in the central oceanographic problems to be considered in this work. 
YA 

0.0 O=oy 

Y=O 
X--o X=l 

Figure 3.3: Schematic for Problem 3 

The equation now considered is 

a2o a2 0 ao 
-+-=-, (X, Y)fS. aX2 ay2 ay 

(3-5) 

This provides a more general problem, which highlights a difficulty symptomatic of 

the linearized rotating equations of motion. 

In this problem we cannot represent the solution simply by means of a Fourier half- 

range series. 

Suppose we attempt to solve (3.5) by means of a Fourier half-range sine series 

00 

O(x, y) =Z A�(x) sin(n7ry) . 
n=l 

Then we are faced with a half-range sine series representation for V2 0 and a half- 

range cosine series for Oy. Thus, we cannot simply equate coefficients on both side. 
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To find exact solution of (3-5), we proceed with the usual separation of variables 

argument. Thus, writing 0= P(x)Q(y) we get the system 

plf(X) _ W2p(X) = 

Q11 x- Ql(x) + U) 
2Q= 

where w is a constant. 

Consequently, if ju)l >1 21 

(i) 
(ii) (3.6) 

V4-W2 V4W2 
-1 O(x, y) = [a cosh(wx) +b sinh(wx)] 

(c 
cos(. 2 y) +d sin( 2 y)) e2 

Using the boundary condition 0(0, y) =0 and O(x, 0) = 0, we obtain a=c=0 and 

from O(x, 1) =0 obtained 
(n2jr2 

+ 

By applying the principle of superposition the general solution is, 

Oo 

iý(x, y) A,, e2 22+ 

n=l 

Y sinh (n2r2 )x) sin(n7ry) 

The boundary condition 0(1, y) =1 implies 

00 
1=1: A.,, e"2 

27r2 + 
l)) 

sin(niry) 
n=l 

ly 
sinh 

( F(n2 

By the theory of Fourier series we have, 

2 fo' e-12 Ysin(niry)dy 
An =- 

sinh 
(V(n27r2 

+1 
4)) 

Thus the more general solution is written as 

00 1 

O(x, y) = e5'y Z An sinh (n 7r i )x sin(n7ry) . 
(3.7) 

n=l 

where 

An = -87rn 
n 

47r2n2 +12 
sinh (n 72 + 

4 
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So the O(x, y), solution in (3.7) is no longer a Fourier series implying that a classical 

Fourier series ansatz would have been an inappropriate ansatz for this problem. 

Here, it is worthwhile to note that it is the appearance of the odd-order y-derivative 

term which has caused the failure of the Fourier ansatz. 

However the substitution 
i O(x, y) = V)(x, y)e2y 

suggests itself and this would transform the problem for 0 into the Helmholtz equation 

(M2 above) but with O(x, y) = e-. 21 Yon x=I instead. 

That is, 

(V2_)=O 

with boundary conditions 

0(0, y) =0 on x=0 

O(x, 0) =0 on y=0 

O(x, 1) =0 on 

.1 e-2y on x 

In fig(3.4) below, is given the graphical representation of the exact solution (3.7). It 

describes the equipotentials in this problem. 

Problem 3 above is useful as a numerical bench mark. The well-known central dif- 

ference approximation can be computed on the square at equally spaced and sym- 

metrically placed internal nodes. If the solution (3.7) is computed 'exactly' then the 

numerical solution generates an 'error-standard' in the sense that this is an 0(hl) 

method which can be used as a datum. Thus any other numerical innovations can 
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Figure 3.4: Equipotentials for solution to Problem 3 

have their merits judged by reference to this 'standard'. 

We suppose that it would not be possible, in the general equation we axe ultimately 

facing, to eliminate odd order y-derivatives in this way. As such we need to look for 

an alternative scheme. 

Alternative Scheme (a hybrid approach developed from Taylor's method 

In this approach we look for a way to eliminate, in the general equation, odd order 

y-derivatives - 

To do this we invoke the procedure discussed earlier by Taylor in his problem [12] of 

replacing 'sines or cosines' in an expansion by further series of even multiples or odd 

multiples. 

Suppose we attempt to solve the problem 3 by means of a Fourier half-range series. 

00 

O(x, y) = 
1: A,, (x) sin(n7ry) 
n=l 

(3.8) 
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Then, assuming validity of differentiation inside the summation, we have 

00 00 
V20 = 1: JA" (x) -n2 7r 

2 An(X)lsin(n7ry); = 1: n7rA n 
OY 

n (X)cos(niry). (3.9) 
n=l n=l 

This then highlights the difficulty referred to earlier. We cannot simply equate coef- 

ficients because we are faced with a half-range sine series representation for V'O and 

a half-range cosine series for Oy. 

However, we have seen that any suitable function fE CO] 0,7r [ can be expressed as 

both half-range sine and half-range cosine series. 

We take Taylor's idea, so expand cos(wry) as a Fourier half-range sine series. 

Replace the result in (3.9) so there then follows 

OY 
= 1: n? rAn (x) 1: 

n odd m even 

where 

an sin(m7ry) + m 
n even 

n 
(-)m4m 

am = 7r(n2 - M2) 

n n7rAn(x) 1: am sin(m7ry) 
m odd 

Let us for the moment assume validity of exchanging the summation order. 

Doing this, we find equation (3-5) in M2 is satisfied if 

00 

All (x) -n2 7r 
2 An (X) ` k7rAk(X)a k 

n=: 2,4,6 nZn 
k=l 
k odd 

00 

All (x) -n2 7r 
2 A, (x) =Z k7rAk (X)ak n=1,3,5, ...... 

(ii) 
k=2 
k e. ven 

(3-10) 

Suppose initially, purely by way of illustration, we approximate 0 with just a two-term 

expansion of (3.8). 

i. e O(x, y) = A, (x) sin(7ry) + A2 (X)sin(27ry) (3.11) 

ill 



The system (3-10) suitably truncated (i. e. take n=1,2) becomes 

A'2'(x) - 41r'A2 (X) = a'lrA, (x) = 2 5'AI(x) (i) (3-12) A" (x) 1 - 7r 
2 Al(x) = 2a21rA 12 

(X)= 
-jA 

82 (X) 

This is easily solved. We have to fit 0 (x, y) =0 on x=0 and O(x, y) =1 an x=1- 

We now impose the boundary condition 0(0, y) =0 on the solution (3.11). 

This requires A, (0) =0 and A2(0) = 0- 

We assume, for x>0, a solution of the form 

(x) =a, exp (px), 

A2 (X) ý: a2 exp (px) 
. 

(3-13) 

In using (3.13) the system (3-12) yields 

64 
(P2 

_ 7r2) (P2 
_ 

47r 2) 

9 
(3.14) 

The roots of the equation (3.14) are approximately 

pi = 6.264 and P2 = 3.180 - 

Write the solution of the above system with A, (0) = A2(0) =0 as 

Al(x) )( al ß, )( sinh(plx) (3-15) ( 
A2 (X) ß2 a2 sinh(P2X) 

)- 

Using the solution (3.15) in (3.12) yields 

22 
=8 a2 A 

-47r 3 
Ol, 

al(P2 _ 7r2) =_ 
8 02- (3-16) 

13 
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On imposing boundary condition O(x, y) =I on x=1 we have from (3.11) 

0(l, y) = Al (1) sin(7ry) + A2(1)sin(27ry) = 1. (3.17) 

Meanwhile for the two-term Fourier sine series expansion of 1 we have 

2 
E C,, sin(n"y) = C, sin(-7ry) + C2 sin(27ry). (3-18) 
n=l 

1 

where 

214 
C, - sin(7ry)dy 1 

Jo 
7r 

2 C2 fo 
sin(2-7ry)dy 0 

On equating the coefficients of sin(7ry) and sin(27ry) in equations (3.17) and (3.18) 

we have 

A, (1) 4 
and A2(1) 

7r 

We then have 

4=a, 
sinh(pl) + ol sinh(P2) (i) 

7r 

0 ý::: ý 012sinh(P2) + 02sinh(pl) (ii) (3-19) 

The system of conditions (3.16) and (3.19) yields the matrix equation as 

262.66 0 12.00 0 a, ) 
0 12-00 0 262-66 a2 0 (3-20) 

29.37 0 0 2.667 '31 
0 

0 29.37 2.667 0) ý 02 j 0 

The system (3-20) can be solved for 82 
, 

01 
, Ce2 

, a, by Gaussian Elimination Tech- 

nique. 

That is, 
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262.66 0 12.00 0 a, 1.2732 
0 12.00 0 262.66 a2 0 
0 0 

-1-342 2.667 a, -0.1424 
0 0 0 -637-56 

62 
-0.283 

By using backward substitution we obtain 

ß2 = -0.283 = 4.438 * 10-4 

-637.56 
ßi = -0.1424 - 2.667 * 4.438 * 10-4 

= 0.10698 
-1.342 

a2 = -262.66 * 4.438 * 10-4 

= -9.715 * 10-3 
12 

al = 
1.2732 - 12 * 0.10698 

= -4.0304 * 10-5 
262.66 

Now we are able to compute approximate values O(x, y) at four internal nodes A, B, C, D 

as shown on the grid below. 

00 

o--po--_jc 
o1 

Figure 3.5: 

A two-term expansion of (3.8) is 

O(x, y) = (a, sinhpix + fl, sinhP2X)sin(7ry) + (Ct2sinhP2X +, 32sinhpjx)sin(21ry) 

(3.21) 

Now by taking p, = 6-264 and P2 = 3.180 we evaluated from (3-21) the approximate 

value of O(x, y) at the point A= (1,1) as 33 

11 
0(-, -) = 0.1084 

33 
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Similarly we evaluated the approximate values at point B, C, D and being tabulated 

below. 

Points Solutions 
A 0.1084 
B 0.3572 
c 0.4013 
D 0.1267 

Y'r, 

0, H) 
set hk 

4P 

k 

Figure 3.6: 

Finite Difference Method 

As a further alternative we also obtain the results using a finite difference method. 

The corresponding difference equations for the differential equation (3.5) are devel- 

oped as follows. 

The left hand side of equation (3.5) is given as 

V20(,, j) O(i+,, j) + O(i-,, j) + 0(ij+, ) + 0(ij-, ) - 40(ij)) + O(h 2) 
h2 

with leading error on the right-hand side of order 0( h). 
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The central difference rule allows us to write the right-hand side of equation (3-5) 

with the same order of accuracy. 

OY ao ) (ili) -: ý:: 
1 

0(i, j+, ) - 0(i, j-, ) I+ O(h 
ay 2h 

We adopt the same grid with 4 equally spaced and symmetrically placed internal 

nodes. 

We get the following system with h= 15 3 

9( -40A + OB +0+ OD + 0) UD 
3 

9( -40B +1+ OA +0+ OC) = 20C 
9(- 40c +l + OD +0+ OB) = -UB ý 
9(- 4OD + OC +0+0+ OA) - OA 

2 
(3.22) 

The system (3.22) can now be written as 

-24 60 OA )(0) 

6 -24 50 OB -6 
07 -24 6 Oc -6 

ý706 
-24 

)ý 

OD /ý07 

The solution is, 

OD= 0.1313, 

oc = 0.3879, 

OB= 0.3601, 

OA= 0.1174. 

By suitably defining a. global error norm as 

E=11: 1 
l0exact -'Otechnique 4 
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we can compare the relative accuracies of different approximation methods. 

Clearly, we can extend the definition of E to any number of points in the solution 

domain. 

Points exact solution Taylor's procedure Finite Difference Method 
A 0.1098 0.1084 0.1174 
B 0.3625 0.3572 0.3601 
C 0.3938 0.4013 0.3879 
D 0.1253 0.1267 0.1313 
E 0.0039 0.00548 

Where E= Error 

Here, it appears that Taylor's technique gives a better approximation than the finite 

difference method. 

Clearly, we have to adopt a numerical scheme for solving the system (3.10). This ap- 

pears to be fairly straightforward where we can write down a Green's function solution 

integral for the even A,, in terms of an integral of the odd ones and vice versa. An 

iterative scheme based on initial guesses for A,, (x) which might be those from Taylor's 

model over a bottorn of uniform depth (taken as the mean) should, in principle, work. 

Green's Function Technique: 

Here, we use the Green's Function approach to solve the system (3-10) in an iterative 

manner. 

When we use Green's function to solve boundary value problems, the Green's func- 

tion is independent of the non-homogeneous term in the differential equation. Once 

the Green's function is determined, the solution of the non-homogeneous system for 

different non- homogeneous forcing terms is obtained by a single integration. 
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We call the system (3.12) here, 

All (X) 
- jr2 Al(x) = -9A2 

(X) 1 

A2(x) - 
47r2 A2(X') 

3 

These two equations can here be written in a general form as 

11 22 
Nn (X) -M Ir Ym (X) =f (X) (3.23) 

where m is a positive integer. 

Now we look for solutions of 

G" (xis) -m2 7r 
2 Gm(xls) =0 (3.24) 

m 

where xE [0,1]x: A, and x=s is a point of discontinuity in gradient. 

G,,, (xls) is the Green's function in general form corresponding to the two equations 

of the system (3.12). 

The solution of (3.24) given as 

G- (x I s) =A sinh (m7rx) 

G+ (x 1 s) =B sinh(m7r (x - 1» 

where A and B are arbitrary constants. 

We require G to be --ontinuous at x=s. 

V0 <x<s 

s <x< 1 

Thus G-(xls) = G+(xls) at the point x=s, and we have 

A sinh(m7rs) =B sinh(m7r(s - 1)). 

In equation(3-25) we set 

sinh(m7r(s - 1)) and B= sinh(m7rs). 

118 

(3.25) 



The solution of (3.24) is written as 

G 
.. 

(xls) 
G- (xls) = sinh(m7r(s - 1)) sinh(m7rx) 
G+(xls) = sinh(m7rs) sinh(m7r(x - 1)). 

To look for a general form of the solution of (3.12) we multiply the equation (3.23) 

by the Green's function G,, (xjs) and integrate with respect to x from 0 to 

G,, (xls) M27r2ym 
) dx 

J1 
f (x)G,, (xls)dx. m=1,2 (3.26) 

0 

Jo 

0 

On integrating (3.26) by parts, we get 

0 

Cm(XIS) dyn ] 10 dC�, (xls) dy�, + M27r2yMGM (XIS) 1 dx 
dx dx dx 

f (x) C�, (x 1 s) dx (3.27) 
0 

As G(xls) =0 at x=0 and x=1 (3.27) becomes 

111 dG,,, (xis) dy,,, (x) dx - (M 2 Ir 
2 
ym(x)Gm(xls))dx 

01& 
dz 

1 10 

= 
11 (x)G,,, (xis)dx. (3.28) 
0 

Since G' (xis) is discontinuous at x=s we write (3.28) as 
m 

1 
dG, (x I s) dy,,, (x) ] dx dGm (x Is) dyn(x) dx - 

(M 2 
7r 

2yn (x) Gn (x I s)) dx Jo 

dx dx 

Is 

dx dx 

fo 

f (x) G,,, (x I s) dx 

Integrating by parts yields 

8[ 
ýýc 

1 
dCm (x 

ym (X) +1 dx - fý(9-M(-X LS) y. (x) 1s 
Z(x 1,5) 

y. (x) 
11 

dx dx 

8 
y. (x) 1 dx - 

10 1 
(, rn27r2 y�(x)G�, (xls»dx = 

10 f (x) G�, (x 1 s) dx 
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Invoke the boundary conditions y(O) =0 and y(l) =0 to give 

dC�, (x 13) dGm (xls) 1+13[ d'C, (xls) (X) -YM(s) dx 
lx=s_ 1+ 

YM(S) 
dx 

lX=s+ 
dX2 ym dx 

+ 
18 1 

Ym (x) 1 dx - 
10 

(M 2 7r 2 ym (x) Cm (x 1 s» dx = 
10 

f (x)Cm(xls)dx (3.29) 

From (3-24) we have 

d2G,,, (xis) 
-m2 7r 

2 G.,, (xis) dX2 

The solution of (3.23) in terms of the Green's function can be written as 

1 

ym (s) == 
fý f (x)G .. (xis)dx 

dG�., (xls) lx=s+ dC�, (x 1 s) 
dx 

1ý 
dx 

IX=3- 
1 

It is seen that 

dG .. (x1s) dG .. (x1s) lx=s m7r sinh dx 
IX=S+ 

I-ý 
dx 

(m7r). 

So the solution (3.30) becomes 

1 f (x)G, (xls)dx 
m7r sinh(m7r) 

Since G' (xls) is discontinuous at x=s, (3.31) can be rewritten as m 

ym(s) = 
I 

m7r sinh(m7r) 

fý'f(x)sinh(m7r(s-1»sinh(m7rx)dx+ 

f'f(x)sinh(mirs»sinh(m7r(x-1»dX 

(3.30) 

(3.31) 

(3.32) 

Returning to our two-term expansion, m=1,2, the solution (3.32) can be written as 

YI(S) - 
sinh(ir(s-1» 

ir sinh(7r) 
J, 

0 
sinh(irs) ff (x) sinh(7r(x - 1»dx f() sinh x (irx)dx +wsinh(7r) 

3 

Y2(S) = 
sinh(21r(s- IL) 

21rsinh(2ir) 
f 

0 f (x) sinh(27rx)dx + sinh(21rs) r, ' f (x) sinh(27r(X - 1»dx. 27rsinh(2ir) Js 
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In the system (3.12) we have the following boundary conditions 

A, (x) = 0, A2(X)=O atX=O, 
A2(X)= 0 at x and Al(x) =1 at x 7r 

Since Y2(x)=O both at x=0 and x=1, we let A2(x)=y2(x), but yj (x) =0 at both 

x0, x=1 whereas A, (x) =0 at x=O, but A, (x) =A at x=1 and thus we set 7r 

AI(X) = yl(X) + 4X. 
ir 

Thus we can write 

Aj (X) 
_ 7r2 A, (x) = yl'(x) - 7r2y, (x) - 47rx =-8 A2(X) 

Thus 

(x) =-8 
A2(X)+ 41rx. (3-33) 

By taking f (x) as described in (3-33) we can write down the solution A, (s) of the 

system (3.12) as 

Ai(s) = sinh(7r(s-1)) f, (- ý A2 (X) + 47rx) sinh (irx) dx 7r sinh(7r) 03 

+-"nh(7r') f '(-ýA2(X) 
+ 47rx) sinh(7r(x - 1))dx + Is. 

7r sinh(7r) s3 7r 

Thus the solution of the system (3-12) is given implicitly by, 

sinh(7r(s - 1)) S 
Ai(s) =, fý'(-ý8A2(X) + 47rx) sinh(7rx)dx 7r sinh(7r) 3 

+ sinh(ws) f184S 
7r si nh (7r) 

ý, 
(- ý 

A2 (X) + 47rx) sinh (7r (x - 1)) dx +-7r 

A2(S) z--- 
sinh(27r(s-1» f' 9 A, (x) sinh (27rx)dx + �inh(27rs) f18 1»dx 27r sinh(27r) 03 27r sinh(27r) jA, (x)sinh(27r (x 

We have written in (3.34) Green's function solution integral for the odd A, in terms 

of an integral of the even ones and vice versa. 

We use the trapezium rule to solve the two Green's function solution integrals based 

on as initial guess for AI(x). We thus initialize at internal points with A, =1 (con- 

stant value) and integrate to achieve A2(x) at each point. Having A2, we update 

(3-34) 
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A, with the other equation. This process is repeated until we achieve the desired 

accuracy. 

Once A, (x) and A2(x) have been determined, we compute the function (3.8) for 

O(x, y) using the two-term expansion. 

Approximate Solution of 0 (x, y) with a 4-term expansion of (3.8) 

Here, we extend our numerical scheme to find the approximate solution of the prob- 

lem 3 by using a 4-term expansion of (3.8). 

The 4-term expansion of (3.8) is 

O(x, y)=Al(x)sin(7ry)+A2(X)sin(2iry)+A3(X)sin(37ry)+A4(X)sin(47ry)- (3-35) 

The boundary condition 0(0, y) =0 has to be satisfied. 

0=A, (x) sin(7ry) + A2 (X) sin(27ry) + A3 (x) sin(37ry) + A4 (X) sin(47ry) (3-36) 

The condition (3.36) is satisfied Vy only if Ai (0) = 0, Vi= 11 213,4. 

The sYstem (3.10) becomes 

ii (X)_ A, 2 ir Al(x) = -gA2(X) - 
A-A2(X) 

3 15 
(i) 

A"(x) - 2 
47r2 A2(X) ý-- §A, (x) - 

§A3(x) 
35 

(ii) 

A 11 (X) - 3 
97r 2A3(X) == -"A4(X) + 25"-A2(X) 

7 
(iii) 

"(x) - 
A4 7r2 16 A4(X) r) + i-A3 (X) 

= L'AI(� 7 15 
(iv) 

Now we use the boundary condition 0(l, y) = 1. Thus in (3-35) we have 

1=A, (1) sin(7ry) + A2 (1) sin(27ry) + A3 (1) sin(37ry) + A4 (1) sin(47ry) (3-38) 

(3.37) 
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The 4-term Fourier sine series expansion of '1' is 

1: 4 b,, sin (n7ry) 
where bn= 21 sin(n7ry)dy 

1 12,3,4 

(3-39) 

In (3-39), bi(i=1,2,3,4) are evaluated as 

bi b2 = 01 b3 = 3-ff ' 
b4 == (3.40) 

Thus from (3.40) we have 

4 
7r 

A2(I)= A4(1) == 01 A3 4 
37r 

Now we have to solve the system (3.37) with the following boundary conditions. 

Al(1) = !, A 
7r 2(1)= 

A4(1)= 0, A3(1) - -- 37r 

Al(0) = A2(O) = A4(O) = A3(O) = 0- 

(3.41) 

The Green's function corresponding to each equation of the system (3.37) is, as before, 

given as 

(X, s) -- 
G- (x, s) sinh(m7r(s - 1» sinh(mirx) 
G+ (x, s) sinh(m7rs) sinh(m7r(x - 1» 

where m=1,2,3,4 

Thus the solution of the system (3.37) with boundary conditions (3.41) in terms of 
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the Green's function is given by 

2inh(7r(. 9-1» 8 Al(s) =- 7r sinh(ir) 
fo' (- 9 A2(X) 

- 
L6A4(X) + 41rx) sinh(7rx)dx 

+ sinh(irs) 1 
15 

ir sinh(ir) 
f A2 (X) - 

L6 A4 (X) + 47rx) sinh(7r(x - 1»dx + is 3 15 7r 

A2 (S) «z- sinh(21r(s-1» fi"(gA, (x) - 2-4A3(X»siiih(21rx)dx 27rsinh(27r) 035 
+- sinh(27rs) 18 

21rsinh(27r) f(UA, (x) - 24-A3(X»sinh(2ir(x - 1»dx 
A3(S) -' sinh(31r(, s-1» rs( 48 

5 

37rsinh(37r)-- Jo 
14-A2 (X) + 121rx) sinh(37rx)dx 5 

+ _sinh(3irs) 
1 

37r sinh(37r) 
f, ' (_ 4-8 A4 (X) - 

L4A2(X) + 127rx) sinh(37r(x - 1»dx + -Ls 75 37r 

sinh(47r(s-1» f("(i-' A (x) + 126A1 (x» sinh(47rx)dx A4 (8) «ý- 47r sinh(4-7r) 073 15 
+ sinh(47rs) 1 

47r sinh(47r) 
(1-8A3(x) + 1-6A1 (x» sinh(47r(x - 1»dx 7 15 

Generally, the solution of (3.10) subject to the boundary conditions, in terms of the 

Green's function is given by 

1 

An (s) Gn (x, s) 1: k7ra'Ak(x)dx n even 
10 

k odd 
n 

An (S) = 
4s 

+1 Gn(XiS){ E (k7roek Ak (X)+ 4n7rx)}dx 
n7r 

JO 

k even 
n 

where ak -4n 
n 7r(k2- n2) 

n odd. 

We used Contour Plot in Mat-Lab(6-1) to get the graphical representation fig(3.7) 

below of the approximation of the 5-term expansion of 0 with Green's function tech- 

nique. 

Concluding Remarks 

Taylor's method of replacing sines/cosines in an expansion by further series of even 

or odd multiples appears to be a useful technique. We have seen that it gives slightly 

better result than the 'finite difference method', based on the order of matrix inverted 

being similar. 
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Figure 3.7: Equ'Potentials 

I 

The Green's function technique of writing down a Green's function solution integral 

for the even A,, in terms of an integral of the odd ones and vice versa allows us to 

write the approximate solution with an n-term expansion. It can be shown through 

the computation that in an n-term expansion, when n is large a better approximation 

is obtained. 

Now the question is, would Green's function technique be suitable to solve the gen- 

eralized Taylor's problem? 

In solving the Model problem 3, we have seen that the Green's functions were solu- 

tions of the homogeneous system of the form 

+ ay = 0, with constant coefficient. 

In considering the generalized Taylor's problems, this could be a useful method for a 

simpler model (e. g. Step-Bottom) where the sea-beds are given by h= ho and h= hl. 

But in the case of variable depth, given by, e. g., h(x) = ax + ho, the coefficient of 
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the homogeneous equation would not be constant but rather it would be of the form 

ax +b which creates a further difficulty. 

This will be a study area in the current work 

exist for such geometries are numerical models. 

The only solutions that currently 
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Chapter 4 

Kelvin wave reflection in a semi-infinite canal closed 
at one end 

We expand the wave height in a Fourier Series across the channel and start Nvith a 

look at Taylor's problem again but in dimensional form. This is done with a view 

to comparison with the limiting form a time dependent solution from a numerical 

method developed by Johns (personal communication). 

4.1 Defining equation: 

We have, as before, the system 

iau -fv= -g(., (i) 
io, v +fu -g(y 
' (hu) + (hv) + ior( ax ay 

so that an equation for ( in case where h varies with x can be written 

h(x) V2( 
_ 

A( + Ce ( 
a( if a( 

ax a ay 

with the lateral boundary condition 

L[(] =0, y--O and y=±b 

(f2 
_or2 ) and af where Lf Oý, - im9y, A-9C, 

By elimination Nve obtain the consistency requirements. 

Ou Ou . 01, av 
la- -f= ZO, - +f Oy i). i- Ox ay 

4.2 Brown's treatment of Taylor's tidal problem- Collo cat, io ii 
Method: 

Brow, n (1973) reformulated Taylor's tidal problein for a rotating serni-infinite canal 

so as to allow for the possibility of imperfect reflection of 1"'Lelvin Nvave, -ý. He obtained 
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solutions using the method of collocation at the closed end of the canal. He also 

discussed the behavior of the solution for the limiting cases of a narrow canal and of 

a short-period oscillation. 

Taylor (1921) and subsequently Defant (1925) considered two Kelvin waves of equal 

amplitude traveling in opposite directions in the canal. The origin of the co-ordinate 

system was chosen such that the phases of both incident and reflected waves matched 

at the plane x=0. They added an end-effect term so as to determine the position of 

closed end. Taylor used Fourier expansion methods whereas Defant used collocation 

and they obtained similar results. 

Brown (1973) in his paper had chosen the origin of co-ordinates to be at one corner of 

the canal. He assigned unit amplitude of the incoming wave whereas the amplitude 

and phase of the outgoing wave were determined. The end-effect is chosen in such a 

way it excludes any incoming Poincare modes. Brown used the collocation method to 

determine the relevant coefficients and found that results were in excellent agreement 

with those found by Taylor and Defant. Brown's method, which will be used widely 

in the present work, is therefore discussed briefly below as applied to Taylor's original 

problem. 

4.3 Formulation: 

A semi-infinite canal rotating about the vertical axis with constant angular velocity 

w is considered. The horizontal coordinates are (x, y), defined such that the canal 

occupies the region x>0,0 <y : ý- b as shown in fig (4.1). 

We first rewrite Taylor's ansatz using the (0, b] channel boundaries and the unknown 
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y 

incident wave 
reflected wave 

Figure 4.1: 

reflection coefficient. Thus 
Ly- ia(l +t) u, = Ae ec 

-fy ia(l -t) UR = Re e- c kelvin waves 

00 
up =E.. =ý 

(A,,, cos v,, y + iB,,,, sin v,,, y)e-s-x+'O" 

vp EZ 1 D,, sin v,,, y e-'-I+i" Poincare modes M= 

where v,,, =' b 

The velocity components are (u, v), and the canal depth is h, assumed constant. 

The incident Kelvin wave is defined by 

(I-)(b-y)+i(at+E-') 
e- cc (4.2) 

where ( and t, are surface elevation and time respectively. 

Also a, and c are taken positive, with 

c2= gh and k 2C2 
= 0,2 _ 

f2. 

Here c is the velocity of the long wave in the absence of earth's rotation. 

From (i) and (ii) of (4.1) we obtain the linearized momentum equations 

hk 2U 
= ior(x + gy 

hk 2V 
= ia(y _ 

f("; (4.3) 
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From this we obtain 

u 
f2 

9 

0,2 
('O'(x + AY) 

V29 
U2 

('U(y (4.4) f- 

Clearly (I satisfies (V2 -k 2)( =0 and if uj, v, are the corresponding depth averaged 

velocities calculated from (4.4) then 

Ul 

The reflected Kelvin wave is defined as 

(i-)y+i(at-zx) (R= Re- cc (4.5) 

Clearly (R satisfies (V' - kI) (=0 and if UR i VR are the corresponding depth averaged 

velocities calculated from(4-4) then 

UR: ' (q)(Ri VR ý 0- 
c 

By choosing the reflected coefficient R as a complex constant it is not possible to 

construct a nodal line across the canal so that the conditions on x=0 and y=0 are 

satisfied. Thus it is necessary to have an end-effect, UE, VE, (Eso that 

u(0, y) = v(x, 0) = v(x, b) = 0. 

and 

U" UE + UI + UR) V:: ý VE- 

This end-effect may be written as a set of Poincarý modes: 

00 

vE z--z: (-q) -y� sin(1, y)e -$nX+iOt 

c 

(X) 
-, Sn-T+iO't 

UE -yn 1 An COS(InY) + Bn sin(1nY) 1e 
c 

00 
-SnX+iO't CE -yn jCn cos(Iny) + D,, sin(Iny)) e (4-6) 
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where 

= 
n7r 2 12 2262f2 ln Sn 

n-k 1k =- b C2 

Generally s,, > 0; if s,, <0 then we take s,, = ia,, and a,, >0 so as to ensure outward 

propagation of these modes. 

Clearly this set of Poincare modes satisfy the linearized momentum equation. Thus 

by introducing these modes into the momentum equations (4.3) we obtain 

hk 2(g) f SnDn - iO'lnCn) 
c 

f SnCn + iO'lnDni 

hk 2(9 )An f lnDn 
- iO', SnCni 

c 

hk2(g) B,, -, =--flnCn - ios, Dn. 
c 

From these there follows 

An lnSnC 2 

An 
Bn -iuf 
Cn iO'lnC 
Dn -fSnC 

where 

L= or2 + '32 C2. nn 

Using the boundary condition u(O, y) =0 we have 

(4.7) 

00 

: )f-(y-b) + Re-ýýy - e, Z-y�[Acos(1, y)+B�sin(1, y)]=0, Vy6[0, b]. (4-8) 
1 

4.4 Method of Solution 

The method of 'cohocation' or 'point-matching' is introduced here. The equation 

(4.8) implies a requirement to invert an infinite matrix. However, we take instead 

that (4.8) holds at a finite set of points on [0, b] with the series also truncated to a 
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finite number of terms. If only the first N terms of the series are included, then the 

points we used here are 

Yk - 
(k - 1)b 

k= 1) 2,3,.... N + 1. 
N 

Then when we define a matrix system based on the unknown vector(71 , 
72) 73 1 ..... i 7N, R), 

there remain N+1 constants to be determined in (4.8); thus, setting u(O, y) =0 at 

N+1 points on the interval [0, b] should provide an approximate solution. This means 

the interval [0, b] is divided into N+1 points and one equation taken from each of 

the collocation points Yk - 
(k-I)b k= 112)3) .... N+1, yielding N+1 equations to NI 

be solved. 

This gives a matrix system, Ax. =b 

where, 

A, cos(l, yi) + B, sin(llyi) 

A, COS(llY2) + B, sin(llY2) 

A=I 

An cos(lnyl) + Bn sin(lnYl) e-otyl 

An COS(lnY2) + Bn sin(lnY2) e-aY2 

II 

A, cos(lly,, ) + B, sin(lly,, ) 
...... 

An cos(l,, y.,, ) + Bn sin(l,, y,, ) e-CfYn 

A, COS(llYn+l) + B, sin(llYn+l) ...... 
An COS(lnYn+l) + Bn sin(lnYn+l) e-'Y-+' 

with 

71) 

72 

73 

'Yn 

R 

and 

e(yi -b) 

e(Y2 -b) 

e(Y3 -b) 

e(y- -b) 

e 
(Y" +I -b 
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The convergence of this method was tested by Brown by considering the accuracy 

of the equation (4.8) for the different collocation points and by the convergence of 

this value to a limiting solution for increasing N. 

Taylor and subsequently Defant in their investigation used the case of k=0.5 and 

a=0.7. Taylor in his study used a depth of 74 m, a period of 12 hrs, canal width of 

500.5 m and a value of f corresponding to a point at 54.460N. Using these parameters 

which are referred to as 'Taylor's example' the end of the canal was determined as 

x, = 0.427 and as a result the reflection coefficient was found as R=0.742 - 0-670i. 

N R abs(R) 
4 0.7444-0-6677i 1.0000 
6 0.7423-0-6701i 1.0000 
8 0.7419-0-6705i 1.0000 
10 0.7418-0-6707i 1.0000 
12 0.7417-0.6707i 1 

The table above lists the computed values of R for various values of N. The conver- 

gence is rapid and approximately inverse cubic in N as illustrated in fig (4-2) below. 

As IRI =- I there is no propagation of PoZncare modes as expected and perfect re- 

flection thus occurs. 

The tidal range ( is found from the formula. 

u( au av (ex 
+ ä7y) 

I 
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The case chosen in fig(4-4) is that of a channel situated in latitude 54-462. The depth 

of the channel is, 74 m. This corresponds, roughly, to the case of the North Sea, 

though the water is shallower than 74 m at the Southern end. The results are ex- 

hibited by means of a diagram in the fig (4.4) where the height of the tidal wave is 

represented by means of co-tidal lines which are drawn through the points where it is 

high water at any specified time. These lines are drawn for every 36 mins (or rather 

for every -L part of a period). The amount of rise and fall of tide in different parts of 20 

the basin is also shown in the diagram. The amplitudes in the diagram are in meters 

and in the right and left corners of the basin the amplitudes are equal to 1.28 m. 

An inspection of the diagram at once reveals the nature and mechanism of the reflec- 

tion. The tidal wave moves in along the right-hand shore and then sweeps round the 

end wall of the basin at a rate rather greater than the velocity of the Kelvin wave, 

and moves back along the opposite shore. In turning at right angles in order to cross 

the end of the channel, the wave produces a bigger rise and fall of the tide at the two 

corners of the basin than anywhere else in the field. On the scale chosen the range of 

tide at the two corners are given by 1.28 m whereas the range in the other parts of 

the channel is less than this value (1-28 m). 

It is a known fact that Poincare waves are only possible provided a>f. That is, 

such that their period 2- <= Tp the half pendulum day. Thus locally where a 

is a constant, energy can be transferred by Poincare modes provided they are in the 

form of short period waves. 

In fig (4.5) is exhibited the result for the case h=74 m, o, = 1.4544 x 10-4, latitude, 
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erence of values of R between Collocation points) versus N 
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Figure 4.2: Figure to show that the convergence of the method is approximately 
inverse cubic in N- the number of collocation points. This curve is compared with 
figure(4.3) 
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Figure 4.3: plot of 11N 3 versus N 

0= 54.462 and f=5.9175 x 10-5. It can be seen that for the same wave frequency 

of the wave, a significant reduction in earth rotation moves the amph, dromIc points 
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Figure 4.4: (I)Amplitudes and phases for the case of lat 0 =54.40. The phases are 
shown in degree and amplitudes in meters: 

from the head of the channel towards north though there exists perfect reflection of 

the incoming Kelvin wave. This may be due to the fact that as the rotational effect of 

the earth decreases the wave frequency relatively increases which causes the Poincar6 

modes to become of more dominant character in the tidal motion. 

In the experimental results surveyed by S. Rizal Q32]) three geographical areas namely 

Malacca Strait, southern Yellow Sea and North Sea at latitudes 3ý, 302 and 54.462 

respectively have been investigated. 

Details for these sites are here presented in fig (4.6). Fig (4.6 (1)) shows the distribu- 

tion of amplitudes and phases of A112 for the latitude 0= 54.46! 2. One can see that two 

amphidromes take place for the parameters chosen in the central axis of the channel 

and the first amphidrornic point occurs near the head of the channel, which indicates 

that there is no loss of energy and results in perfect reflection. The Kelvin wave 
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Figure 4.5: Tidal range and phase lines for the case where h= 74m, lat=54.462 and 
f=5.9175 x 10 5 

motion dominates in the system. In fig (4.6 (ii)) one can still see two amphidromic 

points along the central axis of the channel but the one near the head of the channel 

to moved down to the north and also perfect reflection remains. If we compare the 

results exhibited in fig (4.6 (iii)) we can see the two amphidromic points still lies 

along the central axis and perfect reflection still occurs but the amphidromes tend 

to degenerate to loose the identity of tidal phenomenon. We also note the amplitude 

lines become sets of almost parallel lines. Moreover, S. Rizal Q32]) in her experiments 

found that the varying frictional effect would move the amphidromic points toward 

the side of the channel along which the reflected Kelvin wave travels. This has been 

observed also by NI. C. Hendershott and A. Speranza Q34]) and Tim Brown ([4]). As 

the frictional effect increases beyond a critical value all amphidromic points become 

virtual. In low latitudes the frequency of the waves relatively increases and Pmncarý 
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Figure 4.6: Amplitudes and phases for the cases of (i) lat-54.469 (ii) lat=309 (iii) 
lat=-39, respectively. 

modes become a more dominant feature of the phenomenon. 

In fig (4-7) is given the profiles for the transverse velocity of the Poincare modes 

for the case h-74 cm and latitude, 0= 54.462 - 
In this diagram one can see the 

crowding of the waves occur on the side of the channel along which the incident wave 

travels. 

4.5 Fourier Series treatment of the Taylor problem: 

As ail alternative to the collocation treatment we consider instead solving this problem 

by using Fourier series development. In this method, we express the Kelvin wave 

system using a Fourier synthesis across the channel. 
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Figure 4: transverse velocity profile(img v) of Poincare modes 
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Figure 4.7: Velocity profile of Pozncarý modes for the case h=74m and lat=54-462 

4.5.1 The consistencY relations: 

We might enquire about the precise nature of these relations iii the wake of the 

notation we adopted. They arise from the elimination of ( in the two momentum 

equations (see section-1) and are therefore tantamount to the requirement 

00 
(P? 

n COS I"mY + 167n SIn 1-ýmY) C-S'nx 

n1=1 

where pnl=fA,, s,,, -v, crB, -fv,, D,, and 6m=fsB, - (7 Urn An, + o, s,, D,. 

Normally, we have 'blindly' equated each of p, and 6, to zero for a fixed value 

of x. Here, because we have a lia, lf-range series, we have instead to observe the rela- 

tion lia-s to be satisfied at every point of our solution domain. It should be possible to 

argue that this can only happen (even for half-range series) if each of the coefficients 

p, and 6,,, va, iiisli independently. 
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This then yields 

orf (S2 
= V? nSm 

(0,2 
_ 

f2 
m-v, 

2n) A, ) Bm. 

or 

afA,,, = 

since 

f2- 01 22 
sm == v; ý + 

gh ,c= gh. 

4.5.2 Dealing with the system: 

(4.9) 

We wish to place the boundary at x=0. The condition of no flow across this is 

00 

Uk +E (A,, cos v.,, y + iB,,, sin v,,, y) 
M=l 

where, Uk (A + R) cosh(LY) + (A - R) sinh(fl). CC 

Whilst it is possible to expandUkin both sine and cosine half-range series, the problem 

with, for example, cosh(Y) expanded as a sine series, is that the coefficients will be 

only 0(1-). Whereas if cosh(Y) is expanded as a cosine series, the coefficients will be n 

0(--! -). This effects both convergence and (as a consequence) also differentiability. So n2 

we formally write Uk as 

UK := (A + R) 1:, E, A, cos(v,,, y) + (A - R) 1: jL,,, sin(v.,,, y). 
M=o M=l 

where 

2a sinh (ab) 2 sinh(ab) m 
(., 2 1 

\O = 

n+ a2)b ba 

1)m+l 
2vm sinh(ab) VM Amla=f and co= 

11 
(M=l if M>l. AM (- 

(vml +a 2)b ac2 
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Now, for convenience, we write also 

cem = Am + (A + R)EmA,,, and Om = iBm + (A - R)Am 

taking Ao = 0. Thus ao = (A + R) -AQ - The boundary condition is then simply 2 

00 

ao + 1: (cem Cos vmy + 8,., sin v,, y) 
M=l 

but this is only a half-range series, we cannot equate terms to zero in the usual 

way. Instead, we multiply the equation successively by sin v,,, y integrate and then by 

cos vmy integrate. But first integrate from 0 to b. Note the orthogonality relations 

z 

sin(v., u) cos(v-u)du = 
bn(l - 

sin(v,, y) sin(v,, y)dy 

Rkn- - M-) 

cos(v,, y) cos(v,,, y)dy 
b) bn, 

n 
02 

\ -qx f-\-. 71 -47 99\ 

where m, n are integers. This gives 

00 
7rao +E-; W(1 - (-1)m) = 0. (4.10) 

M=l 

whilst the other two integrated relations are 

On + 
2cko 

(1 
_ 

(_ 1), n) +2 
00 

notn 
2 

(1 
_ 

(_ 1) m+n) = 0, n=1,2,3 
n7r ir 

1: 
n2 -M 

mgýn 

2 00 M, 3111 
(1 (_1)m+n) Gen + 

Ir 

Z 

M2- n2 = 0, n=1,2,3 ..... 
(4.12) 

mi4n 

In deciding how to deal with the system we remember that a, and 6.. are related 

through the consistency relation (4.9) which can now be rewritten in the form 

ir, a,, -, 8m = (A + R)irmAm + (A - R)(-vm)Am, (4.13) 
Of 

where A- and rm Bm rm 
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Moreover, we find that the above two systems (4.11) and (4.12) are not entirely 

independent. To better understand this, we can take the alternative approach to the 

above boundary condition. That is, expand the cosines as a series of (even) sines. 

We will then, following Taylor's arguments, get one of the two systems above. If we 

repeat this but instead expand the sines in a series of (odd) cosines we will get the 

other system. Clearly we would not expect these two to be independent since they 

arise from what is essentially the same process applied to the same equation! 

The numerical approach here, will therefore be to take only m equations from either 

system and supplement these with an equation containing R. This gives a system 

which, when solved for the vector x= ()317,32,33 
. ........ 3, R) should converge to the 

correct reflection coefficient amplitude which would be A exp (fb1c). 

4.5.3 A definitive system: 

We choose to use the system given by equation (4.10) and (4.12, n=1,2,3,.... m) with 

the equation (4.10) placed last. Thus writing this system as Cx = b, the kth equation 

(1 <k< m) is 

m 

, 
3k+ R(i? 'kAk + Ak) + irky: dkn0n= A(Ak - irkAk), (4.14) 

n=l 

where, 

2 n(l - 
(-l)n+m) 

dmn = 
7r n2 - M2 

.) 

whilst the (m+l)th equation is 

m ßn 
1)n+m -7r, \OR/2 = -ir, \OA/2. )+ 

n n=l 

On constructing the matrices C, x and b using the equation (4.14) we have, 
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cij =I 

4irl*2 0 
7r(22 - 

12) 

4ir2_*3 
7r(12 -2 

2) 

7r(32 -2 
2) 

0 4ir3 *2 
7r (22 -3 

2) 

4ir4 
7r(12 -42) 

..... 

0 

........ 

4ir4*3 
7r(3 2 

-42) 

...... 

..... ...... 

_4ir, *2 

...... 

...... 
7r(22 -M2) ................ 

0 1 

3 

02 

03 

/37n 

R 

4irl *m 
7r(7n2 -12) 

..... 
(ZT2/\2 + P2) 

4ir3 *m (zr3A3 + P3) 7r(M2 -32) 

..... 
(ir4A4 + 114) 

... .......................... 

..... ..... ........................ 

+ pm) 

.......................... 'T 
\o 

m2 

A(pi - ir, Al) 

A(A2 
- ir2A2) 

A(A3 
- irV ý3) 

A(fim- ?* I'm A 
rn 

- A0 
-"A 2 

By solving the matrix eqiiiition, Cx = b, we. obtain the reflection coefficient R. 

We solve this, system using NIATLAB. 

The N'ýdues of the i-eflection coefficient R are computed for various values of Y. 

and b= I 
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We compared the convergence of the solution for the above two treatments in the 

fig(4.8) below. 

We can see that the convergence of the solution is somewhat more rapid for the col- 

location method. 

X joýý3 pGot otccxr*vwgmwaw *wlhe colbicationtimd of vskms)wecsus 

I 

oz 

() L 
4 6a 10 12 14 16 18 20 

piat of convm9w for Fouries senes soma od-abs(Ddleirence of vakms)wemus 
0-1 

0-06 

0-06- 

0.04 

0-02- 

0'- 11 It 11 ---a1 46a 10 12 14 16 is 20 

Figure 4.8: We compare the convergence of the solution for the above two treatments, 
top figure for collocation method and the bottom one for Fourier series method. 

Having obtained t lic reflection coefficient R Nve are able to determine the Fourier 

coefficients -1771, 
B, and D, 

- 

NONv, we write these coefficients as 

Brit =-i- (A - R) ji, ) ] 

s7-, 1 a 11)771 - 11 
11 

- 

V771 

BTII 

T, 
and 

(4. F)) 

144 



Tidal range and co-tidal lines for HO=74m, lat=54.46deg and f--0.0001 1835 
X 105 

D 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0. E 

r 

18 deg 

8deg 

180de 

60deg 
deg 

02468 10 12 

X 105 

Figure 4.9: Tidal range and phase lines for the case where h= 74 m, lat= 54.46 
degree and f=1.1835 * 10-4SeC-1 

In fig (4.9), the diagram illustrates the behavior of the tidal range and co-tidal lines 

for the case where h= 74 m, latitude, 0= 54.462 and f=1.1835 x 10-4 whilst in 

fig (4.10(a, b)) the case h= 74 m and latitude, 0= 54-752 and f=1.1878 x 10-4 

being considered. In fig (4-10a) depicted the tidal range and in fig (4.10b) plotted 

the tidal range and phase lines. 

The co-tidal lines are drawn for every 36 mZns in fig (4-9). It can be further seen 

that higher amplitude tides are experienced in the co-ordinates points near the right 

hand corner and left hand corner of the basin. The rest of the basin experiences lower 

amplitude waves. The highest tide in the basin is about 2m high for the parameters 

chosen. 

145 



x 10, 
Tidal range for HO=74m and lat=54.75deg 

I D 

4 

3 

fig(1 Oa) 

r-- ----------- 

x 105 

!3 

4 

fig(10b) 
3 

2 

1 

rl 

2468 10 12 

Tidal range and phase lines for HO=74m and lat=54.75deg X 105 

v 10 

Figure 4.10 (a, b): 

12 

x 105 

146 



Chapter 5 

Computation of Kelvin wave propagation into a semi- 
infinite rectangular basin with uniform depth 

Here, we consider a time dependent solution of the Taylor problem from a numerical 

method with a view to comparison with the analytical solution. 

5.1 Defining Equation: 

y 

y--b < 
incident wave 

reflected wave- > 
X=O 
Y=O length=a <x 

Physical Model 

Figure 5.1: 

The basic nonlinear momentum equations are: 

Ou au au a( 
at +uax +Vay - Vax 

av av av a( 
at + uax + vay + fu - gay. 

The nonlinear continuity equation is written as 

a( 
-+ at 

+ h)u] 
+ 

0[(( + h)v] 
-01 dx dy 

(5.2) 

whorc the field quantities (u, v, ý) take the usual meaning as longitudinal velocit. y. 

ti-misverse xIocItN- and surface elevation froin the undisturbed level. 

Furt her, h= depth, f= Coriolis parameter and g= gravitational attraction. 
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5.2 Derivation of the system: 

For Kelvin wave system the latitudinal velocity component v =- 0. For such system 

the momentum equations (5-1) yield, 

au au a( + ua- -9- 

x at x Ox 

fu -g 
a(. 

(5-3) 
ay 

Similarly, the continuity equation (5.2) reduce to 

a( 0[« + h)u] 
0. (5.4) 

et + -ax 
We let c2= g(h+(), then c= ±Vg(h+(), and we take, c= +Vg(h+()7 

constant. 

This implies that 2c-ý2- = gL and 2c2-- = gaý and so the equation (i) of (5-3) 
Ox ex Ot at 

written as 
au au ac 

+ uj-- = -2c ä-x 
(5.5) 

et x 

And from equation (5.4) we obtain, 

ac au ac 

2 ät- + cäx- + 2u 
ax 

0. (5.6) 

By adding (5-5) and (5.6) we obtain, 

a(u + 2c) 
+ (u + C) 

a(u + 2c) 
= 0. (5.7) 

at 09X 

By subtracting (5.6) from (5.5) we obtain, 

O(u - 2c) 
+ (U - c) 

O(u - 2c) 
= 0. (5-8) 

et ex 
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Both equations (5.7) and (5-8) are true only when h= const, (ie. at x=0 and at 

x=a). 

So if u+c>0, u+ 2c must be specified at x=0. 

We always have Jul < c. 

So if u-c<0, u- 2c must be specified at x=a. 

Now, 

u+ 2c = u+ 2 [g(h + 

11(( 
u 2(gh) -ý (1 +- (-) + o(-) 2hh 

So, for an incoming wave at x=0, 

u+ (gh) 21 (ý) 
must be specified at x=0. h 

Similarly, 

II (() + 0(()2]. 2c =u- 2(gh)'I[l +2hh 

So, for an incoming wave at x=a, 

'I (fi must be specified at x=a. u- (gh)2 
h 

(5-9) 

(5.10) 

We now consider the basic linearized field equations 
By fV= -g 19( Ft Ox I 

momentum equations 
ov + fv = -go( Ft ey) 

0( 01 

äi ax ay 
continuity equation 

149 



where u= u(x, y, t), v= V(x, y, t), C= ((x, y, t) and h= h(x, 

We write U= hu, V= hv and c' = gh, then 

19U -fV=: _C21% at ax 

OV +fU= _C2a( 
momentum equations 

at ay 

a( au av 
x a+ a-+- continuity equation tx 5Y 0. (5.12) 

5.3 Determination of Boundary Conditions: 

We linearize (i) Of (5.3) and (5.4), taking h=const. 

So) 

au 0( 
at 

-9 
ex (i) 

0( 
+hau = 0. (ii) (5-13) 

äi äx_ 

whilst (ii) of (5-3) remains unchanged. That is, 

fu =-v 
a( (5-14) 
, gy 

Seeking a solution of the form 

(= (O(Y) e 
i(kx-at) 

) 

u= uo(y) e 
i(kx-ot) 

. 

Then, 

-iauo(y) = -g(ik)(o(y), so uo(y) 
ý-k(o(Y), 
a 

-ia(o(y) = -h(ik)uo(y), so (o(y) 
hk 

UO (Y) 
- a 
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Also from above it can be seen, 

01 1 
-= (gh)2 =C to the lowest order. k 

The equation (5.14) implies, 

duo 
+f UO = 0. dy C 

The solution of (5.15) is given as 

uO (y) = Ce- C Y, where C =constant, 

which implies 

hL -f (0(y) = C(, )e-cy = ae c Y, 

Thus, 

C= ae- L ye i(kx-c-t) 
) 

ace -ly e 
i(kx-at) 

h 

where a=Ch c 

(i) 

(ii) 

Now by specifying (5.17) as the incoming Kelvin wave solution we have 

c 
22ce u+ (9)1( =I+ (ýNl ae-Ly 

i(kx-ort) 

hhh 

which in turn can be written as 

L i(kx-at) 2u 2a e--ye 

(5-15) 

(5.16) 

i 

(5.17) 

(5.18) 

Thus, for a channel with constant depth and open at both ends with an incoming 

Kelvin wave at x=0, there must be no incoming wave at x=a. Hence, 

IC 
u- (gh)l -=0 at x=a. h 

So, on taking the imaginary part of (5.18) we write down the boundary conditions 
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for a channel open at both ends with an incoming Kelvin wave at x=0, where 

=constant, as 

L 2u 
-2 a e-, y sin(at) (i), at x 

2U = (ii), at x=a (5-19) 

In order to obtain a suitable boundary condition for this problem where propagation 

of Kelvin wave in a semi-infinite channel closed at one end with an incoming Kelvin 

wave at x=0, we consider first the linear form of the first momentum equation of (i) 

of (5.1). 

aý 
- fv = 

a( 
at 'i ax 

(5.20) 

For this incoming Kelvin wave at x=0, we let v =- 0 and thus the local acceleration 

in the vicinity of x=0 is given by the gradient force. 

au 0( 
wt- 

-9 

Ox * 

5.3.1 Expressing the function Z(t) in Fourier Series: 

Any suitable periodic function in t, Z(t) with period tP can be expressed as 

1 00 27rnt 27rnt 
(t) =2 ao + Elan COS( 

t+ 
bnsin( 

t 
n=1 pp 

1 00 
-2i7rnt 

2 ao + Re(E[(an + ib,, )e tp 1) 
n=l 

where, 

Cn = an + ibn) 

(5.21) 

a 
an : "": 

2 J'P 
Z(t) OS(27rnt )dt, 

tp0 tp 

bn =2p Z(t) sin( 
27rnt )dt, 

tp 0 tp 
2 tP 2iwnt 

Cn = tp 
jo Z(t)e tp )dt. (5.22) 
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5.4 Method of Solution: 

N 

N-1 

N-2 
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3 

2 601 

1 M-1 

a 

Figure 5.2: 

The method used here is a numerical procedure based on discretizing the length 

and the width of the channel. The width, b, and the length, a, of the channel are 

discretized by N grid points y direction and M grid points x direction, where M and 

N take odd values or even values according to the problem considered (see fig (5-2)). 

In this present case the value of M= even and N= odd. 

5.4.1 Finite Difference Equations: 

Notation: 

ii P) V, 
(xi) yj, tp) = zipj 

- (xi, yj, tp) Mv (xi, yj, t= Vp 

Xi = (i - 1)Axý Yi =U- I)AYI tp = pAtl 

where i=1,2,3 . ....... m, j=1,2,3 . .......... n, p=0,1,2,3 

Using the above notations the equation (5.21) in turn is written in discrete form 
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in space and time as 

au p 
Ox at 

)2j 

-9 

( al ) p2+, 

j' 
(5.23) 

By using the Taylor series we expand the velocity vector Up+' to the second order in 2, j 

time as 

(au 
at 

)p 

.+0 

(At2) 

2, j 

On introducing (5.23) into this expansion and write down it in finite difference form 

we obtain, 

P+ I- (P+l p 
+ 

(3, 
j I'j +0 

(At2) 

(5.24) UP2, j 
1 

ý-- UP2, j - Dýt 

( 

2Ax -) 

2, j 

By substituting for u'2t' from (5.24) into the equation (i) of the boundary conditioA 
13 

(5.19) we obtain a FD eqiýation for elevation along x=0. 

1 (h2, j )1 --f 
(1- ß) (lp, +j 1ý-(1- ß) (3P, +j 

-297 u'2'j - 4ae '" sin(ut). 

where, 6- cAt Ax 

(5.25) 

Now write the momentum equations (5.11) and continuity equation (5.12) in finite 

difference form. 

Uipi+ 1-1 fLtvipj+l = ut?; +1 fLtvipi - P+ (5.26) 
222, Lx 

(Z"+llj 

Similarly, the second equation of (5.11) is written in finite difference method. 

That is, 

1f AtUV + vipj+l = vipj -1f At Uilpil - (z 
3+11 -z (5.27) 

22 2Ay 
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Solving (5.26) and (5.27) for Vi'j+l and UjPj+1 we obtain, 

Zi+ll, 
j P+ Z P+ - Z1- pf At 1 (5.28 Al(t)ViPj+l = 

A2 (t) Vipj- A3 (t) Uij + CIýAt 
2 2Ax 2Ay 

where A, + j(fLt)2]) 
4 

We also have I 

U11 
ZP++, 'j 

- _7, 
P +' 

p UP f At (Vý+l + Vý) 2 At Ij (5.29) 2i + ij+ 2 ij ij czj 2Ax I 

and 

-V 
7P+l - ZP UP UP V 
I"ii ij + '-'z+li i-ij + ij+l ij-1 = 0. (5-30) 

At 2Ax 2Ay 

The following equations axe used to interpolate the respective field variables v, u, and 

C. 

1,, rptl 
=11+II+ vip; l v 

i, 

lj+l 
+V 34 

viý+, ip+llj+l +v 
li- 

u P+l TTP+l 'D+ 1 
+ up+, + up+, + TT, (5.32) 

S13 4[ Z+l, j+l i-l, j-1 -i+l, j-11 

P+j 1 ý+ll + zip++ll (5.33) z +1 P+ 

4 
[Z'ý-llj+l + Zt 

'j+l 
+ Z'ý-" 

5.5 Solution to Taylor's Problem by applying FD technique: 

Here, we consider an incoming Kelvin wave defined by 

L i(kx-ot) 
ae-cye 

aceYe i(kx-at). 

h 

propagating from north to south in a channel of length, a, and the width, b, in an 

area where the geographical latitude is 50 11 north so that the coriolis parameter is 

A2 (t) j(fLt)2 
and A3(t) fAt- 

4 
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0.0001169. The basin is of uniform depth of ho=U meters closed at one end. By 

taking the period of the semi-diurnal tidal wave as T= 12 hour, we take the length, a 

, analysis domain in kilometres as a=1.1415504 * (Vfg-ho *T* 3600) /1000= 1- 1415504 

reference wavelengths = 1328-71 km. In discretization of the length and the width 

of the channel, M= 224) N= 85, see the fig (5.2) so that the width of the analysis 

domain can be chosen proportionally as b= -ýý *a= 500.499 km. Thus the length 223 

and the width of the basin are discretized by 224 grid points x-direction and 85 grid 

points y-direction. It means Ay=Ax has the value of 5.95834 km. 

By considering 300 time steps per tidal period, which corresponds to At=144 seconds, 

we integrate the system in space and time for 50 tidal cycles. 

The integration is performed as follows. 

Firstly , by using the FD equation (5-30) we update the elevation at interior points of 

the mesh. These points are, here, termed as 'elevation points' and denoted by symbol 

in fig (5.3). 

Then using the boundary value (5.25), elevation is updated along the open boundary 

x=O. 

Now, by using the equations (5.28) and (5.29) both y -velocity and x-velocity are 

updated at interior V-points and U-points respectively. These points are respectively 

denoted by symbols 0 and A respectively in fig (5.3). Using (5.31) the updated 

y-velocity should have been interpolated at interior U-points before x-velocity being 

updated. Finally, using (5.32) the x-velocity is interpolated at interior V-points. This 

process continues for all 49 tidal periods. Then for the final tidal period the updated 

elevations plug into (5.22) and the product is obtain for some specific mesh points 

(ie i=1, M-1,2; j=2, N-1,2) and the integration process is repeated for whole 
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tidal period. The final surn at each specific mesh points is multiplied by 2- 
tP 

Finally the integrated elevations are interpolated at U-points, V-points, null points, 

coastal end, along sides and end points on open boundaxy of the channel to obtain 

complete solutions in the whole domain. 

5.5.1 Solution: 

In figs (5.4) and (5-5) are shown for co-range and co-tidal lines of Kelvin wave 

propagation through a semi-infinite channel of constant depth closed at one end. 

The parameters used in this numerical technique correspond exactly to those in 

the Taylor problem. The diagram in fig (5.4) exhibits the wave height at different 

parts of the region and it can be seen that the solution obtained by this numerical 

method is consistent with the solution obtained by the analytical method described in 

chapter-4. The complex reflection coefficient derived directly from numerical model is 

(0.7411, -0.6714) whereas the complex reflection coefficient obtained by the analytical 

method is (0.7395, -0.6732). 

5.6 Comparison: 

The comparison between the numerical solution and analytical solution is performed 

by comparing the mid-channel wave height for numerical solution and analytical so- 

lution. This is done in fig (5.6) where the red curve indicates the numerical part and 

the blue color indicates the analytical curve. On inspection one could see that it is a 

very good comparison. 

It is also noted in fig (5-4) that the wave height in the lower left and right corners of 

the basin are higher than that in the rest of the basin. 

20 part of a period (ie for every 36 In fig (5.5) the co-tidal lines are drawn for every -L 

mins). 
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Figure 5.3: 

Both in analytical and numerical solutions we can see two real and one semi-real 

amphidromic points lie along the central axis of the channel. In the above test we see 

that the comparison is good along the mid-section of the channel. We wish to have a 

global measure of the difference between the analytical and numerical solutions. This 

is done by finding the root mean square error between two sets of data. 

Y velocity is updated 

X-velocity is interpolated at 
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Tidal Range for the case HO=74m, T= 1 2hrs and lat--50degree 
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Figure 5A Parameters: Ho = 74m, a=0.0001454sec-1, f=0.00011867sec-1 and 
T= 12hrs 

Tidal range and phase lines for the case HO=74m, T= 1 2hrs and lat=50 deg 
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Figure 5.5: Parameters: Ho = 74m, a=0.0001454sec-1, f=0.00011867sec-1 and 
T= 12h, rs 
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X10 5 MID-CHANNEL comparison: red line numerical, blue line analytical 
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12 14 

x 10, 

Error Norm 

Root mean square error 

RMSE 
Z'l((ZANA(i-, j) ZNUM(i, j))2 

N 

where, 

ZANA(i, j) and ZNUA1I(z, j), where(Z =: 1,2,3... and j =: 1,2,3 .... 
) denote respec- 

tively the tidal amplitudes obtained analytically and numerically and N is the number 

of computational points. 
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The 'Root mean square error' (RMSE) is merely a single number that defines differ- 

ences between actual values (observations) and the response predicted by a model. 

Here, the small error value thus obtained indicates that the data extracted by these 

two mutually independent models fit into the actual values and there is about 95 

confidence in these models to predict the tidal phenomenon. 

RMSE = 0.0134metres. 
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Chapter 6 

Propagation of a Kelvin wave over a step-bottom in 
a Semi-infinite Canal closed at one end 
6.1 Introduction: 

The incident Kelvin wave approaches the shallow water region from the deep sea in 

the north of the channel. The origin of coordinates chosen naturally at one corner 

of the canal such that the Kelvin waves traveling in opposite directions in the two 

regions are in phase at the boundaries x=0 and x=L respectively. The end-effect 

terms are added at the boundaries x=0 and x=L so as to exclude any incoming 

Poincare modes. A collocation method is used to determine the relevant coefficients. 

The results are checked to see whether they are in agreement with those obtained by 

a numerical method developed by Johns (personal communication). 

z 

I 

Figure 6.1: 

6.2 Formulation of the Model: 

As mentioned above, we consider a semi-infinite canal rotating about the vertical axis 

with an angular velocity w= wk. The horizontal coordinates are (x, y), defined such 

that the canal occupies the region x>L, 0<y:! ý- b and region 0<x<L, 0<y !5b. 
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The depth averaged velocity components in the two regions are respectively, (ul, vi) 

and (U2, V2). The respective canal depth are h, and h2 assumed constant (see fig 

(6.1)). 

The Kelvin waves system in the region x>L, 0<y<b is defined by 
(v-b)+i(at+-E(x-L)) 

cl 

0-t - -Z. (Ri Rle-""+'( cl (x-L)) 

incident wave 

reflected wave 
where C, t, and g are surface elevation, time and gravity respectively. 

Also a, a,, and c, are positive and 

2 
cl = gh, and a, 

f 
(for brevity). 

Cl 

(6.1) 

Here c, is the velocity of the long wave in the absence of earth's rotation in the region 

x>L. 

The associated velocities are 

Ul=-(g)(I) UR, =(-g)(R.,, and VI=VR1=0- 
Cl Cl 

The end effect is written as a set of Poincare' modes, UE, VEand (Edefined as 
VE sin (1,, y) e Cl 

Cl 
-sn(x-L)+iat UE : -- (S-) E00 An cos (iny) + Bn sin(lnY) Ie 

CE cl N ICn COS(lnY) + Dn sin(lnY) I e-Sn(x-L)+iot for x> L) ýo 

2= 12 22 
where 1,, s-k and k, bnn1 

(6.2) 

(6.3) 

We rewrite the linep, rized momentum equations for field variables ((, u, v), and uni- 

form ocean depth h: 

h Vu = ic(, + f(y 

h Vv = ia(y - f(,: 

where 

(6.4) 

k=a, and f, a respectvely Coriolis parwneter and wave frequency. 
C2 
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Clearly the set (UE 
, vE, (E) in (6.3) satisfies the momentum equation (6.4) and as 

such by introducing (6.3) into (6.4) we obtain 

Cn = 
lUlnCl 

An 

2 
An = 

SnlnCi 
An 

where 

Dn = -fs"cl) 
Zýn 

Bn -iuf 
) An 

An = or2 +s 2c2= f2 + 12C2 
n1n 1* 

The Kelvin wave system in the region 0<x<L, constitutes: 

(6-5) 

(i) The transmitted wave moving towards the south. This has associated velocities 

(UTi VT) and the wave height (Ti§ given by 

2(y-b)+i(o, t- -E (L-x)). (T= Te' C2 (6.6) 

where, o,, a2, andC2 are positive and 

2f C2 = gh21 and Ce2 = 
C2 

HereC2 is the velocity of the long wave in the absence of earth's rotation in the region 

x<L. 

The associated velocities are 

UT = (_ ) (T, VT = 
C2 

(ii) The reflected wave (R, propagating towards the north with associated velocities 

(UR2 
i 

VR2) is defined as 

-£k2Y+i(O't- -£-X). (R2= R2e c2 
1 

Its associated velocities are 

UR2 
g XR21 VR2 
C2 

(6.7) 
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The Poincare modes in the vicinity of the region x<L are given by 

VI= (-9-) E' ' sin(l,, y)e-'-(L-x)+iat E C2 'Yn 

U/= (-9--) 
n/ 

{Aln 
COS(lnY) + Bn' sin(lnY) Ie -tn(L-x)+iat E C2 

'Yn 

1: 00 ̂ /n 
n e-tn(L-x)+io-t In for x 

{Cn'COS(lnY) + D' sin(lnY) 

where t2 = 12 
-k2 and k2= a2-f2 

nn22 C3 

(6-8) 

The set of Poincare modes (6.8) satisfy the momentum equations (6.4) and as such 

by introducing (6-7) into (6.4) we obtain the required coefficients. 

I -tnlnC92 An 
-I An 

iClnC2 
Cn, =I) An 

where 

I Bn An 

f tnC2 
Dn 

Al 7 
n 

L=a2+ t2C2 = f2 + 12 2 
nn2 nCý 

(6-9) 

The Poincare modes that emanate from the condition at the boundary x=0 are 

// = (JE) J: ' " sin(l.,, y)e-In'lill VE 
C2 

Yn 

U 
tnX+iO-t 

E U-) A" B" sin(lnY) I 
e- C2 7n n COS(lnY) +n 

It tnX+iat Eolo 7n { Cn COS (lnY) + Dn sin (lnY) Ie for x>0. 

These modes are also substituted into momentum equations (6.4) and yield 

A /I 
tnln4 

nII An 

ZalnC2 Cn" 

n 

-io'f 

f tYtC2 

An 
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6.3 Boundary conditions at x=L and x=0: 

(i) The continuity of total mass flow across the boundary x=L implies 

-. 
LY 

- 
ýL(y-b) 

00 

- -LY -iE-L R, e ci ecl C2 C2 C2 + [A, cos (1, y) + Bn sin (lnY) + 6oTe L (y-b) 
-, 8oR2e e 

00 00 
-tnL Oo 

n[AnCOS(lnY)+Bnsin( 
7n 

n 
lnY)l +E "[A" 

COS(lnY) + Bn" Sin(InY)] e=0. (6-1 -( Ifn 
n 

1 where 00 2 ý -Lh 

(ii) The continuity of surface elevation at the boundary x=L provides 

-(-L)y 
00 

Rie +e Te 2 C2 e C2 
I cl c+ IC,, cos(l,, y) + D, sin(lnY)} - R2e-(L)y 

00 00 E7n Ic 
sin(lny) It Ic 

n COS(lny) + Dn EN 
n COS(lny) + Dn sin(l,, y) 

Iet, L 0) 
1 

Vy e [0, b]. (6-13) 

(iii) The longitudinal velocities at x=0 must vanish, hence 

-L)(y-b L 
00 

R2e-(i )Y- 
Te(C2 )e C2 "f A" " sin (1, y) + -Y,, n COS (lnY) + Bn 

00 
N + ý' -Y, 

I A' cos(l,, y) + B,, sin(l,, y) e- ol L1_,, nnI 

Vy e [0, b]. (6-14) 

6.4 Solution: 

6.4.1 Collocation Method: 

As a first treatment to solve the system of three non homogeneous equations (6-12), 

(6.13) and (6.14) we introduce the collocation method. The equations (6.12), (6.13) 

and (6.14) imply a requirement to invert an infinite matrix. However, we take that 

the equations (6.12), (6.13) and (6.14) hold at a finite set of points on [0, b] with the 

series truncated to an appropriate finite number of terms. 

Now we set up a mq. trix Cx =b system based on 
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the unknown vector, ("fl, 72 1 7Ni 7' ' /I Ri, R2, T)T 
. This means 11 72, -*7N)'Yl 772 "***,. *7N) 

we form one equation from each of the N+1 collocation points, 

Yk 
(k-l) k= 11 21... N + N 

yielding 3N +3 equations. This process is continued for the other two system of 

equations. T is would finally produce a square matrix C of order (3N +3x 3N + 3). 

Now we write this system as Cx = b. 

Then on solving the system of equations (6.12), (6.13) and (6.14) as a whole through 

Cx =b as defined above, we obtain contours for 'cotidal range' and 'phase lines' 

respectively in fig (6.2) and fig (6.3). It can be seen in fig (6.2) that the tidal eleva- 

tion in the shallow water region is much higher than that in the offshore region. The 

highest elevation is experienced in the two corners at the closed end. In fig (6.3) the 

phase-lines are drawn for every -L of the tidal period i. e. for every 30 mins. 24 

Furthermore we can notice the crowing of co-range and co-tidal lines in the vicinity 

of the closed end indicating that the water in the shelf-region is more perturbed than 

that in the rest of the sea. 

Here, it is remarkable to add the following points. 

In solving this problem one of the boundary conditions used at the boundary x=L 

above is 'Surface elevation is continuous across the boundary'. It can then be ex- 

pected that if the elevation is continuous then the gradient of the elevation may be 

discontinuous. 

Fig (6.4) is drawn examine this conjecture. In the middle and the last parts of this 

figure, plots of both imaginary and real parts of the elevations in the mid-channel 
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and the coastal-ends respectively are given. On the top part of the figure is given the 

contours for the tides, so that the comparison can be made easily. It is clearly seen in 

105 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

Tidal Range 

2.8m 2. Om 3.2m 2.4 

--2-2m 3. Om 
1.8 

11.6m 
E 

.4 

0 

in op 

3. Om 1.6m 

6m 2.6m 
1.4 

1.8m 

2.4m 
3.2m 2.2m 

2.8m 2. Om 

0' 
0 123456 

0, 
Step: Length= 524039.305metres, Height=30metres 

Figure 6.2: Parameters: hl=60 m, o- 
= 12 hrs 

89 10 

X 105 

0.0001454 sec-1, f==0.0001188 sec-1 and T 

fig (6.4c) that the elevation gradient is discontinuous at the boundary. Interestingly, 

this is less pronounced in the mid-channel but more so near the lateral boundaries. 

6.4.2 The Numerical Model: 

The intention here of having this numerical counterpart is to serve as a numerical 

check on the analytical solution obtained above. 

As before we consider an incoming Kelvin wave defined by 

L i(kx-ot) 
ae- c 

Ye 
1 (1) 

Ly i(kx-ot). 

hcer 
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X 105 Tidal Range and Co-tidal lines 
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Figure 6.3: Parameters: h, = 60 m, a=0.0001454 see-', f =: 0.0001188 see-' and 
T= 12hrs 

propagating from north to south in a semi-infinite channel of length, A, and the 

width, b, in an area where the geographical latitude is 50 ý! north so that the coriolis 

parameter is f=0.0001169 sec'. The sea bottom is of abrupt change in depth where 

the constant total depth is ho = 60 meters and the bathymetric relief is defined by a 

step of height 30 m and length 524-0393 km extended right across the width of the 

channel. By taking the period of the semi-diurnal tidal wave as T= 12 hours, we 

take the length, A, analysis domain in kilometers as A= (Vfgho *T* 3600)/1000 

1048.08 =I reference wavelength. 

In discretization of the length and the width of the channel, M= 224, N= 85, see 

the fig (6.5) so that the width of the analysis domain can be chosen proportionally as 

b= 14- *A= 394.792 km. Thus the length and the width of the basin are discretized 
223 

by 224 grid points x-direction and 85 grid points y-direction. It means Ay = Ax 
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X 105 Step model details: Tidal Contours; Midstream and Coastal tides. 
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Figure 6.5: 

has the value of 4.69991 km. By considering 300 time steps per tidal period, which 

corresponds to Zýt = 144 seconds, we integrate the system in space and time for 50 

tidal cycles. 

The integration is performed using the FD equations as follows. 
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6.4.3 The governing Finite Difference Equation: 

We refer the following FD equations (5.28), (5-29), (5-30), (5.31), (5.32) and (5-33) 

from chapter-5 

zp+l zp+l AI(t)ViPj" = A2(t)Vipj- Ap+ C2 At f At i+lj 
)-( 

ij+l 
1(6-15ý 

3 
(t) Uij 

_ii 
- ziýll'j zivjýll 

2 2Ax 2Ay 

where A, (t) = [I +1 (f At)'], A2 (t) = 
[I 

_I 
(f At)2] 

44 

Up Uý +1f At (VP+l + VP) 
- -2 

zip++lli - ziý+-llj 

ii+ ij 2 ij ij Clj At 
2Ax 

11 uip+l, j - upi-ij vipj+i - vipj-t 
zip, 

j+ = zipj 
-- Lt ZJ 

21 Ax Ay 
I- 

P+l P+l P+l P+l rp+l Vi)3 
4! -V'-', 

j+l + V'+', j+l + V'-', j-l +ý i+llj-11 

UP+l rp+l + TT-P+l + UT+1 + ur+l 
4 -i+l, j+l i-l, j-1 i+l, j-11 - 

Z1 +1 +1 +1 P+l P+ P-i .11 ', j ý4 [Zý 
1, j+l + Z'+', j+l + Z'ý-', j-l + Z'+', j-ll 

and A3 (t) :`f At 
- 

(6-16) 

(6-17) 

(6-18) 

(6-19) 

(6.20) 

We also refer the equation for the boundary condition at x=0 from chapter-5. That 

is, 

C1 +' 
h2 *1 =1 (6.21) 0) 

ip, 
+j (1 (3pj 

- 2()'up2,, - 4ae sin(ot). 
9 

where, #= "L' 
, i! lx 

6.4.4 The propagation of a Kelvin wave into a basin closed at one end: 

Firstly, by using the FD equation (6.17) we update the elevation at interior points of 

the mesh. These points are, here, termed as 'elevation points' and denoted by symbol 
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, ýýVvelocity is updated Y-velocity is interpolated at interior X-velocity is interpolated 

elevation is updated 

Zýd 
U-points 

'L at interior V-points. [] Y-velocity is updated 
elevation is interpolated at coastal end, along sides, end-points on open boundary of channel and atU-points, 
V-points, null points. 

i 

Figure 6.6: 

in fig (6.6). Then using the boundary value (6.21), elevation is updated along the 

open boundary x= 

Now, by using the equations (6.15) Y-velocity is updated at interior V-points. These 

points are denoted by symbol []. Having updated these Y-velocity at interior V- 

points, Y-velocity is interpolated at interior U-points by using the FD equation (6-18). 

Similarly, by using the FD equation (6.16) we update the X-velocity at interior U- 

points. These points are denoted by zL 

Finally, using (6-19) the X-velocity is interpolated at interior V-points. This process 

continues for all 49 tidal periods. Then for the final tidal period the updated elevations 

plug into (5.22) of chapter 5 and the product is obtain for some specific mesh points 
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(iei= 1, M-1 2; j=2, N-1,2) and the integration process is repeated for whole 

tidal period. The final sum at each specific mesh points is multiplied by -t2-. P 
Finally the integrated elevations are interpolated at U-points, V-points, null points, 

coastal end, along sides and end points on open boundary of the channel to obtain 

complete solutions in the whole domain. 

6.4.5 Result: 

In fig (6.7) is shown the tidal range in a basin of length 1048.07861 km and width 

of 394.791 km approximately when a Kelvin wave with forcing wave height of 0.75 

meters propagating into the channel with constant total depth of 60 meters. The 

wave in its passage encounters a step bottom of length 524.039 km and height 30 

meters. 

It can be seen that in the lower right and left corners of the basin the tidal height is 

much higher than that in the rest of the sea. 

In fig (6.8) given co-tidal lines which are drawn for every ' of the period or for every 24 

30 mins. 

6.5 Comparison: 

The accuracy of the solutions is tested by performing a mid-channel comparison 

where the plots of elevations in the mid-channel for both analytical and numerical 

treatments are given in fig (6.9). Here, the red-color curve represents the numerical 

solution whereas the blue-color curve represents the analytical solution. In compari- 

son it can be seen a good matching of the two solutions of the problem. 

In the above comparison we have considered elevations only in specific area of the 

channel (i. e. along the mid-channel). Though this set of values acts as a representa- 
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tive of whole region of analysis it is desirable to consider the overall estimate of the 

error between analytical and numerical values. For this reason we define a way of 

evaluating the error between the analytical solution and numerical solution. 

Error Norm 

1D - Ltoot mean square error 

RMSE 
1: '((ZANA(i, j) - ZNUM(i, j))2 

N 

where, 

ZANA(i, j) and ZNUM(i, j), where(i = 1,2,3... and j=1,2,3 .... 
) denote respec- 

tively the tidal amplitudes obtained analytically and numerically and N is the number 

of computational points. 

The 'Root mean square error' (RMSE) is merely a single number that defines differ- 

ences between actual values (observations) and the response predicted by a model. 

This simple small error value (RMSE) implies that the results predicted by these two 

mutually independent methods are significantly the same. It also evident that the 

results produced by them represent over 95 % of the true value of the tidal wave. 

RMSE = 0.0160 metres. 
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Chapter 7 
Propagation of a Kelvin wave over a step in a 
rotating channel 

We consider here the effects of abrupt change in depth on an incident Kelvin wave in 

a rotating channel. 

We now consider a further generalization to Taylor's problem. In this model two 

intercommunicating semi-infinite channels of different uniform depths meet at x=0. 

The horizontal coordinates are (x, y), defined such that the channel occupies the re- 

gion x>0,0 <y :5b with the uniform depth h, and x<0,0 <y :5b with uniform 

depth of h2 as shown in fig (7.1). 

4 
Transmitted wave 

-Incident 
wave 

ht 

Reflected wave 

X-0 

Figure 7.1: Schematic representation of the cross-section of the sea 

7.1 Defining equation: 

The incident and relqected wave in the region x>0 are defined by 

e cl cl 

-(-L)Y+i(at--ý-x) CR =Re cl cl 

(7.1) 
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where R is a complex constant to be determined. 

Similarly, in the region x<0, we have the transmitted Kelvin wave defined by 

c2 
)(b-y)+i(ut+ x) Te-( L 

c2 
1 

where T is a complex constant to be determined. 

(7.2) 

In order for suitabh conditions on x=0, y=0 and y=b to be satisfied it is 

necessary to have an end-effect. The end-effect may be written as sets of Poincare' 

modes in a manner similar to the classical closed end problem as described in a pre- 

vious chapter(4). 

Thus, we write 

00 

vi 
g 

-y,, sin(l,, y) e-SnX+iat 
Cl 

00 

ul = (-9-) -yn jAn cos(lny) + Bn sin(lny)l e -Snx+iat 
I Cl 

00 

7,,, f C,, cos (1, y) + D,, sin (1, y) Ie -Inl+iO" for x>0, and 

00 

V2 
g J,, sin(l,, y)e 

tnx+io't 

C2 

00 
9 tnX+iO't 

U2 - (-) 1: 6n f Hn cos(l,, y) + L, sin(lny) Ie 
C2 

1 
00 

(2= M,,, cos(l, y) + N, sin(l,, y)} e 
tnX+iat for x<0. (7-3) 

Here 

n7r 
s2 12 

-k2 
t2 = 12 

-k2k22- 
f2 

k2 
ol 2- f2 

ln 
nn 17 nn 2) 122 b cl ci 

The above sets of Poincare modes satisfy the linearized momentum equations in the 

respective regions (x >0 and x< 0). 

178 



Thus by introducing these Poincare modes into the corresponding momentum equa- 

tions we obtain the following set of equations: 

hik 2(_g_) 
I Cl 

ý fSnDn 
- il7lnCni 

0f SnCn + iO'lnDn) 

hik 2 (-ý-)An " fl,, Dn - 
i6SnCni 1 

Cl 

hik 2(_ý_)B 
n 

lnCn 
- iUSnDni 1 

Cl 

From these there follows 

Cn=-,,, 

2 
An = 

SnlnCl 

Al 

where 

Dn -f SnCl 

Al I 

-io'f Bn 
A, I 

or 2 +s 2c2 f2 + 12C2 
nI=n1 

h2k 2(j) 
ý -ftnNn - iO'InMni 2 

C2 

0ý -ftnMn + iO'lnNni 

h2k22( 
-2- 

)Hn f lnNn + iO'tnMn) 
C2 

h2k 2(_g_ )L,, lnMn + iUtnNn- 2 
C2 

Mn = 
TUlnC2 

L2 

2 
Hn = 

tnlnCý 

L2 

Nn -ftnC2 

JL2 

Ln 
- 

-io7f 
A2 

2+ t2 2222 
and 2ý 2= 0' Cý f+1.4 

7.1.1 Boundary conditions at the step: 

(7.4) 

At the step it will be necessary to match flows on either side. The shallow water 

problem for a step was treated originally by Lamb (1932§176). He applied continuity 

of total mass flow perpendicular to the step. Also he invokes a second condition, the 

continuity of the sea surface elevation at the position x=0 of the discontinuity in 

the depth. 

These boundary conditions are therefore x=0. 
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(i) The continuity O. -L mass flux across the boundary: 

hl( cly -CL (y - b) (y-b) 
00 9 

)Re- -L - hj(-ý-)e + h2(! )Te L+ hi n COS(lnY) + Bn sin(InY)l Cl Cl 
c2 (1) 1: ^f,, [A 

C2 Cl 
I 

00 

-h2 
(-ý-) E Jn [Hn COS (1,, Y)+ Ln sin(lny)] =0Vyc [0, b], (7.5) C2 

1 

(ii) The continuity of surface elevation at the boundary: 

- (-L)y (-L)(y-b) 00 
Re' Te C2 IC,, cos(l, y) + D,, sin(l,, y) 

00 

- 
5ý 5� f M� cos(1�y) + N�, sin(1�y) ý= 

1 
VyE[O, b]. 

, 
(7-6) 

7.2 Methods of Solution: 

Two essentially different methods of solution are investigated. 

7.2.1 Collocation Method: 

On rewriting the system (7.5) in a suitable form, we obtain 

00 
-L)(y-b) 

4 )(y-b) Re-(-L)y ei e( + ßTe(-C2 +Z -y� [A, cos(1�y) + B� sin(I�y)] 
1 

00 

-ß 
Z 5� [H� cos(1�y) + L� sin(1�y)] = 0. (7.7) 

1 

where #2 hz). 
hi 

The equations (7.7) and (7.6) imply a requirement to invert an infinite matrix. 

We take that (7.7) and the equation (7.6) hold at finite sets of points on [0, b] with 

the series' truncated to an appropriate finite number of terms. 

We set up a matrix Mx=b associated with the vector, 
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(71,721 73) ....... i -fN) JI, J2, J3 
. ........ 

JN, R) T). This means we form one equation 

from each of the N+1 collocation points. 

Yk 
(k - 1)b 

k=1,2,3, .... N + 1, 
N 

yielding 2N +I equations from the two systems of equations. 

7.2.2 Numerical Evaluation of Solution: 

In solving the above system we obtain the reflection coefficient, R and the transmit- 

ted coefficient, T. 

In fig (7.2) is given the variation of the reflected coefficient with respect to the depth 

ratio -h-?,. As the depth ratio increases the I RI decreases allowing more incident energy hi 

to be transmitted through the system to the other side. 
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Figure 7.3: Tidal range for the case hi = 74 m, latitude=54.46ý and 02 = 0.1351 

The surface- elevation contours and phase lines contours, drawn for the case where 

h= 74 m, lat = 54.462 and 3' = 0.1351, are shown in fig (7.3) and fig (7.4). These 

are shown for the region x>0 only. 

A maxii-num value of amplitude of about 1.46 m high (see fig (7.3)) can be seen in 

the co-ordinate point near the right hand corner of the basin. 

Fig (7.4) shows 

(1) Co-tidal lines which are drawn through the points where it is high water at any 

specified time and represents the height of the tidal wave. 

(11) the lines of equal tidal range to show the amount of rise and fall of tide in different 

parts of the basin- 

The co-tidal lines are drawn for every 30min (or rather for every -L part of a period). 24 

1 2) ý\\ \X). 
28m\ 
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Figure 7.4: In fig (i) is given tidal range and co-tidal lines and in fig (11) is given tidal 
range for the case hl = 74 m, lat= 54.40 and f =0.0001 188 sec' 

In this figure we are able to identify the amphidromic displacement which is toward 

the side of the reflected Kelvin wave. This displacement is caused by the topograph- 

ical change. The figure shows also that the first amphidromic point is closer to the 

reflector (step in the channel) in x-direction whilst the second amphidromic point lies 

further from this region of the channel. 

As T. Brown [4] put it in his thesis; an important feature of the North sea tide which 

Taylor fails to explain is the easterly displacement of the Northern amphidromic 

point. It can be further seen in chapter 2 of this thesis that a lateral displacement 

of an amplildromic point is associated with an imbalance of the amplitudes of com- 

ponent Kelvin waves. Thus in this case the easterly displaced amphidromic points 

indicate that the reflected Kelvin wave is of reduced amplitude. This also can be 

noted in fig(7.3) and fig(7.4). 
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S. Rizal ([32]) carried out experiments in a semi-enclosed rectangular basin in or- e 
der to study on 'influences on spatial distribution of real and virtual amphidromes' 

and displayed the distribution of amplitude, phases for various geographical latitudes. 

She indicated that the oceanic areas in low geographical latitudes such as Malacca 

Strait, (latitude, 0- 32) and Yellow Sea, (latitude, 0- 302) virtual amphidromes 

are important features of the tides. In the main basin of the North Sea also, (lat- 

itude, 0- 54.462), as she pointed out, there is only one real amphidrome but one 

semi-real amphidromic points can also be observed. Thus in examining the figures, 

(7-5), (7.6) and (7.7) it can be noted that as the depth ratio increases, besides the 

lateral displacement of the amphidromes eastward, there is great tendencY to have 

virtual amphidromes: and this is well away from the central axis. This means that the 

topography of the basin plays an important role in wave dynamics. In other words, 

the topographical effect can have significant effects on tides in the North sea. 

In the work of Hendershott and Speranza Q34]) they described the displacement 

of amphidromic points from the central axis of semi-enclosed basin as a measure of 

tidal dissipation. Further they state that this dissipation is strongly localized at the 

head of channel. So, in examining the distribution of co-amplitude and co-phase lines, 

in figures, (7.5), (7.6) and (7.7) particularly in the nearshore there is a reduction in 

tidal amplitude due to the sudden discontinuity in depth distribution. 

In fig (7.8) are illustrated trapped Poincare modes. In the first figure the outgoing 

Poincare wave is on the reflected wave side whereas in second figure it is on the 

transmitted wave side. Further in the first figure it is noted that the Poincare modes 
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Figure 7.7: 

are concentrated toward the same side as the incoming Kelvin wave and the effective 

Poincai-6 wave movement is centralized on the transmitted wave side. 

In fig (7.9) are shown range and phase lines at two different geographical locations 

(ie. 502N, 54.462N) respectively. On examination of these contours we see there is 

not much significant change in effect. 

In fig (7.10) are given the distribution of amplitudes and phases for various geograph- 

ical latitudes (ie latitudes, 0 = 32(Malacca Strait), 302(Yellow Sea) and 54AV (North 

Sea) 
- 

Here it is interesting to note how models with associated bottom topography can 

predict tidal behavior in different geographical locations. On comparisons, one can 
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see the dependence of the tidal phenomenon on geographical locations. This confirms 

the significant role the earth's rotation (i-e the Coriolis force) plays on tidal waves. 
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Figure 7.10: 

Fig (7.11) shows range and phase lines for the North Sea drawn for varying high fre- 

quency tidal waves, with oscillation periods as follows, T=6 firs, 6.2 firs, 6.4 firs and 

6.6 firs respectively. On inspection of these contours we notice that the greater the 

oscillation period of the tidal waves the greater the shift of the amphidrome towards 

the east. Moreover the crowding of the Pmncar6 mode on the incoming wave side 

is a dominant feature of the system. The crowding intensifies as the wave periods 

increases. 

In fig (7.12) we contour range and phase lines for the interaction of the incoming 
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Figure 7.11: 

Kelvin wave and the topography change with the similar parameters of the system 

but the effect of the earth's rotation (le the value of the Coriolis parameter) is dou- 

bled this time. Here again the system of amphidromic points moves eastward as the 

ratio of depths Výh2/hj) increases. The effect of the topography change is very 

remarkable in this case. 

The fig (7.13) displays the distribution of tidal range in a basin of length about 1048 

km and width about 395 kTn incorporated with a step bottom of length about 524 

kTn and height 15 m situated in a locality where the latitude is 54.7P. The constant 

depth of the channel is 74 m. It can be seen in the figure that on the west coast 

of the shallow water region experiences high tides and the Poincare mode manifest 

predominantly. NN, e observe two amphidrornic points, one occurs in the shallow water 
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Figure 7.12: 

region and other one occurs in the region where the depth of the channel is 74 'M. 

These two amphidromic points are found on the eastern side of the region. 

7.2.3 Fourier Series treatment of the step problem: 

The second method of solution examined uses a Fourier Series treatment across the 

channel. 

We refer to the equations for the incident, reflected and transmitted waves respectively 

from the section-I of this chapter. 

In the region x>0 we take the same ansatz as in the chapter-4 for the Poincar6 

waves. 

We also refer to the consistency requiren-lents arising from the momentum equations 

for the u, v Poincare contributions from chapter-4. 
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Figure 7.13: Distribution of tidal range in a basin of length 1048 kin and width about 
395 km incorporated with a step bottom of length 524 kin and situated in a locality 
where the latitude is 54.7V. The constant depth of the channel is 74 in. 

In the region when x<0 the Poincar6 waves can similarly be written as 

00 

IV 
(2) 

= ED' sin(vy)e'-'+iot pm 
m= 1 

0c) 
u (2) (A' cos 1, /my + iB' sin 1, /my)et'x+'Ort. (7-8) 

pm 

Where now we have t2 = ,, 
2 

-k2 and k2 C2 = a2 f2 
mm222 

Now for the case x<0, we have the consistency requirements for the u, v' Polilcar6 

contribution as 

vmA' - t, D' 
f 

t, B' 
mm rn) 

vmB' +f vD' 
ft 

A' 
mJ 771 

or 
m M, 

NVe wish to place the step at x=0. Then 

(1) the condition of continuity of total mass flow perpendicular to the step at x=0 
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is 

00 

Uk + OU' + E[A, cos(v�, y) + iB, sin(P�y)] k 

00 

-ß 
E[A' cos(v�, y) + iB' sin(v�y)] = 0. rn 

1 

where 

VYE [0, lr]. (7.9) 

-LY -L Uk= Re- cl ecly=(R-I)cosh(aly)-(R+l)sinh(cely), -L=cel. cl 
LY 

u' = 
Te'c2 

=T cosh (a2 Y) +T sinh (a2 Y)) a2 k C2 

(2) the condition of continuity of the sea surface elevation at the position x=0 of 

the discontinuity in depth is 

00 
(k + [a,, cos (v,,, y) + ib,, sin (v,,, y) 

00 
- 

1: [a' cos(v,,, y) + ib I sin(v .. y)] = 0. Vyc [0,, 7r]. (7-10) mm 
1 

where 

cl cl (k= Re--L' + e-L' = (1 + R) cosh(aly) + (1 - R) sinh(cely), I=a, 
Cl 

L 
Te-C2 '= T cosh(Ce2Y) +T sinh(a2Y) Ce2 C2 

where 8' == 
(-h-2, ) 

hi 

and 3 relationships between coefficients (Am) am), (Bm, bm), (A' 
, a' ), (Bý, b' 

mmm 

IIII To find relationships between (a, A, ), (b, B, ), a,,,, A,,, I bm 7 Bm 

We invoke the velocity field and the consistency requirements for the Poincare modes 

on the reflected wave side as given in (7.4) in section-2 of this chapter. The surface 

elevation of the Poincare modes as considered above is 

00 
smx+iat ja.. cos(v,,, y) + ib,,, sin(v,, y)} e- 
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We recall the continuity of mass equation, 

h 19U + 
av] a( lax 
ay at 

By substitution into this equation we obtain 

(gh, ) 
00 

Cl 
[(vmDm - smAm) cos(vmy) + i(-smBm) sirl(vmy)] e-'-'+" 

Thus we obtain from these equations, 

a, 
igh, [(v .. D,, n - snA, )], bn - 

igh, 
smBrn, (7-11) 

UCJ acl 

Similarly, we invoke the velocity field and consistency requirements for the Poincare 

modes on the transmitted wave side as given in (7.4). The surface elevation of the 

Poincare' modes as considered above is 

00 
tnX-iat 

am cos(vmy) + ibm sin(v .. y) 
Ie 

As before, from the continuity equation we obtain 

00 
Lh2 [(vmD' + tmA' ) cos(vmy) + i(tmB' ) sin(vmy)] e tmx-iat 

C2 mmm 

We obtain from these equations 

ih igh2 ýgfI2 
a 

[(vD' + t,,, A b' (7.12) 
UC2 mmm OT2 

Now, we express the Kelvin wave system in (7.9) in Fourier series. We formally write 

I 
Uk an Uk"'t*5 

Uk (R - 1) E A,,, cos(v,,, y) - (R + 1) E tt,,, sin(v .. y) 
M=o M=l 

t 
uk =T ZX' cos(v�, y) +T1: g' sin(v�, y) 

m=O m=l 
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where 

AM (-l)M 2al sinh(alb) (_, )m+, 2vmsinh(alb) ýM- A and a, (VM2 + a2 1)b 
(,,, 

m2 
+ oe2 1)b Gel m Cl 

Am' 2a2 sinh(Ce2b) 
(VM2 + a2 2)b 

I 21/m sinh(C12b) V, AI /-Im 
(Vm2+ 

a2-m 2)b Ce2 
and a2 -f C2 

Incorporating the above form for jL and [Z the expressions (7.13) can be re-written as 

Uk (R cos(vy) + (R + 1) E v' A, sin(v,,, y). 
cel M=o M=l 

A' cos(vmy) -T 
vm A' sin(vmy) (7.14) Uk 

M=o 
m 

M=l 
Ce2 m 

Now, for convenience, we write 

am = A, + (R - 1)Am, ce /= 
-A' + TA' and mmm 

II Om = iBm - (I + R)pm, = -iBm + Tltý) (7.15) Om 
m 

By taking A0 =0 and A0 =0 the boundary condition can then simply written as 

00 00 I ao +E (an COS v,, y + Om sin vmy a0+E 
(a/ 

COS VmY + sin v,, y 0. (7.16: 

M=1 

11 +0[ 
M=1 

M 
0M, 

I 

but this is only a half-range series, we cannot equate terms to zero in the usual way. 

Thus first, we simply integrate (7.16) from 0 to b. This gives 
00 00 

Irao + lom + 7ra + 
(0ý(l 

- (-l)M) 0. (7.17) 
m 

M) oEm 
M=l 

( 

M=l 

where 

ceo = (R - 1)Ao/2) aI= TAO/2. 0 

Now, we multiply the equation(7.16) by cos(v,, y) and then integrate from 0 to b gives 
00 

an +2 
00 MP'll (1 

_ 
(_1)m+n) + Of' +21: 

12 
iýE M2- n2 n 7r ,f M2- n 

(1 
_ 

(_l)m+n) = ol 

mgkn mon 

n=1,2,3. (7.18 

194 



In deciding how to deal with the system we remember that a, and #,,,; ý and am flý 

are related through the consistency relations 

(irm - (i r,,, + L-- ) A,,, Pý (irý + ! L--)T, \ I 
am -OM 

+ Qj Cil I=-+ C(2 m. 

m 
(7-19) 

irm irm irm ir' ir mm 

where 
AjIL 

rm 
Am 

and 
fa 

Bm rm) 7 BM' rm vMtMci 

Now, the system of equations (7.17) and (7.18) can be written as 

7r(R-1)Ao+ Z (Lm(1-(-1)'»l 
+ß 7rTAO + 1: 

m 

' (1ý(1 - (-1)M»] = 0. m=l m m=l 

N (irn 
-n)RAn 

(irn + --a) An 2 On 
al CX1 + 

MOM 'n 
_ 1) m+n) + pfln + 

ir 
+ 

ir ir 7r M2- n2 ir I 
nnn mon n 

N (ir' + "n)TAn 2,3 1: m n C12 
I 

M2 
laý 

2(l 
1)m+n) = 0, n=1,213 ........ 

(7.20) 
i rn' 7r 

mon -n 

In a similar manner, we express the Kelvin wave system in (7.10) in Fourier series. 

ý as We formally write (k and C, 

(R + 1) E A,,, cos(vy) - (R - 1) 1: M,, sin(vy), 
M=o M=l 

T A' cos(vy) +TEpI mm 
M=o M=l 

where (A, M) and (A' 
, IL' ) have the usual meaning as defined in (7.13). 

MM 

For convenience, we write 

II 
+ (R + 1) Am) -ym =a + TA' and mM 

ibý + TpM 

(7.21) 

(7.22) 

By taking ao =0 and ao =0 the boundary condition (7.10) can then simply written 

as 

00 00 
cos vy+ sin v,,, y 0. (7.23) 

, 70 + cos v .. y+6,,, sin v,,, y) 70 + ym m 
JM 

M=j M=l 
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We perform similar integrations as before. 

We obtain the relationships between -y, and 5,,; and Jý using consistency relations 

(iRm - (iRm + 6ý (fflý +Mn)TA' Jm al cel mI C12 in IYM = iRm + iRm + iRm "- i-Rý + iRý ,1 (7.24) 

where 
1+ V-f 12 MME and r- = -7- - tmf b,, n - W; ý' Rn rm SMO"I /-z 

I 

SM 

I 

bm rm 

Now the system of equations to be solved can be written as 

N 

+ 
(ir 'n ) RAn (irn + "N An 

+2-m (_ 1) m+n) + p0n 
On 

n ce, Cil 
om 

?rE M2 2(l i'rn irn irn 
m: ýkn -n irn 

(ir' + 'n)TA' 3N Mpý (I 
13 _n 

C92 n+2 

M2 2 
(_1)m+n) 0, n ir' 7r -n n m7ýn 

(iRn - "j-)RAn (iR,, +-, "IL)/\n 2 M6, (I Jn- 
+ al ++_ (_, )m+n) _ 

6n 
2- n2 iR' iRn iR,, iR,, 7r m76n 

Mn 

(iR' + n a2 
__n _2E 

mäý 
2 

(1 _ (_1)m+n) = 0, n == 1,213 ..... 
(7.25) 

M2 iRn 7r 
mon -n 

N om 
ol 

7r(R - 1)Ao +E+[,, TA' + 1: I 

M=l 

(m 

M=l 

N Jm 
(1 - 

(-I)M)) - 

[7rTA' 
+ 

6rn 
(I rn) 0. (7.26) 

7r(R - 1)Ao +m0m 
M=l 

(- 

rn=l 

7.2.4 Numerical Evaluation: 

We consider the first N finite terms of the first series of (7.25) associated with vector 

ýj Oýj (01) 02,03, 
.... 

ON) and another N terms associated with the vector 0' -ON) 
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Similarly, N terms of the second series of (7.25) associated with vector (Ji 
I 

J21 J3) 
.... 

6N) 

Ol I 
and another N terms associated with the vector 1, Jý, are considered. Then 

we define a matrix system based on the unknown vector, 

(011 02 
-ON) 

011 02,611 J2 
-JN) 

Ji 
i 

J2) 
-6N, R, T), 

there exists 4N +2 constants to be determined in (7.25). Thus we construct matrix 

system of matrices, A, b and x of orders, ((4N + 2) x (4N + 2)), ((4N + 2) x 1) and 

((4N + 2) x 1) respectively by truncating each series in the system (7.25) to N terms. 

By solving the matrix system, Ax=b, the reflected coefficient R and the transmit- 

ted coefficient T can be obtained. 
Ph 

The system is solved for the parameters' values h, = 74m, lat = 54.46Q and hl =0.3076 hi 

and plotted in fig (7.14) and fig (7.15). 

7.2.5 Results and Discussion: 

Having obtained the solution, the vector (01,021 ---ON) .... 
ON+D ON+21 AN) can be 

used to evaluate the coefficients B, - 

Bm = -zu [ß�, + (1 + R)lLm], 
u+ ißcs�, 

v�A�, f B�, 
Dm - sm u' 

Similarly, on the transmitted wave side we obtain 

Bm = co + ic, tm 
+ P)TILml 

1 
t A' uB; � m Dm =- VM 

Am = 
Bm 

md r. 

Bý 
and 

rm 

(7.27) 

(7.28) 
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We contour the tidal range C using the formula 

u( . 
au av 

= -Z -+ 
(ax 

OY) 

The contours are obtained in fig (7.16) and fig (7.17) for transverse velocity profile 

for Poincare modes. 

In fig (7.18) we see transverse velocity profiles for Poincare modes both in reflected 

and transmitted wave sides. 

Two sets of contours are given in fig (7.19) and fig (7.20). In both figures the cotidal 

lines at 30 mins intervals are plotted. In the second figure, the stronger influence of 

the earth's rotation is considered more than the first figure. By examining the figures 

(7.12), (7.19) and (7.20) one can observe a common physical phenomenon. The east- 

erly displacement of the amphidromic points is striking evidence one can find from 

these figures. This displacement increases as the depth ratio, 3 increases. 

Another important phenomenon demonstrated in these figures is the displacement of 

amphidromic points from the step in the south towards the north as 0 increases. 

In fig (7.21)given the variation of amplitude of the reflected wave and transmitted 

wave for sequence of values of the ratio 3' -h-a. The amplitude of reflected wave hi 

decreases and transmitted increases as the ratio (h2/hi) increases. 
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Poincare waves on the reflected wave side for h=74m, lat=54.46degree, beta=0.3676 
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Figure 7.16: 

Poincare waves on the reflected wave side for h=74m, lat=54.46degree, beta=0.7352 
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Poincare waves on the reflected wave side for h=74m, lat=54.46degree, beta=0.9372 
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Poincare waves on the transmitted wave side for h=74m, lat=54.46degree, beta=0.9372 
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X 105 Range and phase lines, beta=0.1351, lat=54.46, T=12hrs and f=0.000118seC- 1 
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Chapter 8 

Propagation of a Kelvin wave over a slope-like bot- 
tom topography in a Semi-infinite Canal open at 
both ends 

This is a semi-analytical study of Kelvin waves in a depth-changing canal. 

In Taylor's model he considered an idealized North Sea in which the depth and width 

are both taken as uniform. However) it is documented that the depth near the Danish 

coast is only just less than 37 m (120 ft) and the depth near the English coast is about 

15 m (50 ft). The North Sea reaches its greatest depth off the coast of Norway. 

By considering the above variations in depth, we assume a model which is somewhat 

more realistic than that considered earlier. 

8.1 Kelvin wave in 2 semi-infinite canals connected by a short 
sloping sea-bed: 

ax 

x= -L 

X--o 

Figure 8.1: Cross-sectional view of the sea 
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8.2 Formulation of the Model: 

We first rewrite the system in the constant depth regions. 

The incident and reflected wave in the region x>0 are defined by 

ce(y-b)+i(at+-E-x) 
e cl 

Y+i(O't- -ý! -X) (R= Re" cl 

where C, t, g and b are surface elevation, time, gravity and the width of the channel 

respectively. 

Also a, a, and cl are positive and 

22f 
cl = gh, 2 and ce 

a Cl 

Here c, is the velocity of the long wave in the absence of earth's rotation in the region 

> 

If UI) VI) UR) VR are the corresponding depth averaged velocities then 

UI = (--)(II UR = (-)(Ri VI = 0) VR = 
Cl Cl 

Similarly, in the region x< -L, we have the transmitted Kelvin wave defined by 

, (y-b)+i(at- -E-(x+L)) (T= Te' C2 (8.2) 

where, a, a', andC2 are positive constants such that 

2 ol 21f 

C- gho =- and ce =-- (Cel)2' C2 

HereC2 is the velocity of the long wave in the absence of earth's rotation in the region 

x<-L. 

The associated depth averaged velocities are 

UT := (- 9 XT, VT = 
C2 
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The sets of Poincare modes that emanate from the boundaries x=0 and x= -L 

are respectively written as, 

00 
vi g 

sin (l.,, y) Cl 
00 

Ul 9 
-yn JAn COS(lnY) + Bn sin(lnY) Ie-, 5nX+iat 

Cl 

00 

-Yn f Cn cos (lny) + D, sin (lnY) Ie -In'lill for x>0 and 

00 9 t, (x+L)+iat V2 
C2 

7n Sin(lnY)e 

00 
'f A' ln(x+L)+iat U2 7-:: (-ý-) ENn 

COS(lnY)+ B' sin(lnY) 
Ie 

C2 
1n 

00 
(2 ::, "": 

E 
7' C' cos(l,, y) + D' sin(l,, y) e 

tn(x+L)+iat for x< -L. 
1nnnI 

where, as before, 

(8-3) 

s2= 12 
-k2 

t2 = 12 
-k2k2 

07 2_ f2 
k2 

01 2- f2 

and 1,, 
n7r 

nn 17 nn 21 122- 
ci C3 b 

8.3 The Sloping region formulation: 

The shoaling region is divided into just three sections as illustrated in the diagram. 

It will be assumed that the flow is 'known' at both extremities of the slope and the 

finite difference form of the equations of motion can then be used to continue the 

solution into the interior. This is done from both ends and finally the middle section 

has dependent variables computed from two sides. Their equality is then tantamount 

to the application of a boundary condition as in earlier work. 

Clearly the technique is extendable, in principle, to any odd number of sections. In 

the interest of brevity we here take the simplest configuration. 

Thus the basic procedure is adopted here with only two sub-intervals on the slope in 

205 



ave 

Figure 8.2: 

order to facilitate description of a possible technique. 

By integrating the continuity equation at across the section x=0, (see fig (8-2)), 

obtain, 

(hu), j 
2J 

(hu)., 
=-5 ý ((hv)y)., 

=o + io, (C)x=o = 0(6). for small step-size 2ý, (8.4) 

where the first term in equation (8.4) is obtained using Taylor's theorem, 

f (a + h) =f (a) + hf'(a) + O(h 2). 

Similarly, on integrating the continuity equation at across the section x= -25 which 

is the other boundary of the bathymetric region obtain, 

(hu)., =-& - 
(hu)x=-36 

26 
((hv)y)x=-25 + iO'(()x=-25 = 0(b)- (8-5) 

In a similar manner by integrating the first momentum equation at across the section 

0 obtain, 

«X=, 6 G=-6) 
= iuu., =o - 

fvx=o +0 (5) 
- 

(8-6) 
26 

Similarly, the momentum equation at across the section x= -26 is written as 

C. 
T=-36 iUU.,, 

=-2,6 - fVx=-26 + O(J)- (8-7) 
2J 
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8.3.1 Boundary Conditions and their application: 

We apply the following two conditions. 

(i) The continuity of total flux across the section x= -J. 

(ii) The continuity of surface elevation at any vertical cross-section. 

Using the relation (8.4) we obtain the total mass flow across a vertical cross-sectional 

area at, x=-J, in terms of field variables, (u, v, () in the region x>0 where 

UýUI+UR+Ul) V=--VI+VR+v, and(*= (I+ (R+(,, 

(hu) gh, (y-b) ip6 
00 

-, 6 Re"Ye'P6 - e' e+ -y, [A,, cos(l,, y) + B,, sin(l,, y)] e-'-6 + 
C, 

gh, -b) 26 cos(l,, y) + iaRe-"Y + io-e'(y + io, -y,, [C,, cos(l,, y) + D,, sin(l, y)] 

where a=f and P=O' cl cl 

In a similar manner using the relation (8.5) we obtain the total mass flow across 

a vertical cross-sectional area at, x=-J, in terms of field variables, (u, v, () in the 

region x< -L whereU --= UT + U2) V == VT + V2and C= (T + (2, 

gho) 00 1 tm(L-35) (y-b p'(L-36) (hu),, =-6 =(E' 
[A 

cos(l,, y) + B,, sin(l,, y) e- Te" Y 
C2 

1 

7n n 

00 
(y-b p(L-2J)+ (gho tn(L-26) 

2J iaTe" Y 
C2 

) E(ln'Yn) 
cos(l, y)e 

1 
Oo 

+2Jiu 1: ' [C,, 
cos(l,, y) + D' sin(ly) e 

tm (L - 26) 
'Yn n 

where a'= I and, p- C2 C2 

By applying the condition of continuity of total mass flux across a vertical cross 
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section at x= -J we obtain, 

Re-"Y(e-'P8 + 2iJp) _ e, (y-b) (e'P5 - 2iJp) + Te" (y-b) (, 8e-'P' (L-15) + 2iSpe-'P I (L-28)) 

00 

+ 2i6pC,, + 21,,, ý) cos(l,, y) + (e-'-6B,, + 2iJpD,, ) sin(l,, y)] - 
00 

(L-35 (L-25) (L-25)) E 
ý[( )A,,, 

- Wpe-t- C, ', - 20lnJe-t- n COS(lnY) 

tm(L-35) (L-2J) 1 (Oe- B' - 2iJpe-t- D,, ) sin(lnY)l 0- (8.8) 
n 

We now repeat this idea for the surface elevation. 

Using the relation (8.6) we obtain the surface elevation at, x= -5, in terms of 

field variables, (u, v, () in the region x>0 where u= UI + UR + UI) V= vi and 

(: -- 0 (R + (1) 

C-8 = Re-'y (e-'P6 + 2ipJ) + e"'(Y-') (e'P' 
- 2ipJ) + 

00 

-y,, [(2ipJA,, + e-'-JC,, ) cos(l,, y) + (2ipJB,, + e-'-6D,, - 2a6) sin(l,, y)] 

In a similar manner using the relation(8.7) we obtain the surface elevation on the cross 

sectional area at x= -J in terms of field variables, (u, v, () in the region x< -L 

whereU --= UT + U2) V == V2 and C= (T + (2, 

Te"' (y-b) (e-'P I (L-36) 
+ 2ip'Je-'P 

'(L-26) )+ 

00 
E '[(-2ip'6e -tm(L-21)A' + e-tm(L-36) 'Yn n 

Cn') COS(lnY) + 

(-2ip'be-tm(L-26) B' + e-tm(L-M)D' + 26a'e-tm (L-26)) 
sin(InY)l nn 
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By applying the condition of continuity of free surface elevation across a vertical cross 

section at x= -6 we obtain, 

Re-'Y(e-'P6 + 21p6) +e a(y-b) (e'P6 - 2ip6) - Te" (y-b) (e-ip, (L-36) +2 -P'6e-ip'(L-2S)) 

00 

-y, [(2zp6A, + cos(l,, y) + (2ip6Bn + e-'-6D, - 2a6) sin(InY)l - 

00 

yI [(-2ip'6e-t, (L-2ý)A' + e-t, (L-36) cos(l, y) nn 
Cn 

(-2ip'Öe-t- (L-28)B' + e-t, 
(L-36)D' + 2Sce'e-t- (L-25» 

sin(1nY)] n 

8.4 Method of Solution: 

Now we define a matrix equation Cx = b, where 

e ce(y, -b) (eip6 
- 2i6p) 

e ot (y2 - b) (e'P6 - 216p) 

b= 

, ck(y,, -b)(e'P6 - 2i6p) 

e a(y, +1 -b) (e: P6 - 2iJp) 

_ea(y, +2-b)(eiP6 - 2i6p) 

-e'(Yn +3-b)(eiP6 - 216p) 

-e 
Ce(Y2n -b) (e'P6 - 21dp) 

-e 
a(Y2n+ 1 -b) (e'P5 - 2Z6p) 

-eCt(Y'2n+2-b)(eip6 - 21dp) 

'Yn+ 
f 

'y n+2 
X ^fn+3 

'ý2n+ I 

'Y2n+2 

R 
T 
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1 
a, 

2 

a, 
M-1 

a, 
m 

a, 
M+j bi +2 

b' 
. 

2m 

.b P , i q, i 

a1 2 a2 2 a M-1 2 am 2 
+1 

bm 2 
+2 

bm 2 
2m 

b P 2 q2 2 

c=I 

where, 

n 
2 

a n 
M-1 

... a n 
m 

a n 
+1 

b' 
n 

+2 
b' 
n 

2m 
b 
n Pn qn 

1 a +1 n 
2 

a n+l 
M-1 

a n+l 
m 

a n+l 
M+l b 
n+l 

+2 
bm 
n+l 

2m 
b" 
n+l Pn+l q n+l 

1 dn+2 2 - dn-+2 M-1 dn+2 m dn'+2 M+l 

e n+2 
m+2 

6n+2 
2m 

en+2 Pn+2 qn+2 

1 dn'+3 2 
d n+3 

M-1 d n+3 
m dn"+3 M+l 

e n+3 
m+2 

e n+3 
2m 

e n+3 Pn+3 qn+3 

d; 
n+l d2 2n+l d M-1 2n+l dm 2n+l M+l e2n+l e 

m+2 
2n+l e 

2m 

2n+l P2n+l q2n+l 

1 dýn+2 2 d2n+2 M-1 d2n+2 m d2n+2 M+l e2n+2 m+2 e2n+2 
2m 

e2n+2 P2n+2 q2n+2 

a' = (e--6A,, + 2iJpC,, + 21,, J) cos(l,, y, ) + (e-1-6B,, + MpD, 
ý) sin(l, yr)], r 

K=l, 2,... m, r= 1,2,... n + 1; 

b' =[(0e-1-(L-3&)A' - 2iJpe-',, (L-2,5) C,, - 201,, Je-'- (L-2J)) COS 
r r. 

(ir-yr) + 

(oe-l. (L-36)B, ', - 2iJpe -tn(L-2S)D,, ) sin(lyr)], 

r, m+1, m+2,... 2m, r=1,2,... n + 1; 

d ot = [(2ipJA,, + e--9-6C,, ) cos(l,, yr) + (2ipJB,. + e--6D,, - 2aJ) sin(l,, y, )], r 

r, 1) 2) ... m, r=n+2, n+3,... 2n + 2; 

e ic [(-2iplje-t, (L-2J)A' + e-t,, (L-38) 
r Ic 

clc) cos(l, 
ýY, 

) + 

(L-26) (L- (L-26)) (-2ip'6e-t, c B,, + e-tr- 30D. + 2Jce'e-t- sin(l,, yr)], 
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K=M+l, m+2,... 2m, r=n+2, n+3, ... 2n + 2; 

Pr = e-QYr (e-'P'6 + 2iJp), 

2iJpe-iP'(L-25) )) 

r=1,2 n+ 

11 23 
..... 2n + 2) eaI 

(y, - b) ()3e-'P' (L - 3, S) 

and q, =-, ot'(y, -b) (, ý-ip'(L-M) + 2i6p'e-iP' (L-2S)) 

r= n+2, n+3 ....... 2n + 2. 

8.5 Solution: 

In fig (8-3) is given a contour for tidal range. This is obtained for the deep wa- 

ter depth, hl==74 m, the shallow water depth, h0=10 m and the Coriolis parameter 

f=0.0001188 sec-1. Tidal wave height is given at various parts of the region and 

it can be seen that high amplitude tides occur along the right coastal side of the 

channel. 

In fig (8.4) tidal range and phase lines are given. It can be seen that except the 

first amphidromic point the other two amphidromic points lie along a straight line 

parallel to the central axis and on the eastern coastal side of the channel. The phase 

lines are drawn for every 30 mins. The fig (8.5) is given to show the movement of 

the amphidromic points towards the eastern side of the channel as the parameter 8 

varies. As the shallow water depth increases the amphidromic points move towards 

the east and become virtual amphidromic points. 
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C, x 10, Tidal range for h1=74m, beta=0.3676 and f=0.0001188 sec-1 
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8.6 Concluding Remarks: 

The author wishes to conclude this chapter with a forsight about future work in 

this problem. Although this model only considers a short slope, it might possible to 

,; -, 

Figure 8-6: 

extend it by considering the flow as a perturbation of the flow that we can calculate 
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exactly for the step problem in chapter 7. 

Example: Suppose u(O), ((0) is the exact flow then 

(UM, «1» = Wo) 
, 
«0) ) o(E), 

where the O(e) might be calculated through a method of multiple scales. 

Here E= order of depth change. 
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Chapter 9 

Conclusion 

In this work our main objective has been to extend Taylor's solution for perfect Kelvin 

wave reflection in a semi-infinite channel with uniform depth so as to incorporate the 

bottom topography, which is one of the most important factors to consider in a wave 

propagation model. 

The accurate prediction of wave propagation from offshore to near shore locations is 

an important requirement in coastal engineering. 

We have seen in chapter 3 the limitation of the use of Fourier series in solving bound- 

ary value problems when first derivatives are appended to the Laplace operator. 

Taylor's procedure of replacing sines or cosines in one expansion, by further series 

of even or odd multiples appears to be a very useful approach. We have found that 

Taylor's gives a better approximated solution of our boundary value problem than a 

finite difference method. 

The Green's function technique, which consists in writing a Green's function integral 

for the even A, in terms of an integral of odd ones and vice versa allows us to approx- 

imate the solution with an n-term expansion. The greater the expansion we take, the 

better the approximation is. 

We have looked into these problems with a view that the more difficult generalization 

of Taylor's problem may be reduced to a sequence of problems each of which may be 

approached by these. methods. 

On taking into account depth variation we first considered a simple model with the 

problem of a Kelvin wave reflection over a step in a semi-infinite channel. We solved 

this problem and made comparisons with numerical results. The formula (0-11) 1 
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discussed within my introduction is used here to analytically validate my own results. 

The problem considered within Chapter 4 (Taylor's problem) and Chapter 6 were 

tested and verified with their numerical counterparts. Comparison of the results 

found to match perfectly with no errors. I therefore use this formula to theoretically 

explain the difference between the behavior of tides within the continental shelf com- 

pared to tides in the deep sea. 

On the scale chosen to the problem in chapter 4 Fig (4.4) the range of tide at the 

two corners are given by 1.28 m whereas the range in the other parts of the channel 

is less than this value (i. e., 1.28). 

In the problem in Chapter 6 Fig (6.2) the greatest value obtained to the tidal range 

a+ 
.,, the corners of the channel is about 4.2 m. 

The formula we are interested implies that when a Kelvin wave moves through a 

region in which depth (H) or f (Coriolis parameter) varies, the energy flux remains 

constant and therefore the amplitude varies in proportion with (f 1H) '21 
. 

Thus on comparison we can see in particular large amplitudes are produced when 

a Kelvin wave moves in shallow water. We can therefore compare and verify these 

findings with the observed phenomenon of Kelvin wave components of tide entering 

the North Sea and then moving south into shallow water. 

Moreover the width of the channel chosen in the analysis domain of our model is 

about 394 km which is very much less than 2a (a = 230 km - Rossby radius). Our 

modeling therefore satisfies the condition that the width of the channel must be less 

than 1160 km. 

Miles (1972) [26] investigation on Kelvin wave diffraction by an abrupt change in 
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depth varying alongshore in an semi-infinite sea with boundary on one side (parallel 

to the direction of propagation of waves) found a Fourier integral formulation which 

leads to a singular integral equation that may be solved exactly. 

When we compare this model with our model in chapter 6, Miles' model has got an 

un-bounded sea in our y- direction whereas our model is a channel bounded on either 

sides by two coasts. 

Moreover, because there is no energy can be radiated from the coastline and from the 

result in section 4 in Miles' work it is found that, 

1 
2 

ITI =( (I 
) 

provided that -1 <c <1 

where, 

(h+ - h-) 
(total change in depth, h is the depth outside the continental shelf) (h+ + h-) 

provides an excellent approximation throughout the tidal regime. In fig (9.1) shown 

the variation of ITI with respect to parameter ý, FE in the tidal regime considered. 

Also along the boundary, in addition to incident and diffracted Kelvin waves, dis- 

turbances are excited by the discontinuity and are necessary to satisfy the boundary 

conditions. Howeve;:, these disturbances radiate energy away from the coastline for 

certain ranges of values of parameters E and f. 

Having defined the above parameters E and f, it was possible to set up parametric 

regimes implied by the results of the interaction. 

(i) If 0<f<1, Kelvin and Pincare waves 

(ii) if -1 <E< 1/f <1, Kelvin waves 

(iii) if 1/f <E<1, Kelvin and double Kelvin waves. This area can be investigated 

further. 
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Figure 9.1: Variation of ITI with respect to V-(E) in the tidal regime chosen 

where 

f /or. 

We also solved the problem of Kelvin wave reflection over a step in an infinite channel 

opened at both ends. We found the displacement of the amphidromic points from 

the central axis towards the east was due to reduced amplitude of the reflected wave 

resulting in energy dissipation as we anticipated (see Brown, 1978 [4]). 

We would therefore hope to examine for our future investigation tidal motion in a 

finite channel incorporated with change in depth. We will also consider an oscillating 

boundary at one end of the channel. 
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APPENDIX A, Kelvin wave over a step bottom in a semi-infinite chan- 

nel closed at one end: 

This is one of the main problems we investigated in chapter-6. Initially we intended 

to treat the problem non-dimensionally but in order to effect a comparison with 

the numerical counterpart we treated the problem dimensionally. However, the non- 

dimensional form of the governing equation is given here should we continue to treat 

the problem non-dimensionally. 
y 

transmitted wave 
h2 

I reflected wavc 
X=o 

x=L 

y= 7C 

Incident wave 
h 

reflected wave 

Y-0 x 

Figure 9.2: 

I The basic dimensional equations of motion are 

(9u a 
-fv=- loc 

-6-t 9 ax; (9.2) 
av + a( 
Nt fu = -gay. 

The corresponding continuity equation is 

a(hu) 
+ 0. (9.3) 

Ox ay at 

It is convenient to convert the problem to non-dimensional form by introducing char- 

acteristic lengths a and b to describe the horizontal scale of motion. We characterize 

the horizontal velocity by uo and use -r as a characteristic value of time t. Also we 

use ho to characterize the depth h= h(x). 

Each variable divided by its characteristic magnitude becomes a non-dimensional 
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variable such that 

XI=EI-uvII 
a7 

yu -- 
ht 

b UO) vh UO ho 

where, the non-dimensional variables are denoted by primes. 

In new variables (9.2) and (9.3) take the form as 

ou 
I, - cev -oge at ax, 

aV1 + aul -17ae at 1 49Y /) 

ae +p 8(h'u) a(h'v') 
= 0. 

atl ax, +q ayl 

where the basic non-dimensional parameters are 

ce = fr, gho-r y =: ghor p= uo-r q= 
Rol 

auo buo ab 

It is plausible to take 3= -y so b=a and then p=q. 

On ignoring the primes for simplicity we can now write the above non-dimensional 

form as 
au 

- av - -02ý , 
(i) 

at ax 

aL + au = -02ý, (ii) 
at ay 

Oc +p( a(hu) + a(hv) )=0. (iii) 
'I at ax 49Y 

where, 

ce = 
f. Tj gho7- p týQ_7- 

auo )a 

If we assume a time factor e iat 
, then (i) and (il) of (9.4) gives 

(9.4) 
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io, u - av = -Pac ax) 

io, v + au = -009(' Oy 

such that 

iora( + aa( T2 
a2 

( 
ax ay) 

(9-5) 
0,2 - Ce ax Oy 

Thus (iii) of (9.4) becomes using (9.5) 

iu( 0 (hu) 
+ 

a(hv) 
0) ýx ay 

) 

V2 + 
0' _a (9.6) H ßph 0' 

where V2 a2 192 
Hý -x--2+ ay2l 

In the wave equation (9.6) it has been assumed that the depth is constant. In this 

problem we consider an interconnecting channels with an abrupt change in depth. 

Thus the wave equation (9.6) is independently true in the two regions of the channel 

as shown in fig (9.2). Furthermore, since (9.6) is linear, u and v also satisfy the same 

wave equa ion. 

The wave equation (9-6) is re-written as 

V2 (+Ua= 

gh 
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where g' = -9-, go is a characteristic value of the gravitational acceleration, given as, 90 

b2 
72 -ho 

On dropping the prime the above equation can be written as 

, 72 (+U_a=0. 

gh 
( (9.7) 

Assuming a solution of the form C= e"nx+"4y+'O-' in (9.7) in terms of constants m, n. 

Then we must have a condition, m2+n2= or 
2-C, 2 

gh 

But, since k2= 2-a2 

, we note that if m=z, n2=k2- M2 a2 
gh C Cy. 

Thus, on taking in = -2 (9.7) yields the Kelvin wave e'('c'+)e-ýcv which C 

travels with a speed= Vfg-h. 

In solving this problem we can use the following non-dimensional parameters and the 

characteristic values. 

af VýA 
- 

gIg 
.Q 0' = 

1--7r ýh 
g, where T is the period of the input Kelvin wave and ho 

9T9 

is the scale depth. 

ýhQ 
time-scale, T scale fluid velocity, uo =AA is the prescribed amplitude 

of the input Kelvin wave. The horizontal length scale is chosen as -ý where b is the 7r 

width of the channel and is equal to 394.79km. 
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APPENDIX A2 

The final problem we attempt to solve assumes a model illustrated in fig (9.3) below 

which is deemed more realistic than step problem. To generate solutions of this much 

difficult problem we were looking at a series of model problems in order to build up 

gradually to the complicated structure of the generalized Taylors problem. 
z 

Al, 

h +a x 0 

0 

h1 

-4 

Figure 9-3: Schematic representation of the cross-section of the idealized sea 

The linearized frictionless rotational equations under the hydrostatic pressure approx- 

imation. 

Ou 

- fv = 
a( 

at ax 
av f 

a( 
at Y ay 

a (hu) +a (hv) =0 
ax ay 

where 

X, y, u and v are the same symbol we used in our work. 

is the acceleration due to gravity. 

h is the depth of water. 

is Coriolis parameter. 

C is the height of the tide above the mean level. 

(9-8) 

By assuming the field quantities u, v and C are eiOrt dependence the equation (9-8) 
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can be written as 

Vy 2_ U2) = g(f 
19( 

_ jo. 19() 
Ox ay 

U(f2 _ or2) = _g(iorO( +f 19() 
ax i9y 

iu( + au +h 
au 

+h 
av 

=0 ax (9y 

(9-9) 

We can express u and v in terms of C and obtain, from the last equation of the system 

(9.9) a single equation for ( 

We thus get 

2++( if 9( 

---)=0. 
(9.10) +a 

('9ý 
aX2 jqy2 ax or (9y 

Here v does not satisfy this equation. 

We set, for convenience A= f2-0.2 
and Lf '9 - io, 1- 

9 49X Oy 

We thus have from the equation 

V(f2 - or2) 
a( 

-. 

0( 

= g(f ior -) Ox Oy 

Av = L(- 

On multiplying the equation (9.10) by L, we get 

, 
\-laf V2( + hV2 _A+aa if a. ), 0. ax 'u ay 

And by multiplying the equation (9.11) by L, we get 

2af V2V + hV2 Lv-ALv+ aa-a if a Lv = 0. (9.12) ( 
ax 0' ay) 
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This variable slope generalization to Taylor's method model leads to a major problem 

for v; 

We considered here below two approaches how to tackle the above model equations 

(9.10) and (9.12) respectively. 

Defining equation 

We have 

h(x)V2( _ A( + Cl(a( _ 
if a() 

09X a ay 

and the lateral boundary condition 

7r 
Ll(1 = 0, y = ±- 

where Lf -ý2- - ia-12- and A= 
(f2 

_or2) 

Ox ay 9 

A Fourier Ansatz 

We expand the wave height in a Fourier Series across the channel. 

We propose, purely formally, a solution in the form 

00 
1: (a, (x) cos ny + bn (x) sin ny). 
n=O 

Substituting in equation and equating cosine and sine terms separately to zero, we 

get (with fz = L) the pair ol 

h(a" - n'an) - Aa,, + a(a' - iAnbn) :`0 (9.13) 
nn 

h(b" -n2 
bn)- Abn + a(b' + ignan) 0 (9.14) 

nn 

The significant problem will be that only the Fourier series for v can be expected to 

take its limiting values at the boundaries of the channel. This is because v=0. So 

applied to C we would need to consider limiting values from within the fluid. This 
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may be difficult. 

Let us nevertheless examine what can be done with the system above. Setting w,, = 

a, + ib,, we obtain easily a single equation for the complex valued function w, (x). It 

is 

hw 11 + aw 
1_2 
n (n h +A ozlin)w, =: 

or changing to h as the independent variable ( so that dash denotes dldh) the equiv- 

alent equation 

hwn +'_ a-2 (n 2h+A+ 
oz/in)Wn ý Wn (9.15) 

and the further substitution (when n> 0) h= (_g_2t2 transforms this to the Weber 4n 

equation 

(A) 
"_(1 t2 +A+ ayn) 

ujn n4 Ce2 

whose solutions are well known in terms of parabolic cylinder functions. (see Whit- 

taker & Watson page 205)[13] 

The fundamental question remains, of course, of how to satisfy the lateral boundary 

conditions. If we work out v from the development for C, we get 

00 

Av = LI(I =E 
((f 

a, ', (x) - ianb,, (x)) cos(ny) + (f b',, (x) + iana,, (x)) sin(ny)) 
n=O 

It is hard to see how we might satisfy the lateral boundary conditions with this, given 

that both a,, and b,, are essentially already known in terms of Weber functions. 

One possible line of enquiry might be to try a 'collocation' approach with say M 

points on the 2 lateral boundaries and N points on the 2 longitudinal boundaries 

taking a total of 2(M+N) Fourier terms. 
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Using the v-equation approach 

Although the equation for v would be third order, it might be worthwhile looking at 

the implications of starting there. To do this, let us try with the lateral boundaries 

at y=0, y= ir and the slope confined to the region -L <x 

This means that we need to retain a variable (complex) reflection coefficient in the 

region x>0. 

Thus we write the Kelvin/Poincare' wave system on the right in the form 

LF io, (-E-+t) UI =e C2 e_ c2 

LF- io-(-11- -t) UR= Re-c2e- C2 

(2) 
UP2 = .. cos my + iB, sin my) e-'m x+'at 

M=1 
00 (2) 

VP2 =E Dm sin my) e-m x+'at 

M=1 

whilst that on the left (x < -L) can be written 

Lk io, ( ("+') +t) UT = Teci e cl 
00 

upi 1: (a,,, cos my + ib,,, sin my) e'(1) (x+L)+iot 

M=0 
00 

VP1 E dm sin my e's 
(1) (x+L)+iat 

M=1 

where, as usual) the equations demand that 

(S(j))2 = M2 -a 11 2. 
Tn ghj 

There are also the 'consistency' relations arising from substituting back into the 

Inomenturn equations. These evidently give 

(7f )1 
(2) Am, bm = 

(ý-f )1 
am, m>1, 

gh msm gh 
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so that as pointed out in Taylor's model, the A,,, and B,,, cannot be chosen indepen- 

dently. 

Also, we can now write down expressions for the wave heights in the constant depth 

regions. 

The variable depth region 

Here we have third order equation developed previously in the form 

2 V2V V2 
if 

cef + h(x) Lv - ALv + a5x a- Lv = 0. 
or ay 

) 

and to this we propose to look for a solution in the form 

00 

v=E cn(x) sin ny 
n=l 

in order to try to satisfy automatically the boundary condition on the banks. 

This of course assumes that the series turns out to be uniformly convergent. 

Formal substitution into the equation (9.16) gives 

00 
T, Q,, sin ny + inwn cos ny 
n=l 

where 

22 
acn Qn 3ac" + h( n cn) n n Cn Cn 

I 

and 

Wn ph(c" - n'c, ) + p(Acn -a'I cec / 
n 

C. ) - IL- 

We cannot expect the individual sine and cosine series here to converge (thus we 

cannot equate each of Q, w,, to zero) but we could now try to use the ideas explored 

in the model M2where we would expand each cos ny as a half range sine series. 

Writing 
00 

cosny a 
(n) 

sin my M 
M=1 
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we find readily that 

4m if m-n is odd ý2-n2 

0 if m-n is even 

To help us better understand how we might now proceed, let us take the very simple 

approximation afforded by just two terms of both the v-expansion and the represen- 

tation of cos ny above. This appears to give the simultaneous system 

Qj+2iV92a (2) 
=0 1 

92+ 2iwia(1) = 

We find that the operator may be expressed in the slightly simpler form 

Q, n =D3 (hc, ) -n2 D(hc, ) - ADc, 

22 ag2 I 
w,,, =D (hc, ) -n (he, ) -A 

(Cn 

-u Cn 

so that, in particular, Dw,, - Q,, =, 3D 2Cn. 

(9-18) 

It may now be possible to set up a Green's function solution in an iterative manner, 

taking appropriate terms to the r. h. s. of each equation. Doing one integration, we 

could, for example, write the equation pair in the form 

(D 2- 1)hcl = 
f2 (x), 

4)hc2 = f, 

(9.19) 

(9.20) 

where 

fi (X) = (-i)i 
8i IT ' 

37r 
,. 

wj (t) Dt + \cj (x) 
- 

If we solve this iteratively with cl, C2 'known' on x=0, -L, we will still retain two 

arbitrary constants xj, X2 for later use. This method should be investigated. 
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