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Summary

Given two groups K and H for which we have the free crossed resolutions, B" ~ K

and C" ~ H respectively. Our aim is to construct a free crossed resolution, A" ~

G, by way of induction on the degree n, for any semidirect product G = K ~ H.

First we show how to find a set ZI of generators for the free group Al and

the corresponding unique epimorphism from the free group on those generators to

the semidirect product. This gives us the I-dimensional free crossed resolution

Al ~ G, (see Proposition 4.1).

Next we define a set of generators Z2 that together with Zb constitute a gener-

ating set for the free crossed module A2 ~ AI, where 82 is crossed module homo-

morphism. Proposition 4.1 together with this free crossed module 82 : A2 ----t Al

define a 2-dimensional free crossed resolution for A2 ~ Al ~ G (see Proposition

4.9).

We then define an exact sequence A3 ~ A2 ~ Ab where A3, is an (Ad82A2)-

module on generating set Z3 with module homomorphism 83 : A3 ----t A2 defined on

the generators. Proposition 4.11 says that we have a crossed complex of length 3,

i.e., A3 ~ A2 ~ Al --=-t G, where Im83 ~ Ker82•
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Introduction

In this work our aim is to investigate the construction of relatively small resolutions

of groups, in the context of crossed complexes. Essentially, a crossed complex is

like a chain complex of modules, in positive degrees, except that in degrees 1 and

2 there are some non-abelian structure. While a chain complex is a good algebraic

structure for calculating homology of a space, a crossed complex may also contain

information about the first and second homotopy groups.

Our ultimate aim would be to generalise, to crossed complexes, a construction

of C.T.C. Wall, [13], for the construction of free resolutions in the context of chain

complexes. Recall that in the classical context a free resolution e : A. - Z for a

group G, [10], is a complex of free (left) ZG-modules

( ... ~ A3 ~ A2 ~ Al ~ Ao - 0 -'" )

together with a quasi isomorphism e to the complex

1
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where Z has trivial G-action. Equivalently it is a complex of ZG-modules

A 83A £hA 81 e
... ---- 3 ---- 2 ---- 1 ---- Ao ---- Z ---- 0

which is free in degrees ~ 0 and is exact.

There are many methods for finding 'large' resolutions, for example using the

notion of nerve or classifying space, [15]:

Let K be the simplicial nerve of the group G, that is,

with the usual simplicial face maps

and degeneracy maps

If one takes the geometric realisation F = IKI of this simplicial set one obtains

a classifying space for G, that is

2
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• The fundamental group of F is G itself,

• The other homotopy groups are trivial,

• It has a universal cover F that is a contractible cell complex

• The complex of cellular chains on F is a free resolution

A = C.(F,Z) ~ z.

• The nerve, and this standard resolution, are functorial in G.

The only disadvantage of this standard construction is that the number of n-dimensional

cells in the nerve, and the number of generators of An in the resolution, grow expo-

nentially with n.

On the other hand, for some particular groups and classes of groups there are

much smaller resolutions known. Any finite cyclic group G has a resolution with

just one generator in each dimension,

3
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where ea; = 1 and the boundary maps are

(l-g)an-l n odd

(1+ 9 + g2 + ... + gk-l)an_l n even

if the group G has order k and 9 EGis a generator.

In general however it is not easy to find free resolutions with a small number of

generators, that is, it is not easy to find exact sequences of boundary maps, even

though we are only dealing with free modules.

One straightforward method to construct new resolutions from old is the follow-

ing. Suppose the group G is a cartesian product K x H. Then one can construct

a (small) free resolution for G out of (small) free resolutions for K and for H.

If we consider classifying spaces FK for K and FH for H, then

• the product FK X FH is a classifying space for K x H

--• the universal cover FK x FH is contractible

--• the cellular chain complex C. (FK X FH) ---# Z provides a resolution for the

cartesian product K x H.

This idea is easy to state in terms of chain complexes. Given two chain complexes

Band C which are free resolutions for K and H, then a free resolution A for K x H

may be constructed using the tensor product of complexes B ® C.

4



Resolutions for Group Extensions

In this way, starting from the small free resolutions of finite cyclic groups given

above, one may construct a free resolution for a product of cyclic groups, and hence

inductively for all finitely generated abelian groups, in which the number of gener-

ators grows only linearly with the degree.

The obvious question is now whether a similar construction can be used if the

group G is not a direct product but only a semidirect product, for example. In

particular, we would like to know if there is a twisted tensor product of complexes

which could be used instead of the tensor product.

A construction of C.T.C. Wall

The work in this thesis is inspired by a construction of C.T.C. Wall for resolutions

of group extensions. Consider any (not necessarily split) extension of groups, [13],

1--+K--+G--+H--+1

and suppose we are given resolutions Band C for the groups K and H. Then a

resolution A for G may be constructed as a 'twisted' tensor product of Band C.

The idea behind Wall's construction is as follows. The free resolutions B for K

and C for H are specified by

• graded sets of generators (Xp) and (Yq)

5
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• their boundaries

c(Xo), c(Yo) E Z,

Then a free resolution A for G is constructed, with generators

and certain boundary maps, which may be defined inductively. As usual, it is

these boundary maps on A which are hard to define, but Wall, [13], shows that the

exactness of the resolutions Band C implies that they exist. He then shows that

exactness for these boundary maps on A follows by a spectral sequence argument.

Crossed modules

The notions of crossed modules, and of free crossed complexes, date back many years,

to the work of J.H.C. Whitehead, [14],who called them simply 'homotopy systems'.

Their use has been developed more recently by a number of people, especially in the

work of R. Brown and P. Higgins, and by their students.

A crossed module is a pair of groups V, W (not necessarily abelian),

• a group homomorphism a :V ~ W,

• and a left action of W on V, written UV,

6
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satisfying

The homotopy groups of a crossed module are

7fl (8: V -----* W) - W/8V

7r2(8 : V -----* W) ker 8

An example from algebraic topology (which also has application to presentations

of groups) shows the importance of crossed modules. Let p(2) be a pointed connected

2-dimensional cell complex and let p(l) be its l-skeleton. Then there is a so-called

connecting homomorphism

in the long exact sequence of homotopy groups of the pair (p(2), p(l)). This is

the fundamental example of a free crossed module, and in fact any free crossed

module can be obtained in this way. One observes that the homotopy groups of this

crossed module are

7r2(8) - 7r2P(2) ,

7fl (8) - 7rlP(2).

7



Resolutions for Group Extensions

The application to presentations of groups is the following. Let G be a group

given by a presentation. In other words, G = (ZIIZ2), where

• Zl is a set of generators for G: there is an epimorphism

where (Ill) is the free group on Ill;

• Z2 is a set of relators for G: it comes with an injection

such that the kernel of e is generated as a normal subgroup of (Zl) by the

image of ()2.

Associated to any presentation of a group one has a 2-dimensional cell complex

F(I) C F(2), given by

and associated to this cell complex one has a free crossed module with 11"1 rv G.

In fact the construction can be made completely algebraic: the free crossed

module is simply the 'canonical' or 'universal' extension of the injection ()2,

((Z2)) __ lh__ (ZI)

~l l~
1I"2(F(2), F(I») 1I"1F(I)

8
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As a group, ((Z2)) is generated by all formal conjugates Wz of elements z E Z2 by

words W E (ZI), modulo some 'obvious' trivial combinations of relations. However

it is much more elegant to phrase things in the language of free crossed modules:

Given a group Al and a function ()2 : Z2 ---+ Al we write

to denote the free crossed Crmodule generated by Z2 ~ Ab where Cl is the

cokernel of a~.

In the case Al = (ZI), a free group, we said

and in general, ((Z2)) is generated by {WIZ2}, subject to relations

Of course this will not usually be an abelian group.

Presentations of extensions of groups

Returning to the idea of understanding the structure of groups in terms of that of

its normal subgroups and quotients, we may consider the following theorem from

combinatorial group theory:

9



Resolutions for Group Extensions

Theorem: Consider any (not necessarily split) extension of groups [8]

1 ---7 K ---7 G ---7 H ---7 1

and suppose we are given presentations

Then the group G has a presentation

where, as sets,

Note that what we have not made clear in the above statement is how the

function 82 : Z2 ---7 (Zl) is constructed. Let us translate this theorem, using the

correspondence between presentations and free crossed modules that we described

above, (see Proposition 4.9):

Theorem: Consider any split extension of groups,

1 ---7 K ---7 G ---7 H ---7 1

and suppose we are given free crossed modules

10
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Then there exists a free crossed module

where xo, Yo = *, xp a generator in Bp, Yq generator in Cq.

Once again, the hard part of proving this theorem is defining the boundary map

a.

The work of Ellis-Kholodna

Another inspiration for this thesis was the work of G. Ellis and 1. Kholodna, [7],

who proposed an extension of the above idea to dimension 3. Unfortunately one of

their general results contains an error, which we will discuss later.

Ellis-Kholodna introduced the following concept. A 3-presentation of a group

G consists of:

• and hence a free crossed module

11
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• together with a set Z3 and an injective function

whose image generates ker(82) as a ZG-module. These elements of this im-

age, are sometimes called 'relations between relations' or 'homotopical

syzygies'.

A 3-presentation may be represented as an exact sequence

where xo, Yo = *, xp is a generator in Bp, and Yq is a generator in Cq.

The theorem that Ellis and Kholodna claimed to have proved can be expressed

as follows:

Theorem (3-presentations of extensions of groups)

Consider any split extension of groups

1 ---+ K ---+ G ---+ H ---+ 1

and suppose we are given 3-presentations

(X3)ZK ~ ((X2)) ~ (Xl) - K - 1
6' 6'

(Y3)ZH ~ ((Y2)) ~ (Yi) - H-1

12
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Then the group G has a presentation

where the sets of generators are given by

Crossed complexes

One can think of the non-abelian exact sequence used to represent a 3-presentation

above as the tail end of a crossed complex. Explicitly, a crossed complex is a

diagram of group homomorphisms

e; C C 84 C 83 lh···-Cn- n-1-"'- 4- 3-C2-C1

in which Ch : C2 ---+ Cl is a crossed module and, for n > 3,

• an respects the G actions, and an-Ian is trivial.

In particular, C?3 is just a classical chain complex of ZG-modules, and so our work

in this thesis of generalising Wall's proof from chain complexes to crossed complexes

has to be concentrated mainly in degrees 1, 2 and 3. It is easy to see how to extend

the basic definitions from chain complexes to crossed complexes:

13
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• A crossed complex C is free if 82 is a free crossed module and Cn is a free

ZG-module for n ~ 3.

• A free crossed complex C which is exact (except at Cl) is termed a free

crossed resolution of the group G = 7rl(82).

• An n-presentation of a group G, for 0 ~ n ~ 00 is an n-dimensional con-

nected cell complex with 7rl = G and 7ri trivial for 1 < i < n,

• An n-presentation gives a free crossed resolution of length n

where Ck = 7rk(F(k), F(k-l»), with generating set Zk.

For clarity we may write an n-presentation simply as

Then we may make the followinggeneral conjecture:

Consider any (not necessarily split) extension of groups

1 ---t K ---t G ---t H ---t 1

14
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and suppose we are given n-presentations of K and H,

Then the group G has an n-presentation

where, if we write Xo = Yo = {*},

z, ~ {xpQ9Yq: XpEXp, yqEYq, p+q=k} ~ U XpxYq
p+q=k

for each k = 1, ... .n,

Once more, the hard part of proving this conjecture is defining funtions {)k on

the generating sets Zn which, on the free crossed complex of length n, will define an

exact complex.

15
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Chapter 1

Group Theory

This chapter will establish the group theory necessary for understanding the struc-

tures used throughout this thesis, but most especially in chapter 4, where the main

result is developed.

The first section contains definitions and notation, for understanding semidirect

products and then we discuss group extensions.

In the final section we will define modules, and free modules, as well as the notion

of tensor product A ® B, where A is a right module and B is a left module. We

shall also give some properties of these structures.

16
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1.1 Transversals and Semidirect Products

A subgroup K of a group G is called normal and denoted K <l G if gKg-1 = K

for all 9 E G. Given that K is a normal subgroup of a group G, then every 9 E G

defines an automorphism ag of K

ag : K -----* K, k H gkg-1,

and this in turn defines a homomorphism

a :G -----* Aut(K), (1.1)

If K is a subgroup of G, we may choose a right transversal H for K in G consisting

of one element from each right coset of K in G, so that every element 9 E G can be

written uniquely as 9 = kh for k E K, h E H. If K is in fact a normal subgroup

then left transversals and right transversals are the same, G = K H = HK. Then

the two unique ways of expressing elements of G are related by

9 = kh = hk',

If K is a normal subgroup, consider the canonical epimorphism to the quotient group

q :G -----* GI K, gHKg,

in this case the normal subgroup K is the kernel of this epimorphism.

17
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We can define a function

j:G/K-+G,

that is a splitting or a cross section of the quotient map.

Cross sections and transversals of normal subgroups are just two ways of saying

the same thing. Both of them give a particular choice of elements h E G, one for

each coset of K in G, so that all cosets are represented exactly once by cosets of the

form Kh.

In terms of the cross sections j, we see that every element 9 of G can be written

as

9 = kh = hk', h = j(Kg), k = gh-1, k' = h-1g.

We can assume we always choose the cross section in the obvious way for the

identity coset:

j(K· 1) = 1.

That is, we assume the transversal H contains the identity element of G.

A complement for a normal subgroup K of a group G is a transversal H which

is actually a subgroup of G. It is not always possible to find a complement. If a

complement exists then G is called a semidirect product of Hand K, which we

write as

G~ K ~ H.

18
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In terms of cross sections, G is a semidirect product if there exists a function

j with q 0 j the identity, such that j is a homomorphism of groups. This is the

same as the condition that the image of j is a subgroup of G. For the image of a

homomorphism is always a group, and conversely if the image of the function j is a

subgroup of G then

j(Kg) . j(Kg') = j(Kg")

for some gil, and applying the homomorphism q gives K gil = Kg· Kg', so j is a

homomorphism also.

We will see further examples of cross sections, semidirect products, and their

generalisations, below.

1.2 Group Extensions

A sequence of groups and group homomorphisms

1 ---t K ~ G .z,H ---t 1, (1.2)

is called exact if the homomorphism i is injective, p is surjective and

Im(i) = Ker(p).

This last condition is the same as saying that p(i(k)) = 1 for all k in K and also

that every element 9 in the kernel of p may be represented as i(k) for some element

19
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k in K. So in this situation, the sequence (1.2) is called an extension of K by H,

then

• The image i(K) rv K is a normal subgroup of G. This is because it is also the

kernel of the homomorphism p.

• The quotient group G/i(K), of G modulo the subgroup i(K), contains the

(right) cosets of Im(i) and it is isomorphic to the group H by the isomorphism

theorem,

G/i(K) = G/ker(p) rv p(G) = H.

• Since p is a surjection, p-l(h), for any h E H, is one of the (right) cosets

of Im(i), so we can choose a mapping j : H --+ G such that j(l) = 1 and

po j = idH. The map j selects a representative of each coset. We shall denote

this set of coset representatives by j (H), and call it a cross section of G.

When K ~ G .z, H is a group extension of K by Hand j (H) is a cross

section of G, then every element 9 of G can be written in the form,

9 = i(k)j(h), (1.3)

for some unique k E K and h EH. To prove that this representation exists and is

unique, we apply the homomorphism p to the equation (1.3) and we get

p(g) = p(i(k)j(h)) = p(i(k))p(j(h)) = 1.h = h

20
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and so h is uniquely determined. Now solving (1.3) is the same as solving

9 . j(h)-l = i(k) (1.4)

This has a solution because p(g) = h = p(j(h)) and so the left hand side of

equation (1.4) is an element of ker(p) = i(K). The solution is unique because i is

injective.

Thus all elements in G can be represented uniquely by a product of the type

i(k)j(h).

We now consider three other possible products in G,

j(h)i(k), j(h)j(h'), i(k)j (h )i(k/)j (h').

(i) applying p to the first product, j(h}i(k) gives,

p(j(h)i(k)) = p(j(h))p(i(k)) = h.

However, by (1.3), every element of G can be written uniquely as a product

of an element of Im(i) and an element of j(H), so that

j(h)i(k) = i(hk)j(h), (1.5)

for some unique hk E K which is determined by

21
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Therefore we get a mapping a : H x K -+ K defined by (hk) t---+ hk which

gives the action of the set H on the group K relative to a cross section j(H)

ofG

(ii) applying p to the second product, j(h)j(h') yields,

p(j(h)j(h')) = p(j(h))p(j(h')) = hh'.

Then (1.3) says that

j(h)j (h') = i( {h, h'} )j(hh') (1.6)

for some unique {h, h'} E K which is determined by

i({h, h'}) = j(h)j(h') . j(hh')-l.

Therefore we get a mapping C2 : (h, h') t---+ {h, h'} of H x H into K which we

will call the co cycle of H relative to j (H). It is clear from the definition that

the cocycle is trivial, C2 (h, h') = 1, if and only if the map j :H -+ G is a

homomorphism of groups.

(iii) finally, applying p to i(k)j(h)i(k')j(h') we see that (1.5) and (1.6) yield,

i(k)j(h)i(k')j(h') - i(k)i(hk')j(h)j(h')

- i(k)i(hk')i( {hh'} )j(hh')

- i(khk' {h, h'} )j(hh') (1.7)

22



Resolutions for Group Extensions

So that the set action a and the cocycle C2 are enough to put all products in G

in the form of (1.3), conversely (1.3) and (1.7) construct G from K and H.

When we have a group extension G, of K by H, then the set action a and

the cocycle C2 have the following properties. For all h, h' E Hand k E K, with

ah : k 1---7 hk an automorphism of K, then

1k - k·,

{h, l} = 1 = {l,h};

h(hlk){h, h'} {h, h,}hhl k;

{h, h'Hhh', h"} - h{h', h"Hh, h' h"}.

(1.8)

(1.9)

(1.10)

(1.11)

Observe, since i is an injective homomorphism, (1.10) follows from:

= j(h)i(h
l

k)j(h)-l j(h)j(h')j(hh't1

= (j (h) (j(h')i(k)j (h')-l )j(h )-1)j(h)j (h')j(hh't1

= j(h)j(h')i(k)j(hh')-l

= j(h)j(h')(j(hh't1 j(hh'))i(k)j(hh')-l

= i( {h, h'} )i(hhl k) = i( {h, h,}hhl k).

23
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Conversely, let K and H be groups and a : H ---+ Aut(K) be a mapping, and

C2 : H x H ---+ K be a mapping, if they satisfy conditions (1.8)-(1.11) above, then

G(a,C2) = K x H together with the following multiplication:

(k, h)(k', h') = (khk' {h, h'}, hh') (1.12)

is a group extension of K by H:

• Associativity:

(k, h) [(k', h') (k", h")] - (k, h) (k' h'k" {h', h"}, h'h")

( k h ( k' h'kIf {h', h"}) {h, h' h"} , h (h' h") )

_ (k hk' h (h'k") h{h', h"} {h, h' h"} ,h (h'h"))

- (khk'h(h'k") {h,h'}{hh',h"},h(h'h")) by (1.11)

(k hk' {h, h'} hh'k" {hh', h"} ,(hh') h") by (1.10)

(k hk' {h, h'}, hh') (k", h")

- [(k, h) (k', h')] (k", h") ,

• Identity element: (k, h) (1, 1) = (k hI {h, I}, li- 1) = (k· 1 . 1,h) = (k, h).

Similarly (1,1) (k, h) = (11k {I, h} , 1· h) = (k, h)

• Inverse element: first (k', h') is a left inverse for (k, h) if (k', h') (k, h) = (1,1)

where k' = (h'k {h', h})-l and h' = h-1,which shows that every element has a left

24
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inverse. Let (k", h") be a left inverse for (k', h'),

(k",h") (k", h") [(k', h') (k, h)]

[(k", h") (k', h')] (k, h)

- (k, h)

so (k', h') is infact an actual inverse for (k, h).

It is the case that any group extension G of K by H is equivalent to G(a,c2) for

some a and C2.

Some types of extension are particularly simple:

The centre of a group G is the subset

Z (G) = {g E G : gx = xg for all x E G} ,

of G. It is a subgroup of G. An extension is called central if i(K) is contained in

the centre Z(G) of G. By definition, the action a is trivial (given by "k = k for

all h E H and all k E K) for all central extensions, but the cocycle C2 may not be

trivial.

The semidirect product K )<I H of the previous section is an extension of K

byH,

1 --+ K ~ K )<I H .z,H --+ 1,

25
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with et given by the conjugation action. By definition, the cocycle is trivial for

these types of extensions where the map j can be chosen to be the homomorphism

j(h) = (1, h). These types of extensions are also called split extensions. We can

always identify a semidirect product G with the set of ordered pairs (k, h) and the

group structure given by

(k, h) . (k', h') = (k . eth(k'), h - h').

An extension is both split and central if and only if both the action and the

cocycle are trivial, that is, if the extension is just the direct product of groups,

KxH.

1.2.1 Examples of Group Extensions

In appendix 5 we give some examples of the action, et, and cocycle, C2, which cor-

respond to particular group extensions. Here we have shown three particular group

extensions:

• The cyclic group of order six is an extension of the cyclic group of order three

by the cyclic group of order two,
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Since the extension is abelian it is central. There are several possible choices

for the cross section i, and one of them gives a homomorphism, so the exten-

sion can also be seen to be split. Of course, the cyclic group of order six is

isomorphic to the direct product of the groups of orders two and three,

• The symmetric group of degree three is a split extension of the group of order

3 by the group of order two

This extension is not central: the cocycle is trivial but the action is not.

The basic form of all examples is the same: G is a group with a normal subgroup

K, and H is the quotient. The essential question is, given the availability of nice

algorithms for working with (or simply "nice properties of") two groups K and H,

are these passed on to all of the possible extensions G, of K by H?

Here we give a couple of generalisations:

1. For all groups K, H the direct product K x H is a split central extension (that

is, an extension with trivial action and trivial cocycle) given by

l---+K~KxH~H---+l
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with i(k) = (k, 1), p(k, h) = hand j(h) = (1, h).

As a special case, recall that if m, n are coprime integers then the Chinese

Remainder Theorem gives an isomorphism

where x, y, c are the generators of the groups and a, b are integers such that

arn+bn = 1

and so

rim + tarn
r mod m,

t mod n.

Therefore, for cyclic groups of coprime order K = Cm and H = Cn we can

write down an isomorphism of two split central extensions

and we get

p'{c) = y,

2. There is a split extension of the cyclic group of order n by the group of order

2 which gives the dihedral group,
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with i(x) = a, p(aTbt) = yt (t = 0,1), cross section j(y) = b, and

bab-I - bab

so the action is given by Yx = xn-I.

1.3 Modules

In what follows let G be a group written multiplicatively and R be a ring with an

identity element 1 =J. O.

Definition 1.1. A left R-module M is an additive abelian group M together with

a scalar multiplication i.e., a map, R x M ----t M, defined by (r,m) M rm, with

properties:

(1) (rl + r2)m = rIm + tv» for all rI, r2 E R and m E M;

(2) r(ml +m2) = rml + rm2 for all rE Rand m1!m2 EM;

(3) (rIr2)m = rl(r2m) for all rI, r2 ER and m E M;

(4) Im = m for all m EM.

There is a similar statement for a right R-module where the scalar multiplication

is given by the map M x R ----t M, (m, r) M mr and corresponding properties.
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1.3.1 Examples of Modules

1. Any ring R can be considered as a left or a right R-module.

2. Given a subring S of a ring R, then for any s E Sand r E R we have sr E R so

that R together with addition makes R into a left (as well as right) S-module.

The distributive, associative and unit laws form the four conditions of the

definition.

3. If R = Z is the ring of integers, then an R-module M, is really just an abelian

group.

4. Suppose R is a ring and C is a group, then let RC be the following set,

{L rgg : rg E R, rg f 0 for a finite number of 9 E c} .
gEG

If we define the following addition and multiplication on RC,

L rgg + L r~g = L(rg + r~)g,
gEG gEG gEG

(L rgg)(L rg,g') = L (rgr~,)gg'
gEG g'EG g,g'EG

then RC is called the group ring of the group C over the ring R. If we now

identify r E R with r1 E RC then we see that R is a subring of RC. Thus

RC becomes a left (or right) R-module with

r- (L rgg) = (L(rrg)g)
gEG gEG
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5. If K is a subgroup of the group C then RK is a subring of RC so that RC is

also a left (or right) RK-module.

1.3.2 Submodules

Definition 1.2. Let M be an R-module and S a subset of M, then we call S a

submodule of M if:

(1) 0 E S;

(3) sE S =? -s E S;

These three conditions state that S is a subgroup of the abelian group M.

(4) s E Sand rE R =? rs E S.

This last condition states that S is closed under scalar multiplication.

From this definition we see that a 'submodule' of a left R-module is itself a left

R-module. We can replace definition 1.2 by the following statement:

Result 1.3. A subset S oj an R-module is a submodule iJ and only iJ (a) S #- 0;

(b) Sb S2 E Sand rb r2 ER===} rIsI + r2S2E S.
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Proof. Certainly if 0 E S then S -=f 0. If S -=f 0, then there exists a s E S, so

that -s E S by 1.2(3) and s + -s E S by 1.2(2) i.e., 0 E S. Condition 1.2(3) is

redundant. First note if SI + S2 = S2, then SI = 0, since s} + S2 - S2 = S2 - S2' In

R, 0 + 0 = 0, so for any s E S (0 + O)s = Os, so Os + Os = Os, therefore Os = O.

Next 0 = Os = (l+(-l))s = s+(-l)s, so (-l)s = -s therefore 1.2(3) follows from

1.2(4) if r = -1.

If rIs} E Sand r2S2 E S by 1.2(4) and r}s} + r2s2 E S by 1.2(2). Conversely,

given s E S, rE R then rs = rs + 0= rs + Os E S by 1.3(b), and given Sb S2 E S,

then SI + S2 = lSI + 1s2 E S by 1.3(b). o

1.3.3 Free modules

Free modules can be defined by their universal property or with an explicit con-

struction.

Definition 1.4. Let F be a left R-module and X be a set. Then F is called a

free left R-module on the basis X if X is regarded as a subset of F and all

homomorphisms of modules from F are determined by their values on the elements

of X. That is, iJ there is a map L : X ----t F such that for any left R-module A and

any Junction J :X ----t A, there exists a unique R-homomorphism g : F ----t A such

that J = go L
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Let F = EBxEX R; with {RxLEX a family of left R-modules and Rx = Rx for

each x EX. Associate r E R with t x E R; then every element of F can be uniquely

written as a finite sum E~=lrixi, ri E R, Xi E X. Let t. : X ---7 F be the map that

sends X to 1· x. So that any R-module A and map f :X ---7 A we have the unique

homomorphism 9 : F ---7 A of the definition and we see that it is well-defined and

unique

We see that 91, = f and we have proved the following theorem:

Theorem 1.5. Let X be a set, then there exists a free left R-module F with X as

basis.

If X is the empty set then the free module is the zero module.

Now let G be a group and let R be the group ring

zc = {Erg9 : rg E z,», f:. 0 for a finite number of gEe}
gEG

For every free left R-module F with X as basis there is a homomorphism of

R-modules, called the augmentation map,

cF-+Z

Here Z is the trivial Ze-module, that is, for all gEe and a E Z we have g. a = a.

The augmentation map is the only homomorphism of R-modules which sends each
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element x of the basis to the element 1 E Z. That is,

If b= LLnx,gg'x E F then E(b) = LLnx,g E Z.
xEX gEO xEX gEO

1.3.4 Tensor Product

Definition 1.6. Suppose R is a ring and G is any abelian group. Given a right

R-module A and a left R-module B then a Junction B : A x B -+ G is called an

R-bihomomorphism or an R-bilinear map iJ it satisfies the Jollowing conditions,

(i) H(a, b+ b') = H(a, b) + H(a, b');

(ii) B(a + a', b) = B(a, b) + B(a', b);

(iii) B(ar, b) = B(a, rb).

Definition 1.7. A tensor product of A by B over R is an abelian group A ®R B

consisting of a right R-module A and a left R-module B together with a R-bihomomorphism

® :A x B -+ A ®R B satisfying the following universal property: - for any abelian

group G and R- bihomomorphism A x B -+ G there exists a unique homomorphism

a : A ®R B -+ G of abelian groups that makes the following diagram commute

8

A®RB·········a;·....····..··)o-G

34



Resolutions for Group Extensions

As for free modules above, the universal property proves that the tensor product

is unique, because for any two different tensor products the universal property

would automatically give a pair of (unique) isomorphisms between them. In order

to prove the tensor product exists there is an explicit construction which we can

give:

Consider the free Z-module Z(A, B) which is freely generated by the set A x

B, where A is a right R-module and B is a left R-module. Let D(A, B) be the

submodule of Z(A, B) generated by the following elements

3. (ar, b) - (a, rb),

for all a, aI, a2 E A, b, b1, b2 E Band r E R. Then we have constructed the tensor

product as the quotient Z-module

AQ9B .- Z(A, B)/D(A, B).
R

We will write a ® b for the element (a, b)+D(A, B) in Z(A, B)/ D(A, B).

We remark also that if A is at the same time a left S-module and a right R-

module, and B is a left R module, then the tensor product A ®R B is still a left
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S-module, with

s . (a .~ b) = (sa) 0 b

On the other hand, if A and B are just abelian groups, then the tensor product

over R = Z gives an abelian group A 0 B.
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Chapter 2

Chain Complexes and Resolutions

In this chapter we define chain complexes and their homology groups. We also

introduce the notion of exactness of a sequence of groups and homomorphisms of

groups.

We also discuss a construction by C.T.C. Wall [13], where he gives a resolution

for group extensions with the use of R-modules. This is a major motivation for the

work undertaken in this thesis.

2.1 Chain Complexes and Resolutions for Groups

The established theory of chain complexes, [10],was highly useful in the development

of a comparison theorem for crossed complexes.

37



Resolutions for Group Extensions

2.1.1 Chain complexes and homology

A chain complex X of R-modules is a sequence of R-modules and R-module

homomorphisms

X an+1 an X fh. a1 80X: ... ~ n+l~Xn~ n-l~"'~XI~XO-----O

such that for each n the composite an-Ian = 0, in other words, the kernel of each a

contains the image of the previous one.

We call an element c of the submodule Cn(X) = keran, of the R-module Xn, an

n-cycle of X and an element c of the submodule an+lXn+l, of the R-module Xn,

an n-boundary of X, then

describes the homology modules as 'cycles mod boundaries', this allows us to write

the coset of c in Hn(X), as {cl = c + an+IXn+l' Two elements, c, d E Xn, are in

the same coset if and only if c - c « an+lXn+l' We say they are homologous and

write c rv d .

The nth homology group of a chain complex X is the quotient

A chain complex is exact if all of its homology groups are zero. This is the same

as saying that the kernel of each a equals the image of the previous one.
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A chain complex is acyclic if all of the homology groups H; for n > 0 are zero.

This is the same as saying that for n 2: 1 the kernel of each an equals the image of

the previous one.

Given two complexes X and X', then a chain homomorphism f :X ---t X',

is a sequence of R-module homomorphisms in : Xn ---t X~, one for each n in the

sequence, such that fn-Ian = a~in, this condition states we have a commutative

diagram of R-modules and R-module homomorphisms,

X (2.1)

X'

We can define a function

it can be shown to be a homomorphism.

Given two chain homomorphisms t,9 : X ---t X', then a chain homotopy h,

between these chain homomorphisms, is a sequence of R-module homomorphisms
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x X an+l X an X
"'- n+l- n- n-l-'"/11 /)1 /11 /hn+l ;' / /

/.fn+l 9n+1 }n l' 9r' ~n-l fn-l 9n-:;Y/ t ~ 'f t ~ t ~ hn-2
~ X' I X'"'- +1-X- 1-'"n a~+I n a~ n-X'

such that

(2.2)

we say that f and 9 are homotopic, and write f ~ g.

If h : f ~ 9 :X -4 X', then Hn(J) = H(g) : Hn(X) -4 Hn(X') for all nEZ,

Consider C E ker 0, then OnC= 0 and by (2.2), fnc - gnc = ~+1 hnc. Then fnc and

gnc are homologous.

Given a chain homomorphism f :X -4 X', if there exists a chain homomor-

phism 9 : X' -4 X such that gf ~ idx and fg ~ idx', then we call f a chain

equivalence.

Given that f :X -4 X' is a chain equivalence, then the induced map Hn(J) :

Hn(X) -4 Hn(X') is an isomorphism for each n. If we have chain homotopies

h : f ~ 9 :X -4 X' and h' : f' ~ g' : X' -4 X" then we have the composite chain

homotopy,

f'h + h'g :rs ~g'g: X -4 X".

'Subcomplexes' and 'quotient complexes' have properties like those of submod-
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ules and quotient modules. A sub complex Y of a complex X, is a family of submod-

ules Yn of the module Xn, one for each n, such that aYn c Yn-b for all n. So that Y

itself is a complex with boundary induced by a = ax, and the injection j :Y --7 X

is a chain homomorphism. If Y c X, the quotient complex XIY is the family

(XIY)n = XnlYn of quotient modules with boundary 8' : XnlYn --7 Xn-dYn-1

induced by ax. The projection is a chain homomorphism X --7 XIY, and the short

sequence Yn )--j Xn --* (XIY)n of modules is exact for each n. If f :X --7 X' is a

chain homomorphism, then ker f = {ker In} is a sub complex of X, Iml = {lnXn}

a subcomplex of X', while X'lIml is the 'cokernel' of I and XI ker I the 'coimage'.

A pair of chain transformations X ~ X' ~ X" is exact at X' if Iml = ker 9j

that is, if each sequence Xn --7 X~ --7 X~ of modules is exact at X~. For any

chain homomorphism I :X --7 X', then

o --7 ker I --7 X .L; X' --7 CokerI --7 0

is an exact sequence of complexes.

Contracting Homotopy

A chain complex is positive, (or non-negative), if Xn = 0 for n < 0, and it's

homology will also be positive. There is a similar statement for a negative complex

when n > O.
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Any module M may be considered as trivial chain complex with Mn = 0 for

n =f 0 and Mo = M, then a complex over M is a positive complex X together

with a trivial complex M and a chain homomorphism E : X ---+ M, which is just a

module homomorphism EO:Xo---+ M such that Eoal= 0

M ... - 0 --0- 0 -----0-- M.

In this case a contracting homotopy for E is a chain homomorphism f :M ---+

X, with Eofo = idM, together with a homotopy h : idx ~ [e. So that a contracting

homotopy is a module homomorphism I« : M ---+ Xo together with a homotopy

h« : x; ---+ Xn+b for n ~ 0, such that

n » O.

Equivalently, extend the chain complex as shown below, then h : id ~ 0 of the

identity and zero homomorphisms of the extended complex to itself.

X
Eh 81 ~fO

",-X2-X1-XO X_l=M.
~ ...".. ~....... ",..
hI ho h-l=/O

If we have that E : X ---+ M has a contracting homotopy, then it's homology

groups are Ho(X) "" M and Hn(X) = 0 for n > O.
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A chain map J : X --7 Y between two chain complexes is a sequence of R-

module homomorphisms fn : Xn --7 Yn which commutes with the a maps,

for all n.

A chain map f gives well-defined homomorphisms between the homology groups,

for all n.

2.1.2 Resolutions for groups

Definition 2.1. A resolution for a group C, or a resolution by ZC-modules oj the

trivial module, is an exact complex of ZC-modules

X o; X X 8} es: ... - n- n-l-···- l-XO-Z-O

where Z is the trivial module, that is, 'll.G acts trivially on it.

S is called a free resolution iJXi is free Jar all i.

The augmentation map € : Xo --7 Z can be regarded as a chain map from the

complex X to the complex which has Z in degree 0 and zero in all other degrees,

X 8nx 8}...- n- n-l--···-X1--XO-O

! 1 ! 1£ !
···-O---O--~···-O--"Z-O
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An alternative definition is that this is a resolution for the group G if this chain

map induces isomorphisms in homology,

2.1.3 Example: resolutions for the finite cyclic groups

In this section we will give an explicit free resolution for the cyclic group Cm of order

m,

As usual we consider the trivial ZCm-module Z, i.e. X· a = a for all a E Z, and the

augmentation map € : P -4 Z, on any free ZCm-module P with basis B, which is

given by
m-I

- LLnp,i'
pEB i=O

Then the resolution is constructed as follows.

• Consider the two elements

m-I

N; = L Xi and Lx = 1 - X in ZGm,
i=O

• consider the sequence of modules and homomorphisms

n lJnn plhn E
"'--rn--rn-l--"'-- l--ro--Z--O
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where

- Pn = ZOrn· Pn is a free (left) ZOrn-module on one generator Pn for each

n 2: o.

- an(Pn) = Lx . Pn-l if n is odd,

- an(Pn) = Nx • Pn-l if n is even,

- and t(xi . Po) = 1 as usual.

• We see that anan+1 = 0,

and also tal = 0,

tLx = t(l - x) = 1 - 1 = 0 E ZOrn,

thus we have a chain complex P of free ZOrn-modules ending with the trivial

ZOrn-module Z.

• In order to show that P is a resolution, we need to show that any element of

the kernel of a boundary map an can be lifted, and expressed as an element

in the image of an+l. That is:

Consider a general element bE Pn and an(b) = O. Then b = an+1(b') for some

b' E Pn+1:
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- Observe that when n is odd and b = (2: rixi} ) . Pn we see that

precisely when

which implies Ti-l = Ti, since xi f- 1 E Cm for any i E {O, 1, ... ,m - 1}

and

keran - {(2:TOXi) . Pnlro E Z}

- {ro· (Lxi) . Pnlro E Z}

- {an+1 (1'0 •Pn+l) 11'0E Z}

c Im(an+1)'

- Whereas when n is even we have

an ((2: rixi) . Pn) - (2:rixi) . (2:xi) .Pn-l
- (~j(~r}k) 'Pn-l =0

which implies 2:i r, = O. We have the same thing for the kernel of the

augmentation map:
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So in both cases we can assume ro = -r1 - ... - rm-1 for a general

element of the kernel. Therefore we can write

.(1 - x)

- (-~r;(~~)).(l-X)
and so

ker(8n) - {( - Lri (Lxi)). (I-x) 'Pnlri E Z}

- {8n+1 ( ( - L r, (2:: xi) ) . Pn+1) Iri E Z}

and ker(c) ~ Im(8d similarly.

Thus we have the free resolution of the trivial ZCm- module Z.
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2.2 A construction by C.T.C. Wall

In 1960 C.T.C. Wall [13] constructed a free resolution (A,6) for a group extension

G,

He achieved his goal by creating a direct sum of chain complexes derived from the

resolutions for the subgroups K and H of G.

Given the following group extension

where K is a group written multiplicatively we form the integral group ring

ZK = {2::Akk : Ak E Z, Ak = 0 for almost all k E K}
kEK

of K and view the additive abelian group of integers Z as a trivial ZK-module on

a single generator.

Suppose that we start off with an exact (Im(8p+1) = Ker(8p)) chain complex,

together with a chain map,
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inducing isomorphisms in homology, and that B consists of free ZK-modules

with generating set {bp,i}' 1 ~ i ~Qp, in dimension p. Since the modules are free,

the boundary maps and the chain transformation f. are defined by their values on

the generators as follows

o, (2:)2: Ak,ik) . bp'i) =2: (2: Ak'ik) ·8p(bp,i)'
i kEK i kEK

f. (2:(2: Ak,ik) . bO'i) =2: Ak,i'
i kEK

The sequence B,

B B 8p+1 B 8p B Eh B 81 B e '11: . . . --+ pH ~ p ~ • • • --+ 2 ---=-+ 1 ---=-+ 0 --+ tu (2.3)

is then a free resolution for the group K.

Suppose also we are given the following exact sequence,

(2.4)

which is a free resolution for the group H with each

c,= {I:(2: JLh,jh) • Cq,j : JLh,j E Z}
j=l hEH
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a free ZH-module with {cq,j}, 1 ~ j ~a~, as a generating set and boundary maps

as follows,

where 1 ~ j ~a~, q ~ 1.

From the resolutions Band C, we want to form a resolution A, for the group

extension G, with its known injection K ~ G and surjection G ~ H. This will

be achieved in two stages .

• First stage, apply a tensor product to the resolution B and call it D to give

the following chain complex

D : ... - (ZG ®ZK Bp) - ... - (ZG ®ZK Bo) - (ZG ®ZK Z) '" ZH,

(2.5)

of free left :lG-modules (:lG ®ZK Bp), p ~ 0 with {(I ® bp,i)} as a set of

generators in dimension p, and induced boundary do : (:lG ®ZK Bp+1) ----+

(ZG ®ZK Bp), for p ~ I as follows,

do = Ia®Bp

where Bp is the boundary on B and la is the identity map on ZG.
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• For each q 2:: 0 we now take the direct sum of Q~ copies of the complex D, one

for each generator of Cq, and call this new complex Dq,

Now we observe that this is a complex of free ZG-modules, and also of free

ZH-modules, and that the last module in this complex may be written as

a~ a~
EeZG 0ZK Z rv EeZH rv Cq

j=l j=l

• Second stage, lay the Dq's out in columns. However, before that we will just

do some relabelling, let

a~
Ee ZG Q9ZK Bp = Ap,q
j=l

so that Dq becomes

... - Ap,q - Ap-1,q ... - A1,q - Ao,q - Cq.

The subsequent array of free modules with the columns Dq that has been

constructed from the resolutions Band C is shown in Figure 2.1 below. We

have also the maps

do : Ap,q ---t Ap-1,q

and the parts (i) and (iii) of the following Proposition below hold.
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• We then construct inductively maps

by Wall's method, such that part (ii) of the Proposition 2.2 below also holds,

using the exactness of the complex B.

• The Proposition then says that this data is always sufficient to give a resolu-

tion of the group extension. Wall's proof of this Proposition is by a spectral

sequence argument, but we give a bare-hands proof here since we would like

to generalise it to crossed complexes for which no spectral sequence machinery

is available.

Proposition 2.2. Given a bigraded family {Ap,q}p,q;::ooj R-modules, for some ring

R, together with R-homomorphisms dk : Ap,q ---4 Ap+k-1,q-k for 0 ::; k < q and

p + k > 0, such that:

(i) Jor each q, (A.,q, do) is an acyclic chain complex;

(iii) iJ Cq = Ho(A.,ql do) and ~ is the induced R-homomorphism Cq ---4 Cq-1

which is well-defined by (ii), then (C., ff.) is also an acyclic chain complex.
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Do

Figure 2.1: Vertical complexes are (~'Le®ZK B, do)
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Let An = Ao,n Ea AI,n-1 Ea· .. Ea An,o, for each n 2:: 0, bn = Edk : An --+ An-I.

Then (An' bn) is an acyclic chain complex.

Proof. Let (Xo, ... , Xn-l) E Ker(bn-d (where Xo E AO,n-I,"" Xn-l E An-l,o) so

that by the definition of bn-l we have the following equations:

(n - 1) dn-iXo + dn-2Xl + dn-3X2 + ... + d1xn-2 + dnXn-l = O.

To show that (xn, ... ,Xn-l) E Im(bn) we need to find (an, ... ,an) E An, (i.e., an E

Ao,n, ... ,an E An,n) such that the following equations hold:
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Rearranging these gives:

To find ao E Ao,n, and al E Al,n-b observe that dOXI E doAI,n-2, so [dOXI]

[0] E Cn-2, and by (1) above, dlXo = -dOXI E doAI,n-2. So we have [dIXo] -

[0]= ~-I [xo] which shows [xo] E Im(~). So there exists an ao E Ao,n such that

~[ao] = [dIaO] = [Xo] E Cn-I, i.e. Xo - dIaO E Ker(a~_I) = doAo,n-l and there exists

an al E AI,n-l which satisfies (1') above.

Suppose, by induction, a2 E A2,n-2, ... , aj-I E Aj-I,n-j+b exist which satisfy

equations (2'), ... , (j - 1') above, by part (ii) of the proposition we get:

55



Resolutions for Group Extensions

By applying do to the right hand side of equation (j'), we get

now substitute using equations (1"), (2"), ... ,(j"), to get

dOXj-1 + (d1dj-1ao+ d2dj-2ao + + dj-1d1ao)

+(d1dj-2al + d2dj-3al + + dj-1doal)

rearranging this gives

dOXj-l + dl(dj-1ao + dj-2al + + dOaj-l)

+d2(dj-2ao + dj-3al + + dOaj-2)

now substitutions using equations (1*),... ,(j - 1*), gives
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which equals zero by equation (j -1). So, by part (i) of the proposition, there exists

an aj E Aj,n-j that satisfies equation (j'), hence given an element in Ker(8n-1) it has

been shown that there is an element is in the Im(8n) as required, therefore (An' 8n)

is an acyclic chain complex. o
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Chapter 3

Crossed Complexes and Crossed

Resolutions

This chapter introduces the remaining tools necessary for constructing free crossed

resolutions for group extensions.

We shall give the definitions of crossed modules, crossed complexes and crossed

resolutions of groups. We will explore the meaning of free with respect to a crossed

resolution and give a crossed resolution version of the comparison theorem, [12].

Finally we state the tensor product of crossed complexes.
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3.1 Crossed Complexes and Resolutions

Given two groups G and H, and a homomorphism a: G ----+ H where H acts on C,

defined by (h, g) t-+ hg. Then a is called the boundary homomorphism if it satisfies

the following axioms:

for all g, g' E G and h E H. In this case a :G ----+ H is called a crossed module.

Sometimes referred to as a crossed H-module.

Some basic examples:

(1) A conjugation crossed module: a :K ~ C, where a is the inclusion map of a

normal subgroup K of the group G, and the action is conjugation gk = gkg-1

(2) An automorphism crossed module: a : C ----+ Aut(C), where a(g) = ag is

an inner automorphism of G, and the action is given by conjugation, agg' =

gg'g-l.

(3) A central extension crossed module: a : G - H, where a is a projection

with kernel contained in the center of C, and the action "a = hgh-I, where

h E (a-1h).

Let a : G ----+ H be a crossed module, then there are some very important

consequences of the axioms for a crossed modules:
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Remarks 3.1.

• The kernel of 8 lies in the center of G, and so in particular it is abelian: by

GM2. for g,g' E G with 8g = 1, we have gg'g-l = 8gg, = g', which shows that

g E Ker8 commutes with all g' E G as stated;

• The image of 8 is a normal subgroup of H: by GM1. the conjugate of the

image of g EGis still contained in the image of 8;

• The group G is abelian if and only if the image of a acts on it trivially: by

GM2. gg'g-l = »« we need 8g to be trivial for all g E G ifG is to be abelian.

3.1.1 Crossed Complexes

A crossed complex, [5], is basically a chain complex of abelian groups, except that

there is some slightly non-abelian information in low degrees. This non-abelian

information is given by a crossed module at the bottom of the crossed complex.

In detail, a crossed complex C consists of a group Cl, together with groups

C; for n 2: 2 with Cl-actions, and homomorphisms:

... -Cn ~ Cn-l••· - C3~C2 ~Cl -Co = {*},

in which

1. each map 8n respects the action of Cb
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2. the composite OnOn-1 is trivial,

3. 02 : C2 --7 Cl is a crossed module

4. for n 2: 3, O; is a ZG-module, where G '" CI/02C2.

Sometimes one considers crossed complexes of groupoids with a set of base-

points Co. Since we are only considering groups we have defined

Example: the crossed complex of a filtered space

The fundamental crossed complex 7rX of a pointed filtered space

is the crossed complex given by the connecting homomorphisms between relative

homotopy groups, with the action of the fundamental group:

The main examples of filtered spaces that we meet are CW complexes (or "cell

complexes"), which are filtered by their n-dimensional sketeta, n 2: O. Simplicial

sets are also examples since their geometric realisations are CW complexes. The
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fundamental crossed complex of a CW complex or of a simplicial set is in fact a free

crossed complex, the freeness of the complex is discussed later [5].

3.1.2 Homology and Crossed Resolutions

We have seen that for a crossed complex C

the image of 02 is normal in Cl, so we can define the first homology group

Note that this group is not always an abelian group.

The group C2 in a crossed complex is not always abelian, but we have seen that

the kernel of 02 is abelian group, so we can define

For n ~ 3 the all the groups involved are abelian so it is obvious that the

homology can be defined in exactly the same way as for chain complexes,

We can therefore make the following definition:

A crossed complex (C, 0) is a crossed resolution of a group G if
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• there is an augmentation € : Cl -----+ G, i.e. d)2 is trivial, which induces an

isomorphism

• the homology is trivial for all n > 2,

A crossed complex is a free crossed resolution of a group if it is a resolu-

tion which is also free, but the definition of free is quite complicated, and will be

explained in detail in section [2].

3.2 Free Crossed Resolutions of Groups

In this work it is very important to understand the notions of free crossed modules

and of free crossed complexes of groups. These were introduced by J .H.C. White-

head, [14] (who called them homotopy systems) and were later developed and

applied by authors such as Baues, Brown, Ellis and Huebschmann, [1], [5], [7], [9].
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In many ways free crossed complexes are similar to free groups, and we present

in this section the three basic ideas that are essential for understanding them:

• The data required to specify a free crossed complex, that is, what is meant by

a collection of generators in this context.

• The universal property of a free crossed complex, which will also guarantee

the uniqueness of the free crossed complex generated by the data.

• The construction of free crossed complexes, as explicit sets of elements that

can be built up from the generators.

3.2.1 Generating data

A free crossed complex C is given by

1. a set Xl whose elements are the generators of a free group Cl.

2. a set X2 and a function ()2 : X2 ---+ ClI such that the elements of X2 are the

two-dimensional generators of a free Cl-crossed module

3. a set X3 and a function B3 : X3 ---+ C2 such that the composition
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is trivial so one may write 03 : X3 --+ ker(82) <---+ C2•

The elements of X3 are the generators of a free left G-module C3, where

4. for each n ~ 4, similarly, a set Xn and a function On : Xn --+ Cn-l such that

the composition

X On C 8n-l C
n- n-l- n-2

is trivial, so one may write On : Xn --+ ker(8n-d <---+ Cn-l.

The elements of Xn are the generators of a free left G-module Cn.

3.2.2 Freeness and universal properties

The different uses of the word free above are made more precise if we explain more

explicitly the different universal properties the free crossed complex has in each

dimension.

1. The inclusion of generators f}l : Xl --+ Cl in dimension 1 has the usual

universal property of free groups: if we are given any group T, then any

function It :Xl --+ T will extend to a unique group homomorphism gl from
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2. The inclusion of generators 'TJ2 : X2 ---+ C2 in dimension 2 has the following

universal property for crossed modules: the condition 82 = 82'TJ2 holds and if we

are given any crossed Crmodule 8: T ---+ Cl, then any function 12 : X2 ---+ T

satisfying the condition ()2 = 812 will extend to a unique crossed Cl-module

•
3. The inclusion of generators 'TJ3 : X3 ---+ C3 in dimension 3 has the universal

property that, if we are given any left ZG-module T, then any function h :

X3 ---+ T will extend to a unique Crmodule homomorphism g3 from C3 to T.

In particular we can take T to be the kernel of fh : C2 ---+ Cl, since the axioms

for a crossed module imply that 82C2 acts trivially on ker(fh). Therefore the

function ()3 from X3 to ker(fh) has a unique extension to a homomorphism
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4. In exactly the same way, the inclusion of generators 1]n : Xn ---+ en in di-

mens ions n 2:: 4 has the usual universal property for maps from Xn to left

eda2(e2)-modules, and in particular the function On has a unique extension

to a homomorphism from en, giving a boundary map an : en ---+ ker(an-1) Y

en-I.

X 1)n C an C an-l Cn n - - - - ~ n-l -- n-2

~3!~/
ker(an-1)

3.2.3 Constructions

Using the universal properties above it follows that, up to isomorphism, free groups

(or crossed modules, or crossed complexes, or any algebraic structure) are com-

pletely determined by the generating sets (and the functions On). That is, there

is essentially only one way to generate the free structure once its generators are

given. To be completely explicit, actual constructions can be given which say ex-

actly what elements the free structure contains. Although, up to isomorphism,

everything is completely determined, these explicit constructions may involve some

67



Resolutions for Group Extensions

arbitary choices of notation.

1. The free group CIon the generating set Xl may be constructed as the set of

all words

which are reduced in the sense that no letter x is ever followed or preceeded by

X-I because we can always write xex-e = 1, the empty word. Multiplication is

given by concatenation (followed by reduction, if it is necessary), and inverses

of words are given by reversing the words and changing the signs of each

exponent c.

For convenience we often denote the (left) conjugation action of CIon itself

by

c,dECl.

be constructed as follows.

• Let C~ be the free group on the set Cl x X2• For convenience a generator

(c, x) in Cl x X2 is usually written as cx, or just as x in the case c = 1.

Then the elements of the free group C~ are given by the reduced words

Clxel C2Xe2 Cn en
i : 2'" Xn,
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• Let C2 = C~/N where N is the Peiffer commutator subgroup, that is, the

normal subgroup of C~ generated by all words of the form

• Let Cl act on C2 by the rule

C (Clxe1 • C2xe2 CnxEn) = cClxe1. CC2XE2 CCnxEn
1 2··· n 1 2··· n

This Cl-action is defined first on C~,but it is easy to check that it sends

Peiffer commutators to Peiffer commutators

so the action is well defined on the quotient C2 = C~/N also.

• Let 82 : C2 ---7 Cl be the homomorphism defined as the extension of

~ (CIXEl • C2xe2 CnxEn) = Cl(J xe1 • C2(J xe2 cn(J xenu2 1 2 ... n 2 1 2 2 ..• 2 n

Again, this homomorphism is defined first on C~,and clearly the first of

the two crossed module axioms, ~(Ca) = C82(a), holds in Cl. It is easy

to check that the Peiffer commutators lie in the kernel
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so the homomorphism is well defined on the quotient C2 = C~/N also.

The vanishing of the Peiffer commutators implies now that the second of

the two crossed module axioms, aba-l = (h(a)b, holds in C2.

3. For all n ~ 3, the free Cd82C2-module C; on the generating set Xn may

be constructed, using classical notation, as the direct sum of 1-generator

E9 Z[Cd82C2]· X.

xEXn

with the left module structure c -E AxX = E(c. AxX) and the abelian group

In lower dimensions we have to use multiplicative and generally nonabelian

notation rather than additive notation. When it is is convenient we will of-

ten use multiplicative notation in higher dimensions as well, even though the

structure is abelian. We will then not use directly the group ring structure of

Thus, we construct Cn as the group with generators Cl xn for all Cl E Cl and

Xn E Xn, and write lXn simply as Xn, subject to the relations

ClX • sx' _ c~x' . ClXn n n n

for all C2 E C2, Xn, x~ E Xn and Cb Cl E Cl. Using this notation the Cl-action
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on Cn is defined by the same rule as for the Cl-action on C2 given above.

3.3 Lifts of Group Actions

The following lemma is a crossed complex version of the classical comparison theorem

in homological algebra that, given a free complex and an exact complex, and any

homomorphism between their zeroth homology groups, there exists a homomorphism

of complexes which induces the given map in homology.

Lemma 3.2. Consider the following diagram

8n+2 B 8n+l e; 8:3 B Eh B e
"'- n+I-Bn-···-B3- 2- I------G------O

a:.+, 8~+, IY" a; a; ,,! Q

... - Cn+I - Cn ------ ... - C3 ------ C2 ------ Cl -- H - 0

(3.1)

where the top row is a free crossed resolution of the group G, the bottom row is a

crossed resolution of the group H, and 0:: : G ---+ H is a group homomorphism, then

there exist maps 0::* : B* ---+ C* lifting 0:: to a homomorphism of crossed complexes.

Proof. We suppose that the free crossed complex of the group G has a set of gener-

ators Xn in each degree n ~ 1, so that a set of generators of the group G is given

by the elements f(XI) for Xl E Xl. Similarly, the group H has a set of generators

Yn in each degree n ~ 1, with the set of generators f'(YI) for each YI E YI.
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We need to prove existence of a*:B*~ C* such that 8~+1an+l= an8n+1for

all n ~ 1 and E'al = aE by induction on n, i.e. that the following diagram commutes

8n+2 B 8n+1 On Oa Ih e
"'- n+l-Bn-···-B3-B2-Bl-+-G-O

I I I I I 1
Ian+1 I an I a3 Ia2 Ia1 a

8' +2 'V a' +1 'I' <>' 'I' a' 'I' a' 'I' ,
n C n C Vn C 3 C 2 C e

"'- n+l- n-"'- 3- 2- l-H-O

(3.2)

For each of the generators Xl E XI, we have aE(xl) E H( = ImE') since E' is an

epimorphism. We can choose a section J : H ~ Cl such that J(1H) = leI and E'J =

idH. Now we define a function alan the generators to be al(xl) = J(aE(xl))' Since

B, is free on these generators, this function extends uniquely to a homomorphism

al : B, ~ Cl of groups. So that E'al = aE and we see that the first square

commutes,

Xl 1)1 Bl {'

G
I laa1 I
'I'

£'Cl H
"'"" .........

J

and then freeness yields the required unique crossed module homomorphism.

Now we need to define a2, since 82 : B2 ~ Bl is a free crossed Bl-module we

define Q2 on the generators X2 E X2• For each X2 E X2 we have that

72



Resolutions for Group Extensions

8~, i.e. 8~(}:2= (}:182. Which makes the following diagram commutative,

Now suppose that n ~ 2 and that we have already constructed the homomor-

phisms (}:i : B, --+ C, for 1 ~ i ~n, so we have

8' 8'
Since Bn+l is a free crossed ZG-module, the sequence en+! ~ en ~ en-1 is

exact and the module homomorphism (}:n8n+l : Bn+! --+ en is such that

and it follows that there exists a homomorphism (}:n+! : Bn+! --+ en+1 such that

o

There is a further property of the lifts defined by this comparison Lemma that

we have not proven here: if (X., f3. : B. --+ e. are two lifts of (X then they are

'homotopic' as crossed complex homomorphisms, [4]. Some important examples of

this are given next.
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3.3.1 Some Properties of Lifts

Now suppose a: H x K ~ K is a group action, and let a and b be two elements of

the group H. Then we have various homomorphisms of K, denoted aa (x) = a (a, x).

Since a is a group action, these homomorphisms are related. For example,

because

(aa 0 ab)(k) = a(bk) = abk = aab(k),

(aa 0 aa-1 )(k) = a(a-1 k) = aa-1 k = al(k) = k.

Now if B is a free crossed resolution of the group K then the comparison lemma

says that these group homomorphisms can be lifted to crossed complex homomor-

phisms

a(a):B ~ B

a(b):B ~ B

a(ab) :B ~ B

a(a-1) :B ~ B.
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In general however neither the equality o(a) oo(b) = o(ab) nor (o(a))-l = o(a-l)

will be true. Lifts of actions exist for each element of H, but we cannot expect

composites of the lifts to agree with the lifts of composites. We cannot expect the

lift of an inverse be the same as the inverse of a lift, and we cannot even expect lifts

to be invertible.

Example 3.3. Let

H =(hlh2),

K =(klk3),

with the action

Because h has order 2, so does the homomorphism Oh : K ---+ K. The inverse of Oh

is just Oh itself. Now a free crossed resolution B of K may be constructed starting

with

and the augmentation map e :B, ---+ K given by €(Xl) = k and in general

€(Xln) = kn = k" mod 3.

To find a lift o(h) :B ---+ B of the action homomorphism O:h : K ---+ K, one must

first find a lift 0:1 (h) :B, ---+ Bl. Let

(O:l(h))(Xl) = X12
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Then

€ 0 al(h) : Xl t--+ f(XI2) = k2

ah 0 e : Xl t--+ ah(k) = k2

as required. But al (h) :B, ---t BI is not surjective, so the lift is not invertible.

Lemma 3.4. Suppose a : H x K ---t K is a group action, and let h EH. If B is

a free crossed resolution of K then there exists a (not necessarily unique) function

such that for each element b E BI the following equation holds,

Proof. The images of the elements

under the augmentation map e : BI ---t K are equal, since

- f.
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Therefore

is in the kernel of f and so it is in the image of 82• That is, there exists an element

of B2 that we can call (1/1 (h) ) (b) such that

as required. D

3.4 Tensor Products of Crossed Complexes

Crossed complexes have a geometrically-motivated tensor product, introduced in [3],

using an equivalence with the category of (cubical) w-groupoids. The tensor product

C ® D has a presentation by generators Cm ® dn in degree m +n for each Cm E Cm

and dn E Dn, m, n 2:: 0, and certain bilinearity and boundary relations:

Cm ® (dn • d~)
( (c., ® d,,) . (c., ® d~) if m = ° or n 2:: 2,

- (3.3)
(Cm ® d1) • *~Ml(Cm ® di) if m > 1 and n = 1,

(Cm' c~) ® dn
( (Cm ® do)· (cm ® do) if m > 2 or n = 0,

- (3.4)
cl®~ci ® dn) • (Cl ® dn) if m = 1 and n > 1,
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a®* (c 0 d) - aC 0 d

*®b ( C 0 d) C 0 bd

8(Cl .~ dl)

8(Cm 0 *)

8(* 0 dn)

8(Cl 0 dn) -

8(crn 0 dl)

~(Cm 0dn) -

if a E Cl, b = * and m ~ 2, (3.5)

if a = *, b E Dl and n 2: 2, (3.6)

(3.7)

(3.8)

(3.9)

if m ~ 2,

if n ~ 2,

Cl®*(* 0 dn) . (* 0 dn)(-l) . (Cl 0 Bndntl if n ~ 2, (3.10)

BrnCm ® d1• (*®d1{Cm 0 *). (Cm 0 *tl)(-l)m if m ~ 2, (3.11)

BCrn0 dn· {Cm ® Bdn)(-l)m if m, n ~ 2 (3.12)

The following result may be found in the work of H. J. Baues and R. Brown, [1,2]:

• If C and D are free crossed complexes, then so is the tensor product C 0 D.

Generators for the tensor product C 0 D may be denoted Cm 0 dn E (C ® D)rn+n

where Cm, dn are generators of C, D respectively. If Cm, dn are not generators, then

Cm 0 dn is to be interpreted according to (3.3)-(3.6) above. The boundary maps in

the free crossed complex C 0 D are given by (3.7)-(3.12).

Theorem 3.5. Suppose that Band Care Jree crossed resolutions of groups K and

H respectively. Then the tensor product B 0C is a free crossed resolution of K x H.
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This means that if B has sets of generators Xn in each dimension n ~ 1 and C

has sets of generators Yn, then a free crossed resolution for the direct product group

K x H is given by B0C which, as we saw above, has generators xp0Yq in dimension

n = p+q for each p-dimensional generator xp E Xp and each q-dimensional generator

Yq E Yq. As well as giving the generators we need to say how the boundary maps

are defined on the generators, and by the definition of the tensor product above we

have

-I -I
XIYIXI YI if p, q = 1,

(3.13)
otherwise.

Here the operators 8l(C0d) and 8:(c0d) are defined for k ~ 2 by 8c0d and c08d

respectively, for k = 1 by C®*( * 0 d) . (* ® d) -I and *®Ii( c 0 *) . (c 0 *)-I respectively,

and vanish if k = O.

It is our eventual aim to find some sort of twisted tensor product of crossed

complexes, generalising the methods of Wall for chain complexes, which provides

a free crossed resolution for any group extension, not just the direct product. We

state the following conjecture which generalises the above result for direct products

G = K x H, and at the same time is a generalisation of Wall's results from chain

complexes to crossed complexes.

Conjecture 3.6. Suppose that Band C are free crossed resolutions of groups K
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and H respectively, and that B has sets of generators Xn in each dimension n ~ 1

and C has sets of generators Yn.

Let G be a group defined as an extension of K by H. Then G has a free crossed

resolution A with sets of generators

z; = U x, x Yq
n=p+q

in each dimension n ~ 1.

We will sometimes use the notation xp0Yq for a generator Zn = (xp, Yq) E Xp x Yq.

To prove this conjecture we need to specify expresssions for the boundaries 8(zn),

or prove that such expressions exist, for each Zn = (xp, Yq) E Xp x Yq, such that the

crossed complex A is indeed a resolution, that is, A is exact in dimensions ~ 2 and

HIA "-J G. In order to specify the boundary maps of A we will have to put together

the other information we are given: the boundary maps of Band C, together with

the action and cocycle data which determines the group G.

We can also state the corresponding conjectures when we are only considering

n-presentations rather than free crossed resolutions:

Theorem 3.7. Suppose we are given n-presentations, with sets of generators Xk

and Yk for 1 :5 k :5 n, of groups K and H respectively. Then any group G defined
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as an extension of K by H has a n-presentation with sets of generators

z, = U x, x Yq
k=p+q

in each dimension 1 ~ k ~ n.

The first case to consider is n = 2, that is, (p, q) = (0,2), (1,1) or (2,0). This

is a classical result on finding presentations (that is, generators and relations) for

groups if we have been given presentations of a normal subgroup and the quotient.

The case n = 3 was considered by Ellis and Kholodna, [7],who gave a partial

answer when G is a split extension. For large values of n the situation is abelian

and should be similar to that of Wall's construction.
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Chapter 4

Crossed Resolutions

4.1 Crossed Resolutions for Semidirect Products

Suppose K and H are groups and let G = K ><1 H be their semidirect product,

defined by the action a : H --+ Aut(K) where h H a(h) = ah : K --+ K such

Given the free crossed resolutions B* ~ K,

an+2 B 8n+1 B an B ~ B ~ B E
"'- n+l- n-"'- 3- 2- l-K-1 (4.1)

E'of the group K, and C* --+ H,

(4.2)
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of the group H, we want to construct a free crossed resolution A* ~ G

A s; A s; -1 A 83 A 82 C 1
"'- n- n-1-"'- 3- 2-A1-G-, (4.3)

for their semidirect product G. The following diagram shows the free crossed resolu-

tions of the groups K and H, and the short exact sequence for the group extension

G.

(4.4)

For n ~ 1, let Xn denote the set of generators in degree n of the groups Bn, and let

Yn denote the set of generators in degree n of groups Gn.

We choose a cross section, J : H ----+ G, for the group extension G, such that PJ =

idH. We assume J(lH) = 1G, and recall that J can be taken to be a homomorphism

if and only if the group extension is in fact a semidirect product. Similarly, we can

choose a projection g with gL = idK•

Given the free crossed resolutions B* ~ K, G* ~ H , then the free groups B1,

GIl generated by the sets Xll Yi respectively, determine the sets X = {E(X)}xEX1'

Y = {E' (y) } yEY1' which are generating sets for K, H respectively.

A crossed complex version of the comparison theorem tells us that the action
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lifts to the crossed complex homomorphisms, 0* (C'(c) ), such that the diagram

·..-B2~Bl~K-1

U2(£'(C))! Ul(£'(C))! !U.'(c)
"'-B2~Bl~K-1

commutes, i.e. an 0 on(t'(c)) = On-I(C'(C)) 0 an and e o OI(C'(C)) = Of'(C) 0 t.

Our aim is to construct a free crossed resolution,

A On A On-l A 02 A e 1... _ n- n-l-"'- 2- I-G-,

inductively on the degree n = 1,2,3, ....

4.1.1 Degree 1

The following Proposition shows how to find a set Al of generators for the extension

G, and the corresponding epimorphism Al -----7 G.

Proposition 4.1. Let Al = (Zl) be the free group with the set of generators

Then there exists a unique homomorphism e Al -----7 G such that the following

diagram commutes
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where /"1 and PI are the homomorphisms of free groups defined by

The homomorphism e :Al ---7 G is an epimorphism.

Proof. To show existence of e : Al ---7 G we will first define CB : B, ---7 G and

Cc : Cl ---7 G and then we define

The following diagram describes the situation, although it is not exactly a commu-

tative diagram since the equation CCP1 = c is clearly not expected to hold.

We point out that the first row of the diagram is not exact.

Next we set cC(Y1) = Jf.'(Y1) for all generators Y1 E Yi, by the universal property of

free groups we have a homomorphism cc on all of the group Cl. We can also see
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that

on each of the generators Yl E Yl and so on the group Cl we also have the equation

IpEe = E.

We also see that pe = E'PIon the free group Al because it holds for all generators:

Therefore we have defined the homomorphism E so that the following diagram com-

mutes

PI A £1Cl--- I-Bl

El! !e !E
H-!'-Q'_'!:_K

Now we have to show that E is an epimorphism. Let 9 E G, so that p(g) E H. Since

E' and PI are epimorphisms, E'PI is an epimorphism, so that there exists a E Al such

that p(g) = (E' PI)(a). Observe,

so that g-lE(a) E Kerp. Thus g-IE(a) E Imz, so there exists k E K such that

g-Ic(a) = t(k). Since f is epimorphism, there exists bE BIsuch that f(b) = k. Now
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Thus g = c:(a[,1(b-1)), and so e is epimorphism. o

Proposition 4.1 can be viewed as a definition for the I-dimensional resolution for

c.
As remarked above, the sequence of free groups

C PI A £1
1 --- 1 ---- B1

is not exact.

Lemma 4.2. In this situation, KerpI is the normal subgroup of Al generated by

Proof. Since PI[,I(XI) = 1 we see that the kernel of PI contains the image of [,1, and

since the kernel is normal it also contains the normal subgroup of Al generated by

the image of [,1' It remains to prove the opposite inclusion, that any element of the

kernel of PI can be written as a product of conjugates of elements of Inuj.

Suppose a E Kerpl. Since Al is the free product of the images of [,1 and 11, we

can write a as a reduced word

with bl and en possibly trivial. If n :::; 2 the result is clear, since 1 = PIa = Cl • C2

so a = [,lbl . llCI • [,2b2 • 12cl1 which is in the normal subgroup generated by ImLI as

required.
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If not, we proceed by induction on n. In fact, if we write

, b'a = a . JI C . 1,1 • JI C ,

then

and so C is the inverse of c' . PIa' and

Now by induction a' . JIPla,-I (a word of length smaller than the length of a) is in

the normal subgroup generated by ImLI, and so is a. o

4.1.2 Degree 2

Now we define the 2-dimensional free crossed resolution A* ~ G,

A 152 A E
2- I-G (4.5)

but first a lemma that will be useful later.

Lemma 4.3. Suppose 82 : A2 ----t Al is a free crossed module defined by qener-

ating sets Zl, Z2 and a function (}2 : Z2 ----t Al which gives the boundaries of the

generators. If Im(}2 ~ K where K is any normal subgroup of Ab then Im82 ~ K

also.
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Proof. Any element a E A2 can be written a = al Z~lU2 Z~2 ••• an z~n, where ai E All

Zi E Z2, Ei = ±1. Then

of these. Hence Im82 ~ K. o

It follows, from Lemma 4.3, that if the boundaries of the generators, Zi E Z2 of

A2, are contained in a normal subgroup K, then the boundaries of any element a of

A2 are also contained in K.

The following definition generalises the formulas (3.7), (3.8), (3.9) that we saw

for the tensor product of crossed complexes in dimension 2.

Definition 4.4. Suppose that 82 : A2 ~ Al is a crossed module and that Bb

Cl and Al are Jree groups with generating sets Xl, Yl and {*} x Yi UXl X {*}

respectively.

Suppose also that Jar each generator YI oj Cl there is a given group homomor-

phism (}l(t'(Yl)) : BI ~ BI.

1. Define
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to be the unique group homomorphisms specified on the generators by

2. Define a Junction

inductively by

iJ either bl or Cl is 1

[Xb YIL:t - (Xl ®a *)(* ®a Yl)(al(t:'(yd)(xd ®a *)-1(* ®a Yl)-l

[blXb YI]a - [bl! Yl]a . [,l(al(t:'(Yl))(bd)· [Xb Yl]a . Ll(al(E'(Yl))(bl)tl

[Xb YlCl]a - Jl(Yl)· [CbXl]a· Jl(Yl)-l . [YI! al(t'(Cl))(Xl)]a

Here Xl E Xl and Yl E Yl are generators and bl and Cl are general elements

oj B, and Cl respectively. Note that the term al(t'(Yl))(Xl) may be a general

element of Bl; it need not be a generator.

3. For any Junction
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we define the extension

to be the function given inductively by

if bl = 1 or Cl = 1

Here Xl E Xl and Yl E Yl are generators and b, and Cl are general elements

of B, and Cl respectively. Note that the term (}l(f'(Yl))(Xl) may be a general

element of B«; it need not be a generator.

Definition 4.5. Suppose that

and

are free crossed modules with sets of generators XI, X2 and Yi, Y2 respectively. Sup-

pose also that for each generator Yl of Cl there is a given group homomorphism

Let Xo = Yo = {*} and let
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Then we define

to be the free crossed module with sets of generators Zll Z2 with boundary maps

defined on the generators by

82(* Q9a Y2) - * Q9a ~Y2 = J18~Y2

82(Xl Q9a Yl) - [XI, Yl]a

82(x2 Q9a *) - ChX2 Q9a * = L182X2.

Here a generator (Xpl Yq) E Xp x Yq is denoted by xp Q9a Yq E Ap+q as usual.

to be the unique extensions to crossed module homomorphisms of the injective

functions Y2 t---t * Q9a Y2 and X2 t---t X2 Q9a *.

Lemma 4.6. The homomorphism J2 : O2 ----+ A2 defined above preserves the crossed

module action, i.e. ,
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for all e E C2•

Proof. Let d E C2, e E Cl, then

Jla~(Ce') - JI(ea~(e')(etl)

- * 0a (ec%(e') (etl )

- * 0a (c%(Ce'))

* 0a 82((Ce'))

82 (J2 (Cc'))

o

The following lemma will be needed to prove exactness of the 2-dimensional free

crossed resolution that has to be constructed:

Lemma 4.7. For any elements b E BI and y E YI there exist elements a', a" E A2

such that the following equations hold in the free group AI,

(jly)(tlb)(jly)-l = (82a')(tlb')

(jly)-l(tlb)(jIY) = (62a")(l,lb")

(4.6)

(4.7)

where the elements b', b" E B, are given by

b' = (al(E'(y)))(b)

b" = (al(E'(y-l)))(b)
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Proof. Since b is an element of a free group El = (Xl) we have

for some Xk E XI, for 1 :s; k :s; r, Now the left hand sides of the equations (4.6) and

(4.7) can be written as

For equation (4.7):

This equation is true because of the form of the definition of 82(xQ9o:Y) for x E Xl

and y E Yi.

First consider those values of k for which the power is +1, and let

For these values of k we then have equations
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by definition of 62(Xk ®a y).

Now consider the values of k for which the power is -1, and let

b~ = (al€'Y)(Xk)-l,

a~ = (tlb,,) (Xk ®a ytl.

For these values of k we then have equations

(82a~)(tlbD = 62( (qb")(Xk ®a vn' . (Llb~)

= (tlb~)82(Xk ®a y)-I(Llb~)-1 (tlb~)

= (tlb~)62(Xk ®a yt1

= 1,1((al€'Y)(Xk) tl ((jly)(tlXk) (hy)-1 1,1((a1E'Y)(Xk) tl)-1

= ((jly)(tlXk)(jly)-I)-1

by definition of 82(Xk ®a y).

Putting these together for all values of k = 1,2, ... ,r gives

(jly)(t1b)(jlyt1 = ((jly)(tlXl)(jlyt1 )±1 ((jly)(tlXr )(hy)-l )±l.

= (82a~)(tlb~) (62a~)(tlb~).

This is nearly the equation we wanted to prove, except for the order of the elements.

The terms on the right hand side must now be rearranged, by adding actions to the
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a~, to get the required expression (82a') (L1 b'). That is, if we set

then we have

and since L1 is a homomorphism most of these terms cancel. We therefore have

where

= (Q1(t' (Y1) ) ) (b)

as required.

For equation (4.6): As before we write x E BI in terms of the generators

b ±l ±l ±l ±l= Xl . X2 ••••• Xk ••••• Xr •

96



Resolutions for Group Extensions

Now for each k we consider the elements bk, b% E BI defined as follows

b~= (al(E'(y-l)))(x~l),

bk = b~-l = (al(E'(y-l)))(x~l),

and we can use equation (4.7) above to see that there exist elements a~ E A2 with

(jly)-l([,lbk)(jlY) = 62(a~)· [,l(al(E'(y)))(bk)

= 62(a~) '/'l(al(E'(y)) 0 al(E'(y-l)))(x~l).

From Lemma 3.4 we can write this as

Let

Then

(c52a~)([,lb~)= (jlY' [,lbkt1. ((jlY)([,lbk)(jlYtl([,lX~l)) . (jlY' t1bk)· (tlb~)

= (jlYtl([,lX~l) . (hy).

Exactly as we did before for the proof of equation (4.7), we must now multiply these

equations for k = 1, ... ,r and rearrange the terms. That is, if we set
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then we have

(62a")(LIb") = (82a~)(LIb~)(£52a~)(LIb~) ... (62a~)(LIb~)

= (jly)-I(tIb)(jIY)

as required. o

The following Lemma is very useful later in proving exactness of our free 2-

dimensional resolution.

Lemma 4.8. Suppose 82 : A2 ---? Al is a crossed module and e : Al ---? G is a group

homomorphism such that the composite c82 : A2 ---? G is the trivial homomorphism.

Then

al . 62(a2) . a~ E Im62 ¢:> al . a~ E Im82

al . 82(a2) . a~ E Ker62 ¢:> al . a~ E Ker62

for all elements aI, a~ E Al and a2 E A2.

Putting together the above results we can now show that, using the 2-dimensional

free resolutions Band C of K and H we have constructed a free 2-dimensional

resolution of their semidirect product G.
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Proposition 4.9. Suppose that G = K ~ H is a semi direct product with action Q'

of H on K, and that we are given

• free crossed resolutions of length 2

for the groups K and H, with generating sets Xp and Yq for p, q = 1,2 .

• for each h EH, a lift of K ~ K to an endomorphism B, ll(h~ BI, so that

EO (Q'(h)) = Q'h 0 E : B, --+ K.

Then the homomorphism c of Proposition 4.1 and the free crossed module 82 of

definition 4.5 define a free crossed resolution of length 2 for the group G,

Proof. We have already proved in Proposition 4.1 that e is an epimorphism. It

remains to show that the kernel of c is equal to the image of 82. The proof has two

parts:

1. We show that the image of 82 is contained in the kernel of c. Since the kernel is

normal we know from lemma 4.3 that it is enough to prove that the image of each
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generator is contained in the kernel. We can see that

c(£52(*®a Y2)) c:(* ®a a~Y2) = J (E'(a~Y2)) = 1

c:(£52(Xl ®a Yl)) - e (JlYl LIXl(JlYltl(Ll(a(E'Yl))(Xl))-l)

- JE'YI LEXl(Jt'Yltl(u:(a(t'YI))(XI))-l

- L (aE'Yl(EXI)) L(E(a(E'YI))(XI))-l = 1

By lemma 4.3 we see that £52sends every element to the kernel of e.

2. We need to show that the kernel of E is contained in the image of 82. This will be

achieved in two steps which rely on the exactness of the 2-dimensional resolutions

first for the quotient group H and then for the normal subgroup K.

For the first step we show that it is enough to show the result for elements in

the kernel of p. That is, we show that for any element a in the kernel of e there is

an element a' that is also in the kernel of p, satisfying the condition that if a' is in

the image of £52then so is a.

If a E Al such that c:(a) = 1, then

t'Pla = pea = 1,

that is, PI a is in the kernel of E'. By the exactness of the free 2-dimensional resolution
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for H we can therefore find an element C2 E C2 such that

Now consider

Then Lemma 4.8 says proving the result for a is equivalent to proving the result for

a', and we note that

For the second step we use the fact that an element in the kernel of p is in

the normal subgroup of Al generated by the image of Bs, by Lemma 4.2. If this

element was in the image of Bl, i.e. ~l (Bl), we get the result by the exactness of

the resolution for K. If not, we use induction on the number of conjugations by

elements of Cl needed to write it. Then Lemma 4.7 will give us the inductive step.

We are given a E Kers and we may assume a E Kerpll which by Lemma 4.2

means that

with

±l ±l ±l
Cj = Yj,l Yj,2 ••• Yj,mj

b ±l ±l ±l
i = x. 1 Xi 2 ••• Xi n'"" , ,
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Now we prove that c(a) = 1implies that a E Im82 by induction on

For K = 0, all Cj = 1 and we have a = /"lbl••• /"lbr = LIb, so that

For K = 1, the element a is a product of elements of the form

±1 b =F1
J1Yj,1 . /"1 'i . JIYj,1

which by Lemma 4.7 can be written as

and by Lemma 4.8 proving the result for the product of these elements is equivalent

to proving it for the product Llb~ •.• /"lb~ = LIb' as we did in the case K = O.

For general K, the element a is a product of expressions of the form

, ±l b =F1 ,-1JIC· . J1Y' .'1.,1 J" J1Y' .' JIC,J J,m, J,m, J

where cj is a reduced word of length j, K - 1. By Lemma 4.7 these can be written

as
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and by Lemma 4.8 proving the result for the product of these expressions is equiv-

alent to proving it for the product of the expressions

The result holds for the product of these expression by the inductive hypothesis. 0

4.1.3 Degree 3

and Al are free groups on generating sets Xl, YI, and Xo x Yi UXI X Yo respectively,

while C2 ---+ Cl, B2 ---+ BI and A2 ---+ Al are free crossed modules

Definition 4.10. Suppose that

and

generating sets X3 and Y3 respectively. Suppose also that for each generator YI of

Define

where Xo = {*}, Yo= {*}, then we can define a sequence

103



Resolutions for Group Extensions

where A3 is a free AI/82A2-module on generating set Z3, with module homomorphism

83 defined on the generators by

Here a generator (XpI yq) E Xp x Yq is denoted by xp ®o Yq E Ap+q as usual.

Proposition 4.11. Given the following sequence

(as defined above), then Im83 ~ Ker82•

Proof·

- Jl~B'aY3 = 1
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Now we explain where ii and K came from in the definition of 83(X1 00: Y2) above.

Note that 82(X1 00: 8'Y2) = [X1,8'Y2]0: = J1(8~Y2)~lXIJ1(~Y2)-1~1(ii(Y2)(X1))-1

where ii(Y2) is the composite of the lifts of the Ci!{'y for each generator Y in 8~(Y2)'

The lift of the composite, on the other hand, is the identity: it is the lift of Ci!{'82Y2 = 1.

Therefore there is a function K(Y2) : B1 -----+ B2 whose boundary is ii(Y2)(X1) . xII,

and

8283(X1~o Y2) = ~lXIJ1 (~Y2)~lXl1 J1 (8~Y2t1 [8'Y2, Xl]o~l ((a(Y2)(x1)xl1) = 1.

Now consider

Recall that 0'2(f'(Y1))(X2) is not necessarily a generator of B2, but

Finally

8283(x3 00: *) - 82(* 00: 83X3) = 82(~283x3)

* 00: 8283X3 = 1-18283Y3 = 1

D

So we have shown that the Imt53= Kert52 all that is left to prove is exactness.
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Conjecture 4.12. The sequence in proposition 4.11 is exact

Assuming conjecture 4.12 to be true, then this together with Wall's construction

(section 2.2), for An ~ An-1 for n ~ 4, yields the required free crossed resolution

for the semidirect product G, of the group K be the group H.

In a paper written by G. Ellis and I. Kholodna [7], which was inspirational in

that they proposed a free crossed resolution to dimension 3, we found a slight error:

the relation 8283 given there does not hold (see appendix 5 for some details). It

became apparent that the map K(Y2) defined above was exactly what was missing

from their construction, and corresponds in the classical chain complex setting to

the map d2 of Wall. The proof that our candidate is for the correct definition of 83

does in fact define a resolution is complicated and will be left for future work.
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Chapter 5

Conclusion

In this thesis we have studied the possibility of extending of results of Wall and

Ellis-Kholodna, applying the theory of crossed complexes to obtain free crossed

resolutions for semidirect products. There are several clear objectives for further

work, some closer to realisation than others:

• Find a proof of our conjecture that the complex

we defined above in chapter 4 is in fact exact .

• Identify where (if at all) we have used the fact that the extension G is split,

and generalise (if necessary) our proof to the case of general group extensions.
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• Relate our work to that of Brown et al., who explains an algorithm for finding

resolutions using the notion of universal covers of crossed complexes. The

idea is that the universal cover of a resolution is contractible, and explicit

contracting homotopies provide information on how to form resolutions of

extensions. In particular, they have found a dimension 4 crossed resolution

of the symmetric group 83, which is a semidirect product of C3 and C2, with

k + 1 generators in degree k ~ 4.

• Develop a theory of twisted tensor products of crossed complexes in order to

obtain a result of the form 'a free crossed resolution for a group extension

is obtained from the twisted tensor product of free crossed resolutions of the

normal subgroup and quotient group'.

• Recalling that the category of crossed complexes is equivalent to the categories

of oo-groupoids, or simplicial T-complexes, or cubical w-groupoids, investigate

whether the formulas we obtain have easier geometric or algebraic interpreta-

tion in these other settings .

• Investigate the possibility, in some special cases, of obtaining analogues of

spectral sequence or homological perturbation theory arguments for crossed

complexes. It is well known that in general this will not be possible.

108



Resolutions for Group Extensions

Appendix

Details of the examples from section 1.2.1

Here we give some examples of the action, Q, and cocycle, C2, which correspond to

particular group extensions.

1. The cyclic group of order four is an extension of the cyclic group of order two

by the cyclic group of order two,

Since the extension is abelian it is of course central, but it is not a semidirect

product because the transversal of C2 in C4 cannot be chosen to be a subgroup

of C4•

2. The Klein four group is an extension of the cyclic group of order two by the
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cyclic group of order two,

Since the extension is abelian it is central, and it is also split since the cross

section j can be chosen to be a homomorphism. Of course, the Klein four

group is isomorphic to the direct product of the group of order two with itself,

3. The cyclic group of order 8 is a central extension of the cyclic group of order

2 by the cyclic group of order 4

and it is also a central extension of the cyclic group of order 4 by the cyclic

group of order 2

The cross sections cannot be chosen to be homomorphisms in either case so

these extensions do not split.

4. The direct product C4 x C2 is, of course, a split, central extension of the cyclic

group of order 4 by the group of order 2,
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5. The dihedral group of order 8 is also a split extension of the cyclic group of

order 4 by the group of order 2,

and we can write Ds '" C4 )<J C2• The action is not trivial, and the extension

is not central.

6. The quaternion group of order 8 is also an extension of the cyclic group of

order 4 by the group of order 2,

This extension is neither split nor central.

Ellis and Kholodna - Proposition 3

Graham Ellis and Irina Kholodna, [7], state that given 3-presentations, {xla :=

xrlb := xaa-1} and {yla' := y8W := ybb-1} for the cyclic groups, K and H, then

we can construct a '3-presentation' for a semidirect product, G = K )<J H, where K

is a normal subgroup of G, and H its quotient group. Given a semidirect product

K )<J H, then we also have an action, a : H ---t Aut(K), of H on K, such that

a(h)(k) = hk, where h E Hand k E K.
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Consider the 3-presentations for K and H listed above, we can associate with

them the following 'free crossed complex resolutions', Band C,

B: M(i)~C(r.')~F(;£)~K.

C : M(§.) ~ C(r.) ~ F(x.) ~ H,

where r. generates the kernel of E and §. generates the kernel of 82• Also, F(x.) is the

free group generated by x., C(r.) ~ F(x.) is a 'free crossed module' and M(§.) is a

'free' F(x.)-module.

Now observe that for each h E H we can construct a non-unique commutative

diagram

C(r.') ~ C(r.')

!82 !82
F(;£) ~ F(x.')

where if y E F(x.) and E(yB) = IH' Y E H, u' E F(;£) and w E C(r). Note that

ll:l(h) and ll:2(h) are homomorphisms, ll:2(h) must preserve the action of F(;£) on

C(r.'). Let ll:l(h)(u') be denoted by a(x)u and let ll:2(h) (u') be denoted by a(x)w. Now

Proposition 3, of [7], says:
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Proposition 1. [Ellis-Kholodna] Given that we have free crossed complex res-

olutions, C and B, for the groups Hand K, (with associated 3-presentations,

B : M(i) _!L C(r.') __!L. F(~) ~ K,

then there exist a free crossed resolution for the semidirect product, G = K ~Q H,

A : M(S) ~ C(R) ~ F(X) ~ G,

which has an associated 3-presentation { X I R I S where X = ;r_ U ~, R =

t:U ;r_ x ~ U t: and S = §. U ;r_ x t' U;r_' x t:U i.
Q Q Q

The boundary maps ch, 82 are determined by:
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and the function, c(-, -) : F(;r) x F(;r')C(r. u;r! x ;r u r.') is defined by,

C(x, x') - xx'x-I(a(x)x'tl

c(l, v') = c(u, 1) - 1

c(u, v~v~) ( , ),,'(U)v' ) ( ')C U, VI 1 C U,V2

C(UIU2,v') - UIC(U2'V')C(Ub a(U2}v')

for all x E ;r, x' E ;r!, U,Ul, U2E F(;r), v', V~,V~E F(;r!). •

Example 2. Take the semidirect product 83 = C~ ><la C2, with the following 3-

presentation for the cyclic groups of orders 3 and 2 respectively, C~= { x I a' lp' }

and C2 = { y I b Iq}. Then the action of C2 on C~, in 83, is given by Yx = x2 and

we have the following free crossed resolutions for C2 and C~,with their respective

boundary maps,

C: M(q) __ tJ.J_ .... C(b) --_ F(y) ----- C2,

€(y) = y.

=1
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B':
8' 8'M(p') ----=-3-+-C(a')--2-+-F(x') __ E_' __ C~,

E'(X) = x.

=1

Then a free crossed resolution for the semidirect product, 83,

A : M(8) ~ C(R) ~ F(X) ~ G,

which has an associated 3-presentation { X I R I 8 } where X = {x, y}, R =

{a, b, (y, x)} and S = {p, q, (b, x), (y, an.

The boundary maps 83, 82 are determined by:
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t53(b, x) = Xbb-1c(b, x) t52(Xbb-1c(b, x)) = t52(Xbb-1c(b, x))

= xt52(b)x-1t52(bt182(C(b, x))

= Xy2X-1y-282(c(yy, x))

= Xy2X-1y-282(YC(Y, X)C(y, a(y)X))

= Xy2x-1y-282(YC(Y, X)C(y, xx))

= Xy2X-1y-282(YC(Y, X)C(y, X)"'(Y)XC(Y, x))

= Xy2X-1y-282(YC(Y, X)C(y, X)X2C(y, x))

= xy2x-1y-2y(yxy-1(a(y)X )-1)y-1 (yxy-1(a(Y)xt1)

X2(yxy-1(a(Y)xt1 )X-2

= xy2x-1 y-2YYXy-1 X-2y-1YXy-1 X-2 X2YXy-1 X-2X-2

= X-3

#1
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