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a b s t r a c t

About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that
targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell,
the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-
acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be
confused with transmembrane domains due to similar composition of hydrophobic amino acids. This
paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification metho-
dology for SP discrimination and cleavage site identification.

The proposed method utilises a dual phase classification approach using SVM as a primary classifier
to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most
suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a
primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for
discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window
sequence analysis for prediction of cleavage site identification.

The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and
prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall
accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests
using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests
using the novel SVM-NN model.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of a protein topology starts with the process of
predicting if it contains a signal peptide (SP) in the N-terminus and
hence whether the protein accesses many of the secretory path-
ways of the cell, in both eukaryotes or prokaryotes [1]. SPs are
short N-terminal peptides that are cleaved off after the protein has
been correctly inserted into a secretory pathway. The remaining
protein is regarded as the mature protein, and the delivery of these
proteins to the correct cellular location must be made accurately.
Mistakes or mutation in the signal peptide cleavage position may
result in the protein being delivered to the wrong cellular location
and causing disease [2]. Almost 15% of human proteins contain SPs
[3] and such proteins are either secreted or inserted into mem-
branes as type I membrane proteins. Signal peptide prediction is
an important step in predicting membrane protein topology,
because signal peptide and transmembrane sequences are handled
by the same mechanism of membrane insertion, involving the

translocon. Similar to transmembrane (TM) segments, SPs also
contain a hydrophobic alpha-helix region [4]. The SP region is
however shorter, 7–15 residues approximately, compared with a
TM helical segment. The SP is structured as such that at the
N-terminus a positively charged n-region is located. The length of
residues in the n-region varies from 1 to 12 residues and is
followed by the hydrophobic region, ‘h-region’, of 7–15 residues.
After the h-region another 3–8 residues long polar and uncharged
c-region is positioned, where the cleavage point is located.
Prediction of SPs therefore requires two processes, one to correctly
identify the SP in the N-terminus of the sequence and the second
to map accurately the position of the SP cleavage site. The
proposed method in this paper is for predicting the N-terminal
SPs and their cleavage sites, as most SPs are of N-terminal,
excluding exceptionally long SPs [5]. However, SPs may also occur
in the middle of a protein sequence or it's C-terminal [6]. Many
researchers have investigated SP discriminations and cleavage
sites identifications in human, plant, animal, eukaryotic, Gram-
positive and Gram-negative protein sequences [7–10], some of
which are discussed below.

Arai et al. [11] carried out a comprehensive analysis of TM
topologies of over 50 prokaryotic genomes which was mainly
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intended to evaluate the evolutionary mechanism of TM topology,
and found that 13% of TM proteins have signal peptides; this is
further supported by the SP database (db) that contains 2584
verified signal peptide entries. Prediction accuracy of TM proteins
is considerably enhanced if the N terminal and signal peptides are
taken into account in the model input [12,3]. It should be noted
that NN and SVM based methodologies generally tend to confuse
signal peptide segments as TM regions due to their underlying
hydrophobic properties. The incorrect position of signal peptide
cleavage sites in a database stems from trivial database errors and
from peptide sequencing, where it may be difficult to control the
level of post-processing of the protein by other peptidases after
the signal peptidase I has found its initial cleavage. In relation to
the true signal peptidase I cleavage site position, this type of post-
processing may lead to cleavage site shifted downstream [13].
Gomi et al. [14] used clustering based signal sequences and signal
peptide scoring indices to discriminate signal peptides from
globular proteins and predict their cleavage scores.

Support Vector Machines (SVMs) are also generally used to
address and implement fast prediction algorithms for cleavage site
prediction. Cai et al. [15] used 20-bit binary based feature vectors
to predict signal peptide cleavage sites and proposed the use of
SVM as a complementary approach. Kahsay et al. utilised a SVM-
Fisher discrimination method to enhance SVM performance and
improved mis-prediction of signal peptides by 30% [16]. Hybridi-
sation/ensembling of classifiers to predict transmembrane topol-
ogy including signal peptide prediction have become the focus of
attention of researchers since 2003. Martelli et al. [17] used three
machine learning methods on a single neural to two HMM-based
classifiers to implement a voting mechanism that resulted in
substantial improvement in individually performing classifiers.
Kall et al. [3] applied a HMM approach to increase the prediction
accuracy using pre-training of length models for TM and SP
regions. Kall et al. conclude that since the evaluation methodolo-
gies are variable, some of the classifications could be regarded as
overestimations. Considering this issue, Melen et al. presented
reliability scores for five widely used topology prediction methods,
such as, TMHMM, HMMTOP, MEMSAT, PHD and TopPred [18].
Clote [19] evaluated SVM, HMM, stochastic context free grammars
and neural networks with weight matrices to predict 70% detec-
tion of true positives compared to 10% false positives. Fariselli et al.
[20] developed a neural network-based predictor for four sets
namely, Gram-positive prokaryotes, Gram-negative prokaryotes,
eukaryotes and Escherichia coli. The result is a content manage-
ment web-server for personalised user research. Furthermore,
Hawkins and Boden [21] utilised recurrent neural networks to
predict data divided into plant and non-plant signal peptides.

Recently, there has been substantial work covering the integration
of transmembrane topological prediction with signal peptide model-
ling. Plewczynski et al. [22] used neural networks to detect signal
peptides from the extracted Swiss-PROT protein database and
obtained a combined accuracy of 73% for eukaryotes and prokaryotes.
Reynolds [23] utilised dynamic Bayesian networks which resulted in
achieving a relative accuracy of 13% over Phobius methodology with
sensitivity and specificity of 0.96 in signal peptide detection. Sun and
Wang [24] used SVM with a K-nearest classifier. They claim an
overall achievement of 97% in signal peptide prediction rate. Nugent
and Jones [25] developed a SVM based model to predict both signal
peptide and re-entrant helices. The method achieved an accuracy of
93% in the prediction of signal peptide prediction. However due to
lack of available data, Nugent and Jones's method limited the
accuracy of re-entrant helices to only 44%. Zou et al. applied a
hybrid HMM/Genetic algorithms model for signal peptide prediction
and achieved an overall accuracy of 84.8%, which outperforms a
number of previous techniques of SignalP 3.0 – NN/HMM and SignalP
2.0 – NN/HMM [26].

von Heijne used the initial concept of the weight matrix to
predict signal peptide cleavage sites [27]. Folz and Gordon further
utilised two different algorithms to predict signal cleavage loca-
tions [28]. Chou also [29] developed the sub-site coupling method
using the sequence encoded algorithm and the scaled window
approach [30,31]. However, in 1997 Nielsen et al. utilised an
artificial intelligence (AI) based approach for the widely used
SignalP algorithm [32]. Bendtsen et al. introduced SignalP 3.0 to
improve the accuracies by adding supplementary network attri-
butes [13]. Nielsen et al. and Bendtsen et al. applied neural
networks and hidden Markov models (HMMs) to SignalP. The
work was further extended to SignalP 4.0 by Petersen et al. [33].
The paper argues that SignalP 4.0 was not in all cases as good as
SignalP 3.0 according to cleavage-site sensitivity or signal-peptide
correlation when there are no transmembrane proteins present.
Petersen et al. however concludes that SignalP 4.0 is an improve-
ment over SignalP 3.0. SignalP 4.0 is the latest research in SP and
Non-SP discrimination and cleavage site identification and both
SignalP 3.0 and SignalP 4.0 are widely used as a benchmark. This
paper therefore endeavours to compare the overall results of the
computer simulation with SignalP 4.0. As demonstrated by a series
of recent publications [34–36] and summarised in a review [37], to
develop a useful prediction method for a biological system, we
need to consider the following procedures: (i) construct or select
a valid benchmark dataset to train and test the model or predictor;
(ii) introduce a powerful algorithm to operate the prediction; (iv)
properly perform cross-validation tests to objectively evaluate the
anticipated accuracy of the predictor; and (v) subsequently estab-
lish a user-friendly web-server for the model or prediction method
that is accessible to the public [38].

In this report, Section 2 outlines the current methodologies to
predict signal peptides. The section describes feature extractions
using symmetric and asymmetric sliding windows and further
explanation on data extraction from the Swiss-Prot database.
Section 3 describes the proposed novel support vector machine
and neural network architectures for SP and Non-SP discrimina-
tion and cleavage site identification. Section 4 outlines the results
of computer simulations for support vector machine and neural
network methodologies for SP and Non-SP discrimination and
cleavage site prediction respectively. Finally, Section 5 concludes
the outcome of the research.

2. Prediction of signal peptides

Traditional transmembrane (TM) region prediction is based on
a supervised learning algorithm using a sequence of amino acids.
The training set consists of sequence of the form ðt; lÞ, where t¼t1,
t2, …, tn are considered as a sequence of amino acids of known
topology and l¼ l1,…,ln correspond to the training sequence t. n is
20 representing 20 amino acid types. The conventional TM
domains are generally analysed and predicted using three main
approaches, the weight matrix, neural networks and hidden
Markov model (HMM). Each of these techniques has its own
merits briefly described below.

Weight matrix is a matrix of score values that provides a
weighted match to any given sub-sequence of fixed length, which
has been used for amino acid sequences. Weight matrix attempts
to specify the specific scores of cleavage position in the amino acid
residues. The methodology was developed by von Heijne to
classify the cleavage location of a signal peptide in a sequence of
protein [39,27]. In order to predict, the matrix is matched against
an unknown protein sequence to obtain a position with highest
sum of weights denoted as the designated cleavage site [40].
Computational results demonstrate that weight matrix perfor-
mance is inferior to neutral networks and HMM methodologies.
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Wang et al. [41] further used a SVM to predict the cleavage sites of
SPs from the protein sequences. They concluded that at small false
positive ratios, the method outperforms the classical weight
matrix method, indicating the proposed technique may serve as
a complementary tool to other methods for predicting the SP
cleavage sites.

Conventional AI techniques use a moving-segment known as
the “sliding window” to analyse the amino acid sequences for the
purpose of protein segment identification where the window
continuously determines an encoding technique such as hydro-
phobicity [42,43]. Neural networks are used with sequence fea-
tures extracted for sliding window operation. A variable or a fixed
sized window is selected with amino acid residues on both sides to
move from left to right of a given protein sequence to identify a
transmembrane region or signal peptide. For a signal peptide, each
position of the sliding window presents a numerically encoded
feature vector to detect if the window's centre actually contains
a cleavage site. The technique employs dual window configura-
tions called symmetric and asymmetric using 20 amino acid
residues and a distributive encoding technique. We have adopted
this approach in the present study, based on previous work
[42,43].

In a hidden Markov model (HMM), the state is not directly
visible, but the output is visible and depends on the state [44].
Each residue in a protein sequence is based on a probabilistic
distribution of previous states and each state has a probability of
showing a set of observable features. In a protein sequence, these
observation probabilities can represent the three regions of
a signal peptide relative to the cleavage site. The most likely
cleavage location is therefore obtained by the probabilistic transi-
tional path within the amino acid residues aligning with the
cleavage site node. HMM can also be used to incorporate biological
knowledge into the signal peptide or transmembrane modelling

[13]. Neural networks usually require numerical encodings. Since
the HMM inputs are symbolic, the numerical encodings similar to
neural networks are not required. There is a wide range of
encodings available and the prediction accuracy predominantly
depends upon the type of encoding used [45,46].

2.1. A dual phase SVM-NN methodology to predict signal peptide
topology

In this paper, a signal peptide topology prediction could be
divided into two distinct problems:

� The discrimination of signal peptide from globular proteins
using SVM;

� The prediction of signal peptide cleavage site using NNs.

A SVM method will initially differentiate whether a protein
sequence has a SP region or not using symmetric sliding window.
If the protein sequence has SP, a NN method will predict the
location of cleavage site where the mature protein begins using
asymmetric sliding window. SVM-NN combination approach has
been never used in the research community to discriminate SP and
predict cleavage site.

2.1.1. Feature extraction
Fig. 1 shows a symmetric sliding window of feature extraction

based on propensity features, used for discrimination of SP from
mature protein or Non-SP protein. The technique extracts
a sequence of features from each sample which slides from left
to right, þ1 position at a time. Each test sliding window is
assigned a score ranging from 0 to 1 to ascertain a potential
candidate as being closest to the cleavage site. For example in

Fig. 1. Feature extraction using symmetric sliding window size �13 to þ13 (Note: Here �5 to þ5 are shown) for discrimination of SP and Non-SP from a single training
instance of the flagellar protein of S. typhimurium (FLHE_SALTY) amino-acid sequence.

Fig. 2. Feature extraction using asymmetric sliding window size �3 to þ13 for cleavage site identification from a single training instance of FLHE_SALTY
amino-acid sequence.
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Fig. 1, the scoring accuracy increases from 0.44 to 0.54 up to the
closest value to 1, 0.94, where the cleavage site is located.
Hydrophobicity present in the signal peptide is highlighted from
residue L up to residue F.

Fig. 2 shows the feature extraction technique using an asym-
metric window size �3 to þ13 to pull out features from the signal
peptide sequence of FLHE_SALTY to identify the cleavage site.

Fig. 3 demonstrates the signal peptide region and the beginning
of mature protein starting from the cleavage site A A 16th residue
onwards for the flagellar protein of Salmonella typhimurium
(FLHE_SALTY). SP is structured as such that after N-terminal
a slightly positively charged n-region is located. In Fig. 3, M, R, K
and W amino acids represent the n-region. The hydrophobic
region in SP is called ‘h-region’ appears after n-region, which is
represented by the positive shaded area of six amino acids in
Fig. 3. After h-region an uncharged c-region is positioned, where
the cleavage point is located. In Fig. 3, the positive peak A A shows
the cleavage site location.

2.2. Separating cytoplasmic TM helical and signal peptide data

Conventional transmembrane prediction methods generally
predict signal peptides as being transmembrane regions, due to
the presence of hydrophobic segments within both SP and TM
regions. TM topology classifiers identify SPs as helical segments,
whereas the SP classifiers predict N-terminal helices as SPs.
Because of this cross-prediction, the proposed research aims to

predict the presence of signal peptide discrimination and cleavage
site identification in protein sequences separately using symmetric
and asymmetric sliding windows, from a variety of organisms, as
shown in Table 1.

2.3. Extraction of data

The training and testing sequence information were extracted
from the Swiss-Prot database (Uni-Prot release 2012_07). Uni-Prot
is a comprehensive, high-quality and freely available database
contains detailed information about the biological functions of
proteins. The dataset was initially constructed with the keyword
“signal sequence”, using the advanced search option which gen-
erated 36,718 reviewed entries and 422,411 un-reviewed entries.
The reviewed entries were further reduced to 5134 to eliminate
sequence annotations such as confidence level of ‘probable’,
‘potential’ and ‘by_similarity’. The reviewed entries containing
more than one cleavage site were also removed, as were archeal
or viral proteins, by including only eukaryota or bacteria in the
organism classification line, leaving a total 4919 entries. The
resulting entries were further grouped into two separate databases
as follows:

� Group 1: Eukaryotic (Eukaryota in the organism classification
line) – 3845 entries.

� Group 2: Prokaryotic (Bacteria in the organism classification
line) – 1074 entries.

Eukaryotes are organisms where cells contain nucleus and
prokaryotes are organisms whose cells do not have membrane-
bound nucleus. Groups 1 and 2 were further classified as follows:

Eukaryotic

� All organelle proteins (sequence entries with organelle lines)
were removed, leaving 3839 entries.

� Only the signal peptide sequences between 15 and 45 residue
lengths were accepted (3812 entries).

Fig. 3. Hydrophobicity and cleavage site position in the signal peptide of the flagellar protein of S. typhimurium (FLHE_SALTY).

Table 1
Data selection – symmetric and asymmetric sliding windows.

Discrimination Cleavage prediction

Data selection Eukaryotic, Bacterial,
Gram þve, Gram �ve

Eukaryotic, Bacterial,
Gram þve, Gram �ve

Sliding window
format/length

�13, þ13 �3, þ13

H.B. Kazemian et al. / Computers in Biology and Medicine 45 (2014) 98–110 101



Author's personal copy

� Only the proteins with A, G, S, C, T, P, L and Q at position ‘�1’
were accepted [32]. This classification was achieved using
computer programming.

Prokaryotic

� All the prokaryotic lipoproteins were removed.
� Only the signal peptide sequences between 15 and 50 residue

lengths were accepted (1017 entries).
� Only the proteins with A, G, S, T, and V at position ‘�1’ were

accepted [32]. The classification was obtained using computer
programming.

The dataset of negative entries was prepared by selecting the
first 70 entries based upon the taxonomic lineage, stating the term
‘eukaryota’ and cellular component containing ‘cytoplasm’, ‘cyto-
sol’ and ‘nucleus’ entries, eliminating fragments and sequences
shorter than 70 amino-acid residue length, as follows:

� The N-terminal parts of eukaryotic cytoplasmic sequences with
entries taken from the complete proteome set, was reduced by
50% to 3283.

� Nuclear eukaryotic proteins (2265 entries).
� Prokaryotic (bacterial) cytoplasmic proteins reduced to 987.

Table 2 lists the UniProt query commands used to obtain
the data.

For eukaryotes a dataset of 1784 SP entries was used, extending
to þ30 residues from the cleavage position. Furthermore for
prokaryotic with bacteria, the dataset of 646 entries were used
for SP extending to þ30 residues from the cleavage position
(Table 3). In order to remove the bias from negative and positive
sets in neural network training, the datasets were reduced to an
approximately equal size. The datasets were evaluated using
Matthews Correlation Coefficient (MCC) and cross-validation tests
where the data was put into amino-acid groups. The computer
modelling was developed using two separate classification tech-
niques where SVM was utilised for the topological discrimination
and NNs were used to model the cleavage site location. The
window types for SVM and NN were a symmetric 26 amino acid
window and asymmetric 16 amino acid window respectively,
extracting the propensity values based on the following formula
[46,47]:

Pi ¼ FTMi =Fi ð1Þ

In the above equation, Pi represent the propensity of each
amino-acid i to appear in a transmembrane sequence. The FTMi
and Fi are the frequencies of the ith residue to appear in
transmembrane and non-transmembrane region respectively cal-
culated using the recent Swiss-Prot database entries. Pi value
greater than ‘1’ suggests the inclination or propensity of residues
to appear in transmembrane region and less than ‘1’ indicates
non-transmembrane region.

3. Support vector machine and neural network architectures

Broadly speaking, an AI technique will discriminate whether
a protein sequence has a SP region or not using symmetric sliding
window. If the protein sequence does not possess a SP region, then
the sequence is a mature protein. If the protein sequence has SP,
another AI technique will identify the exact location of cleavage
site of the SP where the mature protein begins using asymmetric
sliding window. In this paper, for the discrimination of SPs from
Non-SPs proteins the SVM methodology is used and for cleavage
location prediction, the neural networks methodology is utilised.
The underlying reason for using different classification techniques
is that ANNs are well-known to handle large datasets [48]. There-
fore, a neural network technique could be more suitably modelled
for the cleavage-site prediction with large datasets. In contrast,
SVM is known to handle smaller datasets [16,24,25]. SVM models
are known to perform well for a dual-class problem, which is one
of the two goals of the proposed research. Moreover, hyper-plane

Table 2
UniProt query to extract model data from SwissProt database release.

Eukaryotic
keyword:“Signal sequence”
NOT annotation:(type:signal confidence:by_similarity)
NOT annotation:(type:signal confidence:potential)
NOT annotation:(type:signal confidence:probable)
AND (taxonomy:eukaryota)
AND annotation:(type:positional length:[15 TO 45])
Prokaryotic
keyword:“Signal sequence”
NOT annotation:(type:signal confidence:by_similarity)
NOT annotation:(type:signal confidence:potential)
NOT annotation:(type:signal confidence:probable)
AND (taxonomy:bacteria)
NOT keyword:“Lipoprotein [KW-0449]”
AND annotation:(type:positional length:[15 TO 50])
Negative samples (Eukaryotic-cytoplasmic)
uniprot:
((
NOT annotation:(type:signal AND length:[00000 TO 00070]
AND confidence:probable)

NOT annotation:(type:signal AND length:[00000 TO 00070]
AND confidence:potential)

NOT annotation:(type:signal AND length:[00000 TO 00070]
AND confidence:by_similarity)

AND keyword:cytoplasmic
AND taxonomy:eukaryota
NOT fragment
NOT length:[00000 TO 00070]
AND reviewed:yes)
AND keyword:181)
identity:0.5
Negative samples (Prokaryotic-cytoplasmic)
uniprot:
((
NOT annotation:(type:signal AND length:[00000 TO 00070]
AND confidence:probable)

NOT annotation:(type:signal AND length:[00000 TO 00070]
AND confidence:potential)

NOT annotation:(type:signal AND length:[00000 TO 00070]
AND confidence:by_similarity)

AND keyword:cytoplasmic
AND taxonomy:bacteria
NOT fragment
NOT length:[00000 TO 00070]
AND reviewed:yes)
AND keyword:181)
identity:0.5

Table 3
The reduced datasets used for SP discrimination and cleavage site predictions. þ30
means the dataset taken for SP extends to 30 residues from cleavage position,
where for Non-SP proteins, the first 70 residues of globular proteins are used.

Signal peptide Cytoplasmic proteins Nuclear proteins

Number of
sequences

τ Number of
sequences

τ Number of
sequences

τ

Eukaryotic 1784 þ30 3283 70 2265 70
Prokaryotic 646 þ30 987 70 N/A N/A
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fitting in SVM for a two-class separation with a large number of
data points is computationally intensive and is therefore not
recommended for large data cases, unless a technique to reduce
the database size is implemented.

3.1. SVM architecture for dual SP and Non-SP classification

SVM has previously been used to predict the presence of helical
segments in amino acid sequences [49,50]. The application of SVM
in SP topological prediction has largely been focussed on differ-
entiating N-terminal SPs from alpha-helical segments [51] primar-
ily due to the fact that both segments share hydrophobic traits.
Generally, in real-world applications, SVM is known to outperform
or match identification accuracy for most benchmarking problems
[52,53]. As discussed, contrary to neural networks, SVM is known
to outstandingly model problems with smaller data size sample.
This makes the SVM methodology an ideal technique for beta-
barrel and signal peptide prediction problems, where the model-
ling is usually undermined by a smaller database or uneven class
sample distribution problems respectively [54].

For SVM, the issue of SP/Non-SP discrimination is a two-class
problem to categorise proteins with signal peptides from globular
proteins with no signal peptides. The discrimination plays a crucial
role in helical and barrel proteins predictions and a correct
classification improves the overall accuracy of transmembrane
domains predictions. One example of feature extraction is shown
in Fig. 1, where the signal peptide class feature vector is extracted
up to 30 residues into the mature protein, exceeding the signal
peptide part.

The reduced datasets for discrimination and cleavage site
predictions are shown in Table 3. τ is the index of þ30 residues
from cleavage site position onwards into the mature protein
for discrimination of SP and Non-SP. For Non-SP proteins, τ is the
first 70 residues of globular proteins. The samples for this two
class problem are described by the feature vector xi where
i¼ 1; 2; …; N. N is þ30 from cleavage point onwards and 70 is

for negative sets Non-SP proteins with corresponding labels
yiϵfþ1;0g. This study represents SP protein class as þ1 and
Non-SP class as 0. In order to predict the two class representations,
SVM model learns by mapping the input space into a higher
dimensional domain and then fitting a hyperplane to the domain.
The hyperplane represented by αiis obtained by the following
equation [55]:

∑
N

i ¼ 1
αiyi�

1
2

∑
N

i ¼ 1
∑
N

j ¼ 1
αiαjyiyjγi;j ð2Þ

where γi;j ¼ ðxi; xjÞ signifies a kernel function to map input classi-
fication to a higher dimensional feature space represented by
a radial basis function exp �γ‖xi; xj‖2

� �
. A radial basis function is a

real-value function whose value depends on the distance from the
origin.

For N samples, the above equation is represented as

∑
N

i ¼ 1
αiyi ¼ 0 ð0rαirMÞ ð3Þ

where M is the argument controlling the relationship between the
margin and classification error and yi is either þ1 or 0 indicating
the SP and Non-SP classes to which the points xi belong.

A hyperplane separates the two class representations of SP and
Non-SP. A hyperplane is a set of points xi which satisfies the
equation wxþc¼ 0, where w is regarded as the normal to the
hyperplane and jcj=‖w‖ is the perpendicular distance from the line
to the origin. w represents the Euclidean norm of w. The idea is to
generate a maximum margin between Non-SP class and SP class
using the support vector algorithm shown in Fig. 4. Suppose f1 and
f2 are the distances separating the two class samples Non-SP and
SP f0 and þ1g respectively. Eqs. (4) and (5) for the training data in
this research satisfy the following constraints:

xi:wþcZ1 for yi ¼ 1ðf 1; Non SPÞ ð4Þ

Fig. 4. Broken lines hyperplanes linearly separating SP and Non-SP. The circled stars and crosses show support vectors.
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xiwþcr0 for yi ¼ 0 ðf 2; SPÞ ð5Þ

Considering (4) and (5), the points H1 : xiwþc¼ 1 and H2 :
xiwþc¼ 0 lie on the margin hyperplane with normal w and the
perpendicular distance from the origin to be 1

2 ‖w‖’where c is zero.
Therefore, f 1 ¼ f 2 ¼ 1

2 ‖w‖ with a margin to be 1=‖w‖. It must be
noted that the hyperplanes shown in Fig. 4 are parallel with no
testing points falling within the margin. Based on the above
analysis, the objective is to obtain two hyperplanes for the two-
class problem in order to maximise the margin by minimising ‖w‖.
In Fig. 4, those testing points that lean on the broken lines
hyperplanes are called ‘support vectors’.

3.2. Neural network architecture for cleavage site recognition

The proposed neural network model is dual-layer feed-forward
architecture with an input layer, a hidden layer and an output

layer. The network is regarded as a ‘fully-connected’ neural net-
work. Each unit of a layer is connected to each unit in the next
layer where each connection's strength is given by a weight wij,
where i is the input layer and j is the hidden layer. In the network
each inner layer node Sj is computed by the sigmoid function as
follows [56]:

Sj ¼ 1=1þe�ðwjo þΣn
i ¼ 1wijsiÞ ð6Þ

The dataset comprised of a set of Si asymmetric propensity
values representing a single sliding window operation, where
i¼16 for �3 and þ13 values on both sides of the network. wj0

is a bias from the states Si of lower layers, where o is the output
layer. The activation was performed using the equation given
above and were fed forward via all the layers to the output. The
process is further elaborated in Fig. 5. Numbers 1.383, 1.845, 1.845,
1.075 and 1.845 are propensity values, and 0.752, 0.749, 0.993,
1.007 and 0.994 are neural outcome scores. The graph in Fig. 5

Fig. 5. A dual-layer feed-forward neural network training using sliding window based on propensity values. The output layer is represented by actual normalised decimal
values of 0.75 for signal section and 1.00 for mature protein, and predicated values of 0.74 for signal peptide and 0.99 for mature protein.
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demonstrates the predicated cleavage site by neural network and
actual cleavage position at residue 11, S shows the signal peptide
location and M shows the start of the mature protein. Pasquier and
Hamodrakas [47] conducted a similar experiment and concluded
that the optimal size of the hidden layer should be 30 neurons,
whereas this study obtained the optimal results with 20 neurons.
Table 4 demonstrates convergence with 20 neurons in the hidden
layer and compares the results for regression and mean square
error with other number of neurons. For regression analysis 20
neurons in the hidden layer provides validation of 0.9317 and for
mean square error analysis it gives validation of 0.0367. It should
be noted that the regression analysis was only carried-out at the
initial model training phase using K-fold based testing, described
in Section 4.1 below.

Fig. 6 further shows a dataset trained with a 20 neurons neural
network generates an outstanding mean square error outcome,
which is also outlined in Table 4. Fig. 6 shows that the error
outcome for validation is substantially improved as compared to
testing evaluation, although the overall training evaluation is
better.

4. Results of computer simulation and testing

In order to generate robust outcomes, prediction methodolo-
gies are generally evaluated by the re-substitution tests, indepen-
dent dataset tests, MCC, jack-knife tests [50], cross-validation or
self-consistency tests. Cross-validation based testing is considered
to be the most objective for any prediction methodologies requir-
ing accurate performance estimation [57]. Cross-validation
reduces the computational time and is adopted by many investi-
gators using SVM as a prediction engine. Cross-validation analysis
involves testing each protein group in the dataset against the
trained model, then putting the data back and removing another
protein group and repeating the analysis. To evaluate a global
performance of the system, the model is repeated for every protein
group and the average is reported for the whole dataset. MCC is
used in machine learning as a means of two-class binary classifi-
cations. The MCC is in essence a correlation coefficient between
the observed and predicted binary classifications, which is very
suitable for two-class binary discrimination.

4.1. SVM-NN based signal peptide discrimination and cleavage site
prediction

As shown in Fig. 5, the cleavage site position is determined by a
dual-layer feed-forward neural network utilising sliding windows
technique based on propensity values. The output layer produces
outstanding results, which is represented by actual normalised
decimal values of 0.75 for SP section and 1.00 for mature protein,
and the predicated values of 0.74 for SP and 0.99 for mature
protein. The overall training procedure was based on a dual-level
regression classification training process. In the first phase, 50% of
all training datasets were passed through a regression process to
perform a regression-based NN training. This half of the training
datasets were split into 70%, 15%, 15% data segments based on

Table 4
Comparison of the optimal neural training convergence using 20 neurons with 10,
30, 80, 160 and 240 neurons.

Neurons 10 20 30 80 160 240

Regression
Training 0.916 0.9545 0.959 0.94023 0.9774 0.8681
Validation 0.92 0.9317 0.924 0.91251 0.8579 0.8735
Test 0.903 0.9218 0.9225 0.91421 0.8537 0.8603

Mean square error
Training 0.0401 0.0222 0.0206 0.029 0.0119 0.062
Validation 0.0383 0.0367 0.037 0.041 0.076 0.059
Test 0.046 0.0375 0.0377 0.041 0.075 0.657

Fig. 6. Validation training performance based on 20 neurons and a back propagation feed-forward neural network.
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random pointers. 70% of these training datasets were regressively
trained for adjustment of the network error. 15% was used for
network generalisation as validation datasets, where the training

was stopped when the generalisation ceased improving for 5 con-
secutive epochs. 15% of the remaining data was used to test the
accuracy of the trained model. The regression-based training stage
was objectively used to evaluate the reliability of the trained
model. The regression values were iteratively obtained by retrain-
ing and the process was stopped when a regression of greater than
0.9 was obtained demonstrating a high correlation between
the target and outcome values. Once phase 1 was accomplished,
the underlying NN model was saved. It was at this stage where the
actual cleavage site identification was performed against the
remaining 50% of all datasets by 5-fold data evaluation. The overall
data was divided into cross-validation based five protein groups
with each group was tested over a trained model on the remaining
four groups. Cross-validation analysis was used where each
protein group was set aside for testing and the model was trained
using the remaining protein groups belonging to nuclear, cyto-
plasm, eukaryotic and prokaryotic. The cleavage site position
accuracy was obtained by averaging the five cross-validation based

Table 5
Discrimination and cleavage site prediction of signal peptide based on Matthews
correlation coefficient and cross-validation.

Type Group Discrimination
(MCC)

Cleavage site
(cross-validation)

Non-SP Nuclear 0.92 –

Cytoplasmic 0.88 –

SP Eukaryotes 0.91 91%
Prokaryote
(Bacterial)

0.89 92%

Fig. 7. Evaluation of a cytoplasmic protein mouse ataxin 2 (ATX2_MOUSE) using an
ensemble of SVM-NN classifications. S-score is given in (a), C-score is shown in (b),
and when combined in (c) the Y-score shows many peaks characteristic of a
cytoplasmic protein with Non-SP.

Fig. 8. Evaluation of a mouse nuclear protein (AKIP_MOUSE) using an ensemble of
SVM-NN classifications. S-score is given in (a), C-score is shown in (b), and when
combined in (c) the Y-score shows many peaks, characteristic of a Non-SP protein.
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groups. The discrimination accuracy of SP and Non-SP was
evaluated using MCC based ranking. Table 5 demonstrates dis-
crimination and cleavage site prediction for signal peptide based
on MCC tests and cross-validation tests for nuclear, cytoplasm,
eukaryotic and prokaryotic (bacteria). The figures in Table 5 are
rounded.

Computer simulations were carried out for the proposed
SVM-NN model on unseen SP and globular proteins and the
following results are obtained in Figs. 7–14 and Table 6. Fig. 7
shows the analysis of a mouse cytoplasmic protein ataxin 2
(ATX2_MOUSE) using an ensemble of SVM and NN classifications
for SP/Non-SP discrimination and cleavage site prediction. Fig. 7
(a) shows the outcome of using SVM for discrimination of SP and
Non-SP expressed as the S-score. Fig. 7(b) shows the use of NN for
cleavage site prediction, named as the C-score. Fig. 7(c) is a
combination of Fig. 7(a) and (b) used to ascertain the precise

location of the cleavage site and it is called the Y-score. In Fig. 7, for
cleavage site prediction one looks for one single peak and for SP
discrimination one looks for many peaks. Since Fig. 7(c) has many
peaks, it clearly demonstrates a Non-SP cytoplasmic protein. Fig. 8
is an example of a nuclear protein (AKIP_MOUSE) where again
multiple inverted peaks demonstrate a globular Non-SP protein.
Fig. 8(a) again demonstrates the discrimination of SP and Non-SP
using SVM, represented by the S-score. Fig. 8(b) shows the use of
NN for cleavage site prediction, denoted as the C-score. Fig. 8(c) Y-
score is a combination of Fig. 8(a) and (b) utilised to determine the
precise location of the cleavage site, but it provides many peaks
representing a globular Non-SP protein. In contrast, Fig. 9 shows
the cleavage site position of a eukaryotic type I membrane protein
with an SP (HA2Q_HUMAN) protein represented by a single peak,
which matches 100%. In Fig. 9(c), the Y-score clearly indicates
a cleavage site at amino acid 31 within the 60 residue length,
where the mature protein begins [32]. The dataset was further
evaluated for general bacterial sequences, and bacterial
sub-classes Gram �ve and Gram þve; three samples are shown
in Figs. 10–12, respectively. Figs. 10 and 11 show two examples,
evaluations of a prokaryotic (bacterial) and of a Gram �ve
sequence respectively, where the inverted peaks demonstrate
Non-SP cytoplasmic proteins in both cases. Fig. 12 shows the
cleavage site position of a Gram þve bacterial sequence repre-
sented by a single peak, where the S-score and the C-score match
100% and both indicate a cleavage site at amino acid 27 within the
70 residue length.

The research further used a various combination of SP proteins
selected out of 646 non-redundant proteins for SP and Non-SP
identification based on MCC tests using SVM, and cleavage site
prediction based on cross-validation evaluation using SVM-NN
technique. Table 6 shows SP and Non-SP discrimination and

Fig. 9. Evaluation of a human type I membrane protein, a class I MHC antigen
(HA2Q_HUMAN) which contains a signal peptide using an ensemble of SVM-NN
classifications. A mapping of hydrophobic propensity transition in S-score (a) and
crisp cleavage mapping in C-score (b) produces an accurate combined cleavage site
Y-score in (c).

Fig. 10. Evaluation of a cytoplasmic bacterial protein sequence (CHEB3_LEPIC)
using an ensemble of SVM-NN classifications. C-score is shown.

Fig. 11. Evaluation of a cytoplasmic protein sequence, asparaginase (ASPG_WOLSU),
from the Gram �ve cytoplasmic bacterial database, using an ensemble of SVM-NN
classifications. C-score is shown.
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cleavage site prediction for a combination of 20 SP proteins which
are chosen out of 646 non-redundant proteins. Table 6 demon-
strates the accuracies for discrimination and cleavage site predic-
tion for each protein and indicates an overall accuracy of 90% for
SP and Non-SP discrimination for MCC based evaluation using
SVM. Furthermore, Table 6 shows an accuracy of 94.0% for cleavage
site prediction for cross-validation based evaluation using
SVM-NN. In order to remove the bias from negative and positive
sets in neural network training, the datasets were reduced to an
approximately equal size. Additionally, computer simulation
results further confirm that a combination of 20 cytoplasmic
proteins selected out of 646 non-redundant proteins for SP and
non-SP discrimination produces an accuracy of 90% for MCC based
evaluation using SVM. Fig. 13 further uses the same 20 SP proteins
from Table 6 and compares the predicted and the actual outcomes

for cleavage site prediction. Fig. 13 shows that the predicted
cleavage site predictions closely match the actual ones, demon-
strating the high accuracy of the proposed SVM-NN model. Fig. 14
demonstrates the percentage of cleavage site prediction accuracies
for the same 20 SP proteins from Table 6. Apart from one protein,
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Fig. 13. Comparison of actual (continuous lines) and predicted (broken lines)
cleavage site locations for 20 SP proteins.
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Fig. 14. Accuracy of cleavage site predictions for 20 bacterial SP proteins using
SVM-NN.

Fig. 12. Evaluation of a SP containing sequence (CDG2_BACMA) taken from the
Gram þve bacterial SP database using an ensemble of SVM-NN classifications.
A mapping of the hydrophobic propensity transition in S-score (a) and crisp
cleavage mapping in C-score (b) are shown.

Table 6
A combination of 20 SP proteins were selected out of 646 non-redundant proteins
for cross-validation based evaluation.

Type Protein Discrimination
accuracy with
MCC tests

Cleavage site accuracy with
cross-validation tests

1 Signal
Peptide

BLAN_SERMA Y 92.6

2 Signal
Peptide

BLE1_PSEAE Y 61.5

3 Signal
Peptide

BLIP_STRCL N 91.7

4 Signal
Peptide

BLO2_SALTY Y 100

5 Signal
Peptide

BLP2_PSEAE Y 95

6 Signal
Peptide

BMAE_ECOLI Y 100

7 Signal
Peptide

BMP_TREPA Y 100

8 Signal
Peptide

BP26_BRUAB Y 100

9 Signal
Peptide

BRAC_PSEAE Y 96.3

10 Signal
Peptide

BTUB_ECOLI Y 90

11 Signal
Peptide

BTUF_ECOLI Y 100

12 Signal
Peptide

C552_PSEST Y 95.8

13 Signal
Peptide

C554_NITEU Y 96

14 Signal
Peptide

C555_METCA Y 100

15 Signal
Peptide

C556_RHOPA N 100

16 Signal
Peptide

C562_ECOLI Y 77.3

17 Signal
Peptide

CABC_PROVU Y 96

18 Signal
Peptide

CAH_NEIGO Y 92.3

19 Signal
Peptide

CBPG_PSES6 Y 100

20 Signal
Peptide

CCPR_NITEU Y 96.3

90 94.0

H.B. Kazemian et al. / Computers in Biology and Medicine 45 (2014) 98–110108



Author's personal copy

BLE1_PSEAE, the percentage of accuracy of the proposed SVM-NN
prediction tool is very high.

5. Conclusion

The proposed methodology is based on the novel idea of
applying SVM to SP and Non-SP discrimination and NN to SP
cleavage site prediction, and the hybridisation of these two
classification outcomes using an ensample-based SVM-NN classi-
fier. The idea is to eliminate false cleavage site selections due to
very high scores presented by the NN classifier because of the
preceding hydrophobic segments. Therefore, in the presence of a
dual SVM-NN classifier, higher false positive scores from both
classifiers are rejected.

SignalP 4.0 with hidden Markov model method performs better
than SignalP 3.0 for SP and Non-SP discrimination. The computer
simulation results show that the proposed SVM technique outper-
forms SignalP 4.0 for SP and Non-SP discrimination using eukar-
yotic and prokaryotic proteins based on MCC tests with averaged
accuracies of 0.90 for the SVM and 0.85 for SignalP 4.0. The SVM
technique for MCC based testing also produces promising results
for Non-SP detection for nuclear and cytoplasmic data with
accuracies of 0.92 and 0.88 respectively. Furthermore, the pro-
posed dual SVM-NN classifier performs better than SignalP 4.0 for
cleavage site identification using eukaryotic and prokaryotic pro-
teins based on cross-validation tests with accuracies of 91–92% for
the SVM-NN and 66–83% for SignalP 4.0.

Finally, the simulation results demonstrate that a combination
of 20 SP proteins selected out of 646 non-redundant proteins
for SP and non-SP discrimination produces an accuracy of 90%
for MCC based evaluation using the SVM and an accuracy of 94%
for cleavage site prediction based on cross-validation evaluation
using the proposed SVM-NN model.
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