London Metropolitan University
Faculty of Life Sciences and Computing
School of Computing

¢« %o
e s % [4

. a0 ®
X P ®
s ®

LONDON <o
metropolitan 3% *e
university o ®

An Ontological Approach to Model Software

Quality Assurance Knowledge Domain

By Nada O. Bajnaid

A Thesis submittedto London Metroploitan University in partial

fulfilment of the requirements for the degree of Doctor of Philosophy

December 2013

Abstract

Software Quality Assurance (SQA) becomes one of the most important objectives of
software development and maintenance activities and as a result within an area of
Software Engineering (SE) there are developed standards related to the SQA.
Despite the effort made to improve consistency and coherency among standards, still
there is no single standard embraces the whole SQA knowledge area. To contribute
to this effort, this thesis presents a framework of an ontological model to describe
and define both domain and operational knowledge of the SQA domain. Ontology
development methodologies were reviewed and analysed in order to adopt the hybrid
methodology used to develop the SQA ontology. The framework alos includes
evaluation of the developed ontology. International standards (SWEBOK, IEEE, and
ISO) were the main sources of the terminology and semantic relations of the
developed SQA conceptual model. A formal ontology was implemented using the
semantic web open standard OWL language. To avoid contradictory information, the
developed ontology was verified for consistency using the Protégé consistency
checker plugin. Different approaches have been used to evaluate the developed SQA
ontology. An assessment questionnaire has been distributed among domain specialist
to validate the quality of the developed ontology from experts’ point of view.
Evaluation of the result of using the ontology in an application or Application-Based
ontology evaluation is used to validate the ontology consicness where an e-learning
prototype is developed to provide learning recommendations tg students (traditional
learning scenario) or software developer (e-learning in the workplace). Ontology
axioms were added to the developed SQA ontology to avoid unneccessarly and
overwhelmed information. The e-learning prototype is developed using free open
source software tools such as Apache tomcat as a server software; the Jena, a
Semantic Web framework for ontology manipulation; the SWRL tab of Protégé to
build the ontology reasoning rules; where the RacerPro reasoner is used for
manipulating the ontology and‘the SWRL rules. Based on the results and findings of
the ontology evaluation process, an enhanced version of the SQA ontology was
developed based on the latest quality standards. The ultimate goal was to develop an
ontology that faithfully models the SQA discipline as practiced in the software

development life cycle.

i

To the Soul of my Father

Acknowledgment

This work would not have been possible without the guidance and support of my
supervision team. This work is dedicated to the memory of Dr. Boris Cogan, his
understanding and encouraging has provided a firm basis for this thesis. His wide
knowledge and logic was of a great value for me. I’'m sincerely grateful to my co-
supervisor Prof. Rachid Benlamri at Lakehead University for providing guidance and
encouragement that helped me refine my standpoint. 1 benfited from his wide
experience in the field and learned a lot from his guidance in writing scientific
papers. He was always there answering questions and clarifying difficulties. I’d also
like to express my sincere appreciaition to Prof. Algirdas Pakstas and Dr. Shahram
Salekzamankhani for their guidance, motivation and support towards the
completeion of this dissertation and the challenging research behind it. I’am thankful
for their aid and insight. I’'m really proud to be supervised by them. Again, thanks
Dr. Boris, Prof. Rachid, Prof. Algirdas and Dr. Shahram.

I also would like to thank my local supervisors at King Abdulaziz University: Dr.
Hana Alnuaim for her support and guidance at the early stage of this work and Dr.
Mai Fadel for her comments and support through this study. I’d like to thank Mrs.
Tamara Matveeva for her insightful review, suggestions and constant
encouragement.

I would like to specially thank my mother Fatma Bajunaid for her support and
encouragement throughout the difficult times of my study.

Special “Thank You” goes to my husband Ayman and kids Maan, Ziyad and Alya for
their understanding and unconditional love and support. It is impposible for me to
express in words the full extent of my appreciation for their patience.

I would like to thank King Abdulaziz University, the Faculty of Computing and
Information Technology for their support to undertake this work. “Thank you” to Dr.
Ammar Amin and all members of the Joint Supervision Program for their continuous
help and support.

iv

Table of Contents

ABSTRACT ... P | |
ACKNOWLEDGMENT v
LIST OF FIGURES Vil
LIST OF TABLES X
CHAPTER1: INTRODUCTION 1
L1 MMOTIVATION cutriirnerentcetirseeseasaessssesteessssesassnsassasntsstsnssansssassasasessasssessesnsessasessnaneassensssasssnerssness 1
1.2 RESEARCH SCOPE.....uievirieininrineessiannisessonsissssansesssessssssastesass sssesssussassasassesnsssasssnssnnsssns sanssssssssssssansns 3
1.4 CONCLUSION 1itiiseisissinseraseonsessssessssssesssassassnsnessssisssssssssesssssssmastesstsntssssessassssssssessnnsnessnesssstnsseessnss 4
CHAPTER2: ONTOLOGIES AS MODELS OF KNOWLEDGE 6
2.1 ONTOLOGY DEFINITION cuvivviseereensesssreerasssssarsessessensesssesssssassasesnsaressssasesntassnesssssnereassasssss avasssanssnsesars 6
2.2 UPPER-LEVEL AND DOMAIN ONTOLOGIES. ..eecererreremrerrnearartensensreesmsistssesssesssnsesssssases assorteassssssassnneassns 8
2.3 ONTOLOGY COMPONENTS ...cotreuesrersecsstssriasenensssstassesnesstiessessseneessessesisstasessasanesssesssesstsssaesasessssssessen 8
2.4 ONTOLOGY REPRESENTATION LANGUAGESeocueeeiinnecniiteosirsneessssstionentessmissssiossesses srsensessesssasssassans 9
2.5 ONTOLOGY DEVELOPMENT TOOLSoovveirererrareasscesenessurenssnssassessassssersesassss sosssesssasansassassssarsansanen 10
2.6 ONTOLOGY REASONING TECHNIQUES ...euvvrersersrensnesenssrcsnssssnssessmnsesssenssesstrsssesesssaessaesssssssesssnsssonas 12
2.7 ONTOLOGIES IN EDUCATION AND E-LEARNING APPLICATIONS...ccovriceesressersessesscsstressesmsassssssessunssasansane 13
2.7.1 Domain Ontologies for LEAININGciceienicceimiisessmsinnsssisesssssinsessssssssssssssssses 15
2.7.2 Ontology-Based Personalized LEAINING.............cvcevevvreiereesniecssssesossssssesisssssmssnassaseanes 16
2.8 CONCLUSION ...ueiviireeenteneisirasescsessssesseassissesssessessssssessss sesesasassessessssssesasssnesasasentensesssesnssseasenssesnanss 17
CHAPTER 3: SOFTWARE QUALITY AS KNOWLEDGE DOMAIN .19
3.1 SOFTWARE ENGINEERING AS A KNOWLEDGE DOMAIN....ccvvrrrurerirtererenrisinssisssessessesesessarassessnsssensnnne 19
3.1.1 A Brief History of SOftware ENGINEEIiNgccovueeeveesiveeimstirsseencenresseisassssssessasessessenee 19
3.1.2 THE SWEBOK GUILE ..cveoveveerrririeinserseasssessessssssessesusassssasstsssstsssestessassssssssssnsssensssensensrass 21
3.2 SOFTWARE QUALITY KNOWLEDGE AREA IN THE CONTEXT OF SOFTWARE ENGINEERING DOMAINeeueien. 24
3.2.1 A Brief History of SOftware QUality ISSUESc.coevvrvcenrenrenresrssrecesiossnssssasessessasenees 24
3.2.2 Software Quality IsSues in SWEBOK 2004eeceveeervesveesiscereeereessssseesisssessssssesssssssess 26
3.2.3 Bloom’s Taxonomy for SQA Ontology CONCEPLS......emwevevvrereerversessesresseresressssssesesseseas 27

3.2.4 Software Quality Knowledge Area in the Context of Software Engineering Graduate
COUISES .ot cirisss st b sttt sr bbb RS At r e e R e b s b s b e b eb et an bbb e sinens 28
3.3 EXISTING ONTOLOGIES FOR SE KNOWLEDGE DOMAINoeerrerrerisieesenresiesaesesseessesnessessensessssnessassevane 31
3.3.1 The SWEBOK ONEOIOGYcooeivrriverreisresrisssesiretessstesssssssssssessessssenssnsesessossasssssssressosssssnas 31
3.3.2 Software Measurement ONtOIOGYccovvrvreereeisinssessssisiessssasesssserasssasossesssssserssonss 33
3.3.3 Software Maintenance ONTOIOGYcuuwcveirirecnsivesscssscsesssssissssessossssvasssesssessessesssens 34
3.3.4 The OntOTESt ONLOIOGY .coorvirerivreriseerseisivnsesssrassesessssesssssassinsssssssssssssssssessessasssssssssesssenss 35
3.3.5 Non-Functional Requirements ONEOIOQYccccueerevessvsensessreerissessasissssssossossssesssesses 36
3.3.6 Ontology for Software Product QUAlItY ATTIDULEScueeeeveevveerinneneeseensesseesssvevesesssersees 37
3.4 CONCLUSION ..oecrieienitiereitesissens st ss e sstassnesanssesssssnsrase snsassasesesnsessssssssnesarsasasse sasessnontessssnnassons 37
CHAPTERA: DEFINING SQA ONTOLOGY DEVELOPMENT METHODOLOGY 39
4.1 REVIEW AND ANALYSIS OF ONTOLOGY DEVELOPMENT METHODOLOGIES .vvvvinesrierererssesseesseeesssnesesnsonen 39
4.1.1 Methodologies without CONCeptUal MOGEL................oueervrvvererenircvereiesvesesiesesesessesssense 40
4.1.2 Methodologies With CONCEPLUA] MOTE]eeuoeeeeeceeeeeirsereeerirsesessesssasiessosesssseessssens 41
4.2 THE SQA ONTOLOGY DEVELOPMENT METHODOLOGYuuvuerersrecesenensssesssssssssssssessasssssassssasesessesessons 45
42,1 SCOPING corvnvrririrricririrrencrssrrss esssssstestesesssrrstsssssessosssssssvesssssessstosestonsssosesassassssnsassssssensnsen 47
4.2.2 CONCEPEUTNZALION. ...ccuonetririsiereieariecersisssrereonassesssssssssssssssssssssrsssanssssstsssserssrsasessssnones 48
4.2.3 IMPIEIMENTALION o..ccvvrivrrrriresteresiesencesesssersesessssesssesesssesessesessssseaseasssssssssssarens .50
4.2.4 Evaluation Qno-DOCUMENTALION.........v..eeveveevrievesvesresissreressssssssessessessosesssssessssssssmessassns 51
4.3 REQUIREMENTS OF ONTOLOGY FOR TEACHING SOFTWARE QUALITY ..ecvvrereristecsiseseeesenesseessaesesassssnes 52

B84 CONCLUSION ..ooieirerieeneeerreevesaerennssisiernrasssssssssssnsosasrensonssieresmsnssssssssretesansasssnsassossnsen

CHAPTER 5: DEVELOPING THE SQA DOMAIN ONTOLOGY

DL SCOPING v evevrrreeeirurrrermeesraneesesssansasssaessssntessareesassts Shssssnssssessessssesasstansensssasssesssnsssnsesens
5.2 CONCEPTUALIZATION...cveeerreerrersesreenesarssessansesssasssssssssssssastssussanonsessassessessossossssnossonens
5.2.1 EXISING VOCADUIGEIES........vevsvreisrenrctisisseissicsisssssnscssisnssnssssssssssssssssessossons
522 S5QA ONOIOGY CONCEPLS....vucaniiiricsinsiisinniricsisrsnissisststssssssssessssssessosesssenne
5.2.3 SQA ONtology Properties. ... irevssnisiessnnssississisrinsssssinossssssssssssesssses
5.2.4 Quality Measurements and MELITICSccoivvievvcsieceseirunisioecsnisesseensesisnns
5.2.5 SQA Ontology INAIVIAUQISeccuvceeercccririisecsis st sissesssssisnane
5.2.6 The SOA TOXONOMY ..ourecvesiiasiseresssssssessiossecsssissssssssossressssssssssssssaesssssisassse
- 527 Adding Axioms to the SQA ONtOlOgYcueveiiisenrisvissiessonsessassanscsnscscans
5.3 IMPLEMENTATION OF SOA ONTOLOGY ..ueissiiirrissiensinsnssnsssnsssnisssnsssnssssessasassscnssanssnens
5.4 VERIFICATION AND DOCUMENTATION ..veevtvunsurressenessrsersnssecsasseossssmosasianssssssssansassssinnas
5.5 AN ENHANCED VERSION OF THE SOA ONTOLOGY...ccviisuivencsarissrressnesresssssssnssnssssnsaressenss
5.6 CONCLUSION ..ovviirirceiinmenriisesiseissessstasssesnssssessssnsssssanssas sasassnesstssntisasssessvassansssnssanasses

CHAPTER 6: EVALUATION OF THE SQA ONTOLOGY

6.1 INTRODUCTION TO ONTOLOGY EVALUATION ..cciiciiinieeetiniimneasesinssasnssseeessinsasanssnssessssnssensasens
6.2 SELECTION OF EVALUATION METHODS ceecuvrerearrenererersseesens cmteremessessasasssnssssssnsss sssssensas
6.3 VALIDATING THE SQA ONTOLOGY ceccrveeeriererninrensscesssesneresessessennseesssnsessnsssess sosseessssssnes
6.4 ASSESSING THE QUALITY OF THE SQA ONTOLOGY.....etiiiiiiiiniiinnniiniscussssssssnenssnnesessaranes

6.4.1 SQA Ontology Assessment Questionnaire Designccccevevervrsrsvsvniavenne

6.4.2 Statistical Results and Analysis of the Assessment Questionnaire............
6.5 APPUCATION-BASED EVALUATION OF THE SQA ONTOLOGY ...ccernimrcicrinniiennnimseensnesssesnenies
6.6 CONCLUSION 1iiiirrentiereeasirsisnennsisssessssasnnressssssunesssssssnssess atesasessatsssessessnsnnsesesasessnasanses

CHAPTER 7: ONTOLOGY-BASED E-LEARNING SYSTEM: CASE STUDY

7.1 THE SQAES PROTOTYPEceieceeeericrreceenresanessssensstsasseissssssstessssnssnssssaneessissansassessasassanes
7.1.1 Requirements t0 SQAES.......coccvvcimsrcunscisisturosnessressinisssisssssssssssssssssncossses
7.1.2 General Architecture Of SQAES.....c.cvvimrmniniinsicsisssscsensnisssiesssesnnans
7.1.3 Learning Scenario in SQAESvcceecveersssisisssesissniinsssisssisssessessssnssssssessses
7.1.4 Developer/Leaner UsOge Profile........cieimnsiiisinssiioinsesenenens

7.2 ONTOLOGY-BASED CONTEXT MODELLING 1.vvssresessissessessssssesssssensosnsssnssasssnensesssessnsesses
7.2.1 Developer/Learner Ontology ... sncsesenissiinssissssssssssossssssses
7.2.2 Learning ObJect Ontology......cocomveicccirrererncssssesismrimssmsisessisessessiesseesesesns
7.2.3 DOMAIN ONLOIOGY we.veeereeeererierircirasirseeecorsseseseasssssessenasisssessessensssssessassasssasses

7.3 CONTEXT REASONING ...crueruirrircrrrercrsrnarrane seessesessaseesassassesnssnssassmenisesass Forrrerresnenconen
7.3.1 Developer/Learner Centric ADODPLALIONceereeceeeerereeserareressinssssasssnses
7.3.2 S5QA ONLOIOGY AXIDINS....uuccreeresresreiereirerisssssessssssesssssssssssssssssssnesssssanssssasneas

7.4 IMPLEMENTATION OF SQAESoiiiiiiiiititrnreer s sassstnne s saessescanssesassas
7.4.1 SQAES SOftWAIre COMPONENLS......eveccrvsrrivrresessserssssssssossasesssesserasasssossessens
7.4.2 EXPEIIMENLAT RESUILS c....veeeeeeverreeeiessrsesveesnaeesseressessesssssarsesss ssssssassesesseens
7.4.3 ONtOIOGY CONCISENESS...oeuvrerrireessiireessirrss riesireessesstessssnsssessssssnssosesssessanes

7.5 CONCLUSION..ocueiiserirseressmsisrasstsesssssssssessesssnassnsasssessnse sonnassnnanssessnesnasessstassasneesssanans

CHAPTER 8: CONCLUSIONS AND FUTURE WORK...

................ 112

8.1 RESEARCH CONTRIBUTIONS .eovvecertreinsisnesssneiserasreresensenseesensssnesaseessenssnsenasasessasssnserasss

8.2 FUTURE WORK.....cvreiiriirrisinsisiniissriesnsesnstecssessessesesosnssssassssasaassnssssseessassnaessasasns e
8.2.1 Towards Task-Level SOA ONEOIOGYouceeceeereevveriiriersssissrscsesssssossssssssssosss
8.2.2 . Merging the SQA Ontology with other SE Knowledge Areas............ceceun...
8.2.3 Enhancement of the SQAES PrOLOLYDEcevevveieessereesssesessssasessssssssessssens
8.2.4 Associate Learning Objects With LOMcouereeeeeninceesvesicssineecsvnssesens
825 Towards an Extension of SQAES for Agile Software Development
8.2.5.1 Extending of the SQA Ontology with Agile Terminologyccovveeveeeveeennas

8.3 EPILOGUE .vuvveeeerereriannenes eteriertsrereiraetaesastieaesaest s e easaanese s Re R AR st e b e Rt s eenee

vi

REFERENCES.........coenuirrrinnenen

PUBLICATIONScoerveenencnnirnes

. ACCEPLEA PUBICULIONS w...vevveeeeeeraeeerieiveseesessseresesseesvesecssssessessseseens sssensossasssssssssssnessssens
3. SUBMILEEA PUBIICALIONSo.covevnrrrinienrsieetaeinsirssenssesressssssesssessrsssssssssssessssonsssascasessasessons

APPENDIX A: STRUCTURE OF THE SQA ONTOLOGY’S CLASSES
APPENDIX B: SQA CONCEPTS WITH RELATED AXIOMS
APPENDIX C: THE OWL CODE OF THE SQA ONTOLOGY
APPENDIX E: COMAPRAISION OF ISO/IEC 25010 AND ISO/IEC 9126

.............

APPENDIX F: INTRODUCTORY DOCUMENT TO THE ONTOLOGY ASSESSMENT QUESTIONNAIRE ..

APPENDIX G: THE ONTOLOGY ASSESSMENT QUESTIONNAIRE
APPENDIX H:INDIVIDUAL PARTICIPANTS’ RESPONSES TO THE QUESTIONNAIRE

APPENDIX I: SAMPLE USER PROFILE IN XML
APPENDIX J: JAVA CODE OF SQAES

vii

133
146

146
147

148

150

157
165
167

..170

174
179
180

List of Figures

FIGURE 1.1: RESEARCH SCOPE........cvevrerenrersrnriossersessesssssasessosssssessssssanessssassssssasssssnssesssssesssssssssessasssssons 4
FIGURE 3.1: PERCENTAGE DEVOTED TO CBOK AREAS (KLAPHOLTZ ET AL., 2009)....cconierereeceeeenne 29
FIGURE 3.2:DESIGN AND STRUCTURE OF THE SE ONTOLOGY(WILLE ET AL., 2003) «.ccoeeevrirerececrnnanene 32
FIGURE 3.3: UML CLASS DIAGRAM OF THE SMO ONTOLOGY (GARCIA ET AL., 2006).......cccoevvenereenens 33
FIGURE 3.4: SOFTWARE MAINTENANCE ONTOLOGY OVERVIEW (CALERO ET AL., 2006) 35
FIGURE 3.5: ONTOTEST (BARBSOA, 2006)......c.viiereinrereeiererierisiesserentssesssssssasessesessessssesssssessssessessessasssas 36
FIGURE 4.1: TYPICAL SEQUENCE OF PHASES IN PROJECT LIFE CYCLE (PMBOK, 2004)ccoecevenrinees 46
FIGURE 4.2: THE LIFE CYCLE MODEL FOR DEVELOPING THE SQA ONTOLOGYuvucrcrmcearavnernsenersacsonns 46
FIGURE 4.3: THE SCOPE PHASE OF THE SQA ONTOLOGY DEVELOPMENT LCMcoviivricnieeniannncnnens 47
FIGURE 4.4: THE CONCEPTUALIZATION PHASE OF THE SQA ONTOLOGY DEVELOPMENT LCM............ 48
FIGURE 4.5: THE IMPLEMENTATION PHASE OF THE SQA ONTOLOGY DEVELOPMENT LCM.................. 50
FIGURE 4.6: THE EVALAUTION PHSE OF THE SQA ONTOLOGY DEVELOPMENT LCMcccovnevcerennne 51
FIGURE 5.1: TOP LEVEL OF THE SQA ONTOLOGY CONCEPTScovvveeeererserersecsssnsassesssotrssmsassasasssesessesss 66
FIGURE 5.2: STRUCTURE OF THE PROCESS CLASScoveueueriererereiesssasestssenssesessessnssssssssssassesssssssasssssereons 68
FIGURE 5.3: PROPOSED TAXONOMY OF THE SQA ONTOLOGYcuvorenreerrenensssseniressesssssssassesassscssensnenes 76
FIGURE 5.4: RELATED CONCEPTS TO “VALIDATION......cocviirteriererecseversaversessssersssessessssesaessssassessncsassee 77
FIGURE 5.5: FROM CONCEPTUAL MODEL TO OWL ONTOLOGYoruieetrmrcesarmscsssesssesssesasssssssasseses 79
FIGURE 5.6: JAMBALAYA TAB TO VISUALIZE THE SQA ONTOLOGYcooieviererreresreressesnresssssessesasssseasens 80
FIGURE 5.7: THE SQA ONTOLOGY AS DISPLAYED IN PROTEGEccucceeirrierrrsneasenserassesassensasssasansasaces 81
FIGURE 5.8: CLASS HIERARCHY OF THE SQA ONTOLOGY ...ocuovueventrianserissessesereesassessinessessaresesseseasassssess 82
FIGURE 5.9: PROTEGE CONSISTENCY CHECKING RESULT FOR SQA CONCEPTS AS A WHOLE............... 84
FIGURE 5.10: EVOLUTION OF THE SQA ONTOLOGY CONCEPTSc..ooceeerrecrerisessenesssesscsssssassensassassasenes 85
FIGURE 5.11: ENHANCED VERSION OF THE SQA ONTOLOGY ACCORDING TO ISO/IEC 25010(2011)..86
FIGUREG.1: THE TOP LEVEL OF THE SQA ONTOLOGY ..ocvcvivereevirenrensessesessrsesssssasssssssessersssasessessasssnssens 91
FIGURE 6.2: PARTICIPANTS” ASSESSMENTS OF THE SQA ONTOLOGY ..uevrininitinieressecestsesssssessasesesasess 98
FIGURE 6.3: EXPERTS’ ASSESSMENTS TO THE SQA ONTOLOGY ...c.eeureevereeeercesenseressseesesesssssssssssesssesanes 99
FIGURE 6.4: ASSESSMENTS OF PARTICIPANTS WITH AVERAGE EXPERIENCE IN THE DOMAIN 99
FIGURE 7.1: MACRO VIEW OF SQAES ..ot rarsstnasessensstssessstesessssssassssssssesesssesssssens 103
FIGURE 7.2: SQAES ARCHITECTURE.......cccereeesrnsrssrsesessesessessssesssesassastssessessesassnsassessossssessessssvssssessns 105
FIGURE 7.3: A TYPICAL LEARNING SCENARIO PROCESSING STEPS....ccccoeverrrernrnesesensenessesnereresnorssens 107
FIGURE 7.4: MACRO VIEW OF THE GLOBAL ONTOLOGYcoveevreverereenscteriesssessosssnssssssssssssssssssssesssnns 109
FIGURE 7.5: DEVELOPER/LEARNER SUB-ONTOLOGY ..c.vveterresreremssesssssrsorstsssessenssrsesesenssenssessssarsssrsssres 110
FIGURE 7.6: LEARNING OBJECT SUB-ONTOLOGY ...uccooeiveieiresessessssesesssssssssssssssmsssssessrsssesssssesssens 111
FIGURE 7.7: SQA DOMAIN ONTOLOGY ...vvererrrerereeennsrsssessssssesssssesesssosesesssesensssnsssnsasesssssossssssrssasssens 112
FIGURE 7.8: PROVIDED LOS FOR THE CONCEPT “PRECISION"ceovvererereesersrsmiressessessrsserssessassesesenens 116
FIGURE 7.9: LOGICAL DIAGRAM OF SQAES SOFTWARE COMPONENTS oo venesesseeneneessesraee 117
FIGURE 7.10: IMPLEMENTATION-SPECIFIC DIAGRAM OF SQAES SOFTWARE COMPONENTS 118
FIGURE 7.11A: SQAES LOGIN SCREENcooeuriviriteieeeeerernsiessssssssssssssssssssesessassssssssssssrsensessassssesens 119
FIGURE 7.11B: THE USER QUERIES ABOUT THE VALIDATION PROCESS cevvvreserrencsissssmesssessossessansssss 119
FIGURE 7.11C: SQAES RESPONSE TO THE USER’S QUERY WITHOUT ONTOLOGY AXIOMS........coonu.n... 120
FIGURET.12A: SQAES RESPONSE TO THE USER’S QUERY USING ONTOLOGY AXIOMSooovecrrnennes 121
FIGURE 7.12B: THE SQAES SYSTEMuoieieiireieeieesiceseeeeeseeseseesssesesetssssssssassssssesssss sensesesesesanessesss 122
FIGURE7.12C: THE SQAES SYSTEM.....ocornitireisiecteenceesiseeess e s enssseas s sesessseenseseesemsaseresssesasersseses 122
FIGURE7.12D: THE SQAES SYSTEM........coieeisrrnrnsnrnninsinsssssssssssssssssnssssssssesssssssessssssesssessssssssens 123
FIGURE7.12E: THE SQAES EXIT SCREEN.....c.cvesuommtrtrtesiessessrsssssssesessssssssnsesssssssssssssssessossssnsssesssssios 123

FIGURE 8.3: FUTURE VIEW OF THE SQA INCLUDING TASK, PROJECT AND PROJECT-OUTER LEVELS. ... 127
FIGURE 8.4: COMBINED VIEW OF THE SQAES SYSTEM FOR AGILE SW DEVELOPMENT (BAJNAID ET AL.,
211 0. VSOOI errereeere et a e Rt a et e s et S et s st s essesartesseRestesse s nebestesranesesseatasennens 131

viii

List of Tables

TABLE 2.1: SOME OWL ONTOLOGY REASONING RULEScccvnimteniriicriteenestneecenisseaensessasesesesacssens 13
TABLE 3.1: “QUALITY” IN THE TEN SWEBOK KAS (ADOPTED FROM WILLE ET AL., 2003} 26
TABLE 3.2: BLOOM’S TAXONOMY FOR THE SOME SQA ONTOLOGY CONCEPTScccceremerorrrcrenseescrnee 27
TABLE 3.3: CBOK TOPICS RELATED TO SOFTWARE QUALITY ..couiiuiiinintnninniisscsnisasessssssesssasescsessenas 30
TABLE 4.1: COMPARISON OF THE METHODOLOGIES ACCORDING TO IEEE1074:2006.............ccccenrnenn.. 44
TABLE 4.2: COMPARISON OF THE REVIEWED METHODOLOGIEScccooeeereieneresesemseserasesescsessescsassnsns 45
TABLE 5.1: SWEBOK PARAGRAPHS RELATED TO SQA...comiiicmitncnnccrecnineesnessssensenssnesessesasesasens 56
TABLE 5.1: CONTINUED ...ovouvieitiiinteees e rsnssssesssesssacsesesrsssacstsesmssssessasssssessssssonssssnerasesseranesasassonssssssnsns 57
TABLE 5.1: CONTINUED ...c.coerticvererseseeeesarenreressessssasesassssssssssonensessassntosssessestasessssseststesssssnssssssasassassssases 58
TABLE 5.2: TRACEABILITY MATRIX OF SQA TERMS IN SWEBOK.......ocnniiiiccnccnceaien 58
TABLE 5.2: CONTINUED

TABLE 5.2: CONTINUED

TABLE 5.2: CONTINUED

TABLE 5.3: GLOSSARY OF TERMS OF THE SQA DOMAIN ONTOLOGY
TABLE 5.3: CONTINUEDcovvietrrcrirsnsinersassssesssarassssesssssassescssssesssesesessesesssssnvosssssssssssessonsssses

TABLE 5.3: CONTINUEDooueereirenionssssrissconassssssssesssissssssessssssnssestsssssssinsssmssstnssesssssssssssssssnsnstsssssas
TABLE 5.3: CONTINUEDcucettrrrecnsuenssssnsssssssesssrssssassscssassatcasssseasesenssensosia
TABLE 5.4: SQA ONTOLOGY PROPERTIESvocviierirrseseessssesasessesesesssasessassssmssntosessatsssssessassssossssens
TABLE 5.4 CONTINUEDvcuovverieentcasentrersssesssssetsessatssssssorsssasssssstst sesssseesssessassssssesssssssessnessssossassssnsenss
TABLE 5.5: QUALITY MEASUREMENTS AND METRICS ACCORDING TO ISO/IEC 9126ccunvvvinennnee 70
TABLE 5.5: CONTINUED ...cvruieseemuetrcsressressnsrsssesmassassissssssorsssssassssssssssesetsassonsssssssssassensssssasassensassessassenes
TABLE 5.5: CONTINUEDuoereucineireirsersesssssssssessssssssssnsasssasssnssessassmossesssesssssseress

TABLE 5.5 CONTINUEDccooruuentrinencnnrerscessssssssssassasssesssssssassssssassesenssessesesnas

TABLE 5.6: LIST OF CLASS INDIVIDUALS ...ccvovvereeererecessesesseseresssesesssnessossensosss

TABLE 5.6: CONTINUEDcoueteeveninresnniasssssasesssssesssssssesesarasssssssasssssssssensasssssssansessnesiasasseneasssosscsaserses
TABLE 5.7: SOME SQA CONCEPTS WITH RELATED AXIOMS
TABLE 5.8: FROM GRAPHICAL CONCEPTUAL MODEL TO FORMAL OWL REPRESENTATION...........on.n. 83
TABLE 6.1: CORRESPONDENCE OF THE SQA CONCEPTS AND THE SWPQA CONCEPTS ...c..cremvenereenenn 92
TABLE 6.2: RESPONDENTS’ EXPERTISE IN SQA AND ONTOLOGY DOMAIN
TABLE 6.3: RESPONDENTS’ INVOLVEMENTS IN TEACHING SE.....cocccnrieeecererrnnsesseeeresenesns
TABLE 6.4: RESPONDENTS’ AGREEMENTS ON USING ONTOLOGIES IN TEACHING SQA
TABLE 6.5: RESPONDENT’S VIEW ON THE SQA ONTOLOGY AS SHOWN IN SURVEY MONKEY............... 97
TABLE 7.1: SWRL RULES FOR RELATED CONCEPTS CONSTRUCTIONccoverneneersonssionseserenssssssonsanses 114
TABLE 7.1: CONTINUEDcocutnrarrassesstntresessesesssnssseesesasasssssssssssesssssassssasassssenssssesesssasssnsessesssssnnses 115

X

Chapterl: Introduction

This Chapter presents the motivation, objectives and scope of the research project. The

Chapter then presents the structure of the remaining Chapters of the thesis.

1.1 Motivation

Many areas of human activities such as communication, transportation, health, finances,
and education are highly dependent on software applications that range from simple to
highly complex life critical systems. This requires software of high quality. According to
the ISO 9000 (1992) standard, quality is defined as “the totality of characteristics of
entity that bear on its ability to satisfy stated or implied needs”. Software Quality is “the
degree to which a system, component, or process meets customer or user needs and

expectations” (IEEE 610.12, 1990).

Studies show that software companies can make more money through increased customer
satisfaction and improved product quality (Boehm et al., 2009). Therefore, Software
Quality Assurance (SQA) becomes one of the most important objectives of software
development and maintenance activities and as a result within an area of Software

Engineering (SE) there are developed standards related to the SQA.

Standardization plays an important role in sofiware engineering by providing
organizations with agreed and well organized practices that assist the users of software
development methods in their work. Despite the efforts in research and international
standardization, inconsistency and terminology conflicts appear between standards even

within the same organization.

Although Software Quality Assurance (SQA)' becomes one of the most important
objectives of software development and maintenance activities, yet there is no consensus

among the SQA community of most of the domain terminology and concepts.

A well-defined, complete and disciplined SQA process can be helpful to improve
communication and collaboration among project participants and can serve as a standard

when there is a disagreement.

Software quality is a rather complex concept; some authors have defined the entire
discipline of SE as the production of quality software (Mankandla and Dwolatzky, 2006).
Therefore, adopting software management and SQA standards, as well as training highly

qualified software engineers became critical for developing high quality software.

Ontologies provide a common understanding and sharing of knowledge by using a
general agreement on terminology among all interested people. In addition, ontologies
can be very useful in improving keyword-based information retrieval techniques given
that ontological representation of knowledge can provide better and more relevant answer
to user queries in what is called concept-based information retrieval (Andreasen and
Bulskov, 2007).

SE domain ontologies are very useful in developing high quality, reusable software by
providing an unambiguous terminology that can be shared through the development
processes. Ontologies also help in eliminating ambiguity, increasing consistency and
integrating distinct user viewpoints (Uschold and Gruninger, 1996; Perez and Benjamins,
1999; Spyns, 2002; Zhao et al., 2009).

Using ontology to model the SE knowledge shortens the development time, improves
productivity, decreases cost, and increases product quality. Ontologies provide better

understanding of the required changes and the system to be maintained (Calero et al.,
2006).

In addition, SE ontologies can be used as a mean for translation between different human
languages when different users need to exchange information. Software developers with
different backgrounds and viewpoints working on the same project can be supported by
ontologies in the requirement specification process by offering a declarative specification

of the system, its components and the relationship between the components (Calero et al.,
2006).

There was an effort by different bodies to develop Software Engineering standards
followed by the forming of the ISO/IEC Joint Technical Committee 1 (JTC1) workgroup
in order to guarantee consistency and coherency among standards. The IEEE Computer
Society and the ISOJTC1-SC7 agreed to harmonize terminology among their standards.
Despite the efforts in research and international standardization, still there is no single
standard which embraces the whole Software Quality Assurance (SQA) knowledge.

This work is motivated by the need for having a consistant terminology and agreed upon
concepts among existing taxonomies of the SQA domain, where these taxonomies are
mainly found in standard documents. The aim is to investigate available SQA knowledge
resources, design and evaluate an ontological model of the SQA area that would facilitate
concept-based retrieval of the SQA domain. For the development of the SQA ontology,
1) conceptual model of the SQA knowledge area should be defined then 2) machine-
readable SQA formal ontology based on the conceptual model is to be implemented, and
3) finaly the developed SQA ontology is to be evaluated.

According to PMBOK (2008, p.4), “Generally recognized” means that the described
knowledge and practices are applicable to most projects most of the time, and that there is
widespread consensus about their value and usefulness. Carful analysis is done to identify
knowledge that is up to the described level to ensure the resulting SQA ontology
represents the SQA knowledge that is generally recognized.

1.2 Research Scope "

The work presented in this research thesis combines theory and techniques from SE, SQA

in particular and the ontologies. A macro view of the scope of this work is illustrated in
Fig. 1.1.

Semantic Layer

=
/ £2
O 5 =
2]) 2
Ontologies | g 28 S 5
= s 2 e "
o -
= | 33
\&
-

App]ication Layer ..
k..-.'.~' --,.'....A
Developer Student

(E-learning in the Workplace) (Traditional Learning Scenario)

Figure 1.1: Research Scope

The primary source for development of the SQA ontology is the SWEBOK guide (2004),
in addition to that, ISO and IEEE standards (ISO 9126, IEEE 12207, IEEE 610.12, IEEE
00100) and other documents such as PMBOK (2008).

1.4 Conclusion

This Chapter presented the motivation, aim and scope of the research. Ontology
definition, components, development tools and languages are presented in chapter 2 with

some examples of existing works in using ontologies in e-learning applications.

Chapter 3 introduces some basic background of two main relevant knowledge areas: SE
and software quality in the context of SE. In addition, the Chapter presented exisiting

ontologies for SE knowledge domain.

Chapter 4 presents review and analysis of ontology development methodologies and the

approach used to model the SQA knowledge area.

The SQA conceptual model with detailed description of the vocabularies and

relationships extraction process is presented in Chapter 5.

Chapter 6 addresses the ontology evaluation approaches used to validate the developed
SQA ontology. 1t presents accomplished work, experimental results and analysis of the

results.

Application-based evaluation has been used where e-learning prototype was implemted to
validate the ontology deployment. Chapter 7 describes the architecture and the main

software components and techniques used in developing the prototype.

Finally we conclude the work and provide direction to future research in Chapter 8.

+

Chapter2: Ontologies as Models of Knowledge

For the purpose of development of conceptual model of the SQA domain, it is necessary
to define concise set of terms and their realationships for which is usually used
ontologies. This chapter begins with defining ontology in different domains ranging from
philosophy to computing and information technology domains. Then, it reviews some
ontology aspects including (languages, components, tools, etc.). Finally, Section 2.7
represnts existing work that is related to using ontologies in education. Review of
methodologies used to develop domain ontologies for the field of engineering and

information technology are presented in Chapter 4.

2.1 Ontology Definition
“The Latin word ontologia was created in 1606 by Lorhard and the first
occurrence of "ontology" in English can be found in a work by Gideon Harvey of
1663”. (Corazzon, 2013)

Corazzon distinguishes two types of ontologies: pure philosphical ontology and applied
scientific ontology. According to the Oxford English Dictionary (OED) the first
appearance of the word “Ontology” was in 1721 in Nathan Bailey’s dictionary which
defined ontology as “an account of being in the abstract”. The Webster’s third new
international dictionary defines ontology as: “a science or study of being: specifically, a
branch of metaphysics relating to the nature and relations of being; a particular system
according to which problems of the nature of being are investigated”. The term
“Ontology™ in philosophy is concerned with the study of being or the theory of the nature
of existence (Gruber, 2008). Ontology in philosophy is also defined as the science of

what is, of the structure of objects, events, processes and relationships among them
(Smith, 2003).

Later the term ontology has been adopted by Artificial Intelligence (Al) researchers who
established the idea of creating ontologies as computational models that enable automated

reasoning (Gruber, 2008). According to (Neches et al., 1991) ontology “defines the basic

terms and relations comprising the vocabulary of a topic area as well as the rules for

combining terms and relations to define extensions to the vocabulary”.

The most commonly used definition is: "Ontology is an explicit specification of a
conceptualization” (Gruber, 1993). Conceptualization is an abstract, simplified view of
concepts, objects and all other entities of domain knowledge and the relationships among

them.

Based on Gruber’s definition many other definitions were proposed. Borst added two
requirements to the definition of Ontology:1) formal that means the ontology is machine
processable, and 2) sharable which means having a consensus on the knowledge
acquired by the community of experts. Borst’s definition states that: “Ontologies are
Jormal specification of a shared conceptualization” (Borst 1997 cited in Goomez-Pérez
et al. 2004 p.6).

A general definition (Uschold and Jasper 1999 cited in Goomez-Pérez et al., 2004 p. 8)
states that: “onmtology may take a variety of forms, but will necessarily include a
vocabulary of terms and some specification of their meaning. This includes definitions
and indications of how concepts are interrelated which collectively impose a structure on
the domain and constrain the possible interpretations of terms” (Uschold and Jasper

1999 cited in Goomez-Pérez et al., 2004 p. 8).

In relation to computer science, “ontology refers to computer-based resources that
represent agreed domain semantics. Ontology consists of relatively %eneric knowledge

that can be reused by different type of applications or tasks” (Spyns et al., 2002).

More definitions can be found in the literature, in particular in (Goomez-Pérez et al.,
2004) and (Calero et al., 2006).

Ontologies can be classified based on their contents (general ontology, domain ontology,
and task ontology), the subject of the conceptualization, the level of dependence on a
particular task, the richness of its internal structure, the purpose, degree of formality, and
the benefits of the ontology (GoCmez-Pérez et al.,, 2004). Moreover, the Ontology
community differentiates between taxonomic ontologies and those that model the domain

in a deeper way with more restricted semantics of the ontology (i.e. ontology axioms).

The ontology community also differentiates lightweight ontologies that include individual
concepts, relationship between concepts, concepts taxonomies, and properties that
describe the concepts and heavyweight ontologies that add constraints and axioms to the
lightweight ontologies (Alyahya, 2006).

2.2 Upper-level and Domain Ontologies

Recall that the term ontology in philosophy characterises existence, this conceptualization
of the world is called a World ontology that includes all existence concepts. Usually this
ontology contains upper (top-level) ontologies and domain ontologies (Calero et al.,
2006). Upper-level ontologies provide basic and very general concepts across domains
and give general notations to which all terms in domain ontologies can be linked
(GoSmez-Pérez et al., 2004). Sometimes domain ontologies inherit from upper-level
ones, but often domain ontologies are built then linked to upper-level ontologies. Cyc, an
ontology of huge amount of common sense knowledge (Lenat and Guha, 1990), and the
Standard Upper Ontology SUO, a large general-purpose formal ontology (Pease and

Niles, 2002 cited in Goomez-Pérez et al., 2004), are examples of upper-level ontologies.

2.3 Ontology Components

Different knowledge representation languages exist for ontology implementation. Each of
them provides different components that can be used in building ontologies. However,

the following minimal set of components is shared among ontoldgy representation
languages (Calero et al., 2006):

. , i —

set of objects. Classes in ontology are usually organized in hierarchal taxonomies through
which inheritance mechanism can be applied. Some examples of classes are: =
(cities, villages, etc.); (Ford, BMW, etc.), and

Classes can contain individuals, other classes (sub-classes), or combination of both.

Ontologies vary on whether they contain a universal class (a class that contains
everything) or not. OWL ontologies have the

Relations(Properties) represent a type of association between concepts of the domain.
Ontologies usually contain ordered binary relations where the first argument represents
the domain of the relations and the second argument represents the range. For example
the binary relation drives has the concept Person as a domain and the concept Car

as the range.

Binary relations are sometimes used to express concept attributes. Attributes are usually
having their range as a datatype such as string, number, etc. in OWL relations are named

ObjectProperties while attributes are named DatatypeProperties.

Instances are used to represents elements or individuals in an ontology. Instances (or
individuals) are the basic, “ground level” components of an ontology. For instance Tom is

an instance of the class Person.

Formal Axioms model sentences that are always true. Formal axioms are used to verify
the consiciness of the ontology and to infer new knowledge (Gruber, 1993). An axiom in
the traveling domain could be that it is not possible to travel from North America to
Europe by train.

2.4 Ontology Representation Languages

There are many languages available for ontology representation. In 1990s, ontologies

were built using mainly Artificial Intelligence (AI) modelling techniques. Such languages
were based on:

L4

* first order logic such as KIF (Genesereth and Fikes, 1992);

¢ frames combined with first order logic such as Cyc ontology (Lenat and Guha, 1990)
and Ontolingua (Farquhar et al. 1997 cited in Goomez-Pérez et al., 2004);

® description logic such as LOOM (MacGregor, 1991).

Later, the boom of the internet led to the creation of ontology languages that can take
advantages of the features of the Web known as Web-based ontology languages or
ontology markup languages (Calero et al., 2006). The most important examples of these
markup languages are: RDF(S) (Lassila, and Swick, 1999), DAML+OIL (Horrocks, and

Van Harmelen, 2001), and OWL (Antoniou, and Van Harmelen, 2003). From all of them,
RDF and OWL are the ones that are being actively supported now. Even though, RDF is
developed long before the Web, the serialized version of RDF(s) in XML makes its way
to the Web since the Web is based on XML. A detailed classification and review of

ontology representation languages can be found in (Goomez-Pérez et al., 2004).

Among the available ontology representation languages, the Web Ontology Language
OWL has been selected in this research. Recently OWL is the ontology language that is
preimerly recommended by the W3C. The OWL knowledge representation capabilities
that allow defining objects as classes, properties as either ObjectProperty (relation) or
DatatypeProperty (attribute), and individuals (instances) of different classes.
Furthermore, OWL provides the possibility to reason about classes and individuals. It
provides three sub-languages: OWL Lite, OWL DL, and OWL Full ordered with

increased expressiveness.

2.5 Ontology Development Tools

Implementing ontologies directly in an ontology language, without supporting tool,
makes the ontology building process complex and time consuming. To ease the task and
help developers with some ontology development activities, the first ontology
development environment was created in 1990s. Few years later, the number of ontology
tools has greatly increased. Goomez-Pérez and Corcho (2002) distinguish the following
ontology tools: ontology development tools, ontology evaluation tools, ontology merge
and alignment tools, ontology learning tools, ontology querying and inference engines,
and ontology-based annotation tools. Overview and analysis of ontology learning tools

and techniques can be found in (Calero et al., 2006; Fernandez-Lopez and GOmez-Pérez,
2002).

The first ontology development (or editing) tool was the Ontolingua Server (Farquhar et
al. 1997 cited in Goomez-Pérez et al., 2004) available as a World Wide Web service. It
has been developed by Knowledge Systems Laboratories in Stanford to ease the
development of the Ontolingua ontologies. Ontolingua supports distributed and

10

collaborative editing of ontologies. Ontologies can be created from scratch or by

extending existing ones.

In 1997, WebOnto (Domingue 1998 cited in Goomez-Pérez et al., 2004) was released.
The main advantage of WebOnto was its strong support for collaborative ontology
edition, which allowed synchronous and asynchronous discussions about the ontologies

being built by groups of users.

Another extensible tool is the WebODE (Arpirez et al. 2001 cited in Goomez-Pérez et
al., 2004). This tool is based on HTML forms and Java applets. The core of WebODE is

its ontology access service, which is used by all the services and applications plugged

into the server.

A free open source standalone application with an extensible architecture is the Protégé
tool (Noy and McGuinness, 2001). The core of Protégé is its ontology editor, which can

be extended with plug-ins that adds more functions to the environment.

Based on plug-in architecture, the free, flexible and extensible environment OntoEdit
(Sure et al. 2002 cited in Goomez-Pérez et al., 2004) was created. It provides user-
friendly graphical interface and supports ontology development and maintenance. Its
ontology editor is a stand-alone application that exports and imports ontologies in
different formats (XML, FLogic, RDF(S), and DAML~+OIL).There are two versions of
OntoEdit: OntoEdit Free (with limited capabilities) and OntoEdit Professional, each with
a different set of functions.

wb

As the aim is to develop the SQA ontology from scratch, the tools and techniques that use

existing ontologies to build new ones have been excluded and Protégé was selected due

to the following reasons:
¢ Protégé is a free open source ontology editing tool with a variety of plug-ins and

widgets to support the system functionality and capability.
It has a user friendly graphical interface with easy to use menu-command tool.

It is supported with a clear user guide and supports the import and export of

ontology from/to different ontology representation languages (such as RDF and
OWL).

11

* Protégé has the ability to verify the ontology and to check consistency for

conformance with the language rules.

* Moreover, the “protégé-discussion” mailing list provides technical supports for

the users which save time and efforts.

2.6 Ontology Reasoning Techniques

Ontologies provide formal meaning of concepts in a domain knowledge leading to shared
and common understanding that improves communication between people and software
agents. Using ontologies to represent domain knowledge allows not only the definition of
concepts and their interrelationships but also inferring implicit relationships using

reasoning techniques.

Reasoning is important to ensure the quality of an ontology, for example to check
concepts consistency and derive implied relations (Baader et al,, 2005). Ontology
reasoning approaches supports inference through various kinds of logic: description logic,
first order logic, temporal logic to name a few (Shehzad and Ngo, 2004). There are many
ontology reasoning languages such as: the Description Logic Programs (DLP) (Baader et
al., 2005), the Rule Markup Language (RuleML) (Horroks et al., 2004), and the Semantic
Web Rule Language (SWRL) (Horroks et al., 2004; Parsia et al., 2005).

SWRL is a logic language based on a combination of OWL DL and OWL Lite
sublanguages of the OWL Web Ontology Language with the Unary/Binary Datalog
RuleML sublanguages of the Rule Markup Language. Table 2.1 shows a subset of the
reasoning rules that support OWL semantics (Wang et al., 2004). SWRL uses the
following syntax in writing user defined rules:

antecedent (body) ==> consequent (head)

where both antecedent and consequent are conjunctions of atoms a; * ..." a,. The atoms
can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom (x,y); where C is an OWL
description, P is an OWL property, and x,y are either variables, OWL individuals, or
OWL data values (Horroks et al,, 2004). Using this syntax, the following SWRL rule

asserting that the compcsmon of parents and brother properties implies the uncle
property:

12

Rule-1:

person (?x) * hasParent (?x, ?y) * hasBrother (?y, 2z)

==> hagUncle (?x, ?z)

Where the concept person has been captured using the OWL class Person, the parent,
brother and uncle relationships are expressed using the OWL object properties hasParent,

hasBrother, and hasUncle respectively.

Table 2.1: Some OWL Ontology Reasoning Rules

TransitiveProperty | (?P rdf:type owl:TransitiveProperty) *~ (?A 2?P ?B)
% (?B ?P 2C) ==> (?A ?P ?C)

subClassOf (?a rdf:subClassOf ?b) ~ (?b rdf:subClassOf 2c)
==> (?a rdf:subClassOf 2c)

subPropertyOf (?a rdf:subPropertyOf ?b) * (?b rdf:subPropertyOf
?¢c) ==> (?a rdf:subPropertyOf ?c)

disjointWith (?C rdf:disjointWith ?D) * (?X rdf:type 2C) *
(?Y rdf:type ?D) ==> (?X owl:differentFrom ?Y)

inverseOf (?P owl:inverseOf ?Q) * (?X ?P ?Y) ==> (?Y ?Q ?X)

Els

DLP is the intersection set of strings of Horn logic and OWL while SWRL is the union of
them. In DLP, the resulting language has very unusual looking description logic and
overall inexpressive language (Parsia et al., 2005).

2.7 Ontologies in Education and e-Learning Applications

Ontology can be used as a tool for the representation of a specific domain knowledge
which offers a consensual - shared understanding of the domain knowledge to be
exchanged and- reused among people and organizations. In addition, the great
expressiveness of the knowledge in the domain ontology supports the teaching and

13

learning of the domain as it is machine-readable, and thus, can be used for e-learning

purposes.

According to Stojanovic and colleagues (2001) ontologies in e-learning can be used to
describe the content, the context, or the structure of the learning materials. For instance,
when searching for a learning material, the content refers to what the learning material is
about (the topic) and the context refers to the form in which this learning material is
presented. However, structured ontologies breaks down learning materials into small bits
of information (or chunk of knowledge) that can be connected to each other in order to
build up a complete course. In this thesis, we adopted the approach based on the first and

second category (i.e. the content and context ontologies)

Ontologies can support teachers in the course construction phase in the analysis and
annotation of the learning objects where the course can be seen as a path over the
ontology model of the course content. In addition, ontologies can support students to

follow the suggested learning path or dynamically modify it according to their needs
(Nicola et al., 2004).

Developing quality software requires well trained graduates with high SQA skills.
Unfortunately, experience shows that most institutions are unable to graduate software
engineers to meet manufactures expectations. This is mainly due to: (i) the fast changing
discipline; (ii) inability to deal with large complex problems in a limited educational
setup; and (iii) the variety of methods, techniques, and technological tools used in this
field (Saiedian and Weide, 2005; Boehm et al., 2009). *

One problem in teaching sofiware engineering as a discipline is the use of textbooks,
where the descipline is considered as a set of topics and subtopics that are studied
sequentially. The discipline may be studied as separate modules/courses that may be not
coordinated in terms of consistency and completeness. Moreover, educators in this area
have different backgrounds, programming language preferences, and usually use different
jargons which lead to a variety of understanding and overlapping of meanings of the
same software engineering térm or concept. This often results in lack of communication

between the same team members and ambiguity in understanding requirements and
defining system specifications.

14

We, as educators, believe that we share part of the responsibilities for the gap between the
software engineering graduates’ knowledge and what is required in practice by software
industry. Therefore, to improve the way of learning and teaching software quality, an
ontological approach will be used to model SQA knowledge area (Bajnaid et al., 2010).

The following sub-sections present related works of: 1) developing domain ontologies for

learning purposes and 2) using ontologies in context-aware personalised learning.

2.7.1 Domain Ontologies for Learning

In an attempt to create meaningful and effective learning strategies in teaching C
programming, Sosnovsky and Gavrilova (2006) accumulate their experience in teaching
several C-related programming courses to present an educational ontology that reflects
their vision on what is important in studying C programming. In addition, they propose a
stepwise algorithm to ontology development with a set of recommendations for ontology
design. The proposed algorithm generalizes their experience in building different

educational ontologies for e-learning in the field of Al and neurolinguistics.

Another educational ontology created by Jakkilinki and colleagues (2005) for their
Multimedia Design and Planning Pyramid MUDPY model. They define MUDPY as a
meta-design framework that facilitates successful creation of multimedia projects and
supports teaching multimedia design and planning. MUDPY is being built to guide a
novice learner through the multimedia design and planning process by answering queries
on the MUDPY elements and their relationships. The MUDPY ontology support
formalizing the processes of the multimedia design and planning which helps in teaching
the same content for all learners. Dzcmydiene and Tankeleviciene (2008) proposed the
framework for manual ontology development methodology used in building the “e-

Learning Tools” domain ontology to enhance and improve the distance learning course
“e-Learning Technologies”.

For better software engineering education, a project-based collaborative leamning
environment was developed for learning software design patterns (DPs) (Jeremi¢ et al.,

2011). The environment integrates an existing learning management system, a software
modelling tool, diverse collaboration tools and online repositories of DPs.

15

2.7.2 Ontology-Based Personalized Learning

Despite the development of many e-learning systems that enable flexible delivery of
learning content, many research efforts are still needed to develop adaptable e-learning
systems that take into account the changing context of the learner, or what is called
context-aware e-learing systems. Context is defined as any information that can be used
to characterize the situation of an entity. An entity is a person, place, or object (Dey and
Abowd, 2001).

For such systems, learning will become more integrated with work and will use more
modular and just-in-time delivery system. To achieve these goals, new techniques are
needed to model both explicit and tacit knowledge about the learner, including learner's
goals, background, actual progress in the learning process, timing constraints if any, and
current tasks and activities. Semantic Web represents a promising technology for
developing such context-aware personalised e-learning system, and the use of ontology in

particular supports expressive semantic representation of both explicit and tacit
knowledge.

In the field of personalized learning, an approach for a dynamically generated
personalized educational system powered by reasoning mechanisms has been proposed
(Henze et al,, 2004). The system uses three types of ontologies: a user ontology
(describing user characteristics), an observation ontology (modelling different possible
user interactions with the system), and a domain ontology (describing the concepts
covered in the knowledge domain and the relationships among concepts). They show how
rules can be enabled to reason over distributed information resources in order to

dynamically derive semantic relations that can be used to adopt a learning path.

The Learning in Process project (LIP) (Schmidt and Winterhalter, 2004) aims to integrate
e-learning and knowledge management technologies for a context aware learning object
delivery. The system suggests personalized learning program based on a matching

procedure between available learning material and user’s current context.

Berri and Benlamri (2006) have developed context-aware e-learning system consists of a
rule-based ontology and a search engine. Extracted knowledge from the source ontology

is used to recommend a learning path by firing a set of rules based on the learner profile.

16

The Leaming Object Context Ontology (LOCO) is an ontological framework that
captures necessary information for personalization learning process (Jovanovié et al.,
2006).The central component of the framework is the LOCO-Cite ontology that serves an
integration point of the other related ontologies (the user model ontology, the learning
design ontology, and the content structure ontology). LOCO-Analyst, an educational tool
built on top of the LOCO framework, aims to provide teachers with feedback on the

learning process taking place in a web-based learning environment (Jovanovi¢ et al.,
2007).

However, most of these personalized learning systems consider learner preferences and
interests but fail to consider the difficulty level of the learning materials which may lead
to the generation of poor quality learning paths.. In such cases learner could generate
perceptive overload or fall into cognitive disorientation due to inappropriate curriculum
sequencing during learning processes. In a way to solve this problem, Chen (2009)
proposes a novel genetic-based personalized learning path generation schema to provide
near-optimal learning path for individual learner. The schema based on an ontology-
based concept map is able to simultaneously consider the course material difficulty and
the relations between concepts of the prior and posterior knowledge between course

materials in generation personalized learning paths.

In the same area, an infrastructure for context-aware e-learning services based on
semantic knowledge representation, leamning context processing and adaptive content
recommendation has been developed (Yu et al., 2010).

b

Another similar context-aware e-learning system was developed by Das and colleagues
(2010). This System uses standardized context parameters to build the context models,
which in turn are used by a content management component to create learning resources

that are dynamically composed into basic learning objects based on the leaner’s context.

2.8 Conclusion

In this chapter it has been presented the most relevant definitions of the term ontology,
other definitions can be found in Artificial Intelligence and Information Technologies

17

literature. However, it can be noted that with all these definitions there is almost always a
consensus of the usage of the term ontology among ontology developers and users. It can
be concluded that ontologies are used to capture knowledge of a domain that can be
shared and reused by group of people of software agents.

The chapter introduced examples of domain ontologies that have been developed for
educational purposes (domain ontologies for learning, ontology-based personalized
learning, and ontology-based context-aware learning). Eventhough these domain
ontologies are developed for education, none of the ontologies is useful for this research
as each of them represents a different domain and hence cannot be re-used in the

development of the SQA ontology.

To our knowledge, there is no software quality ontology available for teaching and
learning purposes. Having the opportunity to build operational ontology will provide a

unique insight in teaching software quality in an e-learning environment.

The chapter then represents some related works that used ontological approaches for
building context-aware personalized e-learning systems. Various context parameters are
considered in existing e-learning system such as: learner personnel profile, expertise
level, learning preferences, learning situation, network, device...etc. (Das et al., 2010).
The e-learning prototype of this research work is presented in Chapter 7.

wt

-18

Chapter 3: Software Quality as Knowledge Domain

This chapter presents the background for the present research in several dimensions. The
chapter starts by presenting a brief history of the SE domain and the SWEBOK guide. A
brief history of the SQ as a SE area and quality issues in SWEBOK has been presented.

References to related work in developing ontologies for the SE domain are made in this

chapter.

3.1 Software Engineering as a Knowledge Domain

This section introduces Software Engineering (SE) as a knowledge domain giving a brief
history of the domain followed by a brief presentation of various versions of the Soft Ware
Engineering Body of Knowledge (SWEBOK) guides.

3.1.1 A Brief History of Software Engineering

In 1968, the North Atlantic Treaty Organization (NATO) Science Committee sponsored a
conference to discuss all aspects of software including design, implementation,
distribution, and services of software. The term “Software Engineering” was known after
the conference (Simons et al., 2003). There was a general agreement in the conference
discussion that comparing to other engineering discipline, software engineering was in a
very elementary stage of development. As an engineering branch, software engineering
has some aspects (such as design life cycle) that are generally similar to other engineering

branches while other aspects (such as problem analysis) were dissimilar due to the
abstract nature of software.

The chosen term “Software Engineering” implies the need for software manufacturer to

be based on theoretical foundations and practical disciplines as other engineering
branches (Mahoney, 2004). .

Glass (1997) divides the software engineering era into three periods:
1. The Pioneering Era (1955-1965)

19

Software people need to rewrite their programs to run in new computers coming up
almost every year or two. New high-level languages like COBOL and FORTRAN were
developed to translate old software to meet the needs of the new machines. No computer
science principles had been taught yet.

2. The Stabilizing Era (1965-1980)

The IBM 360 came to sign the beginning of the stabilizing era and put the end of the era
of emerging a new computer every year or two. Finally software people started writing
new codes instead of rewriting the old ones. The beginning of the notion of time-sharing
emerged. The value of software became huge as the software field stabilized. Structured
programming appeared in the middle of this era. In addition, disciplines such as Artificial
Intelligence (AI) came into existence. With the raising of Job Control Language (JCL),
programmers needed to write the whole program in a new language to tell the operating

system and computer what to do.

3. The Micro Era (1980- present)

Computer prices dropped dramatically. Every programmer had a desktop machine. The
user-friendly GUI replaced the JCL. The most-used programming languages were 15 to

40 years old. There was an increasing need of more and better research in the software
field.

Osterweil (2007) claims that, the history of software engineering clarifies the dual nature
of today’s software engineering. It has two activity types: the development of supportive
tools and technologies to address the practical problems; and the search for better and

deeper understandings as basis for those tools and technologies.

Due to the successful collaboration between software engineering practitioner community
and research community, software development is now viewed as an industry that
supplements economies of countries, nations, and even individuals. The continuous flow

of problems from practicing software development opens new area of research and
investigations.

Even though software engineering knowledge is more stable today, software engineering

terms are inconsistent and may have different meanings in different contexts. The need

20

for international agreements among standards, practitioners, researchers, organizations,
and any related software engineering communities cannot be ignored. This was the main

purpose to develop the SoftWare Engineering Body of Knowledge (SWEBOK) guide
(2004).

3.1.2 The SWEBOK Guide

In the field of software engineering, communication is a key activity in developing
software and the lack of communication leads to difficulties in identifying software
requirements and specification. The ambiguity of the natural language of the participants

leads to mistakes and non-productive efforts and limits the potential of reuse and sharing
of knowledge.

Software engineering researchers face the challenge of knowledge integration that
implies wasting time and efforts due to the lack of shared knowledge among members in

the group project or with other groups or stakeholders.

In 1990, the planning for an international standard with a general view on the software
engineering knowledge began. Five years later, the ISO/IEC 12207 was completed and
published. This standard considered as a starting point to capture the software
engineering body of knowledge.

In 1998, thirty years after the first use of the term “Software Engineering” in the 1968’s

NATO conference, the SWEBOK project was initiated with the following objectives
(Mendes and Abran, 2004):

* To characterize the contents of the software engineering discipline;

To provide topical access to the software engineering body of knowledge;
To promote a consistent view of software engineering worldwide;

To clarify the place — and set of boundaries — of software engineering with respect to

other disciplines such as computer science, project management, computer
engineering, and mathematics; and

21

* To provide a foundation for curriculum development and individual certification

material.

In December 2001, the first trial version of the SWEBOK guide was published. More
than 500 reviewers from over 40 countries were involved in the project to develop the
SWEBOK guide by the IEEE/ACM working group (Dupuis et al., 2003). The main
purpose of this effort was to characterize the bounds of the software engineering

discipline and provide access to the literature that describe the generally accepted
knowledge of the discipline.

The trial version of the guide was released for general trial usage and applications.
Review and comments of over 120 reviewers were used in developing the improved
version in 2003, leading to the 2004 version. For example the software quality knowledge
area was a mix of product quality and process quality; this was rewritten to consider
product quality only (SWEBOK, 2004).

Transparency and consensus are principles developed by the project team to guide the
project. Transparency means that all processes are documented and published so that
participants are aware of project decisions and status. While consensus ensures that any
statement is agreed by all significant parties (SWEBOK, 2004).

The resulting project is not the software engineering body of knowledge itself but a guide
to the knowledge that hierarchically structured the field of software engineering into ten
knowledge areas (KAs). For each subject, the reader is referred to book chapters or paper
that describes the knowledge in that subject briefly. Each knowledge area is treated as a
chapter in the guide plus a chapter gathers disciplines that are strongly related to the

software engineering domain. According to SWEBOK, the software engineering is
organized into the following ten knowledge areas:

1. Software Requirements. The guide defined a requirement as “a property that must be
exhibited in order to solve some real-world problem”,

2. Software Design. The guide adopted the IEEE definition of software design as “the

process of defining the architecture, components, interfaces, and other characteristics of a
system or component” and “the result of (that) process”.

22

3. Software Construction. According to the guide, software construction refers to the
detailed creation of working, meaningful sofiware through a combination of coding,
verification, unit testing, integration testing and debugging. The guide shows the links of
software construction to other KAs strongly to software design and software testing.

4. Software Testing. Testing is the activity of identifying defects and problem in order to

evaluate and improve a product quality.

5. Software Maintenance. Software need to be maintained to recover anomalies, be

adapted to environmental changes or new user requirements.

6. Software Configuration Management. The term Configuration Management (CM)
applied to all items to be controlled (software and hardware). It benefits project
management, development, maintenance, assurance activities, and customers and end

users. The guide clearly shows the close relation between SCM and the software quality
KA.

7. Software Engineering Management. The guide adopted the IEEE definition of
software engineering management as the application of management activities - planning,
coordinating, measurement, monitoring, controlling, and reporting — to ensure that the
development and maintenance of software is systematic, disciplined, and quantified. The
guide uses the Project Management Body Of Knowledge (PMBOK) as a source of

knowledge in the software engineering management KA.

8. Software Engineering Process. The guide deals with software quineering process
KA at two levels. First: the technical and managerial activities within the software life
cycle processes during software acquisition, development, maintenance, and retirement.
While the second is the meta-level concerns with the definition, implementation,

assessment, measurement, management, change, and improvement of the project life
cycle processes.

9. Software Engineering Tools and Methods. This Chapter presents the methods and
computer-based tools the assist the software life cycle processes.

10. Software Quality, What is software quality and what its importance as a software
engineering knowledge area are questions answered by the software quality chapter in the

23

SWEBOK guide. The following section considers the software quality in the context of

the software engineering domain in detail.

Each knowledge area includes a matrix to related references (book chapters, referred
paper ...etc.) to each topic. The organization of the ten knowledge areas is not sequential.

Links between KAs are not of input-output base and are given within text whenever
needed (SWEBOK, 2004).

Public and private organizations can benefit from the SWEBOK guide in defining their
education and training requirements, develop performance evaluation policies, classify
jobs, and making public policy regarding professional licensing and guidelines. In
addition, universities and learning institutes will benefit from the SWEBOK guide in

defining certification rules, accreditation policies, curricula, and course contents (Dupuis
et al., 2003).

3.2 Software Quality Knowledge Area in the Context of Software
Engineering Domain

Over the past decades, changes in hardware have been absolutely remarkable and even
changes in software and the ability to build large and complex software improved
dramatically. The following section presents a brief history of the software quality

knowledge area followed by a presentation of the software quality domain issues in the
context of the SWEBOK guide.

wh

3.2.1 A Brief History of Software Quality Issues

Practically achieving quality is a difficult process due to the fact that developing software
within schedule and budget has usuvally higher priority than achieving quality
characteristics. In addition, achieving quality requires combining knowledge of related
disciplines and experience of experts with different backgrounds (Kusters et al., 1999).

Software industry today pays more attention to the customer’s requirement of better
quality software. Industrial data shows that 50% of the project budget is spent on

activities toward increasing quality such as testing. Industry leaders show that half of the

24

testing costs can be reduced by applying practices and techniques to control quality
throughout the software development life-cycle (Hilbumn and Towhidnejad, 2002). A
study by the Jet Propulsion Laboratory (JPL) shows that the ratio of defect detection and
correction costs is 1:10:100:1000 through requirement: design: implementation: release.
This means that fixing defects at the release phase costs 1000 times more than at the
requirement phase (Rothman, 2002).

Over the past decades much effort has been put in software quality issues. Research
papers and books on software quality have been published, and new standards were
developed. The ISO-9000 (1992) series in particular become the most widely used by
organizations to manage quality. Different standards interpret different definitions to

software quality or quality in general. Let’s consider for example the following ones:

- In the standard IEEE-610 (1990) Quality is defined as:

1. the degree to which a system, component, or process meets specified
requirement, and

2. the degree to which a system, component, or process meets customer or user
needs and expectations”.

-In one of the popular textbooks (Pressman, 2005) Software Quality is defined as
“conformance to explicitly stated functional and performance requirements, explicitly

documented standards, and implicit characteristics that are expected of all
professionally developed software”

.t

However, to fully understand the different practitioners’ view of quality, how to develop
and achieve quality in software product, and how to measure and improve software
quality, more research and studies are required in the field.

To achieve the required level of quality, organizations spend more efforts and resources
through the development process. This includes technical development, process guidance

and control, and some management activities to ensure what should be done, the way and
time to do it and what should-be not done.

Software product could not be highly qualified just by accident; quality processes lead to

quality products. The effectiveness of the software development process can be measured

25

by comparing the used processes by the widely accepted best practices (Thomas et al,,

1996). 1t is difficult to say that a product quality is better than the quality of the process
used to develop that product.

3.2.2 Software Quality Issues in SWEBOK 2004

Quality cannot be added to some steps of development or after completion. Quality
implies in every action and step of the total development process from requirement
definition to post-delivery evolution. For this reason, quality issues penetrate and cover
all other knowledge areas of the SWEBOK guide.

Wille and colleagues (2003) analysed how the term “quality” and its related concepts are
used in the context of the SWEBOK guide (2001 trial version). Table 3.1 summarizes
their findings of the inclusion of the term “quality” into the other KAs in SWEBOK. The

table illustrates how software quality issues penetrate into other software engineering
knowledge areas.

Table 3.1: “Quality” in the ten SWEBOK KAs (adopted from Wille et al., 2003)

Knowledge Area The number of times “quality”
is mentioned
Software Requirement 60
Software Design 21
Software Construction 9 =
Software Testing 16
Software Maintenance 22
Software Configuration Management 19
Software Engineering Management 32
Software Engineering Process 16
Software Engineering Tools and Methods 4
Software Quality 187
Total 386

26

3.2.3 Bloom’s Taxonomy for SQA Ontology Concepts

Bloom’s taxdnomy levels (Bloom, 1956) contains six levels of educational objectives: 1)
knowledge (remembering, recalling); 2) comprehension (understanding); 3) application;
4) analysis; 5) synthesis (creating); and 6) evaluation.

The SWEBOK guide (2004) maps all knowledge areas to Bloom’s taxonomy levels for

one software engineer profile: a graduate with four years of experience.

Bourque and colleagues (2004) proposed Bloom’s levels for two other profiles: new
graduate and experienced engineer working a software engineering process group. They
defined the levels for four knowledge areas of SWEBOK including software quality. In
their approach no topic of the Software Engineering Education Knowledge, a body of
knowledge developed for the purpose of designing software engineering curriculum in
university, is assigned a rating higher than the application level for a new graduate
profile. Their approach is applicable for undergraduate students too. In this research,
Bourque’s approach to identify the level of Bloom’s learning objectives for the concepts
of the developed SQA ontology has been followed. Table 3.2 presents software quality
topics extracted by the author from SWEBOK and standards using Bloom’s taxonomy

and Bourque’s classification.

Table 3.2: Bloom’s Taxonomy for the some SQA Ontology Concepts

SQA topics according to SWEBOK and standards Bloom’s Taxonomy Level
Software engineering process quality Application
Software engineering product quality Application™
Software Quality Assurance Comprehension
Verification and Validation Application
Management Review Comprehension
Technical Review Comprehension
Inspection Application
Walkthrough Application
Audit Comprehension
Technique Application
Testing Application
Quality Measurement Application

27

3.2.4 Software Quality Knowledge Area in the Context of Software

Engineering Graduate Courses

Experience shows that traditional computer science departments were unable to graduate
software engineers to meet manufactures expectations. Today’s software engineers
should be taught main software engineering concepts in addition to technical concepts
and software engineering technologies. One problem educators face from the knowledge
area side is the content or what specific ideas to be taught? Another one from the

pedagogy side is what are the best ways of teaching those ideas? (Saiedian and Weide,
2005).

Experts from different universities, industry, and professional societies helped to create
the first volume of the Graduate Software Engineering Reference Curriculum GSWERC
that provides a set of recommendations for university educators to use when developing
and improving curricula for a software engineering course at a master’s degree level.
GSWERC concentrates on the knowledge and pedagogy related to the software

engineering curriculum and based on recognized bodies of knowledge such as the
SWEBOK Guide (Klapholtz et al., 2009).

A result of the GSWERC is the Core Body Of Knowledge CBOK that is expected to be
learned by all graduates in every university. It includes knowledge units that mostly
based on the SWEBOK taking into account the expected level of the Bloom’s taxonomy
of educational objectives (Bloom, 1956). Fig. 3.1 illustrates the percentage devoted to

CBOK areas while Table 3.3 contains areas of the CBOK with crosscutting topics that are
associated with the software quality knowledge.

The proposed structure of the software engineering areas and topics and the associated
percentage to each area in the CBOK shows that 8% of the core body of knowledge is
pure software quality while each other knowledge area includes software quality related
concepts and issues as part of its knowledge. Consider for example requirement
engineering where quality is involved in the requirement validation subtopic. Also
according to the table testing ~ a quality technique — makes up 10% of the CBOK. This in
turn shows that software quality related topics can make up 30-35% of the recommended
subjects by GSWERC for any software engineering master level degree. Analysis of the

28

inclusion of software quality into other SWEBOK KAs that shows how software quality

involves much more material than what is presented in current courses is presented later.

A Ethics and
Professional Conduct
K. Software Quahty—\

. e
\ B System Engineerning
J. Software 4 " "

Engineerning Process | C. Requirements

Engineering

| Software Engineering
Management

H. Software
Configureation

~—D. Software Design
Management

G. Software / L0 1
Maintenance e E. Software
f Construction

F Software Testing

Figure 3.1: Percentage Devoted to CBOK Areas (Klapholtz et al., 2009)

Although software quality makes up to 30-35% of the CBOK, it is rarely to find a
computer science curriculum with a dedicated software quality course. This means
graduates with lack of software quality knowledge and experience and in turn more

complaints from organizations about the new employees’ level of knowledge in the field.

Moreover, software engineering teachers have different background, languages, and
using different jargon which leads to a variety of understanding and overlapping of the
meaning of the same software engineering term or concept and results in lack of
communication which in turn leads to difficulties in identifying requirements and
defining system specifications. The ambiguity of natural languages of participants leads

to mistakes and non-productive effort and limits the potential of reuse and sharing of
knowledge.

To reduce and eliminate this conceptual confusion, we need a common understanding and
sharing of knowledge of the problem domain and using a general agreement on
terminology among all interested people. "Without such a consensus, no licensing

€Xamination can be validated, no curriculum can prepare an individual for an examination

29

and no criteria can be formulated for accrediting a curriculum” (Wille et al., 2004). A
shared taxonomy of entities called ontology may provide a significant solution to the
incompatibility of terms problem. In addition, the flexibility of ontologies eases
information integration (information can be combined from various sources and new facts
can be infer easily) and allows to extend existing ontologies and the reuse of existing
work. Ontologies also encourage interoperability and broader usage of knowledge when

allowing relating one’s ontology to someone else’s conceptualization (Happel and
Seedorf, 2006).

With the new technological advances and the use of e-learning techniques for teaching
software engineering, ontologies can be used to structure the domain knowledge and

make it used and shared among people and software agents.

Table 3.3: CBOK Topics Related to Software Quality

Knowledge Area Approximate % of the Core
System Engineering %
 Verification and Validation
Requirement Engineering 14%
® Requirement Validation
Software Design 21%
s Software Design Quality Analysis and
Evaluation 0
Testing 10%
Software Engineering Management 16%
® Review and Evaluation
Software Engineering Process %
® Process Assessment |
* Product and Project Measurement
Software Quality) 8%

30

3.3 Existing Ontelogies for SE Knowledge Domain

Software engineering projects require high level of communication and exchange of
information among projects participants. Having different knowledge background and
speaking different languages, makes this type of communication problematic in the field
of software engineering. Using ontologies could eliminate this problem. This in turn
encourages researchers to propose ontologies in their tools and projects. Classification of

ontologies used for semantic-web based software engineering can be found in (Zhao et
al., 2009).

3.3.1 The SWEBOK Ontology

The SWEBOK guide provides an international recognized consensus in software
engineering terminology. Software engineering domain ontology if one exists will ease
the share and reuse of the knowledge accumulated in the software engineering field, and

will allow automatic interpretation of this knowledge.

Wille et al. (2003) presented a candidate approach for the design of ontology for
SWEBOK. The proposed ontology would include all important concepts of software
engineering knowledge supported by definitions and relationships among concepts and
arranged in a taxonomic hierarchy. In their proposed approach, Wille and colleagues
claimed that the ontology should include all important concepts and sub-concepts of the
software engineering knowledge area where SWEBOK represents the super-class and the
ten knowledge areas are subclasses of the super-class represented by "4 structured set of
concepts and corresponding definitions. The suggested structure of the ontology includes
bidirectional links to internal and external references to allow fast user access to either
concept or reference by means of the SWEBOK ontology (Fig. 3.2). The design approach
was proposed but the ontology has not been developed yet.

Mendes and Abran (2004) develop a proto-ontology as a starting point to develop a
comprehensive ontology for the software engineering knowledge area. This initial
ontology was presented in the Web Ontology Language OWL (Antoniou, and Van
Harmelen, 2003; Smith et al., 2004) where it defines the concept SWEBOK as the root

class of the ontology (which is in-turn a subclass of the owl:Thing, a class that contains

31

all classes). The ten knowledge areas were defined as the main classes linked to the root
class by the hasParts property. Each knowledge area can be successively expanding,

revealing new classes with more details.

root slement Sofiware Eagineering Body of Knowledge

sub element concept 1 contept 2 . o 0 0 conceptn

- — -

tools to use references refavence 1 reference 2 reference 3 bl reference n

Figure 3.2:Design and Structure of the SE Ontology(Wille et al., 2003)

The ontology classes (super-class and subclasses) are structured in a taxonomic hierarchy
using generalization/specialization links. Other types of relations or links used are:
contains, defines, isTopicOf, isDefinitionOf, etc.

Wille et al. (2003) were the first to present a formal approach for designing ontology for
SWEBOK. Their work was limited to modeling the taxonomy of software engineering as
defined by SWEBOK knowledge areas. Also, their ontology is tightly designed to the

SWEBOK naming space, which makes it difficult for mapping with externally defined
concepts.

To relate the SQA knowledge with other knowledge area of the SE domain, the informal
SWEBOK ontology (Wille et al., 2003) was more significant. Their inventory of the term
‘quality’ in some SWEBOK chapters will be used in the conceptualization phase of the
development of the SQA ontology proposed in this thesis.

Although comprehensive domain ontology in software engineering does not exist yet,

there are some efforts to develop partial or sub-domain ontologies.

32

3.3.2 Software Measurement Ontology

Garcia and colleagues (Garcia et al., 2006; 2009) analysed selected existing international
standards and research proposals that deals with the software measurements terminology.
Commonalities, gaps, and terminology conflicts are identified in order to unify a
consistent terminology for software measurement. The proposed Software Measurement
Ontology SMO provides a coherent terminology among different software measurement

proposals and standards. Fig. 3.3 shows the SMO ontology as illustrated in (Garcia et al.,
2006).

Information Need

(from and Oby
15 associated with 8
0.°
Type of Scale
(from Software Measures)
satisfies
1 |
incudes pelongsto
e Quality Model " Me ble C ae
and T
e P iitae andl Scale Unit of Measurement
y Bog .9 {trom (from
- °>.
. i 1 X
relates has
defned for PR P expressed in
1
1. 0~ 0 1 1
Entity Class has Attribute , - definedfor . Measure
(from Characteriz abon and Objectives) from and g i | from Software Messured
1 5 1
0- . x
0. i 1
includes
in
belongs to Is performed on
1.
0. Is performed *
Base Measure Derived Measure Indicator
From So twar ¢ Measur es) tfrom e {from Me.
(from C haracteriz astion and Objectives)
- ‘L
o 1. » b o L
« uses caiculated with
‘ N o P calculated with
Measurement Result .
(from Meas uremaent L) s - a
_- - .
1.
Ch and Ob uses
Software Measures

Measurement Approach
M

Figure 3.3: UML class diagram of the SMO Ontology (Garcia et al., 2006)

33

The development of the SMO ontology provides:

* abasis for comparative analysis of software measurement terminology;

» organizations with a set of coherent concepts for carrying the measurement processes
and storing their results in a consistent way;

* animportant communication medium among organizations;

» abasis for software measurement community to start their future agreement.
Unlike the ontology developed by Wille (2003), the SMO ontology includes detailed
knowledge about the measurement process, their attributes and results, while it does not

relate them to their SQA metrics and standards.

In the SQA ontology, software measurement and metrics are considered with relation to
the quality processes and attributes and hence the proposed ontology will not be used as

reference in the development of the SQA ontology of this research.

3.3.3 Software Maintenance Ontology

Software maintainers in their maintenance activity need knowledge about the software,
the problem it solves, the requirements of the problem, the structure of the system and
how it interacts with the environment, and the application domain. This knowledge may
come from the documents, the source code, the maintainer experience, and/or the
knowledge of the user. Studies suggest that from 40% to 60% of maintenance activities

are spent in collecting and recreating this knowledge (Pfleeger, 2002 and Pigoski, 1996
cited in Calero et al. 2006 p. 156). *

To save time and efforts, Nicolas and colleagues (Anquetil et al., 2005 cited in Calero et al.,
2006, p. 153-174) presented ontology of the knowledge used in software maintenance to
serve as the common bases for information exchange when performing maintenance, to
identify the scope of the knowledge needed to allow the checking of completeness and
coverage of information sources, to define concepts as an indexing scheme that might be

used in accessing relevant sources of information, and to identify the knowledge needed
as a ground to search for more information.

In the Software Maintenance Ontology, the knowledge of Software Maintenance is
organized into five different aspects: knowledge about the Software System, knowledge

34

about the Maintainer’s Skills, knowledge about the Maintenance Process, knowledge
about the Organizational Structure, and knowledge about the Application Domain.
Competency questions are used to clearly identify the ontology purpose and its intended

use. Fig. 3.4 shows how the five sub-ontologies combine in the general ontology.

g TR Computer Application

; Science Skills Domain

! i 7y

Organizational : ! deals with

Structure : requires :

1 | 1

M g\ Modification |y o Software

regulates Process sdtle ubod System

Figure 3.4: Software Maintenance Ontology Overview (Calero et al., 2006)

The developed software maintenance ontology can be used as a classification scheme to

categorize information one may need or gather to exchange information (Calero et al.,
2006).

As the software maintenance is out of the scope of this research, the proposed software

maintenance ontology will not be considered as a reference in developing the SQA
ontology.

3.3.4 The OntoTest Ontology 2

Based on the ISO/IEC 12207 standard, the OntoTest ontology (Barbosa et al., 2006) has
been developed to define a common well-defined vocabulary for software testing that can
be useful to develop supporting tools and to increase interoperability among tools.
OntoTest supports acquisition, organization, sharing, and reuse of the software testing
knowledge. OntoTest intends to explore the different aspects involved in the testing

activity, techniques and criteria, human and organizational resource, and automated tools.

35

Fig. 3.5 shows the main concepts of the OntoTest ontology (Testing Process, Testing
Phase, Testing Artifact, Testing Step, Testing Procedure, and Testing Resource). The
structure of OntoTest makes it flexible to reuse and integrate, depending on the

application, as a whole or some of its sub-ontologies.

2 Main Software
o® Testing Ontology
= >

£ A

@)

Testing Process Testing Procedure
@ Sub-ontology Sub-ontology
e 'i;z Testing Phase Testing Resource
5 2 Sub-ontology Sub-ontology
§ Testing Artifact Testing Step
Sub-ontology Sub-ontology

Figure 3.5: OntoTest (Barbsoa, 2006)

Even though, Software Testing as an SQA process is considered in the ontology proposed
in this thesis, the detailed tasks of the Software Testing process is out of the scope of our
SQA ontology. In our thesis, we have borrowed few aspects of the OntoTest ontology,
especially those related to testing processes, and resources, proposed by the Process and
Resource concepts, and the uses and invokes object properties. In our SQA ontology

testing is considered as an SQA process while detailed testing procedures, steps and
phases are out of the scope of this research.

3.3.5 Non-Functional Requirements Ontology

In software market, Non-Functional Requirements (NFRs) become more important in
distinguishing between competing software products. However, in practice, NFRs receive
little attention relative to Functional Requirements (FRs). In his PhD project, Kassab
(2009) proposed an ontological representation of the software requirements (FRs and
NFRs), their refinements, and their interdependencies. The work identified three views of
the NFRs ontology: the first view relates the NFRs with the other entities of the software
system being developed. The secénd view structures the NFRs using classes and

36

properties. The third view represents the measurement process and contains the concepts

used to produce measures to measurable NFRs.

Although the first view of the NFRs ontology (Kassab, 2009) gives an impression that the
work might be related to the SQA, the structure and view of the NFRs ontology is not

related and cannot be beneficial in building the SQA ontology of the current research
work.

3.3.6 Ontology for Software Product Quality Attributes

Towards the development of ontology for software product quality attributes (SWPQAs)
(Samhan, 2008; Kayed et al, 2009), the most common SWPQAs concepts and
terminology were evaluated and extracted from many documents, reports and proposals.
General relationships among the suggested concepts are also extracted. TextToOnto, an
ontology engineering tool based on text mining techniques and natural language
processing algorithms, was used to extract the ontology concepts from 34 related
documents. By applying elimination process with the aid of experts in the field the
extracted 292 concepts were reduced to 100 and finally 66 SWPQAs concepts based on

concepts’ frequencies. After using ontology evaluation technique, 125 SWQPAs concepts
were agreed.

Believing that reaching coherent ontology concepts accomplishes 70% of the ontology
building process, Kayed and colleagues (2009) proposed a framework that aims to
identify some important SWPQA attributes concepts that are heavily.used at different
definitions. As no formal model was proposed, the suggested concepts can be used to

evaluate our extraction of the quality attributes concepts as part of the SQA ontology.

3.4 Conclusion

The Chapter presented a historical background of the SE and the SQA knowledge areas.
It showed the initiation and objectives of the SWEBOK guide to capture the SE
knowledge and establish an-agreement on its structure and terminological ﬁeaunent
among the SE community. The SWEBOK guide organizes the SE material into ten
knowledge areas. The agreed structure of the SWEBOK guide was presented with the

37

focus on the SQA knowledge area in the context of the SWEBOK guide. Our findings of
the inclusion of software quality into other SWEBOK knowledge areas are presented in

Chapter 5. SQA in the context of SE graduate courses was reviewed based on the CBOK
that is expected to be learned by all graduates in universities.

A research of existing domain ontologies in the field of software engineering have been

carried out with the aim to reuse knowledge. Analysis of the pevious works and relations

to the current research work also has been proposed. The most related efforts to build
ontologies in the field of SE are:

The informal SWEBOK ontology (Wille et al., 2003) where no ontology was
developed and only taxonomy of the SE as presented in SWEBOK. Their
inventory of the term ‘quality’ in some SWEBOK chapters will be used in the
conceptualization phase of the development of the SQA ontology proposed in this
thesis;

The software maintenance ontology (Anquetil et al., 2005 cited in Calero et al,,
2006, p. 153-174) is out of the scope of this research;

The SMO (Garcia et al., 2006) does not relate software measurements and metrics
to the SQA processes and attributes and hence will not be used in the
development of the SQA ontology of the current research;

The OntoTest ontology (Barbosa et al., 2006). Some aspects related to the testing
processes and resources are considered in development of the SQA ontology with
relation to other SQA processes, attributes, measurements and metrics;

The NFRs ontology (Kassab, 2009) is not related and cannot be beneficial in
building the SQA ontology;

The suggested concepts of the SWPQA (Kayad et al., 2009) will be used to

evaluate our extraction of the quality attributes concepts as part of the SQA
ontology.

The next chapter propose and analyse available ontology development methodologies in
order to adopt a methodology to develop the SQA ontology.

38

Chapter4: Defining SQA Ontology Development Methodology

Ontology is a skeleton of shared structured terms to represent knowledge. Ontology
construction is a challenging and expensive process. This chapter starts reviewing the
most known ontology development methodologies. A methodology to develop SQA
ontology will be adopted using applicable activities from existing ones. The chapter

concludes by declaring the requirements for developing software quality ontology for
teaching.

4.1 Review and Analysis of Ontology Development Methodologies

Ontology construction is a challenge. Several approaches and methodologies have been
reported for developing ontologies: Cyc, Uschold and king, Gruninger and Fox,
KACTUS, Sensus, METHONTOLOGY, UPON, and O4IS. Some of these methodologies
are concerned with building ontologies from scratch while others reuse and integrate

existing ontologies to build new ones (Gomez-Pére et al., 2004).

In this section we survey some of the well-known ontology development methodologies.
As no software quality ontology exists, methodologies for building ontologies from
existing ones like the KACTUS and Sensus methodologies will not be considered in our
survey. Detailed description and analysis of the methodologies can be found in

(Fernandez-Lopez and Gomez-Pérez, 2002), (Gomez-Pérez et al., 20033, and (Calero et
al., 2006).

Conceptualization is an abstract, simplified view of concepts, objects, and all other
entities of domain knowledge and the relationships among them. A conceptual model, the
output of the conceptualization process, is defined as an abstract (mental) model of some
part of reality (Kabilan, 2007). Conceptual model supports clarity where the graphical
representation is easier to understand and use. The conceptual model is easy to

understand, modify and maintain. It supports reusability as it can be transformed into

39

different ontology representation languages. In this work, reviewed methodologies will

be classified according to their usage of a conceptual model.

4.1.1 Methodologies without Conceptual Model

The Cyc methodology presented by Lenat and Guha (1990) to build the Cyc, a huge
Knowledge Base (KB) of common sense knowledge. Building the Cyc ontology went
through three phases: The first phase handles the manual coding of the explicit and
implicit pieces of knowledge, in which common sense knowledge is extracted by hand
from different sources. The second phase is knowledge coding aided by tools using the
knowledge already stored in the Cyc KB. The third phase is also knowledge coding that
is mainly performed by tools. The Cyc methodology provides very general approach; no

requirement or design processes are specified.

The methodology of Uscheld and King is based on the experience of building the
Enterprise Ontology (Uschold and King, 1995) and proposes the first more formal
method for building ontologies which was extended in (Uschold and Gruninger, 1996).
This methodology consists of the following phases: 1. identify the purpose of the
ontology; 2. building the ontology (consists of: capturing the knowledge, coding it, and
integrating existing ontology); 3. evaluating the ontology; and 4. documenting the
ontology. Three strategies for identifying concepts of the ontology are proposed: a top-
down approach, in which the concepts are identified from the most abstract to the most
specific; a bottom-up approach, in which the most specific concepts are identified first
then the more abstract ones; and a middle-out approach, in which the most relevant
concepts are identified first then specialized or generalized into other concepts. A
drawback of this method is the direct implementation of the ontology with lack of the
conceptual model. According to Gruninger and Fox (1995) these phases are not enough
to be considered a methodology as there are no techniques, methods or principle for each

of the above stages. Also there is no relationship or recommended order among the
stages.

Gruninger and Fox (1995) proposed a very formal methodology based (ﬁx their
experience in building the TOronto Virtual Enterprise (TOVE) project ontology using
first-order logic. The TOVE is a set of integrated ontologies for the modelling of business

40

enterprises like the Resource Ontology, the ISO 9000 Quality Ontology, etc. This
methodology proposed the first use of the competency questions (a set of natural
language questions used to determine the scope of the ontology) in building ontologies.
These questions are also used to capture the main concepts, relations, proprieties and

axioms of the ontology. The main processes identified for this methodology are:
1. identify motivation scenarios;

2. elaborate informal (natural Language) competency questions;

3. specify the terminology using first order logic;

4. formalize the competency questions;

5. specify axioms using first order logic;

6. specify completeness theorems (conditions under which the solutions of the

competency questions are complete).

The Gruninger and Fox methodology is based on building ontologies for the business
domain. Due to its high degree of formality, this approach requires the ontology designer
to be well familiar with formal logic languages. This high degree of formality may not be
required in information systems applications like the one presented in this research. Even

though this methodology is logical for ontology building and evaluation, some
management and support activities are absent.

4.1.2 Methodologies with Conceptual Model

b

METHONTOLOGY is a methodology developed in the Artificial Intelligence Laboratory
at the Polytechnic University of Madrid (UPM) for building ontologies fmm scratch,
reusing existing ontologies as they are, or by reengineering existing ontologies
(Fernandez-Lopez, et al., 1999). METHONTOLOGY is built taking into account the
main activities identified by the software development process (IEEE 1074, 1996). The
METHONTOLOGY life cycle is based on evolving prototypes where terms can be

added, changed, or removed with every new version. The METHONTOLOGY activities
are divided into three categories:

41

» The management activities that include the scheduling, the control, and the quality
assurance activities.

= The development-oriented activities that include the specification, the
conceptualization, the formalization, and the maintenance activities.

= At the same time with the development activities, the support activities are
performed. They include knowledge acquisition, evaluation, integration,

documentation, and configuration management. Integration activity is required when
building ontology by reusing existing ones.

Due to the existence of translators, formalization is no more a mandatory activity in the
building process as the conceptual model can be translated to the implementation model.
Among all other reviewed methodologies, METHONTOLOGY is the first one to
recommend its notable Conceptualization activity that structures the conceptual model of
the domain knowledge on tabular and graph notations. Recall that it might sound easier to

directly code the ontology into formal language, the conceptual model is easy to
understand, modify and maintain.

Nicola and colleagues (2005) propose an incremental ontology development method
UPON (Unified Process for Ontology building). UPON is derived from the Unified
Software Development Process and uses the Unified Modelling Language (UML).

What distinguish UPON from other methodologies is its use-case driven nature that aims
at building ontologies that serve its users, both humans and software agents. The nature
of UPON is iterative as each phase is repeated through the ontology development, and as
at each phase the ontology is further extended the UPON is an incremental method.

Each cycle of UPON results in a new version of the ontology and consists of four phases
(inception, elaboration, construction, and transition). Fach phase is also divided into
iterations with five workflows that take place in the iteration (requirements, analysis,
design, implementation, and finally test). UPON identifies the roles of domain experts
and information system designers in the ontology development process. UPON also
proposed a storyboard mechanism to extract the terminology of the domain expert.

The Ontology 4 Information Systems O4IS methodology (Kabilan, 2007) adds some
recommendations, algorithms and tools to different steps of existing methods. The Q4IS

42

proposes a multi-tiered architecture for logical demarcation of the domain of interest,
among the reviewed methods O4IS introduces the use of a dual conceptual representation
of the target ontology, and it also proposes a series of conceptual analysis patterns (the
Semantic Analysis Relationships SARs) that aid in the analysis and conceptualization of
the implicit knowledge on the targeted domain. The dual conceptual representation
includes: 1) semi-formal representation where the domain knowledge is captured and
represented in a reusable conceptual model; and 2) formal representation where the
conceptual model is transformed into machine-readable formalism like OWL, RDF or

any other ontology representation language.

Kabilan reuses and combines available techniques and methods and links them together
to present the O4IS skeletal design methodology.

Except for the METHONTOLOGY and UPON, none of the presented methodologies
propose project management processes or post-development processes as most of the
methodologies are focusing on the ontology development activities (conceptualization,
coding, etc.). Among the previous methods, METHONTOLOGY, UPON and OA4IS are
the most mature ones. Diagramming, documenting, and versioning aided by specialized
tools for UML, are special advantages of UPON over other methodologies. Although it
does not consider management, pre/post development activities, the use-case driven, the

incremental, and iterative nature distinguish UPON from other methodologies.

To compare the previous methodologies Fernandez-Lopez and GOmez-Pérez (2002)
propose a framework based on the comparison with respect to the IEEE standard for
developing a project life cycle process IEEE1074:1995. We adopt this framework based
on the new version of the IEEE1074-2006. In their comparison framework they analysed
the first four methodologies. Two additional methodologies, UPON and O41IS,have been
added and assessed with respect to other methodologies as shown in Table 4.1.

In general, the methodologies are not unified; some approaches are completely different
from the others. No single methodology meets all the requirements for designing and
developing domain ontologies (simplicity, adaptability,

understand-ability,
reusability. . .etc.). A comparison framework is illustrated in Table 4.2.

43

144

U0 BIO[[WIPSAS Adojopoy)a
Surured) 1oy 10J paypuIpI PUgAH
PO IIUIPI SANIANIE ON pasodoag pasodoag pasodoag pasodoag SANIAIJOE ON pasodoag pasododig
UOIJBOO[[B W2ISAS
Sururen 10§ < 10J paygnuopt SIvO
PO TIUSPT SAVIATIOR ON pasodoig pasodoig pasodoig pasodoig soniaoe oN pasodoxd JoN
Sururen 10§ pesodoid (002)
PayIuapI AJALOR ON pasodoid joN pasodoig pasodoig paesodoig pasodouid joN Aqjenieq NOdN
yoddns pue 103loxd
uorjerado ‘uone[rejsul oyj Sunenur - ADO0TOL
Sururen 10§ 10J paynuapl 10} paynuspl ~NOHLAW
PaIJIIuapI AJATIOR ON SAIJIAT}OR ON pasodoig pasodoig pasodoig pasodoid joN SamIAIIOR ON
Sururen
pue juowefeuew X0/ pue
uonemsuoo 1oy J8uuunts)
PATIUAPI SANIATIOR ON pasodoid joN pasodoig pasodoig pasodoig pasodoxd joN pasodoxd JoN
Sumuren
pue juowoSeueur Suny
uonemsyuos 10§ pasodoxd pug pjoyas
PAIJIIUSPI SAWIAIOR ON pasodoid joN pasodoig 10N pasodoig pasodoird joN pesodoid joN
Buuien pue uoreneAd
“qusweSeuewr
uonemsyguoo 10§ pasodoxd
PALIUSPI SANIALOR ON pasodoid joN pasodoig 10N pasodoid joN pesodoid joN pesodoid joN 34D
Bumuren (dusudjurew
pug ‘uonEIUIWNIOP ‘yaoddns (uoyeooqe (foyuod .M
“yusurseueur pue uoyeiado UId)SAS pUE SPIJu pug I0j[uow m,.
uoyeIN3uod ‘uonjefe)sur) uoyejudmIdurr usisaq judurdambay JO JuduId}E)s) ‘ajepIur) =
‘uoyeneAy) jusurdofaAap-isog $3ss930.4d jusmidopaasg jusmdopaAsp-aig $38S300.14 qW
538530014 310ddng $355900.14 pajustiQ jusawmdopaaaq juduISeuRy o

900Z:YLOTAAAI 03 SUIPI0IIY SIAF0[0POYIdAl Y3 Jo uostredwio) 'y qeL

Table 4.2: Comparison of the Reviewed Methodologies

Methodology Formality Understandable Easy to Existence of Evolving
Follow Conceptual Model Prototype
Cye Low Yes Yes No No
Cibicii s Medium Yes Yes No No
King
i High Yes No No No
Grunninger
and Fox
METHON- Medium Yes Borderline Yes Yes
TOLOGY
UPON Medium Yes No Use UML Yes
(2005)
04IS Medium Yes Yes Yes No
Proposed 7
Hiboid Medium Yes Yes Yes Yes
Methodology

The method adapted to develop our software quality ontology is based on a combination
of guidelines presented in (GSmez-Pérez et al, 2004), some activities of the

METHONTOLOGY and the O4IS methodologies, in addition to the project

management activities from UPON. Fig.4.1 illustrates the Life Cycle Model (LCM) for
developing the Software Quality Assurance Ontology. The idea of 04IS to specify

requirements of the designed ontology will be taken into account and detailed activities

of the METHONTOLOGY conceptualization phase will be used.

It might sound simpler and faster to implement the formal ontology directly but the

conceptual model supports clarity where the graphical representation is easier to

understand and use. Moreover, with the semi-formal conceptual model, domain experts

can easily validate wither the model matches the purpose it was built for.

4.2 The SQA Ontology Development Methodology

We follow the PMBOK (2004) model of the project life cycle shown in Fig. 4.1. As
illustrated in Figure 4.2, the SQA ontology development process consists of four

sequential stages (phases): scoping, conceptualization, implementation, and evaluation.

45

Comparing the two models (Figs. 4.1 and 4.2) we can see that scoping corresponds to
the initial phase of the LCM while the intermediate phase consists of the
conceptulaization and implementation phases of the current project LCM, and the

finally comes the evaluation phase where the developed SQA ontology is evaluated and

an approved version is reached.

Idea
Inputs l Project Management Team

L] L]

Phases | INITIAL

|
Project Charter

Acceptance

Management Scope Statement Baseline Approval
Outputs Progress Handover
Project G
5 I
Deliverable i

Figure 4.1: Typical Sequence of Phases in Project Life Cycle (PMBOK, 2004)

Conceptual
SWEBOK e
Selected
i ISO & IEEE Tool & Formal SQA
Inputs Idea Literature Standards Language Ontology
l J ' Evaluation &
Phases Scoping Implementation Documentation
| |
Scope and Conceptual Formal SQA Evaluated
Outputs | objectives model Ontology SQA Ontology
Selected
Tool &
Language
Deliverables Ontology
Model

Figure 4.2: The Life Cycle Model for Developing the SQA Ontology

46

It should be noted that the four phases might be overlapped. For example, the
conceptualization stage might starts in parallel while selecting the ontology
representation language and tool. Deliverables of particular phase are reviewed and
approved before work starts on the next phase. It is important to point out that it is an

evolving life cycle where a preliminary ontology prototype is built and then polished

with time.

For each phase of the project, input and output to the phase are specified as defined by
the PMBOK (2008).

4.2.1 Scoping

The scope of this research identifies what work is to be accomplished to deliver the
product as defined in PMBOK (2008), in this case SQA ontology. As shown in Fig. 4.3
the input to this phase is the idea (e.g. need for the SQA ontology) and literature
resources (e.g. research publications, tools manual, etc.) which are used to identify the
problem to be solved and the domain of interest. This phase identifies the context

specificity of the ontology, the main features of the domain and how it may relates to

other domains.

Developing

Developed
SQA SE
Inputs Ontology Ontologies
| |
Phases Scoping Implementation By aaton &
Documentation
| I|
Outputs Protégé
Editing Tool
OWL
Ontology
Langauge
Deliverables Scope
Statement

Figure 4.3: The Scope Phase of the SQA Ontology Development LCM

47

The output is the Project Scope Statement which includes the following elements:
e Project Objective: Software Quality Assurance Ontology;

e Product Characteristics: the context specificity of the ontology under construction,
Section 5.1.1;

e Project Constraints: see Section 5.1.2;
e Selected Language: see Section 5.1.3;

e Selected Tool: see Section 5.1.4.

4.2.2 Conceptualization

Conceptualization is the key phase that affects the rest of the development processes.
Conceptualization observes most of the ontology construction time. It starts with the
knowledge acquisition process where a description of the domain ontology is developed.
Then the acquired knowledge is organized and structured in a conceptual model.
Kabilan (2007) defined the conceptual model as an abstract (mental) model of some part
of reality that describes the key concepts and relationships. The conceptualization phase

is illustrated in Fig. 4.4 and detailed in the following subsections.

Conceptualization

Approach SWEBOK,
(top-down, bottom-up, ISO & IEEE
Inputs middle-out) Standards

Phases | Scoping

: Evalug N
Implementation luation &

Documentation

Shtast Concepts Binary
1ddlie-out Taxonom: Relation
Outputs Adpecach y s
Glossary of
Terms

Deliverables

SQA Conceptual
Model

Figure 4.4: The Conceptualization Phase of the SQA Ontology Development LCM

48

4.2.2.1 The Conceptualization Approach

Input: available approaches: top-down, bottom-up, and middle-out (Gruninger and Fox,
1995).

Output: one of the previous approaches (top-down, bottom-up, and middle-out) is used
based on the designer convenience.

Among the available approaches, the designer needs to decide which approach to choose
to identify the concepts in the ontology.

If no such ontology exists in the domain, the researcher suggests the middle-out
approach where the core concepts are identified first then specifying and generalizing
them as required. Uschold and Gruninger (1996) claim that this approach provides a
balance level of detail where detail arises as necessary by specialization of the basic

concepts which in turn reduce effort. Once the core concepts are derived, other related
concepts can be derived from this.

4.2.2.2 Knowledge Acquisition

Selection of the method on how the domain knowledge is to be collected is the first step
in this process.

Input:. current knowledge acquisition methods: manual, semiautomatic, and automatic

extraction of knowledge; available tools for automatic and semiautomatic knowledge
acquisition; and knowledge sources.

b

Output: domain knowledge description based on the selected method.

As, to our knowledge, no software quality ontology exists, the researchér will use
manual extraction of the domain knowledge from available sources and domain experts.

The informal storyboard mechanism proposed in UPON will be adopted.

4.2.2.3 Development of a Conceptnal Model

Input: knowledge description of the domain ontology

Output: the main output of this task is the conceptual model. Other expected outputs
from this task include:

49

» Glossary of terms that identifies relevant terms of the domain with their agreed

natural language definitions.

* One or more concept taxonomies to classify the concepts into taxonomic hierarchy

(super-class and sub-class relations).
* Ad hoc binary relation diagrams to define the relations between the ontology classes.

The dual conceptual representation of the O4IS method is used where informal
knowledge description of the domain from the previous step is transformed into a
semiformal representation of the domain or the conceptual model. The researcher will

adopt graph and tabular notations as they are more understandable by developers and

domain experts.

4.2.3 Implementation

Input: the set of conceptual models from previous phase, ontology development tool

Output: the formal ontology model

As illustrated in Fig. 4.5 at this phase of the project, the conceptual model from previous
work is used to specify the ontology components (classes, instances, relations...) in a

machine-readable computational model or the implemented ontology.

Conceptual

odk
model OWL

Ontology
Inputs S i

Protégé Tool

Phases | Scoping i Implementation Evaluation &

Documentation

SQA Ontology
Outputs In OWL

Deliverables Formal SQA
Ontology

Figure 4.5: The Implementation Phase of the SQA Ontology Development LCM

50

It also includes writing the code in the selected ontology representation language.

Translators of the development tools allow automatic implementation of the conceptual

model into several ontology representation languages.

4.2.4 Evaluation and Documentation
Input: the formal ontology model, the ontology requirements, and domain experts
Output: evaluated and verified ontology model. Documents of work accomplished.

A key step is to verify and document the developed ontology model (Fig. 4.6). This is
performed at the same time of the previous phases. Technical verification and Jjudgment
of the ontology is held and each and every phase of the development process is

documented to provide a frame of reference.

Formal

Ontology 2 Prqtégé Domain
Model onsistency Specialists
Inputs Checker

Phases Scoping izati Implementation Evaluation &

Documentation

Enhanced SQA
Outputs Ontology
Deliverables Evaluated

Ontology Model

Figure 4.6: The Evalaution Phse of the SQA Ontology Development LCM

Parts of the METHONTOLOGY methods like the documentation and maintenance
activities will be followed for their evolving life cycle which supports the adaptability
and flexibility and extensibility needs. The conceptual model is verified according to the
ontology requirements. The researcher will benefit from Protégé ability to check
consistency and verify conciseness of the ontology. The researcher will also use domain
specilaists to assesst the developed ontology. Detailed evaluation of the proposed SQA

ontology is conducted in Chapter 6.

51

4.3 Requirements of Ontology for Teaching Software Quality

As the need for producing software increases and does the complcﬁcity of software, the
need of high standard in the education of people involved in software developments
raises. Software engineering textbooks provide sequential representation of the
knowledge where the domain is considered as topics and subtopics that are learned
linearly. In addition, students with different backgrounds and needs affect the ways of
teaching that knowledge. Different views of the same knowledge may exist. Moreover,
with large numbers of interrelated terms, meaning of terms may overlap which may lead
to misunderstandings or wrong treatment of terms. A reusable and shared representation
of the domain knowledge is an obvious solution. As knowledge in software engineering
and so software quality is mostly stable, domain ontology will support the reusability
and extendibility of knowledge by different users.

Integrating ontologies with e-learning techniques where the e-learning portal provides
the interface that carries the values (knowledge) to learners can enrich the learning
process for both teachers (in the organization of materials and course construction) and
students (in accessing course contents). Since the researcher’s aim is to propose
ontology of agreed knowledge of the SQA domain, the project should cover almost all

the following requirements:
» The developed ontology should define what software quality is and how to apply it.

= The proposed ontology development methodology should be easy to follow by non-
ontology experts.

» The conceptual model of the domain should be understandable, sharable, and

reusable.

» The knowledge sources should be agreed and standardized to minimize any
encoding bias.

4.4 Conclusion

After a review of existing ontology development methodologies, a methodology to build
the SQA ontology was presented in this chapter. The adopted methodology consists of

52

e ittt A

four phases: scoping, conceptualization, implementation, evaluation and documentation.
As in the USDP ontology development is an iterative process where each phase is

repreated and at each cycle the ontology is detailed further and extended in an
incremental way.

Chapter 5 shows how these phases are followed to develop the SQA ontology.

b

33

Chapter 5: Developing the SQA Domain Ontology

“There is no one correct way to model a domain. There are always viable alternatives...

Ontology development is an iterative process”

Noy and McGuinness, 2001

The domain specific ontology is an ontology that captures general concepts and
properties about a learning knowledge domain (software quality assurance in our case).
Based on the ontology design principles and criteria (Gruber, 1995), it should be
possible to extend the ontology to cover new needs and uses. Also it is important to
leave some representational choices (such as concepts roles, relations, and constraints)

open so it can be made later based on the actual need of the problem solving or
application.

This Chapter is devoted in details to the SQA ontology development process based on
the phases of the development methodology presented in Chapter 4.

5.1 Scoping

Higher quality ontologies can be easier reused and sha:fed with confidence among
applications and domains. Additionally in case of re-use, the ontology may help to
decrease maintenance costs (Vrandegié, 2009). The SQA ontology must contain well-
defined, structured and organized knowledge of the SQA domain including: the type of

software process, as well as, its SQA requirements, quality attributes, and corresponding
SQA measurement and metrics.

5.1.1 Context Specificity of the Ontology

Any ontology is developed to be used in a particular context. The context influences the
ontology because the ontology is a model of some knowledge and any knowledge may
be interpreted differently in different contexts. If ontology is created just to model
particular ‘pure’ knowledge, it may be based on the body of the knowledge only (for
example: Anquetil et al., 2005 and Bertea Garcia et al., 2006). The SQA ontology is an

54

engineering area’s ontology where general engineering ideas and SQA features in
specific should be presented in the ontology.

In this research and according to the requirements, the ontology will be used in a
particular learning environment and the development methodology should take into
account the following circumstances (Bajnaid et al., 2008):

1) It is an ontology to be used in a teaching environment, and teaching aspects for the
discipline should be present in the ontology;

2) There are many °‘languages’ to describe SE areas, but only a language

that best describe software engineering for teaching purposes will be chosen for the
ontology;

5.1.2 Project Constraints

Software quality KA with a large number of overlapped terms which are intervened in
other software engineering KAs is difficult to be ontologically modelled within the time
boundary of this thesis. For this reason only a prototype ontology model is developed.

The lack of ontology development experts with software quality expertise is another
constraint that affects the SQA ontology development and evaluation processes.

5.1.3 Selected SQA Ontology Development Language and Tool

As defined in Section 2.4, the Web Ontology Language OWL has been selected in this

research as an ontology representation language. In addition, th&e”Pmtégé ontology
editing tool has been selected as defined in Section 2.5.

5.2 Conceptualization

The main description of the SQA is developed to provide agreed organized and
structured conceptual model of the domain.

5.2.1 Existing Vocabularies
Them are various vocabularies to describe the software quality domain knowledge.
There is no single standard which embraces the whole software quality knowledge.

35

Different standards and proposals are using different terminologies for the same term.
Similarly, the same term may be used to refer to different concepts. This issue has been
recognized by the international standards and in 1987 the ISO/IEC has established the
Joint Technical Committee 1 (JTC1) workgroup to guarantee consistency and coherency
among standards. Also in 1999 the IEEE computer society and the ISOJTC1-SC7

agreed to harmonize terminology among their standards.

The primary source of the SQA ontology is the SWEBOK guide (SWEBOK 2004) in
addition to above-mentioned ISO and IEEE standards (ISO 9126, IEEE 12207, IEEE
610.12, IEEE 00100, PMBOK 2008, CMMI v1.2) and research proposals.

Table 5.1 shows examples of paragraphs related to software quality as appear in the
SWEBOK guide. In the table references such as p 2-1 means page 1 of Chapter 2 as
appears in SWEBOK. 16 SQA terms have been extracted from the SWEBOK guide.

Table 5.1: SWEBOK Paragraphs Related to SQA

List of paragraphs in SWEBOK related to SQA Corresponding
terms

An essential property of all software requirements is that they be | Verification

verifiable. (p2-1)

The choice of verification technique is one example. (p2-2) Verification,
Technique

Care must be taken to describe requirements precisely enough to | Requirement,

enable the requirements to be validated, their implementation to ‘{alidaticn,

be verified (p2-6) Verification

Requirement Validation (p2-8) Requirement,
Validation

Requirement Review (p2-9) Review

Acceptance Test (p2-9) Testing

Software Design Quality Analysis and Evaluation (p3-4) Software Quality

Quality Attributes (p3-4) Quality Attribute

Software Quality is also closely linked to Software Construction | Software Quality

(chap4, introduction)Construction Quality (p4-4)

56

Table 5.1: continued

List of paragraphs in SWEBOK related to SQA

Corresponding
terms

Test Techniques (p5-5)

Technique

There are likely to be specific SQA requirements for ensuring
compliance with specified SCM processes and procedures (p7-5)

SQA

Audits can be carried out during the software engineering process

(p7-5)

Audit

a project support library could support testing (p 7-7)

Testing

Software requirement methods for requirements elicitation (for
example, observation), analysis (for example, data modelling,
use-case modelling), specification, and validation (for example,
prototyping) must be selected and applied... (p 8-3)

SW requirement,
method,
validation

Selection of the appropriate software life cycle model... and the
adaptation and deployment of appropriate software life cycle
processes are undertaken in light of the particular scope and

requirements of the project. Relevant methods and tools are also
selected. (p 8-4)

Process, method,
tool

achievement of process and product improvement efforts can only

be assessed if a set of baseline measures has been established (p
9-5)

Process, product ,
metric

Measurement can be performed to support the initiation of
process ... or to evaluate the consequences of process

implementation and change, or it can be performed on the product
itself. (p 9-5)

Process, product,
measurement

Process Definition Review is a means by which a process
definition (either a descriptive or a prescriptive one, or both) is
reviewed (p 9-7)

Process, review

Methods usually provide a notation and vocabulary, procedures
Jor performing identifiable tasks, and guidelines for checking
both the process and the product (p 10-1)

Method, task,
process, product

57

Table 5.1: continued

List of paragraphs in SWEBOK related to SQA Corresponding
terms
Tools are often designed to support particular software Tool, method

engineering methods (p 10-1)

software requirements define the required quality characteristics | SW Requirement, Q
of the software and influence the measurement methods (p11-1) | characteristic,
method

Specific process areas related to quality management are (a) QA, verification,

process and product quality assurance, (b) process verification, | validation
and (c) process validation (p 11-3)

A V&V effort strives to ensure that quality is built into the - Verification,

software and that the software satisfies user requirements (p 11- | validation, SW
4)

quality, requirement
Traceability matrices was built to track the mentioning of the SQA terms in the
SWEBOK guide as illustrated in Table 5.2. As the focus of the work is an SQA

vocabulary, the root concept of the SQA ontology is the SQ4Concept where all SQA
terms are sub-concepts of it.

Table 5.2: Traceability Matrix of SQA terms in SWEBOK

Term Its mentioning in the SWEBOK Guide
SW quality |e Requirement Validation (p2-8)

¥

¢ A number of key issues must be dealt with when designing software.
Some are quality concerns that all software must address (p3-3)

o Software Design Quality Analysis and Evaluation (p3-4) covers quality
{issues

» Construction Quality (p4-4)

* Software Quality is considered in the introduction of chap5 (Testing)

* Sec (6.3.2.5) considers software quality (p 6-8)

o Sec 10.1.9 considers SW quality tools (p10-3)

» Chap 11 of the guide considers SW quality in all its sections

58

Table 5.2: Continued

Term Its mentioning in the SWEBOK Guide
SW product | e Software requirements express the needs and constraints placed on a

software product that contribute to the solution of some real-world
problem. (p2-1)
s Product parameters are requirements on software to be developed (p2-2)
o Testing is an activity performed for evaluating product quality (p5-1)

Requirement | e Chap2 of the guide considers SW requirement in all its sections
» Requirement Validation (p2-8)
¢ Process for the Review and Revision of Requirement (p 8-4)

¢ Sec 10.1.1 considers SW requirement tools (p 10-2)

SW process | According to the IEEE definition (IEEE 610.12-90), design is both “the
process of defining the architecture, components, interfaces, and other

characteristics of a system or component” (p1-4)

* A process parameter is essentially a constraint on the development of
the software (p2-2)

® Chap 9 of the guide considers SE Process
* Sec 10.1.8 considers SE process tools (p 10-3)

SW process | In a standard listing of software life cycle processes such as IEEE/EIA

12207 Software Life Cycle Processes (p3-1)

* Software maintenance is considered as one of the primary life cycle
processes (p 6-1) o

* Software Configuration Management is considered as a SW life cycle
process (p 7-1)

~ | “the particular software life cycle process chosen for a software
project... affect the design and implementation of the SCM process”
©7-2) ;,

* SW life cycle process considered in sec 9.2 Process Definition (p 9-3)

o Software development tools are the computer-based tools that are

intended to assist the software life cycle processes (p 10-1)

59

Table 5.2: Continued

Term Its mentioning in the SWEBOK Guide
Quality o SCM is closely related to the software quality assurance (SQA)
Assurance

activity (p7-1)
e Sec 11.2.1 considers QA (p 11-4)

Q characteristic {e Several Q characteristics are considered in sec 5.2.2 (Objective of

Testing)

» A software engineer should understand the underlying meanings of
quality concepts and characteristics and their value to the software...
(p11-1)

® Sec 11.1.3 considers Qcharacteristics (p 11-2)

Verification

» Considered in sec 11.2.2 Verification and Validation (p 11-4)

Validation

» The Software Requirements Knowledge Area (KA) is concerned with
the elicitation, analysis, specification, and validation of sofiware
requirements. (p2-1)

¢ Requirement Validation (p2-8)
¢ Considered in sec 11.2.2 Verification and Validation (p 11-4)

Measurement

* Measuring Requirement (p2-10)

* Measures (p3-4)

* Construction Measurement (p4-3)

¢ Software Maintenance Measurement (p6-6)

* SCM Measures and Measurement (p 7-5)

¢ Implementation of Measurement Process (p 8-5)

o SE Measurement (p 8-6)

* Process and Product Measurement (p9-5)

* Sec 10.1.7 considers SW measurement tools (p 10-3)

Testing

¢ Chap5 of the guide considers software testing in all its sections
o Sec 6.2.1.2 considers testing

* Sec 10.1.4 considers SW testing tools (p 10-2)

60

Table 5.2: Continued

Term

Its mentioning in the SWEBOK Guide

Review

* Requirement Review (p2-9)
« Software Design Reviews considered in (p3-4)
¢ Review and Evaluation (p 8-6)

Metric

e readers will encounter terminology differences in the literature; for
example, the term “metrics” is sometimes used in place of
“measures.” (p 8-7)

e achievement of process and product improvement efforts can only be
assessed if a set of baseline measures has been established (p 9-5)

Method

o The availability of methods and tools. (p2-7)

» a method is a notation (or set of notations) supported by a process
which guides the application of the notations. (p2-7)

o Relevant methods and tools are also selected (p 8-4)

¢ Sec 10.2 considers SE methods in all its subsections

Tool

The availability of methods and tools. (p2-7)

Sec 7.1.3.3 Tool Selection and hnpiemeﬁtation (p 7-4)

o Software is built using particular versions of supporting tools (»79)
* Relevant methods and tools are also selected (p 8-4)

® Sec 9.2.5 considers automated tools (p 9-4) -

o Sec 10.1 considers SE tools in all its subsections

The previous sources aided by domain specialists have been used to build the glossary
of terms illustrated in Table 5.3 (Bajnaid et al., 2013). In the Table the terms were
classified based on the text from the different sources used to extrat these SQA terms.

61

Table 5.3: Glossary of Terms of the SQA Domain Ontology

Term Super- Definition Source
concept
SQA owl:Thing A planned and systematic pattern of all IEEE 610-12
actions necessary to provide adequate
SQAC t
(5QAConcept) confidence that an item or product conforms
to established technical requirements.
. A temporary endeavour undertaken to
Project SQAConcept create a unique product, service, or result. PMBOK 2008
Process SQAConcept | A set of activities that can be recognized as | Adapted from
(SQAProcess) implementation of practices for specific CMMI v1.2
purpose
A set of interrelated actions and activities
performed to achieve a specified set of PMBOK 2008
products, results, or services.
Set of interrelated or interacting activities | ANSIVISO/AS
which transforms inputs into outputs Q Q9000-2000
Attribute SQAConcept | A measurable physical or abstract property | ISO/IEC 9126
Attribute)
Deliverable SQAConcept | A software product that is required figr the IEEE 00100
contract to be delivered to the acquirer or
other designated recipient
Any unique and verifiable product, result, or
capability to perform a service that must be PMBOK 2008
produced to complete a process, phase, or
project.

62

Table 5.3: Continued

Term Super- Definition Source
concept
Product SQAConcept | A work product that is intended for delivery | CMMI v1.2
to a customer or end user. The form of a
product can vary in different contexts.
(1)The complete set of computer programs,
procedures, and possibly associated IEEE 610-12
documentation and data designated for
delivery to a user.
(2) Any of the individual items in (1)
The set of computer programs, procedures,
and possibly associated documentation and | ISO/IEC 12207
data
Result of a process ANSVISO/AS
' Q Q9000-2000
Requirement | SQAConcept | A condition or capability that must be met IEEE 610-12
or possessed by a system or system
component to satisfy a contract, standard,
specification, or other formally imposed
documents
Requirement | SQAConcept | Need or expectation that is stated, generally | ANSVISO/AS
implied or obligatory ' Q Q9000-2000
Functional Requirement | A requirement that specifies a function that IEEE 610-12
Requirement a system or system component must be able
to perform.
requirements which focus on “what” the (Paech, 2004)

software does

63

Table 5.3: Continued

Term

Super-

concept

Definition

Source

Non-

functional

Requirement

Requirement

An attribute of or a constrain on the system

Requirements focusing on “how good”
software does something as opposed to the

functional requirements which focus on
“what” the software does

(Chung, 2000)

(Paech, 2004)

Resource

SQAConcept

Any capability that must be scheduled,
assigned, or controlled by the underlying
implementation to assure no conflicting

usage by processes. ’

IEEE 00100

Technique

Resource

A defined systematic procedure employed
by a human resource to perform an activity
to produce a product or result or deliver a
service, and that may employ one or more

tool.

PMBOK 2008

Tool

Resource

A software or hardware devise used to

analyse the performance of a software or

system component o

Adapted from
IEEE 00100

Method

Resource

A formal, well-documented approach for
accomplishing a task, activity, or process
step governed by decision rules to provide a
description of the form or representation of
the outputs.

IEEE 00100

Table 5.3: Continued

Term Super- Definition Source
concept |
Measurement | SQAConcept | The determination of the magnitude or IEEE 00100

amount of a quantity by comparison (direct
or indirect) with the prototype standards of
the system of units employed.

the use of a metric to assign a value (which | ISO/IEC 9126 |
may be a number or category) from a scale
to an attribute of an entity

Measurement | SQAConcept | A quantitative measure of the degree to IEEE 610-12

Metric which system, component, or process

possesses a given attribute.

the defined measurement method and the ISO/IEC 9126
measurement scale

The terms Product and Deliverable are examples of SE terms with overlap meaning. In
ISOMEC 25010 (2011) the term Product specifies target and non-target software
products; and the term Deliverable specifies non-executable software product such as
documentations and manuals. In the SQA ontology developed in this research, the term
Deliverable has been used to specify any work product produced in a software project as
in SWEBOK (2004) and PMBOK (2008) (Bajnaid et al., 2010). In addition, the term
8SQAProcess will be used to represent the concept Process to_differentiate SQA
process(es) considered in the current research work to develop the SQA ontology from
other software engineering process(es) (Bajnaid et al., 2013).

5.2.2 SQA Ontology Concepts
Basics concepts of the SQA domain are represented by OWL classes that are the roots

of various taxonomic trees. The root class of aniv OWL ontology is the owl:Thing where

every individual of the OWL world is a member of that class. Thus every class is a

subclass of owl:Thing. The recommended naming convention for OWL classes is that

all class names should start with a capital letter and should not contain spaces (Horridge

65

et al., 2007). This naming convention is consistently used for creating the SQA ontology
classes and subclasses.

As shown in Fig.5.1, the main class in the domain ontology is class SQAConcept, a
subclass of owl: Thing, is the upper class of all other classes of the SQA ontology that is
used to conceptualize and to represent the knowledge of the SQA domain. It is
important to know that in OWL classes are overlapping until they are specified as
disjoint. An individual cannot be an instance of more than one of disjoint classes. The
“Disjoint Widget” of the Protégé tool is used to specify disjoint classes. In the SQA
ontology, Process, Project, Deliverable, Measurement, MeasurementMetric, Resource,
and Quality Attribute have been made disjoint from one another. For example it is not

acceptable for an individual to be a Process and a Deliverable at the same time.

‘ SQAConcept l

|

| | | !
[Devlierable \ ‘ Project ‘ l Process] [Measurement]
Atribute E:R@@ Moo | [Reairomenss |
| 1 [‘
l Technique H Tool “ Method l Functional Nonfunctional
Requirements Requirements
-1 ,
Observable Non-Observable

Quality-Attribute Quality-Attribute

Figure 5.1: Top Level of the SQA Ontology Concepts

5.2.3 SQA Ontology Properties

As it has been defined in Section 2.3, the ontology properties are used to describe
relationships among individuals of the classes. Various properties are used to describe
both static and dynamic aspects of the SQA knowledge, such as SQA-processes and
related SQA issues. The ontology provides a formal description for SQAProcess which
may have Quality Attributes (QAs) which can be measured by a quality measurement.
Various quality assurance processes, such as Validation, Verification, and Audit can be
instantiated. A process may use various resources (e.g. techniques and CASE tools). The

recommended naming convention is that a property names start with a lowercase letter

66

and the remaining words capitalized with no spaces. To make the intent of the property
clear to human, it is also recommended that a property is prefixed with the words ‘has’

or ‘is’, such as hasPart, and isPartOf. This convention has been used to describe the
properties of the SQA ontology.

An object property may have a corresponding inverse property. For instance the
properties use (p, r) and isUsedBy (r, p) that relate a process with a resource are inverse
properties. Another characteristic that are added to the property description is the
cardinality constraint. Cardinality constraint is a built-in OWL property used to describe
the number of relationships an individual may participate in for a given property. An
OWL property relates individuals of the domain class to individuals of the range class.
Story board technique was used to define properties among the SQA concepts. Table 5.4
presents properties of the SQA ontology. For each property, the table presents its
domain, range, inverse property (if any), and cardinality.

Table 5.4: SQA Ontology Properties

Name Domain Range Cardinality Inverse
Property
. ‘ Multiple: a project may
hasProcess Project Process
have more than one process -
Multiple: a process ma
Quality- peap Y
enforces Process . enforces (ensures) more enforcedBy
Attribute
than one attribute Y
Multiple: a €SS may use
uses Process Resource ple: & proe Y isUsedBy
more than one resource
Multiple: a process may
islnputTo Deliverable |Process have more than one isInputTo
deliverable as input
. tiple: i
invokes Process Multiple: a process might
invoke other process (es) |-

67

Table 5.4: Continued

Name Domain Range Cardinality Inverse
Property
Single: a measurement can
Quality- ; |
measures Measurement| be used to measure specific |isMeasuredBy
Attribute ; 2

quality attribute
Multiple: A process might

produces Process Deliverable |produce one or more isProducedBy
deliverables
Multiple: a measurement |

hasMeasurement Measurement isMeasurement

; Measurement v may have one or more :

Metric Metric 3 MetricOf
metric
Multiple: a measurement

. |Measurement] metric maybe conducted
conductedUsing Process $ -
Metric using one or more

process(es)

For each class in Fig. 5.1 we build a structure to represent it. Example structure of the

Process class is shown in Fig. 5.2 while Appendix A shows the structure of other SQA

classes.
OWLClass: Process
supClassOf: owl:Thing
Examples: quality assurance, validation, and verification all are individuals (instances)
of the class process
Object Property Domain Range Cardinality
uses Process Resource T
invokes Process Process L
produces Process Deliverable 1.n
enforces Process Quality Attribute n.n
Data Type Property Type
Description String

| Reference String

Figure 5.2: Structure of the Process class

68

5.2.4 Quality Measurements and Metrics

For any quality product, measures associated with its attributes should collectively
reflect likely user satisfaction with the use of the product and therefore the product
entire quality (Bishop and Lehman, 1991).

Measurement plays an important part in software development. It can be used to
indicate the quality of the product being developed (Pressman, 2005). According to
Pressman’s categorization of software metrics, quality metrics, which measure how the
customer requirements are fulfilled, indicate how closely software conforms to explicit

and implicit customer requirements.

In this study, software measurements and metrics are at the heart of the SQA ontology
design. All aspects of SQA measurement and metric as described in the ISO/IEC 9126
standard are reflected in the proposed SQA ontology as instances (OWL individulas) of
the Measurement and Measurement-Metric classes respectively. Table 5.5 shows the
knowledge about the SQA measurements and metrics related to different quality
attributes extracted from the ISO/IEC 9126 standard (Bajnaid et al., 2012).

Based on the international standard of software engineering product quality ISO/IEC
9126, each quality attribute associated with several characteristics and sub-

characteristics.

In the table, Measurement represents quality characteristics while the Metric name
represents the quality sub-charaterstics. The input represents source of data used in the
measurement process (or measurement formula) while the ISO/IEC 12207 reference
identifies software life cycle process(es) where the metric is applicable.

69

Table 5.5: Quality Measurements and Metrics According to 1ISO/IEC 9126

ISO/IEC 12207 Ref.

Quality | Measurement | Metric Name | Input to Metric |
Attribute
Availability Test report Qualification testing
Restartability Test report Qualification testing
Recoverability Validation
Req. specification |Qualification testing
Restorability User manual Validation
Test report Verification
Review report Joint review
Failure resolution [Test report Qualification testing
Test report Qualification testing
Fault density Operation report |Quality Assurance
Problem report
Mean Time Between|Test report Qualification testing
E Maturity Failures
% Req. specification |[Qualification testing
= Test coverage Test report Validation
User manual Quality Assurance
Fault detection Review report Verification
Joint review
Test report Verification

Fault removal

Fault removal
report

Review report

Joint review

Fault Tolerance

Failure avoidance

Test report
Review report

Req. specification

Validation
Qualification testing
Verification

Joint review

70

Table 5.5: Continued

Quality | Measurement Metric Name Input to Metric |[ISO/IEC 12207 Ref.
Attribute
Leamability Ease of function Test report Validation
learning User monitoring |Qualification testing
record
Error correction Test report Validation
User monitoring |Qualification testing
record
Operability Undoability Test report Validation
User monitoring [Qualification testing
record
Input validity Req. specification |Verification
> checking Design Joint review
:_';; Review report
D% Message clarity Test report Validation
User monitoring [Qualification testing
record
Completeness of User manual Qualification
description Test report testing
Req. specification | Verification
Understand- Design Joint review
ability Review report
Understandable User manual Validation
input and output Test report Qualification
testing
Accuracy to Req. specification |Validation
2 expectation User manual Quality Assurance
g Accuracy Test report
g
&

71

Table 5.5: Continued

Quality | Measurement Metric Name Input to Metric [ISO/IEC 12207 Ref.
Attribute
Computational Req. specification |Validation
Accuracy Test report Quality Assurance
Design Verification
Source code Joint review
Accuracy Review report
Precision Req. specification |Validation
Test report Quality Assurance
Design Verification
Source code Joint review
Review report
2 Data Req. specification |Validation
E Interoperability |exchangeability User manual Verification
% Test report Joint review
é Design
Source code
Review report
Access Test specification |Validation
controllability Test report Quality Assurance
Operation report [Joint review
Req. specification
Design
Source code
Security Review report

72

Table 5.5: Continued

Quality | Measurement Metric Name Input to Metric |ISO/IEC 12207 Ref.
Attribute
Data corruption Test specification Validation
prevention Test report Qualification testing
g Security Operation report Operation
é Req. specification [Joint review
E Design
Source code
Review report
Ease of installation |Problem report Qualification testing
Operation report
Installability Installation flexibility (Req. specification |Validation
g Review report
E User manual Validation
& [Portability Portability compliance|Test report Qualification testing
compliance Design Verification
Source code Joint review
Review report
Time behaviour |Response time Testing report Qualification testing
Resource IO utilization Source code verification
utilization
”
E User manual Validation
é Efficiency Efficiency compliance {Testing report Qualification testing
= compliance Design Verification
Source code Joint review
Review report
z User manual Validation
':; Maintainability | Maintainability Test report Qualification testing
-g compliance compliance Design Verification
’g Source code Joint review
= Review report

73

5.2.5 SQA Ontology Individuals

Individuals represent instances of the domain. The following list represents examples of
the software quality related processes extracted from the ISO 12207 and ISO 15288
standards as instances of the concept Process:

e Software Qualification Testing process

e Software Quality Assurance process

e SW Verification process

e SW Validation process

e SW Review process

e SW Audit process

Table5.6 shows the list of individuals of each SQA ontology class. The developed
ontology contains 16 deliverable concepts, 24 SQA measurement concepts, 27
measurement metric concepts, 11 processes, 8 quality attributes, and 8 resources
(partially in Bajnad et al., 2011; 2012).

Table 5.6: List of Class Individuals

SQA Ontology Class | List of Individuals

Process Validation, verification, audit, review, inspection, joint review,

technical review, management review, testing, quality assurance,

SW design quality evaluation.

Quality Attribute Efficiency, functionality, maintainability, portability, reliability,

usability, reusability.

Deliverable Operation report, problem report, audit strategy, design, fault
removal report, requirement specification, QA plan, source code,

review report, test cases, test report, test specification, user

manual, user monitoring record, validation plan, verification plan.

74

Table 5.6: Continued

SQA Ontology Class

List of Individuals

Metric

Access controllability, accuracy to expectation, availability,
completeness of description, computational accuracy, data
corruption prevention, data exchangeability, ease of installation,
ease of function learning, error correction, failure avoidance,
failure resolution, fault density, fault detection, fault removal, /'O
utilization, input validity checking, installation flexibility, mean
time between failure, message clarity, precision, response time,

restartability, test coverage, restorability, Undoability.

Resource

Check list, complexity analysis, control flow analysis, meeting,

prototyping, simulation, use cases, and walk through.

Measurement

Accuracy, efficiency compliance, fault tolerance, Installability,
interoperability, learnability, maintainability = compliance,
maturity, operability, portability compliance, recoverability,

resource utilization, security, time behaviour, understandability.

5.2.6 The SQA Taxonomy

A complete taxonomy of the SQA ontology is illustrated in Fig.5.3 (Bajnaid et al.,

2013). The figure shows the main SQA concepts as OWL classes where the arrows

represent relationships (OWL object properties) between domain classes (the head of the

arrow) and range classes (the tail of the arrow) where the name on the line depicts the

name of the relationship. The individuals are modelled as ‘objects’ or literals in the

rectangular boxes. The is-a property relates an SQA concepts with its instances (OWL

individuals). In the model, Process and Measurement are concepts (classes) while Use

Cases and Test Coverage are instances of the classes Technique and Measurement-

Metric respectively. Here we have followed some of the RDF graph notation for

describing tuples.

75

Audit Strategy

Design

Class

QA Plan

Req. Specification

Deliverable

[

Review Report

produces

isInputTo

hasDeliverable
i Class I
hasProcess

Class
is-a Project
Source Code SQAProcess
enforces
Test Cases Gl 5 _/
. hasRequirement
Test Report Requirement \
User Manual is-a uses
e \
Validation Plan Chass | I Class l '
Verification Plan conductedUsing
= . Functional NonFunctional
Test Specification Requirement Requirement isinputTo 4
Operation Report hasQualityAttribute Measurement
User Monitoring Record

Class

Problem Report

Class
Quality Measurement
FaultRemoval Report f Attribute ‘\ / Metric
= hasMeasurement
Portability measures Metric
- is-a is-a
Reusability e /
Interoperability
e Mean Time Between Failure
Maintainability Precision b
i Class Data Exchangeabl.ll.ty
Access Controllability
Class Obscrvable is-a Failure Resolution
Attribute -
NonObservable ‘ Fault Density
Attribute =) Accuracy Test Coverage
b o Fault Removal
curi ——
Functionality / = .ty Availability
i Restartability
Reliability Fault Tolerance Restorability
2 Recoverability Undoability
Efficiency Learnabili e Desoron
(Performance) C ility ompletencss of Description
Operability Error Correction
Usability Installability Input Validity Checking
- Message Clarity
Int bilit
ndcropcr:a;nl ‘y Response Time
hisisag et 70 Utilization
g Bch.a?nor. Accuracy to Expectation
R@mcc Ut'lm_"on Computational Accuracy
Effichoncy Comptispe Data Corruption Prevention
|Maintainability Compliance Fault Detection
Portability Compliance Failure Avoidance
__Suitability Understandable I/0
Reliability Compliance Ease of function Learning
Analyzability ;
Changeability Ease of Installation
Stability Installation Flexibility
Testability
Adaptability
Replaceability
Coexistence

invokes

is-a

\

Validation

Verification

Inspection

Audit

Testing

Review

Joint Review

Technical Review

Resource Management
Review
Quality Assurance
) SW Design Quality
is-a Evaluation
Class | [Class |[Class |
Procedure Technique Method
3 / is-a
is-a l
Complexity Analysis
Walk Through
- Data Flow Analysis
Prototyping
Check List
Meeting
Use Cases
Simulation

Figure 5.3: Proposed Taxonomy of the SQA Ontology

76

5.2.7 Adding Axioms to the SQA Ontology

The proposed taxonomy in Fig. 5.3 represents SQA main concepts and relationships
among them. However, this model may include some overwhelmed or unnecessary
content. Ontology axioms, a declaratively and rigorously represented knowledge which
has to be accepted without proof, were added to prevent unnecessary knowledge. In
ontology representation, axioms can be used to represent the meaning of concepts
carefully, and to answer questions on the capability of the built ontology using the
ontology concepts.

For example, let’s consider the Validation concept, which is a process according to Fig.
5.3. According to the figure, by firing the invokes relation, all SQA processes will be
retrieved as invoked processes. In theory (i.e. as per IEEE 12207 standard), only those
processes that are associated with Review and Audit should have been added to the list

(Fig. 5.4).

Validation Related Concepts
: Used I].
Invoked Enforced Required
resources :
processes | QA inputs
| : I |
_— Continuous ’ Efficiency) Test Report
o~ Integration _~ BT —~ T ______ -’
Rius —I User Manual
s 7 Testing) Functionality il i
T 4 il T
] Source Code |
Use Cases f‘/) ~~...T,,.,-/
r Req. Speciﬁcalion}
Iterative S —
Development /J
- WT‘#)’»J Validation
Plan /"
Prototyping) 2 >

2

Figure 5.4: Related Concepts to “Validation”

To prevent such situation, ontology axioms (Sec 2.3) were added to the proposed model.
By referring back to our example related to Validation concept and according to ISO/IEC

9126 standard, a Validation process produces TestReport and ValidationPlan and

74,

requires RequirementSpecification, Source Code, Test Report and User Manual as inputs.
In addition, Validation has Efficiency and Functionality as quality attributes and uses
Use-Cases, Prototyping, and Measurement as resources. The above knowledge can be
represented with the following axioms added to the Validation concept of the SQA
ontology model while Table 5.7 shows examples of other SQA concepts and
corresponding axioms and Appendix B represents the remaining axioms of the SQA

ontology:

V produces only (Test Report or Validation_ Plan)
Vinvokes only (Review or Audit)

V ensuresQA only (Efficiency or Functionality)
Vuses only (Use_case or Measurement or Prototyping)

vhasInput only (Requirement Specification or Source Code or

Test_Report or User manual)

Table 5.7: Some SQA Concepts with Related Axioms

Concept | Axioms

Review V invokes only (Management_Review or Technical_Review or Inspection)
V uses only (Check_List or Meeting or Walk_Through)

V produces only Review_Report

V hasInput only (Requirement_Specification or Design or Source_Code)

V hasPart only (Joint Review or Management Review or Technical Review)

Efficiency | V enforcedBy only (Validation or Verification or
SW_Design_Quality_Evaluation)

V measuredBy (Efficiency Compliance or Resource_Utilization or

Time Behavior)

Failure V conductedUsing only (Joint_Review or Qualification_Testing or Validation
Avoidance or Verification)

V isMeasurementMetricOf only (Fault_Tolerance)

V hasMeasurementMetricInput only (Requirement_Specification or
Review_Report or Test_Report)

78

5.3 Implementation of SQA Ontology

The Semantic Web is built on XML and RDF’s approach to representing data. The level
above RDF is the web ontology language OWL that can formally describes the meaning

of terminology used in Web documents in a machine processable respresntation.

In this section the proposed conceptual model resulted from section 5.2 is transformed
into formal OWL ontology. As illustrated in Fig. 5.5, the Protégé editing tool is used to
translate the SQA conceptual model into machine processable ontology represented in
OWL language. The Jambalay tab, a Protégé plug in used for ontology visualization
generates graphical representation of the ontology. More over, the Protégé checker is
used to verify the ontology concisence while the Racer Pro reasoner is used as a Protégé

plug in to check the consistency of the developed ontology.

SQA Ontology Implementation Process

Protégé
consistency HaceriPro
SQA Conceptual checker OWL Formal
Model ~ pro tégé Ontology
——— /w’ ietietennse /

Jambalaya tab

Figure 5.5: From Conceptual Model to OWL Ontology

A top level of the SQA ontology as displayed by the Jambalaya tab is shown in Fig. 5.6
where the property measures with its domain and range is highlighted while Fig.5.7 is

screenshot of the SQA ontology edited with Protégé.

Fig. 5.8 shows a class hierarchy of the software quality domain ontology. The figure
shows classes and individuals of the SQA ontology where blue arrows represent the

subclass relationships and the red arrows represent individuals of the class.

79

Project

Deliverable D

>
“hasMeasurementMetricinput Resource

Measurement_Melric ¥ [j

) Requiremg

i

tedUsir ¥ Process

) Measurement

) Quality_ Attribute

Figure 5.6: Jambalaya Tab to Visualize the SQA Ontology

Table 5.8 shows transformation examples of the graphical representation of the SQA
conceptual model to the OWL syntax. It should be noted that the transformation process
is done automatically where the Protégé tool is used to generate the OWL code. The
OWL description of the software quality ontology generated by Protégé is presented in

Appendix C.

80

I8

9891014 ur paserdsiq se A30[0juQ YOS Y :L°S 24031y

SMYOSABNSS” ST IBUM @ =Y :;:..._o.s..,?__u@
SO pUET spuawenseaN LoeuaisT MS 4 AngpebaoTema @ | W 2 DL SR
ApNasTMS™ ol 0panpoi) e I e — STt
_ e e e RISOIOSI P | Awamonuoo”sss0v @) || o])
* 9 | A ol 5 o DEOsT — =
(50 W@ |
b L« : -— Apgepusis apun 4 ugems & 4
\.&Q d&@ n‘&’ : soneyed sul @ | £1) somosay @
»—.-_.oom’; | (7) wewambay @
UOIRZIN 32n0s3y @ 7 5 owaumYAenS
i »Ii.oguom’, | prpoid @
i 3ouBmduio)” Amgepod @ | | 711 ssa%0id @
ENE | | o] ATt S LN Aneiado @ QU pewInsEaN)
AR X R T B o s Ao @ | T
. SR St TR VO P A R e T e T AN 20uBKIC)” ANISUIBIIEH 4| | |1 ARG @ .,
a Amgeuna @ wouoves @ Al
Ao @) @ |
Awoereisy ’, [-} 9omosageuRp g sbapid
i sARROLIIRI @ | te 1) PekoBuLRe @
i S A Kympvieudossq @
= wonpigll______ Reeov el v sdopsaq @
Buet anep et ——— = g& p——— 0 x ’ ‘ % SULISU| POLIISSY ﬁ Busyy O
2R R G| sovore |
Fauvm!?ecoow,zmo .u.oo.ozo‘_;m \»;;ugm, er uawaunseap @ o= 193l01d :
9 5519 .

9621010 a> @EW PR ggs B0
ﬂ ‘ WE peod w3 ..uaw

N A30103u VOS 243 Jo Aydaeldly sse|) :8's aanSi

! n YO e g
L ; B 0 zsxo
0 ey RIRURLRAG <oucyducry ycevog Hoday a8
suklwg) >..E.C.E08:£ o 0 . 0 Hody =o_aub&,0....,.ﬂ.voo N:Bm’& y Eﬁom‘!ﬁ_:oz il]
0 iad B % . ,
i i A s I i I Ll S A ms_;_,zmo o
0 o b Ay ke B
e N 14 Mesesonig % B Sshedgcomo o m? b i
Pyd
B % fe_sﬁo 0 - ,..a__c.ngﬂmg» -0 818N | EQEE S_sé p a3
JOiABYRE E:’A_ =\ S g asﬁz‘ O 4 ld UoEpIEAg 18]
& maay it e g
85._03_%_ g:mm’ D ‘ &E;:wsﬁg .|.|.|‘om_f|uovyc‘lrll \ §& ERQE&. Q.—__.— g%m# ’
siopu)
funoeg ¢ fiqedopi g A,/--.fff,- \ engey sozs g N %o _ﬁa
2 uny g et »ﬁ . 085§< g_u@ ?_,Mnﬁ u_u>D=§_0
Juawaunbay| BuoRd J z__;E%& \
0 e \Wwo 050" bzm__w:ov@__ _E&N ﬁnﬁcs o
0 Jusweinbay emnﬁ%cozﬁ e A.\ - \ y \ ../ b GQB&O
fnqereigp a3 -\..ﬂ\k\- .\ V b__n N Vauﬁ_nﬁs Jo e3¢
Q el > ﬂgao /0 O :
0 4 AR]
0 asnﬁﬂo - fiyeuonaun ¢ ,see..a&...b..\. \K mzui fpaguoogy m . ses.omin TR Aneatueyong meag
AgeusuEw ¢ q 0 -~ / ki i_e%\ 5 0 b a
“V fingesn R~ b, AWy __au; P ; & 8]
D 4 (" hna o’ uopenjerg :E_oe&mo NS¢ ﬁ%& — Aﬁz uoEndwo) ¢
e g Yo wetes0® - © pyeng i z_o
> u e Maney Jauye | 4 g Eﬁ \ 0 kuyqieay 4 vongye ese \ g
O 0% ;Eu &:az’ _8.5 DA,. an S:O =3:8om _ I u__._%suo.sa o hoeincoy ¢
70 3epIROUONGFF - g p-erady, N : sﬁ% Rueg” w?amzo |0
0 0 anqay henog Wy an g ,_%s;o Bk 0 ﬁ%o 0 N sumduod fausyag
fygesne ¢ ’ mwoe ~0 ' Qusg_.mﬁo e eaueiuio) Ayqenod 4y 0 Ayigecpun 4
:) , dwo)é
o 0 Ve g oy yend Uopduosaq jo ssauaia
0 y s ¥e
. omess ¢ aueinssy :_500 busa] VoSBT @ S Budijolid g

Table 5.8: From Graphical Conceptual Model to Formal OWL Representation

Graphical Representation OWL Code
Class <owl:Class rdf:about="Deliverable">
Devlierable <rdfs:subClassOf rdf:resource="SQAConcept"/>

</owl:ObjectProperty>

Class

SQAProcess <owl:ObjectProperty rdf:about="uses">
]

/ <owl:inverseOf>
uses <owl:ObjectProperty rdf:about="used8y"/>

</owl:inverseOf>

<rdfs:domain rdf:resource="Process"/>

Class

<rdfs:range rdf:resource="Resource"/>

Resource

</owl:ObjectProperty>

5.4 Verification and Documentation

According to the good practice (Calero et al., 2006), for each and every phase of the
ontology development process must be performed technical evaluation and assessment
of the ontology as well as a new version must be documented to provide a frame of
reference. Appendix D contains examples of evolving SQA ontologies (with 4

examples).

During implementation, the developed ontology was verified for consistency using the
Protégé consistency checker tool which automatically checks the consistency and
conciseness of the developed ontology. Only inconsistent classes will be displayed by
the tool. Fig. 5.9 shows the result generated by Protégé and the Racer Pro reasoning
for the consistency checking where no inconsistence classes are listed. Assessment
questionnaire is used to verify the logical concistency of the ontology (Bajnaid et al.,
2013).

Syntax checking is performed by Protégé OWL plugin which generates OWL
statements during creation of the ontology using the Graphical User Interface. The

83

plugin ensures that the generated OWL statements adhere to the rules of the OWL

language.

"4 SQOiogy_View Prolege 346

'15- Ect Propct QWL Resserirg Zece JIeok Window Bodera Colsbersfion delp

LGl o 88 &g o » 4>
@ Metadata(SQOntology) |
su XPLORER

BCLASS EXPLORE

fas,

SUBLLA. e s
For Project: @ SQOntology_Vi
Asserted Hierarchy % & &«

v © SQAConcept Reasoner log

! @ Deliverable [v * Check concept consistency
“ Measurement : * Time to build query = 0.0010 seconds
“ Measurement_Metric ‘ * Time to send and receive from reasoner = 0.056 seconds
“ Process | | ' Time to update Protege-OWL = 0.0040 seconds

“ Project | | - Total time: 0.094 seconds
* Quality_Attribute | |
“ NonObservable_ QA
@ Observable_QA
“ Requirement
v © Resource
@ Technique
“ Tool

PN ST SN |
-l e .

<

-

Figure 5.9: Protégé Consistency Checking Result for SQA Concepts as a Whole

In addition, the visualization tab (another Protégé plugin), enables a view of the graph
representation of the ontology to ensure the ontology is consistent with the conceptual

model (Fig. 5.3).
A detailed evaluation of the developed SQA ontology is presented in Chapter 6.

5.5 An Enhanced Version of the SQA Ontology

Based on the results and findings of the ontology evaluation process (Section 6.4.2),
enhanced version of the ontology is developed. In the new version, the ontology
concepts “Quality Attribute” and “Measurement” are renamed “Quality Characteristic”
and “Quality Sub-characteristic” respectively. The concept “Measurement Metric” is
also renamed “Measure” to follow the last quality standard ISO/IEC 25010 (2011) as

illustrated in Fig 5.10.

84

Old New
ISO/IEC ISO/IEC Example
9126 (2001) 25010 (2011)
Quality : Quality | " [Reliability
Attribute ' Characterisitic
composed |'\ | composed of |:
of '
| : [R
: , 3 -~ =] Fault Tolerance
Measurement ||| Sub-characteristic
:;?mposed : composed of b
i b‘ J : C .
Measurement | |——— S s i s
S Measure __I Avoidance

Figure 5.10: Evolution of the SQA Ontology Concepts

The latest quality standard ISO/IEC 25010 (2011) revises the previous quality standard
ISO/IEC 9126 (2001) and includes the same quality characteristics with some
alterations as described in ISO/IEC 25010:

e Security has been added as a characteristic rather than subcharacterisitics.
e Compatibility has been added as a characteristic.

e New sub-characteristics such as: functional completeness, capacity, user error
protection, accessibility, availability, modularity and reusability have been added

to existing quality characteristics.

e Compliance with standards and regulations were a subcharacterisitics in ISO/IEC

9126 and now it is outside the scope of the quality model in ISO/IEC 25010.

e Several characteristics and sub-characteristics have been given more accurate

names.

Additionally to what is presented in Fig. 5.10, Appendix E shows a comparison
between the quality characteristics and sub-characteristics in the two standards as
adopted from the ISO/IEC 25010 (2011) which is used in addition to the ISO/IEC
25023 (2011) standard for development of a new enhanced SQA ontology as
illustrated in Fig. 5.11. New names of quality charactersistics and sub-characerstics are

reflected in the enhanced version of the SQA ontology and are shown in blue.

85

isInputTo

Audit Strategy
Design Class produces
QA Plan 3
Deliverable . invokes
Req. Specification hasDeliverable Class
; l ’ I hasProcess —p Class is-a
Review Report iy
1s-a Project) _\ s
Source Code SQAProcess Validation
: enforces T
Test Cases 5 _/ Verification
. hasRequirement
Test Report Requirement \ Inspection
User Manual is-a Audit
e |
Validation Plan r Clzss | | Class l Testing
Verification Plan conductedUsing :
ea — Functional NonFunctional Reyiew
est Specification Requirement Requirement isinputTo Technical Review
Operation Report hasQualityAttribute Measun:ment Class Joint Review
User Monitoring Record Class (,Iasa Resource Management Review
Problem Report Quality e Quality Assurance
e —>
FaultRemoval Report ¥ Characteristic hasMeasure SW Design Quality
7 * /) Evaluation
iS4 measures Class g
Functional _ Sub s
Suitability characteristic l
Performance : » - - [Class][Class | [Class |
Efficiency Functional Completeness Mean Tm:':ftyecn 13T - —— “Technique Method
Compatibility Functional Correctness is-a Data Excl:;:::ability / T
Usability Capacity Access Controllability is-a -
Reliability Mty Failure Resolution / e t’y —
Fault Tolerance . omplexity Analysis
r—= Rau :mb'l. . Fault Density Walk Through
- ccoverability Test Coverage - Data Flow Analysis
Portability Learnability Fault Removal Prototyping
Operability | Availability Check List
Installability Restartability Meeting
Interoperability lUl“w'wi’Illilttyy Use Cases
ropriateness Recognizability
i . 2 Completeness of Description Simulation
Time Behavior Error Correction
Resource Utilization Input Validity Checking
Accessibility Message Clarity
User Error Protection Response Time
Availability 1/0 Utilization
Functional Apptopnatcness Accuracy to Expectation
User m‘fﬁ“ Computational Accuracy
Changeabilion Data Corruption Prevention
Modifiability Fault Detection
Testability Failure Avoidance
Adaptability Understandable /O
Replaceability Ease of function Learnin,
Coexistence £
Confidentiality. Ease of Installation
Integrity __Installation Flexibility
Non-repudiation
Accountability
Authenticity
Modularity
__Reusability

Figure 5.11: Enhanced Version of the SQA Ontology According to ISO/IEC 25010(2011)

86

The transformation process of the SQA ontology based on the ISO/IEC 9126 to the new
version according to the new quality standards ISO/IEC 25010 (2011) and ISO/IEC
25023 (2011) proves the flexability of the developed SQA ontology to easly reflect new

standards of the domain without affecting the current semantic of the ontology.

5.6 Conclusion

This Chapter presented a detailed description of how the selected ontology development
methodology was applied in order to develop the conceptual model of the SQA ontology
as a starting step to develop the OWL formal ontology. The Chapter introduced the
conceptualization process where knowledge is extracted from standards and resources to

define the SQA ontology concepts and relationships among them.

The conceptual model of the SQA ontology was presented. The developed ontology has

been verified using the Protégé consistency checker.

Enhanced version of the SQA ontology was presented based on the results of the
evaluation approaches carried in Chapter 6 and reflecting the latest quality standards
ISO/IEC 25010 (2011) and ISO/IEC 25023 (2011).

The next Chapter presents the ontology evaluation approaches used to validate the

developed SQA ontology.

87

Chapter 6: Evaluation of the SQA Ontology

Ontology evaluation is an important step followed its development which includes
assessing the usefulness of the ontology for the purpose it was built for and evaluating
the quality of the ontology (its conceptual coverage, clearness, etc.). This Chapter
presents in details the different methodologies applied in this research in evaluating the
SQA ontology. This thesis does not claim that the developed SQA ontology is a complete
one. It is a version that meant to evolve and aims to model core and main concepts and

knowledge of the SQA domain into a practical, sharable and extensible ontology.

6.1 Introduction to Ontology Evaluation

Before publishing ontology or building a software application that relies on ontologies,
there is a need for evaluation of the ontology contents (its concepts definitions, taxonomy
and axioms). Evaluating ontology is not an evidence of the absence of problems, but it
will make its use safer. The main efforts towards evaluating ontology content were made
by Gomez-Pérez (1996; 2001) in the framework of METHONTOLOGY and by Welty
and Guarino (2001) with the OntoClean method. A survey on evaluation methods and

tools can be found in (Gomez-Pérez et al., 2004).

Vrandeli¢ (2009) argues that ontology evaluation is important and worthwhile task.
Mistakes and omissions in ontologies can lead to applications not realizing the potential
of exchanging data. In addition, ontology evaluation increases the availability and thus
reusability of the ontology and decreases maintenance costs. Ontology evaluation
assesses the quality of the ontologies and thus encourages their publication and
reusability since the confidence of the re-users in the quality of these ontologies

increases.
According to (Gémez-Pérez et al., 2004) ontology evaluation requires:

¢ Verification which refers to building the ontology correctly;

88

e Validation which refers to whether the ontology definitions really model the domain
for which the ontology was created. Ontology validation ensures that the correct
ontology was built. The goal is to show that the world model is compliant with the

formal model;

e Assessment which focuses on judging the ontology from users’ points of view
(human judgment).

A common approach is to evaluate the ontology according to a set of ontology design

principles and criteria as it was evaluated in (Gruber, 1995; Gomez-Pérez, 2001;0brst,

2007; Vrandeti¢, 2009):

e its coverage of the modelled domain;

e the application and data sources it was developed to address;
e its completeness and consistency;

e the structure, syntax and vocabulary; and the representation language in which it is

modelled.

The above principles have been used to guide development of the developed SQA
ontology. Also it is important to leave some representational choices (such as concepts
roles, relations, and constraints) open so that they can be made later based on the actual

need of the problem solving or application.

This Chapter is focusing on SQA ontology evaluation using various approaches generally
accepted in Software Engineering area. In this thesis ontology evaluation is limited to the
criteria identified by GoOmez-Pérez (2001) such as: completeness, consistency,

conciseness, and expandability.

Completeness: all knowledge that is expected to be in the ontology is either explicitly
stated in it or can be inferred. In other words, how well the ontology covers the real
world (software quality assurance in our case). Completeness comply to the minimal
ontology commitment criteria where the ontology does mot intend to describe all the
knowledge involoved in a domain, but only the one that is essential to conceptualize the

domain.

89

Consistency: refers to the absence (or not) of contradictory information in the ontology

Conciseness: if the ontology is free from any unnecessary, useless, or redundant

definitions.

Expandability: refers to the ability to add new definitions without altering the already

stated semantic.

In this thesis we distinguish between two types of consistency: formal consistency and
logical consistency. Verification was held during the ontology implementation
(Section5.4) where the SQA ontology was checked for formal consistency. Therefore in

this Chapter by consistency we refer to logical consistency.

6.2 Selection of Evaluation Methods

Different ontology evaluation approaches have been considered in literature depending
on the purpose of the evaluation and the type of the ontology being evaluated. Brank and

colleagues (2005) classify ontology evaluation approaches as following:

1. Those based on comparing the ontology to a “golden standard” which might be

an ontology itself;

2. Those based on using the ontology in an application and evaluating the results or

application-based ontology evaluation;

3. Those involving comparison with a source of data (e.g. a collection of

documents) about the domain to be modelled by the ontology;

4. Those where evaluation is done by humans who try to assess how well the

ontology meets a set of predefined criteria, standards, requirements, etc.

The first approach is not applicable due to the lack of a “golden standard” or upper-level

(Section 2.2) Software Engineering ontology.

The second approach has been adopted and an application-based ontology evaluation was

conducted using a prototype system which was implemented for this purpose.

The third approach was held during development of the ontology when the evolving

conceptual model (finalized in Fig. 5.3) was compared to the sources of knowledge.

90

The fourth approach included usage of the ontology assessment questionnaire which was

distributed among SE specialists to evaluate the quality of the ontology.

The applied approaches are detailed in the following sections.

6.3 Validating the SQA Ontology

Recall that the goal of validating the ontology is to show that the world model is
compliant with the formal model, i.e. the formal OWL representation of the ontology
compliant with the defined conceptual model. Figures 6.1 shows the top level of the SQA
concepts as generated by the Jambalaya tab, a Protégé plugin used for ontology
visualization. The figure represents the main SQA concepts as in the conceptual model
(Fig. 5.3).

£ SQAConcept

@ Requirement _ " /1 \ D ®Measurement_Metric

' Functional_Requirement) AE NN 5
i S e R
G l % %

@ NonFunctional Fioqh.'l'emem

@ Deliverable
@ Process \
/ \
@\Project

“) Measurement
N

\
N
#'Resource

@ Quality_Atiribute

Figure6.1: The Top Level of the SQA Ontology

An ontology evaluation approach is to measure the correspondence between textual
sources and the target ontology. The developer of the SWPQA ontology (Sahman, 2008)
claims that the ontology covers 80% of the studied domain and can be used as a common
agreement of SWPQAs pool of knowledge and can provide a base to evaluate any related

presented semantic for one of the studied attributes. In this research, the SWPQA

91

framework (Section 3.3.6) was used to measure its correspondence with the extracted

SQA concepts, the quality attributes and measurements in particular. Table 6.1 shows the

SQA concepts and their correspondences in the SWPQA frameworks.

Table 6.1: Correspondence of the SQA Concepts and the SWPQA Concepts

SQA concept or term

Correspondence SWPQA concept

Quality attribute Attribute
Accuracy Accuracy
Stability Stability
Testability Testability
Usability Usability

Recoverability, Learnability, Operability

Installability, Analyzability, Replaceability

Could be mapped to the Abililty concept

Efficiency Efficiency
Maniainabilty Maintainability
Portability Portability
Security Security
Reliability Reliability
Understandability Understandability
Error correction Correctness
Changeability Flexibility
Adaptability

Installation flexibility

Interoperability Interoperability
Availability Availability

92

The SWPQA concepts were partially published in (Kayed et al., 2009) where 75% of the
SQA ontology’s quality attributes and 58.3% of the SQA measurments can be mapped to
SWPQA concepts.

A complete framework of the SWPQA (Sahman, 2008) covers 100% of the SQA quality

attributes and 91.6% of the SQA measurements concepts.

Ontology development is an evolving process and there is no single ontology to model a
domain it is difficult to decide the preciseness of mapping the SQA ontology to other
exisiting ones and as ontology evaluation is not a mature research area, in this research
we tried to use evaluation approaches that are applicable to our case. Hence, this

confirms that the research area is still developing and required further research.

6.4 Assessing the Quality of the SQA Ontology

Ontology assessment was conducted by judging the ontology content from SE
specialists’ point of view. An introductory document (Appendix F) of the SQA ontology
with graphical representation of the conceptual model was introduced to the participants
with the questionnaire (Appendix G).

6.4.1 SQA Ontology Assessment Questionnaire Design

Conceptual model supports clarity where the graphical representation is easier to
understand and use (Kablain, 2007). The use of the conceptual model ease the
assessment process in this research where the domain specialists can validate wither the
model matches the purpose it was built for. The conceptual model (Fig. 5.3) with a link
to the questionnaire in Survey Monkey, a free widely used online survey tool (available
at: http://www.surveymonkey.com), has been sent to domain specialists inviting them to
participate in the SQA ontology assessment process to verify its coverage of the SQA

domain, structure, clarity, and extendibility.

The ontology assessment questionnaire designed into four parts:

93

Part I contains closed questions about the respondent such as experience in the SQA and
ontology domains, involvement in teaching the SQA domain and the respondent opinion

in the usefulness of using ontologies in teaching SQA.

Part II consists of 7 closed questions with a scale of 1-5, where 5 = strongly agree and |
= strongly disagree, to validate the following criteria (Gruber, 1995; Gomez-Pérez, 2001;
Obrst, 2007; Vrandeti¢, 2009):

Completeness: the model covers major concepts of the domain;

Structure: the taxonomy and relationships are represented correctly in the model;
Clarity: the model is free from unnecessary and redundant concepts;

Consistency: the model is free from explicitly or implicitly contradictory knowledge;

Expandability: new knowledge can be added to the model without altering the existing

semantic.

Parts 111 and IV consist of open questions about the respondent suggestions of non-
relevant concepts to be removed from the model and missing concepts to be added to the

model respectively.

6.4.2 Statistical Results and Analysis of the Assessment Questionnaire

Collecting responses from domain experts was a challenge step due to the limited
number of experts in the SE domain and in SQA in particular. It took more than 7 months
to get 16 of responses only. The problem of limited number of participants faces many
researchers in their ontology evaluation process (Alyahya, 2006; Garcia et al., 2006).
Although the sample is small it is considered acceptable to judge domain ontology. Table
6.2 shows the respondents’ expertise in SQA and ontology domains while Table 6.3
shows the respondents’ involvement in teaching SE and Table 6.4 summarises the

respondents’ agreements on the usefulness of using ontologies in teaching SQA.

Among the 16 respondents 68.8% were involved in teaching software engineering while

31.3% of them have not been involved in such teaching. 64.7% of the respondents agree

94

that ontology can be useful in teaching SQA and 11.8% strongly agree while 25% have

borderline opinion.

Table 6.2: Respondents’ Expertise in SQA and Ontology Domain

Respondent’s expertise Null Poor | Average | Above average | Excellent
SQA domain 0 1 4 7 4
Ontology domain 0 1 10 4 1

Table 6.3: Respondents’ Involvements in Teaching SE

Statement Yes No

Are you now (or ever been) involved into the teaching of 11 5

Software Engineering?

Table 6.4: Respondents’ Agreements on Using Ontologies in Teaching SQA

Statement Strongly | Disagree | Borderline Agree Strongly
disagree agree
Do you think ontology 0 0 4 10 2

can be useful for

teaching SQA?

Responses on statements relevant to the assessment of the conceptual coverage of the
SQA model (Part Il of the questionnaire) as shown in Survey Monkey is illustrated in
Table 6.5 while the respondents’ comments and suggestions of Parts (11l and IV) of the

questionnaire are shown in Appendix H.

The results of the survey are presented below where an enhanced version of the ontology

is being developed to reflect the main suggestions from the questionnaire:

Completeness: Majority of the participants (81.3%) agreed that the ontology developed
in this research covers major concepts of the SQA domain. 15.4% of them strongly agree

and none of the respondents disagree with the completeness of the ontology. However,

95

an important suggestion to add testing related concepts (black and white box, system and
unit test...etc.) was made. Though, the current ontology is not heavily focused on testing
techniques, it is worth investigating this ontology aspect in future developments. Another
suggestion was made to add concepts such as Software type, Software life cycle model,
Architecture, Configuration management; however, we strongly believe that these are not
SQA concepts. Nevertheless, these concepts can be added to the ontology if the latter is

to be mapped to other SE areas or to an upper-level SE ontology.

Structure: A reasonable majority of the respondents (62.5%) agreed with the ontology
taxonomy as is, with no real disagreements. There were few remarks such as having
Design comes after Review Report in the list of instances of the class Deliverable, which

we consider semantically insignificant.

Clarity: This criterion obtained a borderline score, just around the mean (3.13). However,
we believe that this reasonably good result due to the large number of overlapped and
redundant SQA terms in available proposals and sources of SQA knowledge. It was
noted that most reported disagreements were related to the confusion between
Measurements and Metrics. A significant suggestion that will be adopted in the enhanced
version is to use the terms Quality Characteristic and Sub-characteristic instead of
Quality Attribute and Measurements respectively. We can also replace the term
Measurement_Metric with the term Measure as per the latest quality standard ISO/IEC
25010 (2011).

Consistency: A reasonable majority of the responses (68.8%) agreed that the developed
ontology is consistent where 27.3% of them strongly agreed on its consistency. Ontology

formal-consistency was verified using the Protégé consistency checker plugin.

Expandability: A good ontology is assumed to cover necessary concepts of the domain
and structure them in a way that adding evolving concepts would not affect the existing
structure. A satisfactory result was obtained for this criterion as the majority (75%)
agreed on the expandability of the developed ontology. Suggestions to include agile
terminology with new quality measurements and metrics (as in ISO/IEC 25010) will be

considered as extensions in the enhanced version of the ontology.

96

jepow

‘ i (g) (2) () I a3y jo axmonns Bups|xa asjaal
94 6 L %ELE REEY %S T () %4 ¢ (0) %o 03 POSU SU INOIM PEINPOINY
2Q UBD SULIJ MON :AunIqIpudX]

uonIpEnuUan B s sy unolsip

. () () (g) | eie g pue v Inq ‘g pue v sesse|d

=L UL %8 2L %0°0S %ELE W %u v (u) %0 v JO 2ouURISUI X IXJ JUIISISUOD
Apea1b60] s1 jopows 2y :A2UD1SISWOD)

i L S (z) () (9) - = 1epow ey: uj adesuod
o = B %STL %0sT weue (O Wl (€ i ch snonbique owos oIe 010U :AILEID
. (1) (p) (g) . s AP0 Ay i sadanuon

9 ce %E9 %0°SC %0°0C @ %3T (1) %C9 luepunpes ewos eie eisy] :Ajued
(s sapepeng L ungsey ‘Sasn

(¢ 1 (a) ‘samseani ‘sacnpord ‘sayoam)

9l igc %R AL MRER NG e (0) %00 (0) %00 jepows eyl uj Apoeisod peiuesesd
- : - ele s)desuod yns eyl buowe

sdiysuonejos 1oyi0 :0IMOnNns

al e8'c (¥) () (9) (0) %00 (0) %00 Aoew oo peluesead s A_a_-.n..-._oo_“_.w."“
%052 %SLC %STLC .B-s1.) Awouoxel oyj :0INIONNS

(@) (L) (£) SRR

ol K6 € ¥ ; (0) %00 (0) %00 VDS eyl jo sidedouo?d 1ojew ey

*STH %0°09 ®o ot PeisA0D jepow oy) :sseusiejduwod

unen sbuisAy

Duyey Buyey G v C ¢ b

UIDIUT 33T wiiBol,| TTIN7 [2 vuBuodsdd RS MM dRY (S PTAP UDD| dunmgnd (2 AWdpoOY W10 [& = c2oBianoduron duy (& 2duapuon

°®- seoanosendizum T3 | sops o6uer puss (MIZ | suoum 10) dizuim - peotumon 944 T | esmmyos ssemeis-auy u0 smov [N

Anuojy £aaang ur umoyg se £3010}uQ) YOS Y} U0 MIIA S Juapuodsay :s'9 qe

Although, there is no such a single ontology that can unanimously represent any
knowledge area, especially for an evolving domain like SQA, the survey shows a high
level of agreement around the major assessment criteria. This is despite the fact that

each participant responds based on their own view, background and context.

Participants’ responses to Part II of the assessment questionnaire are illustrated in
Figure 6.2. Responses of participants who are considered to be expert in the field and

those with average expertise are represented in figures 6.3 and 6.4 respectively.

i Disagree = Borderline & Agree

100 1

90 -

Figure 6.2: Participants’ Assessments of the SQA Ontology

98

" Disagree Borderline & Agree

100
90
80
70
60
50

30
20
10

Figure 6.3: Experts’ Assessments to the SQA Ontology

i " Disagree = Borderline N Agree

Figure 6.4: Assessments of Participants with Average Experience in the Domain

99

6.5 Application-based Evaluation of the SQA Ontology

Application-based (or task-based) evaluations offer a useful framework for measuring
practical results of ontology conciseness such as responses provided by the system and
the ease of use of the query component (Obrst, 2007). A querying prototype consisting
of an SQA E-Learning System (SQAES) has been designed and implemented (Bajnaid
etal., 2011).

SQAES prototype is a query tool to evaluate the impact of ontologies on the
information retrieval application where semantic search is combined with keyword-
based search. Ontologies provide controlled vocabularies of the domain that can bring
improvements over the keyword-based search through query expansion based on
hierarchies and semantic rules on ontology relationships (OWL properties) (Vallet,
2005).

As shown in Fig 1.1, the prototype system aims at guiding software developers (e-
learning in the workplace) or student (in traditional learning scenario) through the
necessary QA practices by providing resources that deal with SQA related aspects of

the software process in hand and hence improves product quality.

In the SQAES a global (or upper) ontology was used for modelling the learner’s
profile and the context in the e-learning prototype. The global ontology consists of
three interrelated sub-ontologies, namely Learner sub-ontology, Learning Object sub-
ontology, and the SQA4 domain sub-ontology. The prototype SQAES system ensures
the ontology conciseness. Screenshots of the experimental results show examples of
querying the prototype system where unnecessary and overwhelmed information is
prevented using ontology axioms (Section 7.3.2).The structure, software components,

and implementation details of the SQAES prototype is presented in Chapter 7.

6.6 Conclusion

This Chapter presented the evaluation approach of the developed SQA ontology
model. The ontology development is an iterative process where the ontology was

verified during implementation as described in Section 5.4. The evaluation

100

methodology includes assessing the quality of the developed ontology and evaluating
the ontology for the purpose it was built for. The quality of the ontology was validated
against several criteria. The consistency and conciseness of the developed ontology
were automatically validated during the implementation process using the Protégé
consistency checker tool (Bajnaid et al., 2011). Ontology querying e-leamning
prototype was built to evaluate the SQA ontology conciseness (Bajnaid et al., 2012).
Ontology assessment questionnaire was developed to evaluate the quality of the SQA
ontology. The discussion and findings of the evaluation was also presented in the

Chapter. The next chapter presents in details the general system structure and

implementation details of SQAES.

101

Chapter 7: Ontology-Based e-Learning System: Case Study

As there is no fixed learning path that can fit all learners’ needs, most systems in the e-
learning literature have combined more than one knowledge source to contextualize
the learning sequence and the learning content aiming to provide the best personalized
learning experience. In personalized e-learning or context-aware e-leaming
environment, the system responds differently according to the learner characteristics
(i.e. learner’s needs, learning style, preferred presentation formats, learner’s previous
knowledge of the subject domain, etc.) and performance (gathered in user profile)

(Gomez-Pérez et al., 2006).

Ontology as a promising approach plays an important role in the development of
enhanced and effective learning by providing machine-readable content (Stojanovic et
al., 2001; Hatem et al., 2005, Kontopoulos et al., 2007). Unlike the linear organization
of textbooks, access to learning resources in an e-learning course using ontologies is

structured (see Section 2.7).

In order to evaluate the developed SQA ontology the prototype Software Quality
Assurance e-learning System (SQAES) has been developed. SQAES prototype is a
query tool to evaluate the impact of using ontologies on the information retrieval
where semantic search is combined with keyword-based search. Ontologies provide
controlled vocabularies of the domain that can bring improvements over the keyword-
based search through query expansion based on hierarchies and semantic rules on

ontology relationships (OWL properties) (Vallet, 2005).

This chapter first presents the learning aspects of SQAES (e.g. learning scenario and
learner profile). Later the Chapter describes how SQAES is implemented, the overall
system architecture with a detailed description of its major software components. It
also introduces the design of the global ontology space consisting of the learner, the

learning objects, and the domain sub-ontologies.

102

7.1 The SQAES Prototype

In the current research, SQAES can be used in two learning scenarios: by software
developers in workplace learning; and by software engineering student in a traditional

learning scenario as illustrated in Fig 7.1.

SQAES Prototype

SQA ontology —— SWRL

__

Application Layer
A,-' oo '-._...-‘A
Developer Student

(E-learning in the Workplace) (Traditional Learning Scenario)

Figure 7.1: Macro View of SQAES

Either it is a developer or a student in this chapter we will use the term learner to

describe the suggested scenario.

7.1.1 Requirements to SQAES

Before describing architecture and overall design of the SQAES there is a need to

define requirements to such a system. They can be summarized as follows:

e SQAES shall guide learners through the necessary SQA practices by providing

resources that deal with all SQA related aspects of the software process at hand.

e This could be achieved by sensing the learner’s current activity and suggesting
relevant learning resources (e.g. recommendations for good practices, example
code, and graphical description of a related methodology/process) that deal with all

SQA aspects of the process at hand.

103

e The system shall be able to determine the learner’s current software development
context and infer related SQA knowledge by invoking the appropriate reasoning

mechanisms.

e Besides the SQA domain ontology and the associated axioms (section 5.2.7), there
is a need to define the system’s global ontology which shall be augmented with
reasoning rules. They can be encoded using the Semantic Web Rule Language
(SWRL). The SWRL tab of Protégé and the Jess inference rule engine might be

used to infer the needed rules that drive the leaming process.

7.1.2 General Architecture of SQAES

The main components of the system are: the learning recommendation generator, the
process discovery unit and the ontology reasoning unit as illustrated in Fig.7.2

(Bajnaid et al., 2010).

Ontology reasoning is used to develop personalized services based on the learner’s
context. The system filters out the available learning objects (LOs) based on the
learner’s usage profile and guided by related ontology-based reasoning. The output is a
set of domain concepts that are directly related to the learner selected query. The
extracted query-related concepts are mapped to a set of learning objects which are
provided to the learner. Ontological rules are applied to track previously consumed

learning objects and dynamically infer implicit knowledge based on the user profile.

Context model is divided into global ontology (upper ontology) and specific ontology
(the SQA ontology). The global ontology is a high-level ontology that presents general
features of the context. The specific ontology is a domain ontology that captures

general concepts and properties of domain knowledge (in this case Software Quality).

104

S0l

IMIMNYIIY SHVOS :7°L 2131y

susmcngy Ao ..,..vu:locbd ANRUELIENG oouoydwon t..ﬂéuz.

“GugeiKoe =

7 - ApqEwes1@
!gll .5.50

2) _c-:i T)

AW N0 @

oVREG e

» | e A3oj03uQ

R e 4 !1C.> | voneoysads 1551 @

o S0 sy o 19Ke | Sutuosesy

. bucbay ?:b-coi Al J
touoz .-fx !A.rm'
:.-ﬂ-u!uw Eﬁ-:gx.

wodoy .l'_. - =
Baeinis i!.(‘fb&n‘zwm.’r a.lpd roLe

Brag@
UOIUBABLY LOEANIOD TRAG

(
2000 ecumdwod AngEuEIiN @
0

< » < -r ttaq_z. . URlG MOREANIOA ibié -
smien) Wi = Poummeori @ s =_ﬂE°Q € Ow peon gy *@& va !c.:). 190D 159L Wi :o-‘xnd: p w3
o, -J -
froos @ Apaesdozisi@ O Loday E!ao&. H:....:.HH:W:..:W.S%:‘: HANO INNI@
— =]
S i ! gy uwemog ’.‘) :...!‘. Iy qun:l!tu:).
- !i:..-:?..Z_ CUNgIUN4 @ ~ — n.:nlu._nll..u!. 2ouEpOAY o!_l" u:.ti'u éﬂ.‘) ..x!..
- [T ey pavarian u.:zﬂ 4 e &OO@. éacs.ﬂ_:(. 9] 5900y
Anarrei@ - o - o VAgsuag” :im’w ;mwa!i:oo >
~ © WOy @
oW e [O g p Anainmeay P/ 0
[T 0 4 fyeosun g _g-.una. Boo® o i : @ - Pl .wce!.!:... o vl
Apmruaus @ < <A p ssApuY Apxopsuoo @ S!e%ﬁgl‘, :
y T knaesn@ - N makieyp Moy TRD@ B ' ’ b..a-ooico.u neqe
fgqmugd @ VO @qvAssaO@ uoumwAl Apann UiSeq MS@ D . po——— l..’ ~ 4 a
. 4 ey | - 5 DY s o
) Y 3:2 ie o NG o T oy muanpduc) @
10 eRvpIOUONGF - | IH?“W !itﬂx;. xvoﬂ. % o Appaoan 4 :ﬂl‘._!_. g
9 ol oy o o z;u!, - co.l e sangy] voanOsRy anie 4@
wqesna; @ aada s “ouey wor g .J.L.%Ré. coiu.->0 i § o fuer stessone L, uoamdedx o [ERESPS
- > \ ?}i::. .G..a!.ﬁ#;..... 1.2;. AW uBmduwoD ARSI
3 eouRIdwo Apmqeno, op
Kpgesadiowig sxeinssy (0@ . wve o L t SUe eIURIBWOD d® - Anmropundy
Buiso | UEIGIEND @ pqesuBA UKk YBrong s @ uonduosag jo sseuNRdwWod@P

s et

........ i §Eall

, X\ 19Ae] Surured|
Y .
4 e = Y uoneydepy JuawRSvURIA
s‘ .d ! ”v omua) Idurea/1adoeaag A3ojojuQ \~
raat N
BT — AK12A00s1(Q Furuoseay
ssa%01d vOS A8o101uQ
JIomawIer,] UDALI(]-SS2201d

s[yoid
(12uaeo)
1odojaaag

A1oysoday
s302fqQ Sururea|

U

I101BID2USD) UOHBPUIWILIOOIY
Surures | pazijeuosiag

7.1.3 Learning Scenario in SQAES

In this section we present an overview of the main steps in a typical learning scenario

while using SQAES. Ontology reasoning is used to personalize learning services based

on the learner’s context. This developer/learner centric adaptation is based on the

Developer (Leaner) and the SQA domain ontologies. A set of ontological rules is

applied to infer implicit knowledge that can be used to customize the learning

recommendation. Typical learning scenario has the following sequence of steps (as

illustrated in Fig.7.3):

1.

2.

10.

The learner logs into the system;
The learner navigates (or queries for) an SQA term;
The system retrieves the SQA concept(s) related to the learner’s queried term;

Then, the system retrieves associated LOs from the LO repository using the
concept(s) extracted in step 2;

The system then infers other SQA related concepts using relationships such as,

uses, invokes, enforces, islnputTo, etc.;
The system writes metadata generated in the previous step to a buffer;

The system checks for previously consumed LOs, which are then removed from

the list of learning resources but presented to the learner for re-learning;

The LOs associated with the queried concept and inferred related concepts are

then provided to the learner for investigation;

The learner’s usage profile is automatically updated based on the newly selected

concepts and visited learning resources;

The learner can either terminate the system by login out or query for new SQA
terms by returning to step 2. The learning activity terminates when the learner

logs out the system.

106

2. Generate 3. Retrieve domain 4. Retrieve related
query ontology concept ’ LOs

A 4

1. Login

5. Infer que
Successful? e

related concepts

| 8. Provide learning [~ 7. Infer learner’s usage | 6. save the metadata
objects and related | profile to remove already [~ generated in (4) to a
concepts consumed LOs buffer
<<Log out>> \ 4
¥ ; 9. Update learner’s
10. Terminate usage profile
learning session

Figure 7.3: A Typical Learning Scenario Processing Steps

For example if the developer/learner queries about the Validation process. The system
retrieves unconsumed learning objects that are directly associated to the term
Validation (already consumed LOs are presented for the user for re-learning). The
system will then use the reasoning rules, given in step 4, to infer other concepts related
to the validation process. For example: a Validation process enforces quality attributes
such as Functionality and Efficiency and invokes the Review and Audit processes. It
also uses the Prototyping as resources. The system then saves these related concepts in
a buffer. Associated LOs and related concepts are then displayed as recommendations

to the learner for investigation.

7.1.4 Developer/Leaner Usage Profile

According to Das (2010) context is any information that can be used to characterize
the situation of an entity. An entity is a person, place or object that are considered
relevant to the interaction between a user and an application including the user and the
application themselves. Context-aware learning or personalized learning provides
learning contents according to learner’s needs, preferences, style and previous
knowledge of the subject domain. Various context parameters are considered in
existing e-learning system such as: learner personnel profile, expertise level, learning

preferences, learning situation, network, device, etc. (Das et al., 2010). The system

107

proposed in this research takes into consideration already consumed learning objects
that are stored in the learner’s profile. The learner usage profile is automatically
updated according to his/her performance. A new learning session is initiated each
time the user logged into the system. Information about the starting time of the session,
queried concepts, and consumed leaming resources is stored in the learner’s usage
profile. JDOM (Hunter, 2008) will be used to manipulate users’ profiles which are

stored in XML format. A sample user profile is shown in Appendix 1.

7.2 Ontology-Based Context Modelling

In this section is presented the global ontology that is used for modelling the learning
context in the proposed e-leaming prototype. The global ontology consists of three
interrelated sub-ontologies, namely Learner sub-ontology, Learning Object sub-
ontology, and the SQA domain sub-ontology. These sub-ontologies are used to
represent the most fundamental context elements for capturing information about any
software development scenario undertaken by a learner. Fig.7.4 shows the general
structure of the upper ontology among with the relationships to other sub-ontologies in
the global ontology space. It should be noted that relationships are represented by
arrows where the domain of the relationship is represented by the literal D while the

range is represented by literal R in all graphs.

The global ontology space was developed using OWL. Each entity is associated with
attributes (defined by owl:DatatypeProperty) and related to other entities (defined by
owl:ObjectProperty). The built-in owl:subClassOf property is used for hierarchically
structuring sub-class entities. Ontology reasoning techniques are used to enable
personalized learning that can be achieved through learner centric adaptation where the

learner’s implicit knowledge is used to create recommendations.

The Learner sub-ontology represents the learner’s activity profile which consists of
already consumed learning resources. The leamner’s activity profile and related
knowledge are organized into ontology concepts and relationships. This allows

adapting and delivering LOs relevant to the software process currently at hand.

108

The SQA domain sub-ontology captures general concepts and properties about the
SQA knowledge domain. The main class in this ontology is SQA4Concept that is used
to conceptualize and represent all concepts of the software quality ontology. The
property makeQuery associates SQA-related keywords entered by the learner to the
most relevant concept in the SQA domain sub-ontology. The property isMappedTo
relates the SQAConcept class to the Learning Object class. The property isMappedTo
is used to map LOs metadata to the SQA ontology concepts and thus allow sharing of
resources. The property consumedLearningObject tracks LOs previously consumed by

a specific learner.

Developer/Learner . -
Ontotegy Learning Object Ontology
Object Property _ R Class
D consumedLeamingObject % 1 oaning Object
Class
D R
Developer \ Object Property Object E’?PS/
(Learner) \:‘n;akeQuer)T:‘, (:_i:sMappcho__::'
SQA Ontolo
_ Object Property : =
e hasMeasurementMetric _ RY D / Object Property
S o Class R D \’:_: islnputTo ::'

4

D: Domain

R: Range Object Property ~ Object Property

_ invokes ¢ produces >

Figure 7.4: Macro View of the Global Ontology

The following subsections describe the Learner and the Learning Object sub-
ontologies respectively while the domain ontology was described in detail in the

Chapter 5.

109

7.2.1 Developer/Learner Ontology

The learner sub-ontology represents the contextual knowledge about the learner that
helps the system to adapt and deliver learning recommendations with the most relevant
learning objects in response to queries made by the learner. The structure and
relationships properties — both data properties and object properties — are illustrated in

Fig.7.5.

The properties hasUserName and hasPassword relate individuals of class Learner to
their identification and authentication information. In relation to the domain ontology,
the property makeQuaery associates keyword entered by the learner to the most
relevant concept of the SQA ontology while the property consumedLearningObject
track already consumed learning objects by the learner and plan personalized learning

recommendations for future learning centric adaptation.

Object Property ‘_-___lf’ Class

DaaProperty 5 D _SImakeQuey TS sQAConcept

{__hasPassworde > Class

Developer \D

(Leamner) = "\ __----------emTemeee
... _consumedLearningObject ">
% /D \
Data P Tt
External R ____e_l-_-r_o.pf:__)i -
«—__hasUserName > Class
RDF: String Tt
Learning Object

Figure 7.5: Developer/Learner Sub-ontology

7.2.2 Learning Object Ontology

The learning object is a value integrator of a learner’s need, knowledge element, or
any learner-centric value ingredients. LO is the minimal unit of pedagogically
reasonable learning content consists of random content (video, image, text, etc.)
(Schmidt and Winterhalter, 2004). Each concept of the SQA domain is associated
with some learning objects by the property isMappedTo. It should be noted that each

110

SQA concepts is mapped to multiple LOs, i.e. the property isMappedTo (SQAConcept,
LO) has a cardinality of 1..n.

Already consumed learning objects by specific learner are shown by the property
consumedLearningObject. The property hasURL relates an individual of the Learning
Object class to its corresponding URL. The structure and relationships of this ontology

is illustrated in Fig.7.6.

Class 2

D Class

Developer . O_tijf"_:t_ Property - Object Progperty

(Learner) =0 :c_:(_)nsumedLeamingObje_cE : o e -i;l;iapped’l:o‘ -, SQAConcept

\{ ________
External D Class

RDF: String pata Prope Learning Object

el : R

Figure 7.6: Learning Object Sub-ontology

7.2.3 Domain Ontology

Fig. 7.7 shows the general structure of the domain ontology among with the

relationships to other sub-ontologies in the global ontology space.

The main class in the domain ontology is class SQA4Concept that is used to represent
all concepts of the software quality ontology. The property makeQuery relates
keyword input by the learner to the most related ontology concept. The property
consumedLearningObject track previously consumed LOs by a specific learner. The
property isMappedTo relates the SQAConcept class to the learning object class.

Properties of the SQA domain ontology were described in chapterS5.

111

Learning Object

Learner Ontol
R: Range = ObectPrpey R Ontology
D: Domain Class D 'C_’___-_c_(;nsumedLcamingObjec_t: o Class
/ Developer —— A7 1 Lesming O
. g Upject
_(.)plfic.‘ iy Toperty (Learner) Object Property R
ComakeQuery L 1 = eertile T T

< isMappedTo o

. Object Property
Object P R AP <5
SQA Ont(’logy __--leia—rpﬁﬁy\ﬂ _/ |: invokes ",
roduces ' R =
Y el Class [P
- Object Property SQA Process |D
; Class ject Troper
Object P R4
, ‘_T___J_e_c___ro_p_e_rty___-‘_r_l)_ Tebivible. B~ islnputTo _}"Ta D
o e e T i Propery
Class Object Povpemy {_uses >
enforces > = TTUoYTT
Measurment | = TTmmegeea-e-T
Metric
R " R
: Class
_______ Q Mﬂ. oh i Class Object Property R Class \
___ hasMeasurementMetric __> JoewoT SRR - I
---------------------- D1 Measurement [\ *~. _measures Quality Resourc
""" Attribute

Figure 7.7: SQA Domain Ontology

7.3 Context Reasoning

Ontology reasoning is used to develop personalized services based on the developer’s
(our target learner) context. This learner centric adaptation is enabled by integrating
knowledge components from the three sub-ontologies (learner, learning object, and
SQA domain ontology). Many ontological rules are applied to dynamically infer
metadata that can be used to customize the learning recommendation (Bajnaid et al.,

2010).

7.3.1 Developer/Learner Centric Adaptation

Prototype system aims to guide learner through the necessary SQA practices by
providing resources that deal with SQA related aspects of the current SQA process at
hand. This is achieved by sensing the learner’s current activity and suggesting relevant

LOs (e.g. recommendations for good practices, example code, and graphical

112

description of a related methodology/process) that deals with all SQA aspects related
to the current SQA process. The aim of the learner centric adaptation is to construct
personalized learning recommendation based on the learner’s usage profile. The
system responds differently according to the learner performance (already consumed
LOs) and the SQA process at hand. The learner centric adaptation achieves its

functionality in two steps:

First: The reasoning unit of the proposed e-learning system infers the core LOs that
are directly related to the queried concept through the object property isMappedTo

using the CorelLearningObject rule:

B

> -— "~ e
For implicit query expansion, related concepts are then inferred based on the relations
among the ontology classes and the user defined SWRL rules. The output is a

sequence of LOs and related topics that are generated as learning recommendations.

Second: recommendations generated from the previous step are then semantically
refined and adjusted according to the learner’s profile where the system distinguishes

LOs objects that have already been consumed by the developer.

Besides the OWL ontology reasoning rules (subClassOf, subPropertyOf, inverseOf,
etc...), the SQA knowledge base is extended with a set of user defined rules to allow
inferring higher-level conceptual context from relevant low-level ones. Some of the
user defined SWRL rules used to infer related LOs expressed in the first order logic

are shown in Table 7.1.

The property isMappedTo (?C, ?LO) maps the learner’s query related concept to a
corresponding leaming object. The property — consumed (?L, ?L0j) relate a learner to
a learning object that has not been consumed so far. It should be noted that the system
automatically establishes relation of —~ Consumed (?L, ?L0Oj) for all those learning

objects that have not been consumed by particular learner.

113

Table 7.1: SWRL Rules for Related Concepts Construction

UsedResourceRule retrieves related software resources (uses cases, prototyping, check

list, etc.) that can be used to perform a specific SQA process C:

A

Learner (?L) “ makeQuery (?L,?C) SQAProcess (?C) * uses

(?C, ?R) * Resource (?R) > RelatedConcept (?C, ?R)

EnforcesRule retrieves all quality attributes that can be used to assess a specific process
C:

Learner (?L)

A A

makeQuery (?L,?C) * enforces (?C,?2QA)

QualityAttribute (?QA) -» RelatedConcept (?C, ?QA)

InvokedProcessRule allows the system to infer all SQA processes that can be invoked
by a specific process (C) that is currently under development by the user (i.e. user
queried process):

A

Learner (?L) * makeQuery (?L, ?Cl1) Process (?C1) *
invokes (?Cl, ?C2) * Process (?C2) -> RelatedConcept

(?C1, ?C2)

IsInputRule retrieves SQA process(es) for which a deliverable C is an input to:

Deliverable (?2C)

A A A

Learner (?L) makeQuery (?L,?C)

isInputTo (?C,?P) * Process (?P)-> RelatedConcept (?C,?P)

ProducedDeliverableRule retrieves deliverable(s) that can be produced by a specific
process C:

Learner (?L) “ makeQuery (?L,?C) “ Process (?C) °
produces (?C,?D) “ Deliverable(?D) -> RelatedConcept

(?C,?D)

MeasuredByRule retrieves SQA measures that can be used to measure a specific

quality attribute C:
Learner (?L) ~ makeQuery (?L,?C) * Quality Attribute (?C)

A

* measuredBy (?C,?M) Measurement (?M) -» RelatedConcept

(?2C, ?M)

114

Table 7.1: Continued

MeasurementMetricRule retrieves measurement metric(s) related to specific SQA

measurement C:

A A~ A

Learner (?L) makeQuery (?L, ?C) Measurement (?C)

A

hasMeasurementMetric (2C, ?M) MeasurementMetric (?M)->

RelatedConcept (?C,?M)

ConductingProcessRule retrieves SQA process(es) that is associated with specific

measurement metric C:

A A

Learner (?L) makeQuery (?L,?2C) MeasurementMetric (?C)

A A

conductedUsing (?C, ?P) Process (?P) -

RelatedConcept (?C,?P)

MeasuringQARule retrieves quality attributes that can be measured by a specific SQA

measurement C:

A A A

Learner (?L) makeQuery (?L, ?C) Measurement (?C)
measures (?C,?QA) “ Quality Attribute (?QA) >

RelatedConcept (?C, ?QA)

7.3.2 SQA Ontology Axioms

The prototype system provides the learner with a recommendation list based on the
initial query. However, this list may include some overwhelmed LOs or unnecessary
content. Ontology axioms were added to prevent unnecessary knowledge. In ontology
representation, axioms (see Section 2.3) can be used to represent the meaning of
concepts carefully, and to answer questions on the capability of the built ontology using
the ontology concepts.

Consider the case when the user queries the Validation concept, which is a process
according to the SQA ontology (see Fig. 5.3), the system retrieves the core LOs
associated with the Validation concept from the LO repository. Related concepts
represent the list of recommended SQA concepts to be provided to the user for further
investigation. However, this list may include some overwhelmed or unnecessary
contents. In the example of Validation, by firing the Invokes rule, all SQA processes
will be added to the list of recommendation. In theory (i.e. as per IEEE 12207

115

standard), only those processes that are associated with Review and Audit should have

been added to the list (Fig. 7.8).

Related Concepts
Validation = b
O R
I 7 -~ . o N
o Leaming e Continuous S
/ Integration Test Report
Resources 7 il g Efficiency e
=y B o l . Y
/, [Testing User Manual \
LR1 / " o’ v
LR2 Revi iy e F— r—
; l’ itdesio » [Functionality | [\
= o " 4 |
LR3 | Use Cases T et
LR4 \ ‘ i ,.»"f
: R i
= r rof
LRS \ —
LR6 \\ o Req.‘ Speclﬁc:f/f)l’\,
‘J \ \\ Development .30,
LR7 \ R /
LRS N T Validation
7
g, o +Plan y
N 2 e "
~~Prototyping | o i
e -

Figure 7.8: Provided LOs for the Concept “Precision”

To prevent such situation, recommendation refining is guaranteed by adding ontology
axioms to the ontology model. By referring back to our example related to Validation
concept and according to ISO/IEC 9126 standard, a Validation process produces
TestReport and ValidationPlan and requires RequirementSpecification, Source Code,
Test Report and User Manual as inputs. In addition, Validation has Efficiency and
Functionality as quality attributes and uses Use-Cases, Prototyping, and Measurement

as resources (see Section 5.2.7).

According to Fig. 7.8 the system provides the learner with learning materials (LOs) of
the quaried concept and a list of related SQA concepts for further investigation. The
list of recommended LOs consists of random content (vedio, image, text, etc.) of

pedagically reasonable learning content that are available in the net.

116

7.4 Implementation of SQAES

SQAES has been designed and implemented using free open source and platform
independent software. Upper ontology was used for modelling the learner’s profile and

the context in the e-learning prototype (Bajnaid et al., 2012).

7.4.1 SQAES Software Components

This section presents the main software and technologies used to set up our system
environment. As shown in Fig.7.9, in the center of the system is Web-based server
which read the ontology model and retrieves queried concepts. Other related concepts
are inferred using ontology reasoning mechanism of the defined ontology reasoning
rules. Each SQA concept is mapped to several learning objects. The system retrieves
those learning objects that are associated with the queried concept from the LOs
repository. Retrieved LOs are saved in a buffer to be filtered based on the leaner

profile and then provided to the leaner.

Learner b= [Ontology Reasoning
Usage Profile

4: Infer Process

5: Filter LOs based| Related
on Learner’s Concepts
Context
____________ | _ _ _ 7 _ _ 2b:Retrieve
7: Display Result * Web Server i Iécy W(_)rd OWL Ontology
' s ‘oncept <
PR V. ig—————— Global Ontology Space
—ee B} Java Servlet e |
. 1:Send Query ' 2a: Read
29 i ! Ontology
¥ e P S S e A T Vs
- !) 3a: Retrieve
[t Related LOs 3b: Save to
Buffer
LO Repository Buffer Storage
Learning Objects Retrieved Los

Figure 7.9: Logical Diagram of SQAES Software Components

For SQAES implementation is used a set of tools and libraries already developed for
the Java programming language and the integrated development environment (IDE)
such as Eclipse Software Development Kit (SDK). All components are free open

source and platform independent software. The main components and processing steps

117

are shown in Fig.7.10 and the Java code of the implemented prototype is presented in

Appendix J.

As server software, Apache Tomcat 7 (2012) allows to develop the container with a
few servlets has been chosen. Here servlet means a software component which is

providing service to other software components.

Jena (2012), a Semantic Web framework for Java, is used to extract data from and
write to the developed OWL ontology model. The Jena framework offers a convenient
way to work with ontologies and in particular for integrating ontologies into
applications. The Jena framework is used to read the ontology and to create
prerequisite individuals. The system uses the SWRL Tab of Protégé to build SWRL

rules for ontology reasoning.

RacerPro (2011) is a Description Logic (DL) reasoner used as an interactive tool for

manipulating the ontology and the SWRL rules.

Finally, JDOM (Hunter, 2008) is XML framework for Java used to process XML files

of developers’ usage profiles.

Ontology Reasoning 4b: Invoke]
SWRL-Jess Bridge Reasoning 4a: Infer
Java AP1 Process Related
Concepts OWL Ontology
RacerPro """ Global Ontology Space
2b: Retrieve Protégé 3.4
5: Filter LOs based on Keyword
Developer’s Context Concept
AR IR X e R - 2a: Read
7: Display Result | Web Server V
. splay : Apache Tomcat : Ontology
< 4 :
| > Java Servlet P
o : Se ' e -—] Jena
, ;1 i BendOnery Eclipse SDK i ook
+ .
[Tt | : ’
e L P 1 i
T 6: Retrieve
. Matched LOs
LO Repository 3a: Retrieve . 3b: Save to ffer S
Learning Objects Related LOs JDOM Buffer Buffer Storage
> Retrieved Los

Figure 7.10: Implementation-specific Diagram of SQAES Software Components

7.4.2 Experimental Results

The prototype system provides the learner with a recommendation list based on the

initial query. The recommendations of the LOs suggested by the system include the

118

core LOs of the queried concept and a few related topics based on the inferred SWRL
rules. Fig. 7.11a shows the login screen of SQAES where Figs. 7.11b & 7.11c¢ are
screen shots of the SQAES provided information when the user queries about the
Validation process without the use of the ontology axioms. The user can query about
an SQA concept either by typing the queried concept in the query textbox or by

navigating SQA concepts.

(€ 125 & x | 21508 symam tor Accun A ; 5|
Goghe - Psewch + Hirae Meew Sgnin A -
q- Qe - B vy Wiy tor Wane | TGEY; Sendtarge ries | wtp nevources - WY 2 - A+
¥ Cascadng Ovop-down Mo @ OWLAS & Remoners B0 SVG e & Country Cutaru® Cute . (§ 2005 UNC Contersnce & Wip-trevinch e vigoes . @ OTM Academy | Future Tech 2002 & Mp - e senacesconge

Q> SQAES: Your SQA E_Learning System
SQAES

Please Enter Your Access Information

User Name : Naca
Pass Word : eeed

? B g $vo{ Signin | Ghwiain o, "
@ omorenen m Goi pagp 99 Sonin | O FHY uy s Sorrgern,
Qnrune, © @Pomtity Compiance Vet Y- Shat
$Lroec) Campience Metxc $oe s R |) & .
Oy b wpecusen < emiage Cary p b s .."&4 B, @t Reven Gasee O
O mue Sesouton @ aem Sheves
oot A 4 mtatgin Feuity : v 01 M"’.“" -l
(omparony Ay Queen: 07 @tutacs Reves f
@720 fmmou : < : OSW Desgy’ Oualty Evaaton OOt A Yo
[) t-awuv._wm - @y ton Srayse ~. ‘ ¥ - Qafolu.

Figure 7.11a: SQAES Login Screen

X Gorgle o Mo+ M Mee» Sgnin 4 ¢

@ - e - Bl oo & - wmt tor @ PGS send tavge then | wetp mevources < W3 I iy~ \le
w ¢ CocadngDop downNa. o OWL AN 3 Remonens : Wiintro & Coumtry Cutam® Cota. & 2003 UNC Conterence @ Mip. trevinch enumigo &1 @ O™ Academy o Future Tech 2012 0 MIp- s seracerceny..
Q) SQAES:Your SQA Learning System
yy
SQAES

Welcome Nada
Type your query

You may navigate the menu or use the query box Subma O]

SQA Process Dehverable Quality Moeasurcment Metric Resource
Validation Attribute
Verification
Audit
Review
Testing
Inspection
Quality
SW Desion
Quality

Evaluation

Figure 7.11b: The User Queries about the Validation Process

119

(S s TN SIS O R e
Go g o Msewer + Fowe Mon» g
& - o v [l 0w onamt rateare solmare :‘2"""""" WinZip for Phone ﬁ\-nppm. | ware Revources -“ E'!"

3 Concadmng Drop-down Na. & OWL APl & Remsoners i SVGlInto & Country Cotams® Cona. § 2 OTMAcademy @ Future Tech 002 & MIp--www serncescony
Q> SQAES:Your SQA Learning System
SQAES
Suggested Learning Resources About ces ed by Validation
Validation Technical Reviey

Seven Keys for Successful SW Validation
Software Verification and Validation
Software Validation

SW Validation and Verification

Software Valiodation 2

General Priciples of SW Validation

SW Validation in Accredited Laboratories
Guide to SW Verification and Validation
Software Validation Tools

Inspection
Joint Review

Mangement Reviev
Quality Assuranc
yalification T

fing

You may also read about Resources used by Validation
Inputs required by Validation Prototyping
Fault Removal Report Use Cases

Validation Plan Walk Through

Figure 7.11c: SQAES Response to the User’s Query without Ontology Axioms

7.4.3 Ontology Conciseness

In Fig. 7.11c the system displays all SQA processes as invoked processes by the
Validation process however, in theory according to the IEEE 12207 standard, a
Validation process may invoke only Review or Audit process and produce only
Validation Plan and Test Report as deliverable. Also, Validation has Functionality and
Efficiency as quality attributes and is implemented using Measurement, Prototyping,
Testing, and Use Case as resources. As described in (Section 7.3.2) unnecessary and
overwhelmed knowledge can be prevented by adding axioms to the SQA ontology

model.

SQAES is used to verify the ontology conciseness and the correctness of the developed
ontology axioms. The following screen shots (Fig. 7.12a-7.12¢) show a few user
interfaces that present the user’s query about the Validation concept after adding the
required axioms to the SQA ontology. For instance, in the example given below, the

developed reasoning system allows to infer:

120

e SQA processes invoked by the Validation process;

e Inputs required by the Validation process;

e Resources used by Validation process;

e Quality attributes that are enforced by Validation process; and
e Deliverables produced by the Validation process.

As shown in the example, the user visits 2 learning resources of the queried concepts

(Validation) and investigated (Efficiency) as a related concept.

For personalized learning, SQAES automatically updates the user profile with queried
concepts and visited learning resources. When the user uses SQAES the next time and
queries for concepts, consumed learning resources are distinguished from unvisited

ones and provided to the user for re-learning as illustrated in Fig. 7.12a.

- Ty

e T PR TS

« Gogh v e o e Monw Sqn

- B0 v (Bl o 0t ants e sotare] 1w Downiond - it or #hone | IOEY sendtare s] ety tescurces - {3 B i+
6 £ Cocadng Drop-downNa.. & OWLAPL & Ressonen 5 SVGlntro & Country Cuman® Cute. @ 2003 UNC Conterence &' Mip-trevncanuvgoes-.. o OTMAcdemy & Future Tech L2 & Wtp-www senvceiconys

Q> SQAES:Your SQA Learning System

SQAES

Suggested Learning Resources About Processes invoked by Validation
Validation . Review

Software Verffication and Valida Visited in Fig. 7.11b & ¢ Audt

Software Yalio

Guide to SW Verification and Resources used by Validation
SW Validation and Verificatior Measurment

Software Validation

Investigated in Fig. 7.11d Quality attributes that are enforced
Software Validation Tools Vahdation
Software Validation Tools -
General Priciples of SW Validation f o ""j -
SW Validation In Accre aboratories - o
Seven Keys for Successful SW Yalidation
You may also read about
Inputs required by Validation
Requirement Specification
[est Report

T ‘ElssW. U

Figure7.12a: SQAES Response to the User’s Query using Ontology Axioms

121

(’\.. u -Ummwm,vm,m' M A O ¥ f %
ch » 5 Share More & Signin %+
[- e - Bl oMaen rabeore sotware T tree Downlead Wz for whone | ZAEDY Sendtavge thes | 1| wazp nesources ~ [I im
¥Olstro & Country Cumtars® Cuta 3 UNC Conference L IR S RSy OTM Academy Future Tech 202 2P e SETICEONY 2011 Program [EEE Inarn CC B K

A Software Validation Tools

ders The Software Validation Package I C
single Mode Readers for SoftMax Pro Data Acquisition art 11 N LP ¢ L |
Microplate Assays & Analysis Software and SoftMax .""
validation & Compllance Pro GxP Compliance Software 4 { Casy Vali X
Instrument Validatios provides essential information SLUPQ v 27 {uminescer Detectio
tralest ABS and sample test scripts to assist ! I} , 14 M vith the ne
n the validation process, letting : ~e y L 1 spectraTest LM1
you spend less time drafting Validation Plate Learn

100Q Guidel validation plans and more time on

Software Validation the science.

For GLP, GMP, and other regulated environments, software validation is an .
mportant requirement for establishing confidence In the acquired and

analyzed data. Documenting the system capabllities and verifying the ed Information

gy accuracy of calculations can become an extensive, time-intensive process.
Related Collateral

ntional Patch Clamp
Molecular Devices was the first to support features for 21 CFR Part 11 e e S
HIgh Content Screening * Product Data Sheel
i o compliance for microplate readers, and one of the key products in that

¢ HLIPR Systems
o history of supporting customers in regulated environments is the Software
Y P e 9

¢ HwoResearch Products

P

Share More Sgnin X -

Cog
- - Qoo - (Bl w0 o ants rsuare softuare | tree Downioad - winzi for Shone ﬂuwm Wil Resousces -“ u;_Vn 4§ o+
B SNGlntse & Country Cutars® Cutme. € MI3UNC Conderence & hitp-bevncamungoes-.. o OTM Academy &' Future Tech 2011 & Mtp-—www servicescongy 211 Program B lmen. @ SCC0L2 & KCWS 201

Guide to
software
verification
and

validation

Prepared by
ESA Board for
Standardisation a
(BSSC)

Figure7.12¢c: The SQAES System

122

v Gsewch - Fshre Merew 3 7 Sgnin X v

g - e - [o N At Habmare Sctmare |] Frec Downkand - WinZp for P | TR Send LarpeFies L WonZi Rescumes -0 nm- 4+
¢ @ CastadengDrop-downNa. o ONLAPE O Reascners S SVGintre & Country Cumtans® Cumta. (€ 2013 UNC Conference @ Mip- trevncaesungoes-.. o OTM Academy o Future Tech 2012 o Mt waww sercescongy.
O SQAES:Your SQA Learning System

%
SQAES

Suggested Learning Resources About Efficiency
SW Effeciency Scalability

SW Reusability and Efficiency

Improving Efficiency and Ensuring Compliance

SW Quality Effectiveness

You have v
Important SW Effeciency Criterion

Go ge v Msewcn + Jishae Moew Sgnh X+
a- e - [l 9930 0 s tatare sotware | T tree ownlond - wiat for #hane | I send targe s U wazo nesurces < 1 B i - \ 4

4) Coscading Drop-downNa_. &) OWLAPL & Reasoners 37 SVGlntro & Country Cutans® Cuar. (§ 213 UNC Conference @ Mip-trevincaeinigo.es-.. o OTM Academy o Future Tech 12 & Witp--wam. sariacescongy..
¢ f) Thank you for using

The Personalized SQA Learning System

SQAES

: o [e =
argemess ¢ I [Y Sty Ao $ezron
@ omaney < Pt Congirce Mt Vs Son
@it Conpane Ve Oted s [2 9
[e p—— Gutese Oty 5 Goam $rsser § 51 [FUETeN Qoan st i
et $ e
L e Py CL L —y S T e O
@mnsarns hendry [gl .
- @ s h "
& iema L O Dot Gutty Evvaten - Otwrice » o,
o o G [Py Guay
. o A ense @ et e v v Gravesnt,
$oue # s 4 [S— [S $men,
(L, Pty ¢ 3 i
" " -
Y o Y ¥ > .
.] I o [
o idy ey Gian vm"‘if.‘m oF

- L
Gurowwentt bod 2bg, o T Sevem Tnkn 3

Lo n-:.)‘wpn:.c:. - Puten ost 3 Gtomie, o

femprs e Gy Pilee ,“' ?" Mo Pomowen. = ot lowar
- " » ["e p >

Panwok, rver Vet o Sy Orusiany” “ QT ey

Otes o Wowerte, o o

Figure7.12e: The SQAES Exit Screen

123

7.5 Conclusion

A proof of concept prototype was used to validate the SQA ontology deployment. In
this Chapter the design and structure of a process-driven e-learning system that senses
learners’ current activity and guide them through the necessary SQA practices is
presented. First, a general system architecture and design was introduced followed by
the main software components used to build the system. Global ontology was used to
model the learning context in the SQAES prototype. Context-awareness is achieved
through a set of reasoning tools that take into account user’s profile and learning
history to recommend SQA resources needed for the task in hand. Reasoning axioms
based on international standards have been added to the ontology to prevent retrieving
unrelated concepts. The system updates the leamner’s profile with consumed learning
resources each time the learner logged in the system. JDOM has been used to
manipulate developers’ profiles in XML format. Finally experimental results and

screen shots of using the system are provided.

Conclusions and contributions of this research work are summarized and presented in

Chapter 8.

124

Chapter 8: Conclusions and Future Work

The major research contributions in the area of modelling the SQA knowledge for

learning are presented in this Chapter followed by suggested future work.

8.1 Research Contributions

This research was aimed to investigate, design, implement and evaluate a model of the
SQA knowledge area that would facilitate automated retrieval of the domain
knowledge using ontologies. This research defines a framework of building ontology-
based application for SQA e-learning (Fig. 4.1). The presented framework can be easly
transformed to reflect new standards in the domain (see the enhanced version of the
SQA ontology Section 5.5). This is the first time where both domain (SQA concepts)
and operational (SQA processes) knowledge are integrated into ontology along with a
set of axioms and ontology reasoning tools to help developer/learner query process-
realted SQA resources. This section presents a summary of the main contributions

achieved to meet the research objectives.

e Define a conceptual model of the SQA knowledge area. Section 5.2 presented
the SQA conceptual model (Fig.5.3) which is the key output of the
conceptualization process (Bajnaid et al., 2010, 2011, 2012, 2013).

e Implement machine-readable SQA ontology based on the conceptual model.
Section 5.3 presented the use of the Protégé tool to edit the formal SQA ontology
in OWL, a Semantic Web open standard recommended by W3C. In contrast with
other ontologies the developed SQA ontology is not just taxonomy of the domain.
It is an operational ontology where the knowledge is inferred based on the SQA
process the user is dealing with. Ontology axioms have been added to the SQA
ontology according to the best practices and the software development life cycle.
The developed formal ontology which contains 16 deliverable concepts, 24 SQA

measurement concepts, 27 measurement metric concepts, 11 processes, 8 quality

125

attributes, 8 resources and 198 learning objects partially in (Bajnad et al., 2011;
2012).

Evaluate the developed SQA ontology. Chapter 6 presented detailed description of
the evaluation approach used to validate the developed SQA ontology. The ontology
was verified for consistency using Protégé and the Racer Pro ontology reasoning tool
(Fig. 5.9). Clarity and completeness have been evaluated using the SQA ontology
assessment questionnaire (Bajnaid et al, 2013). Chapter 6 also presented the
discussion and results of the ontology assessment questionnaire distributed among SE
specialist. Application-based ontology evaluation was also performed using a
prototype of the ontology-based e-Learning system as presented in Chapter 7 (Bajnaid
et al., 2013). For the development of the SQAES prototype, Apache Tomcat 7 has
been chosen as server software. Jena is used to extract data from and write to the
developed OWL ontology model. The system uses the SWRL Tab of Protégé to build
SWRL rules for ontology reasoning. RacerPro has been used as an interactive tool for
manipulating the ontology and the SWRL rules. Based on the suggestions and results
of the evaluation an enhanced version of the SQA ontology model has been developed

(Section 5.5).

In addition to the above, the followings outcomes are other achievements which are

linked to the main research contributions:

e The vocabulary and relationships in the developed SQA ontology (Tables 5.3, 5.4
and 5.5) are built based on SWEBOK guide (2004) and international standards
(SO 9126, IEEE 12207, IEEE 610.12, IEEE 00100) and other documents
(PMBOK 2008, CMMI v1.2, and ANSVISO/ASQ Q9000-2000) partially in
(Bajnaid et al., 2012; 2013);

e Approach to implement semantic representation of the user profile (the
Developer/Leamner sub-ontoloyg Section 7.2.1) in the integrated ontology-based
prototype SQAES (Bajnaid et al., 2012; 2013).

126

8.2 Future Work

This research area is very rich and many ideas can be developed as extension to this
research. Some attempts has been done to carry out certain extensions, however, they
were excluded as they don’t contribute to the main objectives of this research. Some of

these extensions are listed below.

8.2.1 Towards Task-Level SQA Ontology
The IEEE 12207 (2008) defines an activity as a set of cohesive tasks of a process
where tasks are requirements, recommendation or permissible action intended to

contribute to the achievement of one or more outcomes of a process.

Additionally to the current process-level SQA ontology (shaded in orange), the
ontology can be extended to be task-based level ontology where each SQA process is

composed of activities and tasks as illustrated in Fig. 8.3.

‘Project-outer’ level

Stakeholder
I SQ Knowledge Contract Knowledge I—b Type: Customer, Sponsor, User |]
produces
involves changes
A
""" G i e i ol S Requirement ===F-"1""
Project level Type: Customer / Project
| Project SQ Model
Process level
----- w Product delivered-to
a0 3 BTN g Dt ek SNy Sae Ui SR e Name: i
Task level =
Activity consists of
Name
Inputs:
Outputs: 1

| consists of

Figure 8.3: Future view of the SQA including task, project and project-outer
levels.

127

8.2.2 Merging the SQA Ontology with other SE Knowledge Areas

SQA is not a separate SE process. Quality implies in every action and step of the
software development process from requirement specification to post-delivery
evolution. A future work might be conducted towards merging the developed SQA
ontology to an upper level SE ontology.

8.2.3 Enhancement of the SQAES Prototype

The current version of SQAES has been improved to allow the user to navigate SQA
concepts in addition to quering for a concept. I such a case the user doesnot need to
remember all SQA concepts. For an attractive and flexible e-learning environment, the
SQAES prototype can be supported with a graphical generator for better representation
of the outputs. The use of the Scalable Vector Graphics (SVG), an XML-based vector

image format for two dimensional graphics (2002), can be a way forward.

Context-aware learning or personalized learning provides learning contents according
to learner’s needs, preferences, style and previous knowledge of the subject domain.
Various context parameters are considered in existing e-learning systems such as:
learner personnel profile, expertise level, learning preferences, learning situation,
network, devices...etc. (Das et al,, 2010). The SQAES prototype implemented to
provide learner with personalized list of learning recommendations based on the
learner’s usage profile and taking into account already consumed learning resources.

SQAES can be enhanced by considering more context-aware learning parameters.

Using SQAES in real life can be useful where data about SQA concepts can be
collected from the users’ profiles (e.g. the most visited concept, average consumed

concepts/learner, and average consumed concepts/learning session etc.)

8.2.4 Associate Learning Objects with LOM

As the SQAES prototype was not intended to be a complete perfect system but rather a
demo, the features such as described in the IEEE Learning Object Metadata (LOM)
standard were not addressed. LOM is a meta-date conceptual model with different
attributes such as language, title, date, format, teaching style, and prerequisite enables

the sharing and exchange of learning objects across any technology supported learning

128

systems (Holzinger et al., 2001). The use of LOM to find and retrieve the learning
objects in SQAES will help to provide structured description of the learning objects
that can be used by various applications and hence will offer an open pool of learning

resources to the learner.

8.2.5 Towards an Extension of SQAES for Agile Software Development

Agile software development methods aim to develop software as fast as possible with
continuous feedback from customers (Rech, 2007). Although agile methods produce
software faster, they need to produce quality products. While quality software is the
output of quality process, it is not clear how current agile practices and methods attain
quality under time pressure and in an unpredictable requirements environment. As an
extension of the use of SQAES, the system can be used to provide agile developers
with, just-in-time and in a contextualized way, resources that deal with SQA related
aspects of the software process at hand and hence might improve quality in an agile

software development environment.

8.2.5.1 Extending of the SQA Ontology with Agile Terminology

SQAES, the prototype system developed in this research, has to be extended to address
the challenges related to the role of Quality Assurance in agile projects by developing
a process-driven recommender that takes into consideration the type of software
process the developer is dealing with, as well as its SQA requirements, quality
attributes, SQA measurements and metrics, related techniques and procedures. The
main motivation is to achieve the Agile Manifesto’ principle, that is “Build projects
around motivated individuals, give them the environment and support they need and

trust them to get the job done” (Judy, 2009).

Ontology expandability, refers to the ability to add new definitions to the ontology
without altering the already stated semantic (Gémez-Pérez, 2001), has been evaluated.
The SQA ontology is partially extended to include agile terminology. To support
agility that relies on individual’s tacit knowledge and that is very much based on
standard work practices and methodologies, the software engineering knowledge

sources (Section 5.2) and some agile software development methods resources

129

(Mankandla and Dwolatzky, 2006; Abrahamsson et al., 2002) have been used aided by
domain specialists to extend the vocabulary and relationships of the SQA ontology
developed in chapter 5. Table 8.2 shows extracted knowledge used to extent the
conceptual model of the SQA ontology (Bajnaid et al., 2012).

It should be noted that the inclusion of the agile terminology into the SQA ontology
did not affect the concepts and relationships of the original ontology and thus confirms

the expandability of the ontology.

Table 8.2: Additional Agile Terminology

Term Ontology Concept | Related Ontology Concepts

User Stories Technique usedBy > joint review and Verification
Pair Programming Technique usedBy > Quality Assurance

Generic OO Design Technique usedBy = Quality Assurance

Practices

Continuous Integration | Technique usedBy -> Validation and Verification
Case Dependent Technique usedBy > Quality Assurance

On-site Customer Technique usedBy - Joint Review

Iterative Incremental | Technique usedBy => Verification, Validation,
Development (1ID) Qualification Testing, and Joint Review

8.2.5.2 Possible Scenario of Using Agile-Oriented SQAES

To use SQAES in an agile development environment the ontology has to be
automatically used to annotate software development related keywords. The possible
scenario could be as follows: once a keyword is annotated, the system triggers a drop-
down menu with all possible queries that can be generated from the ontology concept
that is related to that keyword. Example of such implementation is shown in Fig. 8.4
with a combined view with the drop-down menu displaying learning resources related
to Validation and its SQA related concepts (invoked processes, produced deliverables,
required inputs and wused resources) where selected LO about the

Continuous_Integration technique used by the Validation process is visited.

130

Computer systems used to create, modify, and maintain elec
electronic signatures must be validated to ensure accuracy,

pﬂfonnallcf.'. and the ability ta Aicram invalid ar altarad racar
. Validation is a Process :
subject to the FEHOH T

-m o

E3EL WCWXP Practice: Continuous Integration e

onference

Jntegration s often one of the most Aficult moments n software projects. in " estimating
1actonal watertall development e INtegraton phase af the end of
Oevelopment can take a iof of tme and reveal Many desgn dehcencies
Things become easr f the Organizaton 3opts the Dractice of tr-weekly
weekly or daly Duids The more Yequently the system i Dudt tested and
Verfieq. the earber problems ana deviations are found

lean i« management

planning pia:

Figure 8.4: Combined view of the SQAES System for Agile SW Development
(Bajnaid et al., 2012)

8.3 Epilogue

This research has designed and developed a Software Quality Assurance ontology that
at the first time represents both domain and operational knowledge of the SQA
knowledge area. The ontology provides consistent terminology that aims to support

communication between people and software agents.

The common vocabulary and relationships modelled in the developed ontology is an
attempt to resolve the problem of inconsistency among current standards and
proposals. With a goal to develop a consistent terminology for software quality
assurance, different ISO and IEEE standards were used in the ontology
conceptualization activity while the Software Engineering Body of Knowledge
(SWEBOK) remains the important and primary source for developing the SQA
ontology.

131

The developed ontology built based on international standards and hence can provide
an improved communication medium among organizations and a basis for future

agreement among SQA community.

The developed SQA ontology is easly transformed from the old quialty standard
(ISO/IEC 9126, 2001) to the latest quality standard (ISO/IEC 52010, 2011) as shown

in Section 5.5.

132

References
Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software
Development Methods: Review and Analysis. VTT Publications 478, 2002.

Alyahya M. (2006). A New Model for Ildentifying and Describing Question/Answer
Resource Semantic for Distributed Access. PhD Thesis, University of Nottingham,
UK.

Andreasen T. and Bulskov H., (2007). On Browsing Domain Ontologies for
Information Base Content. Lecture Notes in Artificial Intelligence 2007.

Anquetil N, Oliveira K.M., and Dias M., “Software Maintenance Ontology”. In:
Calero, C., Ruiz, F. and Piattini, M. Ontolgies in Software Engineering and
Software Technology, Springer-Verlag, Berlin, 2006, pp.153-174.

ANSVISO/ASQ Q9000-2000. Quality Management Systems: fundamentals and
Vocabulary, American Society of Quality, American National Standard, 2000.

Antoniou, G., and Harmelen, F., (2003). Web ontology language: Owl, Handbook on
Ontologies in Information Systems, Springer, p. 67--92, 2003.

Apache (2012) The Apache Tomcat Fondation [online]. Available at:
http://tomcat.apache.org/ (accessed: 3 March 2013).

Apache Jena (2012) Java framework for building Semantic Web applications [online].
Available at: http://jena.apache.org/ (accessed: 3 March 2013).

Baader, F., Horrocks, 1., & Sattler, U. (2005). Description logics as ontology languages
for the semantic web. Mechanizing Mathematical Reasoning, p. 228-248.

Bajnaid N., Benlamri R. and Cogan B. (2010), "Ontology-Based E-Learning System
for SQA Compliant Software Development”, International Journal of Information
Studies July 2010, Volume 2, Issue 3, pp. 174 - 181
http://www.dline.info/diwt2010.php.

Bajnaid N., Benlamri R. and Cogan B. (2011). Context-Aware SQA E-learning
System, ICDIM 2011: Proc. of the Sixth International Conference on Digital
Information Management, Melbourne, Australia, 26-28 Sept., 2011, pp. 327-331.

133

http://tomcat.apache.org!
http://jena.apache.org!
http://www.dline.info/diwt20

Bajnaid N., Benlamri R. and Cogan B. (2012), “An SQA e-Learning System for Agile
Software Development”, Proc. of the Fourth International Conference on
Networked Digital Technologies, Dubai, UAE, April 24-26, 2012. Communications
in Computer and Information Science(CCIS 7899) Series of Springer LNCS (294),
2012, pp. 69-83. ISBN: 978-3-642-30566-5. E-ISBN: 978-3-642-30567-2.

Bajnaid, N., Cogan, B., and Al-nuaim, H., (2008).Software Quality Ontology for
Teaching: A Development Issues. IIT 2008: Proc. Int. Conf. on Innovations in
Information Technology, 2008, Dec. 16-18, 2008 p.352-356. URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=478 1 698&isnumber=47
81627

Bajnaid N., Benlamri R., Pakstas A. and Salekzamankhani S. (2013). “Software
Quality Assurance Ontology: from Development to Evaluation”. SEKE 2013: Proc.
Of the 25™ International Conference on Software Engineering and Knowledge
Engineering, Boston, USA, 27-29 June 2013, in press.

Barbosa E. F., Nakagawa E. Y., Maldonado J. C., (2006).Towards the establishment of
an ontology of software testing, in: 18th Int. Conf. on Soft. Engineering and
Knowledge Engineering (SEKE’06), 2006, p.522-525.

Berri, J., Benlamri, R., and Atif, Y., (2006). “Ontology-based Framework for Context-
aware Mobile Learning”, Int. Workshop Context-aware Mobile Computing 06,
Vancouver, Canada, July 3-6, 2006, pp.1307-1310

Bishop R., Lehman M.M. (1991). A View of Software Quality. IEEE Col. on
Designing Quality into Software Based Systems. London, 14 Oct. 1991.

Bloom, B.S,, et al., (1956). Taxonomy of Educational Objectives: The Classification
of Educational Goals. Handbook I: The Cognitive Domain. New York: Longman.
1956.

Boehm, B., Chulani, S., Vemer, J., Wong, B., (2009). "Seventh workshop on Software
Quality," Software Engineering - Companion Volume, 2009. ICSE-Companion
2009. 31st International Conference on, vol., no., pp.449-450, 16-24 May 2009.

134

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5071056 &isnumber=50
70947

Bourque, P., Buglione, L., Abran, A., April, A., (2004). Bloom’s Taxonomy Levels for
Three Software Engineer Profiles, Proceedings of the 11Annual International
Workshop on Software Technology and Engineering Practice(STEP'04), 2004, pp.
123-129.

Brank, J., Grobelnik, M. and Mladenic, D. (2005). A survey of ontology evaluation
techniques. In Proceedings of the Conference on Data Mining and Data Warehouses

(SiKDD 2005), Ljubljana, Slovenia.

Calero, C., Ruiz, F. and Piattini, M., (2006). Ontologies in Software Engineering and
Software Technology, Springer

Chen, C. M. (2009). Ontology-based concept map for planning a personalized learning
path. British Journal of Educational Technology, vol. 40, no. 6, pp. 128-158, 2009.

Chung, L, Nixon, B., Yu, E. & Mylopoulos, J. (2000). Non- Functional Requirements

in Software Engineering. Boston: Kluwer Academic Publishers.

Corazzon R. (2013), Theory and History of Ontology [online]. Available at:
http://www .ontology.co/ accessed by: 27 April 2013.

Das, M. et al.,, (2010), Context Aware E-Leaming system with Dynamically
Composable Learning Objects. (JCSE) International Journal of Computer Science
and Engineering, Vol. 2, No. 4, 2010, pp. 1245-1253.

Dey AK and Abowd GD (2001), “A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications”. Human-Computer
Interaction Journal, 16(2—4), pp. 97-166

Dupuis, R.; Bourque, P.; Abran, A., (2003). SWEBOK guide an overview of trial
usages in the field of education, Frontiers in Education, 2003. FIE 2003. 33rd
Annual , vol.3, no., pp. S3C-19-23 vol.3, 5-8 Nov. 2003.

Dzcmydiene D. and Tankeleviciene L. (2008), "On the Development of Domain
Ontology for Distance Learning Course", in L. Sakalauskas, G.W. Weber and E.K.

135

http://ieeexplorejeee.org/stamp/stamp.jsp?arnumber=5071
http://www.ontology.co/

Zavadskas (Eds.): Selected papers from the The 20th international conference
EURO mini conference "Continuous optimization and knowledge-based
technologies” EurOPT'2008: May 20-23, Neringa, Lithuania, ISBN 978-9955-28-
283-9. pp. 4744 79, 2008.

Fernandez-Lopez, M., et al, (1999). Building a Chemical Ontology using
METHONTOLOGY and the Ontology Design Environment, IEEE Intelligent
Systems and their Applications 4(1), 1999, 37-46.

Ferndndez-Lopez M., GOmez-Pérez A., (2002). Overview and analysis of
methodologies for building ontologies. The Knowledge Engineering Review
17(2):129-156

Garcia F., Bertoa, M., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M. and Genero, M.,
(2006). Towards a consistent terminology for software measurement, Information

& Software Technology, 48(8), pp.631-644.

Garcia F., et al., (2009). Effective Use of Ontologies in Software Measurements. The
Knowledge Engineering Review, 24, pp. 23-40. doi:10.1017/S0269888909000125.

Genesereth MR, Fikes RE (1992) Knowledge Interchange Format.Version
3.0.Reference Manual. Technical Report Logic-92-1. Computer Science
Department. Stanford University, California.
http://meta2.stanford.edu/kif/Hypertext/kif-manual . html

Glass, R., (1997). “An Early History of Software Engineering”. In the Beginning:
Personnel Recollections of Software Pioneers. Wiley-IEEE Computer Society
Press, 1997.

Gomez-Pérez A.,Rodrigues L., Santos A., Barbeira J., and Carvalho R. (2006), "Using
Ontologies for eLearning Personalization," Proc. of the 3rd E-learning Conference -
Computer Science Education, Coimbra, Portugal, pp. 155-160, Sept. 2006.

Gomez-Pérez A (2001) Evaluation of Ontologies. International Journal of Intelligent
Systems 16(3):391-409

Gomez-Pérez A, Corcho O (2002) Ontology Languages for the Semantic Web.
IEEEIntelligent Systems & their applications 17(1):54—60

136

http://meta2.stanford.edulkif/Hypertextlkif-manual.html

GoOmez-Pérez, A., Fernandez-Lépez, M. & Corcho, 0.,(2004). Ontological
engineering: with examples from the areas of knowledge management, e-commerce

and the semantic Web, Springer-Verlag, New York; London.

Gomez-Pérez A., Fernindez-Lopez M., de Vicente A., (1996). Towards a method to
conceptualize domain ontologies. In: van der Vet P (ed) ECAI’96 Workshop on

Ontological Engineering. Budapest, Hungary, pp. 41-52

Gruber TR (1993). A Translation Approach to Portable Ontology Specification
Knowledge Acquisition 5(2):199-220.

Gruber, T., (1995). Towards principles for the design of ontologies used for
knowledge sharing, Int. Journal of Human-Computer Studies, Volume 43, No. 5/6.

Gruber, T., (2008). Ontology, Entry in the Encyclopedia of Database Systems, Ling
Liu and M. Tamer Ozsu (Eds.), Springer-Verlag, to appear in 2008.

Grubigi¢ A., Stankov S., Rosi¢ M. and Zitko B., (2009). Controlled Experiment
Replication in Evaluation of e-Learning System’s Educational Influence,
Computers & Education, 53 (2009), pp. 591-602.

Gruninger, M. and Fox, M., (1995). Methodology for the Design and Evaluation of
Ontologies, Proceeding of Workshop on Basic Ontological Issues in Knowledge

Sharing in IICAI 95, Mont-real, Canada, 1995.

Happel, H-J. and Seedorf, S., (2006). Applications of Ontologies in Software
Engineering. In 2™ International Workshop on Semantic Web Enabled Software
Engineering (SWESE 2006), held at the S5th International Semantic Web
Conference (ISWC 2006), Athens, GA, USA, Nov. 2006.

Hatem M., A Ramadan H., Neaguin D., (2005), e-Learning Based on Context Oriented
Semantic Web, Journal of Computer Science, vol. 1, issue 4, pp. 500-504, 2005

Henze, N., Dolog, P., and Nejdl, W., (2004). “Reasoning and Ontologies for
Personalized E-Learning in the Semantic Web”. Educational Technology and
Society, 7(4), 2004. pp. 82-97.

137

Hilburn, Y. and Towhidnejad, M., (2002). "Software Quality Across the Curriculum,"
Frontiers in Education, 2002. FIE 2002. 32nd Annual, vol.3, no., pp. S1G-18-S1G-
23 vol.3, 6-9 Nov. 2002URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=115864 1 &isnumber=25193

Holzinger A., Kleinberger T., and Miiller P., (2001). Multimedia Learning Systems
based on IEEE Leamning Object Metadata (LOM), presented at ED-Media World
Conference on Educational Multimedia, Hypermedia and Telecommunications,

Tampere (Finland), 2001. p. 772-777.

Horridge, M., Jupp, S., Moulton, G., Rector, A., Stevens, R., Wroe, C., (2007). A
Practical Guide to Building OWL Ontologies Using Protégé 4 and CO-ODE Tools.
The University Of Manchester.

Horrocks I, van Harmelen F (eds) (2001) Reference Description of the
DAML+OIL(March 2001) Ontology Markup Language. Technical report.
http://www.daml.org/2001/03/reference.html

Horrocks 1., Patel-Schneider P.F., Boley H., Tabet S., Grosof B., and Dean M., (2004).
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, 21 May 2004. Available at
http://www.w3.org/Submission/SWRL/.

Hunter J. (2008) JDOM [online]. Available at: http://www.jdom.org/index.html
(acceded: 3 March 2013).

IEEE 610.12:1990. Glossary of Software Engineering Terminology: ANSIIEEE. In:
IEEE Software Engineering Standards, vol. 1, Customer and Terminology
Standards. IEEE, Inc. 1999.

IEEE 1074:1996. IEEE Standard for Developing Software Life Cycle Processes. Std.
1074-1995 IEEE Computer Society.

IEEE 00100:2000. The Aauthoritative Dictionary of IEEE standards terms.

ISO. "JTC 1 - Information technology". ISO. Retrieved 2009-11-1

138

http://ieeexplore.ieee.orgistamp/stamp.jsp?amumber=
http://www.daml.orgl2001l03/reference.html
http://www.jdom.org/index.html

ISO 9000:1992. International Standards for Quality Management. Geneéve,

Switzerland, International Organization for Standardization, 1992.

ISO/IEC 9126-1:2001. Software Engineering — Product Quality, Partl: Quality Model,
2001

ISO/IEC 9126-2:2003. Sofiware Engineering — Product Quality, Partl: External
Metrics, 2003

ISO/IEC 9126-3:2003. Software Engineering — Product Quality, Partl: Internal
Metrics, 2003

ISO/IEC 9126-4:2004. Software Engineering — Product Quality, Partl: Quality In Use
Metrics, 2004

ISO/IEC 12207, IEEE Std 12207-2008: System and Software Engineering — Software

Life Cycle Processes
ISO/IEC 15288:2008. System and Software Engineering: system Life Cycle Processes.

ISO/IEC 25010:2011. Systems and Software Engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System and software quality
models, 2011

ISO/IEC 25023:2011. Systems and Software Engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) — Measurement of system and
software product quality, 2011

Jakkilinki, R., Sharda, N., and Georgievski, M., (2005). Developing an Ontology for
Teaching Multimedia Design and Planning. M2USIC 2005, MMU International

Symposium on Information and Communication Technologies.

Jeremié, Z., Jovanovié, J., Ga3evi¢, D., (2011). An Environment for Project-based
Collaborative Learning of Software Design Patterns, International Journal on
Engineering Education, Vol. 27, No. 1, pp. 41-51.

Jovanovié, J., Knight, C., Gaevi¢, D., Richards, G. (2006). Learning Object Context
on the Se mantic Web. In: ICALT 2006. Proc. of the 6th IEEE Int’] Conference on
Advanced Leaming Technologies, Kerkrade, The Netherlands, pp. 669—673.

139

Jovanovi¢, J., GaSevi¢, D., Brooks, C., DevedZi¢, V., Hatala, M., (2007). LOCO-
Analyst: a Tool for Raising Teachers' Awareness in Online Learning Environments,
In Proceedings of the 2nd European Conference on Technology Enhanced
Learning, Crete, Greece, 2007, (Lecture Notes in Computer Science, Vol. 4753),
pp. 112-126

Judy, K.H., "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS
'09. 42nd Hawaii International Conference on , vol., no., pp.1,8, 5-8 Jan. 2009
doi: 10.1109/HICSS.2009.53

Kabilan, V., (2007). Ontology for Information Systems (O41IS) Design Methodology;
Conceptualizing, Designing and Representing Domain Ontologies, PhD thesis.

Kassab M., (2009). Formal and quantitative approach to non-functional requirements
modelling and assessment in software engineering. PhD thesis, Concordia

University, Canada.

Kayed A., Hirzalla N., Samhan A., Alfayoumi M., (2009). Towards an Ontology for
Software Product Quality Attributes, Proceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services, p.200-204, May 24-28,
2009 [doi>10.1109/ICIW.2009.36]

Klapholtz, D., McDonald, J., and Pyster, A.,(2009). The Graduate Software
Engineering Reference Curriculum (GSWERC). In Proceedings of the 2009 22nd
Conference on Software Engineering Education and Training - Volume 00
(February 17 - 20, 2009). CSEET. IEEE Computer Society, Washington, DC, 290-
291. DOI= http://dx.doi.org/10.1109/CSEET.2009.62

Kontopoulos, E.,Vrakas D., Kokkoras F., Bassiliades N., Vlahavas 1.,(2007). An
Ontology-based Planning System for E-course Generation. Expert Systems with
Applications,2007, doi:10.1016/j.eswa.2007.07.034

Kusters, R.J.; van Solingen, R.; Trienekens, J.J.M., (1999).Strategies for the
Identification and Specification of Embedded Software Quality, Software
Technology and Engineering Practice, 1999. STEP '99. Proceedings , vol., no.,
pp.33-39.

140

http://dx.doi.org/l

URL.: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=798477 &isnumber=173
45

Lassila O. and Swick R. (1991). Resource Description Framework (RDF) Model and
Syntax Specification, W3C Recommendation, World Wide Web Consortium,
Cambridge (MA), February 1999

Lenat, DB, and Guha, RV, (1990). Building Large Knowledge-based Systems:
Representation and Inference in the Cyc Project. Addison-Wesley, Boston,

Massachusetts.

MacGregor R (1991). Inside the LOOM Classifier. SIGART bulletin 2(3):70-76

Mahoney, M.S., (2004). “Finding a History for Software Engineering”. Annals of the
History of Computing, IEEE, vol. 26, issue 1, 2004, pp. 8-19.

Mnkandla, E., Dwolatzky, B. (2006). Defining Agile Quality Assurance. Proc. ICSEA

2006: International Conference on Software Engineering Advances.

Mendes, O., and Abran, A., (2004). Software Engineering Ontology: A Development
Methodology, Position Paper, Metrics News 9:1, August, pp. 68-76.

Neches R. et al,, (1991). Enabling technology for knowledge sharing, Al Magazine
Volume 12 No.3 pp.16-36 Fall 1991.

Nicola, A., Missikoff, M., and Navigli, R., (2005). A proposal for a Unified Process
for ONtology building: UPON, Proceedings of the 16th International Conference
on Database and Expert Systems Applications (DEXA), Copenhagen, Denmark.

Nicola, A., Missikoff, M., and Schiappelli, F. (2004). Towards an Ontological Support
for Elearning Courses, OTM Workshops, LNCS 3292, pp. 773-777, 2004.
Springer-Verlag Berlin Heidelberg.

Noy, N. & McGuinness, D., (2001). Ontology development 101: A guide to creating
your first ontology, Technical report, Stanford University.

Obrst L., et al. (2007). The Evaluation of Ontologies: Toward Improved Semantic
Interoperability. Chapter in: Semantic Web: Revolutionizing Knowledge Discovery
in the Life Sciences, Christopher J. O. Baker and Kei-Hoi Cheung, Eds., Springer.

141

http://ieeexplorejeee.org/stamp/stamp.jsp?amumber=798477

Osterweil, L. J.,(2007). A Future for Software Engineering?. In 2007 Future of
Software Engineering (May 23 - 25, 2007). International Conference on Software
Engineering. IEEE Computer Society, Washington, DC.

Paech, B., Kerkow, D., (2004). Non-Functional Requirements Engineering - Quality is
Essential.In: 10th Anniversary International Workshop on Requirements
Engineering: Foundation for Software Quality, REFSQ 2004.

http://www.sse.uni-essen.de/refsq/downloads/toc-refsq04.pdf

Parsia, B., Sirin, E., and Grau, P., (2005). Cautiously Approaching SWRL, Technical
Report, University of Maryland, MIND Lab, 23 February, 2005.

Perez, A. and Benjamins, V., (1999). Overview of Knowledge Sharing and Reuse
Components: Ontologies and Problem Solving Methods, LJCAI-99 workshop on
Ontologies and Problem-Solving Methods (KRRS), Stockholm, Sweden, August 2,
1999.

PMBOK (2008). A Guide to the Project Management Body of Knowledge, Project
Management Institute, 4™ edition.

Pressman, R.S., (2005). Sofiware Engineering: a Practitioner’s Approach, Sixth
edition. McGraw-Hill Inc.

RacerPro (2011). The RacerPro Knowledge Representation and Reasoning System

[online]. Available at: http://www.racer-systems.com/index.phtml (accessed: 13
April 2013).

Rech, J., (2007) "Handling of Software Quality Defects in Agile Software
Development," in Agile Software Development Quality Assurance, 1. Stamelos and
P. Sfetsos, Eds.: Idea Group Inc., 2007.

Rothman, J, (2002). What Does it Cost to Fix a Defect?, Column Archive,
StickyMinds.com. http://www.stickyminds.com.

Samhan A.,(2008). An Ontology for Software Product Quality Attributes, Middle East
University for Graduate Studies Master’s thesis.

142

http://www.sse.uni-essen.de/refsq/downloads/toc-refsq04.pdf
http://www.racer-systems.comlindex.phtml
http://www.stickyminds.com.

Saiedian, H. & Weide, B., (2005). The New Context for Software Engineering
Education and Training, The Journal of Systems and Software 74 (2005), pp. 109-
I11.

Scalable Vector Graphics (SVG) 1.2 W3C Working Draft. World Wide Web
Consortium. 15 November 2002. Retrieved 29 August 2010.

Schmidt A. and Winterhalter C. (2004) User Context Aware Delivery of e-Learning
Material: Approach and Architecture. J Univers Comput Sci 10(1):28-36

Shehzad, A., and Ngo, H., (2004). Formal Modelling in Context Aware Systems, KI-
Workshop Modelling and Retrieval of Context (MRC2004), University of Ulm,
Ulm, Germany, September 23-27, 2004, pp.13-24

Simons, C., Parmee, 1., and Coward P., (2003). 35 Years On: To What Extent Has
Software Engineering Design Achieved its Goals?, IEE Proceedings-Software, vol.
150, no. 6, December 2003, pp. 337-350.

Smith, B., (2003). Ontology, Preprint version of Chapter “Ontology”, in L. Floridi
(ed.), Blackwell Guide to the Philosophy of Computing and Information, Oxford:
Blackwell, 2003, 155-166.

Smith, M., Welty, C., and McGuinness, D., (2004). OWL Web Ontology Language
Guide, W3C Recommendation, 10 February, 2004, Available at:
http://www.w3.org/TR/owl-guide/#owl Class

Sonsovsky S. and Gavrilova T. (2006). Development of Educational Ontology for C-
Programming, Information Theories and Applications, vol. 13 (4), pp. 303-308.

Spyns, P., Meersman, R., and Jarrar, M., (2002). Data Modelling versus Ontology
Engineering, ACM SIGMOD Record, v.31 n.4, December 2002

Stojanovic, L., Staab, S., Studer, R., (2001).e-Learning Based on the Semantic Web.
In: Fowler, W., Hasebrook, J. (eds.) Proc. of WebNet’2001, World Conference of
the WWW and Intemet, pp. 1774-1783. AACE (2001).

143

SWEBOK, (2004). Guide to the Software Engineering Body of Knowledge, ed.
Bourque P., and Dupuis R. IEEE Computer Society Press, 2004. Available at:
http://www.swebok.org

Thomas, S.A.; Hurley, S.F.; Barnes, D.J., (1996). Looking for the human factors in
software quality management, Software Engineering: Education and Practice, 1996.

Proceedings. International Conference, vol., no., pp.474-480.

Uschold, M., and King, M., (1995). Towards a Methodology for Building Ontologies,
Proc. of Work-shop on Basic Ontological Issues in Knowledge Sharing in [JCAl
1995, Montreal, Canada.

Uschold, M., and Gruninger, M., (1996). Ontologies: Principles, Methods, and

Applications, Knowledge Engineering Review, Volume 11 number 2.

Vallet D., Ferna,ndez M. and Castells P., (2005). An Ontology-Based Information
Retrieval Model, Proc. Second European Semantic Web Conf. (ESWC ',05).

Vrandegi¢, D.,(2009). Ontology Evaluation, Handbook on Ontologies, International
Handbooks in Information Systems, 2™ edition, Springer, Heidelberg, 2009, pp.
293-313.

Wang, X., et al,, (2004). Ontology-Based Context Modelling and Reasoning using
OWL, Proc. 2nd IEEE Annual Conf. Pervasive Computing and Communications
Wksps. (PERCOMW’04).

Welty C., Guarino N., (2001). Supporting Ontological Analysis of Taxonomic
Relationships. Data and Knowledge Engineering 39(1):51-74.

Wille, C., Abran, A., Desharnais, J.M. and Dumke, R.(2003).The Quality Concepts
and Sub Concepts in SWEBOK: An ontology Challenge, in Investigations in
Software Measurement, Proceedings of the 13th International Workshop on
Software Measurement, Montreal, Canada, pp.113-130.

Wille, C.,Dumke R., Abran A. and Desharnais J.M.,(2004). E-learning Infrastructure
for Software Engineering Educations: Steps on Ontology Modelling for SWEBOK,
Proceedings of the IASTED International Conference on Software Engineering, pp.
520-525.

144

http://www.swebok.org

Yu, Z., Zhou, X., and Shu, L., (2010). Towards a Semantic Infrastructure for Context-
aware E-Learning, Multimedia Tools and Applications, 47(1), pp. 71-86.

Zhao Yajing, Dong Jing, Peng Tu,(2009). Ontology Classification for Semantic-Web-
Based Software Engineering, /EEE Transactions on Services Computing, v.2 n.4,

303-317.

145

PUBLICATIONS

1. Accepted Publications

2. Bajnaid N., Pakstas A., Salekzamankhani S.and Benlamri R. “Ontology-Based
Personalized SQA e-Learning System”. CECIHS 2013: Proc of the Centeral
Europian Conference on Information and Intelligent Systems. Varazdin, Croatia,

18-20 Sept. 2013 (in press).

Bajnaid N., Benlamri R., Pakstas A. and Salekzamankhani S. (2013). “Software
Quality Assurance Ontology: from Development to Evaluation”. SEKE 2013: Proc.
Of the 25th International Conference on Software Engineering and Knowledge
Engineering, Boston, USA, 27-29 June 2013, in press.

Bajnaid N., Benlamri R. and Cogan B. (2012), “An SQA e-Learning System for Agile
Software Development”, Proc. of the Fourth International Conference on
Networked Digital Technologies, Dubai, UAE, April 24-26, 2012. Communications
in Computer and Information Science(CCIS 7899) Series of Springer LNCS (294),
2012, pp. 69-83. ISBN: 978-3-642-30566-5. E-ISBN: 978-3-642-30567-2.

http://link.springer.com/chapter/10.1007/978-3-642-30567-2 7#

Bajnaid N., Pakstas A., and Salekzamankhani S.(2012). “Ontology-Based Modelling
of the Software Quality Assurance Knowledge”, Proc. of the Semat Workshop on a.
General Theory of Software Engineering GTSE 2012. November 8-! 19, 2012. KTH
Royal Institute of Technology. Stockholm, Sweden.

http://semat.org/wp-content/uploads/2012/10/GTSE-2012-Proceedings.pdf

Bajnaid N., Benlamri R. and Cogan B. (2011), "Context-Aware SQA E-learning
System", Proc. of the Sixth International Conference on Digital Information
Management ICDIM 201 1, Melbourne, Australia, 26-28 Sept., 2011.

http.//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6093327&isnumber=60933
13

Bajnaid N., Benlamri R. and Cogan B. (2010), "Ontology-Based E-Learning System

for SQA Compliant Software Development”, International Journal of Information

146

http://link.springer.com!chapter/
http://semat.org!wp-contentiuploads/2012/1
http://ieeexplore.ieee.org!stamp!stamp.jsp?tp=&arnumber=6093327&isnumber=60933

Studies July 2010, Volume 2, Issue 3, pp. 174 - 18]
http://www.dline.info/diwt2010.php

Bajnaid, N., Cogan, B., and Al-nuaim, H. (2008), “Software Quality Ontology for
Teaching: A Development Issues”. Innovations in Information Technology, 2008.
HT 2008. International Conference on , vol., no., pp.352-356, 16-18 Dec. 2008
Indexed by IEEEXplore 10 Feb 2009, ISBN 978-1-4244-3396-4
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4781698&isnumb
er=4781627

3. Submitted Publications

Bajnaid N., Benlamri R., Pakstas A., and Salekzamankhani S.”Towards Ontology-
Based SQA Recommender For Agile Software Development” submitted to the
Knowledge and Information Systems, Springer.

147

http://www.dline.info/diwt20
http://ieeexplore.ieee.orgistamp/stamp.jsp?tp=&amumber=478169X&isnumb

APPENDIX A: STRUCTURE OF THE SQA ONTOLOGY'S CLASSES

OWLClass: Product
supClassOf: owl:Thing

Examples: project management plan, operation report, user manual, and source code
test cases all are individuals (instances) of the class product

Object Property Domain Range Cardinality
islnputTo Product Process n..n
isinputToMesurement Product Measurement n..n

Data Type Property Type

Description String

Reference String

OWLClass: Resource
supClassOf: owl:Thing
superClassOf: Technique*
superClassOf: Tool
superClassOf: Method

the class Resource

Examples: walk through, prototyping, and check list all are individuals (instances) of

Object Property Domain Range Cardinality
usedBy | Resource | Process [n.n
Data Type Property Type L
Description String
Reference String
OWLClass: Project
supClassOf: owl:Thing
Object Property Domain Range Cardinality
| hasProcess Project Process R l.n
hasProduct Project Product l.n
hasRequirement Project Requirement l..n
Data Type Property Type
Description String
Reference String
OWLClass: Requirement
supClassOf: owl:Thing
superClassOf: Functional Requirement
superClassOf: Non-functional Requirement
Object Property Domain Range Cardinality
associatedWith | Requirement | Product [n.n
Data Type Property Type
Description String
| Reference String

148

OWLClass: Measurement
supClassOf: owl:Thing

Object Property Domain Range Cardinality
measures Measurement Quality Attribute n..l
hasMetric Measurement Metric l..n |
Data Type Property Type

Description String

Reference String

OWLClass: Metric

supClassOf: owl:Thing

Object Property Domain Range Cardinality
conductedUsing | Metric] Process [n..n

Data Type Property Type

Description String

Reference String]
OWLClass: Quality Attribute

supClassOf: owl:Thing

superClassOf: Observable Quality Attribute

superClassOf: Non-observable Quality Attribute

Object Property Domain Range Cardinality
measuredBy Quality Attribute | Measurement l..n
enforcedBy Quality Attribute | Process n.n =
Data Type Property Type

Description String

Reference String

149

APPENDIX B: SQA CONCEPTS WITH RELATED AXIOMS

SQA Concept Related OWL Axioms

SW Design | V invokes only (Inspection or Review)
Quality V enforces only (Efficiency or Functionality or Maintainability or
Evaluation Portability or Usability)

V uses only (Prototyping or Simulation)

Validation V invokes only (Audit or Review)
V produces only (Test_Report or Validation_Plan)

V hasInput only (Requirement_Specification or Scource_Code or
Test_Report or User_Manual)

V enforces only (Efficiency or Functionality)

V uses only (Measurement or Prototyping or Use_Cases)

Verification V invokes only (Audit or Review)
V produces only (Test_Report or Verification_Plan)

V hasknput only (Design or Requirement_Specification or
Review_Report or Source_Code)

V enforces only Efficiency

Test Report V isInputTo only (Quality_Assurance or Validation)
V ProducedBy only (Validation or Verification)

V isInputToMeasurementMetric only (Access_Controlability or
Accuracy or Accuracy_to_Expectation or Availability or
Completeness_of Description or Data_Corruption_Prevention or
Ease_of Function_Learning or Error_CorrectionFailure_Avoidance
or Fault_Density)

Functionality V enforcedBy only (Validation or SW_Design_Quality_Evaluation)
V mesuredBy only (Accuracy or Interoperability or Security)

Reliability V enforcedBy only Quality_Assurance
V measuredBy only (Fault_Tolerance or Maturity or Recoverability)

Audit Strategy v producedBy only Audit

150

Data V conductedUsing only (Joint_Review or quality Assurance or
Exchangeability Validation)
V isMeasurementMetricOf only (Security)

V' hasMeasurementMetricInput only (Requirement_Specification or
Review Report or Test Report or Design or Operation_Report or
Source_Code)

Test Coverage V conductedUsing only (Qualification_Testing or quality_Assurance or
Validation)

V isMeasurementMetricOf only (Maturity)

V hasMeasurementMetricInput only (Requirement_Specification or
User_Manual or Test_Report)

Design V isInputTo only (Review or Verification)

V isInputToMeasurementMetric only (Access_Controlability or
Completeness_of Description or Computational_Accuracy or
Data_Corruption_Prevention or Data_Exchangeability or
Input_Validaty Checking or Precision)

Fault Removal | V jsinputToMeasurementMetric only Fault Removal
Report

Quality V producedBy only Quality_Assurance
Assurance Plan

Requirement V isinputTo only (Quality_Assurance or Review or Validation or

Specification Verification)

V isinputToMeasurementMetric only (Access_Controlability or
Accuracy or Accuracy_to_Expectation or
Completeness_of Description or Computational_Accuracy or
Failure_Avoidance or Input_Validaty Checking or
Installation_Flexability or Precision or Restorability or

Test_Coverage)

Source Code V isInputTo only (Review or Validation or Verification)

V isinputToMeasurementMetric only (Access_Controlability or
Computational_Accuracy or Data_Corruption_Prevention or
Data_Exchangeability or Efficiency Compliance_Metric or

151

Maitainability Compliance_Metric or Precision)

Operation Report

V isInputToMeasurementMetric only (Access_Controlability or
Data_Corruption_Prevention or Data_Exchangeability or
Ease Of Installation or Fault_Density)

Problem Report

V isInputToMeasurementMetric only (Ease_Of_Installation or
Fault Density)

Review Report

V producedBy only (Review or Mangment_Review)

V isInputTo only Verification

V isInputToMeasurementMetric only (Access_Controlability or
Completeness_of Description or Computational_Accuracy or
Data_Corruption_Prevention or Data_Exchangeability or
Failure_Avoidance or Fault-Detection or Fault-Removal or Input-
Validaty Checking or Installation_Flexability or Precision or
Restorability)

Test Report

V producedBy only (Validation or Verification)

V isInputTo only (Quality Assurance or Validation)

V isInputToMeasurementMetric only (Access_Controlability or
Accuracy or Accuracy to_Expectation or Availability or
Completeness_of Description or Data_Corruption_Prevention or
Data_Exchageability or Ease_of Function_Learning or
Error_Correction or Failure_Avoidance or Failure_Resolution or
Fault_Density or Fault Removal or MTBF or Access_Clarity or
Precision or Response_Time or Restartability or Test_Coverage or
Undoability)

User Manual

V isInputTo only (Quality Assurance or Validation)

V isInputToMeasurementMetric only (Accuracy to_Expectation or
Accuracy or Completeness_of_Description or Restorability or
Test_Coverage or Understandable_Input_Output)

Operability

V measures only Usability
V hasMeasurementMetric only (Error_Correction or Unodability or
Input_Validaty Checking or Message_Clarity)

Recoverability

V measures only Reliability
V hasMeasurementMetric only (Availability or Restorability or

152

Restartability)

Accuracy

V measures only Functionality

V hasMeasurementMetric only (Accuracy to Expectation or

Computational_Accuracy or Percision)

Fault Tolerance

V measures only Reliability

V hasMeasurementMetric only Failure Avoidance

Installability V measures only Portability
V' hasMeasurementMetric only (Ease_of _Installation or
Installation_Flexability)
Learnability V measures only Usability
hasMeasurementMetric only Ease_of Function Leaming
Maintainability | V measure only Maintainability
Compliance V hasMeasurementMetric only Maintainability_Compliance_Metric
Maturity VY measures only Reliability
V hasMeasurementMetric only (Failure_Resolution or Fault_Density or
Fault_Detection or Fault_Removal or Mean_Time_Between_Failure
or Test_Coverage)
Resource V measures only Efficiency
Utilization V hasMeasurementMetric only Input_Output_Utilization
Security V measures only Functionality

V hasMeasurementMetric only (Access_Controlability or
Data_Corruption_prevention or Data_Exchangeability)

Time Behaviour

V measures only Efficiency

V hasMeasurementMetric only Response_Time

Understandability | V mesures only Usability
V hasMeasurementMetric only (Completeness_of Description or
Understabndable_Input_Output)
Error Correction | V conductedUsing only (Testing or Validation)
V isMeasurementMetricOf only Operability
Access V isMeasurementMetric of only Security
Controlability V conductedUsing only (Joint_Review or Validation or

153

Quality_Assurance)
V hasMeasurementMetricInput only (Design or Operation_Report or
Requirement_Specifiction or Review_Report or Source_code or

Test_Report)
Accuracy to V isMeasurementMetricOf only Accuracy
Expectation V conductedUsing only (Quality_Assurance or Validation)
V hasMeasurementMetricInput only (Requirement Specification or
Test_Report or User Manual)
Availability V isMeasurementMetricOf only Recoverability
V conductedUsing only Qualification_Testing
V hasMeasurementMetricInput only Test_Report
Ease of V isMeasurementMetricOf only Installability
Installation V conductedUsing only Qualification_Testing

V hasMeasurementMetricInput only (Operation_Report or
Problem_Report)

Ease of Function

Learning

V isMeasurementMetricOf only Learnability

V conductedUsing only (Qualification_Testing or Validation)

V hasMeasurementMetricInput only (Test_Report or
User_Monitoring_Record)

Failure

Resolution

V isMeasurementMetricOf only Maturity
V conductedUsing only Qualification_Testing
V hasMeasurementMetricInput only Test_Report

Fault Density

V isMeasurementMetricOf only Maturity

V conductedUsing only (Qualification_Testing or Quality Assurance)

V hasMeasurementMetricinput only (Operation_Report or
Problem_Report or Test_Report)

Fault Detection

V isMeasurementMetricOf only Maturity
V conductedUsing only (Joint_Review or Verification)
V hasMeasurementMetriclnput only Review_Report

Fault Removal

V isMeasurementMetricOf only Maturity

V conductedUsing only (Joint_Review or Verification)

V hasMeasurementMetricInput only (Fault_Removal_Report or
Test_Report or Review_Report)

154

Input Output V isMeasurementMetricOf only Resource_Utilization
Utilization V conductedUsing only Verification
V hasMeasurementMetriclnput only Source_Code
Installation V isMeasurementMetricOf only Installability
Flexability V conductedUsing only Validation
V hasMeasurementMetricInput only (Requirement_Specification or
Review_Report)
Mean Time V isMeasurementMetricOf only Maturity

Between Failure

V conductedUsing only Qualification
V hasMeasurementMetricinput only Test_report

Message Clarity

V isMeasurementMetricOf only Operability

V conductedUsing only (Qualification_Testing or Validation)

V hasMeasurementMetricInput only (Test_Report or
User_Monitoring_Record)

Precision

V isMeasurementMetricOf only Accuracy

V conductedUsing only (Joint_Review or Validation or Verification or
Quality Assurace)

V hasMeasurementMetricInput only (Design or
Requirement_Specification or Review_Report or Source_Code or
Test_report)

Response Time

V isMeasurementMetricOf only Time_Behaviour
V conductedUsing only Qualification_Testing
V hasMeasurementMetricInput only Test_Report

Restartability

V isMeasurementMetricOf only Recoverability
V conductedUsing only (Qualification_Testing or Validation)
V hasMeasurementMetricInput only Test_Report

Restorability

V isMeasurementMetricOf only Recoverability

V conductedUsing only (Joint_Review or Qualifiaction_Testing or
Validation or Verification)

V hasMeasurementMetriclnput only (Requirement_Specifiaction or
Review_Report or Test_Report or User_Manual)

Test Coverage

V isMeasurementMetricOf only Maturity
V conductedUsing only (Qualification_Testing or Quality Assurance or

155

Validation)
V hasMeasurementMetricInput only (Requirement_Specification or
Test_Report or User_Manual)

Undoability V isMeasurementMetricOf only Operability
V conductedUsing only (Qualifiactio_Testing or Validation)
V hasMeasurementMetriclnput only (Test_Report or
User_Monitoring_Recoed)
Quality V invokes only (Audit or Review or Validation or Verification)
Assurance V enforces only (Reliability or Usability)
V produces only Quality Assurance_Plan
V hasInput only (Requirement_Specification or Test_Report or
User _Manual)
SW Design V invokes only (Inspection or Review)
Quality V enforces only (Efficiency or Functionality or Maintainability or
Evaluation Portability or Usability)
V uses only (Prototyping or Simulation)
Verification V invokes only (Audit or Review)
V enforces only Efficiency
V produces only (Test_Report or Verification_Plan)
V hasInput only (Design or Requirement_Specification or
Review_Report or Source_Code)
Portability V enforcedBy only SW_Design_Quality _Evaluation
V measuredBy only (Installability or Portability Compliance)
Usability V enforcedBy only (Quality_Assurance or
SW_Design_Quality_Evaluation)
V measuredBy only (Learnability or Operability or Understandability)
Checklist V usedBy (Audit or Review)
Meeting
Prototyping V usedBy only (SW_Design_quality_evaluation or Validation)
Simulation V usedBy only SW_Desing_Quality_Evaluation
Use cases V usedBy only Validation
Walk through V usedBy only Review

156

LS1

</,90Ue13T0l 3ITNeI.=qQI:3JPI IuswaInsesp>
</w330day TeAOWSY 3TNEJ,=QI:3IPI 3ONPOId>

</ TeACWSY 3ITNEF,=QI:3IPI DTIISW IUSWIINSEIN>
</,U0T3D833Qq 1{Ned,=QI:JPI OTIIDW IUSWIINSEIN>
</uwA3TBUBQ ITNEI,.=AI:3IPT DTIIIN JUSWIINSEIN>

</, UOTINTOSIY BINTTed,=dI:IPI OTIISW JUSWIINSESN>
</.@OUEPTOAY SINTTRL,=AI:IPI DTIIIN IUSAIIINSEIN>

</ UOTIDSITI0) XOIXF4=QAI:IOIX OTIIIN IJUSWIANBRIN>
<A3zedorainalqo: tmo/>

</w9INQTIIIY A3TTENdH,.=a0IN0BaT: JpI »buex:sjpa>

</ AED90I0JUBH, =9DINOBIT : JPX JOIBIDAUT : TMO>
</4889001d#,=90IN0OBAT: JPI UTEWOP:BIPI>
<,832103uad,=QT: 3p1 A3xadoxgdioafqo: Tmo>
<A3jasdoagioalqp: tmo/>

</ w989002d#.=92IN0BIX : 3Jpx Sbuex:BIPI>

</ 489010 USH, =9DINOBIT: JPI JOIBIIAUT : TMO>

</2930Q7333¢ AITTENDH,.=30IN0EST: JPI UTPWODP: BIPI>
<,Agpeoxojus,=qI:Ipx A3z9doadioe(qo: (mo>
<K3jzadoazgadAieseq: tmo/>
</ySWILla3ep ! paxy, =90INn08ax: Jpa obuex:sIpa>
<uSUTLPUg,=QI:3Ipx A3jzadozgadiiyeseq:imo>

</wDTa30K @oueT1duo)” ADusToTIFHM=AI: IPT ITIISW IUSWIINSLIN>
</yo0ueTTdwo) ASUSTOTIIH 4=l IPI JUSWRINBRIN>
</uAouUsTD8339.=QT: JPT YO S1qeAIaISqO>

</ UOTJeTTeI8UI JO 96®H,=qI:IPI ITIISW JUSWIINSeaw>
</4ButuzesT uoTiounz” 3o @SeE,=dIl:JPI DTIISH IUIWIINBLIN>
</ uBI8aqu=QI: IPI IONPOIL>

</ 8TSATeUR MOT3I ®©I€P.=QI:3IDPI POYISW>
</wAaTTTqEesbueyoxy ejed,=qI:IPI OTIISN IUSWIINSEIW>

</ UOTIUBABZ4 UOTIANIIO)” vied, =l IPI OTIISH IJUSWaINSesN>
</uAoeanooy” Teuorieinduwod,=qI: Pl STIISN IuUawWaINgesy>
</ B818ATeUe A3TXa7dWOD, =1 IJPX POYIIN>

</, uoT3d1I083Q JO 8SauUalTAWOD,=I:JPX DTIIIS JusuSINseap>
</w3IBTT APSYD,=QI:FPIx Inbiuyoar>
</wA3ITITRTTEAY, =4I JPI DOTIISW IUWIINERIN>
</wABo3ere3s” ITPNY.=QI:FPI 3IONPOII>

</w3TPNY.=0I: JPI 899001d>

</ uoTie309dx9 07 AoeInsoy,=qI: JPI OFIIDH IJususInsesy>
</ AoeInooy,=qI: JpI IUSWIINSRIW>
</uwAITTTqeT0I3U0D S88900Y, =1 IPI OTIIBW JUSWIINSVSY>
</wda=0QI:JPI STqeTIeA: TIMS>

</udu=Ql:3PI ITqeTIRA: [IME>

</u0Tu=0I:3IPI STQETIRA: TIMS>

</uwdu=aI:JPI STQRTIBA: [IME>

</wdu=QI:3IPI STQeTIA:TIME>

</u¥u=QIl:3PI STqeTIeA: TIME>

<Aboto3up: (mo/>
</ T8O

‘e1Ims /g’ £/s91boTojuo0/npa - projuels - 1ams// :d33Yy, =30IN08IT: JpI

g3zodurt: Tmo>
</uImo ' 1ambs/¥ ' ¢g/8uT
-311Tng/891boT03u0/npa-pIojuess - Tambe// :d3 iy =201N0831: Jpa
s3xoduy : TAO>
<,«=3n0qe:3px ABOTOIUQ: TMO>
<u
#Imo eTIM8 /¢ £/89100103UC/Npd " proJurls - [ame// :dI3Y =R TIME I BUTWX
wisu-xejuls-3pi-zz/20/6661/B510 ¢m mmn// :d3 3. =PI SUTLX
JHATIMB/TT/€00Z/630 gm mmm// : A3y, =qQTIME : SUTUX
» #PWIYOSTNR /1002 /610" M mmm/ / : d3 3y, =PBEX: BUTWX
w#110/L0/200Z/610° €M mam/ /A3y, =TMO: BUTUX
w#TM0dex/.0/80/500Z/W0D * 89THO0TOIUC-TMO " mmm/ / :d3 3y, =dsx: suTux

L]
#ob9302d/mo/surbnid/nps paojuess - sbazoad//:d33y. =eb6930xd: suTIX
wHTIMB/TT/€002/BI0 €M mmm/ /A3 Y, = TIMS: SUTWX
AHOWIYDH-IPI/T0/0002/630 em mmm/ /1 A3y, =8P BUTWX

#IMm0" T2mbs /¥ €/5UT
-3110q/89FboT03uo/Npa ‘ paojuels - Tambs// : d33y, =Tambs: sutwx
#ABOTO3U0DS8 /WoD * BITHOTOJUO-TMO " Mam/ / : A3y, =9BRq: TWX
» #AB0T03U0DS /WO ' gaTBoTouUo - TMO * amm/ / s da Y =suTWX J4QY: FPI>

<{< ,#Tm0"1ambe /¥ g/sUT
-3TIng/setborojuo/npe ‘paoyuess - [ambs//:diqy, Timbs ALILNAI>
< W H§TIMO°RTINMB/€ £/89T60TOUO /NP pIogue3s ‘ Tams//:d33y,
e1IM8 ALILNEI>
< w#Tmo-dex/L0/80/5002/wod - satboTolzuc
~-TMo mmm//:d33y, dBX XLILNAI>
< y#ebejoad/mo/surbnid/npe paojuess sbejoad//:d3ay,
obsj0ad xIIINH!>
< w#Su-¥xejule-3IpI-22/20/6661/610 eMmmn//:d334, IPT RLILNZI>
< WHEWSYOs-IPI/10/0002/630 eM mmm//:dIIY. SIPT ALIINHI>
< W HeWSYDSTHX/T00Z/B10" ¢a mmn//:d33y, PBX ALIINZ|>
< WHQTIMB/TT/€00Z7/B30 €M mmm/ /:d33y, qTIms XLILNZ|>
< WH#TIMB/TT/€00Z/610 €M mmm//:dI3Y, 1IM8 XKLIINFI>
< WH#1M0/L0/200Z/Ba0 eMm-mmm//:d33Y, TMO ALILNZi>
] 43qu:3pPx 3EALDOQI>
<240 Tu=UOTSISA TWX.>

AOOTOLNO
YOS 3H1 40 300D JMO 3HL D XIANIddY

861

<. JUSWBINSESN =1 :JpI 8SeTD: [MO>
<A3xedoxganalqo: mo/>
</,3U3WSINSLINH ,=aDIN0ga1: Jpa1 2buer:sypa>
</,99INSE3WE, =30IN0S3I : JPI JOISIIAUTL : TMO>
</,33INQTIIIY AITTEND#,=90IN0SSX: JPI UTEWOP:SIPI>
<,Agpsanseau,=q1:3p31 £A339d0x3309[q0: TMO>
</w3INTTed usamlag WL UEIW,=CI:IPI DIIIIN IJUuSWIInsean>
</WAITINICW, =] IJPI IUSIWIINSVIW>
</ MITADY IUSWILUCK,=dI:IPI S9ID0II>

</uOTIIBW @oueTTdwo) AITTTRUTRIUTEN, =QT : P
DTIIIW IUSWIINBEIN>
</y,20ueT1dwo)” A3TTTqRUTeIUTeN, =] : JPI IUIWIINSEIN>
</uA3TTTqRuTERjUTEW, =QI : JPI YD @ [JeATISOUON>
</wA3TTTIQeUTeS], = JPI JUSWIINGLSIN>
</uwMITASY 3UTOL=dI:IPI 8830013>
<K3zsdoxgaoafqo: Tmo/>
</ 43da0Uo)yDSH « =90IN0891 : JpI SbueI: BIPI>
</431edBEUH, =90INOHIT: JPI JOISISAUT : TMO>
< /4 3da0uc)YDSH#, =90IN08SI : JPI UTRWOD:8IPI>
<u3031e48T,~q1: 3px A3xadoxgiosfqo: (mo>
<A3jzedoxganafqo: tmo/>
</ wIUSWIINTEIWH , *9DINOBSI: Jp2 8bueI:BIPI>
</ yOTIIIWIUWSINBECIWSOYH , =IDINOBIT: JPI JORBISAUT : TMO>
</4PTIIOW IUIWSINSEIWH, =IDINOSIT: JPT UTEWOP: BFPI>
<, FJOOTIIBWIUBWBINSLINE T , =0T : JPX A3xadoxdinafqo: Tmo>
<K3zedoxgioslqo: Tmo/>
</4DTIISN JUSBLSANTRIN#H , =90IN0LIT: JpI abBuex:egpa>
</ wINdUIDTIISWIUSWIINSRINSBUH , #IDINOLIT : JPI JOIBIIAUT : TMO>
</w3IONPOIdH#, =80INOSSI : JPI UTRWOP:BIPI>
<,dT13NIuswIINsesoLInduIs T, =al : 3px K3xadoxgioafqo: Tmo>
<A3xedoagaoafqo: Tmo/>
</,883001d#,=90IN0OBAX: JpI shueI:sIpI>
</ IdUISeYH#, =90IN0ESI : JPI JOIBIIAUT: TMO>
</139NPOId#, =OOINOSDI: JPI UTEWOp: 8FPI>
<,orindurst,=qar:3px A3xadoxdioafqo: Tmo>
<A3zadoxdgioelqo: Tmo/>
</, adeduoc)vdS# . =920IN068ax: JpI bBueI:8IPI>
</wSeU}H ,=30IN0BBT: JPI JOIBAIAUT : TMO>
</ 3de0uoDydSH ., *90IN0Sax: JPI UTEWOP: 8JPI>
< ¥8Tu=AI:3FPI A3xadoxdioslqp: Tmo>
<Ajxedoxgascelqo: (mo/>
</,889501d#,=90IN08a1: Jpt aHuex:sIpPI>
</, 889D0Xd#,=90IN0S3I: JPI UTPWOP:SIPI>
<, 89)0AUT , =07 : Ip2 A3jzxedoxaioalqo: Tmo>
</wA3tTTqeasdozsjur,=ql: Jp1 Y0 S1QeAISSQOUON>
</wAa1TTqeradoaa3ul =l JPI IUBWIINSEIW>

</uA3ITTIQIXSTI UOTIRTTeISUIL=QI:IPX OTIIDW IUSWSIINTEIN>
</«A3TTTqRTT®ISUL . =Q]: JPI IUSWAINSEaN>
</.uotidoadsur.,=dI: JpI 883501d>

</ Butyosyn~A3tptrea Indui.=QgI:IpI DTIIISW IUBWAINSEIN>
</.u0T3ez1T1T3n Indang Indur.=qdI:IPI OTIIDW IUIWSINSEIN>
<A3azadoazgadAaeaeq: tmo/>

</«IUT!PBX%,=20IN0831: Jpx @buex:s3ypi>

<.PIw=al:3Ipx K3xadoagadijeseq: (mo>
<A319dox3303{qo: Tmo/>

</.3oNPo1d#,=921IN0581: Jpx ebues:sIypi>
</,309[0x3#,=9DIN0S8IT: JPI UTWWOP:EIPI>
<,30npoigsey.=ql:3px A3x9doadliaalfqo: (mo>
<A31zedoagioafqo: Tmo/>

</4889001d#.=90IN0831: 3Jpx Ibuez:s3jpa>
</u122[02d#4=92INOERX: JPI UTEWOP: BIPI>
<,88900xd5%eY,.=qQI: 3P A3x9doxgioefqo: tmo>
<K3xadoxgadAleaeq: (mo/>

</ Butiys!pexn,=e901n08a1: Jpx sbuer:sipa>
<,paomgsedsey,=al: jpax Ajxsdoxgadieieq: (mo>
<A3x9dozg3oefqo: tmo/>

</ y3daouopydsS#.=eoxnosax: 3Jpx dbuex:ejzpa>
</wFOITRJITH#,=IDINOBIT: JPI JOISIDAUT : [MO>
</w3daouoDYDS# « x90INOLAT : JPI UTEWOP: 8IPI1>
<,33ed8%eY,.=qQI: Ipx LA3xadoxgaosfqo: Tmo>
<A3z9dozg30e({qo: TMo/>

< /4 30NPOId# 4 =90IN0H3I: Jpx buer:SIpI>

</ nDTIIONIUWIINSLIROLINAUTI B T#, *9DINOBIT: IJPI JOIBISAUTL : THO>
</wOTIIBN JUSUDINSBINH , =DDINOSIX : JPX UTRWOP: BIPI>
<yinduldtijsnIuswIInseINseY, =0l : Jpx Ajaedoxgioelqo: 1mo>
<X3xedoagaoefqo: (mo/>

</4OTIION JUSWIINHRIWH, »80INOSIT: JpI @bues: sIpI>
</wI00TIISHIUSWSINSRINS T#,=3DIN0OEST: JPI FOISIBAUT : TAC>
</,3ususINSesy =SOINCLII : JPI UTEWOD: 8FpI>
<uyOTIFWIUSWIINSEIWLRY, =(] : IPT A319d0xd329fqO: TmO>
<A3x9doxdaiosfqo: Tmo/>

</,30Npo1d#,=90IN0BSI: JpI Ibues:sIpa>
</wolLIndursT#,=20IN0E31: JPI FOSSIIAUT : TMO>
</4889D01d#,=90IN0LIX: JPI UTEWOP: SIPI>
<,3andursey,=ar:3px A319dorgioalqo: Tmo>
<A3zedozgiosfqo: Tmo/>

</,3daouooydsH, =e@danosax: Jpz sbuex:sypi>

</ YST#,=9D0INOBAI: JPI FOIBISAUT : [MO>

</ 3da0UcOVlS#H .« *90IN0S3T : JPI UTEWOP: SIPI>
<,8e4,=qI1:3px Ajxsdozginslqp: tmo>
</wA3TTRUOTIOUNF,=QI: FPI YD °1qRAI9SqO>
</w3uswazInbay(euorioung,=qal:Ijpx juswarrinbay>

6¢1

<,2INqT133Y¥ A3TTeN0,.=QI:FPI SSB[D:IMC>

</, uerd aoueanssy A3rTend.=dI:3pI 3onpoad>
</490ueInssy A3riend.=ql:IPI Ssadoid>

</uBurissl uoTlEDTITTEND W =QI: JPX 88ad01g>
</.butdAjozoad.=ar:3px snbruysar>

<gge[D:TMO/>

</ w90INOSIAH#,=90INOBIT: JPI YITMIUTOLSTD: TMO>
</wiuswazinbay#.=901n08ax: JpI YITMIUTOLSTP: TMO>
</.93INQTIIIV AITTENDH.=2DIN08IT : JPX YITMIUTOLSTP: [MO>
</.3ONPOId#,=90INCEII: JPI YITMIUuTOLsTP: TMO>
</.S890013#,=90IN0CBaI: IJPI YITMIUTOLSTP: TMO>
</4OTIISW IUSWSINSLIWH (=S3DINOBITL: P2 YITIMIUTOLSTP: TMO>
</.IUBWAINSEINH , =IOINOBIT: JPI YITMIUTOLSTP: TMO>

</ 4w 3de0uo)ydSH «=80IN0ERX: JpX FOSBERIDANS 1 SIPI>

<y 309{02d,=Q1:3PX SSETD:IMO>

<gSeD:mMo/>

</ w®DINOSH , =BOINOB3X : JPIT YITMIUTOLSTP: TMO>

</ 3UswaITNDaYH, =90IN0BIT : JPI YITMIUTOLSIP: TMO>
</ydINATIIIV AITTENDH,=3DIN08IX: JPX YITMIUTOLSTP: TMO>
</u309(0ad#,=20IN0831: JPIT YITMIUTOLBTP: TMO>
</,889001d#,=90IN083T: JPIT YITMIUTOLSTp: TMO>

</wOTIISN IUSWIINBEIWH , =2DINOBIX: JPT YITMIUTOLSTP: TMO>
</, IUBWRINSL3NH , =SDINOEST : JPT YITMIUTOLSTP: TMO>

</ w3d30uocOYdSH «=901N08AX: P2 JOBBETOQNS i SIPI>

<« 3IONPOId,=QI:3IPI BSETD: TMO>

<K3zedoagioafqo: tmo/>

</,300POId# «=90IN08S1: 3JpI Ibuea:sIpI>

</uwAgpsonpoad ,=a01IN0BRT : JPI JOSVISAUT : TMO>

</ ,889D0XJ#,=O0ANOBSI: JPI UTEWOP:SIPI>
<,saonpoxd,=q1:IFpax Ajaxadoxgioalqo: Tmo>
<A3x8doxdinalqo: Tmo/>

</,8890014#,*90IN0BAI: JPI BHuULI:SIPI>

</ ,890npoad#,=90IN0BaI: JPI JOISIDAUT : TMO>

</ uIONPOIdH#,=IDANCSIT: JPI UTEWOP: SIPA>

<, Agpeaonpoxd,=q3: Jpx K3xsdoxgioalqo: Tmo>

<gserd:mo/>

</w8DINO83YH,=9DIN0SSI: JPI YITMIUTOLSTpP: [MO>
</wiuswaatnbay,=80an08a1: IJpI YITMIUTOLSTP: TMO>
</4®3INQTIIIV AITTENOH,=90IN0OSSI: JPI YITMIUTOLSTP: TMO>
</4309[02d#,=090IN088X: IPT YITMIUTOLSTP: TMO>

</, 30NPO1Id# .. =BOINOBdX: JPIT YITMIUTCLSTPD: TMO>

</yOTIIBW JUSWIINSESNH,=DDIN0SIT: IJPI YITMIUTOLSTP: [MO>
</ IUBWIINSBSWH , =P0INOSSI: JPI YITMIUTOLSTP: TMO>
</w3d90ucHydSH# ., =80IN0CSaX: JpI JOSSeTOANS : SIPI>
<,889001d,=QI:JPI SSeTD:TMO>

</s3x0doy waTqoxd.=dI:IPI 3IONpPoId>

</ UOTSTO31d,.=QI: JDI DTIIIW IUSWSINSLIN>

</.9TI138W 2ouerTdwod AITTIQeIIO0q.=qT:JPI OTIIOW IJUSWIINSEIN>
</no2uerTdwo) A3171qe3I0d »=d1: JPI IJUSWIINSEIW>
</uk31T1qea10d4=QI: JPX YO SIqRAIISGOUON>

</.3x0dey uotierado.=a1: P2 IINPOI>
</JA31TTqeIad0. =01 JP1 IUsUIINSeIN>

<ggeT): Mo/>

</ YD STqRAISSQOUON# , =92INOE31: JPI YITMIUTO(BIP: TMO>
</.2INQTIIIV AITTENDH =20INOBIT: JPI FJOSTRIDIANS i BIPI>
<. Y0 91qeA1a8qQ.=QI:JPI S8eTD: 0>

<g8eT):IMmO/>

</u¥D 9TqeATIISGO# 4 =90INOBII: JPI YITMIUTOLBTP: [MO>
</4®INQTIIIY AITTENDH, =a0IN0831: JPI JOSSRTOqNS: BIPI>
<,¥0 9TqPAISSQOUON,.=(I : JpI SSE1D: [MO>

</w3uswazinbey [ULOTIOUNJUON,=JI:FPI Juswazinbay>
<ggerd: TMmo/>

</« TOOL# 4 =2DINOBAX: JPI YITMIUTOL8TP: [MO>

</ anbTUYDIL# , =@0IN0BSI: IJPI YITMIUTO(STP: TMO>

</, @DIN0CEIYH, =9DANOBII: JPI JOBBRIIQNE :BIPI>
<uPOYUIBHW=QI: JPT SSETD: TMO>

</wA3TI9TD 96e889W, =QI : JPI OTIIAW JUSWRINERIK>
</uBut3ssu,=qr:jpa enbrwyoes>

<K3zedoxgioefqo: tmo/>

</.93INqTI33Y AITTend#.=90IN0SIX: Jp1 Ibues:sIpa>

</, AgpaInsesuly, =a0IN08AT: JPI JOSBIIAUT : TAO>

</ IUBWIINSLIWH 4, =@OINOBSI : JPI UTEWOP:BIPI>
<,BIanseaw,=qI: 3p3a LA3xadoxginvafqo: Tmo>

<g88eT):TMo/>

</ 4 POINOBOYH , =20IN0BVI : JPX

</ juswaxinbayy,=eoano8ax: Jpa
</43INQTIIIY AITTENDH , =9D0IN0BT : JPI
</4309f0ad4, =90IN0BBI: JPI

</, IONPOId# 4 =90INO\II JPI
</uwBBID0IgH, =9DINOBII : JPI

</, JUBWIINTRIYH 4 =@DINOBII : JPI

Y3rMiutefstp: (mo>
yItMIutofeTp: (mo>
YaTMIutolsTp: Tho>
yarMautolsip: tao>
y3tMautolstp: ao>
YarMaurolatp: (mo>
YITMIUTOLBTP: THO>

< /yw3deouoc)ydSH,y =80aN083I: JpI JOSSEIDQNE : §IpI>
<,DTIJON FUsWSINBEdNW, =dI :IJPI S8BTD: [MO>

</ 4 90INOBIYH 4 =SO0INOLBI : IPI

</ 3uswazTnbayf, =e0IN08a1: IpI
</49INGTIIIV AITTENDH, =90IN08RI ! IPI
</n3dsloxgy, =edanogsa: 3pax

< /4 3IONPOId#, =I0INOSII: JPX

</ 2w B8SD0Xd#,=90IN0YII: JPI

</uDTAFOW JUSWSINBESY# , =80INOTDI : JPI

<ggeI): TMO/>
YyItMIutolsip: Tho>
Y3TMIutolsTp: TMO>
Y3TMIuTelsIp: ThO>
yatmiutofsip: Tmo>
YITMIUTOLSTP: ThO>
yirmiutolsTp: Tmo>
yirmutolsyp: (mo>

</, 3d90U0OYDSH 4 =00IN0EIT : JPI JOSSETIANS : 8IPI>

091

<Jqu:Ipx/>

</ ybnoiyl xiem,=qal:jpx snbruysar>

</.ueTd UOTIEOSTITISA.=JI:3IPI 3IINPOII>

</, UOTIEDTITIBAL=AI: JPI 883201d>

</uUeTd UCTIEPTTPAW=QI:JPI 3DNpoO1g>
</4UOT3IePTTeAL=QI: JPI S8ID013>
<A3xadoxdloa(qo: 1mo/>
</,201IN0SY#,=90IN083I: JpI1 buei:szpa>

</, AEpasn# , =22IN0Ea1: JPI FJOIVIIAUY : TMO>

</ 48830013 #,=90IN0SSI: JPI UTPWOP:BIPI>
<,898N,=0I:3p1 Ajzedoagioa(qo: Tmo>
</,P1009Y BUTIOITUOW I98Mf1,=qI:3IPI 3ID2NPOII>
</uTenuUeW 128(,=ql:JFPI 3IONPOIg>
<K3asdoxganalqo: (mo/>
</,8830013#,=90IN083X: Jp1 ebuvi:ezpa>

</, 896N, =90INOBIT: JPI JOISIIAUT : TMO>
</,93IN0BIYH, =I0IN0BIT: JPI UTPWOP:8IPI>

<, Agpesn,=q1: 3p3x A3xedoxgin’afqo: tmo>
</,88B8eD @8n,=QI:Jpx snbruysar>
</uK3TTTqE8N,=QI:IPI YO @1qeAIss8qO>
</wK3TTTqeOPUN =01 : JPI DFIISW_IUSWIINBRSH>
A\=u:musOIusucH|wHAmuGMumuuvﬂD=uoH"uvu uﬂuuozlusosuusmmozv
</ 2 A3T1TqRePURISISPUN =] JPI JUIWIINSESN>
<ggeT): IMo/>

</,onbTuUYDaLy,*@0IN0SST: JPI YIATMIUTO[STP: TMO>
</, POYISWH . =9DINOSIIT : JPIT YITMIUTO[BTP: TMO>
</,92IN089Y#,=3DINOBII: JPI FOSSLIDNS :B8IPI>
<, TOOLu=QI:JPI SBETD: TMO>

</,107a€Yag SWIL,.=dI:IPI IUSWIINSESK>

</ uotT3ecrzioeds 38alL,=dI:FPX IonNpoad>
</w3x0dey 3891,=dI:3Px 3oNpoad>

</ 4960184007 189L,=AI:IPI DTIIOW IUSWIINSEIN>
</u898eD 3891,=Ql: 3PI IoNpoag>

<ggeTd: IM0/>

</, TOOL#,=92IN08II: JPI YITMIUTO[STP: TMO>

</ POYIBWH 4 =90INOBIT: JPI YITMIUTO[STP: TMO>
</ 90IN0OSIYH#, =IDINOSIT: JPT JOSBRIOUNS i 8IPI>
<,9anbTuUyY2sL,=aI: IJPI SSETD: [MO>

</ MITARY TEDTUYDaL,=dI:JIpI $S8001d>
</quot3entesg A31Tend ubTsSaq MS.=dl:3IPI S83001d>

<K3xedoxgediieieq: Tmo/>
</49WILIIEP ! PIXT,=9DIN0CSIT: JpI dbuex:sypa>
<,9WTL3Ie35.=q1:3px AixedoxgadAjeleq: (mo>
</43d90uoDY0S.=Q1: JPI S8RID: [MO>

</w3pO3_ 92IN0S,=dI: JPI IdNpoad>

</ UCTIeTNUYS, =Q] : FJPI INDTUYIIL>

</ WAITIND3S,=Q1: IPT JUMIINACIN>

</n330d38 M2TAS,=AI:IPT IDNPOIZ>
</«MPTAIY =1 FJPX 883D01d8>

</«.K3171qQEsNe1,=qI: IPX

D 9 TqeAIISqOUON>

</wA3TT1qes10389%, =qI : JPI DTIIIW_IUIINTLIN>
</wA3TTIqRIIRIBIY =01 : JPI OTIISW IUSBWIINSESIW>
</ Tl 98ucdsay.=qI: JPT OTIION IUSWIINSEIN>
</UOTIRZTTTIIN @DINOBIY, =01 JPI IUIINSEI>

</, 3UWATTNDIYH , =90IN0BIX: P
</«3INqII33¥ AITTENDH . =#DINOSIT: JPI
< /4308 (01d#,=90IN0BIX* JPI

</ wIONPOIdH 4 =@0INOEIT: JPI

</ 4BB3D0XJH 4 =@2IN0EIT: JPI

</4OTIFIN JUIUSINSEIWH 4 »20INOBIT : P
</ JUSWRINSEINH 4 =90IN0III ¢ JPX

<gge1): TmMo/>
Y3FMIutTolstp: Tmo>
q3atMiutolsyp: (mo>
y3tMIutolsTp: 1a0>
Y3ITMIUTOLSTP: TMO>
YITMIUTOf8TP: TAC>
Yy3tMIuTo[sIp: TMO>
YafMIutofstp: (mo>

</ 4w3d90U0DYDS#H«*IDINOBIX : JPI FOBLRTIANS : BIPI>
<4 0IN08NY,»QT: JPX BBRID: [MO>
</,uoT3est3Toads Juswaxtnbay,.=qdl:IPX IOoNpPoag>

</ ,90IN0BIYH, =S01IN0PIL: JPI
</w2INQITIIY AITTENDH, #902IN08SI: IPI
</u3I09[0ad#,=B0IN08IIT: JPI
</43ADNPOId#,=2IN0OBAI: JPI

< /88900134, =30IN0BAI: IPX

</, OTIIOW IUSWIINSEIW} , =20INOBST : FPI
</, IUSWIINSEINH 4 =9DINOERT ! JPX

<ggei): Tmo/>
y3tMaurolstp: [so>
Y3IfMautofstp: tMo>
YarMutolstp: (mo>
Yy3arMIutofsip: mo>
Y3irMIutofstp: tso>
y3ITMIuUTO{BYIP: TMO>
YyitmiutofsTp: [mO>

</43dS0UODYDSH 4y =92INCERI : JPI JOBBRDQNSB: BIPI>
<, JUSWSATNDSY , =11 JPX BSVID: TMO>
</wA3ITTTqeTT®3,=0I: IPI W0~ ®1qea1asqo>
</wAITTTARIA0ON , =(T : JPI IUBWIINSEIN>

</4,93IN0OS8IN#H , =80IN08AI: IPI

</ juswazTnbayf,=80In0891: IJpI
</w308(oxdf.=e0IN0831: IJpa

</, 30ONPOIdH 4 =22IN0OBII ! IPI
</,S89001d#,=90IN0CERI: IJPI

</,OTIIOW 3IUBWRINSESH#H ,=90IN08SI: JPI
</, JUSWRINS BN, =90IN08SI: JPI

<g8eT): IM0/>
yatMIutolstp: TMo>
Y3ITMIutTo(sTp: TMO>
yatmIurolaTp: TmoO>
yarmiutolsp: (mo>
Y3ITMIUTOLSTP: TMO>
yaTmautolsTp: Tmo>
y3rMiuro{sTp: (mo>

< /4 3d90U0OVYDSH ,, =90INOSIT: IJPI JOSBETOQNS : 8IPI>

Appendix D: Previous Versions of the SQA Ontology

Ontology development is an iterative process where a preliminary ontology prototype

is built and then polished with time. Here are examples of developed versions of the

SQA ontology towards the final conceptual model shown in Fig. 5.3.

Product Model Attribute
* . .
/ associated with
defined-for Req‘mremem
\ 4 haS
Product
— has
is input to invokes Produces/
‘ Uses
] |
produces
Process
'y uses !
defined-for Resource
Process Model
has is-a
Project Model y
Task Technique Method Tool

defined-for

y

People Procedure
Project has P
SQA Ontology (2009)

161

Class Class —— Has Invokes
Define Stakeholder Project)
/_______, Class
IsInputTo i
Class Class - e /— Pr
Has Product Has Process
Requirement iq- Req Product Auribute / Is-A
Uses {
Has
Is-A A:,::ud:;m Validation
l Functional Req. (_ Verification
. Class
Non-Functional Req. Class Quality Assurance
Quality
/’ Auribute [Measure __ | Resource Review
Is-A 3 Audit
\\ Is-A
Class Class [
Is-A Technique je- S-A
\’ NonObservable Observable Tool ™~
Portability Atribute Attribute e Testing
Walk Throu
——— Sm— === e
Is-A Is- Prototyping
Interoperability Reliability — Check List
[MTBF__|
Maintainabittiy Efficiency Mecting
Usability Use Cases

SQA Ontology (Bajnaid et al., 2010)

162

Class [——————————— HasProcess

Invokes

Class Product
=1
Requi HasRequircment AssociatedWith \Ciss)
uirement |g ——
\
4 Class IsInputTo »| Process
Is-a
Deliverable | Produces
Functional Req.
. | Uses Is-a
Non-Functional Req. HasQualityAttribute [
l Validation
Class /
Class / Verification
Quality Measure UsedBy
/’ Attribute Resource [— Quality Assurance
Is-a \ Inspection
NN Is-a Audit
Class Class \
Is-a Procedure Review
/ \ | NonObservable Observable Tool [—
ili Atiribute Attribute S-4
Portability Method | _| Technical
: Review
ili —— Technique
Reusability Functionality [I_a Is-a d /R Ma;:gmncnt
Interoperability Reliabitity Testing Al
——— Y e
Maintainabiltiy Efficiency Wa rough
(Performance) Prototyping
Usability Check List
Meeting
Use Cases

SQA Ontology (Bajnaid et al., 2011)

163

Audit Stratcgy

Class Class |
Design HasProcess
Requirement | HasRequirement Product
A Plan I
9 Invokes
¥
Req. Specification Is-a e
o),
cview Report L Functional Req. IslnputTo
Process
Source Code -
Non-Functional Req.
Test Cases
-~
Test Report ls-a Class -
User Manual N\ Detiverable |q P20 . ConductedUsing
Validation Plan HasQunluy \
Attributc Uscs ——
Verification Plan Validation
Test Specification Vcrification
Class .
Operation Report Class Quality Assurancc
— IslnputTo Resource . ton
Uscr Monitoring Record Quality Measurcment napec
Attribute ‘M\ ¥ Audit
— casurc
Portability Class Is-a Qualification Testing
Reusability Mecasurcment Prochurc Review
I
Interoperability 58 T Tool l 3
hasMeasurement Class Mcthod Y\
Maintainability Metric Technique Technical Review
/ Is-a \g| Measurcment
Is-a Metric \ Managcment
\ Class Class Is-a Review
NonObscrvable Observable
Attribute Attribute
x MTBF Testing
Precision Is-a
Is-a Accuracy Dat Exchangeability Walk Through
Fonctionality / Sccurity Access Controllabilit Prottyping
; { _Failurc Resolution |
—— Maturity Fault Densi Check List
Reliability Fault Tolcrance Test Coverage :
Effici Recoverability Fault Removal Mccting
rmane Learnabili Availability Usc Cascs
(Performance) ility Res 0
Ussbility Operability Restorsbility ‘
Tnstallability Undosbility
o IComplcteness of Descriptio:
lnmmb“l l.ty Error Cotrection
undersandability Tnput Validity Checking
Time Behaviour Mcssage Clarity
Resource Responsc Time
Utilization Y /o Ut:lg:tlon —
fhici ceuracy to Expecta
Cimpm Col ional Accurac
Maintainability Fault Detection
Compliance Failure Avoidance
Portability Understandable /O
Compliance Easc of function Leamin;
Efficiency Complicnce
Maintainability Complicnce
Ease of Installation |
Installation Flexabilit
Pombili& ComElinncc

SQA Ontology (Bajnaid et al., 2012)

164

$91

Aiqeaseday Apiqeasejday
Anjiqeredewiod 03 paAON 30UB)SIX3-0)
Anniqeqresug Ajiqejeisu
Ayiqeidepy Anjiqeydepy
Anpqeiiog Angqeyod
AN[1qeIdA0Y ANIqeISA009Y
20URIS[0]] 95ueId|O} JNe]
SHISLI)IRIRYIqNS MIN Ajiqe[ieay
Ajmieiy AjumgeN
ApqerRy Amqsied
Ajijeuonoun,y Wol paAON Anpiqersdoldsyu]
Aj[iqeod woy pIAON 35UE)SIX3-0) 20UEB)SIX3-0))
91ISLIIORIBYD MAIN Amaqeyeduo)
(swaysAs Jondwod
0} jueAd[al Apemonged) opsusjoeIRYd MIN Anoede)
UonezI[IIN 20IN0SIY uoneZI[IN 20Mmosay
INOTABYDQ W], INOIABYSq duH],
790ST DAI/OSI Ut Adudtoyyd
Jo uonmuap Yim Sundijuod prose 0} pawreudy Audpyyg KSUAIIYJO dUBMIOLIdG
SUSLINORILYD B MON ALmosg
Ajpiqerdewod 0} pIAOIN Anpiqeradoiuy
spaou parjdwi ay) Jo 38e19A0) ANjigenng ssouajeudoidde jeuonoun,
KorvInooe uey) [eI1sUald 210N Aoemdoy $SOUI0110)) [euonIUNy
Spasu pajels Y} JO BRIGA0D ssau9jo|dwod TeuonOUN
Kj[euonouny Jo sJUIURIUI IO YIM
UOISNJUOD PIOAR PUB JJRINDOR JI0W S| SUWRU MIN Ajpsuonouny Amqejns [guopndung
S3JON 9716 DAI/OSI 010S7 DA1/OSI

9216 O31/0S1 ANV 010SZ O3I/OS| 40 NOISIVYAYINOD -3 XIONIddY

991

Anpiqessay, Aqiqeisa],

Anpiqers
pue AjjiqeSueyd SulUIqUIOd SWERU IRINIOE IO Aqes AnjiqeyipoN
AjjiqesAfeuy AyjiqesAjeny
O1JSLID)OBIBYOqNS MIN Aiqesnoy
O1ISLI10RIBYOqNS MIN KurenpoN
Ajqeuiejuiejy AqeuisyuisiA
OIISLISJORIBYIGNS MIN AJ1qesssdoy
3JBINOOE JIOUI S| JUIBU MIN SSaUdANIORINY SO1ISAYISIL 9JBLISUL JIS)

(rsu
WIOL] WOPadY 9A3MYOR 0}) JISLAORIBYIGNS MIN uonddjoid 10419 195
Anpqessdg Ajiiqessdo
Ajjiqeurea] Aj[iqeures]
9JBINJd. SJOW SI SUIeU MIN Anjiqepuelsispun) Kn[iqeziugooal ssousjerdoiddy
1o11dxs spew ansst Ayjenb jorduy Angesn
Ajppuaginy
Aj[1qe1unoay
uoneipndai-uoN
AuBa
Ajiqejuapyuo)
sonsue)orIRyOqNS Snoiadld oN JXTRLEET AJInag

SIJON 9716 Dd1/OS1 010SZ DH1/0SI |

.

T T TP T T

APPENDIX F: INTRODUCTORY DOCUMENT TO THE ONTOLOGY

ASSESSMENT QUESTIONNAIRE
About a Questionnaire for the Evaluation of the Software Quality
Assurance Ontology
Nada Bajnaid
PhD Student at the Faculty of Life and Computing Sciences
London Metropolitan University, UK

Software is a key element of the modern computing systems (from mobile phones to
supercomputers) and there is a need for high standards in the educating people who are
involved in its development. It becomes especially critical when there are special
requirements for high quality software. One problem in the teaching of Software
Engineering as a discipline is the use of textbooks as the main source of knowledge.
Moreover, the discipline may be studied as separate modules/courses that may be not
coordinated in terms of consistency and completeness. This may intern that meaning of
terms is inter-related and/or overlapped.

There was an effort by different bodies to develop Software Engineering standards
followed by the forming of the ISO/IEC Joint Technical Committee 1 (JTCI)
workgroup in order to guarantee consistency and coherency among standards. The
IEEE Computer Society and the ISOJTCI-SC7 agreed to harmonize terminology
among their standards. However, there is still no single standard which embraces the
whole Software Quality Assurance (SQA) knowledge. Because of that, there are
various vocabularies to describe the SQA knowledge in learning context including
textbooks. In addition, Software Engineering teachers have different backgrounds, use
different languages and/or jargons which motivate additional research related to SQA
teaching.

With the new technological advances and the use of e-learning techniques, ontologies
play key role in supporting semantic knowledge representation and thus enhancing e-
learning experience. It allows structural annotation of electronic resources with
semantic information providing machine-understandable contents.

Application-Based ontology evaluation was used where an ontology-based context-
aware prototype of SQA e-learning system was designed and implemented to guide
students and practitioners about a process of development of the SQA compliant
software. The system can sense the learner’s current stage of the SQA process and
show relevant Learning Objects (LOs) that deal with SQA aspects. There are 200 LOs
available to the learner. The system filters out LOs based on the individual learner’s
usage of the system (profile) and ontology-based reasoning. The Application-Based
ontology evaluation is used to measure practical aspects of ontology deployment.

The primary source of the SQA ontology given below is the SWEBOK guide (2004),
in addition to that, ISO and IEEE standards (ISO 9126, IEEE 12207, IEEE 610.12,
IEEE 00100, SWEBOK 2004, PMBOK 2008, CMMI v1.2) were used and from them
relevant terminology was extracted. The following figure'illustrates the formal

'Bajnaid N., Benlamri R. and Cogan B. (2012), “An SQA ¢-Leamning System for Agile Softwarc
Development”, Proc. of the Fourth International Conference on Networked Digital Technologies, Dubai,

UAE, April 24-26, 2012. Communications in Computer and Information Science(CCIS 7899) Scrics of
Springer LNCS — in press.

167

structure and the various relationships used to define all SQA processes in the software
development process. The figure shows the main SQA concepts as OWL classes
where the arrows represent relationships (OWL object properties) between domain
classes (the head of the arrow) and range classes (the tail of the arrow). The is-a
property relates an SQA concepts with its instances (OWL individuals).

Audit Strategy Class Tloms
Design P N hasProcess
QA Plan - N — Project \ [invokes
Req. Specification i:a a ‘J
ass
Review Report L Functional Req. isinputTo —"
Source Code —— = SQAProcess (g _ s —
on-Functional Req.

Test Cases Validation
Test Report \IH Class Verification
User Manual \. Deliverable L3 . uses Inspection

Validation Plan c ";’Q!:"W Audit
tiribute
Verification Plan islnputTo Usi \ Testing
— Measurement conductedUsing
Test Specification Class Review
Operation Report Class T
o - Class Resource)
User Monitoring Record Quality is-a
Attribute Measurement {
Poriability ') /’ Metric \ Technical Review
Reusability memucs T oot [is-a Management
— isa 1 is-a Review
Interoperability
Class l
Maintainability M ¢ i Class Class Class
) casrermen Procedurc | | Techn Method
is-a -~ Precision —
\. Class Class Data Exchangeability T
Access Controllability .
is-a
NonOb'servlble Omlblc is-a Failure Resolution I
Attribute tiribute ‘ Fault Density
s . Test Cov Walk Through
15 - k Fault Removal Prototyping
Functionality [MS““"." Availability Cheek List
atunty Restartability Moot
Reliability Fault Tolerance R bility eeting
BT T Recoverability Undoability Use Cases
iciency — e
o) Learnability JCompletencss of Description Simulation
Operability Error Correction
Usability Tnstallability Input Validity Checking
— — Message Clarity
il 'I" Resp Time
understandability 70 Utirization
Time Behavior — WE
T} i . ed b L
R“f’“’“ Uuhu.uon Computational Accuracy
Efficiency Compliance Data Corruption Prevention
[Maintainability Compl Fault Detection
Portability Compliance Failure Avoidance
__Suitability Understandable 1O
Rzlu:::lllg Coggl liance Ease of function Learning
‘ yzability -
Changeabili Ease of Installation
Stability Installation Flexibility
Testability
Adaptability
Replacesbility ‘
Coexistence

168

In the figure we eliminate the number of instances of the SQA measurements and
metrics for simplicity. While in the OWL ontology model we try to cover almost all
SQA measurements and metrics. Applicable measurements and metrics may be not
limited to the ones listed in the ontology. Other metrics for particular purposes may be
added.The aim of this questionnaire is to validate the ontology quality and usefulness.
The ontology validation ensures consistency by avoiding contradictory information. In
addition, ontology clarity is to be validated by referring to how well the proposed
meanings are communicated. Finally, the ultimate goal was to develop an ontology
that faithfully models the SQA discipline as practiced in the software development life
cycle, with further emphasis on SQA measurements and metrics.

References

[1] Bajnaid N., Cogan B. and Al-Nuaim H. {2008), “Software quality ontology for teaching: a
development methodology’s issues”. Proc. 5th International Innovations in Information
Technology (IIT 2008), pp. 352-356 {2008) Indexed by IEEEXplore 10 Feb 2009, ISBN 978-1-
4244-3396-4
http://ieeexplore.ieee.org/stamp/stamp.isp?arnumber=04781698

[2] Bajnaid N., Benlamri R. and Cogan B. (2010), "Ontology-Based E-Learning System for SQA
Compliant Software Development"”, Proc. of the 2nd Int. Conf. on the Application of Digital
Information and Web Technologies — ICDIWT’2010, istanbul, Turkey, pp.85-91, july 12-14,
2010.

[3] Bajnaid N., Bentamri R. and Cogan B. (2011), "Context-Aware SQA E-learning System", Proc. of
the Sixth International Conference on Digital Information Management ICDIM 2011,
Melbourne, Australia, 26-28 Sept., 2011.

[4] Boehm B., Chulani S., Verner J., and Wong B., (2009). Seventh workshop on Software
Quality,.ICSE-Companion 2009. 31st International Conference on Software Engineering —
Companion, 16-24 May 2009, pp.449-450.

[5] Calero, C., Ruiz, F. and Piattini, M.: Ontologies in Software Engineering and Software Technology,
Springer (2006).

[6] Wille C., Dumke R., Abran A., and Desharnais J. {2004). E-learning infrastructure for Software
Engineering educations: steps on ontology modeling for SWEBOK, Proceedings of the IASTED
International Conference on Software Engineering, 2004, pp. 520-525.

[7] Saiedian H. and Weide B., (2005). The new context for Software Engineering education and
training, The Journal of Systems and Software 74, pp. 109-111.

(8] IEEE standard glossary of software engineering terminology: ANSI/IEEE std 610.12-1990. In:
|EEE Software Engineering Standards, vol. 1, Customer and Terminology Standards. IEEE, Inc.
1999.

[9] ISO/IEC 12207, IEEE Std 12207-2008: System and Software Engineering — Software Life Cycle
Processes

[10]) ISO/IEC 9126:1991, Information Technology - Software Product Evaluation - Quality
Characteristics and Guidelines for Their Use.

[11] Mendes, O., and Abran, A., (2004). Software Engineering Ontology: A Development
Methodology, Position Paper, Metrics News 9:1, pp. 68-76.

[12]) PMBOK, A Guide to the Project Mangement Body of Knowledge, Third Edition, ANSI/PMI 99-
001-2004.

[13] SWEBOK, (2004). Guide to the Software Engineering Body of Knowledge, ed. Bourque P., and
Dupuis R. IEEE Computer Society Press, 2004. Available at: http://www.swebok.org

169

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04781698
http://www.swebok.org

APPENDIX G: THE ONTOLOGY ASSESSMENT QUESTIONNAIRE

The aim of this survey is to evaluate a Software Quality Assurance (SQA)
ontology model that has been created in a PhD project. The SQA ontology was
developed based on international standards (ISO 9126, |IEEE 12207, IEEE
610.12, IEEE 00100, SWEBOK 2004, PMBOK 2008, CMMI v1.2, and
ANSI/ISO/ASQ Q9000-2000). The results of the survey will be used to assess
and evaluate the developed ontology in this research. It is assumed that
respondent has some knowledge in the SQA domain.

A. About respondent

Respondent expertise: please rate your expertise in the SQA domain
1. Null 2. Poor 3.Average 4. Above average 5. Excellent

Respondent expertise: please rate your expertise in the ontology domain
1. Null 2. Poor 3.Average 4.Above average 5. Excellent

Are you now (or ever been) involved into the teaching of Software Engineering?
1. Yes 2.No

Do you think ontology can be useful for teaching SQA?

1. Strongly disagree

Disagree
Borderline
Agree
Strongly agree

v wN

170

B. On a scale of 1-5 (where 5 = strongly agree and 1 = strongly disagree), please
indicate how will you agree in the following statements about the developed
SQA conceptual model

Quality Statement 1{2(3|4]|5
Criteria
Completeness | The model covered the major concepts of the
SQA domain
The taxonomy ("is-a" relationship) is presented
Structure correctly in the model

Other relationships among the SQA concepts are
presented correctly in the model (invokes,
produces, measures, Uses, ensures. ..etc.)

There are some redundant concepts in the model

Clarity There are some ambiguous concepts in the model

The ontology is logically consistent
Consistency Ex: X instance of classes A and B, but A and B
are disjoint

This is a contradiction

Extendibility | New terms can be introduced without the need to
revise existing structure of the model

171

C. Non-relevant concepts/terms to be removed from the model if any. Why you
think it should be removed?

172

D. Suggested concepts/terms to be added to the model if any. Where?

Thank you for your time in completing this questionnaire

173

Ll

2213y SOA 93eloAy | 93eioAe SA0QY ¥ ¥ € € v vl ¢ Sl

213y Sax a8e1roAy | 93rioA® dA0OQY ¥ € ré ré ¥ vl v 14!

223y SO A J8eIdAY UR[29XY z S 1 3 v €l b €1

sulpIsplog SIA adeioay 1004 14 14 S £ £ 15 4 4

213y ON ageioAy N 14 14 [4 I 4 | v 11

213y ON JseAY JBeIoAY € € € € € v v ol

suI[19pIoq SIX J3eIdAY | JBRIIAR JAOQY Z € p p € € € 6

2218y ON | 93eidAe oa0qQy UI[[90X S P ¥ r r S € 8

surjaplog ON 1004 | a3eroAe aa0qy v 3 b v € v v L

Q1dy S9X | o3eidAe dAOQY J8eIAY v € € ¥ v € v 9

9a13e A[3uong Sa X | 988IdARIAOQY | JBRISAR JAOQY S S S S S S S S

2213y SOA J8eIoAY | 93eidAr dAOQY S ¥ ¥ € ¥ S v y

9218y S9A o8e10Ay | aFe1oAe aa0qy S S I z S S| v €

I8y S X | 93eIaAR dAOQY IOEN RS | S b € € S A 4

2313e [Suong ON ageioay EIER v v ¢ € € € S I
VOS suiyoed)

ui ABojojuo | yOS Surgoes K3oj0juQ uo vOS uo
JO SSQU[IYas) [| Ul paajoau] '] | douduadxg z'f | douswadxy ' | LT)| 9T §T| vT| €Tl TT| 1T
v9
sjuowde)g [Hed 03 sasuodsay d1qe] uI se sjuawge)g I Hed 03 sasuodsay | judpuodsay

asreuuonsand) 3y} Jo [pue | spied 03 sasuodsay syuedppied [enpiaipug

JHIVNNOILSIND JHL OL SASNOLSIY ,SLINVAIOILIVH TVNAIAIAN]H XIANIddY

SL1

2213y SAX A0qy | 93erday - - 9
2213e o3e1oAe ogeloAe
K[3uong SOA A0QY 2A0qQY - - S
$53201d 21} 0) Sun{rEWOUq
Suippe 1op1suod Aew no g
‘¥ ‘poylow pue sanbruyoay ‘ampasoid
3y 03 sjoo] Suippe 13pIsuod Aew
Nox ‘€ JUSWSMSESN pue SOLNSN
JUSWIAINSEI UIDIMIIQ DUSISYJIP
ay} 1e9]o jou s1 3] ‘g (uerd 1ooford
10) ueqd juswaSeuews uonem3uod
s8eroAe | ‘enuew uotjejeIsur Suppe 19pIsu0d
2218y S3X | 98erony 9A0qQY | Aew nok ‘ajqessarap sy uf ‘| :sanssj - 14
age1oAe
o213y sof | aB8eraay aA0qQy 1IN MmN €
o3esane 3 39S 3,Up[NO9 | Inq 313y} 3q S Yutq 1 pajtejsp 00} are
2213y SOX JA0Qy | Jud[[eIXyg 3 ‘uejd Anenb aremyos & aqAepy SOLIAW JUSWSINSESW PUE JUIWINSLIN 4
‘HodaY MIAAY
Suisusoq] Iaye swod pnoys udsa(A3a1exs
‘Bunrpne sapnjoui 3f A)jeuonoun,y PNy Yym S)IBIS Jey) SSe[o Urewop oy)
- :528sB0 urewop Summoqo} | ur safes Jo 19pI0 Y] ASIASY UOHE[[RISUT
Y3 SSpNOUT [Spow STANA YL | Jo AN[Iqixayy pue uone[[elsul jo asey 1oJ
"piexoed No[maH Ik Apein) 1aqoy UL} 2U0 3s() - Aoemooe [euonendwio)
%218y Aq padofaaap sem yotym japowr Jaondaoxg 0) £5emody /UOISIIAI]
A[8uong ON | a8eroay | juaqpaoxg SN 01 13]21 O} PUSWIWIOIAT I M o} wia) fSurs as() - [SULIS) JUBPUNPY I
vl el (4! I'1
§'9 9[qe], Ul se sjuowale)S | Hed 03 sasuodsay Al Ued 0] sjuswwio)) III 1ed 01 spuswwo)) | #dsay

areuuonsand) ay) Jo A pue ‘[‘I 3118d 0} sasuodsay sjuedpyieg [enpiapug

9Ll

ul 1S3AUI U suoneziuediQ

‘[opoul Sy} ul Je3[d jou 1o Juisstw
I3U3I2 31E Jey] SEATe JUSUIISIAUT
pajejai yuswaaoxdunt Ayjenb

Jo a8uei e ore 210y ‘os[y ‘sanqLuje
19410 pue ‘s)$9) JUSWIIUBRYUS

pue UOISSIIZII ‘[9A] WISAS pue Jun
£X0q IYm pue xXoq Jor[q - Jared]d
aq pInoys s3daouos pajejos Suysa]
"JIpealq pue AJue(d ut gioq paaordun

"JLNIIA JUSWIIMSEIN

a8e10A® | aq ues £Sojojuo SIy} pue ‘ease peoiq PUB JUIWIIMSEI J0J PI)SI] SWIJI
suipIapIog sop | 98erday 9A0qY | A1oA e st doueinssy Ajiend) aremyos | 9Yy) usamiaq Aouepunpas /defioA0 St 5y | 6
*9]9A5 3]1] aremyos
a4} 0} paje|al Ssejd e ppe pjnoys
nok ‘Ajjeut *(1102) 010SZ JH1/0SI
ui pasodoid se uonyenjead asn
u1 Ajfenb pue Aijenb yloq 031 pajeas ‘(Anpiqesadoiaug
samquye se [[om se (8007 ‘T10ST "8°3) Juowidanseaws € pue snquye
Dd1/0SI "3°9) Lijenb uoneuniojur ay 9y} JO suwreu ay) usdm1dq Asuepunpals
0} paje[al seINqLIIe Ppe 0] I9PISUOD ® ST 219y ‘sapIsag "sInqLuje Jo
pinoys noA ‘uonippe uj “(sjiqow | pury JeY) AJeN[EAS 0} d[qe e (s19doj2A3p
‘dopysap ‘qam “8'3) unopeyd aremyos ‘8'3) suadxa Ajuo asnedsaq [apow ay)
3y} Jo ad43 ay3 0} pajepaassepo © Woly PIJHWo 3q pInoys AJIjIqeurejurew
ppe no£ jeyy 1sa83ns | ‘oadsar yey up S€ yons pajnqupe 3|qealasqo
'$ad) a1BMIIOS [[B JO SOTISLIS)ORILYD -Uou usy) ‘paIsyuas-Jasn aq o3 pouueid
JI9A0 sny} pue aAIsusyarduwod st ampasoid worjen[eAs ay) J1 ‘19A9MOYH
3q 0] JI2p10 UI PaPUI)Xa 3q PINOYs I '§)d25u02 JuBAS[2I-UOT UO YOBqPa3]
o8erone ‘surewop aremyos [[e o) ojqedrjdde aq | e apiaoid o prey A[jeas st 31 ‘sotewt YOS
2213y ON JA0QY | JUS[[30XH 0} S1 [apouw ay) Jo wie 3y YSnoy)[y | (e Urejuod Jou S0P [9poull 3Yj JBY) USAID) 8
adeIoAe
surjrapiog ON 1004g sA0qQy - - L
a8eroae

LLT

auisopiog

SIA

a8eroay

lood

{oTdMYdIe
asudiajus pue 2IyoIYdOIR W)SAS
‘2IM359}IYIIE SIBMYJOS - AMIISYoTR
1noqe Jey M (UOTIBIULMOOP SI JIYM
JwsAs e 3usudwod syoejnre sy

Jo Asuaysisuo)) ;ajdwexs 10§ ‘|onuod
UOISIDA (SHP jie ul JudswoSeuew
uonem3Yuod JIeMJOos SI IYM

SIY} JO AJIp1jeA 3} 10J ‘Yonoa jouurd

[83 ‘Aremiqle jeymatios 2q 0) Wads
sdigsuone|ay] (sauo Ajjenb ‘aouesur 10§
‘J0U pUE ‘SIINGLIIE S,JUSWIINSLIW JO IST|
ay) uo are Anpiqeidepe, Jo Aiqejjeisut,,
Aym (rou st Anjiqesadoauy,

pue ‘ajngquyIe 3|qeAIasqo ue st Aljiqesn,,
Aqp\ "saIngumIe 3]GRAIISqO-UOU

pue 3]qeA135qo ‘Aes ‘Ussmjaq ysm3unsip
01 pIey 11 putj] 1X91U0D JNOYIM

4

92138y

ON

ageIoAy

ageioay

11

18y

ON

o8eroay

a8eioAy

‘sindino Yy

aIe yorym pue sindur are s3[qeIdalop
Iepnonred yoiym usnum 3q ued

1 ‘aqAR “SqeISALP) sonpoid
os[e yoym ssasoxd ssuemssy
Anpen) aremyog oy 03 ndut

3y} 3Ie SI[qRISAIIP Y] Jey) pajess §,1]

01

* uonejuswajdwi 03 Aloay |

wos - soueImnssy Apjend) sremyos,,
¥ooq s,utjen) jaiue ut s3dosuod

at} Surpeal pusUILIOdl PNoMm |
‘suonearjdwi yOS aaey jeys saonoesd
1oy pue (paseq ueyd /jjeHarem

*SA 9]13e) sass9001d Juswdo[arsp
punoJe sanssI are a1y ‘Afjeurg
‘TopOw 3y} UL JUISqe WIS ISAY)

Jo Auew - sai1Ande SUI1S9) SNOLIBA

SE [[3M SE TO1J03)ap [[ows /SIsA[eue
apoo onje}s ‘sySnorygyjem apod
‘smalaal udisop ‘sis[eue [eIM3ooNyoOIe
‘KynJique Suronpal 10] sueatr
SNOLIBA PUE SMIIASI SjuawdTInbal

8LI1

2313y

SaX

a8eroAy

a3eloAe
SA0qQY

Sl

2218y

SaX

d8eloay

a8e1oAeE
aroqQy

‘sjapow Ajijenb azemyos

pue wajsAs -- (gen)S) uonenjeayq
pue sjuswarinbay] Ajjend) aremyos
pue swalskg -- SunvaumFus a1emijos
pue swasAS {10Z:0105¢ OHI/OSI Ut
SonsuoeIey)) Ajifend), uey; 1930
are sanquyy Ayeng),, Mok Aym

Buusaurdua swaysks
pue dremyog £ DS/ DL{ 39PMUIUCS
[e21UY53) JO ATe}2109S SI UAINgG ‘M
"Sa13s (000ST OS] Woly spiepuels mou 3q)
u pasn ae suud) gang ‘(Gpd'900TNOSO
T% siuduwaiinbai” japoutgz%Anend/1qnd
-d
OS/yoIeasatulmsm ed pusiasjoid//.dn
- noperd100 ([‘uking ploNm
“IN 910D sixay-orejy//, Sunsauiduy
Aupend) aremyjos 10§ sjuswaninbay
19PO Aitend) a1emyos,, 335)
"a1qissod 19A3USYM dINSEdW UL3) 3y} Isn
[sisay} s1y L “ASojonaw ul pasn suo
ays yum Krengesoa sj1 usije o) amsedu,,
£q oo, uus) ay) pasejdas —
Suueouifug aremyjog pue SWSAS — LIS
sapruwod-qns {JLf JHI/OSI W ‘T00T
Uj :asnedsaq , JLAW 3MSeIW,, JO pesjsul
,QINSEBIW,, TLId) 9y} 35N O] °7 ‘Spiepues
OS] Ul pasn st ji asnedaq ,nqiuie
Anpenb,, jo peajsur , onsus)ovIRYD
Ayrenb,, wioy o3 asn o 1 :sjesodoid AN

14!

2018y

SOA

a8e1oay

JUETIER) e |

‘[opow
3y} u1 SuISSTW I8 JWOS pue ‘YOS
Jo soadse ; suonjuaw uewssald <8
“VOS UO SM3IA JUSIJJIP 21 2104]

“BuuaduIdus a1BMJOS

sjoym syuasaxdal ‘Aem e ut ‘[apout
waun)) “paddoip aq pinoys sydasuod
[2A3] 1amoj ‘asodind Suryoea) 10

£l

" uonepiea
pue Sunsajypne s1 Ma1A3J Juswadeuew,,
:[opOWr O} WOIJ SMO[[O] 18y} JUSIIIE]S

APPENDIX |: SAMPLE USER PROFILE IN XML

179

081

! (ydweNIssn,) I933weredlab- 3sanbax = sweniasn

}

K13

{1Tnu = pxomssed Burxis
} uotadeoxm0oIl ‘uoTideoXTISTAISS sSmoIy3l
(ssuodsax asuodsayiataxasdiilH
‘31ssnbax 3ssnbay3aTaxasdiljg) 3990p proapejoejoxd

3PTIIISA0®
{WNNUOTSSSS3uT
! ()Aborojupbutpesy msu = [apow ABorojupburpesy
!ITInu = sweNxssn Butals
} 391A195d313H spus3ixelaTAIaSYOSsseTooTTqnd

({w¥0S/u}=suzs33ed1In) 33TAISSAaMD/ /
(1w33sASYOS/u) 3ISTAISSISME

‘Tuxa3epdn * sOoTpa3eTay 3zodwt
!osuodseoyiaTaaasdiay - dijy - 3sTaxss "xeael[jzodurt
!3senbeyistazssdligy-dajy-3sTaxas "xeae[jaodutg
!3s1ax95d33H d33y - 3aTAx9s "Xeae[jxodumrt
{39TAISSOSM "UOTIR]jOoUUR " 33TAISS "Xeae[jzodut
‘uoT1d90XH 19 TAISS " 39TAISS "Xeae[jxodut
{x0303ATTINn "BAR[3x0dWT

{38TT ' TT13In eael3xzodur
‘1031931 TTan eael3azodur

{103e193I ' TTan " eael jxodur
‘uotiexswnud ‘' 1Tin " eael jzodut
{I93TIMIUTIJ 'OT "eael jxodurt
!uot3dsoxmOI ' OoT "eael jxodurt
‘walsAg - butuxear] yds obeyoed

BABI'}J9|AIBSYDS

<Twiy/>
<Apoq/>

<I23u’an/>

<zu/> wa3sAs Butuies YOS PozZT[PUOSI®d YL <ZU>
<gy/><ag><i1g> Bursn 103 nok >ueyr <cy>
<Ig><Ig><I1g><Ig>

<I23Uu3D>

<,0x0qsuren, =10T0DbgApoqg>
<peay/>
<3T723T31/> wailskg YOS 3ITXF <3T3TI>

<peay>

<Tuw3ay>
1w3y3x3

<qw3y/>
<Apoq/>
<wIoj />

<I33uU8)n />
<0p=9271s,UIl ubrs,=anTea,3ruqns,=adA3zandur>
<Iq><Iq><QZ=92TS,pIoMssed, =sueu, piomssed, =adA3ndur>
: paxomssed
<IQg><0Z=92ZTS,aweNIasn, =auey, 3xa3, =adA3andut>
¢ sweN x9sn

<$J/> UOTJeWIOJUI SS300Y INOX IS]3uy =28eaTd <yy>
<zy/><ig><iq> we3sAs buturesT ¥ YOS INOX :SEYDS <zu>

<IajuaD>

<4 386, =poy3jaw, wa3sAsyds, =uoTIdewIO] >
<,0x0qsures, =1010DbqgApog>

<peay/>
<9T2T3/> 88900y I9s(] :Wwa3sAs YOS <=731T1>

<pesy>

<Tway>
Wy ubo

S3VOS 40 300D VAV(I XIONIddY

81

! () ssweNIo3aweIeglab-isonbax = sswenyuwied uoTjeIswnulm
!swenNassn =sweu Butriils

} uotadeoxgor ‘uotideoxzmlSTAISS smoiyl
(ssuodsax asuodsayilaTaaasdllH
‘3sonbax 3senbayisTaizagdilH) 1sodop proapaijzoejoxd

3e990p //

{

! (vAz3ug

! ()ooexryoe3sjutad- s

ut x10xxx,) uriutad- ()a93TaM3I=6'ssuodsax
} (® uotadsoxg) yozeo

{

! (w<Tw3ay/>,)utriurad-ano
! (u<Apoq/>,)ur3iurxd-3ano
! (w<aTp/>,)utiutad- no

{

! (w<%U/>i ipIOMSsed

! (w<Tw3y/>,) urlurad-3no

I0 sweulasn buoam<yy>,)uriurad:ino
! (w<Tw3y>,) urjurad-ino
} est®

! (w<Tw3ay/>,) urjutxd-:iano
! (w<wxo3F/>,)urljurad- no

! (u<x33U3dD/>9DIN0S3a1

p23xoddns Ajternb 10 ‘OTijsw ‘juswainsesu
K3tT1enb<aqg>,) urjutad-3no

! (4 'S3uUSWNOOP STQeISATISP

‘aanqrxiae Ajrrenb ‘sssooxd yps ue Axsnb Aew nox
<I23U8D><Ig><IAq><Ig>,) urjzurad-ino

! (y<a23uap/><,Axond 3TUQNS, = SNTeA ,3TWANS,
= 2dA3 3ndut>,) urjutad-ino
! (w<aq/><gz = 92T1s ,Ax19nb, = sweu

,3IX93, 9dA3 andut>,) ur3jurxd-3ino

! (n<.3804,
= poylawm ,w33sASYDS/°, = UOTIDE ,wIOJYdDILSS, = SBWweu
wro3y>,)3utad- () 1931IM3I36 asuodsax

!(, :Axanb 1nok adA3 ssesrd,) urjutrad-ano
! (an) uraurad:ano ! (u<PU/>u
+ SweNISsSn + , SWODTIM<PpY><Iajusd>,) ur3urad-ano
! (y4<,0x0qSuTEd,
= I0TO0DBQ Tway>,) ur3lurad-ano

vAﬁvuOmemm ‘SweNIasSn) 3STXHISSN ' [spow) IT

! (u<aTp/>u)urlutad-ano
! (u<ag><d/><e/>300
ubTS<, \TWIY 3TXHF,\=J21y e><,xdgT, = °22zTs-3juoy ,3ybrx,=
ubtTe><d>,)ur3lurad- ino

! (4<I23U8)/><€Y/>Wa3sAg
BPuturesa] YOS INOX :SHAVOS<IDPEIH:IOTOD
gY><aajua)n>,) urjurad-ino
{(u<,0:3ybTa-utbxew !g:3397-utbaew ‘{g:doj
-utbxew ‘{Q:woljoq-utbiew !sbuero:IoToDd-punoabyoeq, =
aT143s ,I8pesay, = pTr ATP>,)urjurad-ino
ATp x9pesy 3yl //
! (u<,0x0gsuten,
= 10T0DBg Apoqg>,)urjutad-ino

! (u<,880/3x%923,=3us3uod ,3dAL-3TA3S-3uajuo),=A1nb3
-d33Yy VYLdW>,)ur3jutad-3no
! (y<TW3y>,)urlutad-3no

! (wTw3Yy/3xs3,) adALjusjuoc)las asuodsax
! ()x23TaM3I96 ssuodsax
= 3no I=3TIM3iutid
}

(TTnu =i SweNassn) IT

! (ypaomssed,) x93aweaediab - 3senbax
= paomssed

8l

!(u<,3397: 30713
!xdosy:yaptm ‘euepasa:ArTwey-juo3y !xdgr:9zTIS-3uoy,
= 2143s ,333T, = PT ATP>,)ur3jurad-ano

ATP 3397 @43 //

ATp 19peay a3yl // ¢ (u<AaTp/>.)ur3urxd:ano
! (u<d/><e/>300

ubts<, \TW3iy-3I3Tx",\=321y e>,)urzurad-’ no
! (u<e/>ydIeas MaN<,
! ()y3Tuqns ‘[, wIOJYDIeas,]wroy - juaundop: adraoseael, =331y
e><, d0T =

2z1s-3uol ,3ybtx,= ubtre><d>,)urjurad-3no
! (w<x23Uua)/><gy/>wa3sAs
butures YOS INOX :SHYOS<IDOe[d:IOTOD

gy><1ajus)>,) urjurxd-:ino
!(u<,0:339T-utbxew {Q:3ybra-utrbaew ‘g:doj
-utbaew !Q:wo3jjog-urbiew !sbuero:IO0TOD-punoibyoeq,

= 9TA3s ,a9peay, = pPT ATp>,)ur3urxd’3no
ATp 13pesy 3yl //

! () s3uswaanseaporindurisb’ Topou

= sjusawaansesyoL3indul I0JOeA

! () sandurjuswaansesplab’ Tapou

= gandurjuswaiInsesaw IOJ09A

! ()SOTI3OWISH Topow = SOTIJaUW XOJDSA

{ () sjuswaansesylab [spow = sjUSsWSINSEsW I0JDSA

! () Agpaansesy3ab - [epow = Agpainsesuw I0308A

! ()saansesy3ab' [spow = SaINseauw I0309)

! () ssepoagpajeToossylab Tepou

= SS2D0IdpPo3eTO0SSe I0309A

! () Agpeonpoagieb- [spou = Agpsonpoid I0308)

! () SeTqeIsAT 30336 [Spow = SOTURISATTSP I03DO8A

! ()orandursIish repow = or3nduIsST I03D°9A

! ()sandulisbh- Tepow = s3andur I03D8A

! () sadsouoppajeTsyiab: Tepow = s3dedUODPa3B[2IIOIDBA
! ()ssapoaghgpasnish: [epou = sgasoxghgpesn I0309A
! () seDanosaypasnlab [opow = S2D0INOSIYPISN I03DaA
! () SS2001dpPax0AUTIBE " [opow = SS8D0IJPONOAUT IOJDDA
! ()3oyDsSI32b6 Tepow = JOYDST I03ODA

! () syOpe3je1ay3sb [spow = syOpe3je[ax 103034

! () ST¥NPSWNSUOD33H " TSpoW = STYNPSWNSUO) IO0JDSA

! () soIpswnsuo)lab [spow = SQTPaWNSUO) IO0JDSA
!()sTN3=6" [spow = STIN I03DdA
! () 8013100396 Topow = SQTIS2I0D IO0JDBA
! (sweu 'x3gAzanb)s3oalqobutuies aiod " TIpow
! (sweu) 3TTJO0LS3TIM BTTIOIgI8sN
! (x38Lkaanb
‘unNuotssss) 3desouo)ppe 9T TJ0IdIasn
! ()uotrssasppe 91TIO0IJISSN = WNNUOTISSIS
! (aweu)
Tux=a3epdn meu = aTTjoxdassn TWxa3lepdn

mﬁ: _-~=
‘z135Ax9nb)soerdsx - sTTInbutals BueT suowwod * syosede bxo
= x35&asnb
! (,Az2nb,) 2z932wexegiab 3senbax
= 138Azsnb bButals

! ()3uswaTgIixau -’ saweNuzed
(buta3ag) = swenwxed
}

(() sauswaTHoIONSEY ' soweNuied) STTUM

sbed sToym ay3
I0J ATP 3ISITF =Yy3y// ! (4<0x0gSuUTEH: I0TOD-pUNoIbioeq,
= 9TA3s ,19uTe3UOD, = PT ATIP>,)ur3jutad-ino

! (s<,0x0qsuten, = 1070Dbq Apog>,)urjutad-:ino
! (4<,SsD/3x93,=3uajuod ,adLy

-9T14A3s-3u23u0), =aTnba-d33y viaw>,)uriutad- ano

! (v<Apog>,)urzutad- 3no

! (w<Tw3y>,)ur3urad-ino

! ()x23TIMI96 ssuodsax
= 3NO I33TIMIUTIJ ' OT eael
1e3TamijuTtad e ybnoayi JUSTTO 8yl 03 ejep pusas//
! (wTw3y/ax23,) adArjusjuopiss - asuodsax
!esTey = A3dugunusuesTooq
sweu Isjswexed

a1burs e pioy o3 // ‘swenuied bBurtails

€81

‘3deduoco = x933nq Hutals
! ()3axau- 13T (Bbutxasg) = 3dsouoo Butxis
(()3IXSNS®ey I3T) STTUM
! (u<axq><T/><buozis/>, + 13skzanb + , Aq paxtnbax
s3ndur<t><buoais><aq>,)ur3jurad- no
! () x03ex93T 'sandurjuswainseaw = I3T I03eIa3l
(()A3dugst sandurjuswainsesw j) JIT
{
{
! (u<ag><e/>,+I93I0q+,<,\u+ (UNNUOTSSasS)bUIrI3SO3
‘1963 3UI+, =WNNUOTSSISR , +3WeU+ ,=3WeNI3Sn, +,%,+3daouod+,
=135A19Nnb¢39TAT950T/SAYDS/0808: I3soyreso1//:daqy, \=321y
\uerq ,=3961e3 e>,)urjurad-ano
mﬁ: :~

W u 'I93INQq)eoerdax STTINBUTIAS BueT ' suowwod *aysede - bxo

= I833ng
{3deduod = x333Ing Burtais
! ()axau' 13T (Butx3as) = 3dsouoo Burails

}
(()3IxXaNSey'I13T) STTUM
! (u<ag><1/><buocais/>,
+ x3ghkasnb + , Aq psatnbax sandur,
+ ,<I><bBuox3ls><iaqg>,)urliurad-ano
! ()z0o3exa3T 's3anduT = I3T I03BIS3T
}
(()&A3dugst sindut i) 3T
! (u<3uo3/><T/><buoays/>,
+ ,3noge peax osTe Aew Nox , + ,<I><Buoxls><,umoiq,
= I0TOD 3Juo3i><1qg>,)urjurxd-’iano
{
{
! (u<aqg><e/>,
+0T+u <\ w+I3SAxonb+ ,=A13N0% , + (WNNUOTSS3S) buTI3SO] * 21363
JUI+, =WNNUOTSS9SR,+UOTILDOT+,=UOTIED0TR,+OT+,=0T% , +Swe
U+, =dWeu oTPawnsuod /SEYOS/0808: 3soyreso1//:d3ay, \=39ay
uerq , = 38bxej e>,)urjurad-3ino
! ()Buta3gol: () axsu- 113t
= o1 burxis

!()3xau-za3t (butals) = uOT3IEDOT Burils

}

(()3XaNsey- TI3T) STTys

! ()z03e193T STYAPSWNSUO) = ZIIT I03exo3l
! ()107e137T SOT3I00 = €I1TIOJBISIL
! () 70381931 SOTPAWNSUOD = TIJT I03exs3l
! (y<Ig><3U03 /><Pbuoils/><T/><N/>S3DIN0S3I
putuxeaT BurtmoTToI
243 P23TSTA 9ABY NOZ<N><TI><Buoils><3Ia[><,ua91b,=10T10D
juo3z>,) ur3utad-i3no
! (y<xg>,)utiutxd-ano
}

(() A3dwgsT soTpawnsuo) i) 3IT

{

* ! (u<xqg><e/>,
+0T+, <, \ u+I3sAz9nb+,=A12N0% , + (UNNUOTSSS) bUTIISO] ' 1969
JUI+,=WNNUOTSS3SR,+UOTIEDO0T+,=UOTIeD0TR,+OT+,=0T%,+3We
U+, =3Weu O TpaWnsuod /SAY0S /0808 3soyTeso1//:d3iay,\=391y

uetq , = 39bxel e>,)uriutad-ano
{()buta3zsol- () Ixau’ TI3T

= o1 Butaas

! ()3axau-zxat (butajlg) = uoT3edoTl bButaas
}

(()3XSNSey- TIIT) oTTyMm

!{()x03ex23T 'STIN = ZAJT I03eIS]I

! ()I03ex93T ' SOT2I0D = €I3TIOJEISIT

! ()1038a33T 'SQOT9I0D = TI3JT I03ex93l

! (y<3uo3/><aq><buoxls/><T1/>,

+x3ghkxenb+ , Inoqy ssoanossy

putuxes] psisabbng, + ,<I><buoalis><3IS[><,uUmoIq,
= IOT0D INOT>y,) ‘uriuradsano

}

osT®

! (yAxzonb 1InoiA 103 punoj ssoINOSaI
puturesT oN jAx1x08,)ur3jutad-ino
(()A3dugst - soT2102) IT

12!

! ()axau- 13T (butxis) = 3deduod burtials
}
(()3xSNsey I3T) STTym
! (u<Ig><T/><buoxisg/>
w + I3skxsnb + ,, sonpoxd Aew jeyl S3SS3D0IAd
+ .<I><buoxis><xqg>,)uriuraxd-:ino
! ()x03ex931 'Agpsonpoad = I3T 103eI3]I

}

(()A3dwugst Agpeonpoad) 3IT

{
mAzAuQVAm\v=+umuuzn+=A=/=+AsswcoﬁmmwmvawhumOu
*19693UT+, =WNNUOTSS3SR , +3WeU+ , =3WeNISSN , +,% , +3da0uod+,
=135419Nb¢39TATIS50T/SAYOS/ 0808 3soyTedor//:daay, \=321y
,quelq ,=33bael e>,)urjutad-no

_ .\A: e

. 'I9330q)eorrdex 8TT3INOUTIS BueT ' suouwwod sysede - 6xo

= I333Nq
{qdsouod = 133Ing Butais
! ()3xsu a3t (Butx3s) = 3dsouod Butails

}
(()3%XSNsey'I3T) STTysm
! (w<xg><1/><buoxls/>. + I3ashkizsnb+ , Aq pssn ssdINOSaY,
+ ,<T><buoijzs><aqg>,)ur3zurad-ano
{ () I03BI93T ' 89DINOSIYPISN = I3T I03BIS3I
}
(()A3dugsTt saoanossypssn i) 3T
{
{
«A:AMQVAm\v=+kuusn+=A=/=+AESZQOﬂmmwmvawhumOu
- 219693UT+, =WNNUOTSS2S% ,, +SWRU+ , =dWeNISSN , +, %, +3do0uod+,
=135419Nb¢39TAISS0T/SAVOS/0808: 3soyTeno1//:d3a3y.\=391y
,juerq ,=33baej e>,)urjurad’ino
NA._ =~

. u'I933nq)eoerdex sTTINBUTIIS BueT ' suowwod ' aydede -’ Hio

= Is33inq
!{qdepuoo = x933INng Butails
! ()3xau-a3T (butx3g) = 3deouod Butais

}

(()3xaNsSey-13T) STTUM
! (y<xq><T/><bBuocais/>.
+ I13skzonb+ , Aq pPaYOAUT S2SS3D01dw
+ .<TI><buoxilg><iag>,)urlurxd-ino
! ()I03eI2]T "SS8D0IPSHOAUT = IJT I03BIS3I
)
(()A3dugsT sseooxgpaxoaur i) 3IT
! (w<,3ybTa:3e0TI ‘Xd0OSP:YIPTM
!xdgT:92TS-]u0] ‘euepiaa:ATTweI-juoy !ssd/3xa3:adA3,
= a1&kas ,3ybta, = PT ATpP>,)uriurad-3ano
ATP 3uybtx 3yl //

! (w<aTpP/>,)ur3urad-ano
{
{
uA=AMQVAm\v=+uQmUCOU+=A=/=+AESZQOﬂmmwmvmcwhumOu
.meMucH+=neszcoﬂmwwmw=+wEmu+=umEmZMwmz=+=q=+ummocoo+=
=135A19nb¢39TAI9S0T/SAYDOS/0808: 3s0yTe20T// d33Ys\=321Y
,quetq ,=39b1e3 e>,)ur3autad-ino

= NA: _—s

W . 'I93I0q)e0eTdax sTTINBUTIAS BueT * suowwod ' sydede - bxo

ATP 3391 °43//

= I933Nnq
tadeouod = x833Ing butiis
! ()axau- 13T (Bbutxas) = 3adsouoo burails

}
(()3IxSNSey- I3T) STTYM
! (y<xq><T/><Bbuoals/>,+
13skaenb +, Aq peonpoxad saTgqeiaATIT=2d
s + u<I><buoizs><iq>,)urzurad-ino
! () 10301937 SSTqRISATTSP = I3T I03eIa3l
}

(()A3dugsT SSTqeIdATISP 1) 3T
{
{
! (w<ag><e/>,+I33ING+,<,\u+ (WNNUOTSSOS)bUTIISOTF
- 19693UT +, =WNNUOTSSSSR , +WeU+ , =2WeNIISN , +, 3 , +3d30U0d+,
=1354A190b¢19TAI9S0T/SAYOS/0808: 3soyresot1//:d3ay, \=331y
,quetq ,=39bxe3 e>,)urjurad-3no
-\A: :~
. 'I933Inq)eoerdax-sTTIinburals buet suowwod - sydede - bio
= I933nq

c8l

f3doouoo = 1333Ing bButals
{()3xau- 13T (Bbutayg) = 3dsouod burais
}
(()3IxXaNsey- 13T) STTUm
! (y<xq><T1/><buoxig/> 3andut se , + x3sAasnb
+ , 2aTtnbax sjuswainsesy<I><buoilsg><aqg>,)urzurad-ino

! () z03e131T ' sjusawainsesaporIndur = I3T I03eILII

}

(()A3dugsT *sjuswaansesapyorindut i) 3IT
A {
uH:AMDVAm\v=+Hmuusn+=A=/=+AESZCOHmmwmecﬂhuMOu
- 19693UT +, =WNNUOTSSIS% , +WeU+ , =3WeNI3SN, +,%, +3da0uod+,
=135A19nb¢ 39 TATISS0T/SAYOS/0808: 3soyTe20T// :d33y. \=331Y
,uelq ,=32b1e3 e>,)urjurad-3no

= NA: :~

W u'I91INq)o0rTdax 8TTINBUTIAS BueT ' suowwod aydede -’ b1o

= I83Ing
{adepuod = x933Ing Butals
! ()3xau'x3T (Burxys) = 3deoduod Butaasg

}
(() IXaNSey I3T) STTuUM
! (y<ag><T/><buozis/> , + I3gsAzenb + , 3IONpPuUocd 03 pIsSn
sassap01d<T><buoalgs><iaqg>,)uriutad-ano
! ()1038I93T ' SS900IdPa3RTOOSSe = I3T I03eIa3l
}

(()A3dugsT ssepoidpoleroosse) 3IT
{
{
! (4<Iq><e/>,+I8FINg+,.<,\ .+ (WUNNUOTSSSS)bUTTISOI
- 19623UT+, =WNNUOTSS2SR , +9WeU+, =2WeNISSN , +, %, +3da0ouod+,
=135A19nb¢ 19 TAI9S0T/SAYOS /0808 3soyredor//:daaya.\=321y
uerq ,=39bxe3 e>,)urzurad-ino
1 1
- H: "
. '1971Inq)eoerdex sTT3NbuTa3S BueT suowwod - ayoede - b1o
= Is33ing

fqdesouod = 1333Ing butiis
! ()3axau- 13T (Butais) = 3dsouod Butxas
}
(()3IxaNsey I3T) STTUM
NA:ANQVAﬂ\VAmCONum\V:
+ 138hKk19nb + , Ag psansesw a1e jeyl sa3Inqriile
AjtTend <i><buoxis><aq>,)urjurad-ino
! ()103e183T SoINnsesaw = I3T I03eIL3L

}

(()A3dugst ssansesaw i) 3IT
{
{
uﬁ=AMQVAm\v=+Hmuu5n+=A=/=+AEszcoﬂmmwmvmuﬂhumOU
- 19629UT +, =UNNUOTSS3S® , +SWEU+ , =SWeNISSN , +, 3, +3d80U0d+,
=135Ax9nb¢ 39TAI950T/5AY0S/0808: 3soyresoT//:dajq.\=331Y
,jueTq ,=39b6xe3 e>,)urjurxd-3ino
NA: :~
.. ‘x9330q)8oeTdex - sTTINBUTIZS BueT ' suowwon ‘- aydede BH10
= x933ng
tqdsouod = I933Ing bButails
! ()3axau- 13T (Butays) = 3dsouod putaas
}
(()3IxaNsey- I3T) STTUM
! (y<xQ><T/><buoiis/>
andut se , + x3SAzenb + , =2atnbax jeyjl
sesso001g <T><buoais><iq>,)ur3utad-3ino
! ()xz03ex937 053ndUIST = I3T I03ex=a3l

}

(()A3dwgst orL3anduIist i) 3T
{
{
{ (y<Ig>,+I2FING+, <, \u+ (WNNUOTSSES)bUTIISOT
* 19693UT+, =WNNUOTSSISN , +SWeU+ , =SWeNISsn, +,%3, +3de0uocd+,
=135A19nb¢ 39 TAI350T/SAVDS/ 0808 3soyTed0T//:d33y, \=331Y
,juelq ,=38bae3 e>,)urljutad-ino
.\A: :‘
W u'I27Inq)osoerdsx sTTINBUTIIS BueT suowwod - ayoede 1o

= I933inqg
!qdepuod = x933Ingq butails

981

!3deouod = x333Ing Butais
! ()3xau-x3T (Bbutxyg) = 3dsouoo Butils
}
(()3XSNsSey I3T) STTyusm
! (y<xg><T1/><Buoxls/> 20In0sSax1 e se ,+I13sAxanb+, ssn
sassanoad<T><buoaig><aq>,)urjurad- no
! ()x03e1931 ssa0oxgAgpasn = I3T Io3exsll

}

(()A3dugst - ssaooxghgpasn i) 3IT
{
{

! (w<ag><®/>,+I93INA+ <, \u+ (UNNUOTSS3S)BUTIISOI
*I9b693UI+, =WNNUOTSS3SR, +3WeU+ ,=sweNIasn, +,%,+3daouod+,
=135A19nb¢ 319 TAI950T/SAV0S/0808: 3soyreoor//:d3ay,\=331y

,yuerq ,=33bael e>,)urjutxd-ino

o MA: ._s

4w 'I933INnq)eoerdex sTTinbutals bueT suowwodsyoede’ bao

= 33309
{3deouod = x1333Ing butxils
! ()3xsu-ax3t (butxlg) = 3dsouod butals

}
(()3XoNSey'13T) oTTUM
! (w<xg><T/><bBuciig/>
aangrxije A3trenb, + x3shkxsnb + , 8yl =ansesu
03 pesSn sjuswaInsesp<T><buoxis><iag>,)urjutad-:ano

! ()x03e193T 'Agpainsesw = I3T I103eI931

}

(()A3dugsT - Agpsanseaw) 3IT
{
{
! (w<Ig><®e/>,+I93INA+ <, \ 4+ (UNNUOTSSSS) BUTIISOT
* 19693UT+, =WNNUOTSS3SR , +3WeU+ , =dWeNIaSn , +,%, +3d80uod+,
=135A19Nb¢ 319 TAI250T/SAYOS/0808: 3soyredot1//:d3ay.\=331y
,Juerq ,=32bael e>,)urzurad-ino
] 1
. A: "
. u'I933Inq)eoerdax sTT3Inbutals bueT suowwood - sysede bio
= a933nq

{qdsouoo = x333ng butaas
{ ()3axau- 13T (Butrx3s) = 3dsouoo burais
}
(()3xeNsey 13T) STTyYM
! (4<xg><T/><buoxis/> 23nqrijiie
Aatrenb ,+x3shkzsnb+ , a3yl . + 4 3INnsus O3 p3sn
S98830014<T><buoals><aq>,)urjutad- ano
! ()703e197T° JOYDST = I3T I03exall
}

(()A3dugsT Jo¥OST i) 3IT

{
{

! (,<Ig><e/>,+I9IING+, <, \u+ (UNNUOTSSS)BUTIISOT
.uwmmucH+=nsszcoﬂmmmwa=+mEmc+=nmEmZmez=+=q=+umounoo+=
=135A19nb¢ 13 TAT2507T/SAVOS/0808: 3soyTed01//:d33qa\=331Y

,Juelq ,=233bxe3 e>,)uraurad-ino
NA: ._\

W u'I93INq)eoerdax sTTINBuTI3S BueT suowwod syoede - bao

= I833Nnq
fqdeouon = x833Ing butais
! ()axau- 13T (Bbutx3as) = 3dsouoo buraas

}
(()3IxoNsSey- I3T) STTYM
! (y<ag><T/><buoalis/>,
+x3shzsnb + , Agq psoaojus axe 3eyl sajngrijje
A3tTend<t><buoaig><aq>,)urjutrad- ano
! () 10301937 SYDPe3ILTSI = I3T I03eia3l
}

(()A3dwgst - syOpo3er=1 i) 3IT
{
{

mA=ANDVAm\v=+kuunn+=A=/=+AE:ZQOﬂmmwmvm:whumOu
*196973UT +,, =WNNUOTSSISR , +9WEU+ , =2WEeNISSN , +, 3 , +3d20uocd+,
=135A19nb¢19T7AI950T/SAVOS/0808: 3s0yredo1//:d3qy. \=391y

,juerq ,=33bxez e>,)urjurad-‘3ano
mA: ._~
W 'I83INnq)eoerdex-sTTINOUTIIS BueT suowwod ‘' sydede-bio

= I933nq

L81

!3s17 1T13an eael3zodumt
{103e193I " TT3In"eael jxodwut
!{U0T309TT0D TTan eael3xodwmt
!I9peay ot ‘eaeljzodut

! 1opeayuweaxisindul ‘Ot ‘eael3xodut
‘weax3jgsindul ‘o1 "eael 3xodwmt
‘uot3deoxgQI ‘Ot ‘eael 3zodwmt
!193TaIMTTA"OT "eael 3zodwt
‘weax3s3Ind3nQa1Tg 'OT "eael3xodmr
‘weax3sanduIaTTg Ot ‘eAael3zodumt
{3714 OT eael3xoduwt

‘waysAg - butuxesa] yds obesoed

eael Aborojupbutpeay

391A138SS300Y // |

asogop // {

! (w<Tw3y/>,)ur3lurad-no
! (y<Apoq/>,)ur3iurad’no
! (u<aTp/>,)ur3utad-ano

sttum // |

ATP 38113 9aya //

! (y<aTP/>4)ut3urad- no
ATp 3ybtx sya//

{
mA:AHQVAm\v=+umuuzﬂ+=A=/=+AES%coﬂmmmmvmﬂﬂhumOu
- 19693UT+, =WNNUOTSS3S® , +dWeU+ ,=sweNIasn, +,%, +3daouod+,
=135A19Nb¢319TATI9S0T/SAYOS/ 0808 3soyreso1//:d33y.\=391Y
,Juerq ,=32bael e>,)ur3iutad’3ino
.~A: :~
. . 'I933nq)eoerdex sSTT3INOUTIIS BbueT suowwod* sydede bio
= I933nq

{adsouoo = x333INng bButals
! ()axau- 13T (Buta3s) = adeouoo butals
! (y<xg><TTRWS />,
+ ()3xsu-x3T (Putals) + . -<[rEWS>,) ur3jutad-3no//
}
(()IxeNsey I3T) STTYM
! (y<1q><1/><bBuoxis/>, + I3shkzenb + , Aq pssn
SOTIION<T><Buoxls><aq>,)ur3utrad: no
!{()a103e193T SOTII8W = 13T I03exa3ll

}

(()A3dwgsT soTIIBW) 3IT

{
{
uA=AunVAm\v=+uwuu3n+=A=/=+AESZﬁoﬂwmwmvmﬂwhuWOu
.mewuﬂH+: HESZﬁOHmmwmd:+wEmc+ :umEmZmeS:.f:d:+unm00COU+:
=135A19nb¢ 39 TAISS0T/SAYDS /0808 3soyTedoT//:d3ay. \=321Y
,Yuetq ,=33b1e3] e>,)ur3utrad- 3no
! A: " £

W n'I93INnq)eoeTdax sTTINBUTIIS BueT ' suowwod ' sydsede- bxo

= I833INnq
‘qdeouon = a33zng Butais
{()axsu' 13T (burxls) = adsouod Burails

}
(()3IXaNS®ey I3T) STTUM
! (n<xq><T/><buoxils/> juswaanseauw , + x3skzanb+ , 2y3
JO SDTIISW<TI><bPuoaizs><iq>,)uriurad-’ino
! ()x03eI93T ‘SjuswaInsesaw = I3T I03eIas3lI

}

(()AydugsT sjuswainsesw j) 3IT
{
{

! (u<Ig>,+IBFINA+, <, \ .+ (WNNUOTSS3S)bUTIISOT
*19627UT +, =WNNUOTSSISH , +SWeU+ , =SWENISSN, +,% , +3do0ucd+,
=135A19Nb¢19TATIS50T/SAYOS /0808 3soyrenor//:daay, \=321y

,Juelq ,=33bxe3 e>,)urjurad-:3no
I ‘
.A: "
. 'I833INnQg)eoerdax sTTINBUTIIS BueT suowwod sydede HIo
= aszinq

881
{

! sjususanseauuxnlisx
} 0 sjuswsinseanilab xoj3oaaoTTand

{

!soTIjswuInl}ax
} () sota3isw3sb 103d39p0TTAnd
HHHuHHHNHHHHHHHHHHHHHnm%MHHmUHHHHHHHHHHHHHH\\

! ()yeoexryoe3sautrad-a
300Tgq ydo3jeo pajeasuab-ojny oaol //
} (@ uotadsoxmOI) yo3ed {

! ()@soTo ur
} 423
! (4u 'UT)pEII’ TOPOUW
== {(TTnu
'WAW MO " 09dS TOPOWIUOD) TePoNABoTO3U0@388I0 " A103D0e I T9PON
= Tapou
! (vpunog

Jou mﬁﬂmzvcoﬂummUXMucmsﬂmH<ammoHHH Mmaumoayl
(ITTnu == Uut) 3IT

! (a7Tg201nos)uado’ ()36 1abeueNsaTTd = ut weaxlzsandur

} () ABoro3jupbutpesy orrqnd

(wuot3eoaxdesp,) sbuturepmssaxddns®

! ()TI0309 AMBU = SjuswaInsesyorindut I0QDSA ojeatad
! ()T0309aMeu = sindurjuswainsesw 103097 o3eatad

! ()T03oSAMeU = sjuswaiInsesw 103037 e3eatad

! ()T0309pMeuU = soTIijsw I0309A o3eatad

! ()X0309AMeU = SS200IdpajeToosse 103097 o3eatad

! ()XI030opmMeu = Agpeansesw 103037 o3eatad

! ()T0309 MU = Soinsesw 103097 o3eatad

! ()x0308AMeu = orInduIsT 103097 °o3eatad

! ()x0309pmeu = sindut I0309) o3eatad

! ()I0309pMeu = Agpsonpoxd I0309A o3eatad
! ()I0309AM®U = SSTQEISATISP JI0303A @o3eatad
! ()T0309pMeu = sQIpeieTaI 03097 o3eatad
! ()To309pmeu = sadsouoppaijeraizojloopeleatad
! ()To3oepmeu = ssoooxghgpasn Io3oep o3eatad
! ()I0309M8uU = 20INOSaypasn I03o09A o3eatad
! () I0309 MPU = SS2001gpaYOAUTIOROSA®IeATId
! ()To309pMeu = JOYDST I0309A ©3eatad
! ()To309pmeu = syQpoleTa1xo3oopejeatad
! ()T0309pMeu = STYAPSWNSUOD 03097 ©3eatad
! ()I0309 Meu = SOTpPSWnsuc) I0309A @o3jearad
! ()TIo30opmeu = sTynIO3OoAe3eATId
! ()To309pMeu = sOTSI00I0309A93eATId

¢ #ABOTO3UQDS /WOD ' S3THOTOJUO

-Tmo'mmm//:d33y, = SN3Uuo Butxas TeuT3y
f,u = butajshidws Putais Teury
! #u + 9TT4g90aINn0s = SU putais Teury

!, Tmo* ABoTo3uOds/satbhoTo3up wOs/dolxsaq/oTea/saasn/: Du
= 97I48oanosbutrils ofF3je3ls T[eury

! #X60T03UQDS /WoD ' s9ThOTO3UO
-Tmo mmm//:d33y, = SD2INOS putxils Teuty
{ Topou TISPONW3U0 ojeatad

} ABoTojuobutpesy sselsdTIqnd

!y 9bpTaq TIMS ' (MO Xeba3joxd Tws pIojuels npajxodur

!y "TIMS ' MO Xobo3oxd’ Tws pIojuels npajxodut

{TSPOWTIMO ® TopOu - MO’ Xabajoxd Tws pIojuels npajaxodut
{103e81

Deus[103ea10 eual ' (MO xabajoxd Tws pIojuels npajxodwut
{IMO@b2301g ' (MO Xebajoxd Tws piojuels npajzodwut

{zopeueWa T TTan eusal 1dy dy-woo 3zodut
{103e193T3W3S Topow” 3px - eusal Tdy-dy-woo jzodurt
{quswejels - [opow’ ypx-eual 7dy-dy-woo 3jzodwy
{g9panosay " Tepow” 3px eusal - Tdy-dy-wod jaodwt
!opoNAqy * Tepow” Jpx eual 7dy-dy woo 3xodwut
!A3aadoxqg Tepow” ypx-eual 7dy-dy-woo jxodurt

! A1030eT9PONW * Topow” 3px - eual 1dy-dy-woo 3xoduy
! y*AboTo3uo eusal 7dy-dy-woo jzodwmt

{z0309A TTAN eAR(jxodut

681

{ {

!sTynuan3yax {sandutuanyax
} () sTdn3sb x03089pA0TTqQNd } ()sanduiisb I0303A0TTgQnd
{ {
{spTa100UIN38I ! Agpeonpoaduanisx

} () Agpsonpoigisb 10303ARTTAnd

{

} ()soT2x0p396 I030°9pRTIqQNd

{ !S3TqRISATTSPUIN3ax
!{ss9D01dpayoAUTUIN]SI } ()sa1qezaarTag3sb 10303A2TTqnd
} () sssooxgpsyoaurilsb xo3dapatTgnd
{
{ {AgpaanseawuInlyax
¥ “moqmemHmuﬂuauoum } () Agpsansean3sb I03D03A2TTqnd
) SOIpe3eTay3Isb I10309ADTIqN
{
{ {saanseswuiniex
!sjdsouoppsjeTaIuaniax v () seansesp3lsb x0308ARTTORd

} ()sadsouoppsiersyisb 10309a0TTqNd
{
{ ! $59001dpaleTOOSSeUIN}al
!ssapoxgigpasnuaniax } () ssspoxdgpejeroossylisb I03dspoTTqnd
} ()ssspoxghgpesnisb 10309A0TTgNnd
{

ﬁ ! sjuswsansesapnolindutuanlisx
!2pINn0say¥pasnuanliax } () sjuswsansesyor3indurlsb I0309A2TTqnd
} ()s®danossypesnisb Io3dapnTTqnd
{

{ ! sSTYApaWNSUODUIN} DX
!{Joy0sTuanyex } () sTynpswunsuocp3sb 103d9pRTTANd
} () 3oydsI1asb 10309p0TIqNd
{
{ ! S0 TPaWNSUODUINY DI
{syDpoijeTeIuaniax } () soTpswunsuopisb I03d03p0TTqRd
} () suQpa3ersy3sb I0308p0TIqNnd
{
{ !{gandul juswainsesauuIniax
{orandulstuaniax v () sandurjuswsansesplisb Ixo3osadTTqnd

} ()oz3andursiisb xo3de9pDTTqnd

061

-~ A._l.— s "

. ‘1933Nq)9oerdax " sTT3Inbutals bueT suowwod ‘syoede Hio
= I3313Inq
{oT = a333ng butaas

{1tnu = d A3axadoag

{IInu = O SPONIQYA

{ITnu = S 3DINOS3IY
(o1 bPutx3ls ‘sweu butals) OTPSWNSUOD nﬁo>0ﬂﬂnﬁw
e EREESIERE A ————— —
{

!{punoj uanisx

{

‘eana3y = punojg
((z3shaenb) ssepazoubrsTenbs sweu) 3y

! (()y3buaT - sN3uO)BuTIISANS * Tan
= sweu Butxils
! ()Butaasol- ()3Ixsu-put = TIN Butais

} (punozi 3% () IXaNSeY put) STTym
(TTnuU =i PuT) 3T

! ()seoue3suIlsTT - 3deouod = purl I03eIa]T
! (v3dsouopyds ,
+ SN3UuO) sseTD3uQ3Isb’ 7spow = 3dsDuod SSeTDIUQ
!@sTey = PUNOJ uUeaTOOQq
} (z3sAxzenb Butals) 3deducppunoi uesiooqdTTqnd

3stxgaasn // |

{38TX® uanisx

oTTum // |
3T /0|
attum //

{

!snx3 = 18TX?
} ((paoMssed)stenbgiusjuod sweN3Ina[(qo) It

((sweu) ssepazoubrsTenbs - sweN3dalqns) 3IT
AA=@u03mmm&mm£=vwmmuwuocmHmHMde.wEmZ%uHMQOHQV ok <

! (()yabuat - paomssed \ovmcﬂyumnzm.Avmcﬂuumou.uowhno
= swen3oalqo Butais
NAVmEMZAmooauom.>uquouQ
= aweNA3jxadoxd puta3as
! () sweNTEOOT3IS6 309 [fqns
= sweN3oalgns puta3s

! ()309[fqo3=b-juis

= 303(lqgo opoNAQ¥
! ()@3eoTpaxdlsb-juls

= Ajaedoad Ajxadoad
! ()3o=2lqngisbh - juls

= 309[lgns soanosay

! () 3uswa3e]lsIXaU IIT
= Jw3ls Juswajljels
} (3sTX2) %3 ()IXaNSey I3T) STTUM
! () s3uswa3e3S3STT " Tepou
= I3T7 I03e193I3WIS

} ((oweNzasn) asepaxoubrsTenbs aweu) IT

! (()y3zbusat'sN3juo)buTIISANS " TIAN
= aweu Butiils
! ()Puta3gol’ ()3axsu'pur = TIn BuTIls

} (3sTX21 3% () IXSNS®EY ' PUT) STTYM
(TTnu =i put) 3T

! ()ssoue3surlsty 32doTaAsp = pur I0jerall

! (y,xadoTaa2d, +
SNIUO) sseTD3u03lI=b Tepouw = aadoraasp SSBTDIUO
{98Te = 1STX® UBST0Oq
} (pzomssed
puTi3s ‘sweNissn Butils) 3ISTXFIosn uesooqarTqnd

l61

!oT = x933INnq Butiis

}

((swenNxasn ‘sweN3Da(qo) pswnsuodST i) 3T

! (()yabuat-eoainos)buraisgns saweN3ldalqo
= o1 butias
}
((z3sAasnb) ssepazocubisTenbs - sweNioslgns) 3IT
((w303 lgobutuzeaTaio),) ssedaioubIsTenba - sweNAjxadoad)

3T

! ()butaaisol-inalqo = sweN3idalqo Burtaas
! () sweNTeo0T396 " A3aadoxd = swenyAjaadoad Butaas
! ()sweNTed0T3IS6 30algns = sweN3loalqns butiils

}

((ssero- A3xadoadinalqo) syueo A3axadoad) 3T

! ()3oalgpo3sb-jwys = 309(qo SPONJAQY
! ()@3eoTpaxdasb-jwis = KAjaxsdoad A3asdoag
! ()3oalgns3sb-jwas = 309lgqns SDINOSSY
! ()3uswa3e3gaxsu’ 13T = Jwis Juswalels
} (()3xXaNSey- 13T) STTuM
! ()83USWa3e]3S3ISTT [2pow = I3T IO03eI33IJWIS

! ()xea10” () sTINPaWNSUO)3I6
! ()xeaTd" () soTpawnsuoplab
! ()xesT2" ()sTYNISB
! ()aes1d" () 8012100336

! (Azanb) WXS3TIm' TWNX=23ea1d //

} (sweNxssn Butais
'z3s5hkaanb Butals) sioslqobutuxesTazod proadtTqnd

{TTnuuanlax
! (ypuno3z 3ou 309lqng,)urliurad-3Ino ‘welsis
{
!19doTaA8p uanjax
((sweu+sN3uo)asepazoubrsTenba () buta3sol - xadoTaa9p)

FT

! () 3Xau - put (@01nosay) = I2dOTASP 9O0INOSAY

} (() 3xeNs®ey pur) STTUM
! ()seoue3surlsTT - IadoTaA8p = pul Io3jexsll

! (wxadoTaa3du
+ SN3uo)sseTD3uQ31=b' Tepou = x2doTaA9p SsSeTDIU0

v (sweu bButx3s)3oslgnsisb aoanosay e3jeatad
HHHHHHHNHHHHHHHHHHHHHHH"HHHHH"""HHHHHHHHHHH\\

! TTnuuIniax
! (ypuno3 3jo0u 303(Lqo,)uriutrad-3no -walsis
!p13usxand *d.u:uo.u
((OT+SN2uo) @sedaxoubrsTenba’ () BurI3sol “0I3uUSIIND) 3IT
{()3IxX3u’put (8PONJQY¥) = OTIUSIIND SPONAQH
} (() 3xeNsey put) STFUM
! ()soouelsurlstT 1adoTsasp = PuUT I03eI=3I

! (4303lgobutuzesad,
+ SNJUuO) sseTd3uQlab’ Tepow = xadoTaAsp SSBTDIUO

w (oT Butx3s)30oelqo3sb spoNaA@d ®3eataxd

{ ()ooexroe3sjutad: s
} (@ uot3dedxy) yojeo
{
! (wATIEEV-TNX/dQd e 'XF)93TIM " [Spou
! (8TTg20IN0S) ISJTAMSTTL MU = IJ ISITIMITTA

} &a3
! (xa33ng+sn3uc ‘d) Ajaxsdoagppe’s

]

. 103 [gobuturesTpswnsuo) , +SNiuo) A3xadoxgins [qoasb Tapou
=d
! (sweu+sSN3luoO) @pINOsaYy3ah - [spow = s

6l

! ()sweNTeDOTI=6"d
! ()sweNTeOO396 s = sweNs burtxils

! (x384L19nb) Indurjuswainsesysey
! (x138hx9nb) Juswasanseaporindurst
! (x3sAx9nb) yY3zTtMpajerdosse

! (z3ghzanb) AgpaansespysT

! (z3s&asnb) aansesw

! (x35ha=anb) Agpsonpoad

! (238h19nb) saTqexsATI=d

! (x38423nb) or3anduIlsI

! (x3sAx9nb) saindur

! (z38hkxanb) Agpasn

! (z38hx9nb) saoanosaypasn

! (z3sAx9nb) ssadoxdpayoAul

! (x3skx9nb) 309INqTIIIYAITTENDST
! (z3shz9nb) sajnqrazjvAirrend

! ()xearo*s3dsouoppajeTax

3t //

#F 1
pawunsuod IT //
aTTum // |
{
{

{(Tan) ppe" () sTdNpawnsuo)l1sb

! (()yabusT- eoanos)butaisqns-’ / /! sweNo

= Tan Butx]ls

}

((o1)esepaxoubrsTenba sweNs) 3IT
((4w THNS®EH,)98eDaaoubIsTenbs sweNd) 3T

! ()butazgo3z o

sweNo Butxils
sweNd bButxils

}

((ssero*A3jasdoxgioalqo)syuen‘d) 3T

! ()30alqoasb-3s
! ()93edTpaadlsb-as
! ()3o0algngasb-3s

O SPONATA
d AKajxsdoiag
S 90aInosay

{()3uswe3elsiIxXaUu-ZzI]3T = 3S Juswajels

}

(()3IxXSNsSey- zI3T) STTUM

! ()S3usawa3le3ls3sSTT [epow = ZIJT I03eIa3I3W3S

{(3233Nnq) ppe " () soTpawnsuoc)iab

ma.. w'

. . '193INq)soerdax - sTTIN6UTIIS BueT ' suowwod ‘- sydede 6510

//

! ()buta3zgsol o
! ()sweNTeDOT386°d
! ()sweNTeOOTI86 'S = sweNs Burxls

! ()3aoalgolab’as

! ()eo3eoTpaadgiab-as

! ()309lqns3sb-3s

! ()3uswa3je3gixau’zI3T = 3§ JulBWajels

= aszinq
o1 = x233Ing Butais

}

pswunsuod Apeaile 3IT

((weNIasn ‘sweN3Da[qo) paunsuodsT) JFTOsSTe

paunsuoo jou 3T // |
ottum // |

{
{

{(Tan)ppe" () sT1dn3i=hb

! (()yabuat-sdanos)buraisqns // ‘ SWeENO

= Tan Butxas

}

((o1) @sepaaoubrsTenba sweNs) 3IT
((v T8AS®eH,)®sedazoubrsTenbs aweNd) 3IT

sweNO Butiias
sweNnd Butiils

}

((ssero'Ajxsdoxgioslqo)syueo-d) 3IT

© SPONAdY
d AKaxsdoag
g 3dINOosSay

}

(()3xoNSey zIIT) STTuM

! ()s3juswele3lSISTT [opow = ZIJFT I03BIa3I3W3S

{(x833nq)pPpPe" () SOT=10D33b

NA: __s

W u'I93Ing)eoerdsx-sTT3inburtals buel - suowwod syosede-bio

= 1933nq

€6l

}

((z3sAkxanb) asepaaoubrstenbs- () sweNTeo0T3ab6" 30alqgns

3% (.But

snp=23onpuc),) @sedazoubrstenba - () sweNTeso7336 A3xadoad)
3T
uoT3jeTax Bursnpalonpuo) a3yl I0J HO3Yd//

}

((sse1o*A3xadoxgioalqo) syueoA3xadoxd) 3T

! ()3o09(lqgo3sb-jwls = 309(qo SpPONAQA
! ()®@3eoTpaxdisb-jwlys = A3jasdoad Ajasdoag
! ()3oalfgns3isb jwis = 309(gns soanosay
! ()3uswa3e3lsixXau I3T = Jwls Juswalels
A“Avuxomez.uuﬂ
! ()s3juswa3lelgisSTT [9pow = IJT I03exa33I3WiS) 103
! ()IeaTD " ssaD0IgpajeIdosse

} (z3sd&zenb butxlg) YjlTmpa3ieroosse proadtiqnd

Sess=Secocr e e ma e e ek aa e ey
{
!@sTejUINgax
attum // |
3T // |
aTtum //
{
!sanajuanjsx

} ((o1+sNauo)stenba-3o0alqo

|| (0o71)®sepsaoubrstenbs - sweN3ina(qo) 3IT

((sweu) ssepaxoubIsTenba sweNjoalqns) 3IT

(Cu

1o lgobuturesTpawnsuc),) @sedaroubrsTenbas - sweNAjaadoxd)

3T

! ()Buta3zsol-3oalqo
= sweN3oa(lqo bButais
! ()sweNTeDOT3I86 A3axedoad
= sweNAjxadoaxd Putaas

! () sweNTeDOT336 303 (qns
= sweN3oalqns putaas

! ()3o09lqo3sb-juls

= 303(qo spoNJqa¥
! ()@3eoTpaidishbh- juls

= K3xzadoad Ajxadoag
! ()30afgng3=b - ju3ls

= 30algns aoinosay

! ()3uswe3e38IXaAU I3T
= jw3s juswa3le3s
} (pswnsuooi %3 ()3IXSNSeY I3T) STTUm
{()s3uswa3els3ysSTI " [8pou
= I3T x03exs3Ijwis
!snx3 = punogaadoTaAdp
} ((eweNzosn) esepaaoubrsTenba sweu) 3T

! (()y3buat - sNIuo)Burajzsqns Tan
= sweu BuTtxils
! ()butaagol’ ()3IxXau'pur = TIN BUTIIS

} (punogzadoraaspi 33 () IXSNSEY Pul) STTUYM
(TTRu =i put) 37

! ()seouelsurlsti I2doT9A9pP = PUT I03BIS3IT

! (vxadoTaa3q,
+ SN3uo)sseTD3uQ3iab- [epow = xadoTsAdp SseTD3IUO
‘agsTey = punogiadoTaA3p uesTooq
!{98TeI = paWNSUOCD ueaTooq

}

(swenNassn Butils ‘07 Burals) paunsuodsT uesTooqotTqnd

sjoalqobutuaesaiod // {

! (x384x9nb) soTIx39NsSeY
! (x3skzanb) J0SOTI3ISNST

vol

! ()3o0elfgng3sb-jwis = 3oalqns soanosay
! ()3uswaje3gixau- 13T = Jwls Juswa3e3s
(*()3IxXSNsey- 13T
! ()s3juswa3e3gasSTT [Spow = I3T I03eIa23I3W3S) IOF
! ()xearo sandurjuswainsesu

} (x3sAzsnb bButza3ls) anduljuswainsesysey proadTTqnd

! ((()y3buat - soanos
yButxasqns* () buta3igsol 30alqo) ppe- () sadsduoppaleTaylab

‘{(Oy3bus
1 soxnos)butajsqns: () buta3isol - 3o09lqo)ppe- () SOoTI3SWI=b

)

((x3sAxenb) esepsaoubIsTenba - () sweNTeDOTI86 308 (gns
33 (uPTIISWIUS
waInsespysey,) ase)aaoubrstenba () sweNTeo0T386 A3aadoxd)

3T
UOTJIET3I OTIISWIUSWRINSEINSeY dY3 I0J HOayd//

}

((sse1o AjxadoadinalqQ) syuenAjaadoxd) 3IT

! ()30alqoasb-awas = 30algo spoNaqy
! ()93enTpaxdisab juwis = Ajasdoxd Ajxsdoiag
! ()3oalgngisb-jwis = 3o0slgqns soanossy
! ()3uswa3je3jsixau-I3T = JwWis Juswa3jels
}
(¢ ()3IxaNSey 13T
! ()S3uswe3le3ls3ysSTIT [opow = I3T I03eIa83IjwlS) IoF
{()xesT0 sOTI3I={UW

} (z3shxenb Butals)soTiizswsey proadrrqnd

o3 // A
{

() yabust - 201n0S
yButaisqns - () Buti3503 353(q0) ppe- () Sadeoucopale(ou3sb

! ((()yabueaT - sox
nos)butx3sqns ' () butx3503 302[qo) ppe’ () Syuswaainseanisb

}

((x3sAxanb) asepaaoubrsTenba - () aweNTe20TI=6" 309 (qns

33 (4wJOOTIISWIU

SwaInsesyst,) ese)azoubistenbs- () sweNTeroT3ab A3axsdoxd)
3T
UOTJRTaI JOOTIISWIUSWSINSEIWST =Yl IO0J 3d3ayosd//

}

((ssero'A3aadoxgainalqo) syued 'A3aedoxd) 3T

! ()309(qo3sb-awis = 309[qo SpPoNIQ™

! ()@3e0Tpaxdisb juys = A3jxzadoxd A3xadoag
! ()3oelgngaeb juls = 309fgns 80aINOS3’Y
{()3uswelelsaxsau-I3T = Jwis Juswslels

)
(*()3IxeNsey 13T
! ()s3juswe3lelgISTT [°pow = I3JT I03BI=833IJWIS) I03
! ()aeaTd " sjuswaInsesu

} (z3sfasnb Butals) JOSOTIISWST PToadTTQnd

= (o3 o)

{((()yabusTt =201nos
)butaisqns - () Buta3sol 30alqo)ppe- () sadsdouoc)paijeTaylab

!((()yabusT- soanos)b

utxisqns - () buti3sol-3oslqo)ppe- () sSSedooxdpaleIoossylab

S61
z03 // A

{

! ((()y3zbuat - soanos
)Butaisqns- () buta3sol -303lqo)ppe- () s3daoucDpaleT3Y3I=6

f((()y3bust
*201nos) butaisqns ()burtalsol - 3oalqo)ppe’ () Saansespl=b

}

((x3sAx9nb) esepaxoubisTenbas - () sweNTeooT396 30alqns =%
(,2xnse3),) 9se)azoubrsTenba- () sweNTeo0oT186 A3x=edoad)
¥
UOTJeTaI aInsesly =yl I0J Yoayd//

}

((sseroA3jaadoadinalqo) syueo ' Ajaadoxd) 3T

! ()309(goasb-jwlys = 309(qo SpoNIaA
! ()a3eoTpaidiabrjwis = A3jaadoxd KA3zsdoag
! ()3o09lgnga3sb quls = 30algns soanosay
! ()3uswajelgixau 13T = Jwls Juswaje3s
A«Avuxomen.Huﬂ
! ()sjuswa3lelg3isTT [spow = I3T I03eIL93I3jwis) I03F
{()xeaTd saanseau

} (23sAzenb Burals)sansesw proadTIqnd

xoz /e

! ((()yabuat-eoanos
yButaisqns - () butalgol 30alqo)ppe- () sadsouoppaieTayisb

! ((()yabua1-aoanos)burt
13sgns () bura3sol - 3oalqo)ppe’ () syuswaansesyorindurishb

}

((x3sAx9nb) ssepaioubisTenba - () sweNTeooT396 30alqns

®% (,OTIIS3WIUSWIINSE

snorandursT,) aseparoubrsTenba’ () sweNTeooT1396 A3x9doad)
3T
uortjeirax UﬂHUOZUCOEwhSmMOZOFUSQCHwﬂ [yl ao03J MU@ﬂU\\

((sse1o A3xadoxgioa(qo) syueo -A3xadoad) 3IF

{()303lgo3ab-juls = 309lqo spoNIad
! ()@3eoTpaxgash-jwis = A3jzadoad A3axedoiad
! ()309lgnsaisb-jwlis = 302(lgns 3DINOSY
! () 3uswa3e3lsiIxXaU 13T = Jwlis Juswa3lels
AuhvuxOmen.uuﬁ
! ()S3uswe3le3lgasSTI [epow = IJT I03exd3I3jwis) o3
! () @910’ sjuswaansesporIndut

} (x3skasnb futa3s) JuswaansesyorIndursTt proadTIqnd
e e e

x20F A f -4

{((()yabuat sdanos
YBuTtx3sqns - ()butra3sol - 3oalqo) ppe- () s3deouoppajeayiab

{((()yabus1‘s0anos)b
nﬁuumnnw.Avmcﬂuumou.uumﬁnovﬁvm.AvmusmﬁHucmEmHSmmmzuom

}

((z3skzonb) esepaaoubisTenba () sweNTer0T3ab" 30 (qns

33 (,3ndurdTIISWIUS

waInsesysey,) ase)azoubisTenbs - () sweNTeooT138b6 A3xadoad)
3T
uoTjer=2x uﬁQCHUﬂHumZquEQHSmMOSMMQ ayl 103 ¥UQEU\\

}

((sse1o A3jzadoxdioa[qo) syuen - Ajaadoxd) 3T

! ()3o0algo3=sb-jwis = 309[qo SpoNJIQA
! ()@3eoTpaxgaisbh-juis = A3jzadoxad A3zxadoag

961

}

((x3skzanb) asepsaoubistenbs- () sweNTeo0T3I86 303 (qns

3% (.Agp=sn,)asedazoubrstenbs- () sweNTeosoT196° A3aadoad)
3T
uotierax Agpasn 9yl I0F Yos|yod//

}

((ssero-A3xadoxgioalqo) syueo Ajaadoxd) 3T

! ()309(qo3ab jwis = 309[qo SpoNIad

! ()@3eo0Tpaxdisb-juls = Ajxadoxd Ajasdoag
! ()3o09alqng3sb-jwls = 30alqns s0INOSAY

! ()3uswajelsixXau 13T = Jwis Juswslels

}
(¢ ()3IxXeNsey- a3t
! ()s3juswale3s3isST[[spow = I3T I0Jeia3jIjwis) Io3
! () xesTo sseooxghgpasn

} (z3shxsnb Butxis)Agpesn proadtriand

03 // |

! ((()yabuat - soanos
)Butaisqns* () but13gol 308(qo)ppe’ () s3deouodpPaIeTYI=6

{((()yabuat- =201n
os)Butaasqgns - () butx3sol 309(qo) ppe” () seoinosaypasni=h

}

((z3sAxsnb) asepaxoubIsTenba - () sweNTeo0T3I86 30algns 3%
(,28n.)osepaxoubrsTenba- () sweNTeoo1396 A3aadoad) 3T
uoT3jeIaX 9S SY3 I0J Yd|Yd//

}

((ssetoK3xadoadioalqo) syuen A3xadoxd) 3T

! ()3o0alqo3ab-jwls = 302[qo SpONJAQA
! ()a3eoTpaidisb-jwis = A3jzsdoad A3xsdoag

! ()30alqnsa3sb-julys = 3oalqns soanosay
! ()3juswa3jelgixsu- 13T = Jwis Juswalels

}

(4 ()3IXSNsey 13T
! () sjuswa3le3lS3STIT [epow = I3T I0jexa3IJwls) 303
! ()aeaTD ' 20INOSIYpPIsSn

} (z3sdzenb Butajs)ssoanossypasn proaoTTqnd
m==mems=ss====z=s======scs=========c==zc=======/ /

20F /£

! ((()yabuat-soanos
yButxysqns- () Buta3asol - 309(Lqo)ppe" () sadeouoppaieraylieh

f((()yabusr-=
bpinos)Butaasqgns’ () buraagol - 10alqo)ppe’ () Agpaansesyiab

}

((x3shkzanb) esepaaoubrsTenbas () sweNTeo0T3I=6" 309 (gns

SR

sAgpainseay,) esedazoubrsTenba’ () sweNTeo07396° A31adoad)
IT

uotjerax Agpsansespy a2yl I0F o3ayd//

}

((sse1o'A3aadoxgioalqpo) syueo ‘Ajaxadoxd) 3T

! ()30algo3sbrawls = 309lqo SpoNIaA

! ()93enTpaigish-jwuis = Ajasdoxd A3xsdoag
! ()3oalgngaisbjwis = 3p0afqns sdaINOSNY
{()3uswa3je3lgaxXsu 13T = Jwis Juswaljels

}
(¢ ()3IxeNsey- I3t
{()S3jusws3e3S3iSTI [epow = I3T IO03easa3Ijwls) Io3F
! ()xeaTo Agpaansesu

} (z3sAzenb Buta3ls)AgpainsesnsT proadTrqnd
===/ /

L6l

{()3o9lqngisb-juls = 303(gns soanosay
! ()3uswe3e3sIXaU " I3T = Jwls juswalels
(¢ ()3IxsNsSey 137
I3T 103e193I3W3S) 203
! ()aearo-sandurt

! ()s3usawa3e3g83sSTT T=pow
} (x3sAxenb Bura3s) sandur proastrqnd

oo h gy |
{
{
! ((()y3abuaT - 9o1n0S
)Butaasqns - () But11507109(q0) ppe” () sadesucopaie1su1a6

f((()y3abuar-s
spanos)butiisqns- () Butz3sol - 310a(qo) ppe: () Agpesonpoigdish

}
((x3sAzenb) ssepsaoubrstenbs’ () swenTeoo13ab6 308 (gns
3R
.Agpaonpoad,) asepaioubrstenba’ () sweNTeo0T396* A3x9doad)
FT
uotjerax Agpsonpoxd syl I03F {o8yd//

}

((sseto*Ajxadoadinalqp) syueo: A3xadoad) 3IT

! ()30a[qoa3ab6 3wls = 10a(qo opoNIad

! ()@3eoTpaxdisb-juwis = Ajaxsdoxd Ajxsdoig
! ()309lgng3sb-juls = 3dalqns soanosay
mhquMEMUMUMUXWC.Huﬂ = JWw3ls Jjuswa3je3]s

}
(¢ ()3IxaNsSey- 13T
{()S3uswa3e3gisSTT [9pOoW = I3T I03exa3rjwls) IoJF
! () xea1d Agpeonpoaxd

} (z3shzenb bButais)Agpsonpoig proasjearad

z03 // |
{

{((()yabua1 e2ano
s)butaasqns- () Burxasoa - 302(qo)ppe-’ () sadeduoppalieiayli=b

! ((()y3abusr-=o
1Inos)Butraisqns- () Buti3asol - 309lqo)ppe’ () S8TqeIsATTIS03=6

}

((z3sAxonb)aseposzoubrsTenba’ () sweNTeo0T196 309(ans 3%
(,20onpo1d,)osepazoubrstenba - () sweNTeo0T1386" A3x3doad)
3T
uoTjeTsx 20oNpoxd 2yl aIo3j MUOEU\\

}

((sse12'A3axadoxdinalqo) syued ' A3xadoad) 3T

! ()309[qoasb jwls = 309(qo SPONAQY
! ()o3enIpaigash-juis = Ajzadoad Ajxedoag
! ()3o0algngisb jwis = 3oalgns 20INO0SY
! ()3uswe3e3lsixXau 13T = JWlsS juswaljels
A“Avumemws.nuﬁ
! ()s3jusws3le3§3ysSTT [spow = IJT I03eILIIJWIS) 303
! ()aea[D " SOTqRISAT[SP

} (x3sAzenb Butals) ss1qersaTTa2d ProadTIqnd

103 // |

! ((()yabusaT - soanos
yButaysqns - () buta3gol *30alLqo)ppe- () s3deouoppaijersyi=b

! ((()yabust - eoan
os)butaisqns* () buta3isol - 30alqo) ppe- () ssaooaxghgpasnisb

861
}

(*()3IxsNsey- a3t
! ()s3usws]1e3lg3isSTIT [spow = I3T I03eaaljIjwls) I03
! ()xeaTd syY0Opa3ierax

} (x3shkzenb Hutaig)s93inqrailiyAirrendb proastiqnd

!TTnuuinysx
{
{
Butyjswos op//
! ((un)oseDax0UubISTENDS " () sweNTeooT396°A319doad) 3T

}

((ssero:A3xadoadioalqo) syued Ajxadoad) 3T

! ()309[qpisb s = 3o0algo opoNAQA
! ()@3eoTpaxdisb s = Ajasdoad Ajaadoag
! ()3o=lgnsisb s = 309lgns 90aNOSARY

! () juswa3lelsIXaU - I3T
(3uswa3jels) = s juswsjlels
}

(! ()3xaNsey- 13T
! ()s3juswele3sisTT [Spow = I3T I03jexalrjwlis) Ioz

! [0S5] 3Juswa3lels meu = siswslels []Juswajels

}
(x3skasnb Butals) esI Butals oFrand

aog 114

! ((()yabusT - s01nos
)Butaisqns - () buta3sol - 3palqo)ppe- () sadeouoppajersyish

f((()uabuat
-spanos)butaasqns - () butaisol - 3palqo)ppe- ()orandursiisb

}

((x13sAz19nb)asepazoubisTenba’ () sweNTeo0T3I26 30algns »=®
(,013nduIsI,)ose)aioubisTenba- () sweNTeo0T336 A3aadoad)
3T
uotjerax orIndulst 9yl I0JF O3Yd//

)

AAmmnao.huummoumuuoﬁnovmﬁdmu.xuuoaonmv 3T

! ()309[go3ab-jwis = 309[qo SPONIAY
! ()93eoTpaig3sh-juis = A3zaxsdoad A3jasdoad
! ()3oelqns3isb juis = 309(gns adINOSaY
! ()3uswaje3gaxau 13T = Jwis Juswalelg
Amﬁvumemmw.uuﬁ
! ()s3uawa3elSIaSTT [Spow = IJT I03eI83IjWilg) I03F
! ()xea1o oranduIst

} (x3shaenb Buta3ls) orandursIi proaotrqnd
”“”"HHH””HHHHHHH"HH"HH"HHHH"H"H”"HHHHHH””HHH"N\\

203 // A

! ((()y3zbusT - eoanos
yButaasgns - () buta3zsol - 30alqo) ppe- () sadeouoppajeTayi=b

f((()u3ab
uat‘9o0anos)butiisqns* () buraigsol - 3o0algo)ppe’ () sanduriab

}

((z3s&aenb) esepazoubrsTenba - () sweNTeo0T126 30algns »%
(vandurseH,)esepazoubrsTenba- () sweNTeo07396 A3xedoxd)
3T
uotaerax andursey 8yl I0J o=yd//

}

((ssero ' A3xadoxginalqo) syued Ajxadoxd) 3¥

! ()309Lqo3eb-3w3s = 3109[qo SPONJAQY
! ()@3entpaxdisbh jwis = Ajasdoxd K3zadoag

661

! ((()yabuat-=2an
os)butaasgns: ()butxisol-3o0alqo)ppe” () SS2001dpPaqOAUT IS

}

((x3shzanb)asepazcubIsTenba- () sweNTeo0T396° 30algns

3% (,230AUL,)@se)azoubIsTenba’ ()sweNTeo0T396 A3x9doxd)
3T
UOTJeT3I 33OAUT 3Y3l IOJ Yd3ayd//

}

((ssero- A3jaadoxdlionalqo) syued A3xadoxd) 3T

! ()3o09lqoish-qwls = 309(go SpoNIad
! ()e23e0Tpaxdiab-juis = Ajxsdoad Ajasdoag
! ()309lgnsisb-jwis = 309(qns aoanosay
! ()3uswa3e3s3IxXaU-IIT = WIS Jusawalels
}
(! ()3IxXSNSey 13T
! ()s3juawa3e3siysSTT [opow = I3T I03BIL3I3WIS) IOF
! ()xeaTd 'SS3D0IJPINOAUT

} (x3sAxenb Hutals) sSsSaDOIIPINOAUI PToadTTqnd

Tog /7

! ((()yabuat'soanos
yButaasqns* () Buta3sol - 3oelqo)ppe- () s3deduoppaje1ayiab

f((()yabu
o1 'enanos)buraisqns’ () butaizsol - 3oalqo)ppe’ () FoYDsSI3I=H

}

((x3sAx9nb) asepaaoubrsTenba- () sweNTeor0T3a6 303 [qns

3% (uw3O2INQTI]

1yA1TTEeNdS I,) @sepaxoubrsTenbs - () sweNTe20T1396 A3x9doad)
3T

uoTjeTsax Joo3IngriijyAiriendst Syl I03F YO3yd//

}

((ssero - A3xadoxgioalqo) syuen-A3azadoad) 3IT

! ()3oalgo3sb-jwls = 303(go SpoNIad
! ()@3e0TpPa1d3ab - juis = K3jzadoad Ajxsdoxg
! ()3oalgng3isb-juis = 3oalqns aodanosay
! ()3uswa3e3s3IXaU°"I3T = Jwls Juswajels
}
(¢ ()3I%aNsey"I3T
{()s3juswa3le3sS3sSTI [Spow = I3T Iojexa3Ijwls) Io03
! ()IeaTd "’ JOVDST

} (x3shzenb fuTa3s) 302INATIIIVAITTENDST PTOADTIQNd
HHHHHHHHHHHHHHHHHHHHHHHHHHNHHHHHHHHHHHHHH\\

TOFT /0

! ((()y3zbust- soanos
yButxisqns* () Butralsosl - 3o0alqo)ppe’ () sadsouoppaierayia=b

f((()y3buar-as
oxnos)Butaisqns- () butaisol 3oalqo)ppe’ () sydpa3eT=yisb

}

((x3sAxanb)asepazoubrstenba’ () sweNTeo0TIa6" 309 (gns

3% (,23INnqTI33

yAatTendseH,) esepazoubrsTenbs () sweNTeoor1396 A3x3doad)
3T
uotiersl a3ingrillyAlrrendsey =yl I0J 3o3ayd//

}

((sse1oA3jaadoxdionalqo) syued'Ajaadoxd) 3IT

! ()3oalqo3sbjwlys = 309(lqo SpoONAQH

! ()@3eoTpaxgisabrjuis = Ajaadoad Ajxsdoag
! ()30algqngisb julys = 309[gqns 20INO0SIY

! ()3uswa3je3gaxsau I3T = Jwis Juswa3e3s

00T

sjuswa3els O3 ppe //
}
((Axanb) asepaxoubisTenbas -’ () sweNTeo0T336 30algns B% (
JAgpsinsesy,) asepazoubrsTenbs- () sweNTeo0T396 A3x9doxd)
3TesT®

!++X9pUuT
{jwls = [X9puTr] sS3juswalels
! (OoT) ppe -’ soTps3eIa
! ()Butazsolz-3oalqo = o1 Butais
sjuswa3je]s O3 ppe \\
AA>umsvvwmmumnocmHmHmsww.AvwEmszUoWuwm.uuwﬂn:m 39 (
.Agpsonpoxd,) asepaxoubrsTenba - () sweNTeooT396 A3x9doxd)
JTesTe

{++X3pUT
!3w3s = [XSpPuT] sjuswajels
! (o1) ppe "’ sOTIpa3eTal
! ()yButajgol-3oslgo = o Butaas
sjuswajels 03 ppe //
AA>dewvwmmoouo:mHmﬁmzwm.Avwsmzﬁmwoquwm.uomﬂQSm 3%
(,20npoid,)@sepaioubrstenba- () sweNTeooT1396 A3ax9doad)
jTesie

!++xXoput

‘{3w3ls = [XSpul] sjuswajels
! (OT) ppe ' soIpa3eral

! ()Buta3zgsol-ioalqo = ol bBurais
sjuawajels 03 ppe //

}

((Azanb) asepaaoubIisTenba - () sweNTeo0T3=6 303 [qns
3% (uw3JO°3INngrIl

1yA1TTendsT,) esepazoubrstenbs - () sweNTeosoT396° A31adoad)
FTes1®

{++XapuT
‘3w3s = [XSpur] s3juswajels
‘! (o1)ppe sSOTp=a3eTaa
! ()butailgsol-3oalqo = o1 bButails
sjuswajels o3 ppe //
}
AA>uwsvvwwm00uocmHmHmsvw.AvoEmzHMUOAumm.uuvﬂQSm
R ﬁ_.UU.DQHHUU
vAlTTENndsS®ey,) ase)azoubrstenba () swenTeoo1326° A3xadoxd)
3T
uotje[ax esI Iyl a03 3oayo//
}
Aﬁummﬁo.>uuwmoumuooﬁnovmmcmu.>uuw&ouav IT
Atuo sat3xadoad 309(Lqo x03 3o3y2 //

! ()30alqo3isb-jwls = 309(qo SpoNdQ¥
! ()o3eoTpaxgish-juis = A3xadoad Ajasdoad
! ()30algng3sbrjwls = 3palqns 20INOSAY

{()3uswa3e3lsixau-I3T = Jwls jJuswaiels
!ggeTpaaddn butiils

}

(! ()3IxsNsey- 13t
! ()s3juswa3e3gisSTIT [Spow = I3T I03exaljIjwlsg) o3z

{0 = XSputl 3JUT
![0G§] 23uswa3jels meu = sjuswajlels []juswa3lels
Axanb 03 p23je1ax °8soy3l
ATuo ppe pue sjuswa3els s, [spow T[Te ybnoayl doot//

} (Axzenb Butiig) s3joalqoburturesTpsielax proadtrand
HHHHHHHHHHHuuHHMHHH"uHHHHHHHuHH"HHHHHHuHHHHHHHHH"\\

o3 // |

! ((()y3abuat - =201n0
s)butaisqns- ()buraigosl 3oalqo)ppe" () sadeouoppaie1ayisb

10T

(#39TAISS0T/u) 3ISTAISSOEME

!IoAnToSda3H I9AaI19sd3]y - 39U’ uns ‘wodjaodwt
!IaTpueHd33H 19ax9sd33Yy - 38U’ uns "wodjzodusy
{3x23u0pd33H 18ax9sd33Yy - 38U’ uns ‘wodjaodwt

‘asuodsayiataxasdijy-dijy-3sTaxsas xeael jzodut
!1sonbayiaTarasdldy-dijy 3sTAaIas ' Xeael jzodurt
!{3a1ax95d33H dl3y- 3aTaxss *xeael jzodut
!{19TAISSOaM ' UOTIejoUUR 38TAISS *Xeae[jxodut
{uo13do0Xg39TAISS " 39TAI3s "Xeae[jxoduy

{I03ND9XY * JUSIAINDOUOD " [T3N eAae(3zodut
‘10309 TTan " eael jzodut
{103ex231 'TTan " eael jzodut
!'ssaappyaaxyo0g3au]l ‘ 3au- eaeljzodut
{193TaM3uUTId "OT "eael jzodur
{uot3daoxm0I ‘OT "*eael jxodur

!sprIpe3e1ay ebexoed
eAel *39TAISS0O1T

{

{
! ()eoearyoeisjutad s

} (@ uotadeoxd) yo3ed

{
! (W AFNEEY-TRNX /A0 ‘IF)23TaIM Tapou

! (uTmo " ABOTO3uQDS/do3sea/otTea/saesn/ D)
IS3TIMOTTA MU = I IDJTAMSTTA
} &a3

103 // A
{
{

! (Jw3s) sA0WSaI " Tapow

AnwemcvwmmowuocmHmHmsUw.AvamszoOAuwm.uumhnsm
3% (,302[qobutux

mmqnmESmcou=vmmmumuoanmHmsuw.Avosmszooauwm.>uquoumv

FF

uotaerax 3o03lqobutureapswnsuoc) 3Yyi I03F O3Yd//

}

AAmmnao.>uummoumuumﬁnovm<dmu.>uuomoumv IT

! ()309[qo3sb-jwis = 309[qo SPONIAQA
! ()o3eoTpaxgisb-juis = A3azadoad A3zxsdoad
! ()30algngsisb jwls = 309[qns 35INOSAY
! ()3uswa3le3sgaxXau’ 13T = Jwis juswalels v
(¢ ()3IxaNsey 13T
{()s3uswa3els3sSTT [spow = IJT I03eI93I3W3S) wOu

(sweu Buriig) SOTTIYILSTD PToadTIqnd

!{gjuswajels uiniax //
sjuswajels [opow ybnoxyl dootr // |

{

!{++X9pUuT
{qu3s = [XSpur] s3juswsjels
! (0T) ppe’sOTIp=a3eTax
! ()butaago3-aoafqo = o1 Buraas
sjuswa3jels 03 ppe //
AA>uo:wvmmmowuoamHmHmdwm.Avoemszwoqumm.uomﬁnzm 33
(,21n8®3),) 9seDaIoUbIsSTENbS () sweNTeo0T1386 A3a3doad)

JTesT®
{

!++4X9pUT
{quas = [X3pur] sjuswajels
! (o1)ppe-soIpo3eTax
{ ()buta3soz-3oalqo = o butals

¢

«A:MHQVAM\V:+OA+
w<u\ut+138A790D+,=A19N0% 4 (wnNuotssas)buraizsol ‘ 196a3UI+
w =UNNUOTSSSSR,, +UOTIEBDOT 4 |, =UOT1eD0 TR 4 +OT+ =08y +3WENISS
N+, =3Weu¢0TPIUNSUOD /SAYYS /0808 : 380y Te20T// : d33Uw\=331Y

MUetq | = jabxe] B>,)uriurad’Ino
‘()3x3u 5 13T (Butx3zs) = uor3edol burais
*()Buyx3so3- ()axau' Ta3T = o Buriis

}

(()3IXaNsey- TIIT) STTUM

! () 031937 STMA = zIIT I03ex83I
‘() 203ex931 5072100 = TIJT A03eA=831

}

(()A3dugsT s0T3I00 |) 3IT

! (n<ag><aqg><buoxls/><1/><n/>,
+I13g5kxonb+ , 3noge sSbpaTmouy
210D, + :ASVAHVAmCOMumVAuumHv:V utautad-’ano

' ()sTyn3ab - Tepow = STYN IO03JOBA
! () s0I910D396 TOPOW = SOTISI0D IO03JDIA
! (swenxasn ‘135A18nb) g3os(qobutuiesTazod * Tapow

! (SweNISSN) 2TTJ0L33TAM DTTIOIJI9SN

! (13sA1enb ‘unNuoTssas) 3daduocpppe 8TTIOIJIISN
! (sweNxssn)

Tuxeo3epdn Msu = a1rjoxgassn uxa3lepdn

! () ABoTOqupBuTpesy - welsAs BuTuIeaT YOS MU

= Topou ABorojuoburpesy wslsis bButuxest y0s

! (y<aTp/>4)ur3utad:3no
‘(u<d/><e/>3n0 ubtg<, \TW3IY ITXH,\=F31Y

e><,\3ybrx,\= ubtre d>,)uriurad‘ino
NA:C/AwmuﬁmU\VAmn\vEmum>m
futuresaT YOS POZITRuOosIag<fy><iajuap>,) urijutad-ino//
!(u<d/><e/>yoreas MaN<, ! ()3ITWQNS’ [,WIOF
yoIess,]wiog " Juswnoop: 3draoseael, =321y e><,xdoT,

= 2218-3U0F ,3Yybtx,= ubre d>,)ur3urad-ano

yoxeas mau //
! (u<123uUd)/><gy/>wa3sAs buruieaT YOS IANOX
1 SAYOS<YOBTH:IOTOD £Y><Ia3IU3D>y) ur3utad- ano
! (yw<,0:wo330q-utbaew ! apueI0: I0TOD-punoibioeq,
= 214k3s ,1speay, = pT ATp>.)ur3utad-ino
! (4<,0x0qsuten, = IOTODBq Apog>,)urautrad- ano
! (y<Tw3y>,)ur3urad-ano

! ()x93TaM3I96 ' asuodsax = Ino IIITIMIUTIL
uA=HEu£\uxmu=Vwmhhunmunoouom.omcommwu

{
¢ ()eooexryoeasiurad-a
! (4yUOT3eZTTET3ITUT UT 1011¥,)ur3utrad- 3no "walsis

}

(@ uotadeoxd) yo3ed

{

! ((wunN
cOHmmwm=vuoumsmummumm.umv:wmuAmcﬂuumvvunHUMNmm.uwmoucH
= WNNUOTSSSsS
NAszmZHmms=vuoumemnmmumm.ummswmn
(Buta3ls) = Swenassn
“A=uum>um:v=vumqumnmmumm.ummsku
(Buta3ls) = x3shkz°nb

}

Ka3
} uotadeoxdOI ‘uot3daoxXg19TAISS SmMOIY]
(esuodsax ssuodssyilaTaI85d33H
‘agonbox 3sonbayjaTaxasdiaH) 39D0P proape3oajoad
2PTIIBA0D

{
! ()aedns
} () 391ax9s01 o11qnd

! Topow ABoTojupopesy "wa3sAs vos//
{WNNUOTSS3S3UuT

t135hkxenb Putais

!sweNIasn Burxis

} 39Tax98d33H spus3xe3aTAlagoIsserooTTqnd

£0¢

! ()x23TIM3I9b6 9suodsax = 3no IS3TIMIUTI]

! (2 Tway/3x23,)adAr3usjuoniass -asuodsax

! (sweu) 9TTIOLIITIM BTTIOIJIasSN

! (01 ‘3dsouoD ‘wnNNUOISSIS) OIppe @1Tioxdaxesn

! (sweu)quxa3epdn meu = aTTIOIdIasn TWxa3lepdn
! (0T ‘sweu) QTP2WNSUOD * Tapow

((sweu ‘oOT)pswnsuoc)dsST I3pow |) 3IT

{

! ()9oexryoe3siutad- e

! (,UOT3BZTTETITUT UuTr xoxxd,)urlurad-:ino - waizsis

}

(@ uotadeoxd) yo3ed

{

! (yAzsnD,) x232weaediab 3senbax (Butx3ls) = 31dsouod

! ((yunNuoTSS3S,) I939wearedlab 3senbax
(Putx3g)) jurasaed 19693UI = WNNUOTISSSS
! (,u0T3eD0T,) I233weredlab- 3sanbax

(Pbutx3lg) = UOT3EDOT
! (,0T.)I932weIRd1a6 3senbax (Butals) = O
! (,2weu,)xs3aweredlsb ijsenbax (Butxls) = sweu

}
K13
} uotadsoxmor

‘uotjdeoxglaTaIas smoayz (ssuodsaa ssuodssyis(axssdilH

‘3senbax 3sonbayisTaxasdijH) 39D0p pPToape3oejoad
SPTIISA0D

{

! ()xedns
} ()oTpswnsuocd orrqnd

{qdsouoo butai3s
{wNNUOTSS9S3uUT
{uotjeosor bButaas

! () ABoTojupbutpeay meu = Tapow ABorTojuoburpesy

ST

‘o1 buta3as
!{sweu butx3ls

= JINUOTSISATETISS Buol Teutr3y or3els a3eatad//

} 191Ax85d33H spusjxeQIpawunsucosserdoFTqnd
(,OTP2WNSUOD / ,) IS TAISSASM®

/x

oIpaunsuod sseTo COHHMUCOEUHQEM 39 TAISS «»

et

{I03e19313W3S " Tepow’ Jpx eual ' 1dy - dy-wodjxodwt
{Juswa3eas [epow 3px - eual ' 1dy- dy-wodjzodwy
{30Inosay - Tepow’ 3px -eual 7dy’dy-wodjzodut
tX333doxg “Tepow’ ypx - eual ' 1dy- dy wodjzodurt
{TepoWau0 AboTo3uc ' eual ' Tdy - dy - wod3jzodut

{AboTojupobutpesy ‘wa3lsAs butuxesT y0S 3Jaodut

!asuodsayiataaasdiay dijy-3a7axas xeael jzodwt
{1sanbayieataaasdiay-dijy 3eTaxes xXeae[jzodut
!391ax95d33H " d33y 39Tax9s "xeael jzodut
!{139TAI9SgaM ' UOTIRIOUUR " 19TAISS "Xeae[jxodut
!uot3deoxgl1aTAISS " 39TAISS "Xear[3xodwt

{193 TIM3UTIg OT "eael jzodwrt
{uot3deoxgQI "OT ‘eael jzodut

!sprIpeleTay @beyoed
eael " QIpsumsuo)

{

} uotadeoxm0I ‘uoT3ideOXFISTAISS SMOIYZ
(ssuodsax ssuodsayilsTaxasdidH
‘1sanbax 3sanbayisTaxasdiliH) 3sodop proapsjoajoad
SPTIISNA0D

! (uw<Tw3y/>,)ur3urad-ino
! (u<hpoq/>,)ur3zutad- no

! (v<ag><ag><aq>,)urzurad- ano

¥0C

! ()enTeA3sb sou = jswnu Butils
! (,SuoTssasjownu,)33nqTI33y¥3ab - suorssas
= sou 23INqrIlIV¥

}

() uotssasppe 3jutro>riqnd

{
{

! ()ooexryoe3sjutad-a

} (@ uorideoxzaa3uUTOdTTNN)Y23ed {
! ()ooearoeisiutad e

} (@ uot3idsoxzaWOAL)YO3Ied {

{

! ()eoearyoe3sautad-?
} (@ uor3dsoxg0oI) yo3ed {
! ()3uswarglooylab oop (JUSWSTH) = SUOTSSSS
((wTux ", +OWeNSTTI+,/SSTTI0IgISsSN/ D) 3TTd
Meu) pPTINg - ISPTING = 20P
} 413
! () I9pTTINEXYS Mau = ISPTTN ISPTTINEXVS
TGJ

(sweNaTT3 Butais) Twxe3lepdn orrand

! SS:iuw:HH PP
-WN-ARAR, = MON IvWwdod HIva Butais Teurzoriessarrand
!suorssas JuawaTy oFrrqnd
! ()auswnpog meu = Dop juswndog otrqnd

} TWxe3epdn sserooTIqnd

! 7933nd3anoInX - andano wopl *Baio 3xodwut
{qewxog * andano wopl*Bbio j3xodumt
{zopTTnEXy¥S *andut-wop(*bi10 jxodut
‘uot3danxEWOArL wopl Hio j3aodut
{quswa Ty wopl'Bio jaodut
fqusunpoqg-wopl 610 3x0durt
!23nqTa33y-wopl bio 3xodut

‘9817 TTan eael jzodurt
f703e1931 TTIn eael jxodurt

{zepusTe)’ [13n eael 3zodut
!3ewrogsjeqeTdurs 3x23 ‘eael 3zodut
‘uot3ideoxz0I 'OT ‘eael 3zodut
{193TIMOTTd 'OT eael 3zodut
‘9713 ot eael 3zodut

!{spoTpa3eToy ob6eyoed
eael ‘TWXpe3lepdn

{
{

qnas poy3lsw pajeisuab-oiny 0dqol //
} uot3jdeox=OI
‘uoT3doDXTIOTAISS SMOIY3 (esuodsax ssuodsayisTazagdiaH
'q1sonbax 3ssonbayilaTaiasdijH) 3SOJopP proape3oejoxd
SPTIIASNA0D

(e<Tw3y/>,)ur3urad-ano
(u<&poq/>,)utautad-:no

! (4<OB />, +,<,W3Y" 3DSITPaT TWIY/3I3U 3DINOS
-gem mmm//:d33y,= oIy ob>,)ur3jutad-ino
! (u<®e/>3a9Yy
HOTTO wtu<au\w+UOTILOOT+,,\=F3IY e>,)ur3autad- ano
! (4 osea1d spuooss
§ uT p93oeITPel 30u aIe nok II <ig>,)3utad:ino
! (oT+u O3
nok 1091TPp oM S[TUM 3jTem aseald,)uraurad-:ino
! (,<,0x0gsuten, = x0T0DBq Apog>,)uraurad-Ino
! (u<peay/>,)urautad-ano
! (w<easu/>,+,<,\y+tuoT3iedor+,=1I0 !Zw\=3us3uod
o \HSHYAHY « \=AIN0F-dLIH ©3sw>,) urjutad-ino
wﬁ=AMu®E\v=+=A=/:+coﬁumuoﬁ+:=/NHMS ! Zz=3Uua3uod
o \HSHHAAN 4 \=AINOI-dLIH e3aw>,) uriutid-ino//
£ (,<9TATI/>u+OT+u<3T3T3I>,)ur3utad 3no
! (y<peay>,)uraurad-no
! (y<Tw3y>,)urautad-3no

S0¢

! ()9SO0TD " I33TaIM

! (z231am‘oop) andano- x233nd3no

NAumEmow\umEMOmumm.kuuSQuzo\\

! (yu\,)xo3exedagautIlas Jewaod

! (4 w)3usSpuIlasS’3jewaoy

! () jJewIogmEYISE * JRWIOS = JBWIOJF JewIod

! ()x933ndaInOTNX Meu = I333ndano 1333ndINOTHX
(yTwX ", +9WeNSTTI+,/S37TI0Idiasn /0,) ISITIMST T

MOU = I33TIM ISJTIMSTTA

} &x3

}

(sweNSTTF Putals) oTTJ0L93Tam proadtrqnd

{
{

{
N {
! ((071) 3ua3uoDppe” (40T pawnsuoc),)
JUSWaTE Mau) 3JusjuUocDppe "D
{eanx3 = 3dsouoppunol
}
((3depuop) ssepaxoubIsTenbs - sweNjdeouod) 3T
! ()onTepn3=b- \\“A=uawucou=vwsﬁm>muznﬁuuu<umm.u
= sweN3deouod bButiils
! ()3xau’x313dsouocd (JuswaTy) = O JusSwaTH
}
(3dsouoppunoii %3 ()3IxeNsey'13I13deouocd) STTyMm
! ()x03e193T " (,AI3ND,) USIPTTYDISH ' UOTSS3S
= 1313doouUOD I03BI93T

}
((pT)3ureszed-19b9jul == PIUOTISS8S) IT
! ()enTea3=b ((4PT.)PTITYD3IS6 uOTSSds) = PT Butals
£()3xsau'I3T (JUSWSTH) = UOTSSSS JUSWITH
}

(punogiou 3% () 3IXSNSey IIT) STFYM
{()I03eI93T 3STTUOTSSSS = IJT I03eIaII
! (,UOTSS9S,) UsIPTTYDISH SUOTSSaS = JSTTUOTSSIS ISTT

!@sTe3 = 3dedouopDpunoi ueaTood
sn13 = punojjou uea1ood
}
(o1 Butaas
‘3deouocd Butils ‘pIuorssas 3ur) OTpPpe proadtiqnd

{
{
{

! ((3dsouod ¢ ,2deouo),) 23nqTI3IVISS * (WAT3ND.)
JusSwaTE Mau) JUa3UODPPE 3
!@gTey = punogiou
}
((pT)3ursszed-asbojul == PIUOTSSSS) 3IT
!()anTealsb’ ((.PT.)PTTUDIS6 2) = pT Butaas
{()3xau 13T (JUSWSTH) = S JUSWSTH
}
(punogiou 3% ()3IXaNSey'I13T) STTyYM
! ()103eI93T ' 3STTUOTSEAS = I3T I103eI9]]
! (,UOTSS3g,)UaIpPTTyYD3I=ab 'suorssass = ISTTUOTSSIS ISTT
!sni3 = punogiou uesafood

}

(adeouoo Butaals ‘pruotssas jur) 3desuopppe proadTTqnd

{

! (aswnu) jurasaed ' xeb623Ul uanlax
! (UOTSS9SMAaU) JUSJUODPPE " SUOTSSSS

! (((()owrL3=ab’ Teo) 3ewxo] IJps) 3uajuopppe ” (,3WT3,)
JUSWSTH MeU) 3JUIJUODPPE UOTSSISMaU

! (MON LYWYOA 2LYd) Iewroiajegatduts
meu = JIps jewrogajegsTduts
! (yeoue3jsurisb - zepusie) = [eD IEPUSBTED
swrl pue ajep 3:b //
! ((3swnu) 3us3uodpPPe” (uPTu)
JUSWSTH MAU) JUS3UOCDPPE UOTSSISM3U
! (,UO0TSSaS,) JUSWSTH MBU = UOTSSISMAU JUSWSTH
! (3swnu ‘,suoTsssasjownu,)3ngrIljiylias SUOTSSIs
! (T+wnu) burr3jgo] *x9bH23ul = Jswnu
! (3swnu) Juresaed - a9bs3jul = wWnu 3JUF

90¢

{
! ()edexgyoe3sijutad-a
} (@ uotadeoxmOI - oT eael) yojeo |
! (3no"we3skg ‘opop) andino-xs33ndano

! (3ewxo3) 3ewxog3as - x933nd3no
! () x933ndInOTNX Meu = x333ndano 1933ndINOTWX
! (yu\,)xo3zexedagauTIlas Jewao]
! (4 u)3USPUIISS JBWIOT
! () JewIO MEY IS5 JeWIOS = JBWIOI] Jewrog
} &3
}
() Aetdstp proantiqnd

{
{

! ()soexrsoelgijutad s
} (@ uot3ideoxzm0OI) yo23ed |

	603080
	603080a

