E-business framework design using an enhanced
Web 2.0 technology

By

Muhammad Sajid Afzal

. LONDON 217
The Learning Centre metropolitan ;% *e

Library university e *
236-250 Holloway Road
London N7 6PP

Faculty of Life Sciences and Computing

Director of studies: Professor Karim Ouazzane

A thesis submitted in partial fulfilment of the requirements of
London Metropolitan University
For the degree of
Doctor of Philosophy

December 2012

IMAGING SERVICES NORTH
oooooooooooooooooo

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY

http://www.bl.uk

Abstract

In the current era of state-of-the-art cutting edge technologies, businesses and
organisations are rushing to transform their trade into e-business. The
opportunity to utilise e-business improves their chances of gaining a larger
market share by maximizing product availability, reducing the day-to-day
business activity processing time, and providing related services in a convenient

and inexpensive way to their customers.

However in this race, the e-business growth pendulum is only swinging one way,
and it is easy to understand the reason for this by observing today’s business
market. Due to the current financial condition, small business organizations (e.g.
local retail shops) cannot afford costly IT systems and the associated
maintenance/administration costs, but despite these financial constraints they
have an overriding need for computing facilities in order to survive and compete

with larger competitors by expanding their businesses.

In this research, Web 2.0 and SOA (Service Oriented Architecture) technology
are used to provide a middleware collaboration model between data persistence
logic and an operation’s requests. This layer helps to overcome the hard-coded
service mapping with interface and generic customized workflow problems. This
research further provides a mediation platform for request brokers and a high
level of abstraction by encapsulating the low level details of the system. These
are the most vital requirements to provide a platform, which have the capability
of customizing business logic and handle both generic and customized workflows
and subsequently to help SMEs (Small- to Medium-sized Enterprises) to convert

their businesses to e-business swiftly at minimal cost.

A new W2ASVB (Web 2.0 Architecture for Service and View Brokerage) has
been developed, and the validation results confirm that this framework performs
efficiently in different conditions, provides on-demand customization of business
logic without any data loss as compared to conventional e-business frameworks,

and reduces the platform cost drastically due to its shared running environment.

Acknowledgments

I would first of all like to thank my director of studies, Professor Karim
Ouazzane, for his unfailing support and encouragement at every step of the way.
Without him I would never have come this far. I also feel very privileged to have
worked with my supervisors, Professor Hassan Kazemian and Doctor Jun Li. To
all of them I owe a great debt of gratitude for their patience, inspiration and
friendship. They have taught me a lot about the joy of discovery and
investigation that is the heart of research. They have always provided the precise

balance of suggestions and criticism.

I am grateful to the Vice Chancellor of London Metropolitan University and the
Faculty of Life Sciences and Computing for their generosity in providing me the
fee waiver assistance. The Faculty of Life Sciences and Computing has provided
an excellent environment for my research; without this rich environment I doubt

that many of my ideas would have come to fruition.

1

Contents

s INEPOAUCHION. .. evvevcrerereeressserressinesenensamesasesesssisssrsassssessssassnsesssssesnasassssssssasssssssns 11
1.1 Web 2.0 based e-business framework......coceririiiennnnneneninssnnessnsnsiinens 12
1.2 Problem analysisccievisrcsnnsenisnnissmnnninnssesnsssssisiniseesiosmneas 13

1.2.1 A simple WOTKEIOW ..cucivivineinceisesinnnneniennnesesesssninsnesssesmessnes 17

1.2.2 A complex WOTKFIOW .cuieuiinininniiinneniniisssnininmisssi. 19
1.3 MOtIVALION..teecerrerieceeserrserneranessansessissnsssssnssassessesssanssasasssssssssssaisassassasassasssass 21
1.4 Research REQUIMMENLS ...coveireeercrsrirseininiunsnssrsasnsrsasssussssssssessanssnssnssassasassasses 22

1.4.1 User request management modelling.......covnmrsccssscsssininsinsssnssiasscnsasines 22

1.4.2 Workflow modelling.......ccvuvevnecnsnsrenessisnennnesssnsssesesesisesasssnsasnsasssasesnes 23
1.5 Overview of the following Chapters......cuueiiinensessssesinnsinemoes 23

. LItErature REVIEW ...cvuvvvuereerrnneenniessensssiosissssesmsssisesnssssssnsasssssnssssssssasssnssessssassns 25
2.1 INtrOAUCHON...evverereereerrroreersessemmsnsssesssassmssssesesssisanasasssssstsnsassssasasissassansasses 26
2.2 Brief overview of Web technology.......ceeeieeeriscsmsnsenessssnnsssismsessssasassinans 26
2.3 Enterprise application archit€Cturecvevensmmnisssesesssssssninsnssnssssssiinse 31

2.3.1 E-business SOA-based layer ArchiteCture........ccvvssmssinsersstissssnseesasines 33

2.3.2 E-business SOA-based XML Schema Architecture......cccoevesiususesenianns 35

2.3.3 Service Oriented Enterprise ArchiteCture .ievemeesssssssissisisnsesssiasssssnsses 36

2.3.4 SOCRADES Integration ArchiteCtureciererseseusesessssesssessesssesssssnsans 38

2.3.5 MerchantOS .o..ieceennirnesrnemrenessrsissssessissesessessesssorsensesssssssssssansrsasssssassnse 39

2.3.6 ReEtAIl-Turuirevrecrrirreerrresereseeisanesssmmsasesisessesisasssssasssnssssessssssssssasasssntones 40

2.3.7 PHP Point 0f SAIE ..cvuvreieerermneensisnsmsesvesiisiissessssesssasssssesninsasasasasssssrons 41

2.3.8 ZOhOCRMeeireererinennessssessssnsassisississsssssassssasssssstssssssistsssnsassssasassastonss 42

2.3.9 A brief analysis about enterprise appliCationsc..uusesssesevsuersssnsessaisnns 43
2.4 Web 2.0 based SOA MOdEIScvnuiresiismssninssnsnsiniessssinsssssssssiesssninssassse 44
2.5 Request management PrinCiples ...oueimsenisiiesrenisnsumnssnsisnssesisiserenesssnseseses 49

2.5.1 Conventional teChNIQUEc..covvnsmsensisesisnisnssessersssenisssssssisisssassssssanase 50

2.5.2 Request brokering teChNiqQUEcouevmesisessesnsansinsssnsssrissssiassnsissssesaniose 50
2.6 CONCIUSION v.evvivrerrenrerserensnerasssssasssssnssssssssnsssessssessnsssissssnssassessssssssssnsanssanssasss 59

. Conceptual Modelling of New Web 2.0 e-Business Framework 61
3.1 INtrOdUCHION....iveeviereereesensrecamsnsssissesnssnssnsssssessessassisnsansatssessessssasanssnssssssassanss 62
3.2 SOAW2 model framework evaluationuiiseeseiesnmesssmesiiesiiessio 62

3.2.1 CONCEIMS ..uvveerrrrerrennensencrsnsssossarsossessosssssssassnsssornassssssassrasssssesssssssaonsssssans 63
3.3 Proposed web 2.0 model frameworK ...oveieeciensessininsssssssinissnssniessein 64

3.3.1 Introduction of the request broker architeCture.......ccoeveenisssesessisssusaiaens 65

3.3.2 Introduction Of SEIVICE AAAPIETS...uurrerrserseessurmssssssssssnersssnsmssensmsssressassnss 65

3.3.3 Proposed work flow model........coceerivnriniserrmsmnnsineennennnssssssssscsienes 67

3.3.4 Request broker actions on USEr FEQUESt......ocesersersesssreserssenmrssssmssescsereses 68
3.3.5 Profile Management Technique........ccevunereneimsnnensssnissannssessssssssens 71
3.4 System COMPONENt SLTUCIUIE ...eucvrurtirnirsarssesssssssnenesensassassssesssasssssssrsasssassonses 73
3.4.1 Presentation JaYer.....cisiverismesmininsesnsinacsensminensisessmsnsmssssssssressrsnss 74
3.4.2 Request management laYErcceviniinusinsnnnnerenenssasisesnesssnessssns 74
343 Operational Jayer......cocuveersnesimseserinsarssnsssssssssssssssssssssssssssassassssasssssonsanss 74
3.4.4 COre SEIVICES @Y cuinivierirsusimnnsnsniisninesssssnsnnsssssssissssssassnsasissssassinies 75
3.5 System use-case MOAE]ccmvrmeeirsrninrenininsesesessesmesisssssonisessssnsssssses 75
3.5.1 General request use-case MOdel.....ccviurrmruesernsnnsniesiesisesisisnnneie 76
3.5.2 General request use-case desCripPtionscveverersessssrsessserserersesssassssasaanee 76
3.5.3 Sales person use ase diagramccerverrresnssessssrosirsremsesarsssensesassssisees 80
3.6 CONCIUSION ueveerererereraesertssrrsersesneasssassssesessissssssesnsssassesssasaassarsssussestsssassssssssans 83
4 . Design of a W2ASVB Model Framework......couurversesossessisesinssismsnsnnnesussnsisses 84
4.1 INtrOQUCHION....cveeveerrrrrerarsrrsnnseesessenssssnsssssnssesnsaessnsussnssssssssssssessssnssssassasanssnsas 85
42 Anenhanced web 2.0 e-business framework........ccouvnvererncasisessccsesrsnsasasasanns 85
4.3 Component Representation.........couceevmsirnsssnssssssesssscsnssseissssssasasisssnsasesesns 87
4.3.1 System manager COMPONENt w.evuvuerieisresseressssmsassssssssssssassssasssasssansssasssases 88
4.3.2 Profile Factory COMPONENt.....coueiesuraesmiersessanssssssesesssassssusasasssassnsssacasse 90
4.3.3 Request broker COMPONENLcocvniersanssiniesssnsssisssesassersasssssssssesarsssnse 94
4.3.4 User interface container COMPONENtcccuvuverursreraessnsssrsssasesasssasasssaranes 95
4.3.5 Authentication COMPONENL.....ceersuirseerssesmsissesnsassnsisessstsnssasasassensssassanss 96
4.3.6 SErviCe AdaPLer....ccerieririssenssnsssusssnracrsiessnsasesssasmessisessersasasasasasasnssassssses 97
4.3.7 User Interface Component DeSig......ccuievuerersermsssssssesissssnsnssninsassssssases 99
4.3.8 Systems Class SIIUCUTE......ccerrurisrsnsasiressssssissasasssssissssasssasssasasssnsssssssns 99
4.4 Request routing technique eXplanation........cuvevueeremsesnsnenssinssenseeissssionns 101
4,41 Action Managementcesesesesesmereseressrssssansasssasssusssrssssessasasssansonssnasesss 101
4.42 View Managementcocesisererncrssesessisssmsasssssessesssssessssnsnsasassssnossssssssss 103
4,5 Business logic on-demand customization mechanism....ccocueesusesnssnsenne 104
4.5.1 Customization of business 10giCcceverererermrsriviarssmrasessssssisesusssnsseninns 104
4,52 Customization of uSer interfacecouuvirecunrescsanesnsnssssssnsessmesnsrennsesasass 105
4.6 System Interactions Diagramsciveissnsssnssssnessressssesseissssinssssnessssies 107
4.6.1 System Initialization Sequence Diagram........cccoevernsesnscsnsssessensasasasnns 108
4.6.2 Employee Login Sequence Diagramocveveevennsssessisnssniensssessasasens 109
4.6.3 Request Processing Sequence Diagram.....ci.eieesisissisisesnivesssnsnssnsisnes 110

5 .A W2ASVB framework implementationeeeeessssisesesnieaine 111
© 5.1 INtrOdUCHION...uieereirerceecressnssssssestestessssassassnessasessasssessansssesassassassassassassasnsns 112
5.2 Implementation TeChNOIOZY ..evvvvuisrersssssiesensusesassssnsassasesssssssssssassssssasesasens 112
5.3 Implementation DetailS.....oieverimessseresensisnisiisissnsnnmsesissesnsssnesssnsone 113
5.3.1 System Managerceccisinnrinnsessinsesiennsnanismsssisossssseiessesasas 113

5.3.2 Profile FACIOTYcocecvisinissmmnsssisisnsisnsmsessresssersnsnsssnsssssessnsssissssasssssssssnss 114

5.3.3 SesSion Profile.....cuiriiiinsnimininneisessnssismas 116
5.3.4 Web request BrOKETcuvivriseiiriiiininsenismsnissimnesssssennesisssssssaes 118
5.3.5 ACLON PrOCESSOT cuevuerrecenrermsnsersssisiossnsssassnssessessessnsassamsansresasssssnsasssses 118
5.3.6 Mapping output data to the user interfaceverrresesnirisnensscsiencnes 120

5.4 SYSLEM OULPULS ..eveverrrerescsssssnsnersssserssesesesnsosasssssastarssssssssassasisssisasssssasssssases 122

6 .A W2ASVB framework validation.......cseniisscneesarssnesnnnesssnnanisiansiisisne 125
6.1 ENVIFONMENL....cceverrrererrreresmsessessassrosassnsssssnsssesussnssnsonssasanstssssnssssssssssssssssas 126
6.1.1 Hardware EnVIrONmMEeNt......cceceerereresessessisersaesesssesassssesansssssssasssesassssssse 126
6.1.2 Software ENVironmentccceirerererssnisessressaessserasssssssossossensesssnsssssssanas 126

6.2 Validation ProCESS....cusmsusessiesscsissnissesasessisersrssssarssssisssssessssensasrsssssssasssssacns 127
6.2.1 Validation teSting CASESccerirerernrurssessersnsressnsisssnsssesssssasisssnsusssnsesins 127
6.2.2 EXECULION tIME wvueveerrrieerieruecrsssmseserssnssrssansassassassaesssssssnsssssessesassassnsnssase 128
6.2.3 AVErage COSt PET USET.cuiuvrirssrssresissansnsrsssssrsssssssansosssnisssesssssssassessases 136
6.2.4 SCAlADILILY ...cocevrerrereccrenesnesnitsssiesesiinsssasnsnse s ssssssstss s s s 141

6.3 Advantages of the proposed SOIULiON.......ccccevmivenminnneessesesnesnisnssironsennne 146
6.4 Shortcomings of proposed SOIUtION c...ueeeerererinerssisisesssssnsnimsansssesasasaens 148

7 . Conclusions and Future Recommendations.........ueesenesnsessesssssesseresasnsssesnsnns 150
7.1 Contribution of the WOrK......ccccesvrmessercnsssensininnnssseniss eeveraeresesarsresaarasnine 151
7.1.1 Request handling.....cerisecresnsnnnnnrsisenesmssesssssmussmessosesisisis 151
712 Service adapler...coccecsscsirersissssessssssssnsassssmssssasssssssssssnsarsssssssssansssens 152

7.2 Evaluation of research qUESHON ...ciucvvunenisniierennnnisssisessinsemsiissssnnssiesns 152
7.2.1 User request management MOdelling....ccvuvcvererenissnseciscsnisusnsnensssennass 152
7.2.2 WOrkflow modelling........cccvrsvmrerisnsnsainsurisssersnesanssssssssnsssasnsasnansssssassens 152

7.3 Research cONtribULIONS....ceververererserssnsmssesssusissesisnissonssssssssnssssnsssssssressassns 153
7.4 Future recommendations.......ccervresseressussisisscssssassnneesessssassassesnssesssiessssssnes 155

8 . REIEIENCES.ceivrivrerrererinriaesasisasassiesnssnssassessnssssssesssstssnsansrarassssssssssssssasssasassnsansses 157
O ADDIEVIALIONS .cverririeuisiierresrertertiesansesrensenssssssssssessisnssosassnsassssssstsassnssasasasssssasens 169
10 APPENGIX..uiiciiiririissminmnnssisnsmsisesssisssiesississsasssimsssssssrsssssissssmssssssssssssases 172
10.1 SOUICE COUC..uuuvmmnirirerersrrsssssarnssressmerssssssmsessssissssssssassssrssssnsresssssssasessssasasss 173
10.1.1 SysStemManager.java.......cceceeescereessesesssessssssniessesmssssassisssssssssassassasssons 173
10.1.2 ProfileFactory.java......ccuecirecniienicnsnemnmsnssssiiisissessses 176
10.1.3 XMLREAEr.JAVA.....occriasrrsissnissssnsianiesasssinsnssmsasssssssrsrsinsssassarssesses 179
10.1.4 LOZINJAVA cvvreerreerirenecrissssismsessisisnssinsnssssesmssasasesassssssasssssssasnsasassasnss 183
10.1.5 LOgINProCesSOr.jaVva..ccrieressssarssesssrsssasssrssesssasesarasasssnssssssssesssnsasaonsassss 185
10.1.6 'WebRequestBrorkerjava ... 187
10.1.7 JSFACtionDiSpatCher java.......cecessesnsnresisrsresesasanssisassnsnssssesssannsssnssses 190

List of figures

Figure 1.1: Electronic retail industry business Processesuuvummsessssssssssssssesssssenns 14
Figure 1.2: Examples of generic and customized WOrKflOWSccovverucrvssnrsscessesnsnnns 15
Figure 1.3: Examples of generic and customized sales invoice VIEWSc.uewuesrescessense 16
Figure 1.4: A single company base simple WOrk flowcucveonvcesnnnssermmsscssssuninsisns 18
Figure 1.5: Single company business system over service oriented platform............. 19
Figure 1.6: Multi-companies e-business systems over one enterprise system 20
Figure 2.1: Transition of Internet to web 2.0 (Hinchcliffe, 2007)....ccoeeereneccnsersancnnas 29
Figure 2.2: Web 2.0 product development (Hinchcliffe, 2007).....coceeevsinsnmsnsnesissesesans 30
Figure 2.3: e-Business implementation process (Zhao, 2008).........ccceeuusseessssesssersonens 33
Figure 2.4: A framework for the e-business system based on SOA (Juan, 2010)....... 34
Figure 2.5: e-business system architecture (Edzus, 2010)......occcvsuirsiicriserssnsessanns 35
Figure 2.6: Service oriented enterprise architecture (Zeng, 2009)ccevvemversnrecnreenss 37
Figure 2.7: The SOCRADES integrated architecture (Dominique, 2010) «..cceuvvens 38
Figure 2.8: MerchantOS POS System (MerchantOS, 2007)c.cesueesueninsncrisesaresssasens 40
Figure 2.9 : PHP Point of Sale System (PHPPointOfSale, 2007)ccoevevrercrnnrunnens 41
Figure 2.10: ZohoCRM System (ZohoCRM, 2007)......cccvumeiriressensrssssaramsssansenaeresens 42
Figure 2.11: SOAW2 model framework by (Omar, Abbas, & Bendiab, 2007).......... 44
Figure 2.12: SOAW?2 in action (Omar, Abbas, & Bendiab, 2007)........cccoveveerrerncsnnns 45
Figure 2.13: Modular dependency in a system (Olson & Batni, 1997).....cceceveunervrennns 51
Figure 2.14: Request Broker Architecture as proposed by (Olson & Batni, 1997)..... 52
Figure 2.15: Agent based web services platform for Tele-portal (XiaoQin, LinPeng,
Lin, & Minglu, 2004)...cmcreerinemisssnsssssssmssssssssssissssssessmisssmmasssssossisssssssimmssssssssssssss 55
Figure 2.16: Service mediation in ADSS (Koerner, et al., 1999)covovveriinsssirsessnnes 56
Figure 2.17: Service composition model (Zhao & Tong, 2007).......ccccevurrurereresuessanne 58
Figure 3.1: Application of SOAW2 model framework on problem.......ccooeeeuussssnees 62
Figure 3.2: W2ASVB - A new proposed model frameworkco.cvemssesisnerinss 64
Figure 3.3: W2ASVB in workflow — EXample L......viciiviisciiissnisiisnsssssssinsnssnnes 67
Figure 3.4: Request brokering process on request (Binding data with service adapter)
... 68
Figure 3.5: Request brokering process getting data from service adapter.........wes 69
Figure 3.6: W2ASVB in Workflow — EXmple 2......ueeiveriiicsssisinssssesnsenmsssssssnes 70
Figure 3.7: Profile factory in 8CtOM... s 72
Figure 3.8: System components — Layered representationmueesserssssnssnsssenses 73
Figure 3.9: Request use-case MOdel .. 76
Figure 3.10 Request activity diagramcceeeiiriiniisineinsnsessesiesnsissnsnnssseessssisescasns 77
Figure 3.11: Sales person use-case 1110 1 O RTT 80
Figure 4.1: An architectural design of a modified Web2.0 base model framework.... 86
Figure 4.2: System Manager Component Sub-modules.......cuimmimmnsisssisessnrnns 88
Figure 4.3: Profile Factory sub-components and their relationshipcccooceevvevevsenns 90
Figure 4.4: Request broker SUb-mOodUIEScuvieviririnirinnensrerinsectenrireressssessseasaseaens 94
Figure 4.5: User Interface Sub-MOQUIES......coiuriviniiininiisiiiecnrnssssssrsersasssssssnes 95
Figure 4.6: Authentication COMPONENtuvuuvieuummmmmsmsisissssssssssisesesssessssssssssssssises 96
Figure 4.7: Service Adapter SUD-COMPONENLS.......cccvsrsrrersemnsraressernsssssserssasssssssersessnsess 97

Figure 4.8: User interface component designnent desigh..........oucervvverecenesesneesssoreassens 99

Figure 4.9: Systems Class StrUCUTE.......covvusurerersisinsusessusmssssssmereassssarensseissssisssessssssonss 100
Figure 4.10: Action management activity for make sale process.........oeeeeurverereroens 101
Figure 4.11:; View management activity for make sale processovverureerseresrenns 103
Figure 4.12: Action processor customization eXample.........c.ceevmeurerrvrrrnenernensaereens 104
Figure 4.13: User Interface Customization EXample..........cccceveeverenieerrrrnsnrnssreerenens 106
Figure 4.14: System initialization sequence diagramccceereerevrerurnssnessnssessesns 108
Figure 4.15: Employee login sequence diagram........couriiresnsscesereresesssrsenssesnssseesnses 109
Figure 4.16: Request processing sequence diagram - Adding new invoice in the
AALADASE....cueecerrrecareenisnasnsesssssisnsesesisnsrstisiesesasssnsastsbs s b b s e b b b e nsas b bbb as 110
Figure 5.1: System Initialization - Loading process of company profiles from
CompanyProfile. XML file......ccovusrenseesensmsmessnnisnssssesmmssssssnsessmsessassssssissssssassanssesenes 123
Figure 5.2; System Initialization - Initialization of request broker pool 124
Figure 6.1: System confirms addition of customer items on the sale invoice 131
Figure 6.2: System confirms collection of customer payments on the sale invoice.. 131
Figure 6.3: System confirms registration of a new customer on the sale invoice 132
Figure 6.4: System shows the printable version of the sales invoiceccoevvurireane 132
Figure 6.5: Results of the execution time validationc.cceivcsivennsisniecnnennneneessnnne 135
Figure 6.6: Execution time of the ZOhOCRM.......c.cvveinievninnnnnnenncsinnniicsinesssssenesenns 136
Figure 6.7: Execution time of the Microsoft Dynamic........ecevemecnersecsnsesesnrnsnnenes 136
Figure 6.8: Results of the average cost per user validationecveeierrreereennneneerennns 140
Figure 6.9: Profile factory initialization confirmation.........cevevcnsesnsieeisenecsennenne 143
Figure 6.10: Results of the scalability validationecuuveninnninnnnnininiisininn, 145

List of tables

Table 6-1: Results of the execution task........imississsiinniniesessniinss 135
Table 6-2: Average cost per user of ZOhOCRMovicivimininnsisnnnnnsnnicennssanoin 138
Table 6-3: Average cost per user of Microsoft Dynamics.......cueevsessmesissscsssssssssnes 138
Table 6-4: Average cost per user of W2ZASVB modelcccvmrveviiiininnnsiinsiscecsnns 139
Table 6-5: Results of the average COSt PEI USET wiuiiuessiesnsssennssessrsssssssisissssasesscsssases 139

10

1. Introduction

11

1.1 Web 2.0 based e-business framework

The development of the Internet and its integration with Web 2.0 has provided
users with sophisticated technologies which ease the process of carrying out their
day-to-day activities; this has enabled users to collaborate and interact with

systems seamlessly across various domains.

The development and advancement of the Internet has enabled users to complete
their tasks in less time and reducing delays associated with conventional methods
of interaction. At the same time, it has boosted efficiency and has helped
businesses to improve their sales, productivity and economy. However, as
mentioned in previous research (Chang, 2006) ‘The dynamic, open and
convenient web environment not only boosts business potential and the economy
but also creates concerns of security, trust, privacy and risks’, so users, before
utilizing facilities provided for their advantage, should consider and analyze
these aspects in order to ensure that they achieve what they require, or get the

maximum output from their interactions.

Innovation in Information Systems has changed the way people do business on a
global basis, although there are security concerns. During the last two decades,
the introduction of IT systems in business has offered new dimensions and
challenges to a wide range of different companies. However, existing e-business
systems are not affordable for all businesses, especially small retail businesses
(such as local shops). This is one of the major problems that need to be
addressed. Large businesses tend not to have such concerns, as their main focus

is in global expansion of their business.

The gap between large enterprises and small companies in terms of business

growth has widened as a result of rapid e-business transformation initiated by

12

large enterprises, and as a consequence, local retail shops are among the worst
affected. The “High-Street Britain: 2015 research report (published by the All-
Party Parliamentary Small Shops Group in January 2006), highlighted the

essence of small retail shops as:

“The vast majority of contributors agreed that all small shops are important to,
and influenced by, economic, social and political trends. The small retail sector is
a key driver of: entrepreneurship, employment, skills, local economies,
innovation, and sophisticated business networks, as well as accessibility to vital
goods and services, diversity, social inclusion and community activities” (Dowd,

2006).

In the context of the relationship between technology and business growth, it can
be concluded that the affordability of modern cutting edge technologies has
created discrimination in the UK business community, where one giant
organization can make significant growth on a daily basis by using sophisticated
IT systems; whereas small, independent enterprises (e.g. local shops) are losing
their businesses. Financial constraints are the most common cause of non-
investment in technology by small businesses; such organizations cannot afford
expensive IT systems and the associated maintenance and administration costs
due to more limited budgets and investment. In other words, smaller
organizations cannot take advantage of new technology.because they cannot
afford to do so. This technology acquisition gap is now growing faster than ever

before.

1.2 Problem analysis

It is always helpful to understand the problem domain before considering the

problem in detail. In order to have a better understanding of e-business

13

frameworks; it is very important to understand the business domain in context,
such as the electronic retail industry. This section provides a high-level
description of the electronic retail industry, including how this industry works,
how individual business organizations run their businesses, what business
procedures are common amongst these businesses and which business procedures

are different.

Purchase

@
=
7]
a
@
=

Figure 1.1: Electronic retail industry business processes

Any electronic retail business consists of 3 core aspects known as sales, purchase
and stock management, as illustrated in Figure 1.1. Retail organizations run their
businesses on these three core aspects. For example, any retail company manages
the stock of its products, the sale of these products to customers, and the
reordering of stock in order to replenish products that have been sold. Regardless
of the company size, every retail company has to run this cycle in order for the

business to function.

These three core aspects are referred to as core business processes. At the basic

level, these core business processes consist of activities and tasks e.g. the “Make

14

Sale” activity is an activity of sale processing and consists of the following four

tasks:
e Entering customer information
e Scanning customer products
e Taking payments
e Saving and printing sale invoice for customer

These tasks are the standard tasks of sale activity, but the execution sequence of
these tasks may vary from one company to another. For instance, one retail
company might scan customer products first, take payments, record customer
details and finally save and print an invoice. While another retail company might
perform these tasks in a different execution sequence. The sequence of execution

of these tasks is known as workflow.

During analysis, it was noted that most small retail companies follow a common
sequence in executing these tasks compared to a few retailers that have a
different sequence of execution. Therefore, the common sequence of execution
can be considered generic workflows, whereas company-specific execution
sequences can be referred to as customized workflows. Figure 1.2 illustrates

examples of generic and customized workflows for the “Make Sale” activity.

1. 8can Customer information 1. Scan Customer Products 1. Scan Customer Products

2. Scan Customer Products 2. Scan Payments 2. Scan Customer Information

3, Scan Payments 3. Scan Customer Information 3. Scan Payments

4. Save & Print Invoice 4.8ave & Print invoice 4.Save & Print Invoice
Workflow Workflow

Figure 1.2: Examples of generic and customized workflows

15

Similarly, most companies share common presentation formats for representing
their business data compared to a few that have their own presentation format. In
general, this business data presentation format can be referred to as a view. For
example, in the case of a customer’s sales invoice, the majority of retail
companies have their company logo printed at the top of their sales invoices,
followed by the shop address, telephone number, information for customers, and
then details of products purchased, payment information, VAT information and a
“thank you” message at the end. Only a few companies will have some variations
in the format of their sales invoices. Therefore, the common view can be referred
to as the generic view whereas the company-specific view can be considered a
customized view. Figure 1.3 illustrates examples of generic and customized

workflows for the “Make Sale” activity.

; ~ COMPANY LOGO /T COMPANYLOGO COMPANY LOGO |
! XYZ Street, ABC Town, XYZ Street, ABC Town Mr. X John

| YO4 8VN Y04 8VN XYZ Strest, ABC Town,

; 01673 786 5702 01673 786 5702 WAC 8HI

| Retien PRODUCTS PURCHASED

{| XvZSweerABCTown, | | CECUMLISEURCHASER) CEUA

|| wice - -

|| emopucts PurchAsED PAYMENTS PAYMENTS

oo | e | | A

i PAYMENTS MeXdom || Street

[l ciesansess XYZ Street, ABC Town, o VO":V.:YM

‘ WIC BHi 01673 786 5702

A\ enkyoutcanppngwinie)\ Tenkyoutorshoppmgwihis)\ Takpeutorshoppmg s |

Figure 1.3: Examples of generic and customized sales invoice views

As a result of the discussion presented above on the electronic retail industry, the

following important conclusions are drawn:

e All small retail companies follow standard sales, purchase and stock

management business procedures.

e The majority of small retail companies share common workflow patterns
(i.e. generic workflows) and views (i.e. generic views) during their daily

business activities.

e Only few retail companies apply different workflows (i.e. customized
workflows) and views (i.e. customized views) during their daily business

activities.

e Some retail companies have a combination of both e.g. generic workflows
with customized views; customized workflows with generic views; or in
special cases, a combination of generic and customized workflows with a

combination of generic and customized views.

No business can survive only on its core business processes. It also requires other
supporting business processes. Combinations of core and all other supporting
processes define the Company Business Process Infrastructure (CBPI). Figure 1.1
represents a typical business process infrastructure for an electronic retail
company, where sales, purchase orders and stock management business processes
exist in the core process, and other processes such as marketing, accounting,

website and logistics support the core business process.

1.2.1 A simple workflow

In a single company system development scenario, information architects usually
transform the business activities into services. These services contain the
implementation of both data logic and workflows specific to that company.

Developers then connect user interfaces (i.e. views) with services to make a

17

system capable of performing operational requests. An operational request is a

request which is initiated by the user via a user interface for data processing

purposes.
L
L \
* SALES
Services
User Interfaces
Operational * g
Requests §
* PURCHASE Y
Operational Services ? §,
Page g
* sTOCK 3
* Services
=/

Figure 1.4: A single company base simple work flow

In a traditional Web 2.0 based system, operational requests are usually mapped to
services by hard coding the name of the service in a user interface (e.g. an HTML
form), as shown in Figure 1.4. After the service finishes dealing with the request,
it sends back the response to the user by redirecting it to another user interface
e.g. a confirmation page or an error page. When such a system is amended to

meet new requirements of a business, new services and user interfaces are added

to handle the new operational requests.

Company

Views

Figure 1.5: Single company business system over service oriented platform

Figure 1.5 illustrates a single company business system infrastructure. It consists
of services S1, S2 and S3 and a set of views. Such services encapsulate both
logic and the workflow implementation of company-specific business activities.
Views (i.e. user interfaces) call these services for processing data and output
results are sent back to the user via the user interfaces. In this simple case,
explicit request management is not required as user interfaces know which
services to call for data processing and services know which user interface is
needed to send response back to the user. A web application server performs this

request-response routing job automatically.

1.2.2 A complex workflow

A single company system scenario is transformed into a complex state when the
idea of developing an enterprise system which not only holds, but also provides,
sharing and customization of standard POS business logic is desirable. This
enterprise system ideally encapsulates the standard business logic in its core, and

facilitates multiple retail companies in executing sales, purchase and stock

management business procedures. Figure 1.6 illustrates the concept of such an

enterprise system.

)
%
,
%
k)

Views Workflows

Figure 1.6: Multi-companies e-business systems over one enterprise system

The core of this enterprise system is referred to as the core platform. Initially, to
build up this enterprise platform, workflows of each company need to be
separated and segregated into one of two categories, namely generic and
customized workflows. Subsequently, the core business logic (data persistence
logic) that is embedded inside these generic and customized workflows needs to
be extracted and will become part of the core platform. In next phase, each
company’s views need 1o be separated and segregated into two categories,
namely generic views and customized views. This separation of views,
workflows and core business logic creates a 3-dimensional system, as shown in

Figure 1.6.

To achieve the proposed framework model, the following key questions need to

be answered:

20

e How could the scenario presented be modelled in the proposed

framework?

e Are existing Web 2.0 model frameworks capable of solving the above-

mentioned scenario?
e How would generic workflows be shared between retail companies?

¢ How would the customization of these generic workflows be achieved for

a retail company (or companies) without affecting others?
¢ How would a generic view be shared among retail companies?

e How would the customization of these generic views be achieved for a

retail company (or companies) without affecting others?

e How would the composite combination of different views and workflows

be achieved for a retail company (or companies) without affecting others?

These research questions reflect the complexity of this scenario and need to be

addressed in order to find a solution.

1.3 Motivation

This thesis is motivated by the requirement of developing a robust, reliable,
efficient and novel framework by using Web 2.0 technology and SOA (Service
Oriented Architecture) that will serve as a front and middleware collaboration
model between data persistence logic and operational requests. This framework
will serve as a mediation platform for request brokers. It will provide a high level
of abstraction by encapsulating low level details of the system such as request
handling, request mediation, response handling, service loading etc. In order to

overcome the hard-coded service mapping to interfaces, with no customizable

21

business logic and no generic customized workflows problems etc. These are the
essential requirements for swiftly converting SME’s business into a single e-

business platform.

The intended outcome of this research is to provide a platform that will be able to
be used as a shared platform for small retail organizations over the Internet. No
additional setup, installation, client-side hardware or change in operating system
will be required. The system will run over a standard Internet browser and will
have the look and feel of a desktop application. On payment of a small annual
fee, retailers will have access to an environment to transform their manual day-
to-day business processes into e-businesses, and will also be able to manage and
customize it according to their individual needs without any major modification

in the platform.

1.4 Research Requirments

The following research requirments are posed prior to the main investigation on

the basis of the problem analysis.

1.4.1 User request management modelling

Requests can be modelled, located, tracked and then processed based on the
request and user profiles to obtain the desired results by using the request
management technique. Moreover, to certain extent, this technique handles
actions and view management for users’ requests. It will allocate a request broker
to move the request from a waiting area to the processing area, and start the
analysis of a request header. It decomposes the request into sub sections and then
allocates the data portion of the request to services modules and finally broking

back the responses to the users via the presentation layer.

22

1.4.2 Workflow modelling

Various generic and customized workflow mechanisms can be identified using
different request handling and mediation mechanisms and subsequently the core
business logic (i.e. persistence logic) will be embedded within this workflow, in
order to overcome the hard coded service mapping between the user interface and

business logic.

1.5 Overview of the following chapters

Chapter 2 reviews relevant past work in the field of SOA-based e-business
frameworks. It starts with the research of Omar Abbas and Bendiab (2007) on the
proposed model framework for defining Web 2.0 components and their relations.
It also includes general request handling techniques useful to enhance the

performance of SOA bases frameworks.

Chapter 3 describes the conceptual modelling of the framework. It describes the
fundamental changes in the proposed framework. It also describes the
hypothetical working mechanisms of the proposed model framework within the

layer representation,

Chapter 4 describes the details of the proposed model framework architecture. It
describes the novel modules involved in complete request workflow and use

cases.

Chapter 5 describes the implementation of different modules such as request
management, service adapters and system manager. This chapter also discusses
request routing techniques used for processing and returning the results back to

the desired user.

23

Chapter 6 describes the validation process of the new e-business framework. This
chapter presents the set of instructions used for validation, the pseudo-code of

the executor and compares the results of the validation processes.

Chapter 7 offers conclusions, evaluating the overall effectiveness of the proposed
model framework described in this study, and a number of directions in which

future research could progress.

24

2. Literature Review

25

2.1 Introduction

This chapter focuses on an overview of the Web 2.0 SOA standard and the
techniques used in enterprise applications. The advantages of SOA-based
applications are compared to other similar applications in justification and
support of this research, and to discuss the possibility of transferring Web 2.0
SOA.

In an environment where changes are taking place at an increasingly faster rate
(Oosterhout, 2006) and organizations face intense rivalry, globalization, and
time-to-market pressures (Sambamurthy, 2003), the need for organizational
agility and information system agility is considered to be imperative for
organizations (Pankaj, 2004). There is considerable interest in service-oriented
architecture (SOA) as an agility-building vehicle among IT practitioners. A
survey of adoption trends reveals that SOA has become a key consideration for a
majority of businesses and is a prominent technology issue in the IT market. It
has been proposed as a mechanism to address alignment of IT with business
requirements and as a means to achieve IS agility (Bieberstein, 2005), (Kano,
2005). The demand for Web-based solutions and the push toward enterprise-wide
integration have led to the use of Web services as a building block for SOA-

based applications (Xiong, 2008), (Fan, 2011).

2.2 Brief overview of Web technology
In the last decade or so, Web 2.0 (Murugesan, 2007) ignited innovative and

successful web applications such as Blogger, Flicker and YouTube. Although the
term “Web 2.0” is regarded as a concept of user-centric web development

(Sinton, 2008), most Web 2.0-based software provides its own web services that

26

are realized in Representational State Transfer (REST) fashion. REST
(Mahmood, 2007) is a style of software architecture for distributed hypermedia
systems such as the World Wide Web. REST defines a set of architectural
principles (Pautasso, 2009) by which one can design web services that focus on a
system's resources, including how resource states are addressed and transferred
over HTTP by a wide range of clients written in different languages (Almeida,

2011).

We are in the process of moving from Web 2.0 to Web 3.0, however in order to
appreciate what is new about it and which version is working as a core platform
of all web applications, we need to examine the characteristics that defined the

previous and current versions,

The second generation of the Web is defined by the empowerment of the end user
actively to create content and participate in the Web to display them and relate to
other users. The emphasis here is on technologies that enable collaboration such
as social networks, RSS Feeds, Blogs, and content publishing services (for
images, text and video). Most of these tools are easy to use, which allows
virtually anyone to publish a variety of different multimedia content on the Web.
RSS feeds in particular allowed for the fragmentation of the “discrete page”
concept from Web 1.0. With powerful technologies such as AJAX (Barragans-
Martinez, 2010) in Web 2.0, it has become easy to create dynamic and interactive
pages that are built by taking information from different sources into a single
page, according to the interests of the user. Web 2.0 systems are systems
developed using Web 2.0 technologies. These systems offer a rich experience to
end-user by providing a desktop-like environment over web browsers on their

machines.

27

Web 2.0 is a second generation design pattern and business model for web
applications. The term was first coined by Tim O’Reilly in (O'Reilly, 2005) and
states that “Web 2.0 is the business revolution in the computer industry caused
by the move to the Internet as platform, and an attempt to understand the rules
for success on that new platform. Chief among those rules is this: Build
applications that harness network effects to improve as more people use them”.
The term Web 2.0 is a triggers debate among the research community at present,
where some researchers are classifying it as a buzzword, whereas, others are
calling it a new concept — a concept which does not change the World Wide Web

specification but defines a new way of using it.

Web 2.0 is a new concept that is based on the idea of developing software as
service (i.e. SOA) by considering the Internet as a platform and utilizing the
power of user contribution towards its improvement (Carey, 2008). In other
words, it is a concept of building server-side software as opposed to conventional
client-side software where end-user feedback plays a vital role in its evolution.
The implementation of software in the form of services on a server-side rather
than a client-side is beneficial in terms of providing organization with central
management and control without the need of upgrading hardware and software on
client machines. Furthermore, using such a technique will not require periodic

patch releases to end-users (Clarke, 2010) and (Felber, 2004).

28

Internet ~ 24 Years Old 1.1 Billion users

Web ~ 16 Years Old 500 Mitlion Web

Nodes
) Web 2.0 70 Million Blogs
Exponential
Growth
E2.0 2?7
August 6", 1991 Eary 2004 Early 200¢
The Web Becornes ‘Web 20" T¢

Puit Nicly Available Lanea

Figure 2.1: Transition of Internet to web 2.0 (Hinchcliffe, 2007)

Figure 2.1 depicts the exponential growth of the Internet in terms of users.
According to Internet usage statistics published by Internet World Stats
(WorldStats, 2007) nearly 1.7 billion people have been connected with each other
on the Internet so far, and these figures are increasing exponentially on a daily
basis. Due to the great popularity of the Internet in terms of social networks,
nowadays the Internet has moved into a second generation i.e. it is now a self-
contained operating platform (Dubney, 2004) — a platform that is technology
independent, device independent, always available, accessible to everyone and
ever-growing; the more people use it. Software enterprise has realized the power
of this new emerging platform and the production of Web 2.0 systems is a
current “hot topic”. Interactive encyclopaedia, Blogs, and Mash-ups are example

applications of the Web2.0 era (Dubney, 2004).

“Web 2.0 is a transformation of web-applications from information to services of
contents and functionality, thus becoming computing platforms serving end-

users. It promotes concept of community-based collaborative environment and

29

hosted services — such as social networking sites, wikis, and folksonomies —

which aim to facilitate collaboration and sharing between users” (Web 2.0,

2007).

Back Office

Web 2.0 A
. PP Infrastructure
{ \\ reuse and i“” NPT "”‘) [E o ey
@ ép \ %) extension ; Products || Services i
mashups, widgels S -
0% w0l "o L[user conwoles il
e “ Elements !
parmers, ‘s Features and capabilties
suppliers, User date and contributions /A\~
customers consutmotion Customer community and support :
‘ Marketing and advertising
User feedback (Rating, Rankings,
Reviews.

user
community

Institutionally
Controlled Elements

Architecture of Participation
Governance and constraints

continuous

4 increasing mass of

refinement

Institution

Control over

hard to recreate
data (‘collective
infeligence”)

Figure 2.2: Web 2.0 product development (Hinchcliffe, 2007)

Figure 2.2 illustrates a typical Web 2.0 system development scenario along with
the description of the user and institutional controlled elements. Institutions build
up the functionalities in the form of web services and then Web 2.0 systems (or
Web 2.0 products) are constructed using the power of these services. This is an
approach to building new applications from existing functionalities. Web 2.0
systems also allow access to their functionalities in the form of API to other
organizations acting as partners for the purpose of sharing functionalities. End-
users play the role of consumer along with contributor in Web 2.0 scenario and
contribute by supplying constant feedback for the improvement of the system

(Dorn, 2009) and (Hsinchun, 2010).

30

2.3 Enterprise application architecture

Rapid advances in industrial information integration methods have spurred
tremendous growth in the use of enterprise systems. Consequently, a variety of
techniques have been used for probing enterprise systems. These techniques
include business process management, workflow management, Enterprise
Application Integration (EAI), Service-Oriented Architecture (SOA), grid
computing, and others. Many applications require a combination of these
techniques, which is giving rise to the emergence of enterprise systems (Li Da
Xu, 2011). The emergence of service-oriented technologies, dynamism and
flexibility are becoming the core characteristics of modern e-business processes,
such as business application integration, distributed auction services, and order
processing. Within a service-oriented architecture (SOA), an organization may
encapsulate and publish its applications as services, and select and interact at
runtime with the services provided by other organizations. However, such
dynamic interactions at runtime raise immediate problems of security, trust, and
dependability. Until these problems are addressed and solved satisfactorily, the
potential of automatic e-business processes will be severely restricted. In a
dynamic and distributed environment, it is often difficult for a complex business
process to follow a static business specification. The execution order of its
activities at runtime is usually unpredictable, and on some occasions, the actual

execution of a process can be “one-of-a-kind” (Jie Xu, 2012).

According to (Choi, 2009) the emerging e-business practices require integration
of core interoperable business processes to be reflected in e-business standards.
Unlike traditional standards efforts that focused on IT infrastructure (e.g., data
network communications protocols, physical interfaces, data format, etc.), the

more recent trends and expectations in setting standards for e-business has been

31

to focus on interoperability across business functions and vertical/horizontal
collaborations. In the field of e-commerce/e-business, such interoperability may
be viewed from both business operations and IT infrastructure perspectives

highlighting:

e Business aspects such as business data and information, business

conventions, agreements, and rules among organizations and

e Technical concerns such as protocols and messaging architectures

necessary to support business process execution at the transactional level.

In the research of (Zhao, 2008) e-Business implementation process is
characterized with three dimensions and six constructs relating to e-business
strategy implementation as illustrated in Figure 2.3, the six constructs are
strategic initiative, information systems, partner e-readiness, IT human resources,
information sharing capabilities (ISCs), and collaborative process capabilities
(CPCs). This research describes and recognizes the effect of strategic initiative
on deploying and utilizing IT related resources for creating e-business
capabilities and the causal relationships. This leads to a better understanding of
the underlying mechanisms in the e-business implementation process of the firm,
In the model, ISCs and CPCs are conceptualized as new types of e-business
capabilities to improve organizational performance. They are viewed as

significant indicators for successful e-business strategic implementation.

32

Second-order construct

Partner
E-readiness

H3d

Information
H2b Systems

n Information Sharing
‘ Capabilities
Internal funds Hle H2a IT Human
B Resources

Figure 2.3: e-Business implementation process (Zhao, 2008)

Attitude and
commitment

H4a
Collaborative
Process Capabilities

H4b

Infrastructure

]
|
|
]
1
i
H
' IT
1
'
;
1
:

2.3.1 E-business SOA-based layer Architecture

Juan (2010) provided a framework for the basic e-business system based on
SOA. The whole proposed model from bottom to top is composed of 5 basic
layers: network, logistics resources, services support, service integration and e-

business, as shown in Figure 2.4.

33

T —

E-business laver., +

Supplv and Demmd] News. Knowladgs

i T

Servics integrate laver

Warshouss

Ocdgyf{ Load urf% i Dutn tion.
\ “ppl CL CL !
Logistics resource layver . ; 3;

Basic narvork
Wi

Figure 2.4: A framework for the e-business system based on SOA (Juan, 2010)

The e-business layer includes intranet portal, extranet portal and Internet portal.
This layer provides information of supply and demand, logistics news, logistics
knowledge, and online logistics business consultation etc. The e-business layer
is a unified system interface and directly interacts with the user (including
industrial and commercial enterprises, transportation company warehousing

company, distribution, circulation and processing, etc) (Juan, 2010).

34

2.3.2 E-business SOA-based XML Schema Architecture

Backo.nd sysiems

g Consumers

| 7

Web servi vices

lmegmon

R R I 4 Presentation

o @@@ —
D" X E-Services
: : Infrastructure layer
Web services [Orchestration E-Services registry -
Infrastructure l M‘W"B “‘::ﬂ:"“' IE:L‘;:“I uDpDI rmi————_]ﬂsv'”'i'w.’v“
Audit l Security l Trmsacnonu I Utilities l Standarts and methodology Sy

Da!a center

It

_.@ Besign of web services graph
of e-service

Figure 2.5: e-business system architecture (Edzus, 2010)

E-services are incorporated; (Edzus, 2010) proposed e-business architecture in a
number of parts. It includes all the components, conditions and mutual links
required to design e-services. Figure.2.5 shown how the systems and system
components used in the service are combined into unified e-service system
architecture (Edzus, 2010). For every data object that is required in the
implementation of an e-service, an XML schemas catalogue has to be developed.
Data called from the relevant functional system is done by means of web
services. When web service calls are performed then metadata that describes the
request is sent. In addition, any information that is required for audit trails is sent
together with the metadata. Web services can be distinguished between two

groups: simple and complex. Complex web services are logical combinations of

35

several simple web services that result from process integration requirements; a
combination may comprise simple services of one or several independent
functional systems. Complex web services can be executed by using a BPEL
processor. A BPEL processor is used as the orchestration (integration)
environment for the e-service’s web services. Portals, one-stop agency
applications etc ensure the delivery of e-services to users. E-service entry forms,
stop points, information on payments and execution results are transferred
through HTML or HML pages that can be used in the portal to implement the
service using the XSLT transformation. Web service and e-service holders, i.e.
institution specialists and system administrators who are responsible for the
maintenance and development of web services and e-services, must have an
ability to intercommunicate on various issues connected with the execution and
advancement of web services and e-services. Also, asynchronous e-services have
to be executed. Messaging systems are designated for this purpose. The
messaging system enables working with text messages and work tasks (Edzus,

2010).

2.3.3 Service Oriented Enterprise Architecture

The service-oriented enterprise architecture (SOEA) is a development and
operational architecture for enterprise integration in a service oriented computing
environment (Zeng, 2009). SOEA provides an integrated development and
execution environment based on SOA and model-driven architecture (MDA) as

illustrated in Figure 2.6.

36

g ™
User portal (\
N sl
é Organization Process) Business
Enterprise model model modeling
integration model Data System Service
model model model - Service
- 4 modeling
“
e o . . E
Service Service Service data = | Mmplementation
Service registry discover management 8 ,r'nodcling
infrastructure T . o §.
Service lifecycle Service composition 1]
management and choreography 2
. S8 Model
§| | transformation
-
Service bus g
3 Model
Z || management
~
Scrvice
g O O O OO |
Model
- deployment
Service
e 7N O O O ¥ |
Enterprise Enterprise Enterprise Enterprise y

object object object object

Figure 2.6: Service oriented enterprise architecture (Zeng, 2009)

Business processes supported by service oriented enterprise architecture (SOEA)
include not only all traditional process elements, but also networked services
(NS). Thus, a service-oriented business process (SOBP) may comprise the

following three types of activities:

e The manual activity means an activity implemented by human beings.
People can be helped by resources including enterprise applications and

services.

e The network services activity represents an activity implemented by the

NS which is normally called a service.

37

e [fan activity is implemented by an enterprise application system that is

not an NS, then the activity is an application-system-activity (Sen, 2009).

2.3.4 SOCRADES Integration Architecture

The research of Dominique (2010) proposes a process and a suitable system
architecture that enables developers and business process designers to query,
select, and use running instances of real-world services (i.e., services running on
physical devices) dynamically, or even deploy new ones on-demand, all in the
context of composite, real-world business applications. The proposed model is

illustrated in Figure 2.7.

SAP or Ird Party Apphcations
o Bnberpise Resource Plannng
* Custover) Suppbor Retasonship Masagmet £\
* Gupply Chan Management /
f L
[Comiral | Ramote | Chowet Sywtomi(deve €61 L%
1

Manitor Womttar nu.-:.-"m
\"‘0-““\......‘..0-._....,.1
oRr Eveming Subes: Bervee
Management O sy d Pool Aepociory /
Device Security Palicy
w--'- e P,
Local ! On Premise Bet-Up +
Local U 1
I Back-end Conmecton |
Duvitn Bervice Proay Locat 1
Engine Proxy Factory
DPws Rest otk / - DPWS
liwm l phug-as I lmm] B ["‘w"".""“J plug-n

i

m..zhm..m.....n..;.. T Y
(o] [omm] o

Figure 2.7: The SOCRADES integrated architecture (Dominique, 2010)

38

The process described in Dominique (2010) has been developed and implemented
as part of the SOCRADES Integration Architecture (SIA) (Souza, 2008),
(Karnouskos, 2007), (Spiess, 2009), which is depicted in Figure 2.7. The role of
SIA is to enable the ubiquitous integration of real world services running on
embedded devices with enterprise services. Web service standards constitute the
de facto communication method used by the components of enterprise-level
applications, and for this reason SIA is fully based on them. In this manner,
business applications can access near real-time data from a wide range of
networked devices through a high-level, abstract interface based on web services.
Furthermore, the SIA also supports RESTful services in order to be able to
communicate with many emerging Web 2.0 services. This enables any networked
device that is connected to the SIA to participate directly in business processes
while requiring neither the process modeller, nor the process execution engine to

know about the exact details of the underlying hardware (Dominique, 2010).

2.3.5 MerchantOS
MerchantOS is a Web 2.0 based POS system developed by a US-based company.

The system is completely Internet based and does not require the installation of
any additional software. Interested companies (having one or more POS) can get
access to the MerchantOS by paying a small monthly fee. The cost of the system
is customizable depending on the features required. It ranges from $29.95 to
$99.95 per month. The system offers the transformation of manual POS,
Inventory Control and Customer Relations business procedures into e-business.

Figure 2.8 illustrates the login page of MerchantOS system.

39

IMer hant0S - Login Mozilla Firefox } AH 2 'W , ‘jﬂlll
Be BB ou Go s Do teb o . A8 DG -0QE
DT e p—— as|C

31N .
f Merchant0$ s accessed J

through anormal web

MerchantOS

System Login

Login |mydem0
Password ﬁ
Login I

BCNOICIOIOG
}

| Done

Figure 2.8: MerchantOS POS System (MerchantOS, 2007)

Complementary to all offered features, the system requires installation of related
hardware such as receipt printer, cash drawer, label printer, barcode scanner and
credit card reader. Moreover, MerchantOS only offers standard business
procedures and user interface to run POS system and it does not offer any
customization facilities, such as customization of standard business logic into
company-specific business logic, or customization of standard user interfaces

into company-specific user interfaces.

2.3.6 Retail-J

Retail-J is another Web 2.0 based integrated suite of in-store and central
applications for medium and large size retail companies by Torex Retail. Retail-J
a complete retail solution offering features ranging from multi-version POS to a

complete back-office system. The POS system offered by Retail-J is not only

40

capable of running on web browsers, but can also run on tills and hand held
mobile devices. Successful implementation of this system has recently been
achieved in 250 UK based stores of Hutchison 3G. Despite having good features
such as cross-platform portability, this system is only affordable to medium and

large size retail organizations and requires extra hardware installation.

2.3.7 PHP Point of Sale
The PHP Point of Sale system is the result of efforts by the software developer

community. The purpose of this system is to help small business organizations in
achieving e-business transformation. This system contains an implementation of
industry-specific business procedures for sales, purchases and stock management
activities and offers a range of standard user interfaces. Figure 2.9 presents a

view of a sales screen from the demo version of the system.

Icome admn? | Logout - ., 200
ROCRRIEER 8 0 clock- | found the ruml (OUT OF STOCK) v

(Soan i tem)

Item ID / Ttemn Number m [Submit Query |

Shopping Cart

i Ltem nd Unit Price Tax % tonded Price Update Percent Off
{Deirre) 520 Gin Card XTI ENIN $2060 [T 0% Percent O
[Delete] contral de alarme m _ $11600 [TETN 0% Percent O

Sale Sub Total: $120.00

Tax $16 60

Sale Total Cost: $136.60

ciotal Sae Discouar) [TR

v N e T I
e s I

1<

Figure 2.9 : PHP Point of Sale System (PHPPointOfSale, 2007)

41

Despite being an open-source project, this POS system is not usable for small
retailers who require business logic and/or user interface customization. If a
retail company decided to use this system they would have to hire an IT
professional to undertake the customization needs of the business. Most
importantly, no technical support and API is available from sourceforge;
therefore the upgrade and maintenance responsibility of the system relies solely

on the organisation using it.

2.3.8 ZohoCRM

Zoho is one of the prominent Web 2.0 Companies which is progressively making
their contribution to the Web 2.0 field. They have transformed various desktop
applications into Web 2.0 systems. From a large array of their Web 2.0 products,
they offer ZohoCRM, which is an affordable on-demand customer relationship
management system with integrated POS. Any individual or company that runs a
retail business can access the system, and is allowed to create up to three free
user accounts. Zoho start charging retailers from fourth user account and the fee

is as little as USD 12 per user per month.

B Subscriptions €8 Skins 04 Feedback % Setup © Help © Logout [ather_mughal@hotmail.com) &

[o0

e | Lwads | Accounts | Contects | Potentiols | Compaigns oo | Dashbusrds | Parecests | Sales Orders C)

~ Seareh Muv Luad | Nev Account | New Contect | New Potential | New Campaign | New Furecast | Nev Sales Order | Nev Tash | & §f Recrcle bin
. . Reports
=
[ICPIEIVYLIIYY KEPIICITITRTTT CRTET
P Account and Contact Reports
» Patential Reports
» Lead Reports
» Activity Reports
» Campaign Reports

Quick Create.. |
¥ Case and Solution Reports

- Catonda »

ot Reports

“e July 2007 PH % Product Reperts
s Report Name Description
1.2 3 4 8 o 7 Custemize Products by Category Products based upon their category
9 10 11 12 13 14 Customize | Products by Support Termination date Products Istad whose support tarmination date falls an this month
15 16 17 18 19 20 A Sustamuze | Pradudta by Gaea Products and thew cases
B2 MBI e q
29 30 m
» Quote Reports '
oo®E » Sales Order Reports |
|

~ World Cloek » Purchase Urder Reports

Done

Figure 2.10 : ZohoCRM System (ZohoCRM, 2007)

42

In addition to standard features, ZohoCRM also offers limited customization of
various business reports to its client companies (see Figure 2.10). Despite
offering valuable features such as limited free access and customized business
reporting, ZohoCRM does not facilitate on-demand customization of its business

logic and other user interfaces.

2.3.9 A brief analysis about enterprise applications

The thorough review of the current Web 2.0 retail systems such as MerchantOS,
Retail-J, PHP Point of Sale and ZohoCRM etc that are built upon the existing
SOAW2 model framework has shown the lack of fundamental functionalities that
are desirable in an e-business framework for SME’s, such as on-demand
customization of business logic and user interfaces. A system like ZochoCRM
(zohoCRM, 2007) has shown some capabilities of user-interface customization
but it is only limited to the customization of business reports. One of the
important observations is that, none of current Web2.0 retail systems are capable
of providing on-demand customization of business logic due to the fact that
applied SOAW2 model framework does not support explicit request
management. The current SOAW2 model framework directly exposes user
interfaces to business services that reside within the resource container. This
direct exposure results in the form of user interfaces that contain concrete
business services mapping instructions. Due to fundamental shortcoming of the
model framework, developed systems do not provide on-demand customization
of business logic at run-time. Secondly, the model framework does not provide
any extra layer for dealing with this customized business logic. Therefore, an
investigation is required to propose a new Web 2.0 model framework that will

overcome these fundamental shortcomings of SOAW?2,

43

2.4 'Web 2.0 based SOA models

Web 2.0 is a useful concept that is based on the idea of developing software as
service by considering the Internet as a platform, and utilizing the power of user
contribution towards its improvement. In other words, it is a concept of building
server-side software as opposed to conventional client-side software where end-

user feedback plays a vital role in its evolution.

A research conducted by (Abbas, & Bendiab, 2007) proposed the model
framework for defining Web 2.0 components and their relationships. This
proposed model is called SOAW2. They apply the SOA approach to underline
the important components of Web 2.0 and SOA technologies in 5 core and 3

managing and protection support layers, as illustrated in Figure 2.11.

User

User interface layer

Intelll §
Monitoring History log ?r:te a(': 8
g
2 3
Support functions £ e
L
o &8
€ Deploy Discover Invoke i § ®
¥ a]
Li S g %-5
g Control system g oy |- c
3 § 38
Replication Fault tolerance ~ Quality of service é g
k-4
&
Resources (Infrastructures and services) §
s
Web services Communication Infrastructures %
g

Intelligent Monitoring Others
services resources

Figure 2.11: SOAW2 model framework by (Omar, Abbas, & Bendiab, 2007)

44

Web 2.0 systems are incomplete without the user, and hence their model
framework includes a ‘User’ as a separate layer. The Resources layer in SOAW2
acts as a container for core services such as financial services, stock services etc.
These services play a part in building additional services. The Control system
layer represents a placeholder for a model manager which manages and controls
the services sitting in resources layer. The Support function layer contains
standard SOA functions for service providers to deploy services. The Discover
and invoke functions are reserved for the user interface layer. The user interface
layer contains set of user interfaces for end-users and acts as a gateway for users,
to enable access to services. The User layer represents an end-user (i.e. a
consumer) who interacts with the system by means of the user interface layer.
The remaining three managing and protection support layers encapsulate the

overall management and support function capabilities of the model framework.

Web 2.0 framework s o e
Users < > User
interface e
i t
‘p&d Managing
‘,,& user
R Service level | . rework /
L Security agreement 2
system Inject \
sensors
Administrator Collected Yo
autho
rity data Mmm 5
PR— Monitoring
Control resources Resources
system container
» TR Ry Managing
, Management eNIoe
Managing " capabilities
protaction Controlling resources
system

Figure 2.12: SOAW2 in action (Omar, Abbas, & Bendiab, 2007)

Figure 2.12 illustrates the collaboration between different components of the
SOAW2 model framework while in action. It is worth mentioning here that
SOAW?2 is not a new model framework, rather, it is an outcome of research
activity that analyzed in depth the internal working models of existing Web 2.0

systems,

The Service Oriented Architecture (SOA) is becoming a mainstream approach for
designing and integrating enterprise applications. The research conducted by (Sheikh,
Aboalsamh, 2011) proposed a mechanism to convert the old systems in to SOA
systems. The proposed solution applies the following principles of service-orientation:

e It is impossible to isolate SOA services directly while business logic is
bundled with presentation logic. Therefore, an appropriate restructuring and
reorganization of the code is required so that business functions are isolated as
candidate services or service components. This technological dimension of
reengineering towards SOA represents an architectural transformation towards
a multi-tiered architecture. Typically 3 tiers are used.

e Service-orientation is based on an assumption that services ought to interact
without significant, cross-service dependencies. Hence, rearranging different
functionalities is required to provide a sufficient degree of independence.

e Legacy applications normally contain elements that are fine-grained in nature,
for instance components with operations that represent logical units of work.
An example would be reading individual items of data. Object oriented class
methods are an example of such fine-grained operations. The concept of
service is of a more coarse-grained nature. SOA services represent logical
groupings of fine-grained operations that work on top of larger data sets, and
in general offer an extended range of functionality,

These services are made available to the Enterprise Service Bus (ESB) acting as a
mediation, service and protocol virtualization. This layer is accessed by the top level
business process management and presentation applications / systems. This research
did not address problems such as missing data packets between the business layer and

the user interface or load balancing of the requests etc.

46

In the last decade or so, we have witnessed the software industry moving towards
service-oriented architecture based technologies. Especially in the business software
domain, complex applications based on the composition and collaboration among
diverse services has appeared. According to the research conducted by Dominique
(2010) the service-based information systems blur the border between the physical
and virtual worlds, providing a fertile ground for a new breed of “real-world”
applications.

The advent of Service Oriented Architectures (SOA), and the automation of business
processes can be aided by service composition (Erl, 2005) which is dynamic and
creates opportunities for runtime management. A single business process can
encompass many different functional components such as orchestration engines,
legacy middleware, application servers, data transformation hubs, and web service
facades. Governance of such complex business processes requires a monitoring
system as a starting point for the enforcement of relevant management decisions. The
motivation for monitoring of frameworks, middleware solutions, engines, and
databases has been addressed in many studies (e.g., (Wang, 2009), (Simmonds, 2009),
(Pistore, 2004), (Liu, 2007), (Yuan, 2008), including, among others, performance
evaluation, security evaluation, testing conformance with requirements, ensuring
stability, and detecting anomalies. This motivation is especially important in
distributed, loosely coupled and dynamic SOA systems, where the required level of
Quality of Experience (QoE) and Quality of Service (QoS) cannot be ensured without
sophisticated monitoring of interactions between consumers and providers. Ongoing
studies related to SOA system monitoring focus on specific elements, ie.,
orchestration engines (Baresi, 2005), (Barbon, 2006), (Moser, 2008), (Wetzstein,
2009) and web services (Wang, 2009), (Simmonds, 2009). However, this is not
enough for end-to-end monitoring of SOA systems, which often span multiple
functional elements and automate cross-organizational business processes.

Open Service Process Platform 2.0 is a central SOA infrastructure including several
extensions. This platform can be used as the basis for the development of further

extensions.

47

The unique features of the platform are:

o Orchestration and execution of processes in an easy way.

o Arbitrary extensibility with regard to simple specialization for various

domains,

o Central infrastructure within an organization.

o Full accessibility through Web 2.0 technologies.
Firstly, with the help of this platform, it should be possible to both orchestrate and
execute processes. Secondly, access to the platform should be available from
everywhere, so that, for example, the current state of the process execution can be
monitored, necessary interaction with the processes can be performed, process
definitions among users can be shared and users are able to design processes in a
collaborative way. Thirdly, the platform should be easy to extend with the help of a
plug-in concept to make it possible to customize it for different domains. Fourthly, the
platform should take on the role of the central process platform within an
organizational unit, i.e., we require repositories for services and processes as well as a
rights management system.
The research of (Marek, 2012) presents an end-to-end solution on SOA systems by
focusing on the Integration Layer, part of the SOA Solution Stack. The proposed
architecture provides detailed architectural definition of an SOA across nine layers,
which aim to reinforce business value. The stack defines five horizontal layers:
Operational Systems, Service Components, Services, Business Process, and
Consumers. The horizontal layers are cut across by five vertical layers: Integration,
Quality of Service, Information architecture, Governance, and policies. Integration
layer focuses on bringing together layers of Service Components, Services, and
Business Process. This model points to the Enterprise Service Bus (ESB) as the most
appropriate solution for implementing the Integration Layer, whose purpose is
mediation, routing, and transporting service requests from service consumers to
correct service providers,
The Service-oriented architecture is an architectural paradigm for building software
applications from a number of loosely coupled distributed services (Baker, 2012).
This paradigm has seen wide spread adoption through the web services approach,

48

which has a suite of simple standards (e.g. XML, WSDL, and SOAP) to facilitate

interoperability.

2.5 Request management principles

One of the major deficiencies of the SOAW2 model framework is the absence of
a request management mechanism. SOA (Nickull, 2007) allows enterprises to
centralize computer-based services and offer those services over a network. On
the basis of a published interface, the service can be used or a platform-
independent basis within and outside the enterprise. The concept of a SOA is
often realized by web services (WS). The interface of WS is usually described by
WSDL (Web Service Description Language) in accordance with SOAP (Simple
Object Access Protocol). Both standards, SOAP and WSDL, are based on XML.

Interaction with web service requests and responses acts as events within the
environment (human users or other systems). Requests’ function calls WS which
will supply appropriate responses. In spite of its functional correctness, a request
may be useless if it is not delivered “in time”, e.g., a request for a stock price is
of no interest if it is not delivered before the next change (Nickull, 2007). Taking
such time constraints into account requires time monitoring from request to
response; in other words, we need a real-time service-oriented architecture
(RTSOA). Time can be measured either server-side or client-side. The time
difference between client and server time primarily depends on SOAP calls
which entail intense XML parsing. Also the size of a response plays an important
role: A search function, triggered by a single query, can return huge amounts of
entries. To this end, subsequent sections contain discussion on the classification
of request management techniques followed by a detailed review of relevant

request management techniques. There are only two types of request management

49

technique currently available: conventional, and request brokerage. The

following paragraphs elaborate further on this request management technique.

2.5.1 Conventional technique

The conventional request management technique is a technique that is commonly
used in traditional web-based systems. In this conventional technique, request
management is automatically performed by the application server. For example,
in an ordering system scenario, on submission of a sales order form by a user, a
request goes back to the application server. On arrival of the request, the
application server automatically redirects it to the designated sales order service
for processing. At the end of processing, the service directs control back to the
application server by specifying the appropriate response page address (e.g.
confirmation or error page). Finally the application server loads the response
page and sends it to the user. The biggest disadvantages of this technique are its
limited usage and incapacity of handling complex scenarios, such as a generic
business login to handle the “make sale” process etc. The request brokering
technique has proven its successful implementation in many complex scenarios,

such as in (Hitachi, 1999), (XiaoQin, 2004) and (Yerom, 2009) etc.

2.5.2 Request brokering technique

The concept of dynamic service binding through request brokering is an active
research topic. This section presents findings of a thorough literature review of
the latest research attempts made by different researches in the field of request
brokerage. It also elaborates their respective drawbacks and associated issues.
The primary focus of this effort is to find out any attempt which can resolve the

request management problem, as discovered in SOAW2 model framework, If

50

not, then it could at least form the basis that justifies the need of a new request

brokerage technique.

»5’“}5
X
| 2= (P>

Z\
N

2

)

N
D

-

\)

BN AV, 4

X

Function Call Path e Data Referonce Path eess—"

Figure 2.13: Modular dependency in a system (Olson & Batni, 1997)

What does request brokering replace? It is an important question that needs to be
addressed. Figure 2.13 illustrates a modular system, in which different modules
are connected to each other. The Figure shows an intensity of modular
dependencies within a system. This modular dependency between different
modules makes any system very complex thus limits system scalability and
increase complexity. This modular dependency is very common in network based
system and to reduce this modular dependency (Olson & Batni, 1997) proposed
the concept of service brokerage architecture. Figure 2.14 illustrates their

proposed request broker model.

51

Compeonentb |

T Component ¢

Component I |

Figure 2.14: Request Broker Architecture as proposed by (Olson & Batni, 1997)

In their proposed model, they connect every component with a centrally placed
request management component known as the request broker. Introduction of this
request management component synthesizes the way different components

communicate with each other.

This concept of request broker-based system architecture became the focus of
interest for the research community and is still gaining popularity. Request
brokerage in service-oriented architectures is an active research area. Research
community explored the suitability of a request brokerage in SOA based systems,
such as in (ACTS, 2000) and have proposed some stable models in which a
request can be dispatched to the most suitable service(s), transparent to the user,
with the help of request brokers. Literature is scarce on the topic of dispatching
back a response from the service to the most suitable user interface. In simple
terms, current request broker architectures support action management but not

view management.

(Howard & Kerschberg, 2004) proposed a complete framework called KDSWS
(Knowledge-based Dynamic Semantic Web Services). Their proposed framework
approach is mainly based on a multi-agent system in which web services have
been converted into semantic web service. KDSWS’s brokerage technique is
based on four agents, namely broker agent, classification agent, discovery agent
and selection agent. The framework applies a rule-based approach to facilitate
the run-time generation of the dynamic profile. Using this dynamic profile
brokers discover, negotiate and finally bind the service that best meets the user’s
needs. In contrast to offered features, this proposed framework does not facilitate
a response mapping back to a user-defined interface. In addition, the proposed
model is not applicable in situations where a request demands execution of more
than one service or requires a partial collaboration of different services in order

to fulfil user needs.

In other research (Beck, Konana, Liu & Mok, 1999) proposed an idea of a next
generation electronic brokerage for performing active and real-time
functionalities. Since every standard brokerage system follows a set of activities
to bind services, the execution of these activities sometimes becomes very costly
especially when a user request is of a complex nature involving time as a major
factor. The proposed brokerage model in this research deals with the timeliness
factor by involving an active database in the brokerage scenario. This model
allows the user to express complex preferences in the form of Event, Condition
and Action (ECA) rules. Every request gets forwarded to the request brokers
along with these ECA rules. Brokers continuously monitor the request and if a
specified event occurs, and the condition (which is a predicate or database query)
becomes true, they execute the specified action(s) in a timely manner. These

actions, triggers the pre-complied routines of attached pro-active databases.

53

These pro-active databases run as a part of brokerage system and support pro-
active transactional triggering. In nutshell, the execution of requested services is
achieved in a timely manner by involving databases of a pro-active nature. This
brokerage model contains architectural deficiencies such as involvement of pro-
active databases making the model implementation dependent on databases.
Moreover, no concerns have been expressed on mapping responses back to a

view that is acceptable to user.

The request broker model proposed by (XiaoQin, LinPeng, Lin, & Minglu, 2004)
is a concept of an agent based web-services platform. This proposed model has
been successfully implemented on Tele-portal solution for Shanghai Information
Science and Technology. The scope of the proposed brokerage model is to handle
e-commerce operations by providing assistance to consumers and operators.
Automated assistance (by request brokers) helps consumers in finding feasible
offers and at the same time assists operator in marketing different offers to the
consumers. The request brokers’ model proposed in this research is actually an
extension of the Architecture for Information Brokerage Service models

proposed in (ACTS, 2000).

54

=
3 |EfE gl |EZ
= % o o
= |58 |5< — e
S| % 4 s 4 25|25 B3
CENEENEE oZ||35] & 2.
SIERIE z z
= =3 = 2
|
WhSner «X(PEN a’ae
|

Figure 2.15: Agent based web services platform for Tele-portal (XiaoQin, LinPeng, Lin,
& Minglu, 2004)

Figure 2.15 illustrates the Tele-portal system that was built by applying the
proposed model. The complete system is physically divided into two hardware
units — Web Server and OLTP (On Line Transaction Platform). The portal core
exists on a web server and is composed of three modules, namely presentation
module, logic module and entity module. The portal reserve proxy exists in front
of a web server where client and operators communicates. This portal reserve
proxy houses the multi-agents (i.e. request brokers). These multi-agents break
down the client’s request on arrival. This is a part of a divide-and-conquer
technique used to solve complex and distributed requests. Despite having a real -
world implementation of the proposed model, the model does not support the
customization of business logic and user interfaces. Presentation and operation
logic components of the system only contain a default set of user interfaces and a

default set of business logic, respectively.

55

A CORBA-based mediation platform design for efficient brokerage is proposed
in (Koerner, et al., 1999). The design is primarily based on the concept of a
complete mediation platform presented in (Tothezan, Athanassiou, Alzon, &
Karetsos, 1997). The proposed model also complies with TINA and OMG
specifications. The design beauty of this model is in its dynamic profile and
profile rule management techniques. Unlike (Howard & Kerschberg, 2004), the
model has an applied profile management philosophy on both user and service

provider ends.

rl—_: Mediator F:
End-user ||| jooes| DOMAIN || Service
Domain *Subscription Provider
T *Accounting | Domain
service ~Secu.rit_v. service
J usage | *Customization usage J i
*Brokerage
QoS \ stream real-time l multicast
multiple control ORB
interfaces and (RFP) (RFP) reliabllity -
composition (RFP) DPE ORB (dependability)

Figure 2.16: Service mediation in ADSS (Koerner, et al., 1999)

The research project was collaboration between Hitachi, Ltd. and GMD FOCUS
to develop a new ADSS architecture to apply the ADSS concept on an
application level; especially in the context of electronic commerce and social
information systems. Figure 2.16 depicts a visual design of service mediation in
ADSS. The ADSS model classified business in three major business roles namely
mediator (which mediates the services between parties by maintaining a high
level of service agreement), end-user (a party who acquires and consumes the

services according to agreement with the mediator) and service provider (a party

56

who publishes services information in mediator domain to be consumed by the
end-user). Because of the mediation domain in the middle, end-users have
flexibility in choosing the services they want without worrying about the low
level details. Similarly, service providers get the flexibility of offering services
without going into technical details such as publishing, discovery and binding of

the services.

The proposed ADSS model supports profile management techniques. It spans the
entire service provisioning process including service brokerage, subscription,
access sessions and service session. Service providers publish their service
related information in the form of service templates for type information
description. End users have the choice of subscription to these services by using
these service templates, and can also customize services by specifying the
features they want. Despite a sophisticated model for service brokerage, the
proposed model does not support the customization of output data (i.e. user
interface customizations). Moreover, service usage scenarios presented in this
paper are based on the assumption that complete user requests will be fulfilled by
only one service, hence, the proposed model is not appropriate in scenarios

where service composition is required to fulfil one user request.

Research conducted by (Zhao & Tong, 2007) has proposed a service composition
model: ‘A Dynamic Service Composition Model Based on Constraints’. This
model is not a request broker based model, but is capable of handling complex
situations where a user request has a very complex execution nature such as
requirement of partial (or full) execution of more than one service. Figure 2,17
illustrates the proposed model. A domain expert initially sets up the Domain

Ontology for a domain and put it into the registry. This domain ontology defines

57

common information types, the quality indexes for this domain and a set of
abstract workflows. A user interacts with the system via the user’s portal, then
the user selects an abstract workflow and specifies requirements as a set of
constraints. The Configuration Engine receives the user request and converts it
into a concrete workflow using domain ontology. This concrete workflow
contains every detail of service(s) required to perform the request. The
configuration engine then binds the matching services in the execution order

using the registry and passes it to workflow engine for execution as shown in

Figure 2.17.
Domain Expert &é User
L o/
i :
)
1 D”(@)’D Domain Ontology ' User's Portal
i :
! |
R — Abstract - == == == === == === e mmmmm e ,
Workflow Requirement Result
/’%r
Configuration Waorkflow
Registry Engine Engine
) Service Information
Service concret
Provider Service Workflow Service
s Selection Invocation

Figure 2.17: Service composition model (Zhao & Tong, 2007)

Unlike the other models presented, this model leaves a selection of abstract work
flow to user. This technique could be beneficial where a user is an expert user
having a sound knowledge of the business domain, but in case of a novice user

this technique could have drastic effects such as execution of wrong business

58

'logic. Secondly, this model has presented no explanation on how response data

will route back to user,

A review of request management techniques above has shown that only the
request brokering technique has proven its strategic importance and successful
application in complex scenarios. Therefore it can be considered as a candidate
for fundamental changes in the SOAW2 model framework. It has also been
observed that existing request broker techniques are more service-centric than
view-centric, they are primarily focused on routing a user request to best
matching destination service but are incapable of routing service output back to
best matching destination user interface. Hence, existing request broker
technique needs to be improved and then integrated in a newly proposed model

framework as a request management component.

2.6 Conclusion

The research studies introduced above were conducted over the last decade.
During the review all aspects of the SOAW2 model framework were discussed in
detail along with its application. None of the Web 2.0 retail systems built upon
the SOAW2 model framework exhibit characteristics that are required in the e-
business framework such as on-demand customization of business logic and user
interfaces. Amongst other factors, one major factor of this shortcoming is the
absence of a request management component. Therefore, the proposal of new

Web 2.0 model framework is inevitable and is a key motivation of this project.

Moreover, review of popular request management techniques has shown that only

the request brokering technique has proven its strategic importance and

59

successful application in complex scenarios as required in an e-business
framework. It can therefore be considered as a candidate for fundamental
changes in the SOAW2 model framework. It has also been observed that existing
request broker techniques are more service-centric than view-centric, i.e. they are
primarily focused on routing a user request to the best matching destination
service, but are incapable of routing service output back to best matching
destination user interface. Hence, existing request broker techniques need to be

improved and then integrated in a newly proposed model framework as a request

management component.

60

3. Conceptual Modelling of New Web 2.0
e-Business Framework

61

3.1 Introduction

Enterprise applications are increasingly being architected in a service-oriented
architecture (SOA) style, in which modular components are composed to
implement the business logic. The properties of such applications, such as the
loose coupling among the modules is promoted as a way for an agile business to
quickly adapt its processes to an ever changing landscape of opportunities,
priorities, partners, and competitors. The proliferation of Web services standards
in this area reflects the industry interest and demand for distributed enterprise

applications that communicate with software services provided by vendors,

clients, and partners.

3.2 SOAW2 model framework evaluation

The model framework is based on the Web 2.0 paradigm. Therefore, prior to
proposing a new model framework, an evaluation of the existing SOAW2 model

framework in this context is essential.

| System Manager = |
\
Generic Views for M Operational Request g’ ¥
Company 1 X - a. h)
> o B, g E
A % Support 2
User 1 N\ Functions -
< T e2| %
Where to put Disoover, 3 g m
S the Workflows Deploy E' »(§
/‘,./‘ 7 / g 33 8 8
User 2 / 3§ 9 §
Customized Views for ' h * § @ :
. ?Ruponu dispatching
Where to send the o
s response back? CORE Platform

Figure 3.1: Application of SOAW2 model framework on problem

62

Figure 3.1 presents a visual representation of the problem solution with the
application of the existing SOAW2 model framework. As discussed and
concluded in the literature review, chapter 2, it was found that the SOAW2
framework does not support explicit request mediation. Due to this architectural
deficiency, every company that runs its e-business on a system requires its own
dedicated set of views with the names of required services embedded inside
them. Figure 3.1 illustrates such limitations where the users of company 1 and
company 2 are using replica copies of the same generic views, whereas the users
of Company 3 have their own set of customized views. As a result, this system

does not offer any sharing of user interfaces.

In addition, scalability of the system is a big concern. Every time a new company
is registered on the system, the service provider has to allocate a dedicated set of

views to this new company.

3.2.1 Concerns

The application of the SOAW2 framework in a given problem scenario has also

raised the following important concerns.

e Services that exist in the core platform contain only persistence logic;
they contain no implementation of workflows. The SOAW2 model

framework does not provide a slot for workflows.

e Applications of the SOAW2 framework do not contain any response

navigation logic; hence there is a question of where to send the response.

e Finally, due to the non-sharing nature of the model, if a generic view
requires an update, then a solution provider company has to update each

single matching generic view in every company’s view set. Since this

63

requires more time and will increase the cost of administration, the
solution provider company will recover this cost from retailers. How can

the system then be classified as a shared and affordable system?

The SOAW2 model framework has no answers to these critical questions. Hence,
it can be concluded that existing model frameworks are not sufficient to be

applicable for generic e-business platforms and require fundamental changes.

3.3 Proposed web 2.0 model framework
This section describes the new Web 2.0 model framework called W2ASVB (Web

2.0 Architecture for Service and View Brokerage). The new model framework is
based on SOAW2 and also contains two fundamental changes in the basic model
framework. These fundamental changes include the introduction of an effective
and intelligent request broker architecture, and the replacement of supporting
functions with service adapters. Figure 3.2 illustrates the W2ASVB model
framework. Justification of these two fundamental changes is given in the

following sub-sections.

Web 2.0 framework O T Bervice
S a User Requost Provider
" interface Broker
r t Architecture
o
S Service level
v agreement Service
W‘ "' Adapters
yst: Inject
sensors % Knowledge
Administrator Collected
authori
Monitoring
resources Resources
container
+ ——— Managing
_ Management resources
Managing capabilities
pf‘oy:::trlnon Controlling resources
= J

Figure 3.2: W2ASVB - A new proposed model framework

64

3.3.1 Introduction of the request broker architecture

By taking into consideration the shortcomings of the request management
component in SOAW2 and the need for an effective and intelligent request
brokerage mechanism to handle complex on-demand sharing and customization
issues, a new request broker architecture is integrated between the user interface
and the resource container, as shown in Figure 3.2, W2ASVB consists of a new
request broker mechanism concept. This request broker concept improves on
existing request brokers, which are responsible for action and view management
inside a W2ASVB model framework and eventually provide on-demand request

routing between user interfaces and services of core platform.

The knowledge layer of the model framework is shared between service
providers and users (i.e. employees of retail companies). This knowledge layer is
a typical requirement of Web 2.0 model frameworks and it is there to represent
the architecture of participation. This means that new knowledge in the model
will evolve through the experiences of both users and service providers. Now, it
is worth asking the question, “how and where should the workflows be handled”?

The next section will provide the answer to this question.

3.3.2 Introduction of service adapters

The second fundamental change to the proposed W2ASVB model framework is a
replacement of supporting functions with service adapters. The reasons for this

replacement are as follows:

Supporting functions like deploy, invoke and especially discovery are pure SOA
based functions. They are useful in situations where one type of service is
published in the resources container from more than one service provider and a

user request needs to be resolved to the best matching service. In this case, the

65

discovery function provides help in resolving the best matching service within
the resources container. Moreover, a pure SOA approach requires deployed
services to comply with W3C standard specifications as described in (WC3,
2004). However, in W2ASVB, services that are deployed inside the resources
container (i.e. the core platform) are implemented by applying a SOA based
approach but they do not comply with W3C standards, as W3C standards services
are deployed outside the core as a separate entity. Therefore, associated

supporting functions are no longer needed.

The replacement of supporting functions in the new model framework is
provided by service adapters. A service adapter is a new concept of “light
weight” services and contains implementation of workflows. In the SOA
tradition, services are relatively large, shared, intrinsically loosely coupled units
of functionalities, and have no embedded calls to each other. Web Services are a
version of SOA which run over the Internet and provide services to users
transparent to their locations. These web services expose their services to the
outside world through end-points written in WSDL and communicate with users
using SOAP. There is still concern that if W2ASVB requires sharing of generic
workflows among different retailers then why can generic workflows not be
modelled as web services? The simple answer to this is that, in W2ASVB,
workflows are actually sequential calls to the services of the core platform.
Therefore, if workflows are modelled as web services, it would be a violation of

the principles of loose-coupling and no embedded calls within SOA.

To overcome this limitation and to avoid any conflict with the SOA principles,
workflows are modelled as service adapters. After receiving a request from a user

through the user interface, these adapters are connected with the core platform to

66

execute the workflow modelled inside them. All the workflows (including
generic and customized) are modelled as service adapters. Generic workflows are

executed by the generic service adapters, whereas customized workflows are

executed by customized service adapters.

3.3.3 Proposed work flow model

A user request for data processing will be divided into two parts — a data and an
action part. The data part contains the dara that requires processing, whereas the
action part describes the required operation on the given data. Request brokers
are a key concept in the proposed W2ASVB model framework. They are semi-
autonomous objects which are completely equipped with all the capabilities to
handle action and view management for user requests. In other words they can be
called middle agents that provide a mediation mechanism. They have been
classified as semi-autonomous because they can complete the user’s request
without any assistance from other brokers but are bound to be controlled by
managing authority. This managing authority is called the system manager and is

summarised in Figure 3.3.

E- **

Service

=

ﬂ:’=<—>*

Customized

Service

e fea| W
Waiting

Company 3 Customized User Area Area Core
Interfaces Platform

Figure 3.3: W2ASVB in workflow — Example 1
67

3.3.4 Request broker actions on user request

On arrival of a user request, it is queued in the waiting area as illustrated in
Figure 3.3. The system manager continuously checks the waiting area and as
soon as a request arrives, it is allocated a free request broker. This allocated
request broker moves the request from the waiting area into the processing area
and starts analysis of a request header to find out the source details, such as the
name of the user interface from which the request is being generated and the
action it requires. On identification of source and action, it starts searching to
find out the name of the matching service adapter in the user session profile. The
user session profile is a profile carried by each user and was initially allocated to

each user by the system manager when they first logged in.

3. Search for oo
Service Adapter - \
User Session

Profile

Request
Broker

5. Execute by
supplying Request
Data + Action
|User Interface

Service Adapter
[Source + Data + Action])

Figure 3.4: Request brokering process on request (Binding data with service adapter)

On a successful match, the request broker binds the relevant service adapter
(either generic or customized) and executes it by providing the data and action

parts of the request. This binding of the service adapter is called request

68

brokering. The service adapter only requires data and action to be executed.
Hence they are services that are independent of their usage scenario and can be
used by any user. This is one of the major features of the proposed W2ASVB
model framework and it promotes multi-company sharing of service adapters
(except customized ones because they are company-specific implementations and
are only shared by the users of that particular company). Figure 3.4 illustrates the

flow of control in the request brokering mechanism.

6. Search for
Destination Ul e
R 5. Loads L \
esSpo e e Am \. '; -\
‘ : —>\E2)
User Session
[Output Data) r Soue
2. Send
‘..) 7. Response Output Data
N5 Dispatch 4. Deatioy
N .
3. Unbind 1. Execute Finnish
User Interface .
.
Service Adapter

[Source + Data + Action]

Figure 3.5: Request brokering process getting data from service adapter

On completion of the execution of the bounded service adapter, the request
broker unbinds the service adapter and loads the output data (if any) which has
been generated in response to the request object. It then starts searching the user
session profile to find the destination user interface address. On a successful
match, it dispatches the response data back to the user along with any output
data. This unbinding of the service adapter and mediation of the response back to

the user is called response brokering. Since the user interfaces that generate the

69

request and receive the response data are independent of the company’s usage
scenario, they can be used by any user. This is a second major feature of the
proposed W2ASVB model framework as it promotes multi-company sharing of
user interfaces. Figure 3.5 illustrates the flow of control in response to the

brokering mechanism.

At the end of response brokering, the request broker releases all the holding

resources and makes itself available to the system manager to be allocated to

another request.

e *¥

Service

adopters | g b *
,-——-

Adapters Lo

Waiting

Company 3 Customized User Area Area Core
Interfaces Platform

Figure 3.6: W2ASVB in workflow — Example 2

Figure 3.3 and Figure 3.6 illustrates four examples of request mappings. In both
figures, user 1 of company 1 uses generic user interfaces only. Whereas user 2 of
company 2 uses some generic and some customized user interfaces and finally
user 3 of company 3 uses customized user interfaces only. Figure 3.3 depicts

mapping of request R4 (generated by generic user interfaces) to generic service

70

adapter and request R2 (generated by customized user interface) to customized
service adapter. On the other hand, Figure 3.6 depicts changes in the scenario
where request RS (generated by customized user interface) is mapped to the
generic service adapter and request R6 (generated by generic user interface) is
mapped to customize service adapter. However, the given mapping examples are
not the boundaries of the model; this model is also capable of supporting other
mappings such as the case of both users’ requests being mapped to generic

service adapters etc. the following are all possible combinations that this model

can support.

All Possible Combination Supported by W2ASVB Model
Company => All Generic User Interfaces + All Generic Service Adapters
Company > All Generic User Interfaces + All Customized Service Adapters
Company > All Customized User Interfaces + All Generic Service Adapters
Company = All Customized User Interfaces + All Generic Service Adapters
Company => (Some Generic + Some Customized User Interfaces)

+

(Some Generic + Some Customized Service Adapters)

3.3.5 Profile Management Technique

Profiling techniques have proven their success in scenarios where user service
requirements need to be modelled in a sophisticated manner, such as in (Howard
& Kerschberg, 2004). In addition, XML is considered as a most powerful and

self-descriptive language in representing complex SOA related data structures for

71

brokerage. It has also proven its successful applications in many real-world
scenarios, such as in (Shafiq, Ding, & Fensel, 2006), (Howard & Kerschberg,
2004) and (Lee, Kuk, Kim, & Park, 2007). The same sort of technique has been

applied in the proposed model with the following modifications:

e In the proposed system, the profile factory holds all the companies’
profiles and each company profile only contains company information, its
service adapters and user interface mapping details. It does not contain

user information.
e Direct access to companies profile by request brokers is restricted.

e Direct access to companies’ profiles by system manager is restricted.

Instead it can only request profile factory to make changes.

Figure 3.7 illustrates the functionality of profile factory in the proposed model.
Visual representation of profile factory is not presented in the proposed model as

it is an integral part of management capabilities component.

Profile Factory

Read . <_!__>

XML

Create &
Manage

Companies Profiles

Figure 3.7: Profile factory in action

72

3.4 System component structure

UML is a language that defines a standard way of representing such components
and their internal/external relationships with other components. There are two
ways to represent the system components, namely layered representation and
package representation. Layered representation is selected for explaining the

overall system.

User Interface

Request Broker UlContainer

System
Manager

Service

Adapters Authentication

Profile Factory

Core Platform

Figure 3.8: System components — Layered representation

Figure 3.8 depicts a layered representation of the system components. The

overall system is divided into the following four layers:
e Presentation Layer

e Request Management Layer

13

e Operational Layer,

e Core Service Layer

3.4.1 Presentation layer

The presentation layer is the first layer of the model framework and it consists of
a user interface component. Internally this component is divided into two sub
components namely Generic user interfaces and Customized user interfaces.
Generic user interface components hold the generic set of user interfaces. These
user interfaces are shared across the interested companies. Customized user
interface components hold the set of user interfaces that are customized for some
companies. The presentation layer of the system is directly exposed to users and
this serves as a gateway to the system. The users will use it for sending data

processing requests to the system.

3.4.2 Request management layer

The request management layer consists of request brokers and UI container
components. Presence of the system manager component on this layer indicates a
control and administration task operations. Request broker components on this
layer are responsible for brokering user requests (received via the presentation
layer) to service adapters, and then brokering back the responses to the users via
the presentation layer. The UIContainer serves as a data container that holds the

response data.

3.4.3 Operational layer

The operational layer consists of a profile factory, service adapters and
authentication components. The profile factory component is responsible for

holding the profiles of the client companies. The authentication component is

74

part of a security system and provides assistance to the system manager by

authenticating and authorizing users and their respective locations.

3.4.4 Core services layer

The last layer is the core services layer and it consists of core platform
components. This layer provides access to core business and persistence services
to the components that exist in the operational layer. Moreover, it assists the
operational layer components in the accomplishment of their required
functionalities. For example, it facilitates service adapters in making business
services related calls for data storage and retrieval, and it also assists the
authentication component in validating user credentials such as user id, password
and roles. In addition, it also provides services to the profile factory component
for retrieval of company-related information from the database such as location

details, employee details, addresses, contacts numbers etc.

3.5 System use-case model
During the detailed analysis phase of W2ASVB all the possible use-case models

for the framework were considered. The primary focus during the design,

implementation and validation phases will be on the proof of model framework.

75

3.5.1 General request use-case model

X —Co

User

<<include>>

< <include> >
e

Figure 3.9: Request use-case model

3.5.2 General request use-case descriptions

The use case displayed in Figure 3.9 represents the general flow of all requests in
the proposed model framework. All the users’ requests such as process sales
orders, query about the stock quantity etc are shown by this use case, but on the
basis of the logged in user profile, “Action Processor” performs the different
operations with the help of system core functionality. Figure 3.10 displays the
activity diagram of the above use case diagram. It shows the functionality of the

internal request process.

76

C Request Management)

C Authentication)

C Profile Manager)

{
(orrenir)

No Profile validation

Yes

(Request Brokering)

No

Request validation

Yes

(Action Processor)

CResponse Navigation)

Figure 3.10 Request activity diagram

Use case: Request Management

ID: UUCI

Brief Description:
Registered user enters his/her requests and gets the response on the
basis of his/her profile and request with the help of the system.

Primary Actors:
User (Registered user of the system).

Secondary Actors:

77

None.

Preconditions:
Registered user should be logged in into the system.

Main Flow:

1. The use case starts when the user enters the request into the
system (Request can be ‘Make sale’, ‘Process order’ etc).

2. The system transfers the user request to "Request management”
area. Requests are queued in this area for processing.

3. The "Request management"” area transfers the user information
to "System Management".

4. "System Management" allocates the request to the "Service
Request Broker".

5. “Service Request Broker” processes the request on the basis of
the "System Management" output and allocates the request data
with desire action instructions to the “Action Processing”.

6. “Action Processing™ transfers the user’s request to the
“Response Navigation”, "Response Navigation" returns the final
response to the user.

Postconditions:
The user gets the response of his request.

Alternative Flow:
1. “Service request broker” objects are not available.
2. User does not have privilege for this action.
3. Invalid values in request.

Alternative flow: Request Management: “Service request
broker” objects are not available

ID: UUCL.1

Brief Description:

The system informs the user that all resources are busy and request
will process in few minutes. (It is important to inform the user and
keep him/her update in order to keep the connection active in web

browser).

Primary Actors:
User

Secondary Actors:
None.

Preconditions:
Registered user has entered a request to the system.

Alternative Flow:

1. The alternative flow begins after step 4 of the main flow.

2. The system informs the user that his/her request is in a queue
and for that moment no resource is available for processing.

Postconditions:

1. The system updates the user about the request progress.

2. The user will have an option to cancel the request and process it
later.

78

Alternative flow: Request Management: User does not have
privilege for this action

ID: UUC1.2

Brief Description:
The system informs the user that his/her profile is not able to
perform this request.

Primary Actors:
User

Secondary Actors:
None.

Preconditions:

Registered user has entered a request which is not allowed in his/her
profile (like sales order of more than £10,000 can only be processed
by managers level profile, while, staff level profile users are not
allowed to process the sales orders of this worth).

Alternative Flow:

1. The alternative flow begins after step 3 of the main flow.

2. The system informs the user that his/her profile has no privilege
to perform the request.

Postconditions:
1. System does not processe the user’s request.
2. The system asks the user to re-enter the request.

Alternative flow: Request Management: Invalid values in
request

ID: UUC1.3

Brief Description:
The system informs the user that his/her request has invalid values.

Primary Actors:
User

Secondary Actors:
None.

Preconditions:
The user has attempted to process the request without providing the
require information.

Alternative Flow:

1. The alternative flow begins after step 5 of the main flow.

2. The system informs the user that his/her request has missing
information.

Postconditions:
1. The system asks the user to re-enter the value(s) in the request.

79

3.5.3 Sales person use case diagram

Following are few use case diagrams for sale person on the system built by using

the W2ASVB model framework.

<<include>>
—//-—? ~———
< <Includ;>>\>
Sales person \ _______ >

/ <<include>>
/ <include>>
<<include>>
Getting stock

Figure 3.11: Sales person use-case model

Use case: Search Product Stock & Price

ID: SPUCI

Brief Description:

Sales person checks a product price and availability in stock.

Primary Actors:

Sales person

Secondary Actors:

None.

Preconditions:

Sales person is logged in into the system and have privilege to

access the product.

Main Flow:

1. The use case starts when the sales person selects “Search
Product Stock & Price”.

2. Sales person enters the criteria to search for product details.

3. System passes the user's request to the “Request Management”.
“Request Management™ passes the request to the “System
Manager” for request permission on the basis of the profile.

4. "System Manager" transfers the user's request to "Service
Request Broker" after getting the valid permission.

5. “Service Request Broker™ allocates the service adapter to the
request on the basis of the request and profile of the logged in
user. If the profile is configured to use a custom search for
products then it allocates the customized service adaptor for
process otherwise generic service adaptor. All these service
adaptors exist into the "Action Processing".

6. After getting a response from the core functionality, appropriate

80

service adaptor will transfer the response to the “Response
Navigation”.

7. The system displays a list of locations containing the required
products and respective stock with the price for each location.

Postconditions:
1. The sales person gets information about the current stock

situation at each location with price.

Alternative Flow:
No Product Found (Invalid product).
Out of stock.

Alternative flow ; Search Product Stock & Price:
No Product Found

ID: SPUCI.1

Brief Description:
The system informs the sales person that the product does not exist
in the system.

Primary Actors:
Sales person

Secondary Actors:
None.

Preconditions:

1. Sales person is logged in into the system and has a privilege to
access the products.

2. Sales person searches product by providing required criteria.

Main Flow:

1. The alternative flow begins after step 6 of the main flow.

2. System informs sales person that the requested product does not
exist in the system.

Postconditions:
The sales person is informed that the requested product is out of
stock and is subsequently asked to re-enter the search criteria.

Alternative Flow:
None.

Alternative flow : Search Product Stock & Price:
Out of stock

ID: SPUC1.2

Brief Description:
The system informs sales person that the product is out of stock.

Primary Actors:
Sales person

Secondary Actors:
None.

Preconditions:
3. Sales person is logged in into the system and have a privilege to

81

access the products.
4. Sales person has searches the product by providing required
criteria.

Main Flow:

3. The alternative flow begins after step 6 of the main flow.

4. System informs the sales person that the requested product is
out of stock.

Postconditions:
The sales person is informed that the requested product is out of
stock and is asked to re-enter the search criteria.

Alternative Flow:
None.

Use case: Make Sale

ID: SPUC2

Brief Description:
Sales person wants to record a sale in the system.

Primary Actors:
Sales person

Secondary Actors:
None.

Preconditions:
Sales person is logged in into the system and have privilege to log
sales activity. Customer does the payment in cash.

Main Flow:
1. The use case starts when the sales person selects ‘Make Sale’
option.

2. Sales person records all the sales item(s) one by one by using a
scanner or manual data entry (providing item number).

3. Sales person enters the customer information.

4, Sales person enters the amount; customer has paid and presses
the process button.

5. System sends the request to the "Request Management".

6. “Request Management” sends the request to "System Manager
and then "System Manager" allocates the request to “Service
Request Broker”,

7. After getting a response from the system, "Service Request
Broker” transfers the response back to the user.

8. Ifeverything is fine in the order then the system displays the
order information with the remaining customer’s price.

9. The system gives an option to prints out the current sales
receipt.

Postconditions: ’
1. The new sale has been successfully recorded in the system.
2. The quantity in stock of the relevant product is updated.

Alternative Flow:
Cancel Sale,

82

Alternative flow: Make Sale : Cancel Sale
ID: SPUC2.1
Brief Description:
The sales person cancels the ‘“Make Sale’ process.
Primary Actors:
Sales person
Secondary Actors:
None.
Preconditions:
The sales person is logged in into the system and has privilege to
| log the sales activity. Customer does the payment in cash.
Alternative Flow:
1. The alternative flow begins at any time before step 4.
2. The sales person cancels the ‘Make Sale’ process.
Postconditions:
1. The ‘Make Sale’ process has not been recorded in system.
2. System asks the sale person to re-enter the sale information or
navigate to the main screen.

3.6 Conclusion

This framework will serve as a mediation platform for request brokers. It will
also provide a high level of abstraction by encapsulating low level details of the
system such as request handling, request mediation, response handling, service
loading etc. Implementation of this proposed model framework will result in a
prototype version of the system. This version will be verifiable by the user and

its designed parameters can also be validated by the service providing firm.

83

4. Design of a W2ASVB Model Framework

84

4.1 Introduction

The concept of a new proposed model along with a very high level description of
its internal functioning has been discussed. From this point onwards, a system is
required to be successfully built upon the proposed model framework to validate
the model framework objectives. It is worth mentioning here that although the
model framework itself does not contain any use-cases, the internal
functionalities of the model framework will be triggered on the initiation of use-
cases of the system. To this end, subsequent sections present detailed functional

descriptions of the proposed model framework.

4.2 An enhanced web 2.0 e-business framework

W2ASVB with fundamental changes provides an effective model framework
which serves as a front and middleware collaboration model between the core
platform and client operational requests. This model framework will provide an
intelligent way of providing interfaces for sharing core business logic among
small businesses and at the same time providing customization facility of their
individual core business logic without affecting other businesses. The proposed
model framework exhibits such capabilities and is intelligent enough to handle
such complex scenarios. Therefore, this new model framework needs to be

implemented on an initial version to evaluate its working capabilities.

85

|—-1 TIER—l '—-ZTIER : } 3 TIER j| PTIER-'

- System Manager

'
(Request Broker

Generic
Service Customized

Adapter Service
Adapter

EJB Persistence

EJB Core Business Logic

Figure 4.1: An architectural design of a modified Web2.0 base model framework

The output of the application of the proposed model framework on a multi-tier
Web2.0 based framework is presented in Figure 4.1. The fundamental changes
of the model framework are being integrated in between tier 3 and 4 and serve as
a front and middleware collaboration model. The framework makes use of
request brokers to intelligently route the users’ request to appropriate service
adapters. On the completion of execution of that service adapter, it intelligently
routes the response back to the appropriate user interface. Figure 4.1 illustrates
the working relationship between different components of the system. Each
component in the system is developed as a standalone entity and is capable of
performing its functionality without being tightly coupled with other
components. This loosely coupled nature of the system components eases the

development and maintenance activities. The detailed discussion about each

86

component including their internal structures and functionalities are presented in

the sections below.

4.3 Component Representation

TOKenng Services

S Bywlom Wsager
-
-7 i s
~
- W B
T Oty e
. XML Companies Protie
Enmﬂw-ﬂ Request Broder | == ’% Profio Fastary | e b - o i
7 - T
/ P I “ieg
/ - ~
' ~
/
I/ % Service Adspiers gﬂ nterfne p o= - - Ul Camtsiner
A ~7 L)
/
' d
/ 7
7 7’

I
I
/ 7/ I
!
|
!

] s
A
g Bales Secvicos % Hiosk Sareicos o~
Erd-Usar
i Purchase Survices Socurty

Figure 4.2: System components

Figure 4.2 illustrates a component representation of the overall system. The
above group of components is named as Brokering Services. Details with regards
to the relationship between components such as internal interfaces with other
components and external interfaces with the outside world are also presented in
the Figure. A detailed discussion about each component, including its internal

class structure and functionalities, is presented in the following sections.

87

4.3.1 System manager component

System Manager Component

System Manager JSFActionDispatcher
-profileFactory e
-requestBrokerPool +dispatch()
+init()
+setRequestBrokerPoolSize()
+getWebRequestBroker() ResourceRegister
+destroy()

+registerResource()
+unregisterResource()
+registerAlIResources()
+unregisterAllResources()
+lookupResourceByName()

Figure 4.2: System Manager Component sub-modules

This component is a controller component of the system. It consists of three
classes, namely SystemManager, ActionDispatcher and ResourceRegister. The

functionalities of these classes are given below.

The JSFActionDispatcher class is a gateway module of the system. Its dispatch()
method contains the business logic to obtain the free request broker from the
system manager, and then dispatches the request processing responsibility to the
allocated request broker. This method is called by the user interface when a user

sends a data processing request to the system.

The ResourceRegister class holds the references of all the services of the core
platform in a “Name-to-Service”-like mapping mechanism. Any object that needs
to execute the core platform services provides the name of the required service-id
to the ResourceRegister, and in response is given the reference of the requested
service. When the object finishes using the service, it returns the service

reference to the ResourceRegister.

88

The SystemManager class is responsible for controlling the overall system. This
module loads immediately at the deployment of the system on an application

server. It is mainly responsible for the following activities:

e Initialization of a request broker pool and its population with the
initialization of individual request brokers. The business logic for this

activity in init() method.

e Initialization of the ResourceRegister; the business logic for this activity

is initialized at the loading of the system Manager module.

e Initialization of a profile factory; the business logic for this activity is

given in init() method.

e Destruction of the ResourceRegister, request brokers pool and profile
factory when system is terminated; the business logic for this activity is

given in destroy() method.

o Allocation of a free request broker to the JSFActionDispatcher; on request
from the JSFActionDispatcher, the SystemManager searches the pool for a
free request broker and allocates one for a request. The
getWebRequestBroker() method of the SystemManager class contains the

business logic to perform this function.

e Manually increasing or decreasing the size of the request broker pool on
request from the system administrator; the setRequestBrokerPoolSize()

method contains business logic to perform this function.

To elaborate further on the above outlined interactions, UML sequence diagrams

are presented in section 4.6.1.

89

4.3.2 Profile Factory Component

Profile Factory Component

ProfileFactory nold Location woikiat
-ListOfAllLocation (& -Location|PAddress (e
-ourinstance 1 * [-LocationName 1
+init() -LocationAddress Emol
+getinstance() -LocationTelNo mpioyes
“|+getLocationByIP() +get....() ~Employeeld
‘| |+destroy() +set...) -EmployeeName
4 -EmployeeUserld
1 v -CompanyAdmin
have +isCompanyAdmin()
i +set...()
+
Company get..0
-Companyld hire
-CompanyName >
-ListOfLocations 1
+addLocation() ave ActionEntry
+addActionMapEntry() > -actionProcessorName
+addAdminMenultem() 1 . |-sourcePage
+addSalesPersonMenultem() -destinationPage
+getActionEntry() -errorPage
+removel.ocation() +get...()
+gett...8 +set...()
+set...

Figure 4.3: Profile Factory sub-components and their relationship

The Profile Factory is one of the most important components of the proposed
model framework; it holds the data dictionary which represents the meta-data
about the client’s companies. This component consists of five core classes,
namely ProfileFactory, Company, Location, Employee and ActionEntry. The last
four classes collectively represent the companies’ profiles. The ProfileFactory
class acts as a manager, and is responsible for the creation, allocation and

management of these profiles.

As mentioned earlier, a client of the system is a retail company running its
business on several locations. A location represents a retail shop (i.e. point of
sale) where a company sells its products. The company class of this component
represents a retail company, and holds the company-related data, such as a list of

its locations. The location class of this component represents these locations and

90

holds the location-related data. The relationship between a company and a
location class is one-to-many. The Employee class represents a person who
works for a company. The relationship between a company and employee class is
one-to-many. Note that the owner of a company is also modelled as an Employee
of the company; this is because the system will be used by small retail companies
and the owners of such companies also need to work in the shops. The
CompanyAdmin attribute of the Employee class is a Boolean flag that
distinguishes between ordinary employees and the company owner. In addition to
performing ordinary retail functions, the owners of a company have additional
responsibilities such as administration and management of the company, its
employees and information on its location; for this reason they will have a

separate set of user interfaces to perform these functions.

The ActionEntry class is a key class in this component. A single instance of this
class holds the mapping instruction of one business activity for any single
company. In other words, it contains a detailed mapping from one source page to
a service adapter and then from the service adapter to a destination or error page.
Service adapters in the system are modelled as ActionProcessors. The term
“action processor” is nothing but an analogy of a service adapter. Since any
company may have more than one business activity to the run the e-business, the
Company class holds the array of ActionEntry objects. Request brokers (of the
Request Broker Component) use this array of action entry objects for dynamic

request and response routing.

All locations along with other related details are embedded in the meta-data file
as shown in Figure 4.4. This file is then supplied to the ProfileFactory class for

parsing. The ProfileFactory parses the information from the XML file and creates

91

the corresponding Company and Location objects. This parsing result in the form
of a Key-Value type list, where Key represents a location id and Value holds the

reference of an object in memory.

92

<Awedwo) />

<Butddey-nuag-uos1adsares />
</u48C *SUOTIRTIY 1T 1ddngaT 13U /53283 /pUees /, - 3582-U0TIRBTARY «SUOTINTIIIFTTddNS, ~3men nuH>
</ud8(*¥20153A05 21 13u3D /5328 /pueHes /, - 3589-U0T 106 TABY wAI0ISIAOM,, =30%T NUI>
</uds(*30Ueat107 13421 13u38 /$3083 /puvens /, -3582-U0T 3R TARY #S0URRI0F13dATA, 30w nu>
</«450"u0TIRT R 131 1ddNgIT 13038 /53983 /PUVERS /, -358I-UOT 0B TABY #3317ddns30vuen, 3w nuI>
</uds(*3TRGARYIT 13UD /53083 /PUBIRS /, =35V~ UOT 8DTARY #ITESIABA, 300U MU
</ud8("%234)%202521 13036 /53903 fpueams /, - 368I-UOT 1RBTARY #1038, =Y NUI>
</44024S3qU0S13453TREIT IIUINAOYE,, = 358I-UOT 0B T AR »402S3p, -3msu nuR>

<Butddeg-nudy-uos134s3TeS>

<Butddeg-nuag-urapy />
</ud5("PI0AESR 4739151969427 1900 /5987 /PUBHRS /, = 358-U0T 185 TARY #P208559d1I01539831, - 30%u U
</udSC*TTTLI60T 0T I3U36 /$300] /PURERS /, = 968I-UOTIRBTARY «TT1336070, =3005u NUIR>
< \.nnﬁ.aSUSuﬁuu_anuﬁuﬁu\nouaui!\.uuﬂo&oﬁ&g »1317ddns3%epdn,, -3mmu nuag>
</uds(' u0TIRTY1311ddng2T 13036 /52083 /pusems / , -95%2-U0T 38D TARY »1911ddnsppe, =3amu nug>
</wds(-210d3y20uepuairyauT 1ot I9uab /83383 /puners /, =26%d-u0138614RU ,$310d2130U0pua138u T ad,, < 2uwn N>
Q.%ﬂ.aﬁ&&uuoumuﬂ&uﬁﬁ&?uﬂu%ﬂln\..uﬂu.ﬂ&u&“g #5220432%20283ut2d,, -3meu nuI>
</u48(* §220d 238042 42UT 2491 133 /53083 /pUvams /, -3593-U0T 85T ABY «S330d213seyomdautad, -meu nu>
Q.nnn.ﬂuﬂ_uxno?muﬂEuﬁuauo\nouau\vc'n\.-oﬁuho:g«s #5370d3153TRSUT I, ~9uwu NUI>
</uds(*STaqeTauT1d3y21I3u3b /53283 /pUHss /, - 388I-U0TIETARY «ST3qeTIUT1da1, 30y nuay>
</.ds(*433A1130p1023421 33U35 /53083 /pUBERS /,, - 3582 -UOT 18D TARY »AI3ATTIPPI0I3, <308 NUI>
</44024S3qUTEPYIT 13U9A0YS,, = 2602-U0T 38D TARY #4083, =3umu nuI>

<burddeg-nusg-utapy>

<Buyddey-£108832014-00122Y />
</ #10113,-3bed10113 #1088300141311ddng, = 108530014u0TI0% ,sabessan, -153p ,dsC *1911ddngppyoTIauan, ~30mos A13uz-U0T19Y7>
</ w30113,-300d10113 ,10853201413M018N), = 10853201JUOT 18 u3besEaN, =159 ,d8(* 1900280)PPYIT I3UY, =30 IM0E A13u3-w0T39Y>
</ 410133,=368410113 ,10653014200P014, =108635014U0T 298 ws3bessam, =183p ,de(2oMpOIgPPYIT U, =30 m0E A13u3-u0T297>
piiguotaeTayratddngaoys, -abedioiza #1088300141311ddng * 131 1ddns 91 13uab, = 108830014u0T 30 «TINNL=383p ,ds(uorIeyay1311ddngoTIauab, -30mo0s A13uz-10T197>
</ uT10N.=30ed10113 «#10863201423Y)YI035 " 038 * 9123uab , = 10863201JUOT I8 , TN, =159p . d8(*}93Y)Y203591 13ub, =30 M08 £17U3-UOTIIY>
PI133TEGRHITI3U30N0YS,, ~abed 10113 «JO8E3201432T0AU] * 3T 23u3b, =108632014U0T 3% #ITOAUTIUTIGOTIFUIDA0YS,=153p ,ds(* ITBSARFITIFUD, =30 M08 A13u3-10T39Y>

<burddey-£108530014-00T 307>

<SUOTIVIOT />
</u31H* 230RNUOT 18307~ [SWBNAURdN0) / TTPOBOT /53020833, -438dOBOT 861" 5655 L1 Zu=SS3IPPY-4 UOTILIOT>
</u370" Z300NUOT 180T~ T 3R NARdR0) /1TPOBOT /530100833, =Y 38dOBOT 262" 19T 5" LT Zu=883IpPY-4I UOTIBIOT>
Q.uﬂo..—ul.ao«ucuo._-—uﬂ._uﬂg\uﬂvooﬂ\nwuu,oauu...ﬁ-._god w8077°56° 5" L1Z,=F83IPPY-4[UOTI0I0T>

<SUOT V0>

<uW02°SITUOIIIIT3-BI"AAR, =T IN ,19,=DT Auedmo)>
<83711J014-Auweduo)>
<¢18=-3am, =Butposus ,0'1,=U01SI34 TAX(D>

Figure 4.4: XML file representing meta-data of a company and its associated

locations

93

4.3.3 Request broker component

Request Broker Component
«interface»
IRequestBroker
+init()
+brokeRequest()
+brokeResponse()
+destroy()
Possible Future
. Extension Point
WebRequestBroker | WebServicesRequestBroker |
-busy L e /
+init() 1+init() !
+brokeRequest() [+brokeRequest() |
+brokeResponse() '+brokeResponse() :
+isBusy() +destroy() ;
+release()
+lookupActionProcessor()
+destroy()

Figure 4.4: Request broker sub-modules

The Request broker component is a main operational component of the model
framework. It consists of an IRequestBroker interface and the
WebRequestBroker class. The WebServicesRequestBroker class is only an
illustration of a possible future extension. Figure 4.4 illustrates the sub sections

of the request broker.

The IRequestBroker interface has four main responsibilities, namely init(),
brokerRequest() , brokerResponse() and destroy(). The WebRequestBroker class
implements the IRequestBroker interface. The init() and destroy() methods of the
WebRequestBroker class are lifecycle methods. These WebRequestBroker
methods are active throughout the workflow, whereas brokerRequest() and
brokerResponse() methods are active according to the request made. The
brokerRequest() method contains the business logic to route the user request to

the appropriate action processor, whereas the brokerResponse() method contains

94

the business logic to route the response back from the action processor to the

destination user interface (destination or error web page).

4.3.4 User interface container component

Ul Container Component

UlContainer
-uiView
-appException
+get...()
+set...()
hold ! ? ! ? hold
AppException UlView
-exception -hmViews
+get...() -addView
+set...() -removeView
-removeAllViews
+get...()
+set...()

Figure 4.5: User Interface sub-modules

The new proposed model framework implements the user interface in a way that
they can work in a protocol-independent manner i.e. accepting plain data objects
for processing, and generating plain data objects as output. Now, the question is
how this protocol-independent output data will be sent back to protocol-
dependent user interfaces (i.e. web pages) to be presented to a user. The answer
to this question is the deployment of the User Interface Container component.
This component consists of three classes, namely UlContainer, UlView and

AppException. Figure 4.5 illustrates the internal design of this component.

The Action Processor generates output data during execution; this output data is
in the form of collection of data objects stored inside the UlView. Any

exception (if generated) loads into the AppException object. The UlContainer

95

class serves as a container for both UIView and AppException. On completion of
the request processing cycle, the request broker sends this UlContainer to the
user interface, which then parses the stored data (of UlContainer) into a format

that is presentable to a user.

4.3.5 Authentication component

I Authentication Component

LoginProcessor

+authenticateEmployee()
+authenticateLocation()

Figure 4.6: Authentication Component

The Authentication Component is a sub-component of the main security
component. This component consists of only one class called LoginProcessor.
There are two main responsibilities of this class; one to authenticate the
employee credentials such as User Id, password and Role, and second to
authenticate its location of access, at the time of login. The
“authenticateEmployee” and ‘“authenticateLocation” processes are designed to
perform these functionalities. These processes connect to the core platform to
verify required information. On successful authentication, the Login module (of
the user interface component) creates a user session profile and loads it with the
necessary object references such as employee, location, company, action

processor mapping and user interface menu mapping tables.

96

4.3.6 Service adapter

Service Adapter Component

«interface»
IActionProcessor
+execute()

generic.ProductProcessor generic.InvoiceProcessor| [generic.SupplierProcessor
+execute() +execute() +execute()
-handleSearchProduct() -handleSearchinvoice() -handleSearchSupplier()
-handleAddProduct() -handleAddInvoice() -handleAddSupplier()
-handleEditProduct() ~handleEditinvoice() l-handleDeleteSupplier()

-handleEditSupplier()
-handlePlaceOrder()

companyA.ProductProcessor

-handleAddProduct()

Figure 4.7: Service Adapter sub-components

The Service adapter component holds the overall workflows of the system in the
form of action processors. This component consists of an IActionProcessor sub
module. The IActionProcessor module is a gateway of service adapter component
and also serves as a plug-in point for new action processors. It defines only one
public interface process called “execute”. All generic action processors use this
process by providing their own generic implementation of this process.
Afterwards, the name of these generic action processors is placed under the

interested company (or companies) profiles within a meta-data mechanism.

Figure 4.7 illustrates the design of the three generic and one customized action
processors. In addition to a standard “execute” process; these action processors
implement their own private request “handle” processes. These are the special
processes and are there to handle special functionalities based on user-provided

action commands. For example, in the case of the Sale activity, a user submits

97

the Invoice Data and provides the Action Command = ADD in the request to the
system. On arrival of the request, the request broker loads the corresponding
generic invoice processor (assuming that a company is using a generic invoice
processor) and runs the “execute” process command. The Execute process
internally checks the given Action Command and switches the control to an
appropriate handler process, which in this case is the “handleAddInvoice”

process. This is just a design approach to separate different functionalities.

Customized action processors need not implement the IActionProcessor module
directly; instead, they extend the existing relevant generic action processor that a
company wishes to customize. Because of this inheritance, all the generic
processes of selected generic action processor will become available for
customization. For example, if a company only wants to customize the way their
products are adding to the database etc; all the service provider needs to do, is to
extend existing generic product processor, and overrides its “handleAddProduct”
mechanism. Subsequently the name of old generic action processor needs to be
replaced by a new action processor name in the meta-data module. The rest is
automatically handled by the system. In Figure 4.7, the Company A’s product

processor is an illustration of such customization.

To elaborate further on the above outlined interactions in the sample example,

UML sequence diagrams are presented in section 4.6.3.

93

4.3.7 User Interface Component Design

User Interface Component
GenericAddProduct GenericStockCheck
-source -source
-actionCommand -actionCommand
GenericMakeSale Login Company_A_AddProduct
-source -source
-actionCommand -actionCommand

Figure 4.8: User interface component designnent design

The User interface component of the system contains user interfaces (i.e. web
pages or views). Both the generic and customized user interfaces are set up
together in this single component, as illustrated in Figure 4.8. These user
interfaces can have any number of attributes with any number of methods. The
only exception is that, they must contain source and actionCommand attributes.
The Source attribute indicates the name of the page that submits the data to the
system, whereas the actionCommand attribute indicates the user action required

on submitted data.

4.3.8 Systems Class Structure

Figure 4.9 illustrates the structure of the classes in the proposed model

framework modules.

99

.
Polqoepsuri)
swan)
|||
1
i
Zwend o0 bl
g sores vasl‘a.
U4 YOI
CIOUPPOISTUNMD| poruicrenn » [oasomsimons| Jpoznusns
llllllll T T .IIIIIII_N
1 1
oigiypPoIs deouppors| |sosseccugpgey| | cughieageq oigihgeseyaing ouguegddng OigepiQ osgpodeysejeg| | oigieusaysnd ougseeg ueusy
lllllllllllll .m. d J |||»||L.|||||||h|“
e e ————— e, ans’ S i 2k i D
apess)
wiod ur-Bnig
n!o..
10859001guORRYl| 0 0 ————— - - —
v —] o T
~ umpogp F————————————1 |
Jsumuodin peo) 1} dnpoy
|||||||||| [jsanbey
uondsoxzddy| PIoH S—
-1 k- P——
laniiton_ e sbeueppnysigl T T T T T T T T T T T T T T T
[
e e e ——————————————— |
JoreBinenesuodsay|” eoeysequ) 198N 196,83 03 UoEBIAEN : apyosghuedwod Ascyoegooig

4.4 Request routing technique explanation

A better understanding of the overall component structure of the model
framework has been developed in the above sections. However, no discussion has
been provided on how the different modules of these sub-modules interact with
each other to perform certain functionalities. To understand the core functionality
of the system, one needs to understand the request routing technique. The

following sections provide further details on request routing processing.

4.4.1 Action management

After successful authentication of a user, the login class creates the user session
profile and allocates it to the user. This user session profile (along with other
details) holds the action processing mapping mechanism. Figure 4.10 illustrates
action processor mapping mechanism of a user session profile. This action
processor mapping mechanism helps the system decide about a user’s request and

response routing paths.

Action P Mapping Table
Source ActionProcessorName Destination Page ErrorPage
GenericMakeSale GenericInvoiceProcessor GenericPrintinvoicePage Displayfrror

GenericOrderPage CompanyA OcderProcessor CrdurConficmationlage Displaykrroz

wpanyASuppl ierPage | GenericsupplierProcessor 1ppl lerContirmat ionPage |Dispiayker

WebRequest
[T 6. Road actionCommand

Source ¥ GenericMakeSale
actionCommand & ADD

Figure 4.10: Action management activity for make sale process

101

Figure 4.10 depicts a sale process. This initiative was taken due to the irreducible
complexity of the scenario and to provide better understanding to the reader. In
the sale activity, by using the GenericMakeSale user component, a sales person
(i.e. a user) submits the customer invoice data to the system. On arrival of this
user request, the system creates the WebRequestContext object and fills it with
user-submitted information. This WebRequestContext object encapsulates three
important pieces of information, namely data, source and actionCommand. The

description of each part is as follows:
o The data part represents the InvoiceData that was keyed in by the user.

o The source part represents the name of the page from which the request is

being generated; and it is GenericMakeSale in the current scenario.

e Finally, the actionCommand part specifies the action that the user wants
the system to take on the submitted data. It is ADD in this current
scenario; which means that the user wants to save the InvoiceData in the

database.

Subsequently, the system manager allocates this user request to a free web
request broker. This web request broker uses the WebRequestContext object for
mapping the user request to an appropriate action processor. Figure 4.10 explains
the complete scenario. This phase is called Action Management. The next phase
is view management; it describes how the output data that is being generated in

response to the execution of the action processor is routed back to the user.

102

4.4.2 View management

Action Processor Mapping Table
Source ActionProcessorName Destination Page ErrorPage
GenericMakeSale GenariclnvoiceProcessor GenericPrint Displ

GenericOrderPage wpanyA OrderProcesass OrderCont i rmat fonFage DisplayEr:

lerPage eneric plietProcessor 1let W LrmationPage DisplayErrot

UlContainer » \
-

8. Store User Session
UTView (Invoiced)

WebRequest actionProcessor
Context m

{uu 9 InvoiceData } GenericinvoiceProcessor

Source 9 GenericMakeSale
actionCommand = ADD

9. Read Iowoice #
Present Output UIContainer (NEW)

and
for Customer

PrintinvoicePage

Figure 4.11: View management activity for make sale process

Figure 4.11 illustrates the view management phase of the sale process. The
execute process of the GenericlnvoiceProcessor generates the output data in the
form of a UIView. The Web request broker creates the UlContainer and stores
this UIView within it (in the current case, the UIView holds the Invoice number
of the newly saved invoice). Eventually the UlContainer instance is stored inside

the web request context object.

The web request broker then searches for the corresponding destination page
name in the action processor mapping table. Once the destination page object is
found, the request broker dispatches the response to the destination page
container which is called PrintInvoicePage in the current scenario. Note that, the
names of the destination and error pages in the action processor mapping module
are abstract names e.g. GenericPrintInvoicePage. Conversion of these abstract

names into absolute paths is the responsibility of the Navigator module. Finally,

103

PrintIinvoicePage reads the output data (i.e. Invoice number) from the web
request context object and presents a printable sales’ invoice to the user. Figure

4.11 explains the complete scenario.

4.5 Business logic on-demand customization mechanism

This is a key question based on which the investigation started. The answer to
this question is hidden in a meta-data module and its processing. As described
earlier, the CompanyProfile module and its mapping mechanism are the data
dictionary of this system and a profile factory which is a controller that uses this
data dictionary to provide direction to others. Subsequent sub-sections presents

examples of both business logic and user interface customizations.

4.5.1 Customization of business logic

Company A : Action Processor Mapping Table (BEFORE)

Source ActionProcessorName Destination Page ErrorPage
GenericMakeSale \9¢n0ricInV°iCOP!°COll°t,i GenericPrintInvoicePage DisplayError
GenericOrderPage GenericOrderProcessor OrderConfirmationPage DisplayError

CompanyASupplierPage | GenericSupplierProcessor | SupplierConfirmationPage DisplayError

Company A : Action Processor Mapping Table (AFTER

Source ActionProcessorName Destination Page ErrorPage
=== o)
GenericMakeSale CompanyA InvoiceProcessor)} GenericPrintlInvoicePage DisplayError
GenericOrderPage GenericOrderProcessor OrderConfirmationPage DisplayError

CompanyASupplie;Page GenericSupplierProcessor SupplierConfirmationPage |DisplayError

Figure 4.12: Action processor customization example

104

For example, a Company A runs its business on this proposed W2ASVB model
framework by using all generic user interfaces and all generic action processors.
At some stage, Company A asks for customization of its
GenericlnvoiceProcessor. In this case, the service provider needs to perform the

following steps:

o Creates a new action processor class called CompanyA_InvoiceProcessor

and customize it according to Company A’s requirements.
o Compiles the code of this new action processor

e Plug-in this new action processor in the system by replacing the word
GenericlnvoiceProcessor with CompanyA_InvoiceProcessor in Company

A’s profile inside the meta-data module by the controller module.

e And finally, instructs the profile factory to refresh Company A’s action

processor mapping.

Figure 4.12 reflects the changes in Company A’s action processor mapping

before and after customization.

4.5.2 Customization of user interface

For instance, if at some point Company A decides to define its own sales invoice
format rather than using the default, then this customization of the user interface

will require the service provider to make the following changes:
e Create a new object and name it CompanyA_GenericMakeSale.

o Customize the sales invoice on the new object, where required.

105

Assign the new object into the system by replacing the word.

GenericMakeSale with CompanyA_MakeSale in Company A’s profile

inside the meta-data module by the controller.

Update the existing user interface, mapping details of the make sale page

inside the meta-data module with a new one. This change ensures that the

system will open the new make sale page next time.

Instruct the profile factory to refresh its action processing mapping

mechanism.

Figure 4.13 reflects the changes in Company A’s action processor mapping

mechanism before and after customization.

Since sales’ invoice is a printable

object, the service provider can customize the corresponding print invoice page

in the same way. This is illustrated in the Figure 4.13.

<f

Company A : Action Processor Mapping Table (BEFORE)

Source

GenericMakeSale
Geﬁéiicbrééf?age
CompanyASupplierPage

ActionProcessorName Destination Page

o - 1
CompanyA_Invoic.Procollor(, GenericPrintInvoicePage

GenericOrderProcessor OrderConfirmationPage

QgpericSupplierProcessor SupplierConfirmationPage

Company A : Action Processor Mapping Table (AFTER)

Source

CompanyA MakeSale “

GenericOrderPage

CompanyASgpplierPage

ActionProcessorName Destination Page

GenericOrderProcessor OrderConfirmationPage

GenericSupplierProcessor SupplierConfirmationPage

Figure 4.13: User Interface Customization Example

ErrorPage
DisplayError
DisplayError
DisplayError

ErrorPage

‘1 CompanyA InvoiceProcessor (CompanyA PrintInvoicePage)DisplayError

DisplayError
DisplayError

106

By adopting this approach, the system can provide a customization facility for
both user interfaces and action processors for any company on demand at low
cost. As a point of interest, the service provider needs to make no changes in the

core system design to perform this customization.

4.6 System Interactions Diagrams

A better understanding of the overall component structure of W2ASVB has been
developed. However, no discussion has been provided on how different classes of

these components interact with each other to perform certain functionalities.

To understand the core functionality of the system, one needs to understand the

following three system life-cycle interactions:

o Interactions between classes and objects that happen at system
initialization time.
» Interactions between classes and objects that happen when employee (i.e.

user) login to the system.

o Interactions between classes and objects that happen when employee

sends a request to the system for executing business workflows (i.e. action

processors).

The following sub-sections contain UML sequence diagrams to elaborate further

on the above-mentioned interactions.

107

4.6.1 System Initialization Sequence Diagram

g
5

.........................

!
0: Oemm <key, Yalue>()
iz

|

........................

------------- 4
3 3
.......................... ;"rj....
4

1

m-l:Eh) S ~

...... y . | e, =, [SCUEEN DR 39 RS
o
& ‘;—1 Yoo 'Y

Figure 4.14: System initialization sequence diagram

108

4.6.2 Employee Login Sequence Diagram

Figure 4.15: Employee login sequence diagram

109

4.6.3 Request Processing Sequence Diagram

Figure 4.16: Request processing sequence diagram - Adding new invoice in the database

110

5. A W2ASVB framework implementation

11

5.1 Introduction

This section provides the implementation details of the W2ASVB framework.
The correct implementation of any framework design facilitates the validation
and verification of the framework and other design parameters. The section first
presents a brief discussion about the chosen implementation language and
technology. This is followed by a discussion of pseudo-code snippet from
different parts of the implemented system along with the details of their

execution,

5.2 Implementation Technology

As discussed in chapters 1 and 3, the W2ASVB model framework is using a core
platform, which is implemented in Java using EJB technology. The choice of the
language for the implementation of the system is Java. Moreover, the
implementation of the proposed model framework in Java makes integration of
different components of the system seamless and elegant within the existing core
platform. As an additional benefit of this choice, no coding or integration related
technology is required to develop collaboration mechanism between the

components of W2ASVB and the core platform.

Whenever any web system goes under development, the selection of appropriate
front-end user-interface frameworks plays a vital role. The careful selection of
such a framework is critical for the success of the project. J2EE offers different
UI frameworks for the development of a web system. Amongst them, JSF (Java
Server Faces), Struts and Tiles are very good technologies. The application of
these frameworks on a web system is entirely dependent on the type of the
system in production. For example, Struts is known for its controller-based

architecture whereas Tiles is known for changing corporate layouts in a seamless

112

manner. Apart from these two, JSF has a developed user interface framework
designed by Sun Microsystems and is quickly getting closer to become an
industry standard. Taking into consideration the popularity of the JSF framework
and its acceptance as an industry standard; JSF has been adopted as a user
interface framework for W2ASVB. More information about JSF can be found at

(JSF, 2007).

5.3 Implementation Details

This section provides details on how certain parts of the design are translated
into working code. Only the key pseudo-code snippets have been extracted from
the respective classes and explained. It should be noted here that web systems
built on the JSF framework, contain code that is distributed across different parts
of the system. Hence, the complete code could not be understood unless its

related parts are explained.

5.3.1 System Manager

init() is a method of the SystemManager module that is called when the system
manager is initialized by the application server. On execution, this function first
initializes the ResourceRegister, and then initializes the ProfileFactory followed
by the initialization of the request broker pool (according to the given
POOL_SIZE). This pool is then filled with web request brokers. POOL_SIZE is
a variable that leads the system manager to decide about the size of the request

broker pool.

The following pseudo-code presents the flow of control inside the init() method

of the SystemManager.java file.

113

Start of Init()
1. Initialize ResourceRegister
2. Initialize ProfileFactory
3. Initialize Request Broker Pool size with given POOL_SIZE
4. Fori=0to POOL_SIZE
4.1 Create new Web Request Broker

4.2 Add newly created Web Request Broker in the Request Brokers
pool

[End of for loop]

For the complete code listing see Appendix (Section 10.1.1).

5.3.2 Profile Factory

The init() method of the ProfileFactory module is responsible for performing this
task. It is called by the system manager module at the time when the manager
becomes initialized. This method is responsible for creating a company’s objects
along with the initialization of their respective action-processor mapping tables,
admin-menu mapping tables and sales-person mapping tables in memory.
Moreover, this method is also responsible for creating the location objects of the
éorresponding companies and then putting them one by one in the <key, value>
type collection object, where the key part represents the IP address of a location

and the value part represents the location object associated with that IP address.

114

The following pseudo-code presents the flow of control inside the init() method

of the ProfileFactory.java file.

Start of Init()
1. Declare <KEY, VALUE> type LocationPraofiles Collection
2. Declare CompanyList collection
3. Load all the companies in CompanylList from CompanyProfiles XML file
4. Loop through each Company in CompanylList

4.1. Fill up the Company Object with company information using core
platform

4.2. Read the Action-Processing-Mapping table from
CompanyProfiles. XML File

4.3. Store the Action-Processing-Mapping Table in Company object
4.4. Read the Admin-Menu-Mapping table from CompanyProfiles. XML
4.5. Store the Admin-Menu-Mapping table in Company object

4.6. Read the SalesPerson-Menu-Mapping table from
CompanyProfiles XML

4.7. Store the SalesPerson-Menu-Mapping table in Company object

4.8. Retrieve all the locations of Company from CompanyProfiles. XML
file
4.9. Loop through each Location of Company

4.9.1. Create Location object

platform
4.9.3. Store reference of Company object in Location object

4.9.4. Put Location object in LocationPrafiles collection with
Location IP address as KEY and Location object as VALUE

End of Inner Loop
End of Outer Loop
End of Init()

4.9.2. Fill up Location object with required information using core

115

For a complete code listing see Appendix (Section 10.1.2).

5.3.3 Session profile
The login() method of the Login module is responsible for performing this job. It

is called when any employee of any company attempts to login to the system
from any location. It validates the employee credentials and location access
rights using the core platform’s security service, and on successful authentication
of both employee and location details, it passes the location IP address to the
system manager to retrieve the associated location object. The system manager in
turn passes this request to the profile factory to locate the location object
associated with the given IP address. This location object holds the reference of
the associated company object which in turn holds the action-processors, sales-
menu and admin-menu mapping tables. On return from the call from the system
manager, this method stores the location object in the user session profile and
from this point onwards this user session profile serves as a reference document

for the system to route future requests from this employee.

The following pseudo code presents the flow of control inside the login() method

of the Login.java file.

116

Start of Login(Userld, Password, Role)
1. Create UserSessionProfile object
2. Create LoginProcessor
3. Authenticate employee credentials using LoginProcessor
3.1, If authenticated, then
3.1.1. Retrieve the employee details from core platform
3.1.2. Store the employee details in UserSessionProfile object

3.2. Else
3.2.1. Return un-authorized user access error message to user
[End of if-else]

4. Retrieve IP address of location of access
5. Authenticate location of access using LoginProcessor
3.1. If location authenticated, then

5.1.1. Retrieve Location object associated with IPAddress using
System Manager

5.1.2. Store Location object in UserSessionProfile
5.2, Else
5.2.1. Return un-authorized location access error message to user
[End of if-else]
6. Destroy LoginProcessor
7. If employee role is Company Admin, then
7.1. Show Company Admin Desktop
8. Else
8.1. Show Sales Person Desktop
[End of if-else]
End of Login()

For complete code listing see Appendix (Section 10.1.4).

117

5.3.4 Web request broker
The getWebRequestBroker() method of the System Manager module is

responsible for performing this task. It is called by the JSFActionDispatcher
class when any request comes in to the system for processing. On receiving a call
from the JSFActionDispatcher, the system manager iterates through the request
broker pool to find a free web request broker. As soon as the system manager
locates any free web request broker it sets its status to busy and returns its

reference back to the JSFActionDispatcher for further processing.

The following pseudo-code presents the flow of control inside the

getWebRequestBroker() method of SystemManager.java file.

Start of getWebRequestBroker()
1. Do while there are WebRequestBrokers in request broker pool
1.1. Pick up WebRequestBroker from Pool
1.2. If WebRequestBroker is busy, then
1.2.1. Continue loop
1.3. Else
1.3.1. Set WebRequestBroker busy flag to true
1.3.2. Break and Return WebRequestBroker
[End of if-else]
[End of While loop]
End of getWebRequestBroker()

For complete code listing see Appendix (Section 10.1.6).

5.3.5 Action Processor
The brokerRequest() method of the Web Request Broker module is responsible

for creating a user-profile session at the time of login. It is called by the

118

JSFActionDispatcher module after the allocation of free web request broker.
Moreover, the JSFActionDispatcher passes the reference of the web request
context object to this method as well. This web request context object holds the
details such as details of an employee who sends the request, location details of
the location from which request gets generated and a source name of the page.
This method loads the corresponding action processor with the help of source
page name and action processor mapping table. Each line of the action processor
mapping table is implemented as a single instance of an action entry or, in other
words each <Action> tag of XML meta-data file is translated into one action
entry. In memory, the action-processor mapping table is a collection of action
entry objects. At the end, control passes back to the JSFActionDispatcher, which
then calls the brokerResponse() to send the response back to the appropriate user

interface.

119

The following pseudo-code presents the flow of control inside the

brokerRequest() method of the WebRequestBroker.java file.

Start of brokerRequest(WebRequestContext)
1. Read Source Page name from WebRequestContext
2. Retrieve Location Prafile from WebRequestContext
3. Lookup ActionEntry corresponding to Source Page from UserSessionProfile
4. Read Action Processor name from Action Entry
3. Load and execute corresponding Action Processor
5.1. If executed successfully, then
5.1.1. Store output in UlView object
5.2. Else
5.2.1. Store exception in AppException object
[End of if-else]
6. Unload Action Processor
End of brokerRequest()

For complete code listing see Appendix (Section 10.1.7).

5.3.6 Mapping output data to the user interface
The brokerResponse() method of the Web Request Broker module is responsible

for routing back the output data from the action processor to the appropriate user
interface. It gets called by the JSFActionDispatcher when the brokerRequest()
method finishes its execution. Its main responsibility is to route the response
back to the appropriate destination page. This method creates the UlContainer
and stores the UIView within it. It then reads the action entry to find the
destination page. It then dispatches the response back to the destination page. At
the end, the JSFActionDispatcher calls the release() method of the web request

broker to make it available for the next processing request.

120

The following pseudo-code describes the flow of control inside the

brokerResponse() method of the WebRequestBroker.java file.

Start of brokerResponse(WebRequestContext, WebResponseContext)
1. Create UlContainer
2. Reads AppException from WebRequestContext
2.1. If AppException is null, then
2.1.1. Store UlView in UIContainer

2.2. Else
2.2.1. Store AppException in UlContainer
[End of if-else]

3. Store UIContainer in WebRequestContext

4. Read Destination Page name from ActionEntry

3. Dispatch response to the Destination Page
End of brokerRequest()

121

5.4 System Outputs

SystemManager --> init() =--> Start

SystemManager --> init() --> Initializing EJB Platform
ResourceRegisterar --> registerEJBS() =--> Start
ResourceRegisterar --> registerEJBS() =--> End
SystemManager --> init() =--> EJB Platform Initialization complete.
SystemManager --> init() =--> Initializing ProfileFactory.
ProfileFactory() --> getlInstance() --> Start
ProfileFactory --> init() --> Start

XMLReader --> getInstance() --> Start

XMLReader --> getInstance() --> End

XMLReader --> getCompaniesList() --> Start

Root node of XML document is: Company-Profiles

Total no of Company Profiles in XML file : 2

Company ID: 61

URL : www.ca-electronics.com

Total number of registered Locations for this Company : 3

Location IP-Address=217.35.95.208 logopath=resources/logodir/CompanyNamel-LocationNamel.gif
Location IP-Address=217.45.161.252 logopath=resources/logodir/CompanyNamel-LocationName2.gif
Location IP-Address=217.35.95.138 logopath=resources/logodir/CompanyNamel-LocationName2.gif
Total number of Action-Entry : 6

[Action-Entry source->genericMakeSale.jsp dest->showGenericPrintInvoice actionProcessor-
>generic.InvoiceProcessor errorpage->showGenericMakeSaleError])

[Action-Entry source->genericStockCheck.jsp dest->NULL actionProcessor-
>generic.stock.StockCheckProcessor errorpage->NULL]

[Action-Entry source->genericSupplierRelation.jsp dest->NULL actionProcessor-
>generic.supplier.SupplierProcessor errorpage->showSupplierRelationErrorPage]

[Action-Entry source->GenericAddProduct.jsp dest->messages actionProcessor->ProductProcessor
errorpage->error]

[Action-Entry source->GenericAddCustomer.jsp dest->messages actionProcessor->CustomerProcessor
errorpage->error]

[Action-Entry source->GenericAddSupplier.jsp dest->messages actionProcessor->SupplierProcessor
errorpage->error]

Total number of Admin Menu links: 11

[Menu name->desktop navigation-case->showGenericAdminDesktop]

[Menu name->recorddelivery navigation-case->/samand/faces/genericRecordDelivery.jsp]

[Menu name->reprintlabels navigation-case->/samand/faces/genericReprintLabels.jsp]

[Menu name->printsalesreports navigation-case->/samand/faces/genericPrintSalesReports.jsp]
[Menu name->printpurchasereports navigation-case->/samand/faces/genericPrintPurchaseReports.jsp]
[Menu name->printstockreports navigation-case->/samand/faces/genericPrintStockReports.jsp]
[Menu name->printattendancereports navigation-case->/samand/faces/genericPrintAttendanceReport.jsp]
[Menu name->addsupplier navigation-case->/samand/faces/genericSupplierRelation.jsp]

[Menu name->updatesupplier navigation-case->/samand/faces/genericSupplierRelation.jsp]

[Menu name->closetill navigation-case->/samand/faces/genericCloseTill.jsp]

[Menu name->resetstaffpassword navigation-case->/samand/faces/genericResetStaffPassword.jsp]
Total number of Salesperson Menu links: 7

[Menu name->desktop navigation-case->showGenericSalesPersonDesktop

[Menu name->stockcheck navigation-case->/samand/faces/genericStockCheck.jsp

[Menu name->makesale navigation-case->/samand/faces/genericMakeSale.jsp

[Menu name->managesupplier navigation-case->/samand/faces/genericSupplierRelation.jsp

[Menu name->viewperformance navigation-case->/samand/faces/genericPerformance.jsp

[Menu name->movestock navigation-case->/samand/faces/genericMoveStock.]jsp

[Menu name->supplierrelations navigation-case->/samand/faces/genericSupplierRelations.jsp

122

http://www.ca-electronics.com

Company ID: 1

URL : www.N-Genius.com

Total number of registered Locations for this Company : 1

Location IP-Address=217.41.27.94 logopath=resources/logodir/CompanyName2-LocationNamel.gif
Total number of Action-Entry : 6

[Action-Entry source->genericMakeSale.jsp dest->showGenericPrintInvoice actionProcessor-
>generic.InvoiceProcessor errorpage->showGenericMakeSaleError]

[Action-Entry source->genericStockCheck.jsp dest->NULL actionProcessor-
>generic.stock.StockCheckProcessor errorpage->NULL]

[Action-Entry source->genericSupplierRelation.jsp dest->NULL actionProcessor-
>generic.supplier.SupplierProcessor errorpage->showSupplierRelationErrorPage]

[Action-Entry source->GenericAddProduct.jsp dest->messages actionProcessor->ProductProcessor
errorpage->error]

[Action-Entry source->GenericAddCustomer.jsp dest->messages actionProcessor->CustomerProcessor
errorpage->error]

[Action-Entry source->GenericAddSupplier.jsp dest->messages actionProcessor->SupplierProcessor
errorpage->error]

Total number of Admin Menu links: 11

[Menu name->desktop navigation-case->showGenericAdminDesktop]

[Menu name->recorddelivery navigation-case->/samand/faces/genericRecordDelivery.jsp]

[Menu name->reprintlabels navigation-case->/samand/faces/genericReprintLabels.jsp]

[Menu name->printsalesreports navigation-case->/samand/faces/genericPrintSalesReports.jsp]
[Menu name->printpurchasereports navigation-case->/samand/faces/genericPrintPurchaseReports.jsp]
[Menu name->printstockreports navigation-case->/samand/faces/genericPrintStockReports.jsp]
[Menu name->printattendancereports navigation-case-
>/samand/faces/genericPrintAttendanceReport.jsp]

[Menu name->addsupplier navigation-case->/samand/faces/genericSupplierRelation.jsp]

[Menu name->updatesupplier navigation-case->/samand/faces/genericSupplierRelation.jsp]

[Menu name->closetill navigation-case->/samand/faces/genericCloseTill.jsp]

[Menu name->resetstaffpassword navigation-case->/samand/faces/genericResetStaffPassword.jsp]
Total number of Salesperson Menu links: 7

[Menu name->desktop navigation-case->showGenericSalesPersonDesktop

[Menu name->stockcheck navigation-case->/samand/faces/genericStockCheck.jsp

[Menu name->makesale navigation-case->/samand/faces/genericMakeSale.jsp

[Menu name->managesupplier navigation-case->/samand/faces/genericSupplierRelation.jsp

[Menu name->viewperformance navigation-case->/samand/faces/genericPerformance.jsp

[Menu name->movestock navigation-case->/samand/faces/genericMoveStock.]sp

[Menu name->supplierrelations navigation-case->/samand/faces/genericSupplierRelations.jsp

XMLReader --> getCompaniesList () =-=-> End

ProfileFactory =--> init() =--> locationHome.findByIP(217.35,95,208) = 1
ProfileFactory --> init() --> locationHome.findByIP(217.45.161.252) = 6
ProfileFactory --> init() --> locationHome.findByIP(217.35,95.138) =1
ProfileFactory --> init() =--> locationHome.findByIP(217.41.27.94) = 1
ProfileFactory --> init() =--> End

ProfileFactory() --> getlInstance() --> End

SystemManager --> init() =--> ProfileFactory initialization complete.

Figure 5.1: System Initialization - Loading process of company profiles from CompanyProfile. XML
file

123

http://www.N-Genius.com

SystemManager --> init() =--> About to call initRequestBrokersPool().

SystemManager --> initRequestBrokersPool () =--> Start

SystemManager --> initRequestBrokersPool () --> POOL SIZE set to->10
WebRequestBroker --> init() --> Start

WebRequestBroker --> init() =--> Initialized with BUSY status :false
WebRequestBroker --> init() =--> End

SystemManager --> initRequestBrokersPool () =--> WebRequestBroker
[samand.broker.WebRequestBroker@8cb0d2] added in pool at position->0
WebRequestBroker --> init() =--> Start

WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker =--> init() =--> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@acdd8a] added in pool at position->1
WebRequestBroker =--> init() =-=-> Start

WebRequestBroker =--> init() --> Initialized with BUSY status:false
WebRequestBroker =--> init() =--> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@1049065] added in pool at position=->2
WebRequestBroker --> init() --> Start

WebRequestBroker --> init() --> Initialized with BUSY status:false
WebRequestBroker --> init() --> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker .WebRequestBroker@a3e8d9] added in pool at position->3
WebRequestBroker --> init() --> Start

WebRequestBroker --> init() =--> Initialized with BUSY status:false
WebRequestBroker --> init() =--> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@l0bfee3] added in pool at position->4
WebRequestBroker --> init() --> Start

WebRequestBroker --> init() =--> Initialized with BUSY status:false
WebRequestBroker --> init() --> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@B8aedb8] added in pool at position->5
WebRequestBroker =--> init() =-=-> Start

WebRequestBroker --> init() =-> Initialized with BUSY status:false
WebRequestBroker =--> init() =--> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@fd05c7] added in pool at position->6
WebRequestBroker --> init() =--> Start

WebRequestBroker --> init() =--> Initialized with BUSY status:false
WebRequestBroker --> init() =--> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@1868cf3] added in pool at position=->7
WebRequestBroker --> init() =-=-> Start

WebRequestBroker --> init () =--> Initialized with BUSY status:false
WebRequestBroker --> init() =--> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@8fb08f] added in pool at position->8
WebRequestBroker =--> init () --> Start

WebRequestBroker --> init() =--> Initialized with BUSY status:false
WebRequestBroker =--> init() =--> End

SystemManager --> initRequestBrokersPool () --> WebRequestBroker
[samand.broker.WebRequestBroker@190973e] added in pool at position->9
SystemManager --> initRequestBrokersPool () =--> End

SystemManager =--> init() =--> End

Figure 5.2: System Initialization - Initialization of request broker pool

124

6. A W2ASVB framework validation

125

This chapter presents the results of testing conducted on W2ASVB. The primary
purpose of the testing was to validate the system functionalities by comparing
them with other software. This chapter first describes the environment in which
testing was conducted. This is followed by the list of the test cases that were
developed to perform testing and finally, it presents the detailed description of
test results in tabular form. The presentation format for test results description
has been tailored from IEEE 829:1998: Standard for Software Test

Documentation and the testing approach is black box testing.

6.1 Environment

The table below contains the description of hardware and software environment

under which the test cases were executed:

6.1.1 Hardware Environment

CPU Intel 1.5 GHz Centrino Mobile Technology
RAM 1.5 GB

Hard Disk 60 GB

Display Card AGP Graphics card with 32 bit support
Monitor SVGA

Keyboard Standard 101 keys

Mouse Standard

6.1.2 Software Environment

Operating System Windows Vista Home Edition

Application Server Sun One Application Server 9 and IS

126

IDE

Netbeans 5.5.1 with Visual Web Pack installed

Internet Browser Mozilla Firefox v 2.0.0.6

6.2 Validation process

Validation of the W2ASVB framework is carried out by comparing its execution

time, average cost per user and scalability with the ZohoCRM and Microsoft

Dynamics. The reason for selecting the ZohoCRM and Microsoft Dynamics for

validation is that both consist of several features such as partial customization,

generic workflow management mechanism etc. similar to W2ASVB and also

both have their own software validation platform for providing data such as

instruction execution time etc.

6.2.1 Validation testing cases

Test Case

Description

Execution Time

Executing the “Make Sale” activity process in ZohoCRM,
Microsoft Dynamic and W2ASVB and then comparing the

results.

Average Cost

per User

Comparing the initial and customization cost of

ZohoCRM, Microsoft Dynamic and W2ASVB framework.

Scalability

Using the Logic versus physical tiers scalability validation

method to compare the systems.

127

6.2.2 Execution time

The execution time of a computational task is the length of time the task takes to
execute a specific platform. Knowing the execution time is of a major importance

for the analysis of real-time system performance.

The execution time is validated by running the set of the instructions under the
“Make Sale” activity as shown below. Subsequently, the process and the
execution time of the entire request are stored within the Profilefactory object
XML collections with the key and the associated values. These steps will help to
validate the model framework execution time as it is considered as a major factor
of any new e-business model. The execution time outcome comparison with
existing e-business frameworks along with execution process of the entire
selected and proposed model framework is presented in the next few sub
sections. The execution time of the different frameworks can be calculated by

performing the following steps.

Identifier T1
Setup User is logged on to the system.
Description To test the make sale functionality of the system. Also, to

test the request routing from generic user interface to

generic action processor by web request broker.

Procedure User clicks on the ‘Make Sale’ button.

128

TC 1.1 User enters the customer items codes

TC 1.2 User enters the payments details

TC 1.3 User enters the customer details

TC 1.4 User presses ‘save’ button

Modules

Executed

genericMakeSale.jsp

e genericMakeSale.java

e genericltemSale.jsp

e genericltemSale.java

e genericPaymentScan.jsp

e genericPaymentScan.java
e genericCustomerScan.jsp
e genericCustomerScan.java
¢ InvoinceBean.java

¢ ResourceRegister.java

e JSFActionDispatcher.java
e SystemManager.java

o WebRequestBroker.java

129

e GenericlnvoiceProcessor.java

Result

For TC 1.1

e System adds the given items on the sale invoice (see

Figure 6.1).
For TC 1.2

e System adds the given payments on the sale invoice

(see Figure 6.2).
For TC 1.3

e System registers the customer details in the system
and shows confirmation on the sale invoice (see

Figure 6.3).
For TC 1.4
e New sale is recorded successfully in the system.
e Relevant product quantity is updated.

e System prints out the sale invoice (see Figure 6.4).

http:/llocalhost:B181 - Make Sale Mozilla Firef

He ER Wew Hgory Bockmarks Yehoo! Jook Heb

CUST(F4)

w7

SAVES"

EConcessioN
C AELECTRONICS
Invelce To: 26 Tottenham Gourt Road Date 1 2007
London
London
0207637 5088 Cashler: Hamed
Invoice No.
ITEM SOLD|
PRODUCT SERIALNO CND CHK PRICE
FLUI 266M8 XD MEMORY CARD NEW Checked 59.99
IPAQ 4700 POCKET PC TWC61200TS ~ NEW Checked 39999
TOTAL
PAYMENTS)
METHOD REF. NO AUTH.CODE AMOUNT
BALANCE TO PAY: 1450 .98
BALANCE £459.98
T —

Tor m bied

Figure 6.1: System confirms addition of customer items on the sale invoice

hitp:Mocalhos!:B18B1 Make Sale - Mozilla Firefox
Be ER yew Hgoy foomas Yoo [ook b
EConcessioN
€ AELECTRONICS
Involes To: 26 Tottenham Court Road Date 1 8ep 2007)
London
London
0207937 008 Cashier: Hamed
.
PRODUCT SERIALNO CND CHK PRICE
FUJI 256MB XD MEMORY CARD NEW Checked 5099
IPAQ 4700 POCKET PC TWC61200T5 NEW Checked 39999
TOTAL CUST(F4)
[PAYMENTS
METHOD REF. NO. AUTH.CODE AMOUNT)
CARD 2342664597540989 2340984 3000
CASH CASH NA 159,98 nIeh
BALANCE TO PAY: i}
I T
BALANCE SAVER"
O Fndi | 1@] Matgh case
= e Src s —_—

Figure 6.2: System confirms collection of customer payments on the sale

invoice

131

hitp:dllocalhost:B181 - Make

Sale - Mozilla Firefox

fe €& Yew Hgory fookmarks Yshoo! Jooks Heb

EConcessioN
C A ELECTRONICS
Invoice To: 26 Tottenham Court Road Date 1 2007
Miss D Willeox London
102 London
Willenhall Drive 020 7637 6388 Cashier: Hamed
UB3 2UX Involce No.

PRODUCT

TEM SOLD)

FUJI 256MB XD MEMORY CARD NEW

Checked 5999

e
SERIALNO CND CHK PRICE

IPAQ 4700 POCKET PC TWC6120075 NEW Checked 399 99
TOTAL L
PAYMENTS)
METHOD REF. NO. AUTH.CODE AMOUNT
CARD 2342664597540989 2340984 300.0
CASH CASH NA 159.98
BALANCE TO PAY:
_
BALANCE
O A s) Match case
Done S TR TR ¥ B Tor wﬁ ’

Figure 6.3: System confirms registration of a new customer on the sale

invoi

ce

Ble Edt Yew Hgtoy fookmarks Yahoo! Jook Heb

Invoice To:
Miss D Willcox

C A ELECTRONICS
26 Tottenham Court Road
London
London
020 7637 5988

EConcessioN

Date | September 2007

Cashler: Hamed
Involce No. 39086

PRODUCT SERIAL NO
FUJI 256M8 XD MEMORY CARD

CND CHK PRICE
NEW Checked 59 99

IPAQ 4700 POCKET PC TWC61200T6 NEW Checked 399 99
TOTAL
PAYMENTS
METHOD REF. NO. AUTH.CODE AMOUNT
CARD 2342664597540989 2340984 3000
CASH CASH NA 169 98
BALANCE TO PAY: o

T Regutiation Numbar. 123468
‘ou pald £16.5 VAT on D900 0 G17 6%

BALANCE 0.0 |

Thankyou for shopping with us, Please visit us atwww.ca-electronies.com

O me

Do

Figure 6.4: System shows the printable version of the sales invoice

132

6.2.2.1 Zoho CRM framework

ZohoCRM handles the user request by a conventional request management
technique that is commonly used in traditional web-based systems. On arrival of
a request, an application server automatically redirects it to a designated module
for processing. At the end of the processing, the module redirects control back to
the application server by specifying the response page address (e.g. confirmation
or an error page). Finally the application server loads the response page and

sends it to the user where it gets displayed.

6.2.2.2 Microsoft Dynamic

Microsoft Dynamics CRM user request processes are based on the Windows
Workflow Foundation model. Windows Workflow Foundation runs a framework,
a base library of activities, and default implementations of the runtime services.
The Windows Workflow Foundation runtime engine manages process execution,
and supports processes that can remain active for extended periods of time. It
preserves the state of process execution during the request process and returns
back the results to the user after processing. The steps for executing the

validation process on the Microsoft Dynamics are given below.

Install and open the SDK in Visual C# Express.

e Access to the tool's source code in the SDK\Tools\PluginDeveloper folder

of the SDK installation.
e Network access to a Microsoft Dynamics CRM 4.0 server.

¢ Login in Microsoft Dynamics CRM system account.

133

o Execute the “Make Sale” action by using the SDK.

e Store the execution time in XML.

6.2.2.3 Proposed W2ASVB model framework

Any user request for data processing is divided into two parts — data and action
part. The data part contains the data that requires processing, whereas the action
part describes the required operation on the given data. Request brokers are a key
concept in the proposed W2ASVB model framework. They are semi-autonomous
objects which are completely equipped with all the capabilities to handle action
and view management for user requests. In other words, they can be called
middle agents that provide a mediation mechanism. They have been classified as
semi-autonomous because they can complete the user’s request without any
assistance from other brokers but are bound to be controlled by managing

authority. This managing authority is called the system manager.

On arrival of a user request, it gets queued up in waiting area. The system
manager continuously checks the waiting area and as soon as a request arrives, it
is allocated to one request broker. This allocated request broker moves the
request from the waiting area into the processing area and starts analysis of the
request header to find the source details, such as the name of user interface from
which the request is being generated, and the action it requires. On identification
of source and action, it starts searching to find the name of a matching service
adapter in the user session profile. The user session profile is a profile carried by
each user, and is initially allocated to each user by the system manager when the

user first logs in.

134

6.2.2.4

Results

The results of the execution tasks are given below.

Table 6-1: Results of the execution task

Number of Zoho CRM Microsoft CRM W2ASVB model
instructions framework
100 instructions 0.25 seconds | 0.20 seconds for | 0.24 seconds for
for processing | processing processing

1000 instructions 0.45 seconds | 0.35 seconds for | 0.38 seconds for
for processing | processing processing

10000 instructions 2min 20 | Imin 40 seconds | Imin 10 seconds
seconds for | for processing for processing
processing

160
140
120
100

60
40
20

100

1000

—e—Zoho CRM

—=—Microsoft CRM

W2ASVEB model
framewaork

10000

Figure 6.5: Results of the execution time validation

135

Figure 6.5 shows the execution time of the different frameworks on the provided

number of instructions. Execution time is a sum of the different activities in each

task as shown in Figures 6.6 and 6.7.

General Performance Details
Total Execution Time 04651 yac
L]

76 3¢ (3.9%)

Query Execution Time 0.0
Query Processing Time 0.0414 sec (8.9%)
Memory Cache Usage 00459 sac (10.1%) (28 Mits, 0 Missed. 0 Added. 0 Removed, 0 Invalidatons

Peak Mamory Usage 7.20366 mb (128 mb

Performance Break-down
" Memory Usage Loaded Objects Cache Activity
Activity E ution Time Quenes [terats
i Differontial Puok Memory Cache Database Memory ODstsbase s e
Total 04651 sec 7.08 mb 72T mb 30 0 L] 1" 0 [1
startup 0.3636 sac “md 6 mb 1 1
0.0113 54 FERI Y 6.0 mb [0])
connect
prepare 0.1011 nec 89329 kb 127 mb » 0 0 0] 0
. . .
Figure 6.6: Execution time of the ZohoCRM
General Performance Details

Totel Execution Time
Quary Execution Tiwe 0
Query Procesaing Time
Mamory Cache Usage
Pesk Memory Usage &

Performance Break-down
Lasded Objacts Cache Actity
. v
Activity Enecution Tume st Nomery USeO® | Querias [Toe—
Ofarential Posk Memory | Coche Oatsbass Mamery Ostsbsss M
Total 11063 vee 1976 mb 16.00 mb ™ n Y] » © v
stantup 0.3032 sac aiime 6.20mp ° 2 ° ' o '
pravare 0.7579 sec 9.62 mo 16.00 mb 01 ”n 0 » .
conmact 0.0027 sec 3.1 32 mb o ° ° e °
wrtharametersvahd 0.0122 suc 129 mb 236 mb 2 : " o '
i 0.0008 sec 10 10.07 mb ° ' ° ') '
render 56918 duc 344 mb 16.00 mb e “ v » ™ "
9.0004 ses 600 ° ° ° ° °
o " e
oetbrasdcrunbied (0,000 sec) (53¢ byres e o) o © o o) -
0.3404 sae 272 mb 154 ») » » "
rorder| (0.3702 se) (.26 mb) W8 mh ” (an m (m w n
rondar 0.0273 vae 123,19 kb 1447 mb ! o ° o) '
6.0030 sec 00 o ° ° 0 ° ° o
rondor -
0.0029 vec) 499 kb) i) © 0 © 0 o) '

Figure 6.7: Execution time of the Microsoft Dynamic

6.2.3 Average cost per user

The average cost per user of the system depends upon the software, hardware and

customisation costs of the system. The average cost per user of the system

136

implementation varies from one company to another, due to different hardware
configuration and customisation. Each company has a number of different
departments, and each department within an organization can be diverse, so it is
imperative for software to be tailored to meet the unique requirements of its
users. The average cost per user of ZohoCRM, Microsoft Dynamics and the
W2ASVB framework under test is calculated by considering the following

scenario.

We applied the framework to a company which has about 300 employees, and is
organizationally divided into four departments, reflecting three different
segments: financial, commercial, technical, and management. Each department
has a different workflow on the same set of instructions; the management
department needs live stock statistics while the financial department requires

order history to manage the accounts etc.

6.2.3.1 ZohoCRM framework

ZohoCRM is available in different packages. The most suitable package for our
scenario is the enterprise package and costs £13 per user per month, We need to
customize this to fulfil the demands of each department, as currently all users
get the same set of options. The average cost for each department’s business
logic implementation is approximately £10,000. It requires three developers to
work about 10 full working days. This customisation is only possible from the

ZohoCRM dedicated developer.

137

Table 6-2: Average cost per user of ZochoCRM

Cost Total cost
300 Users £13 per user 3900 per month
4 Department 10,000 per department 40,000 (Initial cost)
customisation

6.2.3.2 Microsoft Dynamics

Microsoft Dynamics CRM is available in different packages. The most suitable
package for our scenario is the CRM online package as the other packages need a
company-based server installation. Its cost is £23 per user per month, One needs
customization to fulfil the demands of each department, as currently all users get
the same set of options. The average cost for each department’s business logic
implementation is approximately £5,000. Microsoft’s CRM provides several

customization options to fulfil the different departmental requirements.

Table 6-3: Average cost per user of Microsoft Dynamics

Cost Total cost
300 User £23 per user £6900 per month
4 Department 5,000 per department 20,000 (Initial cost)
customisation

138

6.2.3.3 Proposed W2ASVB model framework
Average cost of the W2ASVB framework is calculated by using the above-

mentioned scenario. The approximate costing for the proposed model framework

is given below:

Table 6-4: Average cost per user of W2ASVB model

Cost Total cost
300 Users £2 per user (100MB data | £600 per month

usage)
4 department App.£100 (It depends on | £100 (Initial setup cost)
customisation the server configuration)

6.2.3.4 Results

The results of the average cost per user analysis are given below;

Table 6-5: Results of the average cost per user

First Month Second Month Third month
Zoho CRM £43900 £3900 £3900
Microsoft £26900 £6900 £6900
Dynamic
W2ASVB model | £700 £ 600 £600
framework

139

£50,000 po

£45,000 +—

£30,000 4—
; @ Zoho CRM

B Microsoft Dy namic
O W2ASVB model framew ork

£25,000 +—

£20,000 +—

First Month Second Month Third month

Figure 6.8: Results of the average cost per user validation

In the new proposed model framework customisation for the different
departments is achieved by a customised business login for different departments

by performing the following steps;

e Create a new action processor class called <<Company_ Department]>>

and customize it according to the Company’s departmental requirements.
e Compile the code of this new action processor.

e Plug-in this new action processor in the system by replacing the word
<<GenericProcessor>>with <<Company_Department]>> in the Company

department profile in the XML meta-data file.

140

And finally, instruct the profile factory to refresh the C ompany action processor
mapping table. Due to the customisation at the software level, it reduces the
customisation cost of the W2ASVB and will also reduce the overall average cost

per user.

6.2.4 Scalability

Careful planning and development are necessary for any framework development
and to make a truly scalable application, it is important to rigorously and
regularly validate it for scalability. The purpose of scalability validation is to
identify major workloads and mitigate bottlenecks that can impede the scalability
of the framework. There are number of different ways to perform scalability
validation, such as cluster technologies, isolated transactional methods and
business logic layer elimination etc. Logic versus physical tier scalability
validation method has been used. In this method, all the layers of the framework
such as the business logic layer and the data access layer are distributed and then
tested by increasing the number of the users and their interfaces in the
framework. The scalability of the ZohoCRM, Microsoft Dynamics and W2ASVB

is performed by the following steps.

Identifier T2

Setup CompanyProfiles.xml file is present on designated path

inside application server’s hard disk.

141

Description To test the scalability, initialization and organization of
company profiles by Profile Factory from XML file, at user
login.

Procedure No explicit call is required to initiate this test-case; it is
called internally by the system manager.

Modules e SystemManager.java

Executed .

e ProfileFactory.java
e XMLReader.java
e ResourceRegister.java
Result e Profile factory successfully reads the company

profiles from XML file.

e Profile factory successfully initializes the action

processor mapping tables for each company.

e Profile factory successfully initializes the sales

person menu mapping tables for each company.

e Profile factory successfully initialized the company

admin menu mapping tables for each company.

e Profile factory successfully loads the missing

142

companies and their respective locations’

information from database (see Figure 6.9).

Fis Edt Vew Navigsts Source Refactor Bukd Run CVS Tooks Window Help

POEB YRSN~PABO9D D

[Profects @ x _Files Runtime e | eckProcessor java ¥ |) SupplerProcessor.java % | (1) Company-Profieml % | Wekome % 4 ¥ StockCheckProcessor java - Prop.. ® x
& @ dauc P AAFAIR L% AP NN 0D hau gl 1
‘i - ICEFacesTestng r . P Name ‘RodChedProcessor
- / .
§ samand N
@ * StockCheckProcessor,java e [w)
@ @ testinglist2 . ie Sae
|6-@ Modication T
|- @ woolstodkexample i || * created on 20 August 2007, 10124 - |
| . ~Tet 3
‘ i oy)
1 ‘r : Teaplate Nanager s
Complle Canspath Q
Runtime Classpath
Boot Classpath
package samand.processor.generic.stock;
Output R - R s -
samand (run) * | * Sun 62
» [y 4 i Laces/ 8 liwihel) L
[Menu nane 1 wi case »/samand/ Dupplieriel Iepl
"D (Mewu name->closetill navigation-case->/samand/taces/genericClosetill.jspl
W (Menu sanand/ £ Imp)
a Total mumber of Salesperson Mewu links: 7
L P navig
D e Fanmand/ 3o
(Menu ' 1
(Menu e
(Menu name->viewpertorsance tormance. ysp
L taces, I
L i 1 at /sumand/ t icBupplierRulucions. Jop
MHLReadar > geuCompanieslist() > Ind
2
Profilelactory --> imit() ==> locationHome. findByIP(217.36.95.208) = 1
Profilelactory -=> imit () ==> locationome. findByIP(217.45.161.252) = 6
Profilefactory ==> init() ==> locationHome findByTP(217 35 95 138) = |
Protfilefactory --> imit() --> locetionHome. findByIP(217.41.27.94) = 1
’l’lhl,ﬂl‘tb!v ==> init() -~> End
v
£ ESTERoIIE >

Figure 6.9: Profile factory initialization confirmation

6.2.4.1 Zoho CRM framework
ZohoCRM is using the existing Web 2.0 framework and in the Web 2.0

framework all the user interfaces are directly bounded to the business logic. Due
to this architectural deficiency, all companies that run their e-business on
ZohoCRM require their own dedicated set of views with the names of required
services embedded inside them. The increase in views (interfaces) increases the
memory usage on the hosting server and ultimately it causes memory shortage at

the hosting server, increasing the response time and reducing the overall

143

performance etc. The result of the ZohoCRM scalability validation is shown in

section 6.2.4.4.

6.2.4.2 Microsoft Dynamics

Microsoft Dynamics is available in different versions and currently the most used
version is Microsoft Dynamics 4.0. This version is developed by using
Microsoft’s own work foundation platform. It is a modified form of the Web2.0
framework. This foundation platform provides a scalability and resource
management options in the Microsoft dynamics but it still increases the memory
usage as the view (user interface) increases. Microsoft Dynamics has its own
resource management feature which reduces the memory usage from the other
source as the memory usage increases from the views. The result of the

Microsoft Dynamic scalability validation is shown in section 6.2.4.4.

6.2.4.3 Proposed W2ASVB model framework
The W2ASVB framework replaces the supporting functions with the service

adapters. Service adapters are light weight and contain an implementation of the
workflows. Following a user request service, adapters are connected to the core
platform to execute the workflow modelled inside them. All workflows (both
generic and customized) are modelled as service adapters. This feature provides
an option in the W2ASVB framework to support a large of number of views (user
interfaces) without consuming lot of memory. The W2ASVB framework
provides a shared interface and performs user requests on the basis of profile

configuration.

144

6.2.4.4 Results

The results of the scalability validation are given below.

250
200 /

150

/ / e Z0h 0 CRM

100

50
- e \W 2 ASVB mode|
/ framework
0 T T 7 |
\,-,"c’ 39‘6 @o"é
.»00 \,"& \\&
S 9 N
& & N
R S 2
K & o

Figure 6.10: Results of the scalability validation

Figure 6.10 shows the results of the scalability validation. The W2ASVB
framework memory usage/user decreases gradually by increasing the number of
users. The reason for less memory usage at larger number of users is that
W2ASVB is using the service adapters rather than normal service functions.
These adapters release the memory that was occupied for performing the tasks

after execution.

145

6.3

Advantages of the proposed solution

The major contributions of the proposed system are the introduction of
two brand new concepts; a service called service adapters and a request
management mechanism called a request broker. As opposed to traditional
web services, service adapters are light weight services and have shown
better performance at run-time. This performance gain is a result of
elimination of discovery and binding supporting functions from the
SOAW2 model framework. In addition, they have proven their strategic
importance in scenarios where new services are required to be built from

existing web services without violating the SOA principles.

The system enjoys good scalability and performance because of its
enhanced plug-n-play capabilities, if implemented according to chapter 5.
The use of plug-n-play hardware devices is very common, but in the field
of software engineering this concept is quite new. Having software that
contains such a feature is still rare. Internal architectural variations of
different modules and absence of well-defined interfaces are the two
biggest reasons for this lack of achievement until now. W2ASVB has
overcome both of these deficiencies in a simple yet elegant and cost-
effective way. The data dictionary modules in W2ASVB contain a list of
modules and their functionalities information that is in use by different
companies. Request brokers efficiently load them upon request at run-
time. At any stage, if new modules are required to be plugged-in in the
system, a service provider only requires compilation and entry of new

module names in the data dictionary and the rest is handled automatically

146

by the intelligent brokers of the system. This new technique proved to be
better in handling complex system evolution problems as faced by current
retail systems. As a benefit of this technique, any number of new modules
can now be unplugged from the system and easily be replaced with new

ones. Conventional Web 2.0 systems do not exhibit such capabilities.

One of the main aims of this project was to develop a generic set of user
interfaces and business workflows. The reason behind this is to facilitate
small retailers with ready-made solution for achieving instant e-business
transformation. Traditional web systems do not provide such generic
facilities as they are built on specific requirements of any particular
company. Since customization of any existing system to suit any other
companies’ business process requires recompilation of the complete
system code and therefore such a system becomes unaffordable to both
solution provider and client companies. This situation becomes more cost-
centric when a system is a desktop system and requires additional

hardware installation.

W2ASVB is equipped with basic essential features such as customized
user interfaces, customised workflow mechanisms, profile management
etc. that a small retailer needs; that is to put a first step on the e-business
ladder at an affordable cost. The system does not require any special set
up on the client side (such as hardware installation etc) and is accessible
from any point in the world where Internet access is available. Small

retailers who are interested in automation of their manual POS business

147

procedures need at minimum a standard desktop PC, a printer and a

standard Internet connection to start their e-business.

W2ASVB compared to other traditional Web 2.0 based systems offers a
complete flexibility in its architectural design. Conventional web systems
always suffer from the risk of undesirable architectural modification
during upgrade and maintenance activities. W2ASVB architecture has
been designed in such a way that any system evolution due to
customization of either business logic or user interface does not pose any
risk to core system design. In addition, and due to the system’s central
administrative nature, W2ASVB also offers central customization of
business logic and user interfaces on a request from the end users. Thus,
no visits of any personnel on client locations are required. This is a huge
benefit of the proposed system and its implemented proposed model
framework as it helps service provider in reducing maintenance and

administration cost.

Shortcomings of proposed solution

The proposed solution, although it provides many advantages, also has some

shortfalls. This section presents the disadvantages of the proposed solution and

as the reader goes through these shortcomings, it will be noticed that they are

very minor as compared to the advantages (i.e. as explained above) and only

require small improvements.

There is no mechanism for the management of request broker pool size in

the proposed framework; at present the system demands a declaration of

148

constant request broker’s pool size at a system initialization time.
However, as the system has shared features mechanism, the responsibility
for managing this pool size during busy times is on the system
administrator’s shoulders. Application server logs can help the system
administrator in making this decision, but it requires extensive real-time
human calculations. Errors in this calculation could have very serious

impact on system performance.

Although all the user requests pending in the waiting area are assured that
they will be allocated request brokers as soon as they become available,
no assurance is given on whether this allocation is made on the first come
first served basis. As a matter of fact, prioritization of incoming request is
an issue of application server; therefore, it should be researched at
application server level rather than system level. Research at application
server level requires extensive experience, a longer research period and a
well-documented knowledge base from a server vendor. Unfortunately
server vendors do not share their internal server architecture publicly;
therefore this request prioritization issue can be classified as a
shortcoming of the proposed system, but its solution is outside the scope

of this project.

149

7. Conclusions and Future Recommendations

150

7.1 Contribution of the work

The proposed work seeks to make a contribution to knowledge and understanding
in the field of Web 2.0 technologies and business process models, through the
development of a particular area of theory and related application. Technically, it
is intended to propose a new framework associated with specific optimisation
methods in order to provide the customizable platform after reviewing both Web
2.0 technology (e.g. information sharing, interoperability, user- centre design and
collaboration) and business process models (e.g. strategies, and operational
processes). In practice it is intended to develop a ‘framework’ based on an
efficient and secure model to facilitate small retail businesses in achieving e-
business transformation. The framework is capable of being customized and

scalable according to user requirements and reducing the overall installation cost.

7.1.1 Request handling

In this research by taking into consideration the shortcoming of request
management components in SOAW2 and a need for an effective and intelligent
request brokerage mechanism to handle complex on-demand sharing and
customization problems, an enhanced request broker architecture is integrated
between the user interface and the resource container. This proposed request
broker architecture followed the standards mentioned in research by (Alur, Curpi,
& Malks, 2003) but overcame limitations such as memory leaking and resource
management etc. These proposed request brokers are responsible for action and
view management inside the W2ASVB model framework. With the help of this
proposed architecture, the W2ASVB framework provides an on-demand request

routing between user interfaces and services of the core platform,

151

7.1.2 Service adapter

In this research, if workflows get modelled as web services, it would be a
violation of loose-coupling and no embedded calls principle of SOA. To
overcome these limitations and to avoid any conflict with SOA principles,
workflows are modelled as service adapters. Following a user request for
processing the adapters get connected with the core platform to execute
workflow modelled inside them. All the workflows including both generic and

customized are modelled as services adapters.

7.2 Evaluation of research question

The following conclusions are derived, related to the initial research question prior to

the main investigation.

7.2.1 User request management modelling

In this thesis, it is shown that user requests for data processing can be divided
into two parts namely data and action part. The data part contains the data that
requires processing, whereas the action part describes the required Operation on
the given data and the request brokers are semi-autonomous objects which are
completely equipped with all the capabilities to handle action and view

management for user requests.

7.2.2 Workflow modelling

The workflow management mechanism is introduced in W2ASVB to separate
and segregate operations into two categories, namely generic and customized

workflows. Also, the core business logic (i.e. data persistence logic) is embedded

152

in these generic and customized workflows as it helps to make a loosely coupled

business logic and user interface.

7.3

Research contributions

In order to overcome the problem of service and user interface sharing, it
was found through the highlighted literature review that most of the
request mediation architectures are very useful in handling such complex
scenarios. By taking into consideration the shortcoming of request
management components in SOAW2, and the need of effective and
intelligent request brokerage mechanisms to handle complex on-demand
sharing and customization issues, new request broker architecture is
integrated between the user interface and the resource container. The
proposed framework consists of a new request broker architecture
concept. This request broker concept improves request handling process,
which is responsible for an action and view management inside W2ASVB
model framework. It provides on-demand request routing between user
interfaces and services of core platform. The knowledge layer of the
model framework is shared between service provider and users (i.e.
employees of retail companies). This knowledge layer is the essential part
of the Web 2.0 model framework and it is there to represent architecture
of participation. This means that new knowledge in the model will be

modified with the passage of the time.

The research has also analysed the functional and non-functional

dependencies in the shared systems. These dependencies appear as an

153

effect of construction of new services from existing functionalities. It is
marked that in some situations due to the irreducible complexity of the
scenario, compliance with strict SOA principles becomes difficult. The
research answered this issue with a practical implementation of service
adapters. The service adapter is a new concept of “light weight” services
and contains the implementation of workflows, In SOA tradition, services
are relatively large, shared, intrinsically loosely-coupled units of
functionalities, and have no embedded calls to each other as W2ASVB

model framework workflows are modelled as service adapters.

This research also analysed the mechanism to control the generic
workflow for each client as per its own requirements. In order to achieve
this task, the proposed framework introduces the concept of profile
management in XML format. It is one of the most powerful and self-
descriptive languages in representing complex SOA-related data
structures for brokerage. Furthermore, it can also be concluded that due to
the profile management an elegant customization capability introduced
into the proposed model framework, it reduces the development efforts of
the solution provider company. This indeed results in the reduction of
administration and development costs. Therefore, the model makes the
system affordability two-dimensional i.e. it is not only affordable to small

retail companies but is also affordable to the solution provider company.

Another important outcome of this research is that the proposed

framework is built independently of any existing e-business architecture.

154

74

The W2ASVB framework is a business domain dependent system, but the
model framework itself is independent of any business domain. Therefore,
it can be concluded that the proposed W2ASVB model framework is
applicable to any relevant business domain to produce commercial scaled,
shared, robust, flexible and affordable e-business solutions. It also reduces
the operational cost dramatically due to its reusable nature and
customizable business logic as alrcady mentioned in the validation

chapter.

One of the main features of the proposed system is its on-demand
customization capabilities. Contrary to traditional web systems, this
customization facility is not only limited to the customization of business
logic, but it can also help retailers in customizing the look of their

business data i.e. customization of user interfaces.

Future recommendations

As an important activity of any research study, this section presents the issues

that were highlighted as future research elements and require further

investigation. Effective solution of these issues will contribute towards the

improvement of the proposed model framework and will provide enhancements.

One future research area is the need of a request management algorithm to

control the request brokers’ pool size at run-time. Taking into consideration the

highly operational and business-centric nature of the system, there is a need for

serious investigation of this issue. Existing data mining algorithms would be

useful, but a careful review is required to develop an improved version that not

155

only performs the run-time statistical calculation of incoming requests, but also
uses its own knowledge base to decide the pool size. This new demand-and-
supply algorithm must ensure that this pool size is set according to the relevant
parameters such as available server resources and physical health of the system.
It must also ensure that the system makes the best use of its logical resources (i.e.
request brokers) to honour the maximum number of requests in a given time
frame. Further research in this area can be done by implementing this framework
by using the standard web service orchestration. In this case, the framework will

inherit all the existing web service features, and these framework services can be

used as external services.

Another possible future research area is the request prioritization issue. This
issue was also amongst the shortcomings presented in the validation chapter.
Further research is needed to come up with an effective algorithm which will
ensure that the requests that are waiting longer get first priority. This is not a
software level issue, it is rather an application hosting server level issue, and an

effort can be made to resolve this efficiently.

156

8. References

157

B. Martinez, “Exploiting Social Tagging in a Web 2.0 Recommender System”,

IEEE Journal on Internet Computer Society, vol. 14, pages 23-30, 2010.

B. Choi, T. S. Raghu, A, Vinze, and K.J. Dooley, “Process Model for e-Business
standards development: A Case of ebXML Standards”, IEEE transactions on

engineering management, vol. 56, pages 448-467, 2009.

B. Dubney, J. Lehr, B. Willis, and L. Mattingly, “Mastering JavaServer Faces”,
Ist Edition. Wiley Publishing Inc, ISBN 0471462071, 2004.

B.C.C. Tan, S.L. Pan, R. Hackney, “The Strategic Implications of Web
Technologies: A Process Model of How Web Technologies Enhance
Organizational Performance”, IEEE Transactions on Engineering Management,

vol. 57, pages 181-197, 2010.

C. Leon and H. Enrique, “Virtual Service Grids: Integrating IT with Business

Processes” , IT Professional, vol. 11, pages 7-11, 2009.

C. Schroth, “Web 2.0 versus SOA: Converging Concepts Enabling Seamless
Cross-Organizational Collaboration”, 4th IEEE International Conference on

Enterprise Computing, pages 47-54, 2007.

C. Pautasso, O. Zimmermann and F. Leymann, “RESTful Web Services vs. Big
Web Services: Making the Right Architectural Decision”, International word
wide web conference, April 21-25, 2008, Beijing, China, ACM 978-1-60558-
085-2/08/04.

158

D. Breitgand, R. Cohen, A. Nahir, and D. Raz, “On Cost-Aware Monitoring for
Self-Adaptive Load Sharing”, IEEE journal on selected areas in

communications, vol. 28, pages 70-83, 2010.

D. Guinard, V. Trifa and S. Karnouskos, “Interacting with the SOA-Based
Internet of Things: Discovery, Query, Selection, andOn-Demand Provisioning of
Web Services”, IEEE transactions on services computing journal, vol. 3, pages

223-235, 2010.

D. Hinchcliffe, “Web 2.0 Continues Its Move To The Workplace”.Reterived 12
03, 2011 from http://www.zdnet.com/blog/hinchcliffe/significant-workplace-

inroads-for-enterprise-2-0/150.

D. Khazanchi and B. Munkvold. “On the Rhetoric and Relevance of IS Research
Paradigms: A Conceptual Framework and Some Propositions”. Proceedings of
the 36th Hawaii International Conference on System Sciences (HICSS'03),

January 06 — 09, 2003, Big Island, Hawaii, pp. 252b.

E. Zeiris and M. Ziema, “SOA based e-business systems design”, Proceedings of

the 2010 International Conference of e-business (ICE-B), pages 1-8, 2010,

F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-Time Monitoring of
Instances and Classes of Web Service Compositions”, Proceedings of IEEE 6th

International Conference on web Services, pages 63-71, 2006.

F. Sinton, “Enhancing an Application Server to Support Available Components”,

IEEE Journal on Software Engineering, vol.34, pages 531-545, 2008.

G. Carraro, “Software as a Service (SaaS): An Enterprise Perspective,”

159

Globus, “Globus Service Grid”, Retrieved at 13 November 2011 from

http://www.globus.org/ogsa.

H. Chen, “Trends & Controversies”, IEEE Journal on Intelligent System, vol. 25,

pages 68-83, 2010.

H. Zhao and H. Tong, “A Dynamic Service Composition Model Based on
Constraints”, Sixth International Conference on Grid and Cooperative

Computing (GCC 2007) , pages 659-662, 2007.

H. Yuan, S.W. Choi, and S.D. Kim, “A Practical Monitoring Framework for
ESB-Based Services”, Proceeding of IEEE Congress Services Part Il
(SERVICES-2 '08), pages 49-56, 2008.

H.-M. Chen, “SOA, Enterprise Architecture, and Business-IT Alignment: An
Integrated Framework”, Proceeding of software Eng. research and practice

conference, pages 566-573, 2007

H. XiaoQin, H. LinPeng, C. Lin, and L. Minglu, “Design and Implementation of
an Agent-Based Web Services Platform for Electronic Commerce. Services
Computing”, IEEE International Conference on Services Computing (SCC'04),

pages 643-646, 2004,

J. Dorn, A. Rainer, and P. Hrastnik, “Toward Semantic Composition of Web
Services with MOVE”, 8th IEEE International Conference on E-Commerce
Technology and The 3rd IEEE International Conference on Enterprise

Computing, E-Commerce, and E-Services, page 67, 2006.

160

http://www.globus.org!ogsa.

J. Asensio, J. Vergara, , and J. Berrocal, “Experiences with SNMP based
integrated management of CORBA-based elecronic commerce application”, Sixth
IFIP/IEEE International Symposium on Integrated Network Management,

Page(s): 517 - 530,1999.

J. Zhao, W.V. Huang, and Z. Zhu, “An Empirical Study of E-Business
Implementation Process in China”, IEEE journal on engineering management

transactions, vol. 55, pages 134-147, 2008.

J. Xu, D. Zhang, L. Liu and X. Li, “Dynamic Authentication for Cross-Realm
SOA-Based Business Processes”, IEEE transactions on services computing, vol.

5, pages 20-22, 2012.

J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani and J.
Waterhouse, “Runtime Monitoring of Web Service Conversations”, JEEE Trans.

Services Computing, vol. 2, pages 223-244, 2009.

J. Koskinen. “Software maintenance cost estimation and modernization support”,
Retrieved 08 02, 2011, from

http://www.citeulike.org/user/mattbiehl/article/7530373.

L. Hitachi, “Proposal of Application Architecture in Electronic Commerce
Service between Companies”. International conference on advance issues of e-

commerce and web-based information systems , page 46-49, 1999,

L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WSBPEL Processes”,
proceeding of 3™ International Conference on Service-Oriented Computing

(ICSOC ’05), pages 269-282, 2005.

161

L.D. Xu, “Enter Systems: State of the Art and Future Trends”, IEEE

Transcations on industrial informations, Vol. 7, 2011,

L.M.S. de Souza, P. Spiess, D. Guinard, M. Ko™hler, S. Karnouskos, and D.
Savio, “SOCRADES: A Web Service Based Shop Floor Integration

Infrastructure”, Proc. Internet of Things Conf. (IoT '08), pages 50-67, 2008.

M. Bichler and M. Kaukal, “Design and Implementation of a Brokerage Service
for Electronic Procurement”. 10th International Workshop on Database & Expert

Systems Applications , pages 618-622, 1999,

M.J. Carey, “Service Oriented Architecture (SOA) What?”, IEEE journal on

Internet Computing, vol. 41 , pages 92-94, 2008.

M.A. Davidson, E. Yoran, “Enterprise Security for Web 2.0”, JEEE Journal on

Computers, Vol. 40, pages 117-119, 2007.

Microsoft ~ Corp., Retrieved at 12 September 2011 from

http://msdn.microsoft.com/en-us/library/ aa905332.aspx.

MerchantOS. (2011). Introduction to MerchantOS. Retrieved 7 12, 2011, from

MerchantOS: http://www.merchantos.com/try-it/2/

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P, Traverso, “Planning and
Monitoring web Service Composition”, Artificial Intelligence Methodology,

Systems, and Applications, vol. 3192, pages 106-115, 2004,

Milpied and Dubois, “Arrhythmia Discrimination in Implantable Cardioverter

Defibrillators Using Support Vector Machines Applied to a New Representation

162

http://msdn.microsoft.com/en-us/library/
http://www.merchantos.com/try-itl2/

of Electrograms”, IEEE Journal on Biomedical Engineering, vol. 58, pages 1797-
1803, 2011.

M. Kano, A. Koide, T.K. Liu, and B. Ramachandran, “Analysis and simulation of
business solutions in a service-oriented architecture”, IBM System Journal, vol,

44, pages 669—690, 2005.

M. Shafiq, Y. Ding and D. Fensel, “Bridging Multi Agent Systems and Web
Services: towards interoperability between Software Agents and Semantic Web

Services”, Proceedings of the 10th IEEE International Enterprise Distributed

Object Computing Conference (EDOC'06), pages 85-96, 2006.

N. Bieberstein, S. Bose, L. Walker, and A. Lynch, “Impact of service oriented
architecture on enterprise systems, organizational structures, and individuals”,

IBM System journal, vol. 44, pages 691-708, 2005.

O. Nasraoui and M. Soliman, “A Web Usage Mining Framework for Mining
Evolving User Profiles in Dynamic Web Sites”, JEEE Journal Knowledge and

Data Engineering, vol. 20, pages 202-2185, 2008.

0. Mahmood, “Developing Web 2.0 Applications for Semantic Web of Trust”,
International Conference on Information Technology (ITNG'07), pages 819-824,
2007.

P. Felber, P. Narasimhan, “Experiences, strategies, and challenges in building
fault-tolerant CORBA systems”, IEEE journal on computers Transactions, vol.

53, pages 497-511, 2004,

163

PHPPointOfSale. (2011). Peoria Plumbing Supply. Retrieved 7 12, 2011, from
PHP Point of Sale: http://demo.phppointofsale.com/index.php

P. Pankaj, “An analysis and exploration of the construct of information systems
agility”, Ph.D. dissertation, Southern Illinois Univ. Carbondale, Carbondale, IL,

2004.

P. Xiong, Y. Fan, and M. Zhou, “QoS-aware web service conguration”, IEEE

Transaction System, vol. 38, pages 888-895, 2008.

P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L.M.S.d. Souza, and
V. Trifa, “SOA-Based Integration of the Internet of Things in Enterprise
Services”, Proceeding of IEEE International Conference on Web Services (ICWS

09), pages 968-975, 2009.

Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han, and H. Mei, “An Online
Monitoring Approach for Web Service Requirements”, IEEE Transaction

Services Computing, vol. 2, pages 338-351, 2009.

R. Battle, “Bridging the semantic Web and Web 2.0 with Representational State
Transfer (REST)”, Journal of Web semantics: Science, Services and Agents on

the World Wide Web, vol. 6, pages 61-69, 2008.

R. Howard and L. Kerschberg, “A Knowledge-based Framework for Dynamic
Semantic Web Services Brokering and Management. Database and Expert
Systems Applications”, 15th International Workshop on database and expert

systems applications , pages 174-178, 2004,

164

http://demo.phppointofsale.com/index.php

R. Pressman, “Software Engineering: Practitioner’s Approach”. McGraw Hill

Inc, ISBN 0071267824, 2005.

S. Aughton, “Controlling the Business Growth Speed from Financial Angle of
View: Using Cash Flow System Dyanmics Model”, IEEE conference on First
International Workshop on Database Technology and Applications , page 610-

613, 2009.

S. Kuk, L. Oh, H. Kim, J.K. Lee, and S.W. Park,” An e-Engineering Framework
Based on Service-Oriented Architecture and Agent Technologies”, Proceedings
of the 2007 11th International Conference on Computer Supported Cooperative

Work in Design, pages 429-434, 2007.

S. Kuk, I. Oh, H. Kim, J.K. Lee, and S.W, Park. “Service-Oriented Architecture
Based e-Engineering Framework to Support Collaborative Design”, IEEE
International Conference on Services Computing (SCC 2007), pages 340-347,

2007.
S. Murugesan, “Understanding Web 2.0”, IT Pro, vol. 9, pages 34-41, 2007.

S. Shenoy and N. Mallya, “Integrating Struts, Tiles, and JavaServer Faces”,
Retrieved 03 27, 2007, from IBM Research Center: hitp:/www-

128.ibm.com/developerworks/library/j-integrate.

S. Karnouskos, O. Baecker, L.M.S.d. Souza, and P. Spiess, “Integration of SOA-
Ready Networked Embedded Devices in Enterprise Systems via a Cross-Layered
Web Service Infrastructure”, Proceeding of IEEE Conference of Emerging

Technologies & Factory Automation (ETFA), pages 293-300, 2007.

165

T. Shan, “Taxonomy of Java Web Application Frameworks”, IEEE International

Conference on e-Business Engineering, pages 378-385, 2006.

T. Erl, “Service-Oriented Architecture: Concepts, Technology, and Design”,

Prentice Hall PTR, ISBN 0131858580, 2005.

T.C. Shan and W.W. Hua, “Service-Oriented Solution Framework for Internet

Banking”, International Journal of Web Services Research, vol. 3, pages 29-48,

2006.

V. Oosterhout, E. Waarts, and J.V. Hillegersberg, “Change factors requiring
agility and implications for IT”, European Journal of Information System, vol.

15, pages 132-145, 2006.

V. Sambamurthy, A. Bharadwaj, and V. Grover, “Shaping agility through digital
options: Reconceptualizing the role of information technology in contemporary

rms”, MIS Quart., vol. 27, pages 237-263, 2003,

V.AF. Almeida, “Internet Workloads: Measurement, Characterization, and

Modeling” , IEEE journal on Internet computing , vol. 15, page 15-18, 2011,

W. Freiler, “Interactive Visual Analysis of Set-Typed Data”, IEEE journal on

Visualization and Computer Graphics, vol. 14, pages 1340- 1347, 2008,

W. J. Clarke, L. C. Alves, “IBM System z10 design for RAS”, IBM Journal of

Research and Development, vol. 53, pages 11-22, 2010.

166

W. Marin, “Remote Programming of Network Robots Within the UJI Industrial
Robotics Telelaboratory: FPGA Vision and SNRP Network Protocol”, IEEE

Journal on Industrial Electronics, vol. 56, pages 4806-4816, 2009.

W. Omar, A. Abbas, and T. Bendiab, “SOAW2 for Managing the Web 2.0

Framework”, IEEE Journal on Computer Society, Vol. 9, pages. 30-35, 2007,

WC3. (2004). "Web Services Specifications", Retrieved 7 28, 2010, from Web

Services Architecture: http://www.w3.org/TR/ws-arch/.

X. Li, Y. Fan, Q. Z. Sheng, Z. Maamar, and H. Zhu, “A petri net approach to
analyzing behavioral compatibility and similarity of web services”, IEEE

Transaction System, vol. 41, pages 510-521, 2011.

Y. Liu, . Gorton, and L. Zhu, “Performance Prediction of Service-Oriented
Applications Based on an Enterprise Service Bus”, Proceeding of 3Ist annual
Internation computer software and applications Conference (COMPSAC'07),

pages 327-334, 2007,

Y. Dang, Y. Zhang, H. Chen, “A Lexicon-Enhanced Method for Sentiment
Classification: An Experiment on Online Product Reviews”, JEEE Journal on

Intelligent System, vol. 25, pages 46-53, 2010.

Y. Juan and W. Hongxia, “Study on E-business Logistics System Based On
SOA”, Computer Science and Information Technology (ICCSIT) journal, vol. 3,
pagess 368 - 372, 2010.

ZohoCRM , "Zoho CRM Introduction" Retrieved 7 12, 2010, from Zoho CRM

website: http://crm.zoho.com/crm/ShowHomePage.do.

167

http://www.w3.orglTRJws-arch/.
http://crm.zoho.com/crm/ShowHomePage.do.

Z. Sen, H. Shuangxi and F. Yushun, “Service-Oriented Enterprise Network
Performance Analysis”, tsinghua science and technology journal, vol 14, pages

492 -503, 2009.

168

9. Abbreviations

169

ADSS Autonomous Decentralized Service System

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CBPI Company Business Process Infrastructure

CORBA Common Object Request Broker Architecture

EJB Enterprise Java Beans

EIS Enterprise Information System

GUI Graphical User Interface

HCI Human Computer Interaction

ISO International Standard Organization

IEC International Electro technical Commission
IEEE Institute of Electrical & Electronics Engineering
IP Internet Protocol

KDSWS Knowledge-based Dynamic Semantic Web Services

NS Networked Services

OMG Object Management Group

OOAD Object Oriented Analysis and Design
OLTP Online Transaction Platform

170

POS

RMI

RTSOA

RUP

SOA

SOAP

TINA

User

Ul

UML

WS

WSDL

W2ASVB

XML

Point of Sale

Remote Method Invocation

Real-time Service-oriented Architecture

Rational Unified Process

Service Oriented Architecture

Simple Object Access Protocol

Telecommunications Information Networking Architecture
A user interacting with a system

User Interface

Unified Modelling Language

Web Services

Web Services Definition Language

Web 2.0 Architecture for Service and View Brokerage

Extensible Mark-up Language

171

10 Appendix

172

10.1 Source Code
10.1.1 SystemManager.java

/*
* SystemManager.java
*
* Created on 28 June 2012, 23:50
*f
package w2asvb;

import com.sun.rave.web.ui.appbase.AbstractApplicationBean;
import java.util.Vector;

import javax.faces.FacesException;

import samand.broker.WebRequestBroker;

import samand.exception.AppException;

import samand.exception.ProfileFactoryException;

import samand.profile.ProfileFactory;

import samand.util.Constants;

import samand.util.DEBUG;

/**

* <p>Application scope data bean for your application. Create properties

* here to represent cached data that should be made available to all users
and pages in the application.</p>

the first time your application evaluates a value binding expression
or method binding expression that references a managed bean using
* this class.</p>
*/
public class SystemManager extends AbstractApplicationBean {
// <editor-fold defaultstate="collapsed" desc="Managed Component Definition">
private int _ placeholder;

*

*

* <p>An instance of this class will be created for you automatically,
*

*

/**
* <p>Automatically managed component initialization. WARNING:
* This method is automatically generated, so any user-specified code inserted
* here is subject to being replaced.</p>
*f
private void _init() throws Exception {
}
// </editor-fold>

/**

* <p>Construct a new application data bean instance.</p>
*/

public SystemManager() {

}

public void init () {
DEBUG.println (DEBUG.Debug_Level, "SystemManager", "init ()", "Start");
// Perform initializations inherited from our superclass
super.init () ;
// Perform application initialization that must complete
// *before* managed components are initialized

// <editor-fold defaultstate="collapsed" desc="Managed Component
Initialization">
// Initialize automatically managed components
// *Note* - this logic should NOT be modified
try {
_init();
} catch (Exception e) {
log("ApplicationBeanl Initialization Failure", e);
throw e instanceof FacesException ? (FacesException) e: new
FacesException (e);
}

// </editor-fold>

//1. Initialize EJB Platform

DEBUG.println (DEBUG.Debug_Level, "SystemManager", "init()", "Initializing EJB
Platforn");

samand.services.ResourceRegisterar.registerEJBS();

DEBUG.println (DEBUG.Debug_Level, "SystemManager", "init()", "EJB Platform
Initialization complete.");

//2. Initialize profile factory
try {
DEBUG.println (DEBUG.Debug_Level, "SystemManager", "init ()", "Initializing
ProfileFactory.");
this.profileFactory = ProfileFactory.getInstance();
DEBUG.println (DEBUG.Debug Level, "SystemManager", "init()",
"ProfileFactory initialization complete.");

} catch (ProfileFactoryException e) {
DEBUG.println (DEBUG.Debug Level, "SystemManager", "init()",
"ProfileFactory initialization Failed with exception::" + e);
//setting up PageAlert bean to be displayed on logon page
PageAlertBean pageAlertBean = (PageAlertBean) getBean ("PageAlertBean");
pageAlertBean.setType ("error");
pageAlertBean.setTitle("System Error");
pageAlertBean.setSummary ("Internal System Error Occured. Please inform at
it@rankhour.com") ;
pageAlertBean.setVisible (true) ;
}
//3. Initialize request brokers pool
DEBUG.println (DEBUG.Debug_Level, "SystemManager", "init()", "About to call
initRequestBrokersPool () .");
initRequestBrokersPool () ;
DEBUG.println (DEBUG.Debug_Level, "SystemManager", "init()", "End");
}//end of init ()

public void destroy() {
DEBUG.println (DEBUG.Debug Level, "SystemManager", "destroy()", "Start");

DEBUG.println (DEBUG.Debug_Level, "SystemManager", "destroy()", "About to
destory EJB Platform Resources.");

samand.services.ResourceRegisterar.unregisterResource () ;

DEBUG.println (DEBUG.Debug_Level, "SystemManager", "destroy()", "EJB Platform
Resources destruction complete.");

DEBUG.println (DEBUG.Debug_Level, "SystemManager", "destroy()", "End");
}

public String getLocaleCharacterEncoding() {
return super.getLocaleCharacterEncoding();

}

private ProfileFactory profileFactory;
private Vector requestBrokersPool;

/*

public Vector getRequestBrokersPool () {
return requestBrokersPool;

}

*/

public void setRequestBrokersPool (Vector requestBrokersPool) {
this.requestBrokersPool = requestBrokersPool;

}

////////HELPER METHODS

public samand.profile.Location getLocation (String ipAddress) {
return (profileFactory.getLocation (ipAddress));

}

private void initRequestBrokersPool () {
DEBUG.println (DEBUG.Debug Level, "SystemManager", "initRequestBrokersPool ()",
"Start");
WebRequestBroker webReqBroker;

int poolSize = Integer.parselnt (Constants.REQBROKER_POOL_SIZE) ;
DEBUG.println (DEBUG.Debug_Level, "SystemManager", "initRequestBrokersPool()",
"POOL SIZE set to->" + poolSize);

Vector list = null;
list = new Vector();

for(int i=0; i<poolSize; i++)(
webReqBroker = new WebRequestBroker();
list.add (webRegBroker) ;
DEBUG.println (DEBUG.Debug_Level, "SystemManager",
"initRequestBrokersPool ()", "WebRequestBroker [" + webReqgBroker + "] added in pool at
position->" +i);

}
this.requestBrokersPool = list;

DEBUG.println (DEBUG.Debug_Level, "SystemManager", "initRequestBrokersPool()",
"End") ;
}

//This method will be called by JSFActionDispatcher to get free WebRequestBroker

public synchronized WebRequestBroker getWebRequestBroker() ({
DEBUG.println (DEBUG.Debug_Level, "SystemManager", "getWebRequestBroker ()",

"Start"):

boolean freeBrokerFound = false;
WebRequestBroker broker = null;

while (!freeBrokerFound) {
for (int i=0;i<this.requestBrokersPool.size(); i++)(
broker = (WebRequestBroker)requestBrokersPool.get (i)
if (!broker.isBusy()) {
freeBrokerFound = true;
broker.setBusy (true);
break;
}
}//end of inner for
}//end of while
DEBUG.println (DEBUG.Debug_Level, "SystemManager", "getWebRequestBroker()",
"Broker [" + broker + "] is being allocated to honour this request.");

DEBUG.println (DEBUG.Debug_Level, "SystemManager", "getWebRequestBroker()",
llEndll) ’.
return broker;
}

175

10.1.2 ProfileFactory.java

/*
* ProfileFactory.java
*

* Created on 29 June 2012, 19:13

*

*/
package w2asvb.profile;

import java.util.Collection;

import java.util.HashMap;

import java.util.List;

import java.util.Vector;

import samand.exception.ProfileFactoryException;
import samand.services.EJBReferences;

import samand.services.ResourceRegisterar;
import samand.util.Constants;

import samand.util.DEBUG;

import samand.util.XMLReader;

/**
#l
public class ProfileFactory {

public static ProfileFactory ourInstance = null;
private HashMap<String, Location> hmLocationProfiles;

/** Creates a new instance of ProfileFactory */
public ProfileFactory() throws Exception({
init ()

}

public void init() throws Exception{
DEBUG.println (DEBUG.Debug Level, "ProfileFactory", "init()", "Start");

//1. initiate location profile hashmap (IP, Location)
hmLocationProfiles = new HashMap<String, Location>();

//2. calling xmlreader to read file company profile file
List<samand.profile.Company> companiesList =
XMLReader.getInstance () .getCompaniesList (Constants.COMPANY PROFILE_FILE_PATH);

//3. Iterating List one by one filling missing informations in Location and
Company Object

//and then creating location based hashmap

samand.profile.Company companyObj; samand.profile.Location location;

orms.company.CompanyRemoteHome companyHome; orms.location.locationRemoteHome
locationHome;

orms.company.Company companyRemote; orms.location.Location locationRemote;

Vector locationVector;

Collection tempCollection;

System.out.println(companiesList.size());

/**************************PLATFORM CODE&ﬁ*iQ*&thﬁ#ii*&&*it.'ﬁb'bﬂii&t/

for(int i = 0; i < companiesList.size(); i++){
companyObj = companiesList.get (i);

try(
//locking up company home reference

companyHome =
(orms.company.CompanyRemoteHome) ResourceRegisterar.lookupResource (EJBReferences .COMPAN
Y HOME_NAME) ;

companyRemote =
companyHome. findByPrimaryKey (companyObj.getCompanyID()) ;

companyObj.setCompanyName (companyRemote.getCompName ());

//locking individual location objection inside each company
//and retreving and storing values
locationVector = companyObj.getLocations();
for(int j = 0; j<locationVector.size(); j++){
location = (Location)locationVector.get(j);

tryl
locationHome = (orms.location.LocationRemoteHome)
ResourceRegisterar.lookupResource (EJBReferences.LOC_HOME_NAME) ;
tempCollection =
locationHome.findByIp (location.getLocationIP());

DEBUG.println (DEBUG.Debug_Level, "ProfileFactory", "init ()",
"locationHome.findByIP("+ location.getLocationIP() + ") = " + tempCollection.size());

locationRemote = (orms.location.Location)
tempCollection.toArray () [0];

//setting the location object values
location.setLocationID(locationRemote.getLocId());
location.setName (locationRemote.getLocName())
location.setAddrl (locationRemote.getAddressl());
location.setAddr2 (locationRemote.getAddress2 ());
location.setCity(locationRemote.getCity());
location.setPostCode (locationRemote.getPostcode())
location.setTel (locationRemote.getTel());
location.setCompany (companyObj) ;

//adding location into hashtable<IPAddress, Location Object>
hmLocationProfiles.put (location.getLocationIP(), location):;

} catch (Exception e){
DEBUG.println (DEBUG.Debug_Level, "ProfileFactory", "init()",
"Exception Occured("):
e.printStackTrace():
DEBUG.println (DEBUG.Debug_Level, "ProfileFactory", "init()",
ll]l'):
throw new samand.exception.InitiationException("Profile
Factory: Company profile loading failed."):
}//end of inner try-catch
}//end of inner for
} catch (Exception e)(
DEBUG.println (DEBUG.Debug_Level, "ProfileFactory", "init()",
"Exception Occured[");
e.printStackTrace();
DEBUG.println (DEBUG.Debug_Level, "ProfileFactory”, "init ()", "]1"):
throw new samand.exception.InitiationException("Profile Factory:
Company profile loading failed.");
}//end of outer try-catch

}//end of for loop

kR Rk ke ke ko ke ok ok ok ok ok ok ok ok ke kR R R R R R R R R Rk kR R R R R R/

DEBUG.println (DEBUG.Debug_Level, "ProfileFactory", "init ()", "End");
}

public void destroy() {
}

public static synchronized ProfileFactory getInstance() throws
ProfileFactoryException
DEBUG.println (DEBUG.Debug_Level, "ProfileFactory()", "getInstance()",
"Start");
if (ourInstance == null)
try(
return new ProfileFactory();

} catch (Exception e){
throw new ProfileFactoryException ("Profile Factory Initiataion

Failed:[" + e + "]");

} finally {
DEBUG.println (DEBUG.Debug_Level, "ProfileFactory()", "getInstance()
"Endll) '.
}
else {
DEBUG.println (DEBUG.Debug_Level, "ProfileFactory()", "getInstance()",
IVEnd") '.

return ourInstance;

}

public Location getLocation(String ipAddress) {
return (hmLocationProfiles.get (ipAddress)) ;
}

"
’

178

10.1.3 XMLReader.java

/*
* XMLReader.java
*

* Created on 29 June 2012, 22:01
*

*/
package w2asvb.util;

import java.util.*;

import java.io.*;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.xml.sax.SAXException;

import org.w3c.dom.*;

import samand.profile.ActionEntry;

import samand.profile.Company;

import samand.profile.Location;

/**
*
* Qauthor Ather Mughal
*/
public class XMLReader ({
private static XMLReader ourInstance = null;

public XMLReader () {
init();

}

private void init () {
}

public List getCompaniesList (String filePath) {
DEBUG.println (DEBUG.Debug_Level, "XMLReader", "getCompaniesList()", "Start");

List<Company> companiesList = new ArrayList<Company>();
Company company;

try(
DocumentBuilderFactory factory = DocumentBuilderFactory.newlnstance();

DocumentBuilder builder = factory.newDocumentBuilder ()
Document document = builder.parse(new File(filePath));

System.out.println("Root node of XML document is: " +
document.getDocumentElement () .getNodeName ()) ;

NodeList listOfCompanies = document.getElementsByTagName ("Company");
int totalProfiles = listOfCompanies.getLength();

System.out.println("Total no of Company Profiles in XML file : " +
totalProfiles);

//debug

int numberOfIPAddresses = 0;

for(int i=0; i<listOfCompanies.getLength(); i++){
//selecting clients one by one
Node companyNode = listOfCompanies.item(i);
company = new Company();

if (companyNode.getNodeType () == Node.ELEMENT NODE) (

//casting client Node into Element
Element companyElement = (Element)companyNode;

//Retreving company id and url attribute values
System.out.println("Company ID: " +

companyElement.getAttributes () .getNamedItem("id") .getNodeValue()) ;
System.out.println("URL : " +
companyElement.getAttributes () .getNamedItem ("url").getNodeValue());

company.setCompanyID(companyElement.getAttributes().getNamedItem("id").getNodeValue())

company.setUrl (companyElement.getAttributes () .getNamedItem("url") .getNodevalue ());

[fmmm e mm - Going to retrieve Locations

NodeList companyLocationsList =
companyElement.getElementsByTagName ("Locations") ;

Element companylLocationElement =
(Element) companyLocationsList.item(0);

NodeList companyLocationNodes =
companyLocationElement .getElementsByTagName ("Location");

System.out.println("Total number of registered Locations for this
Company : " + companyLocationNodes.getLength());

for (int j=0; j<companyLocationNodes.getLength(); Jj++){

Node locationNode = companyLocationNodes.item(j);
if (locationNode.getNodeType () == Node.ELEMENT NODE) {

System.out.println("Location IP-Address=" +
locationNode.getAttributes().getNamedItem("IP-Address").getNodeValue().trim() +
" logopath=" +
locationNode.getAttributes () .getNamedItem("logopath").getNodeValue().trim());
company.addLocation (new
Location (locationNode.getAttributes () .getNamedItem("IP=
Address") .getNodeValue () .trim(),

locationNode.getAttributes () .getNamedItem("logopath").getNodeValue().trim()));
}//end of inner-if
}//end of Locations

Y T —— Going to retrieve Action Processors List
NodeList companyActionProcessorsList =
companyElement.getElementsByTagName ("Action-Processors-Mapping");
Element companyActionProcessorElement =
(Element) companyActionProcessorsList.item(0);

NodeList companyActionProcessorNodes =
companyActionProcessorElement.getElementsByTagName ("Action-Entry");

System.out.println("Total number of Action-Entry : " +
companyActionProcessorNodes.getLength());

for (int j=0; j<companyActionProcessorNodes.getLength(); j++)({

Node actionEntryNode = companyActionProcessorNodes.item(]}):
if (actionEntryNode.getNodeType () == Node.ELEMENT NODE) (

System.out.println (" [Action-Entry source->" +

actionEntryNode.getAttributes ().getNamedItem("source").getNodeValue ().trim() +

" dest->" +
actionEntryNode.getAttributes().getNamedItem("dest") .getNodeValue().trim() +

" actionProcessor->" +
actionEntryNode.getAttributes().getNamedItem("actionProcessor").getNodeValue().trim()
+

" errorpage->" +
actionEntryNode.getAttributes () .getNamedItem("errorpage").getNodeValue () .trim() +
"]")'.

company.addActionMapEntry (actionEntryNode.getAttributes () .getNamedItem("source").getNo
deValue() .trim(),

new
ActionEntry(actionEntryNode.getAttributes ().getNamedItem("source").getNodeValue().trim
0

actionEntryNode.getAttributes () .getNamedItem("dest").getNodeValue ().trim(),
actionEntryNode.getAttributes () .getNamedItem("actionProcessor").getNodeValue().trim(),

actionEntryNode.getAttributes () .getNamedItem("errorpage").getNodeValue() .trim()
)

)i
}//end of inner-if
}//end of Action-Processors-Mapping

[/ ==m—m——————— Going to retrieve Admin Menu Mapping

Nodelist adminMenulList =
companyElement.getElementsByTagName ("Admin-Menu-Mapping");

Element adminMenuElement = (Element)adminMenulList.item(O0);

NodeList adminMenuNodes =
adminMenuElement.getElementsByTagName ("Menu") ;
System.out.println("Total number of Admin Menu links: " +

adminMenuNodes.getLength());
for (int j=0; j<adminMenuNodes.getLength(); j++){

Node menuNode = adminMenuNodes.item(j):
if (menuNode.getNodeType () == Node.ELEMENT_ NODE) {

System.out.println (" [Menu name->" +
menuNode.getAttributes () .getNamedItem("name") .getNodeValue().trim() +
" navigation-case->" +

menuNode.getAttributes () .getNamedItem("navigation-case") .getNodeValue () .trim() + "]");

company.addAdminMenultem (menuNode.getAttributes (). .getNamedItem("name").getNodeValue ().
trim(),

menuNode.getAttributes () .getNamedItem("navigation-case").getNodeValue () .trim()
)i

}//end of inner-if
}//end of Admin-Menu-Mapping

[)===mmmm————- Going to retrieve Sales Person Menu Mapping
NodeList salesPersonMenulList =

companyElement .getElementsByTagName ("SalesPerson-Menu-Mapping");
Element salesPersonMenuElement =

(Element) salesPersonMenulList.item(0);

NodeList salesPersonMenuNodes =
salesPersonMenuElement .getElementsByTagName ("Menu") ;

System.out.println("Total number of Salesperson Menu links: " +
salesPersonMenuNodes.getLength());

for(int j=0; j<salesPersonMenuNodes.getLength(); J++){

Node menuNode = salesPersonMenuNodes.item(j);
if (menuNode.getNodeType () == Node.ELEMENT NODE) (

System,out.println(" [Menu name->" +
menuNode.getAttributes () .getNamedItem("name") .getNodeValue ().trim() +
" navigation-case->" +
menuNode.getAttributes () .getNamedItem("navigation-case") .getNodeValue().trim());

company.addSalesPersonMenultem (menuNode.getAttributes () .getNamedItem("name") .getNodeVa
lue() .trim(),

menuNode.getAttributes () .getNamedItem("navigation-case") .getNodeValue().trim()

)i

}//end of inner-if
}//end of Admin-Menu-Mapping

}//end of outer-if
System.out.println("--==----------cc—-—oo- ")

//adding company to list
companiesList.add (company) ;
}//end of outer for

catch(NullPointerException e) {

throw new NullPointerException("Unable to locate given file:" + filePath

catch (SAXException sxe) {

// Error generated during parsing
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
X.printStackTrace();

catch (ParserConfigurationException pce) ({

// Parser with specified options can't be built
pce.printStackTrace();

catch (IOException ioe) {

// 1/0 error
ioe.printStackTrace();

DEBUG.println (DEBUG.Debug_Level, "XMLReader", "getCompaniesList ()", "End"):
return companiesList;

public static synchronized XMLReader getInstance () {

DEBUG.println (DEBUG.Debug_Level, "XMLReader", "getInstance()", "Start");
if (ourInstance == null)

DEBUG.println (DEBUG.Debug_Level, "XMLReader", "getInstance()", "End");
return new XMLReader ();

} else{

DEBUG.println (DEBUG.Debug Level, "XMLReader", "getInstance()", "End");
return ourlInstance;

182

10.1.4 Login.java

public String login _btn_action() {
DEBUG.println (DEBUG.Debug_Level, "login.java", "login_btn_action()", "Start");
//0-retrieve user inputs
String strUid = (String) this.getUserName().getText();
String strPwd = (String) this.getUserPassword().getText();

//reset the password for security
this.getUserPassword() .setPassword("");

//getting role
String strRole = (String)this.getDrp_login_as () .getValue();

//this statement will initiate system manager, if not already initaited
SystemManager sysMgr = getSystemManager();

//1- authenticate user details
LoginProcessor loginProcessor = new LoginProcessor();
UserSessionBean usb ;

try |

//2. calling to authenticate user credentials
samand.profile.Employee emp = loginProcessor.authenticateEmployee (strUid,

strPwd) ;

//Temporary code, making employee administator
emp.setCompanyAdmin (true);

//2.1 checking wheather person is allowed to be logged in as admin or not
if (!emp.isCompanyAdmin() && strRole.equalsIgnoreCase ("adminLogin")) {
PageAlertBean alertBean = (PageAlertBean)getBean ("PageAlertBean");
alertBean.setType ("warning");
alertBean.setTitle ("User Access - Error:");
alertBean.setSummary (Constants.INSUFFICIENT PRIVILAGES_ERROR_MSG) ;

alertBean.setVisible(true);

// redisplaying page with page alert
return null;

}

//3. calling to authenticate location access

HttpServletRequest reg=(HttpServletRequest)
FacesContext.getCurrentInstance().getExternalContext () .getRequest () ;
String strAddr = req.getRemoteAddr () ;

//temporaryly setting ip address to 217.35.,95.208

strAddr = "217.35.95.208";

DEBUG.println (DEBUG.Debug_Level, "login.java", "login_btn_action()",
"Remote Location IP address is :" + strAddr);

loginProcessor.authenticateLocation (strAddr);

//4. On sucessfull completion, loading user details into UserSessionBean
usb = getUserSessionBean();

//5. Retreving and storing Location details of user from System Manager
samand.profile.Location loc = sysMgr.getLocation (strAddr);

usb.setLocation (loc) ;
usb.setEmployee (emp) ;
usb.setActionMenuMapping (loc.getCompany () .getHmActionProcessorMapping ());

//6. Setting up menu mepping based on role
if(strRole.equalsIgnoreCase("adminLogin"))(
DEBUG.println (DEBUG.Debug_Level, "login.java", "login_btn_action()",
"Setting up Admin Menu Mapping table in User Session Profile.");
usb.setCurrentMenuMapping (loc.getCompany () .get HnAdminMenuMapping ()) ;
} else {
DEBUG.println (DEBUG.Debug_Level, "login.java", "login_btn_action()",
"Setting up Sales Person Menu Mapping table in User Session Profile.");

usb.setCurrentMenuMapping (loc.getCompany () .getHmSalesPersonMenuMapping ())/
}

//7. Navigating to target user desktop
String temp = usb.getNavigationCase(Constants.USER_DESKTOP) ;
return temp;
//return "showTempPage";
} catch (Exception e) ({
//setting up page alert to be displayed to user

PageAlertBean alertBean = (PageAlertBean)getBean("PageAlertBean");
alertBean.setType ("erroxr");

if (e instanceof AuthenticationException) (
alertBean.setTitle ("User Access - Error:");
alertBean.setSummary(e.getMessage());

} else if (e instanceof PlatformException) {
alertBean.setTitle("System Error:");
alertBean.setSummary (e.getMessage());

}

alertBean.setVisible(true);

}
DEBUG.println (DEBUG.Debug_Level, "login.java", "login_btn_action()", "Start");

return null;
}//end of login button()

184

10.1.5 LoginProcessor.java

/*
* LoginProcessor.java
*

* Created on 29 June 2012, 18:00

*

*/
package w2asvb.processor.authentication;

import java.rmi.RemoteException;

import java.util.Collection;

import javax.ejb.FinderException;

import samand.exception.AuthenticationException;
import samand.exception.PlatformException;
import samand.profile.Employee;

import samand.services.EJBReferences;

import samand.services.ResourceRegisterar;
import samand.util.Constants;

import samand.util.DEBUG;

/**
*
* @author Ather Mughal
*/
public class LoginProcessor {

/** Creates a new instance of LoginProcessor */
public LoginProcessor() {
}

public Employee authenticateEmployee (String userName, String password) throws
AuthenticationException, PlatformException{
DEBUG.println (DEBUG.Debug_Level, "LoginProcessor", "authenticateEmployee()",

"Start");

//1. Locate employee details in database
orms.employee.EmployeeRemoteHome employeeHome =

(orms.employee.EmployeeRemoteHome)
ResourceRegisterar.lookupResource (EJBReferences.EMP_HOME_ NAME) ;

//2. Create and load Employee object
orms.employee.Employee employeeRemote;
samand.profile.Employee emp;

/**t**wi******t*****it*t*****ﬁi*btﬁtfﬁ***ww*wawwﬁaﬁ&ﬁa-tntaaa.aawoo.oql

try {
employeeRemote = employeeHome.findByUserName (userName, password);

//3. Return Employee Object

emp = new Employee();

emp.setEmployeelID (employeeRemote.getEmployeelId()):

emp.setUserName (userName) ;

emp.setFirstName (employeeRemote.getEmployeeName ()) ;

emp.setSurName (employeeRemote.getEmployeeSurName ()) ;
emp.setCompanyAdmin (false);

//emp.isCompanyAdmin ()//hamed: need to about method to verify this role

}catch (FinderException e) {
DEBUG.println (DEBUG.Tracing Level, "LoginProcessor",
"authenticateEmployee()", "Exception Occured(" + e + "]");
throw new
AuthenticationException (Constants,INCORRECT USERNAME PASSWORD MSG) ;
}catch (RemoteException e) { B -
DEBUG.println (DEBUG.Tracing Level, "LoginProcessor",
"authenticateEmployee ()", "Exception Occured(" + e + "]");
: throw new PlatformException(Constants.PLATFORM_EXCEPTION_LOGIN_ERROR_MSG);

/************************i****t*****tt**ﬁﬁ&i*t*ﬁﬁﬁi*ﬁ*ﬁ*ﬁQaﬁﬁﬁiﬁﬁﬁﬁﬁatﬁ/

/*/11117111111717/1/17/1/1/1///]/temporary creation of employee object

emp = new samand.profile.Employee();

emp.setEmployeeID("1");

emp.setFirstName ("Scott") ;

emp.setSurName ("Tigher");

emp.setUserName (userName) ;

emp.setCompanyAdmin (false) ;

L1171770007717 7007777070770 777077777070777770700070717770000010770000707777170777*/

DEBUG.println (DEBUG.Debug_Level, "LoginProcessor", "authenticateEmployee()",
"Endll) ,.

//4. Returning Employee Object

return emp;

}// end of authenticateEmployee ()

public void authenticatelLocation(String ip) throws PlatformException,
AuthenticationException{
DEBUG.println (DEBUG.Debug_Level, "LoginProcessor", "authenticateLocation()",
"Start");

/********i****i*****i***t****ﬁﬁﬁkPLATFORM coDE*t*iiiﬁiiﬁﬁﬁttﬁii*i‘*/

//1. Locate location details from platform
orms.location.LocationRemoteHome locationHome =
(orms.location.LocationRemoteHome)
ResourceRegisterar.lookupResource (EJBReferences.LOC_HOME NAME) ;

orms.location.Location locationRemote;

//2. Create and load Location object
try |

Collection locations = locationHome.findByIp (ip):/
DEBUG.println (DEBUG.Debug_Level, "LoginProcessor",
"authenticatelocation()", "Location ["+ ip +"] is an authenticated location.");
} catch (FinderException e) {
DEBUG.println (DEBUG.Tracing_Level, "LoginProcessor",
"authenticatelocation ()", "Exception Occured(" + e + "]");
throw new
AuthenticationException(Constants,UNAUTHORIZED LOCATION_ACCESS_MSG) ;
} catch (RemoteException e){
DEBUG.println (DEBUG.Tracing_Level, "LoginProcessor",
"authenticateLocation ()", "Exception Occured(" + e + "]");
throw new PlatformException("Unable to load data from Location Object");
} catch(Exception e) {
DEBUG.println (DEBUG.Tracing_Level, "LoginProcessor",
"authenticateLocation()", "Exception Occured(" + e + "]");
throw new PlatformException ("Unknow Platform Exception Occured");
}
- DEBUG.println (DEBUG.Debug Level, "LoginProcessor", "authenticatelocation()",
End") ;

Y O R R AR LY

}//end of authenticateLocation ()

186

10.1.6 WebRequestBrorker.java

/*

* WebRequestBroker.java

*

* Created on 29 June 2012, 18:03

*

*/

package w2asvb.broker;

import
import
import
import
import
import
import
import
import

/**
*

samand.context.RequestContext;
samand.context.ResponseContext;
samand.context.WebRequestContext;
samand.context.WebResponseContext;
samand.exception.AppException;
samand.processor.IActionProcessor;
samand.profile.ActionEntry;
samand.util.DEBUG;
samand.view.UIView;

* @author Ather Mughal

L

public class WebRequestBroker implements IRequestBroker{

private boolean busy;

/** Creates a new instance of WebRequestBroker */
public WebRequestBroker() {

}

init ()

public void init () {

DEBUG.println (DEBUG.Debug_Level, "WebRequestBroker", "init()", "Start");

setBusy(false);
DEBUG.println (DEBUG.Debug_Level, "WebRequestBroker", "init ()", "Initialized

with BUSY STATUS:" + isBusy());

}

DEBUG.println(DEBUG.Debug_Level, "WebRequestBroker", "init()", "End");

public ResponseContext brokeRequest (RequestContext requestContext) (

DEBUG.println(DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest ()",

"Start");

object

//initializing local variables
samand.profile.Company companyProfile = null;
samand.profile.Location location = null;
WebRequestContext webReqCtx = null;
ActionEntry actionEntry = null;
IActionProcessor actionProcessor = null;
String actionProcessorName = null;

//WebResponseContext webResponseCtx = new WebResponseContext () ;

//casting back RequestContext into WebRequestContext

webReqCtx = (WebRequestContext) requestContext;

//allocating references including retieval of company profile from context

location = webReqCtx.getLocation();
companyProfile = location.getCompany();

//mapping user action into appropriate Action Processor
actionEntry = companyProfile.getActionMapEntry (webReqCtx.getSourcePage());
DEBUG.println(DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest ()",

"ActionEntry for this request is =>" + actionEntry.toString());:

//loading the appropriate Action Processor

actionProcessorName = samand.util.Constants.DEFAULT_ PACKAGE_NAME
+".processor." + actionEntry.getActionProcessor();

DEBUG.println (DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest ()",
"Loading... ["+ actionProcessorName +"]");

try(
actionProcessor = lookupActionProcessor (actionProcessorName) ;

//executing action processor method

DEBUG.println (DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest ()",
"Executing...["+ actionProcessorName +"]");

UIView tempView = actionProcessor.execute (webReqCtx);

//Setting up reference of UlContainer.UIView

DEBUG.println (DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest ()",
"Setting up retrieved UlIView into UlICotainer.");

webReqCtx.getUiContainer () .setUiView (tempView) ;

//In Case of sucessfull execution of action
webReqCtx.appendActionOutput (actionEntry.getDestination());

} catch (AppException e) {
DEBUG.println (DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest()",
"System Exception Occured::" + e.getMessage());
webReqCtx.appendActionOutput (actionEntry.getErrorPage());
webReqCtx.setAppException(e);
} catch(Exception e) {
DEBUG.println (DEBUG.Debug Level, "WebRequestBroker", "brokeRequest ()",
"System Exception Occured::" + e.getMessage());
webReqCtx.appendActionOutput (actionEntry.getErrorPage());
webReqCtx.setAppException(new AppException(e.getMessage()));
}

DEBUG.println (DEBUG.Debug_Level, "WebRequestBroker", "brokeRequest ()", "End");

return null;

}

public void brokeResponse (RequestContext requestContext, ResponseContext
responseContext) {
WebRequestContext webRequestCtx = null;
WebResponseContext webResponseCtx = null;

//casting back requestContext into web request context
webRequestCtx = (WebRequestContext) requestContext;
webResponseCtx = (WebResponseContext) responseContext;

//setting up values

webRequestCtx.setUIView (webResponseCtx.getUiView()) ;
webRequestCtx.setAppException (webResponseCtx.getAppException());
webRequestCtx.setActionOutput (webResponseCtx.getActionOutput ());

}
public void destroy() {
}

public boolean isBusy() {
return busy;
}

public void setBusy(boolean busy) |
this.busy = busy;
}

public void release() {
setBusy (false) ;
}

//Future Suggestion: Inside this method, action processor can be lookedup
//using JNDI type Resource Directory, instead of fresh initialization
private IActionProcessor lookupActionProcessor (String actionProcessorName) {
try |
return (IActionProcessor)Class.forName (actionProcessorName) .newInstance();
} catch (Exception e) {
new AppException ("WebRequestBroker.lookupActionProcessor()@Unable to load
Action Processor.");
return null;

}

189

10.1.7 JSFActionDispatcher.java

/*
* JSFActionDispatcher.java

*

* Created on 29 June 2012, 19:08
*
*/

package w2asvb.system;

import samand.SystemManager;

import samand.broker.WebRequestBroker;
import samand.context.WebRequestContext;
import samand.exception.AppException;
import samand.util.DEBUG;

/‘\-*
*

* Qauthor Ather Mughal
*Y
public class JSFActionDispatcher |{

/** Creates a new instance of JSFActionDispatcher */
public JSFActionDispatcher() {
}

//this method contains the common logic of requesting request broker from system
manager
public void dispatch (WebRequestContext webReqCtx, SystemManager sysManager) (
DEBUG.println (DEBUG.Debug Level, "JSFActionDispatcher", "dispatch()",
"Start"); -
WebRequestBroker webRegBroker = null;

//retreving request broker from system manager o =
DEBUG.println(DEBUG.Debug_Level, "JSFActionDispatcher", "dispatch()", "About
to retrieve WebRequestBroker from SystemManager.") ;

webRegBroker = sysManager.getWebRequestBroker () ;

//Broking incoming request to Action processor
DEBUG.println (DEBUG.Debug_Level, "JSFActionDispatcher", "dispatch()", "About
to broke current request..");
webRquroker.brokeRequest(webRethx);
DEBUG.println (DEBUG.Debug_Level, "JSFActionDispatcher", "dispatch()", "Current
request broking completed sucessfully.");
webRquroker.brokeResponse(webRethx, webResCtx) ;

//releasing request broker

DEBUG.println (DEBUG.Debug_Level, "JSFActionDispatcher", "dispatch()",
"Releasing WebRequestBroker "+ webRegBroker +"].,");

webRegBroker.release () ;

DEBUG.println (DEBUG.Debug_Level, "JSFActionDispatcher", "dispatch()",
"WebRequestBroker released.");

DEBUG.println (DEBUG.Debug_Level, "JSFActionDispatcher", "dispatch()", "End");

190

