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the results.
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1. Summary

[Note This paper was published in Communications on Pure and Applied Analysis, Volume
14, Number 3, May 2015, pp. 1205–1238 (doi:10.3934/cpaa.2015.14.1205).]

For global stability of fixed points in autonomous systems, there are many results for
autonomous Lotka-Volterra systems [23, 25, 11, 1], but similar results for more general
Kolmogorov systems beyond those with special features such as monotonicity [7, 20, 19],
are less common [13, 5, 4]. Here we extend to Kolmogorov systems two Lyapunov function
approaches that have found considerable success for Lotka-Volterra systems. We will illus-
trate and compare the relative merits of our methods with several example systems which
arise as models for population dynamics.

2. Introduction

Ecological models for a community of N species xi often take a the general form:

(1) ẋi = xiFi(x), i = 1, . . . , N.
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These ecologically-motivated equations have become known as the Kolmogorov equations,
or Kolmogorov systems. Since such systems typically model populations of species, genes,
molecules, and so on, the phase space for the study of (1) is an invariant subset of first
orthant, the latter which we denote by RN+ . The best known examples are the quadratic
Lotka-Volterra equations and the cubic Replicator equations (which are actually equivalent
under transformation [8]). Kolmogorov systems are not confined to theoretical ecology, but
also appear in the Maxwell-Bloch equations of laser physics [3], models from economics
[2], and coagulation-annihilation systems from polymer chemistry and astrophysics [17] .
In addition, many nonlinear systems of differential equations can be recast in Kolmogorov
form, and even Lotka-Volterra form in which the functions Fi in (1) are affine. For example,
the class of S-systems sometimes used in reaction kinetics can be recast in Lotka-Volterra
form [24]. In fact given a system of differential equations ẋi = fi(x) for which the first
orthant is forward invariant, suppose that fi(x) = xiFi(x) for i ∈ I ⊂ IN = {1, . . . , N}
but fj(x) is not identically zero for xj = 0, j ∈ J = IN \ I, we may set yi = xi for i ∈ I
and yj = exj for j ∈ J to obtain the (formal) Kolmogorov form ẏk = ykFk(y) for suitable
Fk, k ∈ IN . For this to be a practical transformation, we need, for each k ∈ IN , that
ykFk(y)→ 0 as yk → 0 for all yj ≥ 0, j 6= k.

Notation. For conciseness we write (1) in the more compact form

(2) ẋ = D(x)F (x), x ∈ RN+ ,

where RN+ is the set of column vectors x ∈ RN with nonnegative components xi, F : RN+ →
RN is at least C1 in a neighbourhood of RN+ , and D(x) = diag[x1, . . . , xN ] is the diagonal

matrix with diagonal entries xi. We denote the interior of RN+ by intRN+ and the boundary

of RN+ by ∂RN+ . Let πi be the ith coordinate plane restricted to ∂RN+ , i.e.

(3) πi = {x ∈ RN+ : xi = 0}, i ∈ IN ,

where Ik = {1, . . . , k} for any positive integer k. Then each of πi, ∂RN+ and intRN+ is an
invariant set of (2). For any subset I ⊂ IN , let

C0
I = {x ∈ RN+ : ∀i ∈ I, xi = 0, ∀j ∈ IN \ I, xj > 0},(4)

RI = {x ∈ RN+ : ∀j ∈ IN \ I, xj > 0}.(5)

Then C0
I is a proper subset of RI if I 6= ∅ but C0

I = RI = intRN+ if I = ∅. For each x0 ∈ RN+
we denote by x(t, x0) the solution to (2) on its maximal interval of existence. When this
maximal interval of existence contains R+, so that (2) defines a semiflow, we will denote by
O+(x0) = {x(t, x0) : t ≥ 0} the forward orbit through x0. Similarly, we denote byO−(x0) =
{x(t, x0) : t ≤ 0} the backward orbit through x0 if x(t, x0) has definition for all t ≤ 0. The
omega limit set of x0 is the set ω(x0) = {p : x(tk, x0) → p, for some tk → ∞, k → ∞},
and the alpha limit set α(x0) = {p : x(tk, x0) → p, for some tk → −∞, k → ∞}. Finally
we denote by Efix the set of fixed points of (2), i.e. Efix = {x ∈ RN+ : D(x)F (x) = 0}.

We are concerned with the global dynamics of (2) on RN+ , and in particular when interior or
boundary fixed points are pointwise globally attracting or repelling. Suppose p ∈ Efix \{0}
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is a non-trivial fixed point of (2) with pi = 0 if and only if i ∈ I ⊂ IN and p is the
unique fixed point in RI . Then p is said to be pointwise globally attracting (in forward
time) if limt→+∞ x(t, x0) = p (i.e. ω(x0) = {p}) for all x0 ∈ RI . In addition, if p is locally
stable with respect to RI , then p is called globally asymptotically stable (in forward time).
(Alternatively, we say that (2) is globally asymptotically stable at p, or in short, globally
stable.) When p is not stable, we impose the assumptions (A1) and (A2) on (2) given below
so that there exists a compact invariant set K ⊂ RN+ \ {0} that contains p and ω(x0) for

every x0 ∈ RN+ \ {0}. Then p is said to be pointwise globally repelling, or pointwise globally
attracting in backward time, if limt→−∞ x(t, x0) = p (i.e. α(x0) = {p}) for all x0 ∈ RI ∩K.
In addition, if p is also stable in backward time with respect to RI ∩K, then p is called
globally asymptotically stable in backward time on RI ∩ K. The intention here of adding
the word “pointwise” to our concepts of attaction (repulsion) is to distinguish these from
the often used notions of attracting (repelling) bounded sets. From now on we shall use
the initials P. G. for “pointwise global” or “pointwise globally”.

Assumption 1.

(A1) System (2) is dissipative: there is a compact invariant set A ⊂ RN+ such that for

any ε > 0 and each bounded set U ⊂ RN+ , x(t, U) is within ε of A for sufficiently
large t.

(A2) F (0) ∈ intRN+ .

Under the assumptions (A1) and (A2), we make the following observations:

(i) By (A1), A is a global attractor of the flow generated by (2) on RN+ . As A contains
all fixed points, we have 0 ∈ A.

(ii) By (A2), {0} is a repellor (i.e. the attraction in backward time is uniform for points
in some neighbourhood of 0). In particular, some relative neighbourhood of 0 in
RN+ is contained in A.

(iii) Applying the theory of attractor-repellor pairs for flows on compact metric spaces
(see, e.g. III 3.1 in [21]), we see that there is a compact invariant set K ⊂ A that
is an attractor in A dual to the repellor {0}.

(iv) From (i)–(iii) we see that K can be viewed as a global attractor of the flow restricted
to RN+ \ {0}.

(v) If (2) is totally competitive (i.e. ∂Fi
∂xj

< 0 for all i, j ∈ IN ) and assumptions (A1)

and (A2) hold, then K is identical to the carrying simplex Σ = B(0) \ B(0) (see
[26], [25] or [6]), where B(0) is the repulsion basin of {0} in RN+ .



4 ZHANYUAN HOU AND STEPHEN BAIGENT

3. Conditions for dissipativity

The assumption (A2) is easily verifiable. For assumption (A1), at least the class of to-
tally competitive Lotka-Volterra systems satisfy it. In general, it is known that a finite
dimensional dynamical system is dissipative if it is point dissipative, that is, there exists a
bounded set such that any positive orbit enters that set in finite time and stays there. Then
the following result is a simple sufficient condition for (2) to meet assumption (A1).

Theorem 3.1. Assume that, under a permutation (1, . . . , N)→ (i1, . . . , iN ), there are N
positive numbers M1, . . . ,MN such that

∀M ≥M1, sup{Fi1(x) : x ∈ RN+ ,M1 ≤ xi1 ≤M} < 0; ∀j ∈ {2, . . . , N},

∀M ≥Mj , sup{Fij (x) : x ∈ RN+ , xik ≤Mk for k < j,Mj ≤ xij ≤M} < 0.

Then every solution of (2) enters into the set S1 = {x : 0 ≤ xij ≤ Mj , j ∈ IN} in finite
time and remains there.

Proof. For each x0 ∈ RN+ , if x0
i1
> M1, the condition guarantees the existence of t1 > 0

such that the solution x(t, x0) on its existing interval satisfies xi1(t, x0) ≤ M1 for t ≥ t1.
If xi2(t1, x

0) > M2, then there is a t2 > t1 such that xi2(t, x0) ≤ M2 for all t ≥ t2 on the
existing interval of x(t, x0). Repeating the above procedure N times we see the existence
of x(t, x0) on [0,+∞) satisfying xij (t, x

0) ≤Mj for all j ∈ IN and all large t. �

4. P. G. attraction

The following theorem is fundamental to our method. The version that we state is based
on lemma 8.2 of Saperstone [22]. For any function f : RN → R, we view ∇f(x) =

( ∂f∂x1 , . . . ,
∂f
∂xn

) as a row vector.

Theorem 4.1 (LaSalle’s Invariance Principle). Let Ω be a subset of RN and x(t, ·) denote
a semiflow on Ω generated by a C1 vector field f : Ω → RN . Let x0 ∈ Ω be given and
suppose that there is a C1 real-valued function V on Ω for which V̇ (x(t, x0)) ≥ 0 for all

t ≥ 0, where V̇ : Ω → R is defined by V̇ (x) = ∇V (x)f(x). Denote by M the largest
invariant subset of Ω. If the forward orbit O+(x0) has compact closure (inside Ω) then

ω(x0) ⊂M ∩ V̇ −1(0).

Remark 1. We observe that the conclusion of theorem 4.1 is still true if the requirement
V̇ (x(t, x0)) ≥ 0 is replaced by V (x(t, x0)) being monotone for large enough t. Indeed, by

the boundedness of O+(x0) and O+(x0) ⊂ Ω, V (x(t, x0)) is bounded so there is a constant

c such that V (ω(x0)) = c. Then, ∀y ∈ ω(x0), V (x(t, y)) ≡ c for t ∈ R so V̇ (x(t, y)) = 0.

This shows that ω(x0) ⊂ V̇ −1(0). Since O+(x0) ⊂ Ω implies ω(x0) ⊂ M , we must have

ω(x0) ⊂M ∩ V̇ −1(0).
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Our general approach for Kolmogorov systems is as follows: Define a function Φ : intRN+ →
R+ by Φ(x) = φ(x)V (x), where V (x) =

∏N
i=1 x

θi
i for a given θ = (θ1, . . . , θN )T ∈ RN and

φ : RN+ → (0,+∞) is a C1 positive function. Let

(6) I = {i ∈ IN : θi = 0}, I+ = {i ∈ IN : θi > 0} and I− = {j ∈ IN : θj < 0}.

Then Φ can be continuously extended to RIN\I− and, if I− = ∅, to RN+ . For a bounded
forward solution x = x(t, x0) of (2) starting at x0 ∈ RI we may compute

Φ̇(x) = ρ(x)Φ(x),

where

(7) ρ(x) :=
1

φ(x)
∇φ(x)D(x)F (x) + θTF (x).

Remark 2. We could instead use Φ = log(φV ) = log φ+
∑N

i=1 θi log xi which would give

instead Φ̇ = ρ, but we find Φ = φV a more convenient choice.

For θ, I, I+ and I− given in (6), suppose there is a fixed point p ∈ C0
I . Our task in

this section is to establish a criterion for p to be P. G. attracting. For this purpose, we
first observe that the following necessary conditions hold simultaneously for p to be P. G.
attracting:

(N1) ∀x0 ∈ RI , x(t, x0) is bounded for t ≥ 0 and 0 6∈ ω(x0);

(N2) ∀x0 ∈ RI ,∀j ∈ I+ ∪ I−, ω(x0) ∩ πj = ∅;

(N3) ∀x0 ∈ RI ,∃` > 0 such that ω(x0) ⊂ ρ−1(0) ∩ Φ−1(`) ∩ RI .

These give us a clear indication that any criterion for P. G. attraction of p must include
conditions that guarantee (N1)–(N3). Moreover, to ensure that ω(x0) = {p} for all x0 ∈ RI ,
we need some property on (ρ−1(0) \ {p}) ∩ RI such that

(8) y0 ∈ (ρ−1(0) \ {p}) ∩ RI =⇒ ∀ small t 6= 0, x(t, y0) 6∈ (ρ−1(0) \ {p}) ∩ RI .

For if ω(x0) 6= {p} then (ω(x0) \ {p}) ⊂ (ρ−1(0) \ {p}) ∩ RI . It then follows from the
invariance of ω(x0) \ {p} and (8) that (ω(x0) \ {p}) 6⊂ (ρ−1(0) \ {p})∩RI , a contradiction.
We now see that property (8) holds under the following condition:

(N4) g(x) = ∇ρ(x)D(x)F (x)(= ρ̇(x)) on (ρ−1(0)\{p})∩RI does not change sign and has
no zeros (or has isolated zeros that are not isolated points of (ρ−1(0) \ {p}) ∩ RI).

Indeed, condition (N4) together with the three necessary conditions (N1)–(N3) suffices for
the P. G. attraction of p. However, (N1)–(N3) are actual requirements on solutions of (2)
rather than conditions on the system. So we need to find checkable conditions on system
(2) for (N1)–(N4) to hold. Requirement (N1) can be checked easily from the system (2) so
we may view it as a condition on the system. Condition (N4) is for no sign change of g on
(ρ−1(0)\{p})∩RI and it includes four distinct cases (see condition 4 (a)–(d) of theorem 4.4
below). Note that, as a by-product, condition (N4) also ensures that ρ(x(t, x0)) for each
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fixed x0 ∈ RI eventually has no sign changes. Requirement (N2) actually requires that
every solution in RI keeps a finite distance away from

⋃
j∈I+∪I− πj , a part of the boundary

∂RN+ . From lemma 4.3 below we see that each of the conditions (i)–(iv) together with
the above by-product of (N4) will imply (N2) and (N3). Then theorem 4.4 is formed as a
summary of the above analysis.

The following definition is needed to control behaviour of orbits near the boundary ∂RN+
and hence the boundedness of V when θ has some negative components.

Definition 4.2. For a nonempty subset J ⊂ IN , (2) is said to be J-permanent if there are
M2 > M1 > 0 such that every solution of (2) in RIN\J satisfies

∀j ∈ J,M1 ≤ lim inf
t→+∞

xj(t) ≤ lim sup
t→+∞

xj(t) ≤M2.

Lemma 4.3. Let θ ∈ RN and I, I+, I− be given as in (6). For x0 ∈ RI , suppose that the

solution x(t, x0) of (2) is bounded for t ≥ 0 and set ρ(x) := Φ̇(x)/Φ(x). Assume that one
of the following conditions is met:

(i) (2) is I−-permanent if I− 6= ∅ and has no invariant set in {x ∈ (
⋃
j∈I+ πj) \ {0} :

ρ(x) ≤ 0}.

(ii) (2) is I+-permanent if I+ 6= ∅ and has no invariant set in {x ∈ (
⋃
j∈I− πj) \ {0} :

ρ(x) ≥ 0}.

(iii) (2) is (I+ ∪ I−)-permanent.

(iv) (2) has no invariant set in either {x ∈ (
⋃
j∈I+ πj) \ {0} : ρ(x) ≤ 0} or {x ∈

(
⋃
j∈I− πj) \ {0} : ρ(x) ≥ 0}.

Then if there exists a t0 ≥ 0 such that ρ(x(t, x0)) ≥ 0 for all t ≥ t0 or ρ(x(t, x0)) ≤ 0 for
all t ≥ t0, it follows that ω(x0) ⊂ ρ−1(0) ∩ Φ−1(`) ∩ RI for some ` > 0.

Proof. Suppose we have ρ(x(t, x0)) ≥ 0 for all t ≥ t0. As Φ(x0) is positive for x0 ∈ RI , we
have

Φ(x(t, x0)) = Φ(x0) exp

(∫ t

0
ρ(x(τ, x0)) dτ

)
≥ Φ(x0) exp

(∫ t0

0
ρ(x(τ, x0)) dτ

)
> 0

for all t ≥ t0.

If θ ∈ RN+ then I− = ∅ so Φ is defined on RN+ with Φ(x) = 0 for x ∈ ∪j∈IN\Iπj and Φ(x) > 0

for x ∈ RI = RN+ \ (∪j∈IN\Iπj). Since x(t, x0) is bounded, the above inequality shows that

Φ has a positive minimum on O+(x0). Thus, O+(x0) ⊂ RI . Then, if we take M = Ω = RI ,
by LaSalle’s principle, ω(x0) ⊆ RI ∩ (ρ−1(0) ∪ Φ−1(0)). As Φ(x) > 0 for all x ∈ RI , we
have ω(x0) ⊂ ρ−1(0) ∩ RI . Moreover it is easy to see that Φ(x) = ` for some ` > 0 and all
x ∈ ω(x0) and so ω(x0) ⊂ ρ−1(0) ∩Φ−1(`) ∩RI . Note that no condition of (i)–(iv) is used
in this case.
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If θ 6∈ RN+ then I− 6= ∅ so Φ is defined on (∪j∈I+πj)∪RI with Φ(x) = 0 for x ∈ ∪j∈I+πj and
Φ(x) > 0 for x ∈ RI . The part in any one of the conditions (i)–(iv) relating to I− ensures

that lim inft→+∞ xj(t, x0) > 0 for all x0 ∈ RI and j ∈ I−. Thus, O+(x0) ∩ (∪j∈I−πj) = ∅
and O+(x0) ⊂ (∪j∈I+πj) ∪ RI . From the above inequality Φ(x(t, x0)) ≥ Φ(x(t0, x0)) > 0

for t ≥ t0 we know that Φ has a positive minimum on O+(x0). This shows that O+(x0) ∩
(∪j∈I+πj) = ∅ so O+(x0) ⊂ RI . Then, by taking M = Ω = RI , the conclusion follows from
LaSalle’s principle.

Suppose we have ρ(x(t, x0)) ≤ 0 for all t ≥ t0. Then Φ(x(t, x0)) is positive and nonincreas-
ing for t ≥ t0. If θi ≤ 0 for all i ∈ IN then I+ = ∅. Then the boundedness of x(t, x0)
guarantees the existence of ` > 0 such that Φ(ω(x0)) = ` and ω(x0) ⊂ RI . Hence, by
LaSalle’s principle, ω(x0) ⊂ ρ−1(0) ∩ Φ−1(`) ∩ RI .

If I+ 6= ∅, the part in any one of the conditions (i)–(iv) relating to I+ implies that
lim inft→+∞ xi(t, x0) > 0 for all i ∈ I+ and x0 ∈ RI so ω(x0) ⊂ RI and the conclusion
follows. �

From lemma 4.3 we see that a global analysis of an orbit of (2) through x0 ∈ RN+ becomes an
investigation of the sign of the function t 7→ ρ(x(t, x0)). Thus we now turn to establishing
sufficient conditions for which

(9) ∃t0 ≥ 0 such that either ρ(x(t, x0)) ≥ 0 ∀t ≥ t0 or ρ(x(t, x0)) ≤ 0 ∀t ≥ t0.
For this purpose, we define g : RN+ → R via

g(x) = −λρ(x) +∇ρ(x)D(x)F (x)

for any constant λ ∈ R, so that along a solution x(t, x0) we have ρ̇(x(t, x0)) = λρ(x(t, x0))+
g(x(t, x0)). Note that in the set ρ−1(0), the term −λρ(x) vanishes so it does not affect the
value of g.

We are now in the position to state sufficient conditions for P. G. attraction of a boundary
or interior fixed point in terms of g:

Theorem 4.4 (P. G. attraction of a fixed point). With θ, I, I+ and I− given in (6),
suppose that the system (2) satisfies the following conditions:

(1) There is a fixed point p ∈ C0
I .

(2) For each x0 ∈ RI , the solution x(t, x0) is bounded for t ≥ 0 and 0 6∈ ω(x0).

(3) One of the following conditions is met:

(i) (2) has no invariant set in {x ∈ (
⋃
j∈I+ πj) \ {0} : ρ(x) ≤ 0} and, if I− 6= ∅,

is I−-permanent.

(ii) (2) has no invariant set in {x ∈ (
⋃
j∈I− πj) \ {0} : ρ(x) ≥ 0} and, if I+ 6= ∅,

is I+-permanent.

(iii) (2) is (I+ ∪ I−)-permanent.
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(iv) (2) has no invariant set in either {x ∈ (
⋃
j∈I+ πj) \ {0} : ρ(x) ≤ 0} or {x ∈

(
⋃
j∈I− πj) \ {0} : ρ(x) ≥ 0}.

(4) The function g satisfies one of the following conditions:

(a) g(x) > 0 for all x ∈ (ρ−1(0) \ {p}) ∩ RI .

(b) p is the unique fixed point of (2) in RI , g(x) ≥ 0 for all x ∈ ρ−1(0) ∩ RI and
each zero x0 of g in (ρ−1(0) \ {p}) ∩RI is an isolated zero of g in this set but
is not an isolated point of this set.

(c) g(x) < 0 for all x ∈ (ρ−1(0) \ {p}) ∩ RI .

(d) p is the unique fixed point of (2) in RI , g(x) ≤ 0 for all x ∈ ρ−1(0) ∩ RI and
each zero x0 of g in (ρ−1(0) \ {p}) ∩RI is an isolated zero of g in this set but
is not an isolated point of this set.

Then p is P. G. attracting.

Remark 3. The statement of theorem 4.4 looks lengthy. But essentially this is the most
economical way of presenting 16 different combinations of (i)–(iv) in condition 3 and (a)–(d)
in condition 4 in one statement rather than in 16 separate shorter statements.

Remark 4. In theorem 4.4, the choice of θ ∈ RN depends on the fixed point p: if p is an
interior fixed point (i.e. p ∈ intRN+ ) then I = ∅ so θi 6= 0 for all i ∈ IN ; if p is a boundary

fixed point (i.e. p ∈ ∂RN+ ) then I 6= ∅ and θi 6= 0 if and only if i ∈ IN \ I. Although we
have not yet specified how to choose θ and φ, we shall see various examples of θ and φ in
the next few sections. In most cases, especially for the global stability theorems in section
7, we choose φ = 1 and θ = D(v)p where vT is a left eigenvector of J(p) corresponding to
one of the negative eigenvalues.

Remark 5. Each of the conditions (i)–(iv) is a required property of solutions rather than
a direct condition on the system. So it is not straightforward to check their validity.
However, for systems with N = 2 or N = 3, ∂RN+ is at most two-dimensional so the phrase
“no invariant set” in (i), (ii) and (iv) is equivalent to “no fixed points”. Thus, (iv) can be
simplified to the following easily checkable condition:

(iv)* (2) has no fixed points in the set

{x ∈ (∪j∈I+πj) \ {0} : ρ(x) ≤ 0} ∪ {x ∈ (∪j∈I−πj) \ {0} : ρ(x) ≥ 0}.

When N = 2, J-permanence can be easily determined by sketching a phase portrait so any
of (i)–(iv) can be easily checked. For a particular system with N ≥ 4, since J-permanence
is another specialised active research area, we need to search the literature for available J-
permanence results (e.g. [10]) or analyse the location of the global attractor of the system
restricted to

⋃
j∈I+ πj and

⋃
j∈I− πj .

Remark 6. To check condition (a) or (c), it is helpful to check that g(x) and ρ(x) have

no common zeros in RI \ {p}. If g(x) = A(x)
α(x) and ρ(x) = B(x)

β(x) , where α(x) > 0 and
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β(x) > 0 and both A(x) and B(x) are polynomials, for each n ∈ IN we may compute
the resultant Res(A(x), B(x), xn) (see in the Appendix for an explanation of this nota-
tion). Since Res(A(x), B(x), xn) = 0 if and only if A and B have a common zero, if
Res(A(x), B(x), xn) 6= 0 for x ∈ RI \ {p} then g(x) 6= 0 for x ∈ (ρ−1(0) \ {p}) ∩ RI so (a)
or (b) can be checked (see examples 1 and 2 below). Another way of verifying (a) or (c)
is to convert these conditions to verifying the positive or negative definite property of a
variable matrix (see sections 7.2, 7.3 and the example in section 9).

Remark 7. Although theorem 4.4 is for system (2) defined on RN+ , from its proof we can

see that this theorem is still valid for system (2) defined on an invariant subset Ω of RN+ ,

where C0
I , RI and πj are replaced by C0

I ∩ Ω, RI ∩ Ω and πj ∩ Ω (see example 1 below).

We split the proof of Theorem 4.4 into a series of lemmas, some of which will be reused
later.

Denote the open ball centred at a ∈ RN with a radius r > 0 by Br(a).

Lemma 4.5. For any x0 ∈ ρ−1(0) ∩ RI , if x0 is not a fixed point and g(x0) > 0 (< 0)
then there is a δ > 0 such that ρ(x(t, x0)) is strictly increasing (decreasing) for |t| ≤ δ, so
tρ(x(t, x0)) > 0 (< 0) for 0 < |t| ≤ δ.

Proof. Since ρ̇(x0) = λρ(x0) + g(x0) = g(x0) > 0 (< 0) at t = 0, by continuity in t, there
exists a δ > 0 such that ρ̇(x(t, x0)) = λρ(x(t, x0)) + g(x(t, x0)) > 0 (< 0) for |t| ≤ δ.
Thus, for any x0 ∈ (ρ−1(0) \ {p}) ∩ RI , if g(x0) > 0 (< 0) then there is a δ > 0 such that
ρ(x(t, x0)) is strictly increasing (decreasing) for t ∈ [−δ, δ] so that tρ(x(t, x0)) > 0 (< 0)
for 0 < |t| ≤ δ. �

Lemma 4.6. Assume that p ∈ C0
I is a fixed point of (2) and that

∀x ∈ (ρ−1(0) \ {p}) ∩ RI , g(x) > 0 (< 0).

Then p is the unique fixed point of (2) in RI and

∀x0 ∈ (ρ−1(0) \ {p}) ∩ RI ,∀t > 0, ρ(x(t, x0)) > 0 (< 0).

Proof. For any x0 ∈ (ρ−1(0) \ {p})∩RI , since g(x0) > 0 (< 0), by lemma 4.5, ρ(x(t, x0)) >
0 (< 0) holds for sufficiently small t > 0. If ρ(x(t, x0)) has a zero for some t > 0 then
there is a t1 > 0 such that ρ(x(t1, x0)) = 0 and ρ(x(t, x0)) > 0 (< 0) for 0 < t < t1. But
since x(t1, x0) ∈ (ρ−1(0) \ {p}) ∩ RI , by lemma 4.5 again, ρ(x(t, x0)) is strictly increasing
(decreasing) for t in the vicinity of t1 so ρ(x(t, x0)) = ρ(x(t − t1, x(t1, x0))) < 0 (> 0) for
t < t1 with |t− t1| small enough. This contradiction to ρ(x(t, x0)) > 0 (< 0) for t ∈ (0, t1)
shows that ρ(x(t, x0)) > 0 (< 0) for all t > 0. From the definition of ρ we see that p is the
unique fixed point of (2) in RI . �

Lemma 4.7. Assume that p is the unique fixed point of (2) in RI . Assume also that

∀x ∈ (ρ−1(0) \ {p}) ∩ RI , g(x) ≥ 0 (≤ 0).
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Moreover, if each zero of g in (ρ−1(0) \ {p}) ∩ RI is not an isolated point of ρ−1(0) ∩ RI
but an isolated zero of g in this set, then

∀x0 ∈ (ρ−1(0) \ {p}) ∩ RI ,∀t ≥ 0, ρ(x(t, x0)) ≥ 0 (≤ 0).

Further, each zero of ρ(x(·, x0)) is isolated in R+.

Proof. We first assume g(x0) ≥ 0 for any x0 ∈ (ρ−1(0) \ {p}) ∩ RI . Suppose g(x0) = 0
and there is a t1 > 0 such that ρ(x(t, x0)) < 0 for t ∈ (0, t1]. As x0 is not an isolated
point of ρ−1(0) ∩ RI and x0 is an isolated zero of g in this set, there is a δ > 0 such
that g(x) > 0 for all x in the nonempty set (ρ−1(0) \ {x0}) ∩ Bδ(x0) ∩ RI . So, for each
y0 ∈ (ρ−1(0)\{x0})∩Bδ(x0)∩RI , by lemma 4.5, ρ(x(t, y0)) > 0 for sufficiently small t > 0.
On the other hand, as

lim
y0→x0

sup
0≤t≤t1

‖x(t, y0)− x(t, x0)‖ = 0

and ρ is continuous, for y0 close enough to x0, we have ρ(x(t1, y0)) < 0 so there is a
t2 ∈ (0, t1) such that x(t2, y0) ∈ (ρ−1(0) \ {x0}) ∩ Bδ(x0) ∩ RI and ρ(x(t, y0)) < 0 for
t ∈ (t2, t1]. This contradicts ρ(x(t, y0)) = ρ(x(t − t2, x(t2, y0))) > 0 for sufficiently small
t − t2 > 0. Therefore, for each x0 ∈ (ρ−1(0) \ {p}) ∩ RI with g(x0) = 0, we must have
ρ(x(t, x0)) ≥ 0 for all t ≥ 0.

To show the second part of the conclusion, suppose for some x0 ∈ (ρ−1(0)\{p})∩RI , there
are t0 ≥ 0 and a sequence {tk} ⊂ (0,+∞) such that limk→∞ tk = t0 and ρ(x(tk, x0)) = 0
for all k = 0, 1, 2, . . ..

If g(x(t0, x0)) > 0, by lemma 4.5 there is a δ > 0 such that (t − t0)ρ(x(t, x0)) > 0 if 0 <
|t−t0| < δ. Then, for large enough k with 0 < |tk−t0| < δ, we have (tk−t0)ρ(x(tk, x0)) > 0,
a contradiction to ρ(x(tk, x0)) = 0.

If g(x(t0, x0)) = 0, then x(t0, x0) is an isolated zero of g in ρ−1(0) ∩ RI so there is a δ > 0
such that g(x) > 0 for all x ∈ (ρ−1(0) \ {x(t0, x0)})∩Bδ(x(t0, x0))∩RI . By the uniqueness
of p as a fixed point in RI , x(t0, x0) cannot be a fixed point. So there is a k0 > 0 such
that x(tk, x0) ∈ (ρ−1(0) \ {x(t0, x0)}) ∩ Bδ(x(t0, x0)) ∩ RI so that g(x(tk, x0)) > 0 for all
k ≥ k0. Then, for each k ≥ k0, by lemma 4.5 we have ρ(x(t, x0)) < 0 for t < tk with |t− tk|
sufficiently small, a contradiction to ρ(x(t, x0)) ≥ 0 for all t ≥ 0. These contradictions
show that each zero of ρ(x(t, x0)) is isolated in [0,+∞).

We conclude that for each x0 ∈ (ρ−1(0)\{p})∩RI , ρ(x(t, x0)) ≥ 0 holds for all t ∈ [0,+∞)
and each zero of ρ(x(t, x0)) is isolated in [0,+∞).

If g(x) ≤ 0 for all x ∈ (ρ−1(0) \ {p}) ∩ RI , the corresponding conclusion follows from the
above reasoning by simply reversing the direction of the relevant inequalities. �

Lemma 4.8. Assume that p ∈ C0
I is a fixed point of (2) and that g satisfies one of the

conditions (a)–(d) given in theorem 4.4. If ω(x0) ⊂ ρ−1(0) ∩ RI for some x0 ∈ RI then
ω(x0) = {p}.
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Proof. As ω(x0) is nonempty, connected and compact, if ω(x0) 6= {p} then, by invariance
of ω(x0), ∃y ∈ ω(x0) \ {p} such that x(t, y) ∈ ω(x0) \ {p} ⊂ (ρ−1(0) \ {p}) ∩ RI for
all t ∈ R. By lemmas 4.6 and 4.7 ∃t1 > 0 such that ρ(x(t1, y)) 6= 0, which contradicts
x(t1, y) ∈ ω(x0) ⊂ ρ−1(0). Therefore, ω(x0) = {p}. �

Putting the lemmas 4.3, 4.6–4.8 together we may establish theorem 4.4:

Proof of theorem 4.4. Suppose either condition 4 (a) or (b) is met. Let x0 ∈ RI \ {p} be
such that ρ(x0) ≥ 0. Then by lemmas 4.6 and 4.7 we have that ρ(x(t, x0)) ≥ 0 for all t ≥ 0
and each zero of ρ(x(·, x0)) is isolated on R+. Then, by conditions 1–3 and lemma 4.3,
ω(x0) ⊆ ρ−1(0) ∩ RI .

On the other hand, suppose that x0 ∈ RI is such that ρ(x0) < 0. If ∃t1 > 0 such
that x(t1, x0) ∈ ρ−1(0) then from the previous paragraph we have ω(x0) ⊂ ρ−1(0) ∩ RI .
Otherwise, there is no such t1 so ρ(x(t, x0)) < 0 for all t ∈ R+. Hence Φ̇ = ρΦ < 0,
so Φ(x(t, x0)) is strictly decreasing, for all t ∈ R+. Since each one of the conditions
(i)–(iv) relating to I+ implies that lim inft→+∞ xj(t, x0) > 0 for j ∈ I+ and O+(x0) is
bounded, there is a c > 0 such that limt→+∞Φ(x(t, x0)) = Φ(ω(x0)) = c. This shows that
ω(x0) ∩ (∪j∈I+πj) = ∅. If ω(x0) ∩ (∪j∈I−πj) 6= ∅, then there exist j ∈ I− and a sequence

{tk}, tk → +∞ as k → ∞, such that xj(tk, x0) → 0, and consequently x
θj
j → +∞ and

Φ(x(tk, x0))→ +∞, as k →∞. This contradiction to limt→+∞Φ(x(t, x0)) = c shows that
ω(x0) ∩ (∪j∈I−πj) = ∅. Therefore, ω(x0) ⊂ RI . Now taking M = Ω = RI , by remark 1 we

have ω(x0) ⊂M ∩ Φ̇−1(0) = RI ∩ ρ−1(0).

Now suppose either condition 4 (c) or (d) is fulfilled. Parallel to the first paragraph we
see that ρ(x0) ≤ 0 for x0 ∈ RI \ {p} implies ω(x0) ⊆ ρ−1(0) ∩ RI ; parallel to the second
paragraph we also obtain that ρ(x0) > 0 implies ω(x0) ⊆ ρ−1(0) ∩ RI .

In all cases, the conclusion follows from lemma 4.8. �

Example 1. The following example of (2) with

F1(x) =

(
1− x1 −

x2

A+ x1

)
,

F2(x) = r

(
1− hx2

x1

)
was considered by Hsu et al [14]. Take r = 5, h = 1, A = 1

2 . There is a unique interior fixed

point at p = (1
2 ,

1
2)T . The Jacobian matrix is

J =

 −8x31−4x21+2x1−2x2+1
(2x1+1)2

1
2x1+1 − 1

5x22
x21

5− 10x2
x1

 , J(p) =

(
−1

4 −1
2

5 −5

)
.
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J(p) has two negative eigenvalues 1
8(−21 ±

√
201) so p is asymptotically stable. To show

its global stability, we show by theorem 4.4 that it is globally attracting. Since αT =(
1
4(19−

√
201),−1

)
is a left eigenvector of J(p) corresponding to −1

8(21+
√

201), by taking
Φ(x) = xα1p1

1 xα2p2
2 , we have

ρ =
1

8

(
19−

√
201
)(
− x2

x1 + 1
2

− x1 + 1

)
− 5

2

(
1− x2

x1

)
=

P (x)

x1(x1 + 1
2)
,

ρ̇ = x1

(
− x2

x1 + 1
2

− x1 + 1

)(
1

8

(
19−

√
201
)( x2(

x1 + 1
2

)2 − 1

)
− 5x2

2x2
1

)

+5

(
5

2x1
− 19−

√
201

8
(
x1 + 1

2

))x2

(
1− x2

x1

)
=

G(x)

x2
1(x1 + 1

2)3
,

so that P,G are polynomials in xT = (x1, x2). The resultant of P and G with respect to
x1 (see Appendix) is

Res(P,G, x1) = cx4
2(x2 + 1)(2x2 − 1)2

(
(58384900

√
201− 827625100)x2

2

−(119899574
√

201− 1700013026)x2

−10890067
√

201 + 154438233
)
,

where c 6= 0. Then Res(P,G, x1) vanishes on R+ if and only if x2 = 1/2. Since P−1(0) can
be written as

x2 =
x1(2x1 + 1)[(19−

√
201)x1 + (1 +

√
201)]

2(1 +
√

201)x1 + 20
,

x2 is an increasing function of x1 for x1 ≥ 0. Thus, G(x) 6= 0 for x ∈ P−1(0)\{p} in R2
+. As

P−1(0)\{p} in R2
+ has two connected components, x0 = (0.4, 0.313896)T in one component

and x1 = (0.6, 0.624231)T in the other, and ρ̇(x0) ≈ 0.00975659 and ρ̇(x1) ≈ 0.00882231,
this shows that ρ̇ > 0 for x ∈ (ρ−1(0) \ {p}) ∩ intR2

+ (condition 4 (a) of theorem 4.4). A
simple sketch of the phase portrait shows that the system is permanent (condition 3 (iii)
of theorem 4.4). By theorem 4.4 and remark 7, p is P. G. attracting. Then the global
stability follows from the local stability of p.

Example 2. Two predator, one prey system We consider the system (2) with

F1(x) =

(
1− 2x1

7

)
− x2

x1 + 1
− x3

x1 + 1
,(10)

F2(x) =
x1

x1 + 1
− x2 −

1

2
,(11)

F3(x) =
x1

x1 + 1
− x3 −

3

7
.(12)
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The unique interior fixed point is given by p = (3, 1
4 ,

9
28)T . At p the Jacobian matrix

J =

 −3
4 −3

4 −3
4

1
64 −1

4 0
9

448 0 − 9
28


has three negative eigenvalues − 1

112(53 +
√

541), −3
8 and − 1

112(53−
√

541) so p is asymp-
totically stable. We show by theorem 4.4 that p is also P. G. attracting so it is globally
stable. Note that J has a left eigenvector αT = ( 1

14 ,
3
7 , 1) corresponding to −3

8 and so we

take Φ(x) =
∏3
i=1 x

θi
i with θT =

(
3
14 ,

3
28 ,

9
28

)
. Here we have ρ = (x1+1)−1P (x) where

P (x) = θ2

(
x1 − (x1 + 1)

(
1

2
+ x2

))
+ θ3

(
x1 − (x1 + 1)

(
3

7
+ x3

))
+θ1

(
(x1 + 1)

(
1− 2x1

7

)
− x2 − x3

)
.

Similarly we find that ρ̇ = (98(1 + x1)3)−1G(x) where

G(x) = 49 (x1 + 1)x2 (−x1 + 2 (x1 + 1)x2 + 1) (θ1 + θ2 (x1 + 1))

+14 (x1 + 1)x3 (−4x1 + 7 (x1 + 1)x3 + 3) (θ1 + θ3 (x1 + 1))

+2x1 (x1 (2x1 − 5) + 7 (x2 + x3 − 1))

× (θ1 (2x1 (x1 + 2)− 7x2 − 7x3 + 2)− 7 (θ2 + θ3)) .

We now insert the numerical values of θ and take the resultant Res(P,G, x3). The resul-
tant is quadratic in x2: Res(P,Q, x3) = R0(x1) + R1(x1)x2 + R2(x1)x2

2. This polynomial
Res(P,Q, x3) has real roots (x1, x2) only if δ := R1(x1)2 − 4R0(x1)R2(x1) ≥ 0. We find
that

δ = − 729

9834496
(x1 − 3) 2 (x1 + 1) 2(3x1 + 5)2

(
2304x6

1 + 21600x5
1

+71975x4
1 + 122908x3

1 + 124866x2
1 + 56476x1 + 1055

)
.

Then, for x1 ≥ 0, δ = 0 if and only if x1 = 3 = p1. Hence if 0 ≤ x1 6= 3 = p1 we see that
the resultant Res(P,G, x3) cannot vanish. When x1 = 3 we find that Res(P,G, x3) = 0 if
and only if x2 = 1/4 = p2. The conclusion is that P,G vanish simultaneously only at the
interior fixed point p. Since P−1(0) has the equation

x3 =
−8x2

1 − 14x2x1 + 51x1 − 42x2 + 3

14(3x1 + 5)
,

the surface ρ−1(0)\{p} is connected in R3
+ and intersects the x3-axis at (0, 0, 3

70)T . At this

point ρ̇ = 297
27440 > 0. Hence ρ̇ > 0 on ρ−1(0)\{p} and condition 4 (a) of theorem 4.4 is met.

At the boundary fixed point q = (7
2 , 0, 0)T , P (q) = 5

4θ2 + 11
7 θ3 > 0 so ρ(q) > 0. At the fixed

point s in the interior of π3, from sketches of F1(x) = 0 and F2(x) = 0 we know that s1 > 1
so P (s) = (4

7s1 − 3
7)θ3 > 0 and ρ(s) > 0. At the fixed point u in the interior of π2, from

sketches of F1(x) = 0 and F3(x) = 0 we also know that u1 > 1 so P (u) = 1
2(u1 − 1)θ2 > 0
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and ρ(u) > 0. Therefore, from remark 5, condition 3 (iv) of theorem 4.4 holds. From
theorem 4.4 we conclude that p is globally stable.

5. P. G. repulsion

Now under the assumptions (A1) and (A2) given in section 2 we consider the P. G. repulsion
of p on K ∩ RI . Parallel to all the lemmas and theorem given in the last section, we may
obtain similar results about limit set α(x0) when t→ −∞ and the P. G. repulsion of p on
K ∩ RI . However, instead of writing out all the detailed analogues, we take a shortcut to
reach to the following result. By reversing the time, system (2) becomes ẋ = −D(x)F (x).
Then the P. G. repulsion of p on K ∩RI for system (2) is converted to P. G. attraction of
p on K ∩ RI for the reversed time system. Then, from remark 7, by applying theorem 4.4
to this reversed time system on K ∩ RI , we derive the following theorem.

Theorem 5.1 (P. G. repulsion of a fixed point). In addition to the assumptions (A1) and
(A2) given in section 2, assume that p ∈ C0

I is a fixed point with I, I+ and I− given as in
lemma 4.3. Assume also that one of the following conditions is met:

(i) (2) is I−-permanent on K in backward time if I− 6= ∅ and has no invariant set in
K ∩ {x ∈ (

⋃
j∈I+ πj) \ {0} : ρ(x) ≥ 0}.

(ii) (2) is I+-permanent on K in backward time if I+ 6= ∅ and has no invariant set in
K ∩ {x ∈ (

⋃
j∈I− πj) \ {0} : ρ(x) ≤ 0}.

(iii) (2) is (I+ ∪ I−)-permanent on K in backward time.

(iv) (2) has no invariant set in either K∩{x ∈ (
⋃
j∈I+ πj)\{0} : ρ(x) ≥ 0} or K∩{x ∈

(
⋃
j∈I− πj) \ {0} : ρ(x) ≤ 0}.

Assume also that the function g satisfies one of the following conditions:

(a) g(x) > 0 for all x ∈ (ρ−1(0) \ {p}) ∩ RI ∩K.

(b) p is the unique fixed point of (2) in K ∩ RI , g(x) ≥ 0 for all x ∈ ρ−1(0) ∩ RI ∩K
and each zero x0 of g in (ρ−1(0) \ {p})∩RI ∩K is an isolated zero of g in this set
but is not an isolated point of this set.

(c) g(x) < 0 for all x ∈ (ρ−1(0) \ {p}) ∩ RI ∩K.

(d) p is the unique fixed point of (2) in K ∩ RI , g(x) ≤ 0 for all x ∈ ρ−1(0) ∩ RI ∩K
and each zero x0 of g in (ρ−1(0) \ {p})∩RI ∩K is an isolated zero of g in this set
but is not an isolated point of this set.

Then p is P. G. repelling on RI ∩K.

From the examples given in section 4 we see that theorem 4.4 can be used to study the
global stability of a fixed point provided we know its local stability properties, and in
particular we utilise a suitable eigenvector of the Jacobian evaluated at the fixed point.
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If local stability information is unknown then the power of theorem 4.4 is lost for global
stability. As a supplement, we are going to demonstrate two ways of combining local
stability with P. G. attraction to obtain global stability in one criterion. One way is to use
the Lyapunov direct method as shown in the next result. It is an easy extension of the
theorem of diagonal stability of Lotka-Volterra systems as proved for interior and boundary
fixed points [23] and extended in [4] for the study of MacArthur-Style consumer-resource
models met in ecology. Another way is to use the split Lyapunov function method shown
in the results given in section 7.

6. Diagonal stability at a boundary or interior fixed point in forward time

In the proof of next result, we choose φ(x) = e−v
T x and θ = D(p)v for some v � 0

(meaning vi > 0 for all i ∈ IN ), which is interchangable with v ∈ intRN+ .

Theorem 6.1. Suppose that there exists a v � 0 and an invariant set Ω ⊆ RI for (2)
containing a fixed point p ∈ C0

I such that (x−p)TD(v)(F (x)−F (p)) < 0 for all x ∈ Ω\{p}
and that Fi(p) ≤ 0 for all i ∈ I. Then p is globally asymptotically stable on Ω.

Proof. This result essentially follows from the proof of Theorem 3.2.1 given in [23]. But in

the context of the current framework, we take Φ(x) = e−v
T x
∏
i∈I+ x

vipi
i with I+ = IN \ I.

Then ρ(x) = −(x−p)TD(v)(F (x)−F (p))−
∑

i∈I vixiFi(p) ≥ 0 with equality if and only if

x = p. Thus, we have ρ(y) > 0 for all y ∈ Ω∩(∪i∈I+πi) so condition (i) of lemma 4.3 is met.
Then the P. G. attraction of p on Ω follows from lemma 4.3. If we take H(x) = Φ(p)−Φ(x),
we claim that H(x) ≥ 0 for x ∈ RI with equality if and only if x = p. Indeed, ∀x ∈ RI ,

ln
Φ(x)

Φ(p)
= −

∑
i∈IN

vixi +
∑
j∈I+

vjpj lnxj +
∑
i∈IN

vipi −
∑
j∈I+

vjpj ln pj

= −
∑
i∈I

vixi −
∑
i∈I+

vixi +
∑
j∈I+

vjpj lnxj +
∑
i∈I+

vipi −
∑
j∈I+

vjpj ln pj

= −
∑
i∈I

vixi +
∑
j∈I+

vjpj

(
ln
xj
pj
− xj
pj

+ 1

)
.

(Here we used that IN = I∪I+ and pi = 0 for all i ∈ I.) As ln ξ−ξ+1 ≤ 0 for ξ ∈ (0,+∞)
and the equality holds if and only if ξ = 1, and also that

∑
i∈I vixi ≥ 0 with equality if

and only if x = p, we have ln Φ(x)
Φ(p) ≤ 0 for x ∈ RI with equality if and only if x = p. This

shows our claim. From Ḣ(x) = −Φ̇(x) = −ρ(x)Φ(x), we see that Ḣ(x) ≤ 0 for x ∈ Ω with
equality if and only if x = p. Then the local stability of p with respect to Ω follows from a
standard Lyapunov theorem. Therefore, p is globally asymptotically stable on Ω. �

For any square matrix U , let US = U + UT . Then US is symmetric. When Ω is convex,
sufficient conditions for fulfillment of the condition of the above theorem are that there is
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some v � 0 such that M(x)S or (D(v)∇F (x))S is negative definite for all x ∈ Ω \ {p},
where M(x) = D(v)

∫ 1
0 ∇F (sx+ (1− s)p) ds.

Corollary 1. Suppose that there exists a v � 0 and an invariant convex set Ω ⊆ RI
containing a fixed point p ∈ C0

I such that M(x)S or (D(v)∇F (x))S is negative definite for

all x ∈ Ω \ {p} and that Fi(p) ≤ 0 for all i ∈ I. Then p is globally asymptotically stable on
Ω.

Example 3. Population Games Let G : RN+ → RN be Lipschitz continuous and
consider

(13) Fi(x) = Gi(x)− xTG(x), i ∈ IN .

The system (2) with (13) then models a population game on the unit probability simplex

4 = {x ∈ RN+ :
∑N

i=1 xi = 1}. Let p ∈ C0
I be a fixed point (interior or boundary) of the

system. Since 4 is compact and invariant, the solution x(t, x0) exists for all t ∈ R and
Ω = 4∩RI is invariant. Assume that Fi(p) ≤ 0 for each i ∈ I and −G is strictly monotone:
(x− y)T ((−G)(x)− (−G)(y)) > 0 for x 6= y. Then, taking v = (1, . . . , 1)T , we have

(x− p)TD(v)(F (x)− F (p))

= (x− p)T (G(x)−G(p)) +

N∑
i=1

(pi − xi)(xTG(x)− pTG(p))

= (x− p)T (G(x)−G(p)) < 0

for x ∈ 4 \ {p}. By theorem 6.1, p is globally stable. Hofbauer and Sandholm [9] named
such population games as stable games. They showed that (x−y)T ((−G)(x)−(−G)(y)) > 0
for x 6= y is equivalent to zT∇G(x)z < 0 for all x ∈ 4 \ {p} and all z ∈ T4 = {z ∈ RN :∑N

i=1 zi = 0}.

Example 4. [12] Consider the system (2) with

(14)

F1(x) = 1− x1 − β
x2

1 + x3
− αx3,

F2(x) = 1− αx1 − x2 − β
x3

1 + x1
,

F3(x) = 1− β x1

1 + x2
− αx2 − x3,

where α, β > 0. It is clear that Ω = (0, 1)3 is forward invariant for this system and, if
α+ β < 1, ω(x0) ⊂ Ω for every x0 ∈ intR3

+. Since

∇F (x) =

 −1 − β
x3+1

βx2
(x3+1)2

− α
βx3

(x1+1)2
− α −1 − β

x1+1

− β
x2+1

βx1
(x2+1)2

− α −1

 ,
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we have, choosing v = (1, 1, 1)T , that

∇FS(x) =

 −2 βx3
(x1+1)2

− α− β
x3+1

βx2
(x3+1)2

− α− β
x2+1

βx3
(x1+1)2

− α− β
x3+1 −2 βx1

(x2+1)2
− α− β

x1+1
βx2

(x3+1)2
− α− β

x2+1
βx1

(x2+1)2
− α− β

x1+1 −2

 .

Thus, for x ∈ Ω and α > β, for the first row of M(x) = ∇FS(x),

M11 − |M12| − |M13|

= −2 +

∣∣∣∣ βx3

(x1 + 1) 2
− α− β

x3 + 1

∣∣∣∣+

∣∣∣∣ βx2

(x3 + 1) 2
− α− β

x2 + 1

∣∣∣∣
= −2 + 2α− βx3

(x1 + 1) 2
+

β

x3 + 1
− βx2

(x3 + 1) 2
+

β

x2 + 1

< −2 + 2α+ 2β < 0 if α+ β < 1.

Similar expressions hold for the other two rows of ∇FS , so that ∇FS is negative definite if
α > β and α+β < 1. Hence from corollary 1 we find that the (necessarily unique) interior
fixed point of (14) is globally asymptotically stable.

Example 5. We consider the two predator, one prey system modelled by (2) with

F1(x) = r
(

1− x1

K

)
− x2

x1 + 1
− x3

x1 + 1
,(15)

F2(x) =
x1

x1 + 1
− x2 − d2,(16)

F3(x) =
x1

x1 + 1
− x3 − d3(17)

for x ∈ R3
+. Here x1 is the prey and x2, x3 are predators. We assume that the constants

r,K, d2, d3 are positive satisfying

(18) d2 < 1, d3 < 1, K > 1, r + d2 + d3 ≥ 2, r ≥ K

32
+

2− d2 − d3

K
.

Notice that for i = 2, 3, ẋi < 0 for x1 = 0 or for x1 > 0 and xi ≥ 1−di . Also for xi < 1−di
and x1 > 0 we have

ẋ1 = x1

(
r
(

1− x1

K

)
− x2

x1 + 1
− x3

x1 + 1

)
> x1

(
r
(

1− x1

K

)
− (2− d2 − d3)

1 + x1

)
.

The above expression is positive, so ẋ1 > 0, if

0 < x1 <
K − 1

2
+

1

2

√
(K + 1)2 +

4K(d2 + d3 − 2)

r
.

Hence ẋ1 > 0 for x1 = K − 1. Clearly, ẋ1 ≤ − r
Kx1 for x1 ≥ K + 1 so every solution

satisfies x1(t) < K + 1 for all large enough t. Then we come to the conclusion that all
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orbits eventually lie in the set B = [K − 1,K + 1) × [0, 1 − d2) × [0, 1 − d3). The matrix
(D(v)∇F )S is given by

(D(v)∇F (x))S = −


2v1

(
r
K −

x2+x3
(1+x1)2

)
−v2+v1(x1+1)

(x1+1)2
−v3+v1(x1+1)

(x1+1)2

−v2+v1(x1+1)
(x1+1)2

2v2 0
−v3+v1(x1+1)

(x1+1)2
0 2v3

 .

Now choose v = (1, 1, 1)T so that

(D(v)∇F (x))S = ∇FS = −


2r
K −

2(x2+x3)
(1+x1)2

x1
(x1+1)2

x1
(x1+1)2

x1
(x1+1)2

2 0
x1

(x1+1)2
0 2

 .

Since ∇FS is symmetric, −∇FS is positive definite in B if and only if for all x ∈ B the
following leading principal minors are positive, i.e.,

L1 = 2

(
r

K
− x2 + x3

(1 + x1)2

)
> 0,

L2 = 4

(
r

K
− x2

1

4 (x1 + 1) 4
− (x2 + x3)

(x1 + 1) 2

)
> 0,

L3 = 8

(
r

K
− x2

1

2 (x1 + 1) 4
− (x2 + x3)

(x1 + 1) 2

)
> 0.

Clearly, if L3 > 0 then L1 > 0 and L2 > 0. Since x ∈ B implies x2 + x3 < 2− d2 − d3, we
have

L3 > 8

(
r

K
− x2

1

2 (x1 + 1) 4
− (2− d2 − d3)

(x1 + 1) 2

)
≥ 8

(
r

K
− 1

32
− (2− d2 − d3)

(x1 + 1) 2

)
as

x21
(x1+1)4

has maximum 1
16 at x1 = 1. By (18) the last expression is nonnegative so L3 > 0.

Hence ∇FS is negative definite in B.

Consider now fixed points. We observe that the set B = [K−1,K+1]×[0, 1−d2]×[0, 1−d3]
is forward invariant, so it must contain a non-trivial fixed point. If p is an interior fixed point
it must satisfy p2 = p1

p1+1 − d2 and p3 = p1
p1+1 − d3 and hence that p1 > d0 = maxi=2,3

di
1−di .

Substituting x = p into F1 = 0 yields

C(p1) = K(r + d2 + d3) + (K(d2 + d3 − 2) + r(2K − 1))p1 + r(K − 2)p2
1 − rp3

1 = 0.

It is clear that there is at least one solution p1 > 0. Since (18) implies r ≥ 2 − d2 − d3 >
K(2−d2−d3)

2K−1 , so that C ′(0) > 0, the cubic C(p1) has just one sign change so C(p1) = 0

has then exactly one positive root p1. Thus, C(p1) = 0, C(x1) > 0 for 0 ≤ x1 < p1 and
C(x1) < 0 for x1 > p1. Hence, if C(d0) > 0 then p is a globally asymptotically stable
interior fixed point.
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However, if C(d0) ≤ 0, which implies p1 ≤ d0 = maxi=2,3
di

1−di , we shall see that a boundary

fixed point is globally asymptotically stable. There are three possible cases: (i) d2 = d3,
(ii) d2 > d3, (iii) d2 < d3. In case (i), we have p1

1+p1
− dj ≤ 0, so pj = 0, for j = 2, 3

and p = (K, 0, 0)T is the unique fixed point in B, and it is globally asymptotically stable.

In case (ii), d3
1−d3 <

d2
1−d2 = d0. If d3

1−d3 < p1 ≤ d2
1−d2 then p1

1+p1
− d2 ≤ 0 so p2 = 0 but

p3 = p1
1+p1

− d3 > 0. Substituting p = (p1, 0, p3)T into F1(p) = 0, we have

C1(p1) = −rp3
1 + r(K − 2)p2

1 + [(r + d3 − 1)K + r(K − 1)]p1 +K(r + d3) = 0.

By the same reason as that for C(x1), we know that C1(x1) > 0 for 0 ≤ x1 < p1 and

C1(x1) < 0 for x1 > p1. Thus, if C1( d3
1−d3 ) > 0 then p = (p1, 0, p3)T is globally asymptoti-

cally stable; if C1( d3
1−d3 ) ≤ 0 then p1 ≤ d3

1−d3 <
d2

1−d2 = d0 so p2 = p3 = 0 and p = (K, 0, 0)T

is globally asymptotically stable. Similarly, in case (iii), p3 = 0. If p2 = p1
1+p1

− d2 > 0,

then p1 satisfies

C2(p1) = −rp3
1 + r(K − 2)p2

1 + [(r + d2 − 1)K + r(K − 1)]p1 +K(r + d2) = 0.

Thus, if C2( d2
1−d2 ) > 0 then p = (p1, p2, 0)T is gobally asymptotically stable; if C2( d2

1−d2 ) ≤ 0

then p2 = 0 so p = (K, 0, 0)T is globally asymptotically stable.

7. Split Lyapunov stability at a fixed point in forward time

7.1. Global stability at an interior fixed point in forward time. In this section,
we consider the case where φ(x) = 1 and θ = D(p)α, so that Φ(x) = V (x) =

∏N
i=1 x

αipi
i .

In the first instance we consider an interior fixed point p ∈ intRN+ and establish criteria
for (2) to be globally asymptotically stable at p in forward time. The approach is guided
by that of the Split Lyapunov method [25, 11, 1] which has been successfully applied to
Lotka-Volterra systems for which each Fi is affine.

Let J(x) = ∇(D(x)F (x)) and A = −∇F (p). Then J(p) = D(p)∇F = −D(p)A. Assume
that D(p)A has a positive eigenvalue λ with a corresponding left eigenvector αT : α ∈ RN
with αi 6= 0 for all i ∈ IN , i.e. −λ is an eigenvalue of J(p) with αT as a left eigenvector.
Then αTD(p)A = λαT . We also set θ = D(p)α and ρ(x) = θTF (x). Then, as

(19) V (x) =
N∏
i=1

xθii =
N∏
i=1

xαipi
i , ρ(x) = θTF (x) = αTD(p)F (x),

we have

V̇ (x) = ∇V (x)D(x)F (x) = ρ(x)V (x),(20)

ρ̇(x) = ∇ρ(x)D(x)F (x)

= αTD(p)∇F (x)D(x)F (x)

= αTJ(p)D(x)F (x) + θT
[
∇F (x)−∇F (p)

]
D(x)F (x)

= −λαTD(x)F (x) + θT
[
∇F (x)−∇F (p)

]
D(x)F (x).
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With

(21) g(x) = −λαTD(x− p)F (x) + θT
[
∇F (x)−∇F (p)

]
D(x)F (x),

we have

(22) ρ̇ = −λρ(x) + g(x).

The function g can be rewritten slightly as

g(x) = −λαTD(x− p)F (x) + θT
[
∇F (x)−∇F (p)

]
D(x)F (x)

= −λαTD(x− p)(F (x)− F (p))− λαTD(x− p)F (p)

+θT
[
∇F (x)−∇F (p)

]
D(x)F (x)

= −λαTD(x)F (p)− λαTD(x− p)(F (x)− F (p))

+θT
[
∇F (x)−∇F (p)

]
(D(x)F (x)−D(p)F (p)).(23)

So far we have not specified whether p is an interior or boundary fixed point, i.e. equation
(23) is valid in both cases. When p is interior, we have the simplification that F (p) = 0
and we obtain (21). When p is not interior the first term −λαTD(x)F (p) will be nonzero
and, as we will see in section 7.3, it will play a role in determining stability of boundary
fixed points.

Theorem 7.1. Assume that the system (2) satisfies the following conditions:

1. There exists an interior fixed point p ∈ intRN+ , and D(p)A has an eigenvalue λ > 0

and a corresponding left (row) eigenvector αT with αi < 0 for i ∈ I− ⊂ IN and
αj > 0 for j ∈ I+ = IN \ I−.

2. For each x0 ∈ intRN+ , the solution x(t, x0) is bounded for t ≥ 0 and 0 6∈ ω(x0).

3. One of the conditions (i)–(iv) of theorem 4.4 is met.

4. The function g given by (21) satisfies one of the conditions (a)–(d) of theorem 4.4.

Then p is P. G. attracting, i.e. limt→+∞ x(t, x0) = p for all x0 ∈ intRN+ . If, in addition,

∃r > 0, ∀x ∈ Br(p) \ {p} with ρ(x) < 0 (> 0), g(x) > 0 (< 0)

under condition (a) or (b) ((c) or (d)),(24)

then (2) is globally asymptotically stable at p in forward time.

Note. Remarks 3, 5–7 for theorem 4.4 also apply to theorems 7.1 and 7.2.

Proof. The P. G. attraction of p follows from theorem 4.4. To prove the global asymptotic
stability of (2) at p in forward time, we need only show that

∀ε > 0, ∃δ > 0,∀x0 ∈ Bδ(p),∀t ∈ [0,+∞), x(t, x0) ∈ Bε(p).

Suppose g satisfies (a) or (b). Let `∗ = V (p). Then `∗ > 0 by (19). From lemmas 4.6
and 4.7 we know that for each x0 ∈ intRN+ \ {p}, ρ(x0) ≥ 0 implies ρ(x(t, x0)) ≥ 0 for
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Figure 1. Illustration of stability at p.

all t ≥ 0 so V (x(t, x0)) ↑ `∗ as t → +∞. Thus, ρ−1(0) ∩ V −1(`∗) ∩ intRN+ = {p}. The

surface V −1(`∗) divides intRN+ \ V −1(`∗) into two parts, one on each side of V −1(`∗). For
convenience, any set in the part with V (x) > `∗ is said to be above V −1(`∗) and any set
in the other part is said to be below V −1(`∗). Then ρ−1(0) \ {p} is below V −1(`∗). From
the expression for ρ̇(x) we see that ∇ρ(p) = −λαT with nonzero components. By the
implicit function theorem, in a sufficiently small neighbourhood of p, ρ−1(0) is an (N − 1)-
dimensional surface. Accordingly, in a small neighbourhood of p, any set in the part of
intRN+ \ ρ−1(0) containing V −1(`∗) \ {p} is above ρ−1(0) and any set in the other part is
below ρ−1(0). Then from Fig. 1 we see that ρ(x) < 0 for x above ρ−1(0) and ρ(x) > 0 for
x below ρ−1(0).

By condition (a) or (b) and (24), there is an ε0 > 0 such that g(x) ≥ 0 for all x ∈ Bε0(p)\{p}
with ρ(x) ≤ 0 and each zero x0 6= p of g is isolated in ρ−1(0) \ {p}. Thus, for each
x0 ∈ Bε0(p) \ {p} with ρ(x0) ≤ 0, by (22) ρ(x(t, x0)) is increasing for t ≥ 0 as long as
x(t, x0) ∈ Bε0(p) \ {p} and ρ(x(t, x0)) ≤ 0.

For any ε ∈ (0, ε0], there exists `0 ∈ (0, `∗) such that the bounded closed set, with the
boundary consisting of the part of V −1(`0) below ρ−1(0), the part of ρ−1(0) above V −1(`0)
and V −1(`0)∩ρ−1(0), is contained in Bε/2(p). As each zero of g in ρ−1(0)\{p} is isolated, by

adjusting the value of `0 if necessary, we may assume that g(x) > 0 for all x ∈ V −1(`0) ∩
ρ−1(0). Then, for each x0 ∈ V −1(`0) ∩ ρ−1(0), there exist a µ = µ(x0) > 0 and t1 =
t1(x0) < 0 such that ρ(x(t, x1)) < 0 and x(t, x1) ∈ Bε(p) for all x1 ∈ Bµ(x0) ∩ ρ−1(0) and
t ∈ [t1, 0). Since {Bµ(x0) : x0 ∈ ρ−1(0) ∩ V −1(`0)} is an open covering of the compact
set ρ−1(0) ∩ V −1(`0), by selecting a finite open covering we can choose a t2 < 0 such that
ρ(x(t, x0)) < 0 and x(t, x0) ∈ Bε(p) for all x0 ∈ ρ−1(0) ∩ V −1(`0) and t ∈ [t2, 0). These
segments of trajectories of (2) form an (N − 1)-dimensional surface S0.
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Let m∗ = max{ρ(x(t2, x0)) : x0 ∈ ρ−1(0) ∩ V −1(`0)}. Then, for m ∈ (m∗, 0) with |m|
small enough, every trajectory in S0 transverses the surface ρ−1(m) at some t ∈ [t2, 0) and
the bounded open set U below ρ−1(m), above V −1(`0) and surrounded by S0 is contained
in Bε(p) and forward invariant. As p ∈ U , there is a δ > 0 such that Bδ(p) ⊂ U . Then
x0 ∈ Bδ(p) implies x(t, x0) ∈ U ⊂ Bε(p) for all t ≥ 0. Therefore, (2) is stable at p in
forward time.

If condition (c) or (d) holds, then ρ(x0) ≤ 0 implies ρ(x(t, x0)) ≤ 0 for all t ≥ 0 so
V (x(t, x0)) ↓ `∗ as t→ +∞. The above reasoning is still valid with obvious adjustment. �

7.2. An alternative positive (negative) definite matrix condition. In the rest of
section 7 we assume that F is at least C2. Note that each of (a)–(d) in condition 4 of
theorem 7.1 as well as (24) looks simple but is not easily checked in practice (see remark
6). Recall that the condition g(x) > 0 for x ∈ (ρ−1(0) \ {p}) ∩ intRN+ for Lotka-Volterra
systems in [25], [11] and [1] can be converted into the positive definite property of a constant
(N − 1) × (N − 1) symmetric matrix which is easily checked. The nonlinearity of F , and
hence also ρ, means an easily applicable criterion for global stability of a fixed point for
general system (2) may not exist. However, applying the idea used in [25, 11, 1] to the
general system (2), we can convert condition (d) to positive, semi-positive, negative or
semi-negative definite property of a (N − 1)× (N − 1) symmetric matrix that is a function
of x ∈ (ρ−1(0) \ {p}) ∩ intRN+ . This property of the variable symmetric matrix may be
still difficult to check. Nevertheless, by employing the techniques of finding minima or
maxima of real functions, the positive or semi-positive definiteness of a variable matrix
is actually verifiable. This will be demonstrated in section 9 by a detailed analysis of an
example.

For this purpose, let the N ×N matrix

W = (W c
1 , . . . ,W

c
N )

be defined through its columns

(25) W c
1 = (1, 0, . . . , 0)T ,W c

2 = (−1, 1, 0, . . . , 0)T , . . . ,W c
N = (0, . . . , 0,−1, 1)T .

Then

(26) αTD(α)−1W = (1, 0, . . . , 0).

We define new coordinates z = (z1, . . . , zN )T on RN by

(27) z = W−1D(α)D(p)F (x), z̃ = (z2, . . . , zN )T ∈ RN−1.

From (25)–(27) we have

ρ(x) = αTD(p)F (x) = αTD(α)−1Wz = z1,

F (x) = D(p)−1D(α)−1Wz.
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Since F (p) = 0, F (x)− F (p) =
∫ 1

0
d
dsF ((1− s)p+ sx)ds =

∫ 1
0 ∇F (x̄)ds(x− p), there is an

N ×N matrix M0(x) =
∫ 1

0 ∇F (x̄)ds such that

(28) F (x) = F (x)− F (p) = M0(x)(x− p).

To make the new coordinates z interchangable with x − p, we require invertibility of the
matrix M0(x) for each x ∈ ρ−1(0). Then

(29) x− p = M0(x)−1F (x) = M0(x)−1D(p)−1D(α)−1Wz.

There are N matrices Mi(x) =
∫ 1

0 ∇(∇Fi(x̄)T )ds (i ∈ IN ) such that

(30) ∇Fi(x)−∇Fi(p) = (x− p)TMi(x), i ∈ IN .

Then, from (21), and using that θi = piαi,

g(x) = (x− p)T
[
−λD(α) +

N∑
i=1

αipiMi(x)D(x)

]
F (x)

= F (x)TM0(x)−T
[
−λD(α) +

N∑
i=1

αipiMi(x)D(x)

]
F (x)

= zTW TD(α)−1D(p)−1M−T0 (x)

×
[
−λD(α) +

N∑
i=1

αipiMi(x)D(x)

]
D(p)−1D(α)−1Wz

= (Wz)T M̃(Wz),

where

(31) M̃ = D(θ)−1

{
M0(x)−T

[
−λD(α) +

N∑
i=1

αiMi(x)D(x)

]}
D(θ)−1.

Let W̃ be the N × (N − 1) matrix obtained from W by deleting its first column. Then

Wz = W c
1z1 + W̃ z̃ so

g(x) = [(W c
1 )T z1 + z̃T W̃ T ]M̃ [W c

1z1 + W̃ z̃]

= g1(x)z1 + z̃T W̃ T M̃W̃ z̃,

where g1(x) = (W c
1 )T M̃Wz + z̃T W̃ T M̃W c

1 . Then, from (27) we have z → 0, so g1(x)→ 0,
as x → p. Since x ∈ ρ−1(0) if and only if z1 = 0, the corollary below immediately follows
from Theorem 7.1 and its proof.

Corollary 2. The statement of Theorem 7.1 regarding global asymptotic stability is true
if condition 4 and (24) are replaced by one of the following:

(a1) The matrix W̃ T M̃SW̃ is positive definite for all x ∈ intRN+ \{p} with either ρ(x) = 0
or ‖x− p‖ sufficiently small and ρ(x) < 0.
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(a2) p is the unique fixed point of (2) in intRN+ ; for each x ∈ intRN+ \ {p} with ‖x− p‖
sufficiently small and ρ(x) < 0, the matrix W̃ T M̃SW̃ is positive definite; for x ∈
(intRN+ \{p})∩ρ−1(0), W̃ T M̃SW̃ is either positive definite or semi-positive definite

but the semi-positive definite points are isolated in ρ−1(0) ∩ intRN+ .

(a3) The matrix W̃ T M̃SW̃ is negative definite for all x ∈ intRN+ \{p} with either ρ(x) =
0 or ‖x− p‖ sufficiently small and ρ(x) > 0.

(a4) p is the unique fixed point of (2) in intRN+ ; for each x ∈ intRN+ \ {p} with ‖x− p‖
sufficiently small and ρ(x) > 0, the matrix W̃ T M̃SW̃ is negative definite; for x ∈
(intRN+ \{p})∩ρ−1(0), W̃ T M̃SW̃ is either negative definite or semi-negative definite

but the semi-negative definite points are isolated in ρ−1(0) ∩ intRN+ .

Remark 8. For the Lotka-Volterra system where F (x) = b+Bx, ∇F (x) = B, Mi(x) = 0
and M0(x) = B, so that for a unique interior fixed point p, B = M0(x) is invertible and

W̃ T M̃W̃ = −λW̃ TD(θ)−1B−TD(α)D(θ)−1W̃

= −λW̃ TD(θ)−1B−T (D(α)B)B−1D(θ)−1W̃

= −λ(B−1D(θ)−1W̃ )T (D(α)B)B−1D(θ)−1W̃ .

TheN−1 column vectors ofB−1D(θ)−1W̃ are linearly independent, so the span of them can

be described by the hyperplane vT (x − p) = 0, where vT = θTB as vTB−1D(θ)−1W̃ = 0.

Thus, W̃ T M̃SW̃ is negative definite if and only if (x − p)TD(α)B(x − p) > 0 for all x
satisfying vT (x− p) = 0 and x 6= p. This is consistent with [25, 11, 1].

7.3. Global stability at a boundary fixed point in forward time. In this section,
we consider the case of a boundary fixed point p ∈ ∂RN+ . Precisely, p ∈ C0

I for a proper
subset I ⊂ IN . For p to be P. G. attracting in RI in forward time, it is necessary that
the Jacobian matrix at p has no positive eigenvalues. For each i ∈ I, since pi = 0, we can
easily check that Fi(p) is an eigenvalue of the Jacobian so we require Fi(p) ≤ 0. Then p is
said to be saturated in forward (backward) time if

(32) ∀i ∈ IN , pi = 0 =⇒ Fi(p) ≤ 0 (≥ 0).

For p ∈ C0
I with I ⊂ IN , from (19) we have

(33) ρ(x) = αTD(p)F (x) =
∑

j∈IN\I

αjpjFj(x), V (x) =
∏

j∈IN\I

x
αjpj
j .

Theorem 7.2. Assume that the system (2) satisfies the following conditions:

1. For a proper subset I ⊂ IN , (2) has a fixed point p ∈ C0
I and p is saturated in

forward time. The matrix D(p)A has an eigenvalue λ > 0 and a corresponding left
eigenvector αT with αi < 0 for i ∈ I− ⊂ IN \ I and αj > 0 for j ∈ IN \ I− = I ∪ I+.

2. For each x0 ∈ RI , the solution x(t, x0) is bounded for t ≥ 0 and 0 6∈ ω(x0).

3. One of the conditions (i)–(iv) of theorem 4.4 is met.
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4. The function g given by (21) satisfies one of the conditions (a)–(d) of theorem 4.4.

Then p is P. G. attracting in RI . If, in addition,

∃r > 0, ∀x ∈ (Br(p) \ {p}) ∩ RI with ρ(x) < 0 (> 0), g(x) > 0 (< 0)

under condition (a) or (b) ((c) or (d)),(34)

then (2) is globally asymptotically stable at p in forward time.

Proof. The P. G. attraction of p follows from theorem 4.4. For the stability of p in forward
time with respect to RI , the proof of theorem 7.1 with the replacement of intRN+ by RI
and any open ball Br(p) by Br(p) ∩ RI is still valid. �

As an analogue of corollary 2, we next convert condition 4 and (34) into the positive,
semi-positive, negative or semi-negative definite property of an (N − 1) × (N − 1) sym-
metric matrix that can be easily checked. For convenience, we may assume without loss of
generality that I = {k + 1, . . . , N} and IN \ I = {1, . . . , k} = Ik so

∀i ∈ I, pi = 0,∀j ∈ Ik, pj > 0.

Let 1I ∈ RN+ be defined by 0 as its first k components and 1 as its last N − k components.
Let

(35) p̃ = p+ 1I , W = WIk +WI ,

where the first k columns of WIk are given by (25) and each entry in the last N−k columns
of WIk is 0; each of the last N − k main diagonal entries of WI is 1 and each of the rest

entries of WI is 0. Let W̃ be the N × (N − 1) matrix consisting of the last N − 1 columns
of W . Let

(36) z = W−1D(α)D(p̃)(F (x)− F (p)), z̃ = (z2, . . . , zN )T ∈ RN−1.

Note that W has the block form W =

(
U1 0
0 U2

)
, where U1 is a k×k matrix given by (25)

and U2 is (N − k)× (N − k) identity. Then, from (33)–(36) and by writing W,D(α), D(p)
in block form, we have

ρ(x) = αTD(p)F (x)

= αTD−1(α)WW−1D(α)D(p)(F (x)− F (p))

= αTD−1(α)WIkW
−1D(α)D(p̃)(F (x)− F (p))

= αTD−1(α)WIkz

= (1, 0, . . . , 0)z

= z1.

Similar to (28), there is an N ×N matrix M0 = M0(x) such that

(37) F (x)− F (p) = M0(x)(x− p).
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Substitution of this into (36) gives

z = W−1D(α)D(p̃)M0(x)(x− p).

By assuming the existence of M−1
0 (x) for all x ∈ ρ−1(0), we have

(38) x− p = M−1
0 (x)(F (x)− F (p)) = M−1

0 (x)D−1(p̃)D−1(α)Wz.

Since pi 6= 0 implies Fi(p) = 0, we have

D(x)F (p) = D(F (p))x = D(F (p))(x− p) = D(x− p)F (p).

From (30) it follows that

(39) ∇Fi(x)−∇Fi(p) = (x− p)TMi(x), i ∈ IN .

Then, from (21),

g(x) = −λαTD(x− p)F (x) + αTD(p)
[
∇F (x)−∇F (p)

]
D(x)F (x)

= −λαTD(x− p)F (p) + αTD(p)
[
∇F (x)−∇F (p)

]
D(x)F (p)

+
[
−λαTD(x− p) + αTD(p)

(
∇F (x)−∇F (p)

)
D(x)

]
(F (x)− F (p))

= −λ
∑
i∈I

αiFi(p)xi + (x− p)T
∑

j∈IN\I

αjpjMj(x)D(F (p))(x− p)

+(x− p)T
[
−λD(α) +

∑
j∈IN\I

αjpjMj(x)D(x)

]
D−1(p̃)D−1(α)Wz.

Substitution of (38) into the above gives

(40) g(x) = −λαTD(F (p))x+ (Wz)T M̃(Wz),

where

M̃ = D−1(α)D−1(p̃)(M−1
0 )TM0D−1(p̃)D−1(α),(41)

M0 = −λD(α) +
∑

j∈IN\I

αjpjMj(x)(D(x) +D(F (p))M−1
0 (x)).(42)

By the same lines as those before corollary 2, we have

(Wz)T M̃(Wz) = g1(x)z1 + z̃T W̃ T M̃W̃ z̃,

where g1(x)→ 0 as x→ p. Then, from (40) and (22) we obtain

(43) ż1|(2) = −(λ− g1(x))z1 − λαTD(F (p))x+ z̃T W̃ T M̃W̃ z̃.

By condition 1 of Theorem 7.2, −λαTD(F (p))x ≥ 0 for all x ∈ RN+ . Since x ∈ ρ−1(0) if
and only if z1 = 0, with a slightly stronger condition than condition 4 and (34) of Theorem
7.2, we obtain the following corollary.

Corollary 3. The statement of Theorem 7.2 regarding global asymptotic stability is true
if condition 4 and (34) are replaced by one of the following:
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(a1) The matrix W̃ T M̃SW̃ given by (41) is positive definite for all x ∈ RI \ {p} with
either ρ(x) = 0 or ‖x− p‖ sufficiently small and ρ(x) < 0.

(a2) p is the unique fixed point of (2) in RI ; for each x ∈ RI \{p} with ‖x−p‖ sufficiently

small and ρ(x) < 0, the matrix W̃ T M̃SW̃ is positive definite; for x ∈ (RI \ {p}) ∩
ρ−1(0), W̃ T M̃SW̃ is either positive definite or semi-positive definite but the semi-
positive definite points are isolated in ρ−1(0) ∩ RI .

8. Global stability of a fixed point on K in backward time

In this section, we consider (2) under the assumptions (A1) and (A2) given in section 2
and explore conditions for a fixed point p ∈ K to be globally asymptotically stable in
backward time with respect to intK or K ∩ RI . If p is an interior fixed point and is
globally asymptotically stable in backward time on intK, then {p} repels any compact set
in intK \ {p} to ∂K in forward time. By remark 7, application of theorem 7.1 to system
(2) on K in backward time results in the following.

Theorem 8.1. Under the assumptions (A1) and (A2), we also assume that (2) satisfies
the following conditions:

1. For p ∈ intK, D(p)A has an eigenvalue λ > 0 and a corresponding left eigenvector
αT with αi < 0 for i ∈ I− ⊂ IN and αj > 0 for j ∈ I+ = IN \ I−.

2. One of the conditions (i)–(iv) of theorem 5.1 is met.

3. The function g satisfies one of the conditions (a)–(d) of theorem 5.1.

Then p is P. G. repelling on K. If, in addition,

∃r > 0, ∀x ∈ Br(p) ∩ intK with ρ(x) < 0 (> 0)

under condition (a) or (b) ((c) or (d)), g(x) > 0 (< 0),(44)

then (2) is globally asymptotically stable at p in backward time with respect to intK. Hence,
for the flow on K, {p} is a repellor with intK \ {p} as its repulsion basin and ∂K its dual
attractor.

Now recall the definition of the matrix M̃ given by (31), (28) and (30). As an analogue of
corollary 2 in backward time, we have the corollary below.

Corollary 4. The statement of Theorem 8.1 regarding global asymptotic stability in back-
ward time and repellor is true if condition 3 and (44) are replaced by one of the following:

(a1) The matrix W̃ T M̃SW̃ defined by (31), (25), (28) and (30) is negative definite for
all x ∈ intK \ {p} with either ρ(x) = 0 or ‖x− p‖ sufficiently small and ρ(x) > 0.

(a2) p is the unique fixed point of (2) in intK; for each x ∈ intK \ {p} with ‖x − p‖
sufficiently small and ρ(x) > 0, the matrix W̃ T M̃SW̃ is negative definite; for x ∈
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(intK \{p})∩ρ−1(0), W̃ T M̃SW̃ is either negative definite or semi-negative definite
but the semi-negative definite points are isolated in ρ−1(0) ∩ intK.

(a3) The matrix W̃ T M̃SW̃ is positive definite for all x ∈ intK \{p} with either ρ(x) = 0
or ‖x− p‖ sufficiently small and ρ(x) < 0.

(a4) p is the unique fixed point of (2) in intK; for each x ∈ intK \ {p} with ‖x − p‖
sufficiently small and ρ(x) < 0, the matrix W̃ T M̃SW̃ is positive definite; for x ∈
(intK \ {p})∩ ρ−1(0), W̃ T M̃SW̃ is either positive definite or semi-positive definite
but the semi-negative definite points are isolated in ρ−1(0) ∩ intK.

When p is a boundary fixed point, p ∈ C0
I ∩ ∂K for a proper subset I ⊂ IN . Applying

theorem 7.2 and remark 7 to reversed time system we obtain the following.

Theorem 8.2. Under the assumptions (A1) and (A2), we also assume that (2) satisfies
the following conditions:

1. For a proper subset I ⊂ IN , p ∈ C0
I ∩K and p is saturated in backward time. The

matrix D(p)A has an eigenvalue λ > 0 and a corresponding left eigenvector αT

with αi < 0 for i ∈ I− ⊂ IN \ I and αj > 0 for j ∈ (I ∪ I+).

2. One of the conditions (i)–(iv) of theorem 5.1 holds.

3. The function g satisfies one of the conditions (a)–(d) of theorem 5.1.

Then p is P. G. repelling on RI ∩K. If, in addition,

∃r > 0, ∀x ∈ Br(p) ∩ RI ∩K with ρ(x) < 0 (> 0)

under condition (a) or (b) ((c) or (d)), g(x) > 0 (< 0),(45)

then (2) is globally asymptotically stable at p in backward time with respect to RI ∩ K.
Hence, for the flow on K, {p} is a repellor with RI ∩K \ {p} being its repulsion basin and
K \ RI as its dual attractor.

Corollary 5. The statement of Theorem 8.2 regarding global asymptotic stability in back-
ward time and repellor is true if condition 3 and (45) are replaced by one of the following:

(a1) The matrix W̃ T M̃SW̃ defined by (35), (37) and (41) is negative definite for all
x ∈ RI ∩ (K \ {p}) with either ρ(x) = 0 or ‖x− p‖ sufficiently small and ρ(x) > 0.

(a2) p is the unique fixed point of (2) in RI ∩ K; for each x ∈ RI ∩ (K \ {p}) with

‖x− p‖ sufficiently small and ρ(x) > 0, the matrix W̃ T M̃SW̃ is negative definite;

for x ∈ RI∩(K\{p})∩ρ−1(0), W̃ T M̃SW̃ is either negative definite or semi-negative
definite but the semi-negative definite points are isolated in RI ∩K ∩ ρ−1(0).
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9. Global dynamics of a three dimensional competitive system

In this section, we give a totally competitive example with detailed analysis on the dynamics
of system (2) with N = 3 and

F1(x) = b0 − x1 − 2x2 − x3 − γx2
1,

F2(x) = b0 − x1 − x2 − 2x3 − γx2
2,(46)

F3(x) = b0 − 2x1 − x2 − x3 − γx2
3,

where γ ≥ 0 is a parameter and b0 = 4 + γ. This system has a carrying simplex Σ (see [6])
as its global attractor for the flow on R3

+ \ {0}. We note that p = (1, 1, 1)T is a fixed point,
and the unique interior fixed point, of the system.

When γ = 0, (46) reduces to the Lotka-Volterra system ẋ = D(x)(b + Bx). Using the
results given in [11] we can show that p is P. G. repelling on the carrying simplex Σ. This
fact is included in the more detailed description of theorem 9.1 below.

Theorem 9.1. Let γ2 = 1
2(
√

19− 4) ≈ 0.1795 and γ3 =
√

6− 2 ≈ 0.4495. Then there is a
γ1 ∈ (0.164, γ2] such that the following statements hold for (2) with (46).

(i) If γ ∈ [0, γ1), then the system has a heteroclinic cycle Γ0 = Σ ∩ ∂R3
+. For the

flow on Σ, {p} is a repellor with Σ \ ({p} ∪ Γ0) being its repulsion basin and Γ0 as
its dual attractor. Moreover, Γ0 is a globally asymptotically stable on R3

+ \ {kp :
k ≥ 0} and {kp : k > 0} is the stable manifold of p in intR3

+. Further, for any
x0 ∈ intR3

+ \{kp : k > 0}, we have ω(x0) = Γ0, i.e. Γ0 is the limit cycle of x(t, x0).

(ii) If γ ∈ [γ1, γ2), then {p} is a repellor on Σ and Γ0 is at least locally asymptotically
stable.

(iii) If γ ∈ (γ2, 1/4), then both {p} and Γ0 are repellors on Σ. Therefore, the system
has at least one nontrivial periodic solution on Σ.

(iv) If γ ∈ (1/4, γ3], then p is at least locally asymptotically stable and Γ0 is a repellor
on Σ.

(v) If γ ∈ (γ3, 1/2], then p is at least locally asymptotically stable but the system has
no heteroclinic cycle on ∂R3

+.

(vi) If γ > 1/2, then p is globally asymptotically stable in intR3
+.
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We break the proof of this theorem into several lemmas. For the interior fixed point
p = (1, 1, 1)T ,

∇F (x) = −

 1 + 2γx1 2 1
1 1 + 2γx2 2
2 1 1 + 2γx3

 ,

A = −∇F (p) =

 1 + 2γ 2 1
1 1 + 2γ 2
2 1 1 + 2γ

 .

From the definition given in (19), α = (1, 1, 1)T satisfies αTD(p)A = λαT for λ = 4+2γ > 0

so ρ(x) =
∑3

i=1 Fi(x) = 12 + 3γ − 4
∑3

i=1 xi − γ
∑3

i=1 x
2
i . Thus, ρ(x) = 4(3−

∑3
i=1 xi) for

γ = 0 and

(47) ρ(x) = γ

[
3 +

12

γ
+

12

γ2
−
(
x1 +

2

γ

)2

−
(
x2 +

2

γ

)2

−
(
x3 +

2

γ

)2
]

for γ > 0. In this example, ρ−1(0) for γ > 0 is a sphere, and so one possible approach
would be to parameterise ρ−1(0) using spherical polar coordinates. We choose not to do
this here so as to illustrate the methods we have developed.

Lemma 9.2. The system (2) with F given by (46) has a globally asymptotically stable fixed
point p = (1, 1, 1)T whenever γ > 1/2.

Proof. Writing F (x) = F (x)− F (p) = M0(x)(x− p), we have

(48) M0(x) = −

 1 + γ(1 + x1) 2 1
1 1 + γ(1 + x2) 2
2 1 1 + γ(1 + x3)

 ,

which gives

M0(x)S = −

 2(x1 + 1)γ + 2 3 3
3 2(x2 + 1)γ + 2 3
3 3 2(x3 + 1)γ + 2

 .

Now M0(0, 0, 0)S has eigenvalues −2(4 +γ), 1− 2γ (twice), so that M0(0, 0, 0)S is negative
definite for γ > 1/2. Since M0(x)S = M0(0, 0, 0)S − 2γD(x), M0(x)S is a negative definite
matrix for γ > 1/2. Hence using corollary 1, p is globally stable. �

For γ > 0, x1 +x2 +x3 = 3 is the tangent plane of the sphere ρ−1(0) at p. Since ρ−1(0) for

γ > 0 cuts the xi-axis at xi = δ =
√

3 + 12
γ + 4

γ2
− 2

γ and δ is a decreasing function of γ

satisfying
√

3 < δ < 3, for all γ > 0 the part of the sphere ρ−1(0) ∩ intR3
+ is in the region

below x1 + x2 + x3 = 3 and above x1 + x2 + x3 = δ.

Lemma 9.3. For all x ∈ ρ−1(0) ∩ R3
+ or x ∈ Br(p) with sufficiently small r > 0,

detM0(x) < 0 so the matrix M0(x) is invertible.
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Proof. We use homogeneous coordinates: xi = Rui where each ui ≥ 0 and u1 +u2 +u3 = 1.
For x ∈ ρ−1(0) ∩ R3

+, we have δ ≤ R ≤ 3. Then, from (48),

detM0(x) = −(4 + γ)(1− γ + γ2)− γ(−1 + 2γ + γ2)R

−γ2(1 + γ)(u1u2 + u2u3 + u3u1)R2 − γ3u1u2u3R
3

< −(4 + γ)(1− γ + γ2)− γ(−1 + 2γ + γ2)R.

For γ ≥
√

2 − 1, −1 + 2γ + γ2 = (γ + 1 +
√

2)(γ + 1 −
√

2) ≥ 0 and 1 − γ + γ2 > 0 so
detM0(x) < 0. For γ ∈ [0,

√
2 − 1), replacing R by 3 we have detM0(x) < −4γ3 − 9γ2 +

6γ − 4 < 6(
√

2− 1)− 4 < 0. �

For i ∈ I3, let ui = 1 + xi and

di =
(1 + γu1)(1 + γu2)(1 + γu3)

1 + γui
− 2.

Then the inverse of M0(x) is given by

(49) M−1
0 =

1

detM0

 d1 −1− 2γu3 3− γu2

3− γu3 d2 −1− 2γu1

−1− 2γu2 3− γu1 d3

 .

Writing ∇Fi(x)−∇Fi(p) = (x− p)TMi for i ∈ I3, we have

(50) M1 =

 −2γ 0 0
0 0 0
0 0 0

 ,M2 =

 0 0 0
0 −2γ 0
0 0 0

 ,M3 =

 0 0 0
0 0 0
0 0 −2γ

 .

Thus,

(51) −λD(α) +

3∑
i=1

αipiMiD(x) = −2

 2 + γu1 0 0
0 2 + γu2 0
0 0 2 + γu3

 .

From (31), (49) and (51), we obtain M̃ = − 2
detM0

M̃1, where, with mi = di(2 + γui) for
i ∈ I3,

(52) M̃1 =

 m1 (3− γu3)(2 + γu2) − (1 + 2γu2)(2 + γu3)
−(1 + 2γu3)(2 + γu1) m2 (3− γu1)(2 + γu3)

(3− γu2)(2 + γu1) − (1 + 2γu1)(2 + γu2) m3

 .

From the definition of W̃ given by (25) we see that, for i = 1, 2, the ith column of M̃1W̃

is the (i+ 1)th column of M̃1 minus the ith column of M̃1 and the ith row of W̃ T M̃1W̃ is

the (i+ 1)th row of M̃1W̃ minus the ith row of M̃1W̃ . Then

(53) C = W̃ T M̃1W̃ =

(
c11 c12

c21 c22

)
,
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where

c11 = 2γ3u1u2u3 + γ2(2u1u2 + 5u1u3 + 4u2u3) + γ(2u1 − 2u2 + 10u3)− 8,

c12 = −γ3u1u2u3 − γ2(u1u2 + 3u1u3)− 4γ(u1 − 2u2) + 16,

c21 = −γ3u1u2u3 − γ2(2u1u2 + 4u1u3 + u2u3)− γ(10u1 − 2u2 + 6u3)− 8,

c22 = 2γ3u1u2u3 + γ2(5u1u2 + 4u1u3 + 2u2u3) + γ(10u1 + 2u2 − 2u3)− 8.

Since − 2
detM0

> 0, the matrix W̃ T M̃SW̃ is positive (negative) definite if and only if CS is

positive (negative) definite. Note that the algebraic equation

(54) 4γ3 + 11γ2 + 5γ = 2

has a unique positive solution γ0 = 1/4.

Lemma 9.4. There is a γ1 ∈ (0.164, γ0] such that, for each γ ∈ [0, γ1) and every x ∈
ρ−1(0) ∩ R3

+ or x ∈ Br(p) for sufficiently small r > 0, the matrix CS is negative definite,
i.e.

c11 < 0, c22 < 0, 4c11c22 − (c12 + c21)2 > 0.

Proof. For each fixed γ > 0, from
√

3 < δ ≤ x1 + x2 + x3 ≤ 3 and 0 ≤ xi ≤ 3 we have√
3 + 3 < δ + 3 ≤ u1 + u2 + u3 ≤ 6 and 1 ≤ ui ≤ 4. Then

2u1 − 2u2 + 10u3 ≤ 2u1 − 2u2 + 10(6− u1 − u2) = 60− 8u1 − 12u2 ≤ 40,

so

c11 ≤ 2γ3u1u2(6− u1 − u2) + 40γ − 8

+γ2[2u1u2 + (5u1 + 4u2)(6− u1 − u2)].

Since u1u2(6−u1−u2) has maximum 8 at (u1, u2) = (2, 2) and 2u1u2+(5u1+4u2)(6−u1−u2)
has maximum 1440

31 at (u1, u2) = (72
31 ,

30
31), we have

c11 ≤ 16γ3 +
1440

31
γ2 + 40γ − 8.

Similarly, 2u2u3 + (5u2 + 4u3)(6− u2 − u3) has maximum 1440
31 at (u2, u3) = (72

31 ,
30
31) so

c22 ≤ 16γ3 +
1440

31
γ2 + 40γ − 8.
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As the polynomial of γ on the right-hand side is increasing and has a negative value
−0.06348 at γ = 0.165, we have shown that c11 < 0 and c22 < 0 for 0 ≤ γ ≤ 0.165.

4c11c22 − (c12 + c21)2

= 12γ6(u1u2u3)2 + 44γ5(u1u2u3)(u1u2 + u1u3 + u2u3)

+γ4[31(u2
1u

2
2 + u2

1u
2
3 + u2

2u
2
3) + 130u1u2u3(u1 + u2 + u3)]

+2γ3[174u1u2u3 + 18(u2
1u2 + u2

1u3 + u1u
2
2 + u2

2u3 + u1u
2
3 + u2u

2
3)]

+γ2[−116(u2
1 + u2

2 + u2
3) + 40(u1u2 + u1u3 + u2u3)]

−160γ(u1 + u2 + u3) + 192

= 12γ6(u1u2u3)2 + 44γ5(u1u2u3)(u1u2 + u1u3 + u2u3)

+γ4[31(u1u2 + u1u3 + u2u3)2 + 68u1u2u3(u1 + u2 + u3)]

+γ3[240(u1u2u3) + 36(u1u2 + u1u3 + u2u3)(u1 + u2 + u3)]

+γ2[−116(u1 + u2 + u3)2 + 272(u1u2 + u1u3 + u2u3)]

−160γ(u1 + u2 + u3) + 192.

As δ+3 ≤ u1+u2+u3 ≤ 6 and ui ≥ 1 for i ∈ I3, for any fixed ε ∈ [δ+3, 6] with
∑3

i=1 ui = ε,
we have u1u2u3 = u1u2(ε−u1−u2) and u1u2 +u1u3 +u2u3 = u1u2 + (u1 +u2)(ε−u1−u2)
with 1 ≤ u1 ≤ ε − 2 and 1 ≤ u2 ≤ ε − 1 − u1. By ∂

∂u2
we find that both of the above

functions have minimum at u2 = 1 and u2 = ε − 1 − u1. Thus, u1u2u3 ≥ u1(ε − 1 − u1)
and u1u2 + u1u3 + u2u3 ≥ u1(ε − 1 − u1) + ε − 1. For 1 ≤ u1 ≤ ε − 2, u1(ε − 1 − u1) has
minimum ε−2 so u1u2u3 ≥ ε−2 ≥ δ+ 1 and u1u2 +u1u3 +u2u3 ≥ 2ε−3 ≥ 2δ+ 3. Hence,

4c11c22 − (c12 + c21)2 ≥ 12(1 + δ)2γ6 + 44(1 + δ)(3 + 2δ)γ5

+[31(3 + 2δ)2 + 68(1 + δ)(3 + δ)]γ4 + [240(1 + δ) + 36(3 + 2δ)(3 + δ)]γ3

+[272(3 + 2δ)− 116× 36]γ2 − 960γ + 192.(55)

For 0 ≤ γ ≤ 0.165, since 2.8 < δ ≤ 3, we have 4c11c22 − (c12 + c21)2 ≥ f(γ), where f is the
polynomial on the right-hand side of the above inequality with δ = 2.8, i.e.

f(γ) = 173.28γ6 + 1437.92γ5 + 3791.48γ4 + 2707.68γ3 − 1836.8γ2 − 960γ + 192.

From this we have

f ′(γ) = 1039.68γ5 + 7189.6γ4 + 15165.92γ3 + 8123.04γ2 − 3673.6γ − 960,

f ′′(γ) = 5198.4γ4 + 28758.4γ3 + 45497.76γ2 + 16246.08γ − 3673.6.

Since f ′′(γ) is increasing, f ′′(0) < 0 and f ′′(0.165) = 378.7191 > 0, f ′(γ) has a minimum
value less than min{f ′(0), f ′(0.165)} and

max
0≤γ≤0.165

f ′(γ) = max{f ′(0), f ′(0.165)} = max{−960,−1271.41} < 0.

Therefore, f is decreasing for γ ∈ [0, 0.165]. As f(0.164) ≈ 0.01755 > 0, we have shown
that CS is negative definite for 0 ≤ γ ≤ 0.164. Since the entries of C are continuous
functions of γ and the inequalities for negative definite property of CS are strict, there is
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a γ1 > 0.164 such that, for each γ ∈ [0, γ1) and every x ∈ ρ−1(0) ∩ R3
+, the matrix CS is

negative definite.

At x = p, we have

c11 = c22 = 4(4γ3 + 11γ2 + 5γ − 2) ≤ 16γ3 +
1440

31
γ2 + 40γ − 8

and c12 + c21 = −c11 so 4c11c22− (c12 + c21)2 = 3c2
11. Since γ0 = 0.25 is the unique positive

root of c11, we see that γ1 ≤ γ0. For each γ < γ1, CS is obviously negative definite at
x = p. By continuity, there is an r > 0 (dependent on γ) such that CS is negative definite
for all x ∈ Br(p). �

Next we address when (2) with (46) has a heteroclinic cycle through the three axial fixed
points E1 = (ρ0, 0, 0)T , E2 = (0, ρ0, 0)T and E3 = (0, 0, ρ0)T where

(56) ρ0 =

√
1 +

4

γ
+

1

4γ2
− 1

2γ
(γ > 0) or ρ0 = 4 (γ = 0).

We note that γ3 =
√

6 − 2 is the unique positive root of γ3 + 8γ2 + 14γ = 8 and γ2 =
1
2(
√

19− 4) is the unique positive solution of the equation γ3 + 8γ2 + 61
4 γ = 3.

Lemma 9.5. System (2) with (46) has a heteroclinic cycle Γ0 formed by the three axial
fixed points E1, E2, E3 and the three trajectories joining them if and only if γ ∈ [0, γ3].
Further, Γ0 is asymptotically stable if γ ∈ [0, γ2) and Γ0 is unstable and repels on Σ if
γ ∈ (γ2, γ3].

Proof. First note that there is a Lipschitz curve L1 that connects E1 and E2 in π3 which is
the intersection of the carrying simplex Σ and π3. Similarly, there are curves L2 connecting
E2 to E3 and L3 connecting E3 to E1. Whether the curves Li contain planar fixed points
(that is, fixed points in ∂R3

+ but not on any axis) depends on the value of γ. Consider
the two curves `1 = {x ∈ R3

+ ∩ π3 : F1(x) = 0} and `2 = {x ∈ R3
+ ∩ π3 : F2(x) = 0}.

Since `1 intersects x1-axis at ρ0 (E1), `2 intersects x1-axis at 4 + γ ≥ ρ0 for γ ≥ 0 (with
equality if and only if γ = 0), `1 intersects x2-axis at 2 + γ/2 and `2 intersects x2-axis
at ρ0 (E2), `1 and `2 have at least one intersection point Q0 6∈ {E1, E2} if ρ0 < 2 + γ/2,
which is equivalent to γ > γ3. In this case, Q0 is a planar fixed point on π3 so there is no
heteroclinic cycle. Indeed, F2(E1) = 4 + γ − ρ0 > 0 and F3(E1) = 4 + γ − 2ρ0 > 0 so the
Jacobian at E1 has two positive eigenvalues. This shows that {E1} is a repellor on Σ so
E1 is not possible to be in a heteroclinic cycle.

Next we show that E1, E2, E3 are the only fixed points in ∂R3
+ \ {0} for γ ∈ [0, γ3]. This is

obvious when γ = 0. For γ ∈ (0, γ3], the equations for `1 and `2 can be written

`1 : x1 =

√
1 +

4

γ
+

1

4γ2
− 2

γ
x2 −

1

2γ
, 0 ≤ x2 ≤ 2 +

γ

2
≤ ρ0, x3 = 0,

`2 : x1 = 4 + γ − x2 − γx2
2, 0 ≤ x2 ≤ ρ0, x3 = 0.
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Replacing x2 by 2 + γ
2 − y, we consider the function

f(y) = 4 + γ − (2 +
γ

2
− y)− γ(2 +

γ

2
− y)2 −

√
(2γ)−2 + 2γ−1y + (2γ)−1.

If we can show that f(y) > 0 for y ∈ (0, 2+ γ
2 ], then E1 and E2 are the only fixed points on

∂R3
+ \ {0} with x3 = 0. It can be verified that

√
(2γ)−2 + 2γ−1y − (2γ)−1 < 2y, y > 0, so

that f(y) > 4+γ−(2+ γ
2 −y)−γ(2+ γ

2 −y)2−2y for y > 0, which can be simplified to give

f(y) > γ(2+ γ
2 −y)(y+γ−1−2− γ

2 ). Note that γ−1−2− γ
2 = 1

2γ
−1(
√

6−2−γ)(
√

6+2+γ).

Then γ ∈ (0, γ3] implies γ−1 − 2 − γ
2 ≥ 0. So f(y) > 0 for y ∈ (0, 2 + γ

2 ] with γ ≤ γ3.

Therefore, on ∂R3
+ \ {0} with x3 = 0, E1 and E2 are the only fixed points.

Note that system (2) with (46) isG-equivariant for the groupG =< σ > with σ(x1, x2, x3)T =
(x2, x3, x1)T for all x ∈ R3. Thus, the phase portraits on the invariant sets x1 = 0 and
x2 = 0 are simple images of π3 through σ2 and σ respectively. Hence, the three axial fixed
points are the only fixed points of the system in ∂R3

+ \ {0} for γ ∈ [0, γ3]. There is a
heteroclinic trajectory from E1 to E2 which is Σ ∩ π3. By the G-equivariance, there is a
heteroclinic cycle Γ0 : E1 → E2 → E3 → E1 for γ ∈ [0, γ3], and this cycle can be identified
with ∂Σ.

The stability of Γ0 is determined by the characteristic matrix

H =

 F1(E1) F2(E1) F3(E1)
F1(E2) F2(E2) F3(E2)
F1(E3) F2(E3) F3(E3)


=

 0 4 + γ − ρ0 4 + γ − 2ρ0

4 + γ − 2ρ0 0 4 + γ − ρ0

4 + γ − ρ0 4 + γ − 2ρ0 0

 .(57)

By [8, Theorem 17.5.1], if there is a vector v ∈ R3 such that v ∈ intR3
+ and Hv ∈ intR3

+

then Γ0 repels on Σ; if there is a v ∈ R3 such that −v ∈ intR3
+ and Hv ∈ intR3

+ then Γ0 is

asymptotically stable in R3
+. By taking v = (1, 1, 1)T and v = (−1,−1,−1)T respectively,

we see that Γ0 repels on Σ if ρ0 <
2
3(4 + γ), i.e. γ ∈ (γ2, γ3], and Γ0 is asymptotically

stable on R3
+ if ρ0 >

2
3(4 + γ), i.e. γ ∈ [0, γ2). �

Remark 9. Regarding the stability of Γ0, instead of using the methods of [8] we may
apply the theory of [15, 16] and obtain the same results given in Lemma 9.5.

Proof of theorem 9.1. For γ > 1
2 , conclusion (vi) follows from lemma 9.2. For γ ∈ [0, 1

2 ],
since

det(J(p)− λI) = −(λ+ 2γ + 4)(λ+ 2γ − 1

2
+ i

√
3

2
)(λ+ 2γ − 1

2
− i
√

3

2
),

all eigenvalues of J(p) have a negative real part if γ > 1
4 but a pair have a positive real part

if γ ∈ [0, 1
4). Thus, for γ ∈ (1

4 ,
1
2 ], p is at least locally asymptotically stable; for γ ∈ [0, 1

4),
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{p} is a repellor of the flow on Σ. Then, combining these with lemma 9.5 and applying the
Poincaré-Bendixson theory on Σ, we obtain the conclusions (ii)–(v).

Now assuming 0 ≤ γ < γ1(≤ γ2), we need only prove the conclusion (i). The existence of
the heteroclinic cycle Γ0 and its local asymptotic stability follow from lemma 9.5. Next,
we shall apply corollary 4 to the system on Σ for the global asymptotic stability of p in
backward time. With α = (1, 1, 1)T = p, so θ = D(p)α = p, I− = I = ∅ and I+ = I3,
condition 1 of theorem 8.1 is met. From lemma 9.5 we know that E1, E2 and E3 are the
only fixed points on ∂R3

+∩Σ. Then, for 0 < γ < γ1 and i ∈ I3, from (47) and (56) we have

ρ(Ei) = γ

[
3 +

12

γ
+

4

γ2
−
(√

1 +
4

γ
+

1

4γ2
+

3

2γ

)2]
= 2γ + 8 +

3

2γ
− 3

√
1 +

4

γ
+

1

4γ2
.

As ρ(Ei) < 0 if and only if γ3 +8γ2 + 61
4 γ < 3 (which holds for γ < γ2), for 0 < γ < γ1 ≤ γ2

we have ρ(Ei) < 0. For γ = 0, ρ(x) = 4(3− x1 − x2 − x3) so ρ(Ei) = −4 < 0. This shows
that the system has no invariant set in Σ ∩ {x ∈ ∂R3

+ : ρ(x) ≥ 0}. Thus, condition (iv)
of theorem 5.1, and subsequently condition 2 of theorem 8.1, is fulfilled. Form (53) and

lemma 9.4 we know that the matrix W̃ T M̃SW̃ is negative definite, so condition (a1) of
corollary 4 is satisfied. Then, by corollary 4, for the flow on Σ, {p} is a repellor with
repulsion basin Σ ∩ (intR3

+ \ {p}) and the dual attractor Γ0.

Since we have F1(x1, x1, x1) = F2(x1, x1, x1) = F3(x1, x1, x1), the set {kp : k > 0} is
invariant and the flow on this set is determined by ẋ1 = x1(b0 − 4x1 − γx2

1). Since each
positive solution of this equation satisfies x1 → 1 as t → +∞, we see that the stable
manifold of p is {kp : k > 0}. Now for any x0 ∈ R3

+ \ {kp : k ≥ 0}, as ω(x0) ⊂ Σ and {p}
is a repellor on Σ with the dual attractor Γ0, we must have ω(x0) ⊂ Γ0. This shows the
global asymptotic stability of Γ0 in R3

+ \ {kp : k ≥ 0}.

Finally, we show that ω(x0) = Γ0 for all x0 ∈ intR3
+\{kp : k > 0}. Since Γ0 is a heteroclinic

cycle and ω(x0) ⊂ Γ0, the flow direction on Γ0 determines that ω(x0) is either a singleton
or Γ0. At E1, J(E1) has eigenvalues −ρ0(1 + 2γ) < 0, F3(E1) = 4 + γ − 2ρ0 < 0 and
F2(E1) = 4 + γ − ρ0 ≥ 0. Thus, E1 is globally asymptotically stable on π2 \ π1. But
E1 repels along L1 to E2 in π3 so L1 is the unstable manifold of E1 in R3

+ \ π1. Hence,
ω(x0) 6= {E1} as x0 is not in the stable manifold of E1. Similarly, ω(x0) 6= {E2} and
ω(x0) 6= {E3}. Therefore, we must have ω(x0) = Γ0. �

Figure 2 illustrates the various cases.

10. Discussion and Conclusion

In this work we have studied the global dynamics of autonomous Kolmogorov systems.
Our results provide for the study of global attraction or repulsion (in the global attractor)



GLOBAL STABILITY AND REPULSION 37

(a) (b)

(c) (d)

Figure 2. (a)-(d): Phase plots for system (50) for γ = 0.1, 0.23, 0.35, 0.55.
The green surface is the carrying simplex for the system.

of both interior and boundary fixed points, and we have demonstrated the applicability of
our results to a range of examples from theoretical ecology and population genetics. Our
main results are generalisations, but not trivial extension, of two existing Lyapunov func-
tion methods that are well-known for Lotka-Volterra systems: diagonal stability and split
Lyapunov stability. Both generalisations stem from our lemma 4.3, which is an application
of LaSalle’s invariance principle (in the form as described in [22]), and involve two choices
of the scalar function φ which is used to construct the Lyapunov function Φ.

The diagonal stability in theorem 6.1 is simple to apply to a fixed point p ∈ C0
I , but is

restricted to vector fields F : Ω → RN that satisfy (x − y)D(v)(F (x) − F (y)) < 0 for
distinct x, y ∈ Ω, where v � 0; no component of v is allowed to be negative. Moreover,
it only applies to asymptotic stability. The split Lyapunov method developed in theorems
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7.1 to 8.2 is technically more involved, but less so for lower dimensional systems (N ≤ 3),
and it is more flexible in that it allows v to have negative components and it can be
used to identify both globally attracting and globally repelling interior and boundary fixed
points. Central to this second method, and perhaps the greatest challenge in its successful
application, is to preclude common zeros of two functions or to establish the definiteness of
a matrix function over a suitable domain. In the Lotka-Volterra case, this matrix function
is a constant. Thus for the split Lyapunov method there is a trade-off between wider
applicability and ease of application. It is known for the Lotka-Volterra equations [25] that
either the diagonal stability or the split Lyapunov method can work when the other method
fails and this extends to general Kolmogorov systems. Although both of these methods
developed here have shortcomings, to the best of our knowledge, there are no other results
available for global stability or repulsion of a fixed point in general autonomous Kolmogorov
systems.

Our examples cover both competitive and non-competitive systems, where by competitive
we mean with respect to the first orthant partial-ordering of points. For competitive
systems with a unique carrying simplex, by appealing to linearisation at an interior fixed
point and known results for Lotka-Volterra systems [25], the stability (instability) at that
interior steady state can be linked to the convexity (concavity) of the carrying simplex near
that interior fixed point (see figure 2, for example). For Kolmogorov systems, the position
of the manifold ρ−1(0) relative to the carrying simplex can be easily used to determine
stability, but our split Lyapunov method is applicable when there is no carrying simplex,
or when one has not been identified. It remains an interesting open problem to determine
when a fixed point of a Kolmogorov system is contained in a locally or globally attracting
invariant manifold of codimension one.

Appendix: Resultant of polynomials

Let p(x) =
∑n

i=0 aix
i and q(x) =

∑m
i=0 bix

i be polynomials over C with anbm 6= 0. We
construct the m+ n square matrix:

Syl(p, q, x) =



a0 0 · · · 0 b0 0 · · · 0

a1 a0
. . .

... b1 b0
. . .

...

a2 a1
. . . 0 b2 b1

. . . 0
... a0

... b0
an−1 bm−1

an an−1
... bm bm−1

...

0 an
. . . 0 bm

. . .
...

. . .
. . . an−1

...
. . .

. . . bm−1

0 · · · 0 an 0 · · · 0 bm



.
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In relation to polynomials with common roots, we recall the notion of the Resultant cor-
responding to remark 7 and examples 1 and 2 given in section 4. The Resultant of p, q is
defined by

Res(p, q, x) = det Syl(p, q, x).

The main property of the Resultant that we use is that p, q have a common zero if
and only if Res(p, q, x) = 0. If p, q are polynomials in x = (x1, . . . , xN ) then write

p(x) =
∑n

i=0Ai(x1, . . . , xN−1)xiN and q(x) =
∑n

j=0Bj(x1, . . . , xN−1)xjN . (We may re-

order the components of x to obtain this form if necessary.) By Res(p, q, xN ) we mean the
determinant of the above matrix with each ai replaced by Ai(x1, . . . , xN−1) and each bj
replaced by Bj(x1, . . . , xN−1), and this is a polynomial in x1, . . . , xN−1. Accordingly then
p, q have a common zero at the point x = (x1, . . . , xN ) only if Res(p, q, xN ) = 0. This
observation is particularly useful when N = 2, since then Res(p, q, x2) is a polynomial in
x1 and it is straightforward to test whether that polynomial can vanish on R+.
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