
•• •• •••••• ••• • ••• •••• •
LONDON .=::

metropolitan : ••••
university. •

An Agent-based Adaptive Join Algorithm

For Building Data Warehouses

Qicheng Vu

The Learning Centre
Library
236·250 Holloway Road
London N7 6PP

...
• ~ o ••

lON~~~' ."~.:.
metropolltan:·:·: •

unIVersity. •

A thesis submitted to the London Metropolitan University in accordance with the

requirements for the degree of Doctor of Philosophy in the Faculty of Computing

December 2012

Abstract

Making better business decisions in an efficient way is the key to succeeding in today's

competitive world. Organisations seeking to improve their decision-making process can

be overwhelmed by the sheer volume and complexity of data available from their various

operational information systems. Many organisations have responded to this challenge by

employing data warehousing technologies to make full use of the information in their

systems and address real-world business problems.

As organisations move their operation to the Internet to take the advantages of the new

technologies, the data warehouse environments for the organisations become more

distributed and dynamic. Meanwhile, applications of a data warehouse have evolved from

reporting and decision support systems to mission critical decision making systems,

which require data warehouses to combine both historical and current data from

operational systems. This presents both challenges and opportunities in the designing and

developing of new data warehouse systems for supporting decision-making processes

which can deliver the right information, to right people, at the right time, interactively and

securely.

In typical distributed data warehouse architectures both the logical layer and physical

layer of the data warehouse are used to map physical tables in distributed data marts. The

physical layer contains historical data materialised in a longer time period while most

recent data is only available from the logical layer. To extract knowledge from this data is

often expensive, as it usually requires complex queries involving a series of joins and

aggregations. Many commercial data warehouse systems place limits on such operations

at runtime or sacrifice precision by using approximate replication.

1

The join operation is one of the most expensive operations in query processing as it

combines, compares and merges potentially large data sets. Joining large tables could

consume a significant amount of the system resources including CPU, disk, buffer and

network bandwidth. Consequently join performance has a considerable impact on overall

system performance especially in a distributed data warehouse environment. The

traditional 'optimise-then-execute' query processing paradigm is inadequate in this case.

This thesis investigates the evolution of data warehouses to identify architecture suitable

for highly distributed data warehouses and studied the feasibility and effectiveness of

utilising software agent technology for distributed information systems. A novel agent-

based adaptive join algorithm called AJoin for effective and efficient online join

operations in distributed data warehouses has been proposed to seamlessly integrate

dynamic integration approach with traditional data warehousing technologies to address

the issues arising from distributed and dynamic data warehouse environments. Taking

into consideration data warehouse features, AJoin utilises intelligent agents for dynamic

optimisation and coordination of join processing at run time. Key aspects of the AJoin

algorithm have been implemented and evaluated against other modem adaptive join

algorithms. The experimental evaluation results demonstrate that AJoin consistently

outperforms other adaptive join algorithms under various distributed and dynamic data

warehouse environments in this study. The outcome of this research has been very

encouraging. The average performance of AJoin in matching the first 50 tuples has

improved as much as 67% and overall join performance has improved more than 35%

compared with other join algorithms in a distributed and dynamic data warehouse

environment.

2

Acknowledgements

I first wish to thank Dr. Fang Fang Cai for his active supervision during the course of this

PhD. Without his key advice for research directions, patient guidance, support and

encouragement, this work would not have been possible. He has always demanded the

best of me, but also shown great faith in me at times when I was behind due to health

problems and was extremely busy in teaching and related activities. lowe to him a lot of

what I have learned.

I would also like to thank Dr. Julie A McCann for providing me her original ideas,

research direction advice, quality feedback and giving me the opportunity to visit her

research group. It has been a great pleasure to work under her guidance.

I would like to give special thanks to Mr. Tariq Bhatti for providing financial support and

allowing me to use data from his International Telecommunication System company for

the PhD research.

A lot of appreciation and gratitude goes to my colleagues and fellow researchers who

have offered me support, inspiration and encouragement during my PhD research. In

particular, I would like to thank Preeti Patel for detailed proofreading of several chapters

of the thesis.

Finally, I would like to thank my parents, my wife, and my daughter for their

encouragement and everyday support. lowe to them every opportunity I had in life, and I

am grateful to them for simply being there.

3

Table of Contents

Chapter 1. Introduction 16

1.1 Main Contributions to knowledge of the Research 19

1.2 The Structure of the Thesis 21

Chapter 2. Data Warehousing 25

2.1. Data Warehouse Characteristics 27

2.2. Development of Data Warehouse Architecture 31

2.3. Dimensional Data Model for Data Warehousing 36

2.4. Approaches for Distributed Information Management.. 40

2.5. Issues in current data warehouse environments 42

Chapter 3. Software Agents for Distributed Data Warehouses .46

3.1. Software Agents 47

3.1.1 Agent Definition 47

3.1.2 Agent Types 52

3.1.3 Agent Architectures 55

3.2. Software Agents for Distributed Information Systems 58

3.2.1 Resource Agents 59

3.2.2 Mobile Agents 60

3.2.3 Intelligent Agents 62

3.2.4 User Interface Agents 63

3.2.4 Cooperative Agents 65

3.2.5 Mobile Agent Based Self-Adaptive Join 67

3.3. A Proposed Framework for Agent-based Data Warehousing 69

3.3.1 Agent-based Data Warehousing Architecture 72

4

3.3.2 Agent-based User Interface 73

3.3.3 Agent-based ETL 75

3.3.4 Agent-based Data Warehouse 76

3.3.5. MAS Platform 77

3.3.6. Key Techniques and Challenges in ABDW Architecture 78

Chapter 4. Join Algorithms In Distributed Data Environment.. 82

4.1. Join Algorithms in Relational Databases 83

4.1.1 Nested-Loop Join 84

4.1.2 Block Nested-Loop Join ,85

4.1.3 Indexed Nested-Loop Join 87

4.1.4 Sort-merge Join 87

4.1.5 Hash Join ················· 89

4.2. Join Algorithms in Distributed Database Systems ,. 93

4.2.1 Semi-Join 94

4.2.1 Semi-Join Cost vs. Benefits 96

4.3. Adaptive Join Algorithms for Dynamic Data Environment 96

4.3.1 Nested-loops Ripple Join 98

4.3.3 Hash Ripple Join 100

4.3.4 XJoin ················ 103

Chapter 5. Experimental Study on Modern Adaptive Join Algorithms 109

5.1. A Data Warehouse Scenario for the Investigation 110

5.1.1 Data Warehouse Architecture for the Scenario 112

5.1.2 Multidimensional Data Model 114

5

5.1.3 Needs for More Efficient Join Algorithms 116

5.2. Simulated Network Environments for Experiments 117

5.3. Experimental Results and Evaluation 124

5.3.1 Join Performance Under Random Network Model.. 124

5.3.2 Join Performance Under High Speed Network Model 125

5.3.3 Join Performance Under Low Speed Network Model 126

5.3.4 Join Performance Under Bursty Network Model 127

5.3.5 Join Performance Using XJoin with different memory size 128

5.4. Summary 129

Chapter 6. AJoin Framework and AJoin Algorithm 132

6.1. Definition 134

6.2. AJoin Framework 135

6.3. AJoin Algorithm 138

6.4. Cost-benefit Analysis 142

Chapter 7. Evaluation 146

7.1. Evaluation Environment and Its Setup 147

7.1.1 Evaluation Environment.. 148

7.1.2 Environment Setup 150

7.2. Performance of AJoin with Sufficient Memory Available 152

7.2.1 AJoin Performance Under Low speed Network 152

7.2.2 AJoin Performance Under Random Network 157

7.2.3 AJoin Performance Under High Speed Network 160

7.2.4 AJoin Performance Under Gigabit Network 164

7.2.5 AJoin Performance without Remote Filtering 167

7.2.6 AJoin Performance with Bursty Effects 170

6

7.3. Performance of AJoin with Low Memory 174

7.3.1 AJoin Performance Under Low Speed Network Model 174

7.3.2 AJoin Performance Under Random Network Model.. 177

7.3.3 AJoin Performance Under High Speed Network Model. 181

7.3.4 AJoin Performance Under Gigabit Speed Network Model. 184

7.3.5 AJoin Performance with Bursty Effects 186

7.4. Summary 190

Chapter 8. Conclusions and Further Research 193

8.1. Summary 193

8.2. Achieved Benefits of the Research t'96

8.2.1 Primary Benefits 196

8.2.2 Secondary benefits 196

8.3. Limitations 197

8.4. Further Research 198

8.4.1 Heterogeneity in data schema :199

8.4.2 Adaptive behaviour in query processing 199

8.4.3 Effect of network environment.. 200

8.4.4 Impact of dynamic and distributed data warehouse environment 200

8.4.5 Use of agent techniques to enhance adaptiveness and intelligence of join

algorithms 201

8.5. Closing Remarks 201

Bibliography 203

7

List of Figures

Figure 2.1Top-down architecture 32

Figure 2.2 Bottom-up architecture 33

Figure 2.3 Enterprise data mart architecture 34

Figure 2.4 Distributed DWIDM architecture .35

Figure 2.5 A star schema for dimensional model 37

Figure 3.1 The agent classification (Nwana, 1996) 53

Figure 3.2 Objectives of the agent-based data warehouse approach 71

Figure 3.3 Agent-based data warehouse architecture 72

Figure 3.4 Agent-based user interface 74

Figure 3.5 Agent-based ETL 76

Figure 3.6 Agent-based data warehouse 76

Figure 4.1 Hash join approach (Ramakrishnan & Gehrke, 2002) 90

Figure 4.2 The "Square" version of nested-loop ripple join ;.98

Figure 4.3 Hash Ripple Join 101

Figure 4.4 Partition handling from (Urhan & M. J. Franklin, 2000) 104

Figure 5.1 A topology of I.T.S DDW 112

Figure 5.2 A DDW architecture 113

Figure 5.3 Multidimensional data model for I.T.S DW·········· 115

Figure 5.4 Random model for first 10000 tuples of R 119

Figure 5.5 Random model for first 10000 tuples of S 120

Figure 5.6 High speed model for first 10000 tuples of R 120

Figure 5.7 High speed model for first 10000 tuples of S 121

Figure 5.8 Low speed model for first 10000 tuples of R 121

Figure 5.9 Low speed model for first 10000 tuples of S 122

8

Figure 5.10 Bursty model for first 10000 tuples of R 122

Figure 5.11 Bursty model for first 10000 tuples of S 123

Figure 5.12 Join performance under random network 124

Figure 5.13 Join performance under high speed network 125

Figure 5.14 Join performance under low speed network 126

Figure 5.15 Join performance under bursty network 127

Figure 5.16 Join performance under bursty (2 sec delay) network 128

Figure 5.17 XJoin performance with different memory sizes 128

Figure 6.1 AJoin framework 135

Figure 7.1 Join performance under low speed network for calls to China 153 '

Figure 7.2 Join performance under low speed network for calls to France 155

Figure 7.3 Join performance under low speed network for calls to USA 156

Figure 7.4 Join performance under low speed network for calls to all countries 157

Figure 7.5 Join performance under random network for calls to China 158

Figure 7.6 Join performance under random network for calls to France 159

Figure 7.7 Join performance under random network for calls to USA 159

Figure 7.8 Join performance under random network for calls to all countries 160

Figure 7.9 Join performance under high speed network for calls to China 161

Figure 7.10 Join performance under high speed network for calls to France 162

Figure 7.11 Join performances under high speed network for calls to USA 163

Figure 7.12 Join performance under high speed network for calls to all countries 164

Figure 7.13 Join performance under gigabit speed network for calls to China 165

Figure 7.14 Join performance under gigabit speed network for calls to France 166

Figure 7.15 Join performance under gigabit speed network for calls to USA 166

Figure 7.16 Join performance under gigabit speed network for calls to all countries 167

9

Figure 7.17 Join performance under low speed network without remote filtering 168

Figure 7.18 Join performances under random speed network without remote filtering ..168

Figure 7.19 Join performance under high speed network without remote filtering 169

Figure 7.20 Join performance under gigabit network without remote filtering 170

Figure 7.21 Join performance under low speed network with bursty effects 171

Figure 7.22 Join performances under random speed network with bursty effects 172

Figure 7.23 Join performances under high speed network with bursty effects 173

Figure 7.24 Join performances under gigabit speed network with bursty effects 173

Figure 7.25 Join performance under low speed network with 5% of memory 175

Figure 7.26 Join performance under low speed network with 10% of memory 176

Figure 7.27Join performance under low speed network with 20% of memory 176

Figure 7.28 Join performance under low speed network with 50% memory 177

Figure 7.29 Join performance under random speed network with 5% of memory 178

Figure 7.30 Join performance under random speed network with 10% of memory 179

Figure 7.31 Join performance under random speed network with 20% of memory 180

Figure 7.32 Join performance under random speed network with 50% of memory 180

Figure 7.33 Join performance under high speed network with 5% ofmemory 181

Figure 7.34 Join performance under high speed network with 10% of memory 182

Figure 7.35 Join performance under high speed network with 20% of memory 183

Figure 7.36 Join performance under high speed network with 50% ofmemory 183

Figure 7.37 Join performance under gigabit speed network with 5% of memory 184

Figure 7.38 Join performance under gigabit speed network with 10% ofmemory 185

Figure 7.39 Join performance under gigabit speed network with 20% of memory 186

Figure 7.40 Join performance under gigabit speed network with 50% of memory 186

Figure 7.41 Join performance under low bursty network with 5% of memory 187

10

Figure 7.42 Join performance under low bursty network with 10% of memory 188

Figure 7.43 Join performance under low bursty network with 20% of memory 189

Figure 7.44 Join performance under low bursty network with 50% of memory 189

11

List of Tables

Table 4.1 Nested-loop join algorithm 84

Table 4.2 Blocked nested-loop join algorithm 86

Table 4.3 Sort-merge join algorithm 88

Table 4.4 Hash join algorithm 91

Table 4.5 Semi-join algorithm 95

Table 4.6 Nested-loops ripple join algorithm 99

Table 4.7 Hash Ripple loin algorithm 102

Table 4.8 Xloin algorithm - Stage 1 105

Table 4.9 Xloin algorithm - Stage 2 106

Table 4.10 Xloin algorithm - Stage 3 107

Table 6.1 loin coordinator agent (leA) 138

Table 6.2 Tuple matching agent (MTA) 139

Table 6.3 Receive a tuple procedure , 140

Table 6.4 Remote information agent (RIA) 141

Table 6.5 RIA retrieve RS service 141

Table 7.1 Aloin performance improvements against Hash Ripple loin 191

Table 7.2 Aloin performance improvements against Xloin 191

12

List of Acronym

A

Additional Query Conditions, (C) 134
Agent Communication Language (ACL) 80

Agent-based Data Warehouse (ABDW) 19
agent-based join algorithm (AJoin) 21
Asymmetric Digital Subscriber Line (ADSL) 146
Attribute Selection Ratio (SR(R)) 143

B

Belief, Desire, Intention (BDI) 57

c

Comma-Separated Values (CSV) 118
Cooperative Information System (CIS) 59

D

Decision Support Systems (DSS) 3?
Distributed Artificial Intelligence (DAI) 47

Distributed Data Mart (DDM) 62
Distributed Data Warehouse (DDW) : 20, 62
Distributed Problem Solving (DPS) 47

E

Extraction, Transformation, and Loading (ETL) 32

F

Federated Database System (FDBS) 41

G

Global Metadata Repository (GMR) 34

13

I

In Distributed Knowledge Networks (DKN) 61
Input Buffer (IB) 136
International Telecommunication Systems (I.T.S) 20

J

Join Attributes in Relation R (RA) 134
Join cardinality (JC) 135
Join Cardinality Ratio (CR(R)) 143
Join Coordinator Agent (JCA) 135

K

Knowledge Query and Manipulation Language (KQML) 51

L

Local Access Pointer (LAP) 137

M

Multi-Agent System (MAS) 19

o

Online Analytical Processing (OLAP) 38
on-line transaction processing (OLTP) 28
Online Transaction Processing (OLTP) 16
On-line Transaction Processing (OLTP) 28
Output Agent (OA) 137

p

Parallel AI (PAI) 47

R

Remote Access Pointer (RAP) 136
Remote Information Agent (RIA) 132
Remote Information Agents (RIA) 136

14

5

Selected Attributes (Rs) 134
Serial Advanced Technology Attachment (SATA) 93
Size of all Attributes (Size(R)) 134
Size of Join Attributes (Size(RA)) 134
Size of Selected Attributes (Size(Rs)) 134

T

The Third Normalised Form (3NF) 37
Tuple Matching Agent (TMA) 136

v

Virtual Private Networks (VPN) 16

w
Wide Area Network (WAN) 146

x
XJoin without second stage (XJoin-No2) 23

15

Chapter 1. INTRODUCTION

Making better business decisions in an efficient way is the key to succeeding in today's

competitive environment. Organisations seeking to improve their decision-making

process can be overwhelmed by the sheer volume and complexity of data available from

their various Online Transaction Processing (OLTP) systems. Making this data available

to a wide audience of business users is one of the most significant challenges for today's

IT industry and professionals.

In response, many organisations choose to employ a data warehouse technology to

'unlock' the information in their OLTP systems and understand real-world business'

problems. The data warehouse is an integrated store of information collected from other

systems, and becomes the foundation for decision support and data analysis (Inmon,

2005). However, as organisations globalise their operations and traditional private

networks are replaced by Virtual Private Networks (VPN) which uses the Internet to

provide a cost effective solution to connect distributed networks, data warehouse

environments for these organisations become more distributed and dynamic. Meanwhile,

applications of a data warehouse have evolved from reporting and decision support

systems to mission critical decision making systems, which require data warehouses to

combine both historical and current data from operational systems. This presents both

challenges and opportunities in the designing and developing of new data warehouse

systems for supporting decision-making processes which can deliver the right information,

to right people, at the right time, interactively and securely.

16

As integrated enterprise systems become increasingly sophisticated in terms of

functionality and environment, there is a need for a novel approach in building complex

software systems efficiently and effectively. A promising direction to this is software

agents, which are software entities that have an internal goal and acts on behalf of a user.

They are suitable for use in wide variety of applications. In particular, they are well suited

for applications which involve distributed computation or communication between

components, sensing or monitoring of their environment, or autonomous operation. It is

believed that software agent technology can be employed advantageously to tackle the

problems in distributed and dynamic data warehouse environments.

In traditional data warehouse systems the data processing activities centres around the

analysis and mining of different sets of information. This is achieved through complex

query processing. The join operation is vital to this query processing as it combines,

compares and merges potentially large data sets. Therefore, the join operation of two or

more relations is one of the most important operations in database and data warehouse

systems. It occurs frequently in relational queries and is one of the most expensive

relational operations (Chen et al., 1995). Joining large tables could consume a significant

amount of the system resources including CPU, disk, buffer and network bandwidth.

Consequently join performance has a considerable impact on overall system performance

especially in a distributed warehouse environment. Since the performance of join

algorithms varies significantly with their operation environments, making query

processing more adaptive and intelligent in distributed and dynamic environments is

essential for data warehouses to work effectively and efficiently. Modem pipelined join

algorithms have demonstrated their adaptability to dynamic and unpredictable data

environments. However, none of those modem join algorithms have been optimised for

17

data warehouse environments where data is organised in multi-dimensional model and is

required to load from distributed and dynamic data sources. Naturally, an adaptive join

approach is sought to provide effective and efficient online join algorithm for distributed

data warehouses in dynamic environments.

The primary objective of the research is to use intelligent agents in the population,

maintenance, and query processing aspects of a data warehouse. In particular, a new join

in data warehousing query processing for distributed and dynamic environments is

proposed and evaluated.

Aims of the investigation are identified as follows:

• To investigate the development of data warehouses architecture to identify

architecture suitable for highly distributed data warehouses.

• To investigate the feasibility and effectiveness of utilising software agent

technology to address some specific issues in data warehouses.

• To conduct an experimental study on the performance of modem join algorithm for

distributed environment.

• To propose a framework for an adaptive join algorithm using intelligent agents.

• To evaluate the agent-based join approach against current approaches in distributed

and dynamic data warehouse environments.

18

1.1 Main Contributions to knowledge of the Research

• Literature review

A comprehensive critical review of the literature documenting previous research on both

data warehousing and software agents (Inmon, 1992),(Widom, 1995), (Firestone, 1998),

(Samos, 1998), (Honavar et aI., 1998), (Theodoratos, 1999), (Rundensteiner, 2000),

(Moeller,2000), (Browning, 2001), (Kimball, 2002), (Anon, 2002), (Inmon, 2005), (Sen,

2005), (Babin, 2008), (Rhodes, 1996), (Huhns, 1998), (Yang, 1998), (Wooldridge, 2000),.

(Caragea 2001), (Jennings, 2001), (Kushmerick, 2003), (Arcangeli, 2004), (Ahmad,

2008), (Russell, 2009), (Jennings, 2010) are carried out. From the review, the evolution

and improvement of data warehouse architectures have been investigated and

architectures suitable for highly distributed data warehouses have been identified. With a

clear understanding of software agent technologies, it is believed that software agent

technology can be employed advantageously to tackle the problems in distributed and

dynamic data warehouse environments.

• Proposed framework for agent-based data warehouse

Based on the research and investigation, an Agent-based Data Warehouse (ABDW)

approach was proposed to tackle the real-time integration problem in distributed and

dynamic data warehouse environments. In the proposal, a Multi-Agent System (MAS)

platform consisting of several software agencies (group of software agents) forms an

ABDW architecture. It is believed that the problem arising from distributed and dynamic

19

data warehouse environments can be better tackled in the ABDW architecture. However,

to achieve this, effective and efficient join operation is identified as the key technique in

the ABDW architecture.

• Construction of data warehouse scenario and simulation environments

In order to study and evaluate data warehouse and various join approaches effectively, an

experimental data warehouse environment based on real world industrial case has been

setup. A typical Distributed Data Warehouse (DDW) architecture and multidimensional

data model was used as a scenario. Real world telecommunication industrial data

containing billing, outgoing and incoming information of each. phone call was gathered

from International Telecommunication Systems (I.T.S) Limited for the study.

• Pilot study of modern join algorithms for data warehouse

Modem pipelined join algorithms as one of the most important techniques in distributed

and dynamic data warehouse environments were focused on and investigated. A pilot

study was carried out to seek the most effective and efficient online join algorithms. Four'

modem online ripple join algorithms were implemented in Java and experimented in four

types of simulated network environments' with various join conditions. Experimental

results enhanced our confidence to address the issues arisen from distributed and dynamic

data warehouse environments.

• Proposal and evaluation of an adaptive join algorithm using intelligent agents

The finding from the pilot study has indicated that modem adaptive join algorithms can

effectively address issues arisen from unpredictable network environment, but those

algorithms are designed for general join purpose and it is not optimised for data

warehouses in a distributed environment. Therefore, an agent-based join algorithm called

20

AJoin using intelligent agents was proposed to provide effective and efficient online join

algorithm for distributed and dynamic data warehouses environments. The main algorithm

of AJoin is implemented and evaluated against those modem adaptive join algorithms

such as Hash Ripple Join and XJoin. AJoin has exhibited better performance under

distributed and dynamic data warehouse environments. The finding of this research was

presented at Computation World, November 2009, Athens, Greece and published at the

IEEE Digital Library (Qicheng Yu et al., 2009).

1.2 The Structureof the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 reviews the background of data warehouses, discusses characteristics of data

warehouses, investigates the development of architectures and data models for data

warehousing. The evolution history of data warehouse architecture and issues around data

warehouse architecture evolution are highlighted. The important benefits and features of

multi-dimensional model compared with third normalised relational data model for data

warehouses are emphasised. This chapter also investigates data warehousing research

issues in the distributed and dynamic data environment. Three main approaches proposed

to manage distributed information: federated control approach (Sheth, 1990),

(Hasselbring, 2000) dynamic integration approach (Nica, 1996), and data warehousing

approach (Inmon, 1992) are reviewed. Based on recent development of information

systems in industrials and businesses, it is concluded that the data warehousing approach

is a better choice of information management for supporting decision-making processes

21

where high-performance query processing and data analysis is critical. The key data

warehousing issues of data synchronisation between a data warehouse and its distributed

and dynamic data sources to meet the runtime requirements are highlighted. It also

presents both challenges and opportunities in designing and developing distributed data

warehouse systems in the dynamic and unpredictable data environment.

Chapter 3 investigates the feasibility and effectiveness of utilising software agent

technology to address data synchronisation and query performance issues in data

warehouses. A new approach called Agent-based Data Warehousing (ABDW) approach,

which aims to deal with dynamic and distributed data integration problem more

effectively, is proposed. In this chapter, the general concepts of software agent

technology including: definitions, types, architectures, agent communication, multi-agent

systems, agent-based development methodologies, agent development tools and

applications are reviewed. Following the discussion, a detailed ABDW approach is

presented. It aims to use software agent to integrate dynamic integration approach and

traditional data warehousing approach seamlessly. Join as one of the key operations for

the approach is identified for further investigation.

Chapter 4 studies the join algorithms and the factors that affect their performance in

distributed data environments. The join algorithms for the relational database systems are

carefully reviewed. The strengths and weaknesses of each type of the join algorithm and

the factors that affect performances of joins in distributed data environments are

highlighted. This chapter also investigates the state of art modem adaptive join

algorithms. The main issues of the current adaptive join algorithms are highlighted. A

novel agent-based join algorithm called AJoin for the ABDW is proposed. It aims to

22

utilise intelligent agents to coordinate a ripple hash join and semi-join operations to adapt

the change data environment to achieve the best query performance for data warehouses.

Chapter 5 presents an experimental study on modem adaptive join algorithms based on

empirical research methods, in particular, four typical types of join algorithms: nested-

loop ripple join, Hash Ripple Join, XJoin and XJoin without second stage (XJoin-N02)

are focused. This chapter also describes the data warehouse scenario used as a basis to

investigate and evaluate various modem join algorithms for data warehouses. In

particular, a distributed data warehouse architecture and multidimensional data model for

the data warehouse scenario is discussed. Simulated network environments for the

experiments of modem adaptive join algorithms are presented. A comparative study on

modem adaptive join algorithms is conducted. The need for an effective and efficient join

algorithm for current distributed and dynamic data warehouse environments is

highlighted.

Chapter 6 presents AJoin framework and algorithm for the proposed agent-based join

algorithm for distributed data warehousing. AJoin adopts the principles of the semi-join to

transmit only the join attributes rather than all attributes from relations to start a join. In

addition, AJoin enhances the conventional semi-join approach by eliminating unqualified

tuples at remote sites to minimise the transmission cost. Furthermore, as semi-join

requires multiple scans of relations, it may not be as cost effective in a high speed

networking environment. To address this problem, AJoin utilise software agents to

dynamically switch between full-join and semi-join at runtime based on a cost-benefits

analysis involving network speed. AJoin is also able to divide the join task into a series of

sub-tasks for parallel processing in a ripple manner similar to other modem adaptive join.

23

This enabled join results to be produced as soon as join tuples are matched. Join

processing continues even if when one of data sources is temporary unavailable. As a

result, the AJoin improves join performance significantly at various network conditions.

This chapter also discusses the AJoin framework and its algorithm in details, and provides

a cost-benefit analysis for its join strategies.

Chapter 7 presents extensive evaluations of AJoin algorithm in its effectiveness and

performance. These evaluations are based on a comparative study on AJoin against other

modem join algorithms using the following three assessment matrix: network speed,

memory use, and join queries. The overall evaluation results show that AJoin has

consistently outperformed the other modem join algorithms. In the slower network setup,

AJoin performs particularly well and it improves performance against Hash Ripple Join

by an average of 29% - 49%.

Chapter 8 concludes this thesis by summarising contributions and results. In closing,

suggested areas for further research are presented.

24

Chapter 2.DATA WAREHOUSING

Making better business decisions in an efficient way is the key to succeeding in today's

competitive world. Organisations seeking to improve their decision-making process can

be overwhelmed by the sheer volume and complexity of data available from their various

operational information systems. Many organisations have responded to this challenge by

employing data warehousing technologies to 'unlock' the information in their systems and

address real-world business problems.

Data Warehouses became a distinct type of computer database during the late 1980s and

early 1990s. They were developed to meet a growing demand for management

information and decision-making support that could not be met by operational database

systems. In the initial stage, data warehouses were developed by simply copying the

database of an operational system to an off-line server where the processing load of

analytical query and reporting does not impact on the operational database system's

performance.

However, the main objective of a data warehouse is to support management's decision

making process rather than to support daily business transactions. A simple copying of the

database of an operational system as a data warehouse cannot be satisfied when an

organisation attempts to perform strategic analysis using the same database that is used to

perform transaction processing. This is because the data serving needs, the supporting

technology, the user community as well as the processing characteristics for transaction

processing are different from analytical processing.

25

Data warehouses in this stage of evolution are integrated stores of information collected

from the operational systems into subject-oriented data model to form the foundation for

decision support and data analysis. There are many types of data warehouses, based on

different design methodologies and philosophical approaches. In 1990s, Ralph Kimball

and Bill Inmon, two of the pioneers in the field, created and documented the concepts and

principles of data warehouses and provided a commonly accepted definition of data

warehouse:

HA warehouse is a subject-oriented, integrated, time-variant and non-volatile

collection of data in support of management's decision making process".

(Inmon, 2005)

As organisations globalise their operations, the networks communications become

increasingly important for business. The traditional private networks based on leased lines

are very costly. It has recently replaced by VPN which uses the Internet to provide a cost

effective solution to connect distributed networks (Moeller, 2000). The data warehouse

environments for these organisations become more distributed and dynamic due to the

nature of the Internet communication. Meanwhile, applications of data warehouses have

evolved from reporting and decision support systems to mission critical decision making

systems. This requires data warehouses to combine both historical and current data from

operational systems (Browning, 2001), (Inmon, 2008).

The rest of this chapter is structured as follows. Section 2.1 presents characteristics of

data warehouses. The main differences between data warehouse system and operational

database systems are discussed. Section 2.2 investigates the development of data

26

warehouse architectures. This includes the evolutionary history of data warehouse

architecture and issues around data warehouse architecture evolution are highlighted.

Section 2.3 presents dimensional data model for data warehousing. The important benefits

and features of dimensional model compared with third normalised relational data model

for data warehouses are highlighted. Section 2.4 investigates data warehousing research

issues in the distributed and dynamic data environment. Three main approaches proposed

to manage distributed information: federated control approach, dynamic integration

approach, and data warehousing approach are reviewed. It is concluded that the data

warehousing approach is a better choice of information management for supporting

decision-making processes where high-performance query processing and data analysis is

critical. The key data warehousing issues of data synchronisation between a data

warehouse and its distributed and dynamic data sources to meet the runtime requirements

are highlighted. It also presents both challenges and opportunities in designing and

developing distributed data warehouse systems in the dynamic and unpredictable data

environment.

2.1. DataWarehouse Characteristics

The data warehouse is an integrated store of information collected from other systems,

and becomes the foundation for decision support and data analysis. It is designed to

overcome some of the problems encountered when an organisation attempts to perform

strategic analysis using the same database that is used to perform transaction processing.

Although there are many types of data warehouses, based on different design

methodologies and philosophical approaches, they all have these common characteristics

27

in that they are subject-oriented, integrated, time-variant, and non-volatile (W. H. Inmon,

2005).

The first characteristic of a data warehouse is that it is subject-oriented. Operational data

source across an organisation tend to hold a large amount of data which is organised

according to business applications and functions such as fixed line services, prepaid line

services, mobile services, and broadband services for a telecommunication company;

while the data warehouse is organised around major subjects such as customer, carrier,

product and activity. The operational database system is concerned both with database

design and transaction process design to avoid data redundancy, ensure integrity and

better performance of transactions. The data warehouse system focuses on data modelling

and database design exclusively to provide best performance for analytical processes.

Transaction process design is not part of the data warehouse environment. The differences

between process/function application orientation and subject orientation can also be

indicated at differences in the content of data at the detailed level. Operational

application-oriented data contains data to satisfy immediate functional/processing

requirements that mayor may not be of use to the decision support system (DSS) analyst,

while data in a data warehouse excludes data that will not be used for DSS processing.

The second most important characteristic of a data warehouse is that data found within a

data warehouse is integrated. The data in a data warehouse is presented in a uniform

manner. A data warehouse integrates on-line transaction processing (OLTP) data by using

consistent naming conventions, measurements, encoding structures, physical attributes,

semantics, and so forth. For example, in many organisations, applications can often use

similar data in different formats: dates can be stored in Julian, Gregorian or Japan

28

standard format; Payment data can be described as Dollars, Pounds, or Euros. Item size

can be measured in millimetres, centimetres, or inches. Different applications can also use

different terms to describe the same type of data. One application can use the term

"credit" instead of "deposit" to represent the amount of money deposit in a bank account.

When data loaded in the data warehouse, it should be stored in a single, acceptable format

agreed to by business analysts, despite variations in the external OLTP sources. This

allows data from across the organisation, such as legacy data on mainframes, data in

spreadsheets, or even data from the Internet, to be consolidated in the data warehouse, and

effectively cross-referenced, giving the DSS analysts a better understanding of the

business.

The third basic characteristic of data warehouse is that it is time variant, where all data in

the data warehouse is accurate as of some specific moment in time. This basic

characteristic of data in the warehouse is very different from data found in the OLTP

systems. In the OLTP systems data is represent the current value at any moment in time.

For example, an order-entry application always shows the current value of stock

inventory; it does not show the value of inventory at some time in the past. Querying the

stock inventory amount later may return a different response. However, data stored in a

data warehouse is accurate as of some past point in time because data found in the

warehouse represented historical information, which is called time variant. The data

stored in a data warehouse typically represents data over a long period of time; perhaps up

to ten years or more. Operational systems often contain data over a short period of time

from the current date back to ninety days earlier because maintaining large volumes of

data can affect performance which is the most important issue to address in OLTP

applications in order to ensure transaction processing successfully. In effect, the data

29

warehouse stores snapshots of the operational data generated over a long period of time in

a business. It is accurate for a specific moment in time and cannot be changed, which

contrasts with an operational system where data is always accurate at the current moment

and can be updated when necessary.

The fourth defining characteristic of the data warehouse is that it is non-volatile that the

data in a data warehouse will remain unchanged except reconciliation if necessary. In

OLTP systems creating, inserting, deleting, and updating are essential functions and done

regularly on a record-by-record basis. But the basic manipulation of data that occurs in the

data warehouse is much simpler. There are only two kinds of operations that occur in the

data warehouse - the initial loading of data, and the access of data. There is no update of

data in the data warehouse as a normal part of processing. There are some very powerful

consequences of this basic difference between operational database processing and data

warehouse processing. At the design level, the update anomaly is not a factor to be

concerned in the data warehouse, since update of data is not required. This means that at

the physical level of design, the focus can be taken to optimise the access of data,

particularly in dealing with the issues of normalisation and physical denormalisation.

Another consequence of the simplicity of data warehouse operation is in the underlying

technology used to run the data warehouse environment. Having to support record-by-

record update in an on-line mode requires the technology to have a very complex

foundation underneath a facade of simplicity. The technology-supporting backup and

recovery, transaction and data integrity, and the detection and remedy of deadlock are

quite complex but unnecessary for data warehouse processing.

30

Because of these characteristics of a data warehouse, data warehouses are built under a

different development methodology than operational database systems. In the next

section, the development of data warehouse architecture and associated methodologies for

building data warehouses will be investigated.

2.2. Development of Data Warehouse Architecture

A data warehouse can be defined as architecture for delivering information to knowledge

workers. It is not a product, but is often instantiated as a collection of products and

processes that, working together, form a delivery system for information. Data

warehousing then became the key trend in corporate computing in the 1990s. Many

methodologies such as SAP methodology, PeopleS oft methodology, Corporate

Information Designs methodology, and Creative Data methodology (Sen & Sinha, 2005)

have been proposed to simplify the information technology efforts required to support the

data warehousing process. This has led to the development of better data warehousing

architectures and approaches for building data warehouses in organisations.

A key to successful data warehousing though is to understand that a data warehouse is not

just a collection of technologies but an architecture. Data warehouses can be architected in

many different ways, depending on the specific needs of a business. A traditional data

warehouse architecture that makes up a centralised data warehouse for the entire

enterprise could be designed using top-down approach introduced in 1992 by Bill Inmon,

(W. H. Inmon, 1992) considered as the father of Data Warehousing. According to Bill

Inmon, one of the leading proponents of the top-down approach to data warehouse design,

the top-down architecture is represented in Figure 2.1.(W. H. Inmon, 2005)

31

In the top-down architecture, the process begins with extraction, transformation, and

loading (ETL) process which process data from OLTP data sources and outputs it to a

centralised Data Staging Area in which data and metadata are loaded into the data

warehouse and a centralised metadata repository respectively. Data Marts viewed as small

data warehouse focusing on one subject or functional area are then created from the

summarised data warehouse and metadata.

Data Warehouse

C=-=~=a=ta~M~a==rO
LData MarO

Data Sources

E
T
L

(

LData Ma~

Data Staging
Area

Figure 2.1 Top-down architecture

The data warehouse has a very granular level of data layer and also contains detailed

historical data. In contrast, the data marts contain light, highly summarised data and also

metadata. The top-down design approach generates highly consistent dimensional views

of data across data marts since all data marts are loaded from the centralised repository.

Top-down design has also proven to be robust against business changes. The main

problems with this architecture are that it usually takes too long to implement and is too

expensive to maintain.

32

Data Sources

Data Warehouse

Figure 2.2 Bottom-up architecture

To overcome these shortcomings, the bottom-up approach was proposed by (Hackney,

1997). In the bottom-up architecture depicted in Figure 2.2, the data warehouse is

constructed incrementally over time from independently developed data marts. The

process begins with ETL for one or more data marts then output to a data warehouse. In

the top-down architecture, data marts use lightly and highly summarised data. But in the

bottom-up architecture, atomic and detailed historical data is required to store in the data

marts, because the data marts become the building foundation of the data warehouse, they

must contain all of the data required in the data warehouse. Another important difference

between the bottom-up from the top-down architecture is that there is no common

metadata components across data marts. The bottom-up architecture was quite successful

in meeting initial expectations in building data marts; however, it is often difficult to

construct the data warehouse from data marts simply because metadata are not shared.

33

In response to the challenge, enterprise data mart architecture, also called Bus architecture

was proposed by (Kimball et al., 2008). A dynamic data staging area and global metadata

repository (GMR) was proposed in the enterprise data mart architecture. In the

architecture, depicted in Figure 2.3, no physical organisation-wide data warehouse is

implemented. Instead, the data warehouse is viewed as the conjunction of the data marts

in the context of a metadata repository. This architecture may allow one to derive

aggregate properties that are at the organisation level of analysis, but it will not allow one

to derive global properties of the organisation.

~1/ s_h_a_r_e_d_~_e_t_ad_a_t_a_L_a_y_er__ <?~~~~IJ
Data Sources I\pplicalion

servers

E
T
L

The data warehouse
is the conjunction
of the data marts

Figure 2.3 Enterprise data mart architecture

Ralph Kimball, a well-known author on data warehousing is often labelled as a proponent

of the bottom-up approach to data warehouse design. However, Ralph Kimball said that

was misleading, and misunderstandings about his approach. Although the iterative

development and deployment techniques may superficially suggest a bottom-up

methodology, a closer look reveals a broader enterprise perspective (Kimball et al., 1998).

34

L(s_h_a_re_d_M__et_ad_a_m_L_a_Y_e_r~====~~IJ

Data Sources

u-u- Eu- T
L

Figure 2.4 Distributed DWIDM architecture

To include global properties of the organisation, a distributed data warehouse / data mart

architecture showing in Figure 2.4 was introduced by (Firestone, 1998) and applied in

building a web-based distributed data warehousing (Moeller, 2000). The architecture

provides a dynamic data staging area and a common view of metadata across the

organisation in the form of a shared metadata repository. Firstly, it provides a logical

database layer mapping a unified logical data model to physical tables in various data

marts. Secondly it provides transparent querying of the unified logical database across

data marts and data warehouses, together with caching and integrated services.

Consequently, the dynamic characteristics of the data warehouse system become

transparent to users. It is a most adaptable architecture, but it stilI does not support

distributed and automated change capture.and management which are the most important

ability to support real-time decision support systems (DSS).

With the advances in the Internet and web technology, traditional private networks are

replaced by VPN which uses the Internet to provide a cost effective solution to connect

distributed networks to support organisations global operations. Data warehouse

environments for these organisations become more distributed and dynamic due to the

35

natural of the Internet. Meanwhile, applications of a data warehouse have evolved from

reporting and decision support systems to mission critical decision making systems. This

requires data warehouses to combine both historical and current data from operational

systems to provide runtime results (Browning & J. Mundy, 2001), (W.H. Inmon et al.,

2008).

In the typical distributed data warehouse architecture, both the logical layer and physical

layer (also called materialised views) of the data warehouse are used to map physical

tables in distributed data marts. The physical layer contains historical data materialised in

a longer time period such as daily or weekly, while most recent data is only available

from the logical layer. Extract knowledge from the most recent data is often expensive, as

it usually requires complex queries involving a series of joins and aggregations. Many

commercial data warehouse systems (Browning & J. Mundy, 2001), (Lane, 2007) place

limits on such operations at runtime or sacrifice precision by using approximate

replication proposed by (Olston & Widom, 2005) to overcome the limits. This presents

both challenges and opportunities in designing and developing of new data warehouse

systems for supporting decision-making processes which can deliver the right

information, to right people, at the right time, interactively and securely. We proposed

agent-based data warehouse architecture to provide an alternative approach to address the

issues. The detailed discussions of the proposed architecture are presented in chapter 3.

2.3. Dimensional Data Model for Data Warehousing

Designing a data warehouse is very different from designing an OLTP system. In contrast

to an OLTP system in which the purpose is to capture high rates of data changes and

36

additions, the purpose of a data warehouse is to organise large amounts of stable data for

ease of analysis and retrieval. Because of these differing purposes, there are many

considerations in data warehouse design that differ from OLTP database design.

There are two logical design approaches to model data in a data warehouse, namely the

dimensional data model and the third normalised form (3NF) data model. In the 3FN

model supported by Bill Inmon, the data in the data warehouse are modelled following

database normalisation rules. Tables are grouped together by subject areas that reflect

general data categories. Inmon suggested that the data model can be constructed with no

regard for a distinction between existing operational systems and the data warehouse (W.

H. Inmon, 2005). It makes the approach straightforward in design and easy to adapt

changes the way in which an organisation does business. However, when applied in large

organisations the result is dozens of tables that are linked together by a web of joins.

Furthermore, each of the created entities is converted into separate physical tables when

the database is implemented (Kimball et al., 1998), (Kimball & Ross, 2002).

Color
lise
Manufacturer
etc

SbJre_key
Store Name Name

Purchase profile
Credit profile
Demogr ahpic type
address
etc

Figure 2.5 A star schema for dimensional model

37

The dimensional data model is another approach to model data in a data warehouse, in

which the data warehouse is modelled using a dimensional model also known as the Star

Schema as it resembles a star. Unlike 3NF model using entity-relation modelling that

store data in a highly normalised fashion, the data in the dimensional model is stored in

vary denormalised manner to improve query performance by reducing join operations at

query time. Data warehouses (Joy Mundy et al., 2011) often adopt dimensional modelling

that use star and snowflake schemas, depicted in Figure 2.5. A dimension model consists

of one fact table and multiple dimension tables. In the centre is a fact table for a fact

(measure) of subject area, which can be an event, transaction, or something that happens

at a single moment in time. Surrounding the fact table are dimension tables. Each

Dimension table contains denormalised contexts of the facts. For example, dimensions

related to sales facts can be location including: city, county, state, region, district, etc. or

time including: day, week, month, quarter, year, etc.; or product including: description,

brand, category, colour, size, etc.

A key advantage of the star schema structure is that the data warehouse is easier for the

user to understand and to use. Also the star schema design helps to increase query

performance by reducing the volume of data that is read from disk. Queries analyse data

in the dimensional tables to obtain the dimension keys that index into the central fact

table, reducing the number of tuples to be scanned. It provides the fastest possible

response time to complex queries, and the basis for aggregations managed by Online

Analytical Processing (OLAP) tools. However, the dimensional approach also has its

disadvantages. It is difficult to modify the data warehouse structure if the organisation

changes the way of running its business and is complicated to maintain the integrity of

38

facts and dimensions when loading data into the data warehouse if data is from difference

data sources.

It is worth to mention that both approaches can be supported by relation data model and

can be presented in entity-relationship diagrams. The difference between the two models

is the degree of normalisation. Which model is better, the Dimensional Data Model or the

Third Normal Form data model depends on the business cases. For well-established

organisations to seeking best query performance to support their decision-making

processes, the dimensional data model will be a wise choice. According to (Kimball et al.,

2008), the benefits of the dimensional modelling can be summarised into the following:

Understand ability - Compared to 3NF model the dimensional model is easier to

understand and more intuitive. In dimensional models information is organised into

coherent business dimensions which make it easier to interpret and understand. It

allows users to access a slice of data along any of its dimensions and provides roll-

up and drill down functions for efficiently data navigation and analysis. But in 3NF

models data is divided into many discrete entities and even a simple business report

might require dozens of tables that needs to be joined together in complex way.

Query performance - Dimensional models are denormalised and optimised for data

querying while 3NF models seek to eliminate data redundancies and are optimised

for transaction security and performance. In dimensional models, there are standard

type of joins and framework. All dimensions can be thought of as symmetrically

equal entry points into the fact table. The logical design can be done independent of

expected query patterns. The user interfaces are symmetrical, the query strategies

39

are symmetrical, and the SQL generated against the dimensional model is

symmetrical, which allows effectively handle complex queries. Query optimisation

for star join databases is simple, predictable, and controllable.

Extensibility - in a dimensional model, if you need to add some attributes to a

dimension, you could just simply add new data rows in the table or executing SQL

alter table. No queries or other applications that sits on top of the Warehouse needs

to be reprogrammed to accommodate the change. Old queries and applications

continue to run without yielding different results. Whereas, a normalised model is

more difficult to change under certain conditions. If the change involves adding

new data, that, based on normalisation rules, it will be required to create a new

entity as well as add foreign keys to whichever other entities are affected.

As dimensional data model has become a widely accepted data modelling approach for

data warehouses, understanding the benefits and features of dimensional data model for

data warehousing can help us to find the most efficient way to operate data in data

warehouses. Since a join operation is one of the most expensive relational operations in

dimensional data model, the features of dimensional data model related to join operations

such as relationships between a fact table and dimensional tables, cardinality, size of

attributes will be further investigated in chapter 5 and 6.

2.4. Approaches for Distributed Information Management

Data warehouses have gained an increasing popularity among organisations which seek to

utilise information technology to gain a competitive edge in today's global economy. In

40

addition to the data warehouse approach, there are other approaches proposed to manage

distributed information. The approaches proposed to manage distributed information can

be broadly classified into three categories: dynamic integration approach, federated

control approach and data warehousing approach.

In the dynamic integration approach (Nica & Elke Angelika Rundensteiner, 1996), users

are given direct access to the distributed database schemas at query time by means of

special data manipulation language (Litwin et al., 1990), (Bennett & Bayrak, 2011) or

metadata resource dictionary (Cheung & Hsu, 1996), (Babin & Cheung, 2008). Because

integrated schemas can be promptly created and dropped on the run-time, dynamic

integration systems allow the end-user more flexibility and it is easier to maintain in the

presence of evolving database schema. Users are able to retrieve the current data available

at runtime operational systems. However, there are some disadvantages. They require a

more sophisticated end-user who understands the semantics of the schemas in order to

access data flexibly. The query performance would be worse if data volumes increase

because integration is achieved on the run-time. Moreover, because historical data may

not always available at the operational systems, query results are accurate as of the

moment of access rather than some point in time which is an important requirement for

Online analytical process. The dynamic integration approach alone may not suitable for

supporting decision-making processes.

The federated control approach (Sheth & Larson, 1990), also called a Federated Database

System (FDBS), is an integrated collection of full-featured distributed databases, in which

the component administrator maintains control over their local systems, but cooperate

with the federation by supporting global operations (Berthold & Meyer-Wegener, 2001),

41

(Anon, 2002). The main benefit of the approach is that distributed databases can be well

controlled by means of global operations. Therefore it is able to manage distributed

information in depth. However, when distributed systems are running autonomously and

dynamically, it will be very difficult to provide global operations which can cooperate

with autonomous databases. The loosely coupled FDBS are quite similar to the dynamic

integration approach and the tightly coupled FDBS are near to a data warehousing

approach.

In data warehousing approach (Inmon, 1992), (Kimball et al., 2008), data extracted and

integrated from multiple data sources is stored in a centralised repository called data

warehouse, which is organised in subjects, containing histories of the data changing over

time, and provides with multiple dimensional views. Data is integrated at the time of

extracting, and is non-volatile. It could provide users with historical data and facilitate

knowledge discovery and on-line analytical processing. Most importantly, because query

execution does not involve data integration, complex queries can be executed easily and

efficiently. It is a better choice of information management for supporting decision-

making processes where high-performance query processing and data analysis is critical.

This is particularly advantageous when the information source are very expensive to

access or even occasionally become unavailable, when network delays cause high costs,

or when the middle-layer task such as transformation and integration are too complex and

ineffective, possibly requiring human input.

2.5. Issues in current data warehouse environments

42

Advances in computer technology and the Internet have revolutionised the way

organisations operate their businesses. With higher computer performance and lower

storage cost, an increasingly large amount of information are made available in the digital

forms and collected and stored in the computer systems. Virtual private networks using

the Internet technology to replace the traditional fixed or leased line reduced the cost of

telecommunication significantly. It makes easier for organisations to globalise their

operations such as opening branches overseas, outsource their call centres in the lower

cost foreign countries. New technologies also made more information available from third

parties. For example, organisations could access demographic data about customers to

improve their customer relationships from the Economic and Social Data Service instead

of collecting data by them own. Product price information of competitors could be

extracted from competitors' public website.

Due to the development of computer technologies and the changes of the way businesses

are running, data sources for an organisation's data warehouse have become more

distributed and dynamic. Those data also involves with high volume and often more

heterogeneous. As an organisation globalises its operations, the data sources, data marts,

and users who needs to access information from the data warehouse of the organisation

are distributed worldwide. Data could be managed autonomously at local site to meet

their local needs, or data may not be controlled by the organisation if it is retrieved from

the third parties. This has made data more dynamic. Dynamic is also reflected on the data

communication channels. VNP brings a cost effective solution to connect distributed

networks, but it makes the data communication more dynamic and unpredictable due to

the dynamic nature of the Internet.

43

Since a data warehouse has its own separate repository from data sources, information

stored in a data warehouse need to be extracted and integrated from multiple data sources

in advance. It is hard to keep the data warehouse in synchronisation with various data

sources which are often autonomous and dynamic. Although most analysis can be done

monthly, weekly or daily, key decisions are increasingly required to be made based on

current events to meet the business changes in real-time. Consequently, data warehouses

have to be updated continuously. As a result, the query performance advantage of a data

warehouse will be seriously affected, and in some cases, it could be even unpractical if

data loading processing time longer than real-time query requirements.

Another issue of keeping the warehouse in synchronisation with dynamic data sources is

the difficulty of adapting the changes of dynamic data sources. Various information

sources could be often autonomous and dynamic as they are generally designed for daily

transactions rather than supporting data warehouses. An important consequence of the

autonomous data sources is the fact that those sources may change without being

controlled from a higher data integration layer. Many sources, particularly web-based

third party data sources, may not only change their data and its data structure, but also

their capabilities without cooperating with users of their data. Those issues with current

data warehouse environment present both challenges and opportunities in designing and

developing more adaptive distributed data warehouse systems for supporting decision-

making processes in this fast-changing environment.

Some typical issues can be summarised as the following:

• Huge volume and more heterogeneous of data

• Highly distributed data sources

44

• Dynamic and autonomous data sources

• Dynamic and unpredictable network connections

45

Chapter 3. SOFTWARE AGENTS FOR DISTRIBUTED DATA WAREHOUSES

Intelligent agent technology is concerned with the development of autonomous

computational or physical entities capable of perceiving, reasoning, adapting, learning,

cooperating, and delegating in a dynamic environment (Zhong, 2001). It is one of the

most promising technologies to design and develop adaptive and distributed systems.

This chapter investigates the feasibility and effectiveness of utilising software agent

technology to address some specific issues in data warehouses. A new approach called

Agent-based Data Warehousing approach, which aims to deal with dynamic and

distributed data integration problem more effectively, is proposed.

The rest of this chapter is structured as follows. In section 3.1, the general concepts of

software agent technology including: definitions, types, architectures, agent

communication, multi-agent systems, agent-based development methodologies, agent

development tools and applications are reviewed. Section 3.2 investigates the feasibility

and effectiveness of utilising software agent technology to address some specific issues in

data warehouses. Section 3.3 presents a proposed ABDW approach. It aims to use

software agent to integrate dynamic integration approach and traditional data warehousing

approach seamlessly. Join as one of the key operations for the approach is identified and

will be further studied in the following chapters.

46

3.1. Software Agents

Software agents have evolved from multi-agent systems which in tum form one of three

broad areas which fall under Distributed Artificial Intelligence (DAI), the other two being

Distributed Problem Solving (DPS) and Parallel AI (PAl). The concept of an agent can be

traced back to Carl Hewitt's concurrent Actor model from the early days of research into

DAI in the 1970s (Nwana, 1996).

Software agents are software entities which have an internal goal and acts on behalf of a

user or other program in a relationship of agency. Software agents are considered one of

the most promising technologies to design and develop adaptive and distributed systems

as well as to improve on current methods for conceptualizing, designing and

implementing software.

3.1.1 Agent Definition

The term 'agent', or software agent, has found its way into a number of technologies and

has been widely used, for example, in artificial intelligence, databases, operating systems

and computer networks literature. In the rest of this thesis, the term' agent' is synonymous

to a 'software agent'. The word agent has been used in a multitude of contexts in

computer science. The difficulty in defining an agent is due to the fact that the various

aspects of agency are weighted differently based on the application domain. Here are

some typical definitions of agents which partly analysed by (S. Franklin & Graesser,

1997):

47

"Let us define an agent as a persistent software entity dedicated to a specific

purpose. 'Persistent' distinguishes agents from subroutines; agents have their

own ideas about how to accomplish tasks, their own agendas. 'Special purpose'

distinguishes them from entire multifunction applications; agents are typically

much smaller. "(Smith et al., 1994)

"Autonomous agents are computational systems that inhabit some complex

dynamic environment, sense and act autonomously in this environment, and by

doing so realize a set of goals or tasks for which they are designed. "(Maes, 1995)

"Intelligent agents continuously perform three functions: perception of dynamic

conditions in the environment; action to affect conditions in the environment;

and reasoning to interpret perceptions, solve problems, draw inferences, and

determine actions. "(Hayes-Roth, 1995)

"An agent is a computational entity which:

• acts on behalf of other entities in an autonomous fashion

performs its actions with some level of proactivity and/or reactiveness

exhibits some level of the key attributes of learning, co-operation and

•

•

mobility" (Nwana, 1996).

"Intelligent agents are software entities that carry out some set of operations on

behalf of a user or another program with some degree of independence or

autonomy, and in so doing, employ some knowledge or representation of the

user's goals or desires. "(Grosof, 1997)

48

"Autonomous agents are systems capable of autonomous, purposeful action in

the real world. " (S. Franklin, 1997)

"An agent is an autonomous software entity that -functioning continuously

carries out a set of goal-oriented tasks on behalf of another entity, either human

or software system. This software entity is able to perceive its environment

through sensors and act upon it through effectors, and in doing so, employ some

knowledge or representation of the user's preferences" (N. R. Jennings & M. J.

Wooldridge, 1998)

"An agent is a computer system that is situated in some environment, and that is

capable of autonomous action in this environment in order to meet its design

objectives. " (Weiss, 1999)

"Agents are computer systems with two important capabilities. First, they are at

least to some extent capable of autonomous action - of deciding for themselves

what they need to do in order to satisfy their design objectives. Second, they are

capable of interacting with other agents - not simply by exchanging data, but by

engaging in analogues of the kind of social activity that we all engage in every

day of our lives: cooperation, coordination, negotiation, and the like. "(M.

Wooldridge, 2002)

49

"An agent as an entity that receives inputs from its environment evaluates the

conditions and performs autonomous actions, perceiving and acting through its

own environment to achieve its objectives. " (A. Ahmad et al., 2008)

"An agent is anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through effectors. "(Russell & Norvig,

2009)

Although there is no single definition of an agent, all definitions agree that an agent is

essentially special software component which acts on behalf of a user. It works in a

relationship of an agency autonomously based on inputs received from its environment

through interacting with other agents or its user to achieve its design objectives. An

agency usually consists of multiple agents called multi-agent system (MAS). Agents in a

MAS may have common or conflicting goals and may interact with each other both

indirectly (by acting on the environment) or directly (via communication and negotiation).

Agents may decide to cooperate for mutual benefit or may compete to serve their own

interests.

Therefore, an agent is autonomous, because it can operate without the direct intervention

of humans or others and has control over its actions and internal state. Autonomous agents

use their knowledge of their owner's needs and interests to undertake tasks that their

owner does repeatedly. The concept of proactiveness is a key element of autonomy. It

emphasizes that agents do not simply act in response to their environment. They also

exhibit goal-directed behaviour by taking the initiative. (Bollacker et al., 1998), (Rhodes

& Stamer, 1996) are good examples.

50

An agent is social, because it cooperates with humans or other agents in order to achieve

its tasks. Agents are usually acting in MAS and each agent is given a discrete task, but

agents should be able to work in collaboration with other agents, possibly via an agent-

communication language to communicate and exchange meaningful messages, to achieve

a common goal. Knowledge Query and Manipulation Language (KQML) is the de facto

standard agent communication language at present. Agents may share knowledge and

learning experiences in the process. This concept is important because a large portion of

agent researches (Huhns, 1998), (Lieberman, 1999) are historically rooted in distributed

artificial intelligence which emphasizes task decomposition and distribution and

collaboration among agents.

An agent is adaptive, because it perceives its environment and responds in a timely

fashion to changes that occur in the environment. Agents are able to learn as they react to

or interact with their external environment, so that their performance improves over time.

The external environment may include the physical world, users (humans), other agents,

or the Internet. And an agent is proactive, because it does not simply act in response to its

environment but is able to exhibit goal-directed behaviour by taking initiative. (M.

Wooldridge & N. Jennings, 1995) pointed out that reactivity and social ability are the two

main aspects of the adaptiveness.

Moreover, if necessary, an agent can be mobile, with the ability to travel between

different nodes in a computer network. It can be truthful, providing the certainty that it

will not deliberately communicate false information. It can be benevolent and always

trying to perform what is asked of it. It can be rational, always acting in order to achieve

51

its goals and never to prevent its goals being achieved, and it can learn, adapting itself to

fit its environment and to the desires of its users. It therefore can be considered as an

extension to the original concept of autonomy.

Agents are suitable for use in wide variety of applications. In particular, they are well

suited for applications which involve distributed computation or communication between

components, sensing or monitoring of their environment, or autonomous operation. They

are usually continuously running processes that know what to do and when to do it. They

communicate with other agents, making requests and performing required tasks. They are

also able to migrate in a self-directed way from one host to another on a network.

3.1.2 Agent Types

There are several dimensions to classify existing software agents. They may be usefully

classified according to the subset and the importance of features they exhibit, for example,

mobile, learning agents. They may be simply classified according to their control

architecture, for example, fuzzy agents, and neural network agents. They could be

classified according to the tasks they perform, for example, price monitoring agents or

email classification agents. They may be also classified according to the environment in

which the agent acts, for example, e-commerce agents, telecommunication agents. (S.

Franklin & Graesser, 1997)

According to (Nwana, 1996), agents can be classified with respect to the following

dimensions:

52

• Mobility, that differentiates agents into static or mobile

• The logic paradigm they employ, which classifies them as either deliberative or

reactive

• The fundamental characteristic that describes the agent (autonomy, cooperatively,

learning).

Based on these axes, agents can be classified as collaborative agents, collaborative

learning agents, interface agents and truly smart agents shown as Figure 3.1below:

Sma rt agents Collaborative
learning agents

Nwana's classification scheme is robust enough to meet the needs and it covers a wide

Interface
agents

area of agent-related applications. It is wide accepted by a large number of researchers in

agents

the research areas. Based on the above classification, Nwana further simplified them into

Figure 3.1 The agent classification (Nwana, 1996)

53

six types of agents: collaborative, interface, mobile, information, reactive, hybrid and

heterogeneous agents.

• Collaborative agents emphasise autonomy and cooperation with other agents in

order to perform tasks for their owners in open and time-constrained multi-agents

environments. Each has a degree of expertise about some area and calls upon the

expertise of other agents in areas where it lacks knowledge. They may learn, but this

aspect is not typically a major emphasis of their operation.

• Interface agents emphasise autonomy and learning in order to perform tasks for

their owners. They can act autonomously to perform operations without explicit

directions from the user, and, potentially, they can collaborate with user or other

types of agents.

• Mobile agents are software processes capable of transporting its state from one

environment to another, with its data intact, and capable of performing

appropriately in the new environment. For example, mobile agents can to foreign

hosts, gathering information on behalf of their owners and coming 'back-home'

having performed the duties imposed on them. These duties may range from making

a flight reservation to managing a telecommunication network.

• Information agents are agents that have access to at least one, and potentially many

information sources, and are able to collate and manipulate information obtained

from these sources in order to answer queries requested by their owners and other

agents. They perform the role of managing, manipulating or collating information

from many distributed resources, such as the Internet.

• Reactive agents represent a special category of agents which do not possess internal,

symbolic models of their environments; instead they respond in a stimulus-response

54

manner to the present state of the environment in which they are embedded.

Reactive agents work dates to research such as (Brooks, 1986) and (Agre &

Chapman, 1987), but many theories, architectures and languages for these sorts of

agents have subsequently been developed.

• Hybrid agents constitute a combination of two or more agent philosophies within a

single agent. This alternative is to maximise the strengths and minimise the

deficiencies of the most relevant techniques for a particular purpose. In some case,

the reactive component would bring robustness, faster response time and

adaptability benefits, while the deliberative part would handle the longer term goal-

oriented issues.

This research is focused on the distributed data warehousing field. Interface agents,

information agents, reactive agents, and mobile agents in MAS are the most important

agents, which can be applied to address some of the specific issues arisen from distributed

data warehouses.

3.1.3 Agent Architectures

Agent architectures provide the blueprints for the design and development of individual

agents. They are the fundamental mechanisms underlying the autonomous agents that

support effective behaviour in real-world, dynamic and open environments. Based on our

review the agent architectures can be divided into four main groups: logic based, reactive,

BDI and hybrid architectures (MULLER, 1999), (Nwana, 1996), (Bellifemine et al.,

2007), and (N. R. Jennings & M. J. Wooldridge, 2010).

55

Logic-based architectures are developed from traditional knowledge-based systems

techniques in which agents use a symbolic representation of their environment and

behaviour and use logical deduction to make decision. The advantage of this approach is

easy to understand as human knowledge is symbolic and agents' behaviour can be

guaranteed by using logical deduction. The disadvantages are that it is difficult to

translate the real world into an accurate, adequate symbolic description, and that symbolic

representation and manipulation can take considerable time to execute with results are

often available too late to be useful. The architecture is only suitable when environment

doesn't change faster than the agent can make decisions.

Reactive architectures implement decision-making as a direct mapping of situation to

action and are based on a stimulus-response mechanism triggered by sensor data.

Probably the best-known reactive architecture is Brooks's subsumption architecture

(Brooks, 1991), in which agents' decision-making is realised through a set of task

accomplishing behaviours. Unlike logic-based architectures, they do not have any central

symbolic model and therefore do not utilise any complex symbolic reasoning. The

advantage of this approach is simple, economic, computationally tractable, and robust

against failure. However, the fact that reactive agents do not employ models of their

environment results in some disadvantages. In fact, sensor data may not be sufficient to

determine an appropriate action and the lack of agent state makes it almost impossible to

design agents that learn from experience. Moreover, it is very hard to specific emergent

behaviour which involves experimentation, trial and error.

56

Belief, desire, intention (BDI) architectures are based on four key data structures: beliefs,

desires, intentions and plans, and an interpreter (Georgeff & Rao, 1995). They have their

roots in philosophy and offer a logical theory which defines the mental attitudes of belief,

desire and intention using a modal logic. They are examples of practical reasoning - the

process of deciding, moment by moment which action to perform in the furtherance of our

goals. Agents not only strive to achieve their goals but must take time to reflect on

whether their goals are still valid and possibly revise them and must decide on type of

environment to enable a good balance between being committed to intentions and

reconsidering them. The advantage of this approach is intuitive as we can recognise

decision process and it gives a clear functional decomposition, indicating what sorts of

subsystems are required to build an agent. However, how to implement efficiently is still

a big challenge.

Hybrid architectures combine two or more types of agent architectures, such as

deliberative and reactive architectures. The aim of this architecture is to gain the extra

benefits that could not be obtained from a single type. For instance, the reactive

component is given more action precedence over the deliberative component to respond

rapidly to urgent environmental events. Hybrid agent architectures are usually layered and

the layers may be arranged horizontally such as Touring Machines proposed by

(Ferguson, 1992) or vertically such as InteRRap suggested by (MUller, 1996).

In horizontal layering, the layers are directly connected to the sensory input and action

output and each layer acts like agent, producing suggestions of which action to perform.

The main advantage of the horizontal layered approach is the simplicity of design since an

agent with n different types of behaviour can be implemented in n different layers.

57

However, since layers compete with one another to generate action suggestions, their

actions could be inconsistent prompting the need for a mediator function to control the

actions and the centralised control may also lead to a bottleneck in the agent's decision-

making.

In vertical layering, sensory input and actions output dealt with by one only each. The

advantage of the vertical layered approach is the complexity of interactions between the

layers is reduced since the interaction between layers is reduced significantly. The main

disadvantage is the approach is not fault tolerant as control must pass through each

different layer and the whole system fails if one layer fails.

3.2. Software Agents for Distributed Information Systems

As software agents have unique properties of autonomy, collaboration, adaptiveness and

mobility. They have been widely used for variety of applications particular in the area of

distributed information integration and management. In order to further investigate the

feasibility and effectiveness of utilising software agent technology in data warehousing,

we studied five related software agents: resource agents, mobile agents, intelligent agents,

user interface agents and cooperative agents, which are frequently applied to enhance

management of information system.

58

3.2.1 Resource Agents

A resource agent is software agent which exists within a domain to make information

resources more intelligent by wrapping them with agent capabilities. The purpose of a

resource agent is to mediate access to a particular information resource for other agents;

the resource agent understands how to access the resource and also understands the

permission structures associated with the resource.

Resource agents have been proposed in Cooperative Information System (CIS) by

(Huhns, 1998)as well as a framework for developing mobile agents for managing

distributed information resources by (Dale & DeRoure, 1997). In (Huhns, 1998), resource

agents are divided in variety of common types, depending on which resources they are

representing. The resource agents typically have the following capabilities:

• translating into and from local access languages using wrappers implement

common communication protocols

• supporting SQL to manage specific information resources

• utilising machine learning techniques to form logical concepts from data or using

statistical techniques to perform data mining

• applying the mappings that relate each information resource to common context to

perform a translation of message semantics

In (Dale & DeRoure, 1997) proposal, resource agents are static agents that exist within a

domain to provide a level of abstraction between the information resource to which they

provide access and the requesting mobile agents. They support the following functions:

59

• Thoroughly conversant with the protocols of the information resource and

understanding how to access the resource and also understands the permission

structures associated with the resource.

• Providing an ontological description for each of the services offered by the

resource.

• Mediating access to the resource at a resource level. Resource agents can grant

access or impose constraints on other agents according to permission

requirements.

• Advertising the presence of the information resource by registering the services so

that other agents can be aware of what information resources are present.

Extraction information from various information resources is the first important step in

data warehouse processing. However, it is challenging to develop and maintain effective

data extract functions in a data warehousing system when new and dynamic information

sources become available frequently. There is an urgent need for information resources

become more 'intelligent' so that the data extract function can adapt the changes of data

source easily. The idea of resource agents can be potentially used as new possible

solutions to address the issue. In order to make full use of resource agents, an opening

standard interface, which can be easily cooperated with MAS platform, need to be

established.

3.2.2 Mobile Agents

Mobile agent is one of the important agent types. Mobile agents are capable of

transmitting themselves - their program and their state - across a computer network, and

60

recommencing execution at a remote site as needed for accomplishing their tasks. Mobile

agents provide a potentially efficient framework for performing computation in a

distributed fashion at sites where the relevant data is available instead of expensive

shipping of large volume of data across the network. Mobile agents have been widely

used for distributed information management (Dale & DeRoure, 1997), (Honavar et al.,

1998), (Yang et al., 1998), (Vieira-Marques et al., 2006).

In Distributed Knowledge Networks (DKN) proposed by (Honavar et al., 1998), the

commercially available Voyager mobile agent infrastructure have been used to carry out

the computation on site, and return with useful results. The prototype of DKN included

representative algorithms from several machine learning paradigms to customise mobile

agents for document retrieval from distributed document collections. Similar approaches

have been also applied for (Honavar et al., 1998) and (Honavar & Dobbs, 2001) research

projects.

In (Dale & DeRoure, 1997)' s research work, mobile agents have been proposed for users

to control over their own distributed information resources (through the appropriate

resource agents) and gain access to other shared information resources. The essential

functions of mobile agents will be defined by the distributed information management

tasks that they are allocated. However, they have the following interactions with the

framework:

• Determine where to migrate to next by initially querying the domain agent

• Authentication by an electronic signature that they carry

• Running autonomously

• Communication with resource agents as well as other agents

61

• Transmission the results of their findings and actions regularly to their user

Mobile agents not only can be used to strengthen the effectiveness of data warehouse to

gathering information from distributed data sources, but also can be very important to

improve the performance of data warehouses accessing especially in Distributed Data

Warehouse (DDW) / Distributed Data Mart (DDM) architecture). As mobile agents are

foundation of agent-based distributed system, it is a nature idea to enclose mobile agents

into agent infrastructure. A standard effective protocol of communication among mobile

agents, resource agents, and other mobile agents is essential for mobile agent approach to

manage distributed information.

3.2.3 Intelligent Agents

Intelligent agents are able to perceive their environment, and respond in a timely fashion

to changes that occur in it, to goal-directed behaviour by taking the initiative, and to

interacting with other agents in order to satisfy their design objectives (M. Wooldridge &

N. Jennings, 1995). Intelligent agents offer an attractive approach to manage distributed

information since information sources are often autonomously owned and operated,

geographically distributed, and dynamic changes.

In (Honavar et al., 1998)'s DKN, intelligent agents were proposed for customised

information retrieval, extraction, assimilation, and knowledge discovery. Intelligent

agents were applied for monitoring different data sources and routing the appropriate

information selectively to relevant sites or specific users. They were also used to detect

62

and propagate the changes and trigger the necessary updates in the affected data and

knowledge repositories.

However, in other agent-based approaches, intelligence has been enclosed in various

types of agents rather than adopting particular intelligent agents. For example, in (Huhns,

1998)'s CIS research work, resource agents are capable to apply machine learning

techniques to form logical concepts from data or use statistical techniques to perform data

mining autonomously.

In our view, reactivity, proactiveness and social ability are basic features of software

agents, therefore intelligence should be incorporated in various agents when it requires.

For instance, reactivity and proactiveness will be essential functions for resource agents to

deal with dynamic, heterogeneous, and distributed information resources. But social

ability may be a more important feature for mobile agents when multiple mobile agents

are working together. In order to overcome the disadvantages of data warehouse approach

for management distributed information to supporting decision-making processes, it will

be necessary to enclose intelligent features in various agents applied in data warehouse

systems.

3.2.4 User Interface Agents

User interface agents are commonly refers to software agents for human-computer

interface which were described as personal assistants who are collaborating with user in

63

the same work environment (Maes, 1995). User interface agents provide users a window

onto their agents, their status, their results and their framework.

In (Dale & DeRoure, 1997), s research work, a user interface agent has been proposed to:

• Launches mobile agents on behalf of the user and tracks their progress and

position

• Provides mobile agents with a communication point through which they can

return the results of their tasks

• Organises and pre-processes information returned from mobile agents into a form

that is suitable for user

• Provides agent platform with the authentication credentials of user's mobile

agents

The user interface agent is designed to generate resource agents automatically base on the

interpreted requirements of the user.

In (Huhns, 1998)'s CIS project, user interface agents have following characteristics:

• Contain mechanism to select an ontology

• Support a variety of interchangeable user interfaces

• Support a variety of interchangeable results browsers and visualization tools

• Maintain models of other agents

• Provide access to other information resources

In data warehouse systems, user interface agents could be also very useful. They can be

applied to enhance usability and accessibility of the user access interfaces and system

64

management interfaces. The user interface agents can also used as a connection point for

user to cooperate human intelligence with agents' in order to achieve goals.

3.2.4 Cooperative Agents

Cooperative agents make between human and agents, agents and agents communicate

each other. They are working together as a group to carry out each task. They will

dynamically construct information retrieval plans and integrate the information they

extracted for presentation to users. In agent-based distributed information management

the individual agents associated with independently managed data sources is often

autonomous, the cooperative agents become core mechanisms to coordinate and control

over the behaviour of such systems.

In (Honavar et aI., 1998)'s DKN project, cooperative agents incorporated coordination

and control mechanisms, which were inspired by examples of both natural and artificial

systems, into its MAS. The main functions included coordination among agents,

synchronisation among multiple agents, activation and deactivation of individual or

groups of agents, selection among agents, creation of new agents when needed,

elimination of agents that are no longer needed, adaptation of individual agents and group

of agents to changes in the environments or task demands, learning from experience, and

evolution of agents populations toward more desirable behaviours.

(Honavar et aI., 1998) used broker agents and mediator agents to cooperate multiple

agents. Broker agents were designed for locating appropriate agents with appropriate

65

capabilities by means of a "yellow page" and "white pages" directory service. Broker

agents also functioned as communication aides by managing communications among

various agents, databases, and application programs in the environment. Mediator agents

were specialized execution agents, which determined which resources might have relevant

information with help from broke agents, decomposed queries to be handled by multiple

agents, combined the partial results, and translated between ontologies.

Instead of using cooperative agents, (Dale & DeRoure, 1997) proposed an agent service

layer in its agent architecture, which was supported by the transport and control layer, to

provide general facilities for managing, naming, controlling and migrating agents. It also

provided knowledge-based, goal-directed reasoning. In interchangeable layer, modules

were designed to make the layer dynamic, flexible and adaptable. The layer was both

application and platform independent which allowd systems to reuse specific solutions

that have already been developed.

It is essential to plan and design suitable cooperative mechanisms to provide adequate

control over the behaviour of multiple agents systems. However, cooperative mechanisms

proposed in various multi-agents systems are lack of common standard. It will be useful

to define a clear system layer and cooperative agent functionalities in order to achieve the

potential power of multiple agents systems. Effective cooperative mechanisms can be also

a key element to keep the warehouse in synchronisation with distributed local systems.

66

3.2.5 Mobile Agent Based Self-Adaptive Join

One of the most related works using software agents to improve join operations is

"Mobile Agent Based Self-Adaptive Join for Wide-Area Distributed Query Processing"

by Arcangeli (J. Arcangeli, 2004). Arcangeli proposed a decentralised join execution

model based on mobile agents, which were capable of deciding on their own location and

move autonomously. The main idea of this work was based on mobile join execution

model which utilised mobility of mobile agents to move the join operation around in order

to improve traditional join algorithms.

Arcangeli's work demonstrated that software agents can be effectively utilised to address

issues in wide-area distributed query processing. The research work has several aspects

in common to our proposal to be introduced in the next chapter:

• Both aim to improve join performance

• Both are agent-based

• Both use adaptive mechanisms

The work also shows that as one of the most expensive operations in query processing,

the issues of join operation and it performance improvement has been widely researched.

The main methods used in Arcangeli' s work are:

• Execute join operations as close as possible to data

• Add mobile operators into traditional join algorithms

67

• Use statistical information, data availability, and system state to dynamic decide

dynamically whether and where the join operation should be moved to in order to

optimize join operation.

Arcangeli's work was very interesting and inspiring, but it had some noticeable

weaknesses and limitations. Since the work was based on traditional join algorithms, join

results would be only available when data from both join relations were received. It is

not a preferable solution in the distributed environment. Dynamic estimates of statistical

information, data availability, and system state as well as moving join operations could

cause system overheads. The mobile operator was added into various join algorithms

separately, therefore, it could not make full use of advantages of various join algorithms.

Arcangeli's work was suitable only when the 'errors' reached certain level. It was also

reported in their work that the algorithm only worked effectively on the network speed

below 1.28Mb/s (J. Arcangeli, 2004). It is quite low compared with the current network

speed.

The work was evaluated under very restrictive environment. It assumed that the

characteristics of all sites for join were the same, site failures and data unavailability were

not considered, and agents buffer size was unlimited. In a wide-area distributed network,

site failures and data unavailable are not uncommon phenomenon.

Since our aim is to provide efficient join algorithm for distributed data warehousing, it has

to take into consideration of data warehouse features into the dynamic adaptive model. It

68

should work very efficiently both in a slower speed network environment and in high

speed network environment.

3.3. AProposed Framework for Agent-based Data Warehousing

In recent years, the data warehouse approach for distributed information management has

been increasingly utilised with a varying degree of success. It facilitates the 'discovery' of

information in organisations' OLTP systems and providing a better understanding of real-

world problems. As such, it becomes a cornerstone to support decision-making and

analytical data processing.

A data warehouse is a separate repository from data sources and information stored in a

data warehouse is extracted and integrated from multiple data sources in advance. This

data warehouse approach provides a potential for better query performance than other

approaches. However, there exists a significant level of difficulty in keeping the data

warehouse in synchronisation with various data sources which are often autonomous and

dynamic. Although most analysis can be done monthly, weekly or daily, key decisions are

increasingly required to be made based on current events to meet the business changes in

real-time. For example, in the telecommunication, the communication routings are

required to be updated based on current communication results to select a route for better

quality with less cost. If the data used for decision making is too old, the results will

become useless. Consequently, this requirement of continuous update may render data

warehouses unpractical as data update and processing may take longer than required by

real-time applications.

69

In addition, various information sources such as operational data in retailers or finance

institutions are often autonomous and dynamic and generally used for daily transaction

rather than supporting data warehouses. An important consequence of the autonomous

data sources is the fact that those sources may change without being controlled from a

higher data integration layer. Many sources, particularly Web-based data sources, may not

only change their data, but also their capabilities without cooperating with users of their

data.

Software agents can perform complex tasks on behalf of users and have unique properties

of autonomy, adaptiveness, collaboration and mobility. They are suitable for use in wide

variety of applications. In particular, they are well suited for applications which involve

distributed computation or communication between components, sensing or monitoring of

their environment, or autonomous operation. Based on our investigation and the

feasibility study on software agent technology, we believe that the software agent

technology can be utilised to address data synchronisation and query performance issues

in distributed data warehouses.

70

Aims of An Agent based data warehouse approach

High

Dynamic integration
approach

Low Data volume & Complexity High

Figure 3.2 Objectives of the agent-based data warehouse approach
We propose an agent-based data warehousing (ABDW) approach, in which software

agents are used to incorporate dynamic integration approach and traditional data

warehousing approach seamlessly. The main aim of the ABDW approach is to manage

large volume of complex data efficiently and to improve the flexibility and adaptability at

the same time. The comparison among the other distributed information management

approaches are depicted in Figure 3.2 above.

The core objective of the proposed ABDW approach is to address data warehousing

issues arisen from distributed and dynamic data warehouse environments especially in

dynamic integration, adaptive ETL, and distributed data access areas. In the ABDW

approach, data warehousing functions are organised in a multi-agent platform where

software agents are working intelligently and autonomously to adapt to dynamic

environment and cooperating each other to achieve better performance.

71

3.3.1 Agent-based DataWarehousing Architecture

The architecture of the proposed ABDW is depicted in Figure 3.3, in which data

warehousing functions are organised in a MAS platform. The ABDW architecture

consists of the following components: agent-based ETL, agent-based data warehouse,

agent-based user interface, and a MAS platform. They are working intelligently and

autonomously to adapt to the distributed and dynamic environments. They are also

working cooperatively together to provide better performance.

An Agent Based Data Warehouse Architecture

Information
agents

AgentSased
Data Warehouse

In the ABDW architecture, the agent-based user interface is facilitated with various data

Users

accessing tools for users to analyse data retrieved from agent-based data warehouse. It is

Figure 3.3 Agent-based data warehouse architecture

also responsible for decomposition of complex requests received from users into smaller

tasks for various agents. The agent-based data warehouse is the centre of the architecture

and it consists of data marts, enterprise data warehouse, and dynamic integration

component. Data marts are managed by information agents. Each data mart is focusing on

72

one subject or functional area and may reside on a remote server. Enterprise data

warehouse stores pre-integrated data from data marts and some of atomic and detailed

historical data are allowed to overlap with data in data marts to provide better query

performance. The dynamic integration component is used for retrieve current/real time

data and also responsible for integrating data. The agent-based ETL is designed to

monitoring, extracting, transforming and integrating information from various data

sources in to their local data marts in the agent-based warehouse. It is facilitated with

information agents to realise adaptive ETL and dynamic integration. The MAS platform

in the ABDW architecture is designed to manage and coordinate agents in the system,

provide communication mechanism for individual agents, monitor the system

environment, and provide system status and metadata of the agent-based data warehouse.

3.3.2 Agent-based User Interface

The agent-based user interface depicted in Figure 3.4 is the front end of the ABDW

architecture and consists of accessing tools, query decomposer, user model processor and

results presentation components. It receives requests form user through various user

accessing tools and send relevant information into complex query decomposer and user

model processor. In the query decomposer, users' complex requests are decomposed into

several small tasks which can be carried out by individual agent available in the MAS

platform. Those agents interact with the agent-based data warehouse to retrieve user

required information effectively and efficiently. It will access data through dynamic

integration component of the agent-based data warehouse if the current data is involved.

Otherwise, data can be received directly from related data marts or the enterprise data

73

warehouse. Users' data accessing patterns will be processed and recorded into their own

profiles by user model processor. The interface agents could complete various tasks on

behalf of users autonomously according to the users' profiles to improve the efficiency.

Once results received back from agent-based data warehouse, results presentation

component will present results to users in their favourite format according to their

profiles.

Agent based user interface

Pre-integrated
OW

Users

Remote
Data marts

Figure 3.4 Agent-based user interface

The agent-based user interface offers users an intelligent and easy to use interface to

improve usability and accessibility. The interface can hide from the actual underlying

complex processing and can 'learn' from users' profile which is created based on users'

behaviours to establish a user model which could be used to prepare results for users in

advance to delivery better query performance.

74

3.3.3 Agent-based ETL

At the back end of the ABDW architecture, there is an agent-based ETL depicted in

Figure 3.5, which is used to extract, transform, and load information from various data

sources into the agent-based data warehouse. Since the data sources can be managed by

information agents, mobile agents could be applied to improve efficiency of ETL

processing.

In the agent-based ETL, reactive agents and mobile agents are used for ETL processing.

Reactive agents are applied for monitoring different data sources and routing the

appropriate information selectively to relevant sites. They are also employed to detect and

propagate the changes and trigger the necessary updates in the affected pre-integrated data

warehouse repositories. Mobile agents, which provide an efficient tool for performing

computation in a distributed fashion at sites where the relevant data is extracted and

prepared instead of expensive shipping of large volume of data across the network, are

used to carry out the computation on site and return with useful results.

An Agent Based ETL

Agent Based
Data Warehouse

Information
agents

Agent based
IlTL

75

Figure 3.5 Agent-based ETL

3.3.4 Agent-based Data Warehouse

The agent-based data warehouse is in the centre of the ABDW architecture. It

incorporates data marts, enterprise data warehouse and dynamic integrated component

together to support both historical and current data effectively as shown in Figure 3.6.

An Agent Based Data Warehouse

Alent Based
Data Warehouse

Data in the agent-based data warehouse are divided into three parts: historical enterprise

Figure 3.6 Agent-based data warehouse

data, local subject data, and current data. Historical enterprise data are summarised and

integrated from data marts and are stored in an enterprise data warehouse. Data in the

enterprise data warehouse are loaded and synchronised with data marts periodically. The

frequency of the synchronisation may vary according to the needs of business and volume

of data involved and weekly/monthly is a typically option. Atomic and detailed historical

76

data are stored in data marts which are usually resided at local server directly connected

with operational database server in order to reduce the cost of data transport during the

ETL process. Since the performance of the operational database will be affected when

queries on the database involves large amount of data, usually the ETL process will be

run at less busy period such as midnight. Therefore, the current/runtime data will not be

available at both the enterprise data warehouse and data marts. The dynamic integration

component is designed to retrieve the current data allocated at remote data sources and to

join them together with data retrieved from the enterprise data warehouse and data marts.

When users access the agent-based data warehouse, usually their queries will be

decomposed into smaller tasks in the agent-based user interface mentioned in section

3.3.2. If a query involves with both current and historical data, it will be partitioned

according to time. Since data warehouses or data marts always have a time dimension and

the latest data available at data marts or enterprise data warehouse can be determined by

the system frequency of data loading configuration, it is not an issue to determine

partition of data. Traditional data warehouse queries can be used to retrieve the historical

part of the data from the data marts or enterprise data warehouse. For the current part of

the data, the query will be further processed in dynamic integration component, in which

mobile agents will be used to retrieve data from remote information agents and join the

historical part of the data to answer users' queries.

3.3.5. MASPlatform

The MAS platform is the core in the ABDW architecture. It is designed to manage and

coordinate all agents in the system. It is responsible for initialisation of the system,

77

activate and deactivate individual agent, resource allocation among agents based on the

users' requirements and system environment status. We believe in some degree that the

ultimate goal of the agent technology is to make the full use of the available resources to

achieve the best possible overall performance for a system. The MAS platform also used

to provide an infrastructure for the specification of communication and interaction

protocols which allow agents to exchange information and knowledge in order to work

collaboratively together. The system environment is closely monitored and the related

information such as size of data source, network speed, available memories and CPU

capacity of individual server linked in the system etc. Meta data used for describing data

source, data marts, enterprise data warehouse, and the transformation details are managed

by the MAS platform. A service directory for agents to list their abilities and needs is also

included in the MAS platform.

3.3.6. Key Techniques and Challenges in ABDWArchitecture

The agent-based data warehousing approach aims to provide a seamless integration

between per-integrated data warehouse and dynamic integration processing. It takes

advantages of MAS platform, remote information agents and mobile agents to accomplish

different tasks and join information efficiently. The ABDW approach could have the

following main benefits: more effectively to deal with real-time data integration problem,

more flexibility to adapt autonomous and dynamic data environment, and better data

warehouse performance.

78

In order to make the ABDW architecture function effectively and efficiently as we expect,

the following key techniques must be in place. Firstly, a MAS platform with suitable

mechanisms should be designed to provide adequate coordination and control over

individual agents which might act autonomously. Functions might include coordination

and synchronisation among agents, activation and deactivation of individual agents or

groups of agents, selection among agents, creation of new agents when needed,

elimination of agents which are no longer needed, adaptation agents to changes in the

environment, learning from experience. Although there is no ready to use MAS platform

designed for ABDW, many software agent engineering methodologies and developing

tools(M. Wooldridge, 2000), (N. R. Jennings, 2001), (Parandoosh, 2007) could be used to

build up such platform.

Secondly, information agents may apply to as many data sources as possible so that data

sources can be changed from passive objects for access into active information agents.

They can provide intelligent, selective, and context-sensitive data gathering,

transformation and integration functions for large scale data processing. Mobile agents

could be used to work for both the agent-based ETL and the dynamic integration

component so that most of tasks can be done at distributed remote sites locally. However,

as the data sources could be autonomously owned and operated, it may not be always

possible for information agents to reside on remote platform due to heterogeneous or

security reason. The mobile agents should be able to adapt the change environment.

Thirdly, most of functions and principles of interface agents could be applied to the agent-

based user interface in the ABDW architecture to improve the usability and efficiency of

the interface. In addition, a complex query decomposer needs to be designed to

79

decompose quenes into small tasks which agents can carry out. Coordination and

communication mechanism among individual agent should be considered, which could be

achieved by using Agent Communication Language (ACL) in MAS platform.

Dynamic integration will be the last but most important technique in the ABDW

architecture. All necessary information will be joined together to produce final results in

the dynamic integration component. Dynamic integration component receives

requirements from interface agents and makes decision to retrieval information from data

marts, enterprise data warehouse, and/or remote data sources based on whether required

information is historical or current, summarised or detailed. Dynamic integration

component may gather current data use mobile agents through the agent-based ETL, and

use agents to obtain historical data directly from data marts and/or enterprise data

warehouse according to the level of details required. All received data will be joined to

produce the results for users.

To achieve the objectives set for the agent-based data warehousing approach, the main

challenge is to provide a high performance of join data from remote data because the join

performance is the key factor to address data synchronisation and query performance

issues. Since data marts and data sources are often distributed at different sites connected

via various network, the query performance from the remote sites is very difficult to

predict due to dynamic data sources and variable network conditions. The join operation

is one of the most expensive operations in query processing as it combines, compares and

merges potentially large data sets. Consequently join performance has a considerable

impact on overall system performance especially in a distributed warehouse environment.

80

It is essential to develop a novel join algorithm which could provide better performance in

distributed and dynamic data environment.

Having proposed the ABDW architecture, it is not the objective of this research to

implement the ABDW architecture in its entirety. Instead, the work is focused on the use

of intelligent agents in population, maintenance, and query processing aspects of data

warehouse, in particular, an agent-based join algorithm for such an architecture.

81

Chapter 4. JOIN ALGORITHMS IN DISTRIBUTED DATA ENVIRONMENT

Joins are the most frequently used operations among the basic relational operations

(SELECT, JOIN, PROJECT). Relational database systems organise information into a

collection of tables. A join operation must be used when any queries involves information

from two or more tables. Joins are also the most expensive operations that a relational

database system performs in terms of both time and memory. To join two large tables

could consume a significant amount of the system's CPU cycles, disk or network

bandwidth, and buffer memory (Bhashyam, 2004). Therefore, the performance of the join

algorithms plays an important role in the overall query performance.

In a typical data warehouse dimensional data model, a large volume of organisation's data

are organised into fact tables and dimensional tables. Fact tables have relationships with

one or more dimensional tables. Data warehouse queries always involve join operation

between fact tables and dimensional tables. One of the main objectives of a data

warehouse is to provide better query performance for users to make a right decision at the

right time. For this reason, effective and efficient join algorithms are a critical factor in

determining the overall performance a data warehouse.

This chapter studies a range of typical and popular join algorithms and the factors that

affect their performance in distributed data environments. The state of art of modern

adaptive join algorithms is investigated. The main issues of the current adaptive join

algorithms are highlighted. A novel agent-based join algorithm called AJoin for the agent-

based data warehouses is proposed. It aims to utilise intelligent agents to coordinate a

82

ripple hash join and semi-join operations to adapt the change data environment to achieve

the best query performance for data warehouses.

The rest of this chapter is structured as follows. Section 4.1 studies join algorithms for the

relational database system. The strengths and weaknesses of each type of the join

algorithm and the factors that affect performances of joins in distributed data

environments are highlighted. Section 4.2 investigates the effectiveness of modem

adaptive join algorithms in distributed and dynamic data environments and highlights the

main issues of the current join algorithms in distributed data warehouse environments.

Section 4.3 presents a proposed agent-based join algorithm.

4.1. JoinAlgorithms in Relational Databases

Due to the importance of join algorithms in a database system, a lot of research has been

carried out and come up with many types of join algorithms (Coronel et al., 2009),

(Rahimi & Haug, 2010), (Silberschatz et al., 201O).However, no single join algorithm is

the best for all since the join performance is largely dependent on the input data and its

environment. In this section, we study several main algorithms for computing the join of

relations, and analyse their strengths and weaknesses and the factors that affect their

performances in distributed data environments.

When joining relation Rand S, every tuple in R needs to be compared with every tuple in

S to see if the join condition across their attributes is satisfied. When the condition is met,

the rows are concatenated and copied into the result relation. There are many approaches

83

for performing a join. We will analyse the nested-loop approach (with or without

indexes), the sort-merge approach, and the hash-join approach.

In the thesis, we use the notation RI><IR.a=S.bSfor the join operation, where a and b are join

attributes or sets of attributes of relations R and S respectively.

4.1.1 Nested-Loop Join

The nested-loop join is a classical row-based approach to performing a join operation,

which joins two relations Rand S by making two nested loops. Based on (Silberschatz et

al., 2010), the algorithm of the nested-loop join is listed in the following Java-style

pseudo code in table 4.1.

For each r in R {

For each s in S {

If (r.a = s.b)

output the tuple rlls

II r is a tuple in R

II s is a tuple in S

II "II" represents a concatenation operation

II next s

Iinext r

Table 4.1 Nested-loop join algorithm

The nested-loop join algorithm is expensive, since it examines every pair of tuples in the

two relations. To perform the join using a nested-loop approach, we have to spend M disk

lIOs to bring all the pages of R (one-by-one) into memory, where M denote the number of

pages in R. For each tuple of R, and we have to spend N disk IIOs to bring all the pages of

84

S (one-by-one) into memory and then examine each tuple in S, where N denote the

number of pages in S. Therefore, the number of disk IIOs required is OeM + nr= N),

where nr denotes the number of tuples in R. In the best case, there is enough space for

both relations to fit simultaneously in memory, so each block would have to be read only

once; hence, only O(M+N) of disk IIOs would be required.

The nested-loop join algorithm can take advantage of additional memory to reduce the

number of times that the S relation is scanned. If one of the relations can fit entirely in

main memory, it can be used as the inner relation to reduce the join cost, since the inner

relation would then be read only once. Therefore, if S is small enough to fit in main

memory, the approach requires only a total M+N of disk IIOs, which is the same cost as

that for the case where both relations fit in memory.

The most noticeable advantage of the nested-loop join algorithm is that the nested-loop

joins can be used regardless of the complex of join conditions. It can be implemented with

complex join conditions, such as conjunctions and disjunctions.

4.1.2 Block Nested-Loop Join

The simple nested loops join algorithm does not effectively utilise buffer pages. If the

buffer is too small to hold either relation entirely in memory, we can still obtain a major

saving in block accesses if we process the relations on a per-block basis, rather than on a

per-tuple basis. Based on (Silberschatz et aI., 2010), the algorithm of the block nested-

loop join is listed in the following lava-style pseudo code in table 4.2.

The block nested-loop join a variant of the nested-loop join where every block of the

inner relation is paired with every block of the outer relation. Within each pair of blocks,

85

every tuple in one block is paired with every tuple in the other block, to generate all pairs

of tuples. As before, all pairs of tuples that satisfy the join condition are added to the

result.

for each block Br of R {

for each block Bs of S {

for each tuple r in Br {

for each tuple s in Bs {

If r.a = s.b

output the tuple rlls

II "II" represents a concatenation operation *1

II next s

II next r

II next Bs

II next Br

The cost of the in the block nested-loop join, worst case, each block in the inner relation s

is read only once for each block in the outer relation, instead of once for each tuple in the

outer relation. Thus, in the worst case, there will be a total of O(Br =Bs + Br), where Br

and Bs denote the number of blocks containing records of rand s respectively. In the best

case, where the blocks of outer relation can all be fitted in the memory, the cost will be

reduced to O(Br + Bs). Therefore, the block nested-loop join algorithm is more efficient

compared with the basic nested loop join algorithm,

Table 4.2 Blocked nested-loop join algorithm

86

4.1.3 Indexed Nested-Loop Join

In a nested-loop join, when an index is available on the attribute of a join relation, the

performance of the finding the matching tuples can be improved.

Assuming there is an index on relation S, the cost of an indexed nested-loop join can be

computed as follows. For each tuple in the outer relation R, a lookup is performed on the

index for S, and the relevant tuples are retrieved. In the worst case, there is space in the

buffer for only one page of r and one page of the index. Then, M disk accesses are needed

to read relation R, where M denotes the number of pages in R. For each tuple in R, we

perform an index lookup on R. Then, the cost of the join can be computed as O(M+rir *C),

where nr is the number of records in relation Rand C is the cost of a single selection on S

using the join condition.

Since only one of the indexes can be used, there will be no different in terms of the join

cost.

4.1.4 Sort-merge Join

In this join approach, the two relations involved are sorted based on the join attribute and

then the sorted relations are merged. The overall cost of the join is the sum of the sort cost

and the merge cost. Based on (Coronel et al., 2009), the algorithm of the sort-merge join

is listed in the above table 4.3.

87

if R not sorted on attribute a, sort it;

if S not sorted on attribute b, sort it;

Tr = first tuple in R;

Ts = first tuple in S;

Cs = Ts II start of current S-partition

while (Tr!= eof and Cs != eof) {

while (Tr != eof and Tr.a<Cs.b)

Tr = next tuple in R;

while Cs != eof and Tr.ae-Os.b

Cs = next tuple in S;

while Tr != eof and Tr.a==Cs.b {

Ts=Cs;

while Ts != eof and Tr.a== Ts.b

output the tuple rlls ;

II "II" represents a concatenation operation

Tsenext tuple in S;

Tr= next tuple in R;

cs-rs.

Table 4.3 Sort-merge join algorithm

In practice, the most expensive part of performing a sort-merge join is arranging for both

inputs to the algorithm to be presented in sorted order. This can be achieved via an

explicit sort operation or by taking advantage of a pre-existing ordering in one or both of

the join relations. The latter condition can occur because an input to the join might be

88

produced by an index scan of a tree-based index, another merge join, or some other plan

operator that happens to produce output sorted on an appropriate key.

Let's say that we have two relations Rand Sand 1 R 1 < 1 S I. R fits in M pages memory

and S fits in N pages memory. So, in the worst case Sort-Merge Join will run in OeM +N)

I/Os. In the case that Rand S are not ordered the worst case will be OeM + N + 2(M +

Mlog(M) + N + Nlog(N))), where M and N denote the number of pages in Rand S

respectively.

4.1.5 Hash Ioin

In this join approach shown in Figure 4.1 based on (Ramakrishnan & Gehrke, 2002); a

hash function h is used to partition tuples of both relations. The hash-join approach

consists of two phases: the partitioning phase and the probing phase. In the partitioning

phase, the tuples in each relation Rand S is partitioned with the same hash value on the

join attributes into the two separate sets of non-overlapping partitions. A tuple is assigned

to a particular partition by using the same hash function h for both relations. When

partitioning R, attribute "a" is passed to the hash function, while the partitioning of S

passes attribute "b." Since we use the same hash function for both relations in the

partitioning phase, the matching tuples from both relations, if any, end up in the buckets

with the same address. In the probing phase of the join, tuples in a partition of R are only

compared to the tuples in the corresponding partition of S.

89

Partitions Rand S

Hash
function

h DO ...0DDDOD h
Hash table for block Ri
(K<B·1 pages)

•• •
D Input buffer

(to scan Si)
output buffer

Disk Disk

D
D
•••
D

Figure 4.1 Hash join approach (Ramakrishnan & Gehrke, 2002)

Assume that hash function h can partition Rand S into k partitions and k-cls-I pages and

B<.,J f x M where B, M and f denote the buffer pages, the number of pages in R, and a

fudge factor respectively. Based on (Ramakrishnan & Gehrke, 2002), the algorithm of the

hash join is listed in the following lava-style pseudo code in table 4.4.

The cost of hash join is the total cost of partitioning both relations and the cost of probing.

In the partitioning phase, each relation is scanned and is written back to the disk.

Therefore, the partitioning phase cost is 0(2 * (M + N)), where M and N denote the

number of pages in Rand S respectively. In the probing phase, each relation is scanned

once again. Hence, the total cost of a hash-join is 0(3 * (M + N)). Compared to the

nested-loop join approach, the performance of the hash join is much better. It has been

increasingly popular in today's DBMSs. However, the hash join algorithm can be used to

implement natural joins and equi-joins, but it cannot support other complex joins.

90

II partition R into k partitions

for each tuple r in R

read r and add it to buffer page h(ra);

II partition S into k partitions

for each tuple s in S

read s and add it to buffer page h(Sb);

II Probing Phase

for i=1 to k {

IIBuild in-memory hash table Ri,using h

for each tuple r partition Ri,

read r and insert into hash table using h(ra);

IIScan Si,and probe for matching Ri, tuples

for each tuple s partition Si, {

read s and probe table using h(Sb);

for each matching tuple r in Ri,

output the tuple rlls ;

II "II" represents a concatenation operation

clear hash table to prepare for next partition;

Table 4.4 Hash join algorithm

The performance of the hash join can be affected considerably, when hash table overflow

occurs. Hash table overflow can occur if there are many tuples in the build relation with

the same hash values for the join attributes, or if the hash function does not have the

properties of randomness and uniformity. In either case, some of the partitions will have

more tuples than the average, whereas others will have fewer. This phenomenon is call

partition skew. When the partition skew is exceeding the level where one of the partitions

91

for a join relation is larger than available memory for the join operation, hash table

overflow occurs.

If the level of partition skew is low, the problem can be handled by increasing the number

of partitions so that the expected size of each partition will not beyond the size of

available memory. The number of partitions will be increased by a small value called the

fudge factor mentioned previously, which is usually about 20 percent of the number of

hash partitions computed according to (Silberschatz et aI., 2010).

Hash table overflow may still occur if the level of partition skew is high. To address to

problem, either overflow resolution or overflow avoidance technique could be used.

Overflow resolution is performed during the build phase, if a hash table overflow is

detected. Overflow resolution proceeds in this way: a different hash function will be used

to further divide the large partition into smaller partitions. The new hash function will be

applied to both relations on the same partition. In contrast, overflow avoidance performs

the partitioning carefully, so that overflows never occur during the build phase. In

overflow avoidance, the build relation S is initially partitioned into many small partitions,

and then some partitions are combined in such a way that each combined partition fits in

memory. The probe relation R is partitioned in the same way as the combined partitions

onS.

92

4.2. JoinAlgorithms in Distributed Database Systems

A distributed database system allows applications to access data from local and remote

databases. In a distributed database system, data can be distributed across multiple

physical locations. A distributed database can reside on network servers on the Internet,

on corporate intranets or extranets, or on other company networks. To join data in a

distributed database system is usually much more expensive in term of time and resource.

Compared the cost of communication with the local data processing in disk and memory,

the communication cost is usually much higher. A current widely used standard for the

Serial Advanced Technology Attachment (SATA) disk "buffer-to-computer" interface is

3.0 Gbit/s, which can send about 300 megabyte/s with 10 bit encoding. A typical 100M

network can transmit maximum 12.5 megabyte/s theoretically. According to a recent

(November 2011) survey from a technical support staff from Virgin Media - the one of

the UK's fast business broadband provider, the current maximum speed limit for VPN via

Internet other than leased line is 5 Mb/s. Therefore, the communication cost is one of the

most important factors to consider in the cost evaluation of joins in a distributed database

system.

Join algorithms investigated in the last section 4.1 are focused on conventional centralised

database systems, where no communication cost consideration is required. The cost of

join is calculated based on disk 110 and the join performance optimisation is achieved by

reducing the disk 110 requirements. It is not suitable for join algorithms in distributed

database systems where communication cost is the main factor of overall join cost.

93

4.2.1 Semi-Join

To minimises the communication cost between sites in a distributed environment during

the join operation, semi-join was invented and used in (Bernstein & Chiu, 1981)'s project

and then extended and applied by (Apers et al., 1983). A semi-join involves an increase

in local processing of data compared with a conventional join, but saves on the cost of

data transmission between sites.

Semi-join attempts to qualify the tuples before the relations are actually joined. In

distributed systems, a semi-join qualifies the tuples in both relations that match the join

conditions before sending the tuples across the network. As a result, tuples that are not

part of the final join results will not be transmitted, which reduces the communication

costs.

According to (Bell et al., 1992), the semi-join can be formally defined as follows:

R ~S = 1ti (R 1><1S) (4.1)

where Rand S are two relations stored at remote sites SI and S2 respectively, the symbol

~ as the denotation of the semi join operation, and 1ti denotes the projection over the

attributes R, of R.

The above formula can be replaced by the equivalent form:

R ~S = R 1><11t S (4.2)

where 1t is over the join attributes only.

The formula represented in (4.2) has potential advantages over the (4.1). According to

(Bell et al., 1992), a full join using semi-join operation has two phases: reduction phase

and processing phase. In reduction phase, the semi-join projects the join attributes from S

at site S2 (=1t S) and transmits 1t S to site SI. In the following processing phase, the semi-

94

join computes the join results R 1><1 1t S and sends them the join results site. The algorithm

of the semi-join is listed in the following table 4.5.

1. Project the join attributes Ra from Rat 51to a temporary relation RT

2. Transmit RT from site 51 to site 52

3. Compute the join RT[><IR,a=s,b5at site 52 producing temporary relation 5T

4. Transmit 5T from site 52 to site 51

5. Compute the join RIXlR,a=S,b5tproducing the final results

6. Transmit results to results output site

Table 4.5 Semi-join algorithm

In step 1, a one-column relation RT will be produced form projection of join attributes Ra.

The reason for doing this is that join attribute Ra is the only thing that needed to qualify

the tuples in S. In step 2, the data transmission reduction occurs. Compared with a

conventional join, the semi-join only transmits the join attribute Ra of R to site s2 where S

is instead of sending the entire relation R. The communication cost of transmitting the

join attribute Ra is much cheaper than transmitting a whole relation across the network. In

step 3, RT and S are joined at site S2 and produced a temporary relation ST. At this stage,

all of the tuples that qualify the join condition are identified. However, at moment, those

non-join attributes of relation R is not presented at the temporary relation ST. To include

any attributes required for output for these attributes, in step 4, ST will be transmitted

back to site SI where R is. ST only includes those joined tuples is much smaller than

relation S as any tuple that is not part of the final answer will not be transmitted. In step 5,

SI with R are joined to produce the final results. Final step 6, the full join results will be

transmitted to results output site.

95

4.2.1 Semi-Join Cost vs. Benefits

The advantages of the semi-join algorithm are reaching greatest potential when the join

attributes is relatively small and local processing costs are much smaller than transmission

costs. Joins can increase the size of the result relation from the either join relation, whilst

semi-join never does because addition attributes will not be added to the results.

The data need to be transmitted in a conventional join is the minimum size of the join

relations (e.g. min(IRI, lSI)). While data need to be transmitted in a semi-join will be the

minimum size of join attributes plus the size of semi-join (e.g. mine (IRal+1R ~SI), (IRsl+1

S ~RI))).

Therefore, a semi-join will have a lower transmission cost than a conventional join if the

cost of initiating a message, which is the extra cost to be included for semi-joins and

should not be neglect based on (Kang & N. Roussopoulos, 1987) report, added to

mine (IRal+1R ~SI), (IRsl+1S ~RI)) is less than min(IRI, lSi).

4.3. Adaptive Join Algorithms for Dynamic Data Environment

With the advances in Internet and web technologies, traditional dedicated leased line

based private networks are replaced by VPN which uses the Internet to provide a cost

effective solution to connect distributed networks to support organisations global

operations. Data management for these organisations become more challenging due to

unpredictable and dynamic natural of the Internet.

96

Join operations are very effectively optimised in conventional database management

systems, which leveraging I/O cost information as well as histograms and other statistics

to determine the best executable plans. However, databases systems distributed over the

Internet presented a strong demand for new adaptive join techniques. The query optimiser

in conventional database management systems may be no longer able to obtain necessary

information for the query plan due to the unpredictable and variable network connections

over the internet.

To address the challenges that arise from wide-area distributed network environments

such as the Internet where data access becomes less predictable due to link congestion,

load imbalance, and temporary outages, some modern pipelined join algorithms have been

proposed by (P. J. Haas & Hellerstein, 1999), (Avnur & Hellerstein, 2000), (Urhan & M.

J. Franklin, 2000), (Luo et al., 2002), (Deshpande et al., 2004). The basic principle of

such modern adaptive join algorithms relies on the join being pipelined whereby operators

in the query plan are executed in parallel. This could provide better response time as

intermediate join results can be produced as soon as tuples from join relations are

received and matched. These algorithms focus on using runtime feedback to modify query

processing in a way that provides better response time or more efficient CPU utilisation.

In order to better understand and investigate the effectiveness of those modern adaptive

join algorithms, the following typical modern adaptive join algorithms, such as nested-

loop ripple join, Hash Ripple Join, XJoin has been investigated in depth.

97

4.3.1 Nested-loops Ripple Join

In conventional join algorithms, the goal is to rrururruse the completion time. The

performance of conventional join algorithm will significantly affected when tuples

received from either relation becomes very slow and uncertain. It means users might need

to wait very long time to receive a complete relation before the first tuple can start join

operation.

To tackle the problem, (P. 1. Haas & Hellerstein, 1999) proposed nested-loop ripple join.

The join can start as soon as one of tuples each received from both relations. The idea of

ripple join is starting join operation once tuple was received instead of starting join

operation until one relation completed. Figure 4.2 shows the "square" version of nested-

loop ripple join, where Rand S represent two join relations and n is the tuple received to

be joined.

R R R

(n-I»((11-1) EJ [Js s s
- ..

Figure 4.2 The "Square" version of nested-loop ripple join

The nested-loop ripple join alternates receiving from each of its input relations. When it

receives a new tuple from one relation, that tuple is combined with all previously seen

98

tuples from the other relation. The square version of nested-loop ripple join algorithm can

be described in Java-style pseudo code in table 4.7.

Tr=first tuple in R;

Tsefirst tuple in S;

currel=S;

cur=1 ;

while (Tr !=eof and Ts != eof)

for (i=1 to cur-1)

if Tr(i)a==Tstcur),

output the tuple Tr(i)IITs(cur); II "II" represents a concatenation operation

for (i=1 to cur)

if Tr(cur)a== Tsti),

output the tuple Tr(cur)IITs(i); II "II" represents a concatenation operation

if (currel==S) { II get net tuple, swap relation

Tsenext tuple in S;

currel=R;

else {

Tr» next tuple in R;

currel=S;

As relation Rand S may not receive at the same frequent, the sampling step of nested-

loop ripple join may change into "rectangular". The ratio at which the join receives from

Table 4.6 Nested-loops ripple join algorithm

99

the two relations is critical to performance, and can be determined and modified

dynamically by observing the statistical properties of the sets of tuples received so far.

In the worst case the performance of the nested-loop ripple join would be equivalent to a

conventional nested-loop join. In fact, the nested-loop ripple join is a generalisation of

nested loop join in which the traditional roles of inner and outer relation are continually

interchanged during processing. Similar to the conventional nested-loop join, the

performance of the nested-loop ripple join could be further improved by using block,

index and hash techniques.

4.3.3 Hash Ripple Join

Nested loop join requires each tuple from one relation to match all available tuples from

another relation. For equi-join query, it is natural to consider using hash technique to

improve its performance. The idea is to hash both relations on the join attributes using the

same hash function. Hash Ripple Join proposed by (P. J. Haas & Hellerstein, 1999), (Ives

et al., 1999), (Luo et al., 2002) also called symmetric hash join, uses two hash tables from

both relations instead of one and probes join relations with each other as well.

The basic idea of Hash Ripple Join is illustrated in Figure 4.3. When a new tuple (e.g. Tr)

is received from one relation (e.g. R), it probes old tuples held in hash table Hs from

another relation S to find the matches and then insert into hash table Hr. Next tuple (Ts)

may receive from another relation S. then similarly it probes old tuples hold in hash table

Hr from another relation R to find the matches and then insert into hash table Hs.

Processing continue until all tuples are received and processed.

100

R
Hr

s

Hs

Figure 4.3 Hash Ripple Join

Similar to nested-loop ripple join, relation the sampling step of Hash Ripple Join may

change into "rectangular" when Rand S are not receive at the same frequent. The ratio at

which the join receives from the two relations may be changed dynamically at runtime to

achieve better join performance. The square version of Hash Ripple Join algorithm can be

described in Java-style pseudo code in table 4.7.

Hash Ripple Join could provide an excellent join performance, but it requires sufficient

memory space to hold both hash tables. Otherwise, memory may overflow and cause the

join process to crash (Luo et al., 2002).

101

Tr=first tuple in R ;

insert into hash table Hr using h(Tra);

Tseflrst tuple in S;

insert into hash table Hs using h(Tsb);

currel=S;

while (Tr != eof and Ts != eof) {

if (Ts != eof and currel=S) {

Tsenext tuple in S;

probe hash table Hr using h(Tsb);

for matching R tuples Tr(i), II Tr(i) a==TSb

output the tupleTr(i)IITs;

II "II" represents a concatenation operation

insert into hash table Hs using h(Tsb);

if (Tr != eof and currel=R)

Trenext tuple in R;

probe hash table Hs using h(Tra);

for matching S tuples Ts(i)11 Tra==Ts(i)b

output the tuple TrIITs(i); II "II" represents a concatenation operation

insert into hash table Hr using h(Tra);

if (currebeS) II swap relation

currel=R

else

curtel=S

Table 4.7 Hash Ripple Join algorithm

102

4.3.4XJoin

As Hash Ripple Join requires that the hash tables for both of its inputs are kept in main

memory during most of the query execution. As a result, the Hash Ripple Join may not

suitable to use for joins with large inputs, and the ability to run multiple joins is severely

limited. To overcome this problem, XJoin proposed by (Urhan & M. J. Franklin, 2000)

extends the Hash Ripple Join to use less memory by allowing parts of the hash tables to

be moved to secondary storage. XJoin does this by partitioning its inputs, similar to the

way that hybrid hash join solves the memory problems in classic hash join.

The main difference between XJoin and Hash Ripple Join is that in order to reduce the

memory usage, XJoin divided the hash partition into memory and disk two parts depicted

in Figure 4.4. Newly received tuples will be hashed and stored in the memory part of the

partition. When memory part becomes full, tuples in memory part of the partition will be

flushed to disk. In order to join tuples in the both parts, XJoin divided join process into

three stages.

At the first stage, it works similarly to the Hash Ripple Join, which joins only the memory

part of partitions so that first tuple could be start join process as soon as a tuple received.

The join processing will continue until all tuples have been received. Once all tuples have

been received from both relations, XJoin starts third stage, in which XJoin joins memory

parts and disk part as well as disk part and disk part to produce complete results. The

XJoin stage 1 algorithm can be described in the following Java-style pseudo code in table

4.8.

103

Memory-resident Memory-resident
partitions r:f source A partitions r:f source B

Tuple B
hash(TupleB) = nTuple A

hash(TupleA) =]
DISK

SOURCE-B~lltl;!ill~11;~
,

: 1

I
SOURCE-A

Disk-resident Disk-resident
partitions r:f source A partitions r:f source B

Figure 4.4 Partition handling from (Urhan & M. J. Franklin, 2000)

However, during the first join stage, join processing might be pause because of

unexpected network delay which causes no tuples could be received from both relations.

In such case, in order to improve XJoin performance, the second stage will be activated to

produce join results. In this stage, the tuples from one relation in the memory part of the

partition will be to probe tuples from another relation in the disk part of the partition.

Once it has done, XJoin will go back to check if any tuple has received. If it has, then

XJoin will return to first stage and continue the processing. Otherwise, it will carryon the

second stage to probe next available partition. As the second stage works only when the

first stage is not in progress, the work can be viewed as free. This is where the benefit of

the second stage comes in. The risk is that when one or both of the inputs become

unblocked it is not noticed until after the current disk-resident partition has been fully

processed. In this case, the overhead of the second stage is no longer completely hidden.

The reactively scheduled background process of XJoin provided an opportunity of utilises

104

delays to produce more tuples earlier in a poor network conditions. The XJoin stage 2

algorithms can be described in the following Java-style pseudo code in table 4.9.

XJoin_stage1 :

waiting inputs from R or S

if all tuples received goto stage 3

if timeout goto stage2

if input is from S {

Ts = received tuple from S

probe hash table Hr using h(Tsb);

for matching R tuples Tr(i), II Tr(i) a==TSb

output the tupleTr(i)IITs; II "II" represents a concatenation operation

if (h(Tsb) in Hs is full)

flush h(Tsb) in Hr to disk Ds;

insert into hash table Hs using h(Tsb);

else {

Tr = received tuple from R

probe hash table Hs using h(Tra);

for matching S tuples Ts(i) II Tr, ==Ts(i)b

output the tuple TrIITs(i); II "II" represents a concatenation operation

if (h(Tra) in Hr is full)

flush h(Tra) in Hr to disk Dr;

insert into hash table Hr using h(Tra);

loop stage1

Table 4.8 XJoio algorithm - Stage 1

105

XJoin_stage2:

for each tuple Tr in Or or Ts in Os {

if (Ts in Os) {

probe hash table Hr using h(Tsb);

for matching R tuples Tr(i) II Tr(i) a==TSb
detect duplicate;

output the tupleTr(i)IITs; II "II" represents a concatenation operation

else {

probe hash table Hs using h(Tra);

for matching S tuples Ts(i) { II r-, ==Ts(i)b
detect duplicate;

output the tuple TrIlTs(i); II "II" represents a concatenation operation

if inputs are ready goto XJoin_stage1;

The multiple stages of XJoin may produce spurious duplicate tuples because they can

perform overlapping work. Duplicates can be created in both the second and third stages.

However, this problem has been addressed in XJoin by using a duplicate prevention

mechanism based on timestamps. The XJoin stage3 algorithm can be described in the

following Java-style pseudo code in table4.10.

Table 4.9 XJoin algorithm - Stage 2

106

XJoin_stage3:

For each tuple Tr in partition Ri

If memory is not enough for a complete partition Ri

flush other partitions to disk;

read all Tr in partition RI from Or

probe hash table Hs and Os using h(Tra);

for matching S tuples Ts(i) { II Tra ==Ts(i)b

detect duplicate;

output the tuple TrIlTs(i); II "II" represents a concatenation operation

Table 4.10 XJoin algorithm _ Stage 3

Compared with the conventional join algorithm, modem ripple join algorithms

demonstrate better adaptivity to the changing environment. However, due to distributed

and dynamic nature of modem ripple join algorithms, the traditional method of analysing

join algorithms based upon the time required to access, transfer and perform the relevant

CPU-based operations on a disk page (Harris & Ramamohanarao, 1996) no longer be able

to provide an effective evaluation of join algorithms.

In order to study modem adaptive join algorithm performance in depth, the empirical

research method is used to evaluate the effectiveness and performance of those modem

ripple join algorithms based on evidence gathered from information collected from

107

experiments and observations. A detailed evaluation report based on experimental results

of modem adaptive join algorithms is presented in the next chapter.

108

Chapter 5. EXPERIMENTAL STUDY ON MODERN ADAPTIVE JOIN ALGORITHMS

Empirical research works by the process of induction. Induction is the formulation of

general theories from specific experiments and observations (Goddard & Melville, 2004).

In order to make experiments systematic and purposeful, the experimental results must be

comparable and based on typical scenarios. In this research work, a controlled experiment

environment based on a data warehouse scenario and simulated network are established

and used.

This chapter describes the data warehouse scenario used as a basis to investigate and

evaluate various modem join algorithms for data warehouses. In particular, a distributed

data warehouse architecture and multidimensional data model for the data warehouse

scenario is discussed. This chapter also presents simulated network environments for the

experiments of modem adaptive join algorithms. A comparative study on modem

adaptive join algorithms is conducted. The need for an effective and efficient join

algorithm for current distributed and dynamic data warehouse environments is

highlighted.

The rest of this chapter is structured as follows. Section 5.1 describes the data warehouse

scenario used as a basis to investigate and evaluate various modem join algorithms for

data warehouses. Since data warehouses are typically used by large organisations, such as

banks, retailer chains, insurance and telecommunication companies, our scenario is based

on a typical telecommunication data warehouse system. The distributed data warehouse

architecture and multidimensional data model of the data warehouse scenario are also

discussed. Section 5.2 presents simulated network environments for the experiments of

109

modem adaptive join algorithms. Four types of network behaviours, such as low speed,

random, high speed, and bursty are modelled. Section 5.3 discusses the experimental

results and evaluates the effectiveness and performance of modem adaptive join

algorithms.

5.1. ADataWarehouse Scenario for the Investigation

In order to investigate and evaluate effectiveness of data warehouse approaches and

modem join algorithms in a data warehouse environment, a typical data warehouse

environment based on real industrial case has been established.

Data warehouses have gained an increasing popularity among organisations which seek to

utilise information technology to gain a competitive edge in today's global economy. It is

particular helpful for organisations which have the sheer volume and complexity of data

available from their various OLTP systems. Banks, retailer chains, insurances and

telecommunication companies are typical users. Different users have different types of

information available and concerns, but the principle and methodology of data

warehousing for all type of systems are basically the same. For this project, a case

scenario based on a telecommunication company is chosen as a typical example of data

warehouses to discuss issues arisen from distributed and dynamic environments.

I.T.S is an international telecommunication company operated mainly in Europe. It has

several sub-companies located in UK, Germany, France, Italy, Spain and Portugal. They

are daily deliverying millions of calls for customs to all over the world. Without

llO

compromising generality, the operations of the company are representative of the

telecommunication industry including large volume of data, and a distributed and

dynamic environment. As current telecommunication markets are very competitive and

dynamic, it is vital to provide the management with an effective decision-making support

system which can deliver the right information, to right people, at the right time,

interactively and securely. Furthermore, data available from their OLTP systems are

allowed to be used for the investigation.

The main OLTP systems running in the telecommunication system are switch systems

which connect customer calls to various telecommunication carries and record all call

details such as CLI (caller's line identification), destination zone, destination 'phone

number, carrier's name, call duration, call charge, and so on. As a switch system is

required to work very efficiently in order to make high volume of transactions successful,

the OLTP database for the system only store information for the current day and old

transaction details are archived in daily log files. In order to access the information, the

daily log files are required to be imported into a separate database where OLAP runs.

However, as data stored in log files is denormalised, to store all historical data directly

into a database is not suitable for supporting daily business such as managing customers'

account and providing billings. Usually, only one-year worth data will be kept in the

database system and rest of data needs to backup to other storages. Another problem is

that information is separated into various log files which may not fit the needs of decision

making. To join information directly from distributed sources could lead to poor

performance. In order to deal with the problems, a data warehouse system has been

introduced.

111

5.1.1 Data Warehouse Architecture for the Scenario

The main business operation of the company is geographically distributed and a topology

of LT.S DW system is showing in Figure 5.1. Global DW and local DWs are connected in

a WAN environment via VPN. As all sites run the same type of OLTP system to support

daily business operations, the local DWs are basically using the same data schema too.

The OLTP system is often required to update its function to meet the business

requirements. However, usually those updates are not able to take place concurrently and

have to implement from one site to another for the operation reason. Those updates may

cause the change in data format of the log files. There are also some semantic differences

in various sites. For an instance, the currency of call charge in UK site uses Pounds, but

the currency of call charge in France site uses Euro. We can assume that all sites are

running autonomously although in other data warehouse cases the situation may be much

complex.

Figure 5.1 A topology ofI.T.S nnw

112

A distributed data warehouse (DDW) architecture discussed in chapter 2 is used for the

company. The architecture of the distributed data warehouse is illustrated in Figure 5.2.

L(s_h_ar_e_d_M_e_ta_d_a_ta_L_ay_e_r _jiJ
Data Sources

0--
0--
0--

E
T
L

0--

Figure 5.2 A DDW architecture

The architecture consists of local data warehouses (could also be viewed as data marts)

and a global data warehouse. The local data warehouse represents data and processing at a

remote site, and the global data warehouse represents that part of the business which is

integrated across the business. Most amount of processing occurs at the local level. For

instances, product sales, payment management, and routing selection are all processed

and managed locally. As far as transaction processing is concerned, the local sites are
,

running autonomously. Only for certain types of processing, such as a corporate balance,

carrier payments are required at global level.

The local data warehouse located at each site contains data that is of interest only to the

local level. Each local data warehouse has its own technology, its own data and its own

processor where data from local log files will be extracted, transformed and loaded. As

113

the business operations in various sites are basically the same, similar data model could be

apply to various sites and metadata could be shared easily. The currency difference may

be the only difference between UK site and other Europe sites. However, in general data

warehouse cases, the local data warehouse at various sites might be very different and

autonomy. It will be very important to use shared metadata and dynamic data store

staging area. Queries such as 'How many calls were made last month by a particular

customer?', 'What is the ratio of successful call to USA last hour?', 'What is last month

performance against the average of last year?' can be answered at the local data

warehouse. There is no coordination of data from one local data warehouse to another.

The global data warehouse located in its Italian site, where the company's headquarter is

based, consists of a logical DW layer and a physical DW layer which contains data that

needs to be managed globally. It aims of the global DW to answer queries such as 'What

is the total profit made by the whole corporation?' and 'How much should be paid to a

particular telecomm carrier?' Queries could be answered transparently by the integration

of physical DW and the logical DW which maps a unified logical data model to physical

tables in various local DW together with caching and integrated services. The data is

integrated across the corporation at the corporate level, such as summarised billing

information, carrier information, and so on. The source data can be integrated from local

data warehouse, directly from local log files, or obtain from headquarter database system.

5.1.2 Multidimensional Data Model

In order to organise large amounts of consolidated data for effective and efficient data

analysis and retrieval, a multidimensional data model is used for the company's data

114

warehouse. An example of the multidimensional data model for the data warehouse is

illustrated in Figure 5.3.

Call Fact1Datetime Dimension 1------- VCustomer Dimension IDatetime_Key

Customer_key

V
Carry_Key

I Carry Dimension Zone_Key c--I Zone Dimension

Event_Key

I IncominILKey

\- rncoml ng Dlm enslm I
call_duration

I Event Dimension call_charge

call_price

call_cost

In the multidimensional data model, the data in the data warehouse is stored in a

Figure 5.3 Multidimensional data model for I.T.S DW

denormalised manner to reduce the needs of join at run-time in' order to improve query

performance. In the data model the fact table stores the measurements of each call, such

as durations, charges, prices, etc. and rests of descriptive information are stored in various

dimensional tables. For example, in zone dimension, the call's destination details, such as

country, city, district, and zone prefix are stored to describe the call destinations.

Compared with the fact table, the numbers of tuples in the dimensional tables are

relatively very small. But the size of attributes are much larger that fact tables. As fact

table only contains keys and a few numeric attributes, the total size of the table is much

smaller than a table to directly store data loaded from log files.

115

The model helps to increase query performance by reducing the volume of data that is

read from disk. Queries analyse data in the dimensional tables to obtain the dimension

keys which join the index in the central fact table to further reduce the number of tuples to

be scanned.

5.1.3 Needs for More Efficient Join Algorithms

With success of the business, the number of customers and call usages has increased

dramatically. It caused a significant increasing in transaction data and customer queries in

the data warehouse system. However, the network capacity and stability of the Internet

based VPN has generated significant performance problems for traditional query

processing techniques as data access becomes less predictable due to link congestion, load

imbalances, and temporary outages. As traditional join algorithms need to wait all data

source ready before join process starts, users might require to waiting longer for receiving

first desired record. In the worst case, they might never get the answers. Company has to

place a query limits to the current SQL Server based data warehouse system to allow the

system running smoothly. The performance issues have caused constraints on decision

making of best telecommunication routing selecting with two hours delay rather than the

runtime as preferred.

In order to make I.T.S data warehouse successful in the distributed and dynamic

environment, it is essential to have better join algorithms for the data warehouse working

effective and efficient in such environment, since the join is one of the most costly and

116

frequently running operations in the data warehouse system.

To fully realise a new data warehouse system for the company is beyond our scope,

however, the data sets and multidimensional data model of scenario could be used for our

study and experiments to help us to gain better understanding and evaluation of the

modem adaptive join algorithms.

5.2. Simulated Network Environments for Experiments

As discussed earlier in chapter 4, the modem adaptive join algorithms have noticeable

advantages over the conventional join algorithms in distributed environment. However, it

is difficult to measure or evaluate the performance of those join algorithms at real world

environment since the distributed and dynamic environment, such as changing of network

speed, available memory space, available CPU power, will affect on the performance

these join algorithms.

To obtain a scientific and meaningful results for a comparative study on these join

algorithms, a controlled data warehousing experimental environment is used, in which the

network speed and memory availability as main factors affect on the comparison of join

performance among the different types of join adaptive algorithm are identified and used.

Other factors such as CPU power of the server are very important in terms of overall join

performance, but it affects all join algorithms in a similar way. It is not included as it is

insignificant in the comparison of join performance among the different types of join

adaptive algorithm.

117

Simulated network environments instead of real data warehousing environment are used

for the experiments in order to create a repeatable environments to measure the

performance of different join algorithms fairly.

In our study, four types of join algorithm: nested-loop ripple join, Hash Ripple Join,

XJoin and XJoin without second stage (XJoin-No2) have been investigated. These join

algorithm are implemented in Java based on the algorithms described in the chapter 4.

In the experiments, two relational files containing up to 100,000 tuples extracted from

telecom data were used. One relational file is called customer.txt described as relation R

in the following discussion, which has a total of 2.2MB data in comma-separated values

(CSV) format and contains two attributes, accountID and customerName where The

primary key is accountlD. Another relational file is called outgoing. txt described as

relation S in the following discussion, which has a total of 7.7MB data in CSV format and

contains seven attributes with accountID as foreign key. For experimental purpose, all

tuples for both relations have been random ordered.

Because performing experiments directly on a real world network would not provide

repeatable results, four groups of data sets have been designed to model following four

types of network behaviours.

• Random 20-120Kbyteslsec

• High Speed 265-512Kbyteslsec

• Low Speed 10-20Kbyteslsec

• Bursty 20-120Kbyteslsec with 1 sec delay per 1000 tuples

118

In the experiment different transfer rates were modelled by traffic delay. Because the

record size for two relations are about 26bytes and 144bytes respectively, accordingly the

average delay could be 1.3ms (26/20) and 7.2 ms (144/20) for 20KBytes/sec transfer

rates. In the same way, 0.22 and 1.2 ms delays could be used to model 120 KBytes/sec

transfer rates, 0.10 and 0.56 ms delays for 256KBytes/sec transfer rates, 0.05 and 0.28 ms

delays for 512KBytes/sec transfer rates and 2.6 and 14.4 ms delays for 10KBytes/sec

transfer rates.

In random model (Figure 5.4, and 5.5), network delay was generated randomly ranging

between 0.22 ms and 1.3 ms for R relation and ranging between 1.2 ms and 7.2 ms for S

relation. Total delay is about 72 sec for Rand 420 sec for S.

Tuple (numbers)

1400 -r-------------------......,
1200 ..---r---r-~-__tl_---_.______Ir_-~__t__--.-----_H

W1000 ~~~+--~~~~~4Hrr_B~~r..rlH-~~iH
>: 800 -Il-l:-ILrI-II-+l--II1-1--
CIS
Qj 600 -lll-Ill-IHIHHIII-
C 400

o
200

Figure 5.4 Random model for first 10000 tuples of R

119

8000 -,--------------------....,
7000 -j--70--~__._---__.,______r__._____;_,___.t_-___;;____--l

(i) 6000 -l-.--I--I+----&rl----I---,r-IIl.-+--.I--I-+.cII-----c------1I-+--l
.s 5000 -h-II1--IIl-t----Id---It--
~ 4000 +HlI--IIl-t----III-_D_
~ 3000

2000
1000

o

Tuple (numbers)

Figure S.S Random model for first 10000 tuples of S

In high speed model (Figure 5.6, and 5.7), network delay was generated randomly ranged

between 0.05 ms and 0.1 ms for customer relation and ranged between 0.28 ms and 0.56

ms for outgoing relation. Total delay is about 7 sec for Rand 41 sec for S.

120

100
(i)

80c:
>:

60III
Q)
0 40

20

0
C) s:lC) s:lC) s:lC)

,,<::5 ~ n;,<::5

Tuple (numbers)

Figure S.6 High speed model for first 10000 tuples of R

120

~ 400

~ 300
Qi
c 200

100

o

Tuple (numbers)

Figure 5.7 High speed model for first 10000 tuples of S

In low speed model (Figure 5.8, and 5.9), network delay was generated randomly ranged

between 1.3 ms and 2.6 ms for customer relation and ranged between 7.2 ms and 14.4 ms

for outgoing relation. Total delay is about 194 sec for Rand 1080 sec for S.

3 r--,
~ 2.5 -t-lrlt--:,----..--+------f,c-1i.---;-----------d
In
E 2 +-IIIHI-LII-
~ 1.5
Qic

0.5

o

Tuple (numbers)

Figure 5.8 Low speed model for first 10000 tuples of R

121

16 .-------------------------------------~
14 +-------~~~----,,~_,~r_----_.----~

012 +-~~~~~~~~~~r+~~~--~~~~
.§. 10 -1-+11-1-11--
1;' 8
~ 6

4
2
o

Tuple (numbers)

Figure 5.9 Low speed model for tirst 10000 tuples of S

In bursty model (Figure 5.10 and 5.11), extra 26 ms and 144 ms delay for Rand S per

1000 tuples will be added to the random model. Total delay is about 74 sec for Rand 434

sec for S.

30

~25
UJ
E 20

~ 15
Qi
C 10

5

0
I:)

Tuple (numbers)

Figure 5.10 Bursty model for first 10000 tuples of R
/

122

Tuple (numbers)

160
140

(j) 120.s 100
1; 80
~ 60

40
20
o .•. _.

Figure 5.11 Bursty model for first 10000 tuples of S

The experiments were run on P4/2.8GHz window2000 platform, with 1GB of memory

and 80GB of disk space. In the experiments, Standard memory for Xjoin was set to 5MB

while Nest Loop Ripple Join and Hash Ripple Join were allocated enough memory to

keep both relations running in the memory as those algorithms are not suitable for low

memory conditions. The impacts of memory availability on join algorithms are also

studied using Xjoin algorithm in the experiments.

The query used in the experiments is to find all customers who made phone call to China.

It generates 247 successful joined tuples after completed a join process.

123

5.3. Experimental Results and Evaluation

5.3.1 Join Performance Under Random Network Model

e;:) fj,e;:) b<e;:) roe;:) <oe;:) "e;:)e;:) "i' ~e;:) "roe;:) ,,<oe;:) i'e;:) fj,i' ~e;:)

_ Nest Loop RippleJoin
___ Hash RippleJoinJoined Tuple (numbers)
- -XJoin
--XJoinNo2

450 r---------------------------------------~
400 +-----------~~~~~~
350 +---------~~~~--~----------~~.~~~

U 300 -1-----------, .(---------------,.;;~~::.....:::.:---------I
Cl)~ 250 +- ~.~------------~~.L-------------~
~ 200 +-------I---------~~~~------------~~~
~ 150 +-----~~~~_~~~--------------------~

100 +-~Lh~~~~~--------------------------~
50 ~~~----------------------------------~
o +-~~~~~_r,_~_T_r~~_T~~~_r~~~

Figure 5.12 Join performance under random network

In the first set of experiments, the performance of Nest-Loop ripple, Hash ripple, XJoin

and XloinNo2 under random network model is examined. Figure 5.12 shows the

cumulative response times for four algorithms. The x-axis shows a count of the results

tuples produced and the y-axis shows the time as which that result tuple was produced.

The result shows that there is only little difference between Hash ripple and Nest-Loop

ripple join and between XJoin and XJoinNo2. Because network 110 is much slower than

memory or disk operation in random network model, although Nest-loop ripple join

required much more memory operation than Hash Ripple Join did, it did not make big

differences between them in the overall performance. Second stage of XJoin has very

124

little help for improving the performance because there are not very long delays for

second stage to do work in the gap to improve XJoin performance.

However, XJoin and XJoinNo2 become slower than Hash ripple and Nest-Loop ripple

join after receiving 20 tuples, but they speed up after matched 80 tuples. It is due to XJoin

and XJoinNo2 did not produce all results at first stage and second stage since some of the

hash table of the tuples are moved into secondary storage. After 375sec, almost all data

from two relations had been received, XJoin started third stage to produce all results.

Although it requires some disk VD, it does not slow down the join process at all.

5.3.2 Join Performance Under High Speed Network Model

-+- Nest LoopRippleJoin
___ Hash RippleJoin

--XJoin

--XJoinNo2

350
300

U 250
QI 200III
Gi'
E 150
i= 100

50
0

~ rf>

Joined Tuple (numbers)

Figure 5.13 Join performance under high speed network

In the second set of experiments, the performance of Nest-Loop ripple, Hash ripple, XJoin

and XJoinNo2 under high speed network model is examined. The result in Figure 5.13

shows that Hash Ripple Join gained best performance, while Nest-Loop ripple join got

worst performance. It is due to network delay becomes less important factor in the join

125

environment and the time used by join operation becomes noticeable. Because XJoin

requires some disk I/O and do not produce all join results at first and second stage, the

performance is inferior to Hash Ripple Join. However, XJoin is superior to Nest-loop join

because hash method has been applied in XJoin algorithm. Due to same reason as random

network model, there is hardly difference between XJoin and XJoinNo2.

5.3.3 Join Performance Under Low Speed Network Model

In the third set of experiments, the performance of Nest-Loop ripple, Hash ripple, XJoin

and XJoinNo2 under low speed network model is examined. The result in Figure 5.14

shows that the performance among four join algorithms is similar to that under random

network model. It proves that the join performance was affected by how tuples were

received rather than how tuples were operated. 14ms delay is not long enough for second

join stage of XJoin to make big contribution to improve its performance.

1200
1000

CJ 800Q)
UIar 600
E
j:: 400

200
0

~ ~
--+- Nest LoopRipple Join
___ HashRippleJoin
--XJoin
--XJoinNo2

Joined Tuple (numbers)

Figure 5.14 Join performance under low speed network

126

5.3.4 Join Performance Under Bursty Network Model

--XJoinNo2

450 r-------------------------------------~
400 -l-------c=c-J""'~
350+-------~,~~~~~~==~~~~~~~

(J 300 +- ~w.__ _____=_=:;

5l 250 +------->, ~-----___:~~""'----------j
Q)E 200 +----~.'-----____,.~ ~~---------1
~ 150+-_~,~--~~.~L----------------~

100
50 +-~~-------------------~
o ~~_r~~_r~~_r~~_r~~_r,_~_r~~

Joined Tuple (numbers)

--XJoin

--+- Nest Loop RippleJoin
-II- Hash RippleJoin

Figure 5.15 Join performance under bursty network

In the fourth set of experiments, the performance of Nest-Loop ripple, Hash ripple, XJoin

and XJoinNo2 under bursty network model is examined. Surprisingly, the result in Figure

5.15 shows that the performance among four join algorithms is still similar to that under

random network model although XJoin algorithm claims that the second stage of XJoin

can significantly improve XJoin performance under bursty network environment.

According to XJoin result provided by Justin Forrester in "Xjoin and the Benefits of free

work" (Forrester & Ledlie, 2002), 5 to 15 sec delay were used in their experiments. Since
/

in the high speed network environment,S to 15 sec is a quite long delay, we use 144ms

delay in our study. However, it shows 144ms is not long enough for second join stage of

XJoin to make big contribution to improve its performance.

In order to further investigate the XJoin algorithm, the fifth set of experiments with a new

bursty network model was designed which apply 2 sec delay to high speed model

127

described in section 1.2. The new result is showing in Figure 5.16. It shows that XJoin

performance can be improved dramatically from XJoinN02 under longer delay bursty

network. The performance is near to Hash Ripple Join which requires full memory

support.

600

500

0- 400
Cl)
I/)
Qj" 300
E
i= 200

100

<;) rf> ':)..<;) <:0<;) <0<;) ,,<;)<;) "",,<;) ,,':)..<;),,<:0<;) ,,<0<;)rf><;) ""rf> 1'<;)

_ Nest LoopRippleJoin
___ HashRippleJoinJoined Tuple (numbers)
- -XJoin
--XJoinNo2

Figure 5.16 Join performance under bursty (2 sec delay) network

5.3.5 Join Performance UsingXloin with different memory size

450 ~==~::;:~~~~~;;~~~~~;;~~~400 +-I---......,.~~
350 ~~~~~~---~~~~

~ 300 -1----1--;

'*" 250 +---+--+-rE 200 -I-~~~~~~L---=r;~---------------~
i= 150 -I--f--l'b

100 ~-~~-~~~~--------------~
50
o

':)..<;) <:0<;) <0<;) ,,<;)<;) "rf> ,,':)..<;) ,,<:0<;) ,,<0<;) ",,<;)<;)""rf> 1'<;)

_2MB 4MB
--6M --8MB

Joined Tuple (numbers) _10MB
-+-14MB
--18MB

22MB

__'_12M
--16MB
- -20MB

Figure 5.17 XJoin performance with different memory sizes

128

In the sixth set of experiments, the performance of XJoin with different memory size

under random network model is examined. The results from experiments showed in

Figure 5.17 indicated that XJoin would obtain best performance when more than 20MB

memory allocated, which mean the whole join operation could be run in the memory.

XJoin with 2MB memory showed the worst performance because most of the hash

partition needed to be flushed to disk.

Unexpectedly it does not show that the more memory will get better performance. When

memory is less than 20 MB, the best performance appears at 10MB rather than 18MB.

The result appears unanticipated initially. In order to insure the correctness, the

experiments are repeated. However, the same results obtained are similar to the previous

one. After analysing XJoin algorithm in depth, it can be found that the more memory

allows more tuples be kept in the memory. When the hash partition needed to be flushed

to disk, it actually slows down the join process because it requires larger partition to be

flushed to disk. It explains why the more memory available may not be necessary to have

better performance if the memory space is not sufficient to keep the whole hash partition

in the memory completely. XJoin has better performance when more tuples can be

matched in first stage particular in slower network environments.

5.4. Summary

Some useful findings can be drawn from the above experimental results to compare the

four types of ripple join algorithms showing in Table 5.1.

129

HI!tI RRE.tin

U;ej_tr~jdn

sirrpe

Ball ~ loNrramy re::J.irElTais loNrramy re::J.irElTais
. --- -~---~---~-- -~----------~.-----.---..-~-- ----~--- ----_ .. -

Taqrg~d<i:ll¥

Xjdn

1,-OO9oNinH[1~~ ~l~n~_~_____E:'cf:il~Il_~~
Hg1 rramy <XJTB.ITl1im Hg1 rramy <XJTB.ITl1im

NA NA ..tin ITBT1pJliti01 WIlldsk pJliti01 NA

FUlly Jlslittlea>avB

0< 0<

0<

0< 0<

Table 5.1 Comparison of ripple join algorithms

The Hash Ripple Join algorithm has provided the best performance among the join

algorithms, but it requires enough main memory to store the whole relations to be joined.

Because the data stored in a data warehouse typically represents data over a long period of

time, it might be impossible to provide such an environment to support the join algorithm.

The XJoin algorithm utilising secondary storage successfully reduced the memory

requirements of the join algorithm. However, join performance was affected noticeably at

first stage of the join because of the join results might be delayed to produce when some

tuples were moved to secondary storage.

The second stage of the XJoin may be helpful to reduce the delay. However, the algorithm

adapting to the changing of data environments are based on behaviours of data itself

rather than the reason behind the behaviours. For example, to decide whether the second

130

stage ofthe XJoin should be started was based how long had been delayed to receive the

tuples rather than how long would be needed to receive the tuples or what is the cause of

the delay. Therefore, selecting and scheduling of join algorithms and stages might not be

wise, which could lead join operation to longer delay or overheated by swapping among

the different join stages.

The experimental results have indicated that different type of join algorithm should be

selected according to the different kinds of environments. Hash Ripple Join is most

preferable join algorithm for all environments if enough memory is available. XJoin is

suitable for lower memory available environments and particular in long delay bursty

network environment.

These pipelined join algorithms offer effective approaches to deal with the

unpredictability of distributed and dynamic data environment. Experimental results have

enhanced our confidence to address the issues arisen from distributed and dynamic data

warehouse environments. However, these algorithms have not optimized for current data

warehouse environment where the size of a fact table is usually extremely large and most

of keys are heavily indexed. Another inadequacy of these algorithms is that their

adaptiveness to the changing data environments is based on behaviour of data itself rather

than the reason behind the behaviour. Therefore, selecting and scheduling of join

algorithms and stages might not be 'optimised', resulting in longer delays and 'overheating'

in join operations. An intelligent and specialised algorithm is needed for the distributed

and dynamic data warehouse environment.

131

Chapter 6. AlOIN FRAMEWORK AND AlOIN ALGORITHM

This chapter presents a proposed agent-based join algorithm called AJoin for effective

and efficient online join operations in distributed data warehouses. Taking into

consideration data warehouse features, AJoin utilises intelligent agents for dynamic

optimisation and coordination of join processing at run time. The algorithm extends both

modem adaptive join and semi-join techniques. As a result, the AJoin improves join

performance significantly at various network conditions.

Compared with the traditional join algorithm, modem ripple join algorithms demonstrate

better adaptivity to the changing environment. However, these modem algorithms were

designed for the general join purpose and did not take distributed data warehousing

features into account. A typical dimensional data warehouse model consists of fact tables

connected with many dimensional tables which contain descriptive textual information

(Kimball & Ross, 2002). In a dimensional table, the size of join attributes is usually much

smaller than the size of the whole attribute set. Furthermore, only small numbers of

tuples in the dimensional table participate in the join with the fact table at run time.

Software agents have been used in a wide variety of applications involving distributed

computation, communication, or autonomous operations (N. R. Jennings, 2001). In the

AJoin algorithm, a join task is decomposed into smaller independent sub-tasks to be

assigned to software agents. For example, a Remote Information Agent (RIA) could be

applied to filter unqualified tuples in a remote site before sending required data back so

that the amount of data transition could be reduced. All agents are working continuously

and independently in a multi-agent system where they are coordinated according to its

132

environment states (such as network speed, memory availability). The environment states

are closely monitored and used as feedback to enable agents to decide how to adapt their

behaviour to the changing environment at runtime.

Semi-join as a traditional join method for reducing data transmission in processing

distributed queries was introduced in (Bernstein & Chiu, 1981)'s project. This method is

especially beneficial in a wide-area distributed network environment such as the VPN

where the cost of data transmission is usually much higher than local processing costs.

AJoin adopts the principles of the semi-join to transmit only the join attributes rather than

all attributes from relations to start a join. In addition, AJoin enhances the conventional

semi-join approach by eliminating unqualified tuples at remote sites to minimise the

transmission cost. Furthermore, as semi-join requires multiple scans of relations, it may

not be as cost effective in a high speed networking environment. To address this problem,

AJoin utilise software agents to dynamically adapt join between full-join and semi-join at

runtime based on a function involving network speed. As a result, the AJoin improves

join performance significantly at various network conditions.

Similar to modem adaptive join, AJoin divides the join task into a series of sub-tasks for

parallel processing in a ripple manner. This enabled join results to be produced as soon as

join tuples are matched. Join processing continues even if when one of data sources is

temporary unavailable.

The rest of this chapter is organised as follows. Section 6.1defines some terms used in the

discussion of the AJoin framework and its algorithm, Section 6.2 presented the proposed

AJoin framework and explains the process in details. Section 6.3 describes the AJoin

133

algorithm in Java-style pseudo code. Section 6.4 provides a cost-benefit analysis for the

AJoin and explains the development of adaptive join strategy.

6.1. Definition

The AJoin algorithm can be extended to process multiple relations, for simplicity reasons

our discussion in the following sections considers only two relations, RI and R2, which

reside at remote sites SI and S2 respectively. S denotes a local site where join results are

produced.

Definition 1 (Join Attributes) Join attributes are fields in a relation used for matching

tuples with another relation for a join operation. RAdenotes join attributes in relation R.

Definition 2 (Selected Attributes) Selected attributes denoted as Rs, are those attributes

which are required as part of the output from join operation.

Definition 3 (Attribute Size) Attribute size is the size of the related attributes in bytes.

Size(RA) denotes the size of join attributes, Size(Rs) denotes the size of selected

attributes, and Size(R) denotes the total size of all attributes.

Definition 4 (Additional Query Conditions) Additional query conditions, denoted as C, is

a set of further conditions (other than the join condition itself) required for a query.

134

Definition 5 (Join Cardinality) Join cardinality JC denotes the number of tuples in the

joined relation. Join cardinality of relation R denoted as JC(R) is the number of unique

tuples from relation R which are required to produce joined tuples.

6.2. AJoinFramework

A framework of AJoin is illustrated in Figure 6.1. AJoin is operated in a multi-agent

system where the join task is decomposed into smaller independent sub-tasks carried out

by different agents and coordinated by another specific agent called the Join Coordinator

Agent (JCA). AJoin processing can be divided into four phases: Initialization, Remote

Adapting, Ripple-adaptive Join and Result Output.

S Agent coordinator

R1AHash table R2A Hash table

In the first phase (Initialization), the JCA collects local and remote environment states, as

shown by CD in Figure 6.1, including available memory, network connection speed and

Figure 6.1 AJoin framework

information on join relations. Using that information the JCA is able to allocate initial

memory for join hash tables and local storages for both join relations. It can also perform

135

a cost-benefit analysis of the join to calculate the join switching threshold (to be discussed

in section D) which can be used at runtime to select a join method.

The second phase (Remote Adapting) is shown by ® in Figure 6.1. Additional query

conditions Cl (and C2) and join switching threshold are sent to remote sites SI (and S2)

where Remote Information Agents (RIA) are activated and start to produce tuples from

RI and R2 using the conditions Cl and C2 respectively to filter unqualified tuples. Once

qualified tuples are retrieved, the agent will choose a join method based on the cost-

benefit analysis involving network speed.

If full-join method is chosen, both RA and Rs of relation R will be sent back to the Input

Buffer (IB) at the local site S illustrated as @ in Figure 1. Otherwise, only RA and its

remote direct access address, called Remote Access Pointer (RAP), will be sent back to

the lB. The RIA will continue its operation and select the join method to adapt to

changing network speed until a request is received to end the process.

The third phase (Ripple-adaptive Join) is the main join phase, in which the join operation

is dynamically switched between full-join and semi-join algorithm according to the

selection decision made by RIA at phase 2.

Once an IB starts to receive data from a remote site, Tuple Matching Agent (TMA) at site

S activates the ripple-adaptive join process. Two hash tables for RIA and R2A are used

for a tuple matching process. In the hash table for RA, the Rs access pointer (used to locate

Rs which could be at local or remote site) is stored and sorted on RA.

136

For any newly received tuple, the value of its access pointer is based on data contained in

the lB. When both RA and Rs are received, which indicates the full-join method is

selected, RS will be sent to the local storage, shown as a dashed line in Figure 1, and the

Local Access Pointer (LAP) of Rs will be add to the hash table for RA.

If a received tuple only contains RAand its RAP, it means that the semi-join is chosen. In

this case, the value of the RAP will be set to negative and then saved into the hash table

for RA together with RA itself. The negative value of the access pointer indicates that the

RS still remains at the remote site.

In the meantime, the TMA will use RIA (or R2A) to probe R2A (or RIA) in the hash table

for R2A (or RIA) to find a matching tuple. If a match is found, the TMA calls an Output

Agent (OA) to produce the join results and then continues its ripple-adaptive join

processing until all the tuples at the IB have been processed.

The final phase (Result Output) retrieves the matched tuples and produces the join output.

The first task for the OA is to check the access pointer to determine whether the required

attributes have been stored in the local storage at site S. If the value of the access pointer

is positive, it means that required Rs is directly accessible from the local storage and the

join results can be produced.

On the other hand, if the value is negative, it means that the required Rs need to be

retrieved from a remote site. In this case, the RIA will be requested to retrieve Rs shown

by ® in Figure 1. At the remote site, the RIA will retrieve required Rs based on RAP and

then send it back to the local site S illustrated by @ in Figure 1. At the local site S, the

137

OA stores the Rs in the local storage, updates the access pointer values in the hash table

for RAand produce the join results.

6.3. AloinAlgorithm

Join coordinate at local site S:

1. Initialization.

Perform cost-benefit analysis;

Allocate initial memory and buffer.

2. Activate RIA at sites S1 and S2 (see table 6.4)

Start Remote Adapting

3. Activate MTA and OA at site S (see table 6.2)

4. Coordinate and monitor join process

5. Iterate from step 4 until join completed

6. Deactivate MTA, RIA, and OA

7. End AJoin

Table 6.1 Join coordinator agent (JCA)

138

MTA for R1 at local site S:

1. Receive a tuple from 18 (see table 6.3)

2. If a tuple is received from R1

3. If full-join method is selected

4. Save R1s at local site S and add its LAP and R1A

to hash table for R1A

5. Else II semi-join is selected

6. Add negative RAP and R1A to hash table for R1A

7. Using R1A to probe R2A in hash table for R2A

8. If a match is found

9. For each matched R1Aand R2A{

10. If the access pointer of Rs is RAP

11. Call RIA at S1 andlor S2 (see table 5)

to retrieve R1s andlor R2s respectively

Else II Rs accessible from the local storage

Retrieve R1s andlor R2s locally

Output the matched R1s and R2s

12.

13.

14.

15

16. Iterate from step 1 until no more tuples from R1

17. Notify JCA to end the process

Similar algorithm to MTA for RI, MTA for R2 operates ripple-adaptive join processing

for R2 until all the tuples at the R2 IB have been processed.

Table 6.2 Tuple matching agent (MTA)

139

Receive tuple procedure at local site S:

1. If all tuples from both relation R1 and R2 are received

2. Join completed

3. If both R1 and R2 buffer are not empty

4. Retrieve a tuple from R1 and R2 IB in turn

5. Else

6. If both R1 and R2 IB are empty

7. Waiting tuples to arrive

8. Else II one of R1 orR2 IB is not empty

9. If R1 IB is not empty

10.

11.

12.

13. Return

Retrieve a tuple from R1 IB

Else II R2 IB is not empty

Retrieve a tuple from R2 IB

Table 6.3 Receive a tuple procedure

140

Tuple filter and join adapting at remote site S1 :

1. Receive join parameter (C and join selection threshold)

2. Retrieve a tuple from R1

3. If the tuple is not meet the condition C1

4. Repeat step 2

5. Evaluate join cost-benefit

6. If semi-join is selected

7. Send R1A and its remote access pointer to R1 IB at site S

8. Else II full-join is selected

9. Send R1A and R1s to R1 IB at site S

10. Iterate from step 2 until no more tuples from R1

Table 6.4 Remote information agent (RIA)

Similar algorithm to table 6.5 is used for RIA at remote site S2 for R2.

Retrieve Rs at remote site S1 (or S2):

1. Get the remote access pointer

2. Retrieve the tuple according to its access pointer

3. Return Rs to Rs buffer at site S

Table 6.S RIA retrieve RS service

141

6.4. Cost-benefitAnalysis

Being one of the most expensive operations in query process, the cost of the join

operation has been investigated intensively in the previous work (L. M. Haas et al., 1993),

(Harris & Ramamohanarao, 1996), (Li et al., 2007). In a low bandwidth distributed

network environment, compared the cost of local processing with the cost of data

transmission, the cost of local processing is relatively small and could be ignored.

Given IRll and IR21to indicate the cardinality of RI and R2 respectively, on the one hand,

the cost of full ripple join is specified as below:

+ IRllxSize(Rl)+IR2IxSize(R2)
Cost F (RI ~AR2) = To V (1)

where To is the cost to start-up a new network connection and V is the network speed.

On the other hand, in the semi ripple join method, RIA and R2A from remote sites SI and

S2 are retrieved for matching, and only Rls and R2s of matched tuples are then further

retrieved from sites SI and S2, Therefore, the cost of the semi ripple join can be

expressed as below:

+ IRllxSize(RlA)+JC(Rl)x(Size(Rls)+Size(P))
To V

+ IRllxSize(R2A)+JC(R2)x(Size(R2s)+Size(P))
V

(2)

where Size(P) is the size in byte of the RAP.

142

The cost and benefit of AJoin between the two join methods can be measured in their

differences as below:

Cost F (RI ~AR2) - Costs (RI ~AR2) =

IRllxSize(RI)-IRllxSize(RIA)-JC(RI)x(Size(Rls)+Size(P))
V

IR2IxSize(R2)-IRllxSize(R2A)-JC(R2)x(Size(R2s)+Size(P))
+ V

(3)

In AJoin, full-join or semi-join can be applied independently to each relation. The semi-

join method will be chosen only when the following condition holds for a relation:

IRlxSize(R)-iRlxSize(RA)-JC (R)x(Size(Rs)+Size(P»
V >0 (4)

or

CR(R) x SR(R) < 1 (5)

where

Je(R)
CR(R) = IRI denotes as join cardinality ratio as %; (6)

Size(Rs)+Size(P)
SR(R) = Size(R)-Size(&) denotes as attribute selection ratio as % (7)

143

The results show that the network speed is no longer a consideration factor for choosing

join methods in a low bandwidth network condition. CR(R) and SR(R) will be the factors

to determine which join methods to be used.

A join in ad-hoc queries in a typical data warehouse could be divided into multiple one-

to-many joins between the fact table and the dimensional tables. When referential

integrity constraints are applied between the fact table (RI) and the dimensional tables

(R2), all join attributes in fact table must have a matching join attributes in the

dimensional tables. Therefore, CR(RI) will be 100%. In such cases, a full-join method

will be used for R I unless SR(R I) is low.

However, since run-time data of the fact table only represents a small portion of the fact

table, CR(R2) will be normally far less than 100%. Therefore, the semi-join method

should be chosen for R2.

There have been significant improvements of Internet bandwidth recently, with 45Mbps

T3 internet connection already available for business users and higher bandwidth

connection on the way. In these high bandwidth networks, the join cost of local

processing compared with the cost of data transmission becomes more significant and

cannot be ignored any more.

The semi-join method involves more local processing than the full-join method. The cost

of additional local processing may outstrip the benefit of the semi ripple join method

when the network speed has increased to a certain level. To evaluate the true cost of a join

is not a trivial exercise due to many factors which needs to be considered (L. M. Haas et

144

al., 1993). However, as the cost of joins at a local site using full or semi-join method is at

an equivalent level, we only need to calculate the difference between the two methods

when remote site are involved.

The equation (4) could be revised into the following to decide which join method should

be chosen:

IRlxSize(R)-IRlx Size(RA)-JC (R)x(Size(Rs)+Size(P»
V

>
JC(R)xSize(Rs) (8)

where V' is the desk data access speed. Since the JC(R), IRI,Size(R), Size(RA), Size(Rs)

and Size(P) all could be queried before AJoin starts, the join switch threshold of V could

be pre-calculated as below:

IRlxSize(R)-IRlx Size(RA)-JC (R)x(Size(Rs)+Size(P))
V IX JC(R)xSize(Rs) (9)

This avoids the needs for such calculation at runtime when selecting a join method at

runtime.

The threshold above indicates a turning point where the cost of additional local processing

outweighs the benefit of the semi ripple join method

145

Chapter 7. EVALUATION

This chapter presents a performance study to evaluate the effectiveness of the AJoin

algorithm and discuss the outcome of this study. The evaluation is based on a

comparative study of AJoin against other modem join algorithms using the following

three assessment matrix: network speed, memory consumption, and join speed. The

overall evaluation results have demonstrated that AJoin has consistently outperformed the

other modem join algorithms. In the slower network setup, AJoin performs particularly

well with a performance improvement of an average of 30%-54% against Hash Ripple

Join.

All algorithms used for evaluation are implemented in Java and evaluated in the

controlled network simulation environment. Cost effective VPN network based on

Asymmetric Digital Subscriber Line (ADSL) and Fibre Optical connections, leased T1

based Wide Area Network (WAN) connection, as well as Gigabit High speed network

connection have been used to test the join algorithms.

The rest of this chapter is structured as follows. Section 7.1 describes the evaluation

environment and its setup. It justifies the use of controlled experiment environment for

the evaluation. It explains why network speed and memory availability are selected as key

factors for the evaluation. It also gives reasons for choosing Hash Ripple Join for

comparative study under sufficient memory environment and XJoin for comparative study

under variable memory conditions. Environment setup including join relations and

network speed are reported. Section 7.2 presents the performance of AJoin with sufficient

memory environments. Evaluation results of AJoin against Hash Ripple Join under four

146

types of simulated network environments with four set of queries are reported. To further

study the effectiveness of the adaptive function of AJoin, evaluation results of AJoin

performance without remote filtering function are also reported. To evaluate the AJoin

performance under bursty network condition, evaluation results of AJoin performance

against Hash Ripple Join are presented. Section 7.3 presents the performance of AJoin

with limited memory environments. Evaluation results of AJoin against XJoin under four

types of simulated network environments with four set of memory settings are reported.

To evaluate the AJoin performance under bursty network condition, evaluation results of

AJoin performance against XJoin are also presented. Section 7.4 provides a summary of

the evaluation results. Based on the evaluation outcomes, it concludes that AJoin has great

scalability and adaptivity. It works perfectly in various network conditions and memory

spaces. It automatically adapts itself to the changing environment to achieve possible best

performance. AJoin has consistently outperformed the Hash Ripple Join algorithm and

XJoin. In the slower network setup, AJoin performs particularly well and it improves

performance against Hash Ripple Join by an average of 30%-60%.

7.1. Evaluation Environment and Its Setup

According to the theoretical study on the costs and benefits analysis in chapter 6, the

AJoin could be beneficial in distributed data warehousing environments. The benefits are

in inverse proportion to join cardinality ratio and attribute selection ratio described in

formula (7) in chapter 6.4. The benefits may vary when local processing costs are taken

into account. According to equation (8) in chapter 6.4, the benefits are also in inverse

proportion to network speed and local processing costs.

147

7.1.1 Evaluation Environment

In order to verify our theoretical research outcomes and evaluate the effectiveness and

performance of Aloin, the following evaluation approach is adopted.

• Controlled experiment environment

In an uncontrolled distributed and dynamic environment, it is very difficult to produce

comparable performance results of join algorithms for measure or evaluation and very

challenging to determine the main factors which may have affected the join performance.

Therefore, in order to obtain scientific and meaningful results for the comparative study

on Aloin against other join algorithms, a controlled data warehousing experimental

environment is used.

Since the controlled environment is simulated, some factors in the real network are not

well modelled such as work latency, protocol overhead, and driver efficiency. The

patterns of network models are far more diverse than simulated network models. As

results, the real network speed will be usually much slower than simulated network

models. Since Aloin are in general able to gain more benefit from slower networks based

on our theory study, Aloin will perform even better in the real network environment

against other modem join algorithms if Aloin can perform better in the simulated network

models.

148

• Network speed and memory availability as key factors for evaluation

Join performance could be influenced by multiple factors. Some facts such as CPU

process power are very important in terms of overall join performance, but it affects all

join algorithms in a similar way. Consequently it is not included in this study as it is

insignificant in the comparison of join performance among different types of join

algorithm.

Hard disk access speed is also an important factor for joins. For the same reason as CPU

process power, it has not been assessed in this evaluation. Some discussions have been

included when join algorithms are assessed in a Gigabit network environment where the

local process costs could not be ignored.

In this comparative evaluation, network speed and memory availability are used as main

factors for the comparison of AJoin performance with chosen modem join algorithms.

• Hash Ripple Join for sufficient memory environment

Based on the outcomes of the comparative study on modem join algorithms discussed in

chapter 5, Hash Ripple Join has exhibited the best performance when the available

memory is sufficient to hold both hash tables for two relations completely. Therefore, the

Hash Ripple Join has been chosen as a benchmark for the performance study to evaluate

AJoin in a memory-sufficient environment where no hash table overflow will occur.

149

• XJoin for variable memory conditions

To assess the effectiveness and performance of Aloin in a limited memory environment,

Xloin will be used as a benchmark for the performance study since Xloin is the most

flexible modem join algorithm and capable of working effectively in variable memory

size conditions. Since the memory requirement varies according to the size of hash table,

to evaluate the performance, variable memory size conditions based on the 5%, 10%,

20%, and 50% percentage of required memory have been used.

7.1.2 Environment Setup

• Join relation

In the experiment setup, two relations are used and both relations contain up to 100,000

tuples extracted from a telecom data warehouse. One relation (RI) contains 524 bytes of

customer account information, which includes AccountlD, AccountName,

CompanyName, ContactName, ContactTitle, Address, City, Region, Postcode, Country,

Phone, Mobile, Fax, and Notes. For ethical and privacy reasons, only AccountID and

AccountName are kept and the rest of details are simply called "customer details" in the

data set. The AccountID is the primary key of the relation Rl.

Another relation (R2) contains 276 bytes of call details, which include Call_ID,

CallDataTime, DestinationPhoneNo, DestinationZoneName, CallEventMessage,

CallProviderName, CallLineIdentification, and AccountID. The AccountID is the foreign

150

key of relation R2, which will be joined with the AccountlD in the relation RI.

One of the queries to evaluate the join performance is to list all details of customers as

well as call details of the account which is used to make phone calls to China. There are

247 matched tuples randomly distributed between the two relations.

• Network speed

To reflect the current WAN connection used for distributed data warehouse business

applications as well as future development, VPN as one of the most popular cost effective

options for WAN connection is used for network simulation. Gigabit network is not

widely used as WAN connection option as because of high cost, but as it reflects the

trends of the future development, it is also included in the simulation models to evaluate

the join performance. The four network models are labelled as Low speed, Random speed,

High speed, and Gigabit network. All four network models with bursty effects to model

network temporarily unavailable will also be assessed. The details of the four 'network

models' used in this study are:

• Low Speed VPN based on 2Mb ADSL connection

• Random Speed VPN based on 2-8Mb ADSL connection

• High Speed VPN based on 100M Fibre Optical connection

• Gigabit 1Gb network

• Bursty drop network speed to lKb/s per 1000 tuples

151

7.2. Performance of Aloin with Sufficient Memory Available

The development of computer technologies has made it increasingly possible for more

memories to be available with lower cost for servers. In this section, we assume that there

are sufficient memories available for join operations. There will not be hash table

overflow occurring in Hash Ripple Join process. AJoin will be evaluated against Hash

Ripple Join under four simulated network environments with four sets of queries.

7.2.1 AJoinPerformance Under Low speed Network

The evaluation results shown in the following Figure 7.1 presents the join performance of

AJoin and Hash Ripple Join algorithms under low speed network conditions. The

following query Q1 is used for the evaluation and the query will output 247 match tuples.

01. List call details for customers who made phone call to China.

Select * from R1, R2

where R1. AccountlD = R2. AccountlD and DestinationZoneName ='CHINA';

In Figure 7.1, the X axis represents the number of joined tuples and the Y axis represents

the accumulated time used for each join in seconds. The blue line indicates the

performance of AJoin and the red line indicates the performance of Hash Ripple Join.

The evaluation results shown in Figure 7.1 demonstrate that AJoin is performing

significantly better than Hash Ripple Join. AJoin successfully produced the first joined

tuple in 4.5 seconds compared with 19.9 seconds using Hash Ripple Join. It improves the

152

performance significantly by 77.4%. The performance improvement is contributed by

both remote filtering function and semi join methods selected by AJoin. AJoin has

benefitted with mobile agents which filter the unqualified tuples before they are

transmitted. AJoin has also benefitted by transmit only join attributes of the tuples for

matching join tuples. Those not matched tuples will be no longer required to be

transmitted. Since the join is running under low speed network condition, it will reduce

the transmission cost significantly.

- - Hash Ripple Join
Joined Tuples

Join preformance under low speed network for calls to China

400
~ 3~ L

1
--~ ~E 300 +- ----0---------------- ".,.-..._

~ I ------------ ~250 _- ~- -------,.-"
200 ~------------------~,.~---_,-
1~

100

Figure 7.1 Join performance under low speed network for calls to China

As AJoin requires to transmit a joined tuple twice - join attributes of the tuple and

selected attributes for output, it involves additional transmission cost, in particular, when

more tuples will be matched. The benefits are not increased in a liner manner and

typically more benefits at beginning of join stage. However, comparing with Hash Ripple

Join, AJoin still improves the performance significantly by 51.8% on average.

153

To study the impact of the remote operation, the following queries are also used for the

evaluation:

02. List call details for customers who made phone call to France.

Select * from R1, R2

where R1. AccountlD = R2. AccountlD and DestinationZoneName ='FRANCE';

03. List call details for customers who made phone call to USA

Select * from R1, R2

where R1. AccountlD = R2. AccountlD and DestinationZoneName ='USA';

04. List call details for all customers

Select * from R1, R2 where R1. AccountlD = R2. AccountlD ;

The following Figure 7.2 presents the join performance of AJoin and Hash Ripple Join

algorithms under low speed network conditions executing query Q2. The results in Figure

7.2 show that AJoin is performing much better than Hash Ripple Join in a similar way to

the last experiment when Q1 is executed even though Q2 produced 528 joined tuples. On

average, AJoin improves the performance by 48.4% which is slightly down from 51.8%

with Ql.

154

Join preformance under low speed network for calls to France

400 -----.-----
U

350OJ~
OJ 300E
j::

250

200
150 -

100 ...

...-----~----..._-
,-

- - Hash Ripple Join Joined Tuples

Figure 7.2 Join performance under low speed network for calls to France

The following Figure 7.3 presents the join performance of AJoin and Hash Ripple Join

algorithms under low speed network conditions executing query Q3 which produces 1770

matched tuples. The results in Figure 7.3 confirm that AJoin is performing much better

than Hash Ripple Join in this case too. On average, AJoin improves the performance by

49.2% which is slightly down from 51.8% with Ql , but higher than Q2. It indicates that

the remote filtering could reduce the transmission cost, but it is not a only factor since that

the fewer tuples are filtered ay remote site does not cause noticable changes of join

performance. It is partly because the cost of transmission of join attributes is considerably

lower.

155

Join preformance under low speed network for calls to USA

400 ,-----------------------
U 350Q)

..!!?
Q) 300E
i= 250

200
150
100
50

f------------------ -.~-- ..-,-!!:- "_

,..

- - Hash Ripple Join
JoinedTuples

Figure 7.3 Join performance under low speed network for calls to USA

...

The following Figure 7.4 presents the join performance of AJoin and Hash Ripple Join

algorithms under low speed network conditions executing query Q4 which produces

100,000 matched tuples. In Figure 7.4, each number on the X axis represents the number

of thousands of joined tuples. The results in Figure 7.4 exhibit that AJoin is performing

significantly better than Hash Ripple Join irrelevant to how many tuples will be joined.

On average, AJoin improves the performance by 39.9% when all 100,000 tuples are

joined.

156

Join preformance under low speed network for calls to all countries

400 1
U 1Cl) 350

1 _____

~
Cl) 300E
i= 250

200

...- - -;----,

150
100 +----,~...----~~~~---------------------
50
o ~~TnTTT"TT1TrTTTTm''r1TiT1TfTT1'"T'i1' I j i' iii i) II t l,! i i ! i j I i~TTT11""~ITT""'TT"'Tll"lTrrn~ ~

~ ~ N N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 00 00 ~ ~ 0
.-<--Ajoin

- - Hash Ripple Join
1000 Joined Tuples

Figure 7.4 Join performance under low speed network for calls to all countries

7.2.2 Aloin Performance Under Random Network

The evaluation results shown in the following Figure 7.5 presents the join performance of

AJoin and Hash Ripple Join algorithms under random network conditions. The query Q1

described in the previous section 7.2.1 is used for the evaluation.

The evaluation results shown in Figure 7.5 demonstrate that AJoin is performing

remarkably better than Hash Ripple Join under random network conditions. AJoin

successfully produced the first joined tuple in 4.3 seconds compared with 19.4 seconds

using Hash Ripple Join. It improves the performance by 74.6%.

As the main benefits of AJoin are gained from the saving of data transmission cost during

the join, comparing Figure 7.5 with Figure 7.1, the level of performance improvement is

not as great as join under low speed network. On average, AJoin improves the

performance remarkably by 39.8% against Hash Ripple Join, although the improvement is

157

not as significant as 50.7% improvement under low speed network. The results show that

the advantages of AJoin are more significant in the poor network conditions, which is

consistent with our theoretical study on cost and benefits analysis of the AJoin algorithm.

- - Hash Ripple Join Joined Tuples

Join preformance under random speed network for calls to China

300 -- -
U
111~ 250
111
E
i= 200 -

150

100

50

Figure 7.5 Join performance under random network for calls to China

The following Figure 7.6 presents the join performance of AJoin and Hash Ripple Join

algorithms under random network conditions executing query Q2 given in the previous

section 7.2.1. The results in Figure 7.6 demonstrate that AJoin is performing better than

Hash Ripple Join. On average, AJoin improves the performance by 32.7% and more than

60% on the first 10 tuples.

158

The following Figure 7.7 presents the join performance of AJoin and Hash Ripple Join

Join preformance under random speed network for calls to France

300
U
Cl!~ 250
Cl! ...
E -'
i= 200

150 _

100

SO

o •.n:'..... nn................... 'o...... un...... n....nw n_nwn ... ri.....~~~~~~~~~~~~~~~~m~~~~rn~b
__ Ajoin .-i ~ 'I""'t .-t .-t N N N N m ,." I't1 M rn ...,. ~ -.::t oc:t v.

- - Hash Ripple Join Joined Tuples

algorithms under random network conditions executing query Q3 given in the previous

Figure 7.6 Join performance under random network for calls to France

section 7.2.1, which produces 1770 matched tuples. The results in Figure 7.7 demonstrate

that Aloin is performing much better than Hash Ripple Join. On average, Aloin improves

the performance by 46.5%. Similar to the pattern of performance improvement in join

under low speed network, the performance improvement of AJoin with query Q3 is

between query Ql and Q2.

Join preformance under random speed network for calls to USA

300: ~: :: f= _--... -- ------ -_-..,.._..,.....

- - Hash Ripple Join Joined Tuples

Figure 7.7 Join performance under random network for calls to USA

159

The following Figure 7.8 presents the join performance of AJoin and Hash Ripple Join

algorithms under random network conditions executing query Q4 given in the previous

section 7.2.1, which produces 100,000 matched tuples. In Figure 7.8 each number on the

X axis represents the number of thousands of joined tuples. The results in Figure 7.8

exhibit that AJoin is performing much better than Hash Ripple Join irrelevant of how

many tuples will be joined. On average, AJoin improves the performance by 54.3% with

Q4 which is the best outcome among all four queries.

100

Join preformance under random speed network for calls to all countries
450 - -- --.---

~ 400 .-------
~
(II 350· .---- - ---
E
i= 300

250
200 r------------~~~------------~~~
150

....~------,
,.I-------------------~--'-~-------

o l"rt"1111t1HTlttMl1'Il"'r·"tnllt1I1H1tr"nrlll1 r'l rr-rrr r rt r-rt r nT'1'T1"I "Itj-"r'ftTI1Tl'tT1nlil-rr'l"'O

~ ~ ~ ~ " ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ " ~ rl ~
" " N N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 00 00 m ~

--Ajoin

- - HashRipple Join 1000Joined Tuples

Figure 7.8 Join performance under random network for calls to all countries

7.2.3 Aloin Performance Under High Speed Network

The evaluation results shown in this section present the join performance of AJoin and

Hash Ripple Join algorithms under high speed network conditions. The four queries Q1-

Q4 described in the previous section 7.2.1 is used for the evaluation.

160

The evaluation results shown in Figure 7.9 show that AJoin is performing better than

Hash Ripple Join under high network conditions. In particular, the first 10% of joined

tuples are matched noticeably earlier than Hash Ripple Join. AJoin successfully produced

the first joined tuple in 4.3 seconds compared with 19.4 seconds using Hash Ripple Join.

Similar to join under other network models, it improves the performance significantly by

74.6%.

- - Hash Ripple Join Joined Tuples

Join preformance under high speed network for calls to China

250
U
Cl.!~ 200ClJ
E
i=

]50

Figure 7.9 Join performance under high speed network for calls to China

Under high speed network, local data process cost will be noticeable and AJoin will

automatically adapat to full join mode to avoid extra local data process cost. AJoin

utilising the remote agents manages to produce the matched tuples at a much quicker rate

than Hash Ripple Join at the beginning of the join stage. On average, AJoin improves the

performance by 34.6% against Hash Ripple Join, although it is almost the same as Hash

Ripple Join at the end of the join, since AJoin needs to wait for relation R] to arrive,

which requires almost the same amount of time as Hash Ripple Join.

16]

The next Figure 7.10 presents the join performance of AJoin and Hash Ripple Join

algorithms under high speed network conditions executing query Q2 given in the previous

section 7.2.l. The results in Figure 7.10 show that AJoin is performing better than Hash

Ripple Join overall. On average, AJoin improves the performance by 28.7% and it has

noticeable advantages at the beginning of the join stage. For the same reason as with

query Q1, AJoin finishes almost at same time as Hash Ripple Join at the end of the join.

- - Hash Ripple Join Joined Tupels

Join preformance under high speed network for call to France

250
U
(!)

~ 200(!)

E
i=

150

100

50

Figure 7.10 Join performance under high speed network for calls to France

The following Figure 7.11 presents the join performance of AJoin and Hash Ripple Join

algorithms under high speed network conditions executing query Q3 given in the previous

section 7.2.1, which produces 1770 matched tuples. The results in Figure 7.11

demonstrate that AJoin is performing better than Hash Ripple Join similar to join with

query Q1 and Q2. On average, AJoin improves the performance by 41.9%. It confirms

162

that the slowdown of AJoin is caused by waiting of relation Rlto arrive in order to

complete the join process rather than the overhead of the AJoin algorithm.

- - Hash Ripple Join Joined Tuples

Join preformance under High speed network for calls to USA

250 I

v-
c»~ 200c»
E
j::

150 -
100

..
------ ,-~'----~~,.

50

Figure 7.11 Join performances under high speed network for calls to USA

The following Figure 7.12 presents the join performance of AJoin and Hash Ripple Join

algorithms under high speed network conditions executing query Q4 given in the previous

section 7.2.1, which produces 100,000 matched tuples. In Figure 7.12 each number on the

X axis represents the number of thousands of joined tuples. The results in Figure 7.12

exhibit that AJoin is performing the same as Hash Ripple Join. Since AJoin automatically

switches to full join mode to gain the best performance and Ajoin is not able to filter extra

tuples at remote site, AJoin is working almost the same as Hash Ripple Join in the case of

query Q4.

163

- - Hash Ripple Join 1000 Joined Tuples

Join preformance under high speed network for calls to all countries

U
250 T

QJ~ 200QJ

E
i=

150

100

50

o lTTTTT1T'1'TTr-nn~TITTlTrTTlTnT:'T"rTTT1'TTTn~TTTTrrTrTn'"TT'"'r'1TT7rtTnTTII Ii, j 'i i, i 'i j !iTT~~m~~~~~M~~~~M~~~mM~~~m~~~NNNNm~~~v~~~~~~~~oooo~~
--Ajoin

Figure 7.12 Join performance under high speed network for calls to all countries

7.2.4 Aloin Performance Under Gigabit Network

The evaluation results shown in the following Figure 7.13 - 7.16 presents the join

performance of AJoin and Hash Ripple Join algorithms under Gigabit network conditions.

The four queries Q1-Q4 described in the previous section 7.2.1 are used for the evaluation.

The evaluation results shown in Figure 7.13 show that AJoin is performing better than

Hash Ripple Join under Gigabit network conditions. In particular, the first 10% of joined

tuples are matched noticeably earlier than Hash Ripple Join. AJoin successfully produced

the first joined tuple in 4.2 seconds compared with 19.3 seconds using Hash Ripple Join.

Similar to join under other network models, it improves the performance significantly by

78.1%.

164

Join preformance under gigabit network for calls to China

250 -
u
OJ~ 200OJ
E
i=

150

100

50

- - Hash Ripple Join Joined Tuples

Figure 7.13 Join performance under gigabit speed network for calls to China

Comparing with Figure 7.13 with 7.9, the two figures are almost identical. This is because

the transmission cost no longer has any noticeable impact on overall join performance

when the data transmission speed is equivalent to local data access cost. The higher join

performance of AJoin at the beginning of the join stage is mainly due to the tact that some

tuples are processed at remote site by mobile agents. The same reason as AJoin under

high speed network conditions, AJoin completes the join within almost the same time as

Hash Ripple Join at the end of the join due to waiting for relation RI to arrive.

As the following Figure 7.14 -7.16 are very similar to 7.10-7.12, we are not going to

repeat the discussion.

165

Join preformance under gigabit speed network for calls to France

250 r
u
(U

..!!:. 200(U

E
i=

150

Figure 7.14 Join performance under gigabit speed network for calls to France

- - Hash Ripple Join Joined Tuples

Join preformance under gigabit speed network for calls to USA

250
U
(U

..!!:. 200(U

E
i=

150

- - Hash Ripple Join Joined Tuples

Figure 7.15 Join performance under gigabit speed network for calls to USA

166

- - Hash Ripple Join lOOOJoined Tuples

Join preformance under gigabit speed network for calls to all countries

250 -.---~-----~~----------- ---_

50

o ITrrl'n, -rr rrt t't -rt'rt-rt-rrr-rrr-rrt-tn ("r1'1'1T1111 rrrrrrrrrrt n!1't'1Tlrnl-rr'lrlr m'!nr rrr rrt-rrr-trr-r-r-rrr

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ " ~ ~ ~ ~ ~
~ ~ N N ~ m ~ ~ ~ ~ ~ ~ ~ ~ 00 00 m ~

-Ajoin

Figure 7.16 Join performance under gigabit speed network for calls to all countries

7.2.5 Aloin Performance without Remote Filtering

To further evaluate the performance of adaptive function of AJoin, the remote agents of

AJoin to filter unqualified tuples are disabled in the following experiments. The

evaluation results shown in the following Figure 7.17 - 7.20 present the join performance

of AJoin and Hash Ripple Join algorithms under four types of network conditions where

the remote agents of AJoin are not in use. The query Q1 described in the previous section

7.2.1 is used for the evaluation.

The evaluation results shown in Figure 7.17 demonstrate that AJoin is performing better

than Hash Ripple Join under low speed network conditions without using the remote

agents to filter unqualified tuples. The join performance has improved constantly. On

average, AJoin improves the performance by 21.1%. The performance improvements are

mainly gained from reducing the network transmission cost by sending only join

attributes for tuple matching. Comparing the AJoin with remote agents to filter

167

unqualified tuples, the mam difference is that the Aloin does not have significant

advantages at the beginning of the join process.

Join preformance under low speed network for calls to China

400
Uw 350 r~ .,
w 300 ...
E ..;::

"250 ,.-'200 .,

150
100
50
o +.m""""'''''''''mmn~~1!l"Ilir''1I''tI'rrn1!llnb)'f iIMIIII!.''iii"jfJiHlnr",tTf'1'l'l'fl1lml'''TlJ'l!1mlT"Tl1I'I1'1'Im1IIrrJ'JTl'1m1l

~ ~ ':i ~ re ~ &l 8 ::: ::::J ;::: ; ~ tB ~ gg ~ ~ ;::: ::;l ~
M.....t~M ,-1MM~ NNNN

Figure 7.17 Join performance under low speed network without remote filtering

.... N....
-Ajoin

- - Hash Ripple Join Joined Tuples

Figure 7.18 Join performances under random speed network without remote filtering

Join preformance under random speed network for calls to China

300 ---
uw~ 250
w
E
;:: 200

150

100

--------- ---- -----

- - Hash Ripple Join Joined Tuples

168

The evaluation results shown in Figure 7.18 demonstrate that Aloin is performing slightly

better than Hash Ripple loin under random speed network conditions without using the

remote agents to filter unqualified tuples. On average, Aloin improves the performance

by 5.9%. The performance improvements are mainly gained from reducing the network

transmission cost. Since the speed of random network is higher than the speed in low

network conditions overall, the benefits gained from the saving of network transmission

cost are reduced. This confirms our cost and benefit analysis in chapter 6.

Join preformance under high speed network for calls to China

250
U
Cl!~ 200Cl!
E
i=

150

- - Hash Ripple Join Joined Tuples

Figure 7.19 Join performance under high speed network without remote filtering

169

Join preformance under gigabit network for calls to China

250 -~--~--- --- --- ..--- ..- _
U
<Ii

~ 200·
E
l=

150 +------

- ------
o rrtrr'1lilllliEiiliRli iUhIfUJOIii"hijhijii'ili,iiEi, I!IlihiiiijiAlllihTl11llJlQ'lmmml'l Ini" "'1;' iiiUh))Jn''''A.i.BiA!liiUiUI'i 4iij.,

.-I~~~~~G)~gJ8:::~~:i~~~~~s~~~
--Ajoin M 'f""4 ~ M """ 'f""4 ,... M N M N N

- - Hash Ripple Join Joined Tuples

Figure 7.20 Join performance under gigabit network without remote filtering

Both evaluation results shown in Figure 7.19 and 7.20 confirm that the Aloin does not

cause overhead when the network speed is higher and it adapts itself to a best join

approach to optimise the performance. Figure 7.19 and 7.20 show that both relations will

arrive almost at the same time for both joins. In the previous experiments, when the

remote filtering function was used, it improved the transmission of tuples in relation R2 as

unqualified tuples were removed at the remote site. However, The Aloin algorithm still

needs to wait the tuples in relation RI to arrive to match tuples. As a result, the join

completion time for both Aloin and Hash Ripple join are almost the same. It confirms that

in Figure 7.9 and 7.13, the slowdown of Aloin is simply caused by waiting for relation RI

to arrive in order to complete the join process rather than the overhead of the Aloin

algorithm. The situation will not deteriorate even if more tuples need to be joined.

7.2.6 Aloin Performance with Bursty Effects

In wide-area distributed network environments such as the Internet where data access

170

becomes less predictable due to link congestion, load imbalance, and temporary outages.

In order to evaluate the join performance under such conditions, bursty effects are used to

model the network congestion or outages.

The evaluation results shown in the following Figure 7.21 - 7.24 present the join

performance of AJoin and Hash Ripple Join algorithms under four types of network

conditions with bursty effects. The query Ql described in the previous section 7.2.1 is

used for the evaluation.

The evaluation results shown in the following Figure 7.21 demonstrate that AJoin is

performing significantly better than Hash Ripple Join under slow speed network with

bursty effects. Compared with Hash Ripple Join, AJoin improves the performance by

57.0% on average. The performance improvements are mainly gained from reducing the

network transmission cost. The overall time used for join is longer than slow speed

network due to the delay caused by burst, but both Figure 7.21 and 7.1 show a similar

performance improvement pattern.

450
U 400Q)~
Q) 350
E
i= 300

250

200

150 ,..
100 .I"

Join preformance under low speed network for calls to China

..,.~--------r-----------------------,- ___,..
'._-- --J!-- _,-,.-

... J- -

- - Hash Ripple Join Joined Tuples

Figure 7.21 Join performance under low speed network with bursty effects

171

The evaluation results shown in the following Figure 7.22 demonstrate that AJoin is

performing noticeably better than Hash Ripple Join under random speed network with

bursty effects. Compared with Hash Ripple Join, AJoin improves the performance by

49.2% on average with similar a pattern of join under random speed network. The

performance improvement is up from 32.7 comparing with join under random speed

network without bursty effects since more savings are generated when the network is

slowed down due to burst.

- - Hash Ripple Join Joined Tuples

Join preformance under random speed network for calls to China

350
v-
QJ 300~
QJ

E 250 -
i=

lOO
150 - r.,
100 ,
50

......----_._--,.....- -

Figure 7.22 Join performances under random speed network with bursty effects

The evaluation results presented in Figure 7.23 show that AJoin is performing better than

Hash Ripple Join under high network conditions with bursty effects. On average, AJoin

improves the performance by 43.4% and it has noticeable advantages in the beginning of

the join stage.

172

Join preformance under high speed network for calls to China

------ --~---- ---

- - Hash Ripple Join Joined Tuples

Figure 7.23 Join performances under high speed network with bursty effects

The evaluation results presented in Figure 7.24 show that AJoin is performing better than

Hash Ripple Join under Gigabit network conditions with bursty effects. On average,

AJoin improves the performance remarkably by 45.7%. In particular, the first 10% of

joined tuples are matched noticeably earlier than Hash Ripple Join. AJoin successfully

produced the first joined tuple in 4.3 seconds compared with 22.1 seconds using Hash

Ripple Join. Similar to join under other network models, it improves the performance

significantly by 80.1%.

Join preformance under gigabit speed network for calls to China

300 .
U
<II~ 250
<II
E
j:: 200

150

100

50

.------------------------~r_---__..._ - -------",._""--'."

Figure 7.24 Join performances under gigabit speed network with bursty effects

- - Hash Ripple Join Joined Tuples

173

7.3. Performance of A,oin with LowMemory

Despite the development of computer technologies, which has made more memories

available to use, more sophisticated software systems, multiple parallel processes and

multiple user support consume more and more memories. It is very hard to guarantee

there will be sufficient memory available to run a join without overflow occurring in Hash

Ripple loin process even if server has a very large memory size.

To ensure the join process could still run effectively when the available memory space

becomes lower, Xloin was proposed to address the issue. According to our previous study,

Xloin is one of the best join algorithms able to run in various memory conditions.

The evaluation results presented in the following sections are the outcomes of the

evaluation of effectiveness and performance of Aloin algorithm in lower memory

conditions. Similar to the evaluation reported in section 7.2, Aloin will be evaluated

against Xloin under four simulated network environments with four different sizes of

memory. The query Ql described in section 7.2 will be used for evaluation.

7.3.1 Aloin Performance Under Low Speed Network Model

The results shown in the following Figure 7.25 demonstrate that Aloin is performing

significantly better than Xloin under low speed network executing query Ql with 5% of

required memory for hash join without overflow occurring. This is mainly because the

hash table used by Aloin only contains join attributes which is much smaller than all

174

attributes required by Xloin. With the same memory space Aloin can process as much as

10 to 40 times more tuples. Although Aloin requires secondary storage to store complete

attributes for a tuple, it does not cause significant overhead as most of the attributes in a

tuple will only be required when the tuple is matched and required to output the join

results.

Aloin also gains benefits from data transmission over low speed network as well as

remote data processing as we discussed in 7.2. Compared with Xloin, Aloin improves the

performance on average by 71.5% with 5% of memory space available.

- - Xjoin Joined Tuples

Join preformance under low speed network with 5% of memory

Figure 7.25 Join performance under low speed network with 5% of memory

The evaluation results shown in the following Figure 7.26 - 7.28 demonstrate that Aloin

is performing significantly better than Xloin under low speed network with 10%, 20%,

and 50% of memory space available. Compared with Figure 7.25, Aloin on one hand

almost performs the same as previously as Aloin already has enough memory to run the

join process smoothly, while Xloin on the another hand has improved its performance

175

significantly due to the larger memory space. However, compared with Xloin, Aloin still

improves the performance on average by 53.4%, 54.3%, and 53.0% with 10%, 20% and

50% of memory space available respectively. The main reasons of the advantages of

Aloin are the same as we discussed in the previous section.

Join preformance under low speed network with 10% of memory

------.,.,-

""'-------

- - Xjoin Joined Tuples

Figure 7.26 Join performance under low speed network with 10% of memory

Join preformance under low speed network with 20%of memory

400
U
<Ii 350~
<Ii 300E
j:: 250

200
150
100
50

4---------------------------------~_~
+-------------------------~-~---------_""---------- ,. -"~---- -- ---_._,

.I--., -- -,"~

- - Xjoin Joined Tuples

Figure 7.27Join performance under low speed network with 20% of memory

176

Join preformance under low speed network with 50% of memory

400 r------------------------------- ___
u
Q) 350~
Q) 300E
j:: 250 .

200
150
100
50

~-----------------------------------~,.,,-----_--::-=-- - -,
r

,..1,.
"."

- - Xjoin Joined Tuples

Figure 7.28 Join performance under low speed network with 50% of memory

7.3.2 Ajoin Performance Under Random Network Model

The evaluation results shown in the following Figure 7.29 demonstrate that AJoin is

performing significantly better than XJoin under random speed network executing query

Ql with 5% of required memory for hash join without overflow occurring. Similar to

AJoin under low speed network conditions, AJoin is performing almost the same and far

better than XJoin for the same reason discussed in the previous section. Compared with

XJoin, AJoin improves the performance on average by 6l.8%. It is slightly down

compared with AJoin under low speed network because AJoin receives fewer benefits

from data transmission since overall network speed is higher under the random model

than the low speed model.

177

Join preformance under random speed network with 5% of memory
800 r--------------------

u
Q) 700 1~

~ 600 1- ,.
~ 500 ------------------------------~,.4----

"400 ~-----------------------------~--------

- - Xjoin Joined Tuples

Figure 7.29 Join performance under random speed network with 5% of memory

The evaluation results shown in the following Figure 7.30 demonstrate that Aloin is

performing noticeably better than Xloin under low speed network with 10% of memory

space available. Compared with Figure 7.29, Aloin almost performs the same as

previously since Aloin already has enough memory to run the join process smoothly.

Xloin has improved its performance significantly due to the larger memory space.

However, Xloin slows down noticeably in its third join stage as some tuples have to join

tuples from secondary storage. Compared with Xloin, Aloin improves the performance

on average by 42.3% with 10% of memory space available.

178

- - Xjoin Joined Tuples

Join preformance under random speed network with 10% of memory

400
u
Q) 350
..!!?
~ 300
i= 250

200

-""150 +-------------~--
100
50

-- -.-- - -~--- ,
~-- --- --r-

""

Figure 7.30 Join performance under random speed network with 10% of memory

The evaluation results shown in the following Figure 7.31 - 7.32 demonstrate that AJoin

is performing noticeably better than XJoin under low speed network with 20%, and 50%

of memory space available. Compared with Figure 7.30, XJoin has further improvements

in its performance due to the larger memory space and its performance is very close to

Hash Ripple Join. Comparing with XJoin, AJoin improves the performance on average by

50.4%, and 43.4% with 20% and 50% memory space available respectively. The main

reasons of the advantages of AJoin are the same as we discussed in the previous session.

179

Join preformance under random speed network with 20% of memory
350 _

Figure 7.31 Join performance under random speed network with 20% of memory

Figure 7.32 Join performance under random speed network with 50% of memory

_ --_ ". - -:._::- - --,.-

The evaluation results shown in the following Figure 7.31 - 7.32 demonstrate that Aloin

- - Xjoin Joined Tuples

is performing noticeably better than Xloin under low speed network with 20%, and 50%

Join preformance under random network with 50% of memory

300
U
OJ~ 250
OJ

E
i= 200

150

1.00

50 -
0

of memory space available. Compared with Figure 7.30, Xloin has further improvements

----.#"'"_--

in its performance due to the larger memory space and its performance is very close to

... N,
... N

--Ajoin

- - Xjoin Joined Tuples

Hash Ripple loin. Compared with Xloin, Aloin improves the performance on average by

180

50.4%, and 43.4% with 20% and 50% of memory space available respectively. The main

reasons for the advantages of Aloin are the same as we discussed in the previous section.

7.3.3 Aloin Performance Under High Speed Network Model

The evaluation results shown in the following Figure 7.33 demonstrate that Aloin is

performing noticeably better than Xloin under high speed network executing query Q1

with 5% of required memory for hash join without overflow occurring. Similar to Aloin

under low speed network conditions, Aloin is performing almost in an identical pattern.

Xloin runs much quicker in its first and second join stage due to the higher network speed,

it is slowed down apparently in its third join stage due to insufficient memory space.

Compared with Xloin, Aloin improves the performance on average by 49.3%. It is

slightly down compared with Aloin on other network models because Aloin receives

fewer benefits from data transmission due to higher network speed.

Join preformance under high speed network with 5%of memory

BOO
~ 700 ..f---_---- ~
~ r
Cl 600· - - -- _LE rt= 500 +- .--;;--'__

"400 .

::~ ~~~,..-100 . _ - ;;;;;;;a

Ok' n.:'",m;.""""""'""""""""""""",,,,,,,,,,romrmll1<!m'rm,,,,,,,,',,,,,,",,,,,,,,,'I<fpn'1.,,,m,,,,,,,,,,m,,,,~ ~ ~ ~ ~ ~ ~ ~ m 8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
--Ajoin~ ...-4 f""1 ..-.I T"'4 1""1 '1""'4 f'"'f '1""'4 N N N N

- - Xjoin Joined Tuples

Figure 7.33 Join performance under high speed network with 5% of memory

181

The evaluation results shown in the following Figure 7.34 demonstrate that Aloin is

performing noticeably better than Xloin under low speed network with 10% of memory

space available. Aloin takes advantages of remote process to filter unqualified tuples

before the join process, which has made significant improvements in the beginning of the

join process to produce joined tuples much earlier. Compared with Figure 7.33, Aloin

almost performs the same, while Xloin has improved its performance significantly due to

the larger memory space. However, Xloin slows down noticeably in its third join stage

where remaining tuples have to join from secondary storage. Compared with Xloin,

Aloin improves the performance on average by 31.9% with 10% of memory space

available.

- - Xjoin Joined Tuples

Join preformance under high speed network with 10% of memory

250 ,----------------------- __
u
Q}! 200 i--------------------- ~~
E
;::

50

150----- -- ---

Figure 7.34 Join performance under high speed network with 10% of memory

The evaluation results shown in the following Figure 7.35 - 7.36 demonstrate that Aloin

is performing noticeably better than Xloin under low speed network with 20%, and 50%

memory space available. Compared with Figure 7.34, Xloin has further improved its

182

performance due to the larger memory space and its performance is very close to Hash

Ripple Join. Compared with XJoin, AJoin improves the performance on average by 33.6%

and 31.3% with 20% and 50% of memory space available respectively. The main reasons

for the advantages of AJoin are the same as we discussed in the previous section.

Join preformance under high speed network with 20% of memory

250
U
C1J~ 200
C1J
E
i=

150

100

50

------ --- ----

Figure 7.35 Join performance under high speed network with 20% of memory

- - Xjoin Joined Tuples

Figure 7.36 Join performance under high speed network with 50% of memory

- - -----------
Join preformance under high speed network with 50% of memory

250
U
QJ

~ 200
C1J

E
i=

150

o)f"","",,~'fttlijjlHiij."*""i'jnMi,~;r~j'l'tl~IIITf'ITll'f'l''''''''lTVT1'I'T'tIIIl!~'t'

.... '" ""... '"-Ajoin

- - Xjoin Joined Tuples

183

7.3.4 Aloin Performance Under Gigabit Speed Network Model

The evaluation results shown in the following Figure 7.37 demonstrate that Aloin is

performing noticeably better than Xloin under gigabit speed network executing query Q1

with 5% of required memory for hash join without overflow occurring. The pattern of

join process for both Aloin and Xloin are very similar to the join under high speed

network conditions presented in Figure 7.33. Compared with Xloin, Aloin improves the

performance on average by 55.6%.

200 - - -- -

Join preformance under gigabit speed network with 5% of memory

700 ----_ ------------- --------

,,'"_,
300 ~--------------------- __ ,-----------

400

--------,
u! 600
(I)

E 500 1--.-
i=

- - L_
t

-..,. __ tI!!'..__

100 +---~_~~_/---~-'-=~~----~-----------,,- -l.. ...

- - Xjoin Joined Tuples

Figure 7.37 Join performance under gigabit speed network with 5% of memory
"

The evaluation results shown in the following Figure 7.38 demonstrate that Aloin is

performing better than Xloin under gigabit speed network executing query Q1 with 10%

of required memory for hash join without overflow occurring. The pattern of join process

for both Aloin and Xloin are very similar to the join under high speed network conditions

184

presented in Figure 7.34. Compared with XJoin, AJoin Improves the performance on

average by 29.1%.

Join preformance under gigabit speed network with 10% of memory

250
U
Q)

~ 200Q)

E
i=

- - Xjoin Joined Tuples

Figure 7.38 Join performance under gigabit speed network with 10% of memory

The evaluation results shown in the following Figure 7.39 - 7.40 demonstrate that AJoin

is performing better than XJoin under low speed network with 20%, and 50% of memory

space available. Compared with Figure 7.38, XJoin has further improved its performance

due to the larger memory space and its performance is very close to Hash Ripple Join.

AJoin is performing almost the same with 20% and 50% of memory and no extra saving

gained from data transmission in bot9 memory conditions. Compared with XJoin, AJoin

improves the performance on average by 3l.2% and 33.2% with 20% and 50% of

memory space available respectively. The advantages are largely gained from remote

process.

185

250
U
Q)

~ 200Q)

E
i=

150

100

SO

0

Join preformance under gigabit speed network with 20% of memory

- -"

.... N rn
.....N

--Ajoln

- - Xjoin Joined Tuples

Figure 7.39 Join performance under gigabit speed network with 20% of memory

o ~'it' "n'iriil'!l!ihtlt1i'!'t1"IIIJ!II'f~tmmn',"",I':1!1'1l1'11T'!mT'~l'\'lTf'T'II?!mlr"m"I'1Tm~rlf!!!1tll1

.... ~::::;;!;~~to:e&l8~~~;~:8r::~~S;:;:::;::~
-- Ajoin P'I ..-I ..-I '"'" f"1 1'""4 e+ M N N N N

250
U
Q)~ 200Q)

E
i=

150

- - Xjoin

Join preformance under gigabit speed network with 50% of memory

50

Joined Tuples

Figure 7.40 Join performance upder gigabit speed network with 50% of memory

7.3.5 Aloin Performance with Bursty Effects

Xjoin has an especially designed second join stage to tackle wide-area distributed network

issues related to congestion or temporarily outages. XJoin could utilise the period when

186

the network IS very slow or temporary unavailable. In order to evaluate the join

performance under such conditions, bursty effects are used to model the network

congestion or outages. This experiment also attempts to study the impact on the memory

availability.

The evaluation results shown in the following Figure 7.41 - 7.44 present the join

performance of Aloin and Xjoin algorithms under low and bursty network conditions.

The queriesQ 1 described in the previous section 7.2.1 is used for the evaluation.

The evaluation results shown in the following Figure 7.41 demonstrate that Aloin is

performing significantly better than Xloin under slow bursty network with 5% of

memories available. Xloin tried to utilise the congestion period to produce extra tuples,

but lower memory makes it worse. Compared with Xloin, Aloin improves the

performance by 73.8% on average.

Join preformance under low bursty network with 5% of memory

1200 -r-------
U
QJ

.!!!.. 1000 ~--- .-------
QJ

E
~ 800

,.------------".-~
r

600 i---------- ~.~J~--------
r

400 _---.......,~-----.-------r-200 ----- __ -- -- .--- __ -_ ... -

- - Xjoin Joined Tuples

Figure 7.41 Join performance under low bursty network with 5% of memory

187

This is mainly because the Aloin needs a much smaller memory than Xloin. Aloin also

gains benefits from data transmission over low speed network as well as remote data

processing as we discussed in 7.2. The modern slow network is not the same as the

traditional 'slow' network when Xloin was designed. The network speed dropping to

lkb/s may not be sufficient to provide enough time for Xloin to benefit during its second

join operation.

The evaluation results shown in the following Figure 7.42 - 7.44 demonstrate that Aloin

is performing significantly better than Xloin under slow bursty network with 10%, 20%,

and 50% of memory space available. Compared with Figure 7.41, Xloin has noticeable

improvement of its performance due to the larger memory space. Performance of Xloin

with 10% of memory shown on Figure 7.72 indicates that it has a significant improvement

in its first and second join stages, but it is suffering on the third stage because of lower

memories. Compared with Xloin, Aloin improves the performance by 41.2% on average.

Join preformance under low bursty network with 10% of memory

(:E~---- -----,.-;:;;..:::_':-,,_
t= 350 I ~

300 I--~~
2S0~ "--

J ,.-
200 I -- -- =:':»: -"-
150 1- -:-; ...-~-- -- - --~--- -----
100 ,-- ,,- -- -- -- - - --
SOIl' -- _

- - Xjoin Joined Tuples

Figure 7.42 Join performance under low bursty network with 10% of memory

188

When the memory is increased to 20% and 50%, Xjoin is performing smoothly. However,

compared with Aloin, the performance of Xloin is behind on average by 49.8% and 55.0%

with 20% and 50% of memory space available respectively. The main reasons for the

advantages of Aloin are the same as we discussed in the previous section.

Join preformance under low bursty network with 20% of memory

400
U 350Q)

..!!!.
Q) 300E
i= 250

200 --
150
100
50

----- - - -----

Figure 7.44 Join performance under low bursty network with 50% of memory

.....,+------------------------------~-----
;

---_. """'" -'_ ----
-'",.. -i-------------

_"
'"

- - Xjoin Joined Tuples

Figure 7.43 Join performance under low bursty network with 20% of memory

Join preformance under low bursty network with 50% of memoriy

- - Xjoin Joined Tuples

189

7.4. Summary

The evaluation results discussed in the previous sections can be summarised into the table

7.1 and 7.2. The results demonstrate that AJoin has significant scalability and adaptivity.

It performs consistently outperformed in all of network conditions and memory spaces. It

automatically adapts itself to the changing environment to achieve the best possible

performance.

The overall results in Table 7.1 show that AJoin has outperformed the Hash Ripple Join

algorithm. In the slower network setup, AJoin performs particularly well and it improves

performance against Hash Ripple Join by an average of 44% - 49%. This is because AJoin

dynamically adapts to the network speed by selecting appropriate join methods and

utilising remote agents to filter unqualified tuples in the remote site in order to reduce data

transmission cost. In addition, AJoin produces efficient matching at an earlier stage of the

join. The average performance of AJoin in matching the first 50 tuples improves as much

as 67% over Hash Ripple Join. Join performance may various with different queries. On

average, the AJoin under four queries performs better than Hash Ripple Join by 23.6% -

48.4 %.

In the high speed network setup, although AJoin does not improve its performance further

against Hash Ripple Join under gigabit network conditions, nevertheless it does not

perform any worse. on average, AJoin also performs better than the Hash Ripple Join by

29.7 - 30.3%, as AJoin is facilitated by parallel processing at the local and remote sites.

190

AJoin Performance Improvements Against Hash Ripple Join

I~ Low Speed("') Random("') High Speed("') Gigabit("') Average("')s

Ql- calls to China 51.8 39.8 34.6 34.9 40.275

Q2 - calls to France 48.4 32.7 28.7 31.1 35.225

Q3 - calls to USA 49.2 46.6 41.9 39.7 44.35

Q4 - calls to all countries 39.9 54.3 0.22 0 23.605

Ql With Bursty Effects 56.4 48.2 43.4 45.7 48.425

Average 49.14 44.32 29.764 30.28 38.376

Table 7.1 AJoin performance improvements against Hash Ripple Join

The overall results in Table 7.2 show that Aloin performance improvement against Xloin

under various network environments and memory available spaces. On average, the Aloin

under four network models performs remarkably better than Xloin. Aloin improves

performance by 36.5% - 57.8%. Aloin improves performance more under lower and

unpredictable network conditions. This is because the main benefits of Aloin are gained

from the saving of data transmission cost during the join. The slower network generates

the more benefits. Aloin performance may various with memory available spaces. On

average, the Aloin under four memory available spaces outperforms Xloin by 40.4% -

62.2 %. This is because Aloin requires much less memory to .operate the join process that

Xloin.

AJoin Performance Improvements Against)(Join

~
Low Speed

ry Low Speed("') Random(") High Speed(" Gigabit("') with busrt(") Average(")

5" of Memory 70.5 61.83 49.3 55.6 73.8 62.206

10% of Memory 53.4 42.3 31.9 33.2 41.2 40.4

20% of Memory 54.3 50.4 33.6 31.9 49.8 44

50% of Memory 53 43.4 31.3 33.2 55 43.18

Average 57.8 49.4825 36.525 38.475 54.95 47.4465

Table 7.2 AJoin performance improvements against XJoin

191

It should be noted that the benefits of AJoin are linked to the network speed. The faster

the network speed, the less tangible benefits AJoin could generate. However, the speed is

measured related to local process speed rather than an absolute bandwidth value. With

the availability of more powerful CPUs and faster access to secondary storage devices,

AJoin will be able to obtain benefits from higher network speed due to higher local

process speed.

The real network speeds are far slower than their theoretical bandwidth values due to

network latency, protocol overhead, driver efficiency, and a range of other technical

issues. In general, real transfer speeds are expected to be 40 to 80% of the maximum

speed. The real file transmission speed using VPN with the Internet connections is much

lower. According to (vpnsp.com, 2011) VPN Speed Test Results, the top 10 service

providers can only deliver 26 - 68 % of their baseline speed with maximum speed 27.87

Mb/s. Therefore, AJoin could gain more benefits in real network environments.

192

Chapter 8. CONCLUSIONS AND FURTHER RESEARCH

8.1. Summary

In this thesis, we have discussed the background of data warehouses and investigated the

evolution of data warehouses to identify architecture suitable for highly distributed data

warehouses. The feasibility and effectiveness of utilising software agent technology for

distributed information systems have been studied. Based on the research and

investigation, we have proposed an agent-based data warehouse architecture which use

software agent to integrate a dynamic integration approach with traditional data

warehousing technologies seamlessly to address the issues arising from distributed and

dynamic data warehouse environments. In the agent-based data warehouse, data

warehousing functions are organised in a multi-agent platform where software agents are

working intelligently and autonomously to adapt to a dynamic environment and

cooperating each other to provide better performance. Join operation has been identified

as an important component in making the architecture successful. In order to obtain better

join performance under distributed and dynamic data warehouse environments, and to

provide users promptly with query results, we proposed an agent-based adaptive join

algorithm called AJoin for effective and efficient online join operations in distributed data

warehouses. Taking into consideration data warehouse features, Aloin utilises intelligent

agents for dynamic optimisation and coordination of join processing at run time. Key

aspects of the AJoin algorithm have been implemented and evaluated against other

modem adaptive join algorithms. It has been shown that AJoin exhibits significantly

better performance under various distributed and dynamic data warehouse environments

in our study.

193

The main work undertaken in this PhD research is summarised below:

• Literature review on both data warehousing and software agents

To investigate the evolution of data warehouses architecture In order to identify

architecture suitable for highly distributed data warehouses and the feasibility and

effectiveness of utilising software agent technology to address some specific issues in

data warehouses.

• Proposed framework for agent-based data warehouse architecture

Agent-based data warehouse architecture was proposed to tackle the real-time

integration problem in distributed and dynamic data warehouse environments. It is

believed that the problem arising from distributed and dynamic data warehouse

environments can be better tackled in the agent-based data warehouse architecture.

Join operation as a key operation for the architecture has been identified.

• Pilot study of join algorithms for data warehouse

Modem adaptive join approaches as one of the most important essential techniques in

distributed and dynamic data warehouse environments are focused on and

investigated. A pilot study has been carried out to seek the most effective and efficient

online join algorithms. Four modem adaptive join algorithms are implemented and

experimented in four types of simulated network environments with various join

conditions.

194

• Establishment and construction of data warehouse environment

A typical data warehouse environment based on a real industrial case has been

simulated for the study and evaluation of data warehouse processing and various join

approaches effectively.

• Proposed Aloin, an adaptive join algorithm using intelligent agents

The findings from the pilot study have indicated that modem join algorithms have

very good adaptability to tackle the issues arisen from unpredictable network

environment, but unfortunately they are designed for generic data join purpose and

have been optimised for data warehousing. Therefore, an adaptive pipelined join

algorithm called Aloin was proposed to provide effective and efficient online join

algorithm for distributed data warehouses in dynamic environments. The main

algorithm of Aloin was implemented and evaluated against other modem join

algorithms. Aloin has exhibited better performance under distributed and dynamic

data warehouse environments. The outcome of this research has been very

encouraging and the findings were presented at Computation World, November 2009,

Athens, Greece and published at the IEEE Digital Library (Qicheng Yu et al., 2009).

The work undertaken for this PhD research has provided a solid basis for the development

of an agent-based approach for data warehousing which addresses issues arising from

current distributed and dynamic data environments. A general framework for agent-based

data warehouse architecture has been presented. Adaptive join algorithms as a key

technique in this new environment have been investigated and their performance

evaluated. In particular, a new agent-based join algorithm, Aloin, has been proposed to

195

improve query processing performance in the dynamic and distributed data warehouse

context. The main algorithm of AJoin was implemented and evaluated against other

modem join algorithms. AJoin has exhibited better performance under distributed and

dynamic data warehouse environments. The outcome of this research has been very

encouraging.

8.2. Achieved Benefits of the Research

8.2.1 Primary Benefits

Development of a novel agent-based adaptive join algorithm for the distributed data

warehouse environment that will facilitate:

• The processing of geographically distributed data.

• The analysis of dynamic data warehouse data as opposed to snapshot or static data.

• The monitoring of its own processing to adapt accordingly to its environment at

runtime.

8.2.2 Secondary benefits

• Build upon and extend software agent methodology to data warehouse design.

• Construct an agent -based framework for data warehouse and develop autonomous,

adaptive and mobile agents for such systems.

• Gain a better understanding of the feasibility and effectiveness of using agent

technology for adaptive query processing.

196

• Comprehension of impact of heterogeneous data schemas on the efficiency of

query execution.

• Appreciation of strengths and limitations of adaptive join algorithms in distributed

and dynamic environment.

8.3. Limitations

The work completed so far has provided a solid ground for further research in the area.

An agent-based join algorithm called Aloin has been proposed, and an experimental study

has been conducted to assess its feasibility and main characteristics. The outcome from

the study has indicated that the basic model of the Aloin algorithm offers noticeable

performance improvement over other modern join algorithms in the simulation

environment modelled on a simplified distributed and dynamic data warehouse system.

In the experimental study, a controlled data warehousing experimental environment is

used, in which the network speed and memory availability 'as the main factors affecting

the comparison of join performance among the different types of join adaptive algorithm

are identified and used. However, other factors in the real distributed data warehouse

environments may also affect on join performance. For example, CPU power in

multithread server environment could make the join performance more dynamic and

difficult to compare amongst each other. It is worthwhile to evaluate the effectiveness of

Aloin in a range of real world distributed data warehouse environments if possible.

Although we proposed an agent-based data warehousing architecture, it requires

197

considerable additional work to make the proposed architecture available which is beyond

the scope of this research. As a result, the Aloin algorithm is to be implemented into a

data warehouse query processing, because most of the current data warehousing systems

are supported by commercial data base systems and have no API or facilities to allow a

new join algorithm to add into their systems.

8.4. FurtherResearch

The aim of this thesis has been to investigate the evolution of data warehouses

architecture to identify architecture suitable for highly distributed data warehouses and the

feasibility and effectiveness of utilising software agent technology to address some

specific issues in data warehouses. This has successfully been achieved and an agent-

based data warehouse architecture is proposed. During this work join operation as a key

technique has been identified. A new agent-based join algorithm, Aloin, has been

proposed to improve query processing performance in the dynamic and distributed data

warehouse context. The main algorithm of Aloin was implemented and evaluated against

other modem join algorithms. Aloin has exhibited better performance under distributed

and dynamic data warehouse environments. The outcome of this research was very

encouraging.

However, in order to create further research or commercial impact, Aloin need to be

implemented in a real world data warehouse system. Ideally, a data warehouse system

using the agent-based data warehousing architecture could be fully implemented; in which

Aloin will be one of the join algorithms in its query processing unit.

198

A future extension for this work are identified in the five areas below; these are concerned

with the provision of efficient and adaptive query processing, in particular agent-based

join algorithms, for a dynamic and distributed data warehouse environment:

8.4.1 Heterogeneity in data schema

Data warehouses employ different data schemas compared to traditional database schemas

used in OLTP system. A star schema is a popular choice for modelling data warehouses

and data marts, and it is important that efficient mechanisms are available for the

execution of queries modelled on the star schema (Weininger, 2002). Although the

preliminary experimental outcome of AJoin algorithm has demonstrated its potential

performance in a distributed and dynamic data warehouse environment, the experiment

was based on a simplified data warehouse schema. It is important to further investigate

the influence of heterogeneity of data schemas on the join algorithm.

8.4.2 Adaptive behaviour in query processing

Various query processing approaches could result in very different join performance.

Unpredictability of server performance and network traffic make optimising query

processing a challenging task (Khan, 2000). So far, the AJoin algorithm has exhibited

remarkable adaptivity in join processing, which is mainly achieved by automated join

method switching at runtime and its pipeline join feature. Queries in a data warehouse

usually require some combination of selecting dimension tables, joining the dimension

tables with fact tables, and some optional aggregation/summarisation functions. Therefore,

199

further exploration on adaptive behaviours in query processing is critical to the

performance improvement of the join algorithm.

8.4.3 Effect of network environment

In a conventional network environment, transmission delay is regarded as the dominant

factor in communication cost function. For that reason, many distributed query processing

algorithms are devised to minimise the volume of data transmitted over the network. The

basic model of the Aloin algorithm has been tested and shown to perform well in a lower-

end speed network environment. However, technological advancement in high-speed

networks such as fibre optical and ATM networks is increasingly making bandwidth-on-

demand possible. It is necessary to establish a broader network simulation environment to

enable a further investigation of the impact of various network environments on the join

algorithm.

8.4.4 Impact of dynamic and distributed data warehouse environment

Data skew could result in a significant effect on join performance. So far, only small

samples of data sets have been used for evaluating the join algorithm. In a dynamic and

distributed data warehouse environment, it is essential for a join algorithm to deal with the

problems resultant from data skew. Impact of dynamic and distributed data needs to be

further examined in order to make the Aloin algorithm work more effectively.

200

8.4.5 Use of agent techniques to enhance adaptiveness and intelligence of join

algorithms

Software agents as a promising approach is proposed in this work to enhance adaptiveness

and intelligence of join algorithms for distributed systems. So far, the outcome from the

preliminary evaluation of the basic model of AJoin together with its comparison with

other modem join algorithms has been very encouraging. However, extending the basic

framework and developing it into a comprehensive working algorithm remains the most

substantial task for the next stage.

In summary, outcomes from the study have indicated that the basic model of the AJoin

algorithm offers noticeable performance improvements over other modem join algorithms

in the simulation environment modelled on a simplified distributed and dynamic data

warehouse system. The further research will allow the algorithm to be extended to real

networks with heterogeneous data schemas over dynamic and distributed data and create a

considerable impact on distributed data warehousing systems.

8.5. Closing Remarks

This thesis has proposed an agent-based join algorithm called AJoin, which seamlessly

integrates semi-join and ripple join techniques within a multi-agent system in order to

improve join adaptability and reduce data transmission cost in a distributed data

warehousing environment. Taking into account data warehouse features, AJoin aims to

optimise join operations and achieve better join performance. The experimental

201

evaluation results demonstrate that AJoin consistently outperforms other adaptive join

algorithms. In particular, AJoin exhibits the following advantages:

• Adaptiveness - able to adapt the join method at runtime to optimise join

performance

• Mobility - able to utilise remote agents to filter unqualified tuples at the remote

site, hence reducing data transmission cost

• Parallelism - able to utilise dynamic pipelined distributed parallel join to tackle

unpredictable network conditions in distributed data warehouses

• Scalability - able to extend the join algorithm from 2-way join to n-way join

202

BIBLIOGRAPHY

Agre, P. & Chapman, D. (1987) An implementation of a theory of activity. In:
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87).
pp.268-272.

Ahmad, A, Ahmad, M.S. & Yusoff, M.Z .. (2008) An exploratory review of software
agents. In: International Symposium on Information Technology, 2008. ITSim
2008. IEEE, pp.1-8.

Anon (2002) Decoupled Query Optimization for Federated Database Systems. In:
Proceedings of the 18th International Conference on Data Engineering.
ICDE '02. IEEE Computer Society, p.716-.

Apers, P.M.G., Hevner, A.R. & Yao, S.B. (1983) Optimization Algorithms for
Distributed Queries. IEEE Transactions on Software Engineering, SE-9 (1), pp.57
-68.

Avnur, R. & Hellerstein, J.M. (2000) Eddies: Continuously Adaptive Query Processing.
IN SIGMOD, p.p.261--272.

Babin, G. & Cheung, W. (2008) A Metadatabase-supported shell for distributed
processing and systems integration. Know.-Based Syst., 21 (7), p.pp.672-680.

Bell, D.A, Grimson, J.B. & Grimson, J. (1992) Distributed database systems. Addison-
Wesley Pub. Co.

Bellifemine, F.L., Caire, G. & Greenwood, D. (2007) Developing Multi-Agent Systems
with JADE. 1st ed. Wiley.

Bennett, T.A & Bayrak, C. (2011) Bridging the data integration gap: from theory to
implementation. SIGSOFT Softw. Eng. Notes, 36 (3), p.pp.1-8.

Bernstein, P.A & Chiu, Di-ming W. (1981) Using semi-joins to solve relational queries.
JOURNAL OF THE ACM, 28, p.p.25--40.

Berthold, H. & Meyer-Wegener, K. (2001) Schema Design and Query Processing in a
Federated Multimedia Database System. In: Proceedings of the 9th International
Conference on Cooperative Information Systems. CooplS '01. Springer-Verlag,
pp.285-300.

Bhashyam, R. (2004) Technology challenges in a data warehouse. In: Proceedings of the
Thirtieth international conference on Very large data bases - Volume 30. Toronto,
Canada, VLDB Endowment, pp.1225-1226.

Bollacker, K.D., Lawrence, S. & Giles, C.L. (1998) An Autonomous Web Agent for
Automatic Retrieval and Identification of Interesting Publications.
INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS, p.p.116--123.

203

Brooks, R. (1986) A robust layered control system for a mobile robot. Robotics and
Automation, IEEE Journal of, 2 0), p.pp.14-23.

Brooks, R. (1991) Intelligence Without Representation. ARTIFICIAL INTELLIGENCE,
47, p.p.139--159.

Browning, D. & Mundy, J. (2001) Data Warehouse Design Considerations [Internet].
Available from: <http://msdn.microsoft.comJen-
us/library/aa902672(v=sq1.80).aspx> [Accessed 31 July 2011].

Cheung, W. & Hsu, C. (1996) The model-assisted global query system for multiple
databases in distributed enterprises. ACM Trans. In! Syst., 14 (4), p.pp.421-470.

Coronel, e., Morris, S. & Rob, P. (2009) Database Systems: Design, Implementation, and
Management. 9th ed. Course Technology.

Dale, J. & DeRoure, D.e. (997) Towards a Framework for Developing Mobile Agents
for Managing Distributed Information Resources. IN PROCEEDINS OF
PRACTICAL APPLICATIONS OF INTELLIGENT AGENTS AND MULTI-
AGENTS, PAAM'97.

Deshpande, A, Deshp, A, Hellerstein, J.M. & Hellerstein, J.M. (2004) Lifting the Burden
of History from Adaptive Query Processing. IN VLDB, p.p.948--959.

Ferguson, LA. (1992) Touring Machines: autonomous agents with attitudes. Computer, 25
(5), p.pp.51-55.

Firestone, J .M. (1998) Architectural evolution in datawarehousing and distributed
knowledge management architecture. WHITE PAPER, EXECUTIVE
INFORMATION SYSTEMS.

Forrester, J. & Ledlie, J. (2002) XJoin and the Benefits of Free Work.

Franklin, S. (1997) Artificial Minds (Bradford Book). New edition. MIT Press.

Franklin, S. & Graesser, A (1997) Is it an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents. In: Proceedings of the Workshop on Intelligent Agents III,
Agent Theories, Architectures, and Languages. Springer-Verlag, pp.21-35.

Georgeff, M.P. & Rao, A.S. (1995) BDI agents: From theory to practice. ,95 (Technical
Note 56), p.pp.312-319.

Goddard, W. & Melville, S. (2004) Research Methodology: An Introduction. Juta and
Company Ltd.

Grosof, B. (1997) Building Commercial Agents: An IBM Research Perspective. , (RC
20835).

Haas, L.M., Carey, M.J., Livny, M. & Shukla, A (1993) SEEKing the Truth about Ad
Hoc Join Costs. VLDB JOURNAL, 6, p.p.241--256.

204

Haas, P.J. & Hellerstein, J.M. (1999) Ripple Joins for Online Aggregation. Proceedings
ACM SIGMOD International Conference on Management of Data, pp.287-298.

Hackney, D. (1997) Understanding and Implementing Successful Data Marts. 1st ed.
Addison Wesley Publishing Company.

Hasselbring, W. (2000) Research and practice in federated information systems. SIGMOD
Rec., 29 (4), pp.I6-18.

Harris, E.P. & Ramamohanarao, K. (1996) Join algorithm costs revisited. The VLDB
Journal The International Journal on Very Large Data Bases, 5, p.pp.64-84.

Hayes-Roth, B. (1995) An architecture for adaptive intelligent systems. Artificial
Intelligence, 72 (1-2), p.pp.329-365.

Honavar, V. & Dobbs, D. (2001) An Agent-Based Environment for Integrating and
Analyzing Plant Genomic Databases. In: PROCEEDINGS OF THE IEEE
INFORMATION TECHNOLOGY CONFERENCE. SYRACUSE, NY.

Honavar, V., Miller, L. & Wong, J. (1998) Distributed Knowledge Networks. IN:
PROCEEDINGS OF THE IEEE INFORMATION TECHNOLOGY
CONFERENCE, p.p.87--90.

Huhns, M.N. (1998) Agent Foundations for Cooperative Information Systems. IN: PROC.
S OF THE THIRD INTERNATIONAL CONFERENCE ON THE PRACTICAL
APPLICATIONS OF INTELLIGENT AGENTS AND MULTI-AGENT
TECHNOLOGY; LONDON 1998; EDITED BY H.S. NWANA AND D.T. NDUMU.

Inmon, W.H. (1992) Building the Data Warehouse. 2nd Revised ed. QED Pub Co.

Inmon, W.H. (2005) Building the Data Warehouse. 4th ed. Wiley.

Inmon, W.H., Strauss, D. & Neushloss, G. (2008) DW 2.0: The Architecture for the Next
Generation of Data Warehousing. Morgan Kaufmann.

Ives, Z., Florescu, D., Roquencourt, I.,Friedman, M., Levy, A. & Weld, D. (1999) An
Adaptive Query Execution System for Data Integration. , p.p.299--310.

Jean-Paul Arcangeli, A.H. (2004) Mobile Agent Based Self-Adaptive Join for Wide-Area
Distributed Query Processing. J. Database Manag., 15, pp.25~.

Jennings, N.R. (2001) An agent-based approach for building complex software systems.
Commun. ACM, 44 (4), p.pp.35-41.

Jennings, N.R. & Wooldridge, M.J. (1998) Agent technology: foundations, applications,
and markets. Springer.

Jennings, N.R. & Wooldridge, M.J. (2010) Agent Technology: Foundations, Applications,
and Markets. Springer.

205

Kang, H. & Roussopoulos, N. (1987) On Cost-effectiveness of a Semijoin in Distributed
Query Processing. [Internet]. Available from:
<http://drum.lib.umd.edulhandleI1903/4547> [Accessed 18 September 2011].

Kimball, R. & Ross, M. (2002) The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. 2nd ed. Wiley.

Kimball, R, Reeves, L., Ross, M. & Thornthwaite, W. (1998) The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying
Data Warehouses. Wiley.

Kimball, R, Ross, M., Thornthwaite, W., Mundy, Joy & Becker, B. (2008) The Data
Warehouse Lifecycle Toolkit. 2nd ed. John Wiley & Sons.

Lane, P. (2007) Oracle® Database Data Warehousing Guide [Internet].

Li, X., Gu, Y., Yue, D. & Yu, G. (2007) An Adaptive Join Strategy in Distributed Data
Stream Management System. In: 2007 International Conference on
Computational Intelligence and Security. IEEE, pp.271-275.

Lieberman (1999) Let's browse: a collaborative browsing agent. Knowledge-Based
Systems, 12 (8).

Litwin, W., Mark, L. & Roussopoulos, Nick (1990) Interoperability of multiple
autonomous databases. ACM Comput. Surv., 22 (3), p.pp.267-293.

Luo, G., Eiimann, CJ., Haas, PJ. & Naughton, J.F. (2002) A Scalable Hash Ripple Join
Algorithm. SIGMOD, 2002, p.p.252--262.

Maes, P. (1995) Artificial life meets entertainment: lifelike autonomous agents. Commun.
ACM, 38 (11), p.pp.108-114.

Moeller, RA. (2000) Distributed Data Warehousing Using Web Technology: How to
Build a More Cost-Effective and Flexible Warehouse. 1st ed. AMACOM.

MUller, J.P. (1996) The Design of Intelligent Agents: A Layered Approach. 1st ed.
Springer.

MULLER, J.P. (1999) Architectures and Applications of Intelligent Agents: A Survey.
The Knowledge Engineering Review, 13 (04), p.pp.353-380.

Mundy, Joy, Thornthwaite, W. & Kimball, R (2011) The Microsoft Data Warehouse
Toolkit: With SQL Server 2008 R2 and the Microsoft Business Intelligence Toolset.
2nd ed. John Wiley & Sons.

Nica, A. & Rundensteiner, Elke Angelika (1996) The Dynamic Information Integration
Model.

Nwana, H.S. (1996) Software Agents: An Overview. The Knowledge Engineering Review,
11 (03), p.pp.205-244.

206

Olston, C. & Widom, J. (2005) Efficient Monitoring and Querying of Distributed,
Dynamic Data via Approximate Replication. IEEE Data Engineering Bulletin,
(special issue on In-Network Query Processing).

Parandoosh, F. (2007) Evaluating Agent-Oriented Software Engineering Methodologies.
In: 2nd International Workshop on Soft Computing Applications, 2007. SOFA
2007. IEEE, pp.169-174.

Qicheng Yu, McCann, l.A. & Fang Fang Cai (2009) An Agent-Based Adaptive loin
Algorithm for Distributed Data Warehousing. In: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, 2009.
COMPUTATIONWORLD '09. Computation World: pp.72-77.

Rahimi, S.K. & Haug, F.S. (2010) Distributed Database Management Systems: A
Practical Approach. 1st ed. Wiley-IEEE Computer Society Pr.

Ramakrishnan, R. & Gehrke, J. (2002) Database Management Systems. 3rd ed. McGraw-
Hill SciencelEngineering/Math.

Rhodes, B. & Starner, T. (1996) Remembrance Agent: A continuously running automated
information retrieval system. In: Proceedings of The First International
Conference on The Practical Application Of Intelligent Agents and Multi Agent
Technology (PAAM '96). pp.487-495.

Rundensteiner, E. A., Koeller, A. & Zhang, X. (2000) Maintaining data warehouses over
changing information sources. Commun. ACM, 43 (6), pp.57-62.

Russell, S. & Norvig, P. (2009) Artificial Intelligence: A Modern Approach. 3rd ed.
Prentice Hall.

Samos, L, Saltor, F., Sistac, J. & Bardes, A. (1998) Database Architecture for Data
Warehousing: An Evolutionary Approach. In: Proceedings of the 9th International
Conference on Database and Expert Systems Applications. Springer-Verlag,
pp.746-756.

Sen, A. & Sinha, A.P. (2005) A comparison of data warehousing methodologies.
Commun. ACM, 48 (3), pp.79-84.

Sheth, A.P. & Larson, l.A. (1990) Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv., 22 (3), pp.183-
236.

Silberschatz, A., Korth, H. & Sudarshan, S. (2010) Database System Concepts. 6th ed.
McGraw -Hill SciencelEngineering/Math.

Smith, D., Cypher, A. & Spohrer, J. (1994) KidSim: programming agents without a
programming language. Communications of the ACM, 37 (7), p.pp.54-67.

Theodoratos, D. & Sellis, T.K. (1999) Dynamic Data Warehouse Design. In: Proceedings
of the First International Conference on Data Warehousing and Knowledge
Discovery. DaWaK '99. London, UK, UK, Springer-Verlag, pp.l-IO.

207

Urhan, T. & Franklin, M.J. (2000) XJoin: A Reactively-Scheduled Pipelined Join
Operator. IEEE DATA ENGINEERING BULLETIN, 23, p.p.2000.

Vieira-Marques, P.M., Robles, S., Cucurull, J., Cruz-Correia, R.I., Navarro, G. & Marti,
R. (2006) Secure Integration of Distributed Medical Data Using Mobile Agents.
IEEE Intelligent Systems, 21 (6), p.pp.47-54.

vpnsp.com (2011) VPN Speed Test: Which VPN Service is the Fastest? [Internet].
Available from: <http://www.vpnsp.com/speed-test.html> [Accessed 7 November
2011].

Weiss, G. (1999) Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press.

Widom, Jennifer (1995) Research problems in data warehousing. In: Proceedings of the
fourth international conference on Information and knowledge management.
CIKM '95. New York, NY, USA, ACM, pp.25-30.

Wooldridge, M. (2000) Agent-Oriented Software Engineering:The State of the Art.
AGENT-ORIENTED SOFTWARE ENGINEERING, VOLUME 1957 OF
LECTURE NOTES IN COMPUTERS SCIENCE.

Wooldridge, M. (2002) An Introduction to MultiAgent Systems. 1st ed. John Wiley &
Sons.

Wooldridge, M. & Jennings, N. (1995) Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, 10 (2), p.pp.115-152.

Yang, J., Honavar, V., Miller, L. &Wong, J. (1998) Intelligent Mobile Agents for
Information Retrieval and Knowledge Discovery from Distributed Data and
Knowledge Sources. IN PROC. OF THE IEEE INFORMATION TECHNOLOGY
CONFERENCE.

Zhong, N. (2001) Intelligent agent technology: research and development. World
Scientific.

208

