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Abstract: State estimators, including observers and Bayesian filters, are a class of model-based algo- 1

rithms for estimating variables in a dynamical system given sensor measurements of related system 2

states. They can be used to derive fast and accurate estimates of system variables which cannot be 3

measured directly (’soft sensing’) or for which only noisy, intermittent, delayed, indirect or unreliable 4

measurements are available, perhaps from multiple sources (’sensor fusion’). In this paper we intro- 5

duce the concepts and main methods of state estimation and review recent applications in improving 6

the sustainability of manufacturing processes. It is shown that state estimation algorithms can play a 7

key role in manufacturing systems to accurately monitor and control processes to improve efficiencies, 8

lower environmental impact, enhance product quality, improve the feasibility of processing more 9

sustainable raw materials, and ensure safer working environments for humans. We discuss current 10

and emerging trends in using state estimation as a framework for combining physical knowledge 11

with other sources of data for monitoring and control of distributed manufacturing systems. 12

Keywords: State Observer; Kalman Filter; Particle Filter; Sustainable Manufacturing; Soft Sensor; 13

Digital Twin 14

1. Introduction 15

Sustainable Manufacturing is now a very significant principle that industries must 16

adopt due to many factors driven by environmental issues, including more stringent legis- 17

lation, higher energy costs, and consumer preference for environmentally benign products 18

and services [1]. Manufacturing processes have a direct impact on the consumption of 19

natural resources and their resultant emissions [2]. The emergence of Industry 4.0 provides 20

significant opportunities for the development of intelligent manufacturing environments 21

that have greater production flexibility and resource efficiency [3]. The deployment of 22

sensors, Internet of Things (IoT) and Cyber-Physical Systems (CPS) within manufacturing 23

is predicted to contribute to addressing some of the global challenges in respect to resource 24

and energy efficiency [4]. Greater sensorisation of manufacturing processes is a central 25

pillar of the Industry 4.0 concept and is critical to improving resource efficiency and sus- 26

tainability. The ability to monitor key process variables in real-time enables tight control of 27

processes to avoid defects; eliminate waste of raw materials and energy in producing scrap; 28

prevent harmful environmental emissions, and facilitate processing of more sustainable 29

but difficult to process raw materials such as recyclates. However, it is not always feasible 30

to physically measure the critical variables in real-time due to e.g. lack of an available 31

Version March 14, 2022 submitted to Sustainability https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0002-1434-1215
https://orcid.org/0000-0003-2185-7284
https://orcid.org/0000-0001-9973-8555
https://orcid.org/0000-0001-5210-5929
https://orcid.org/0000-0002-4250-6056
https://www.mdpi.com/journal/sustainability


Version March 14, 2022 submitted to Sustainability 2 of 34

sensor technology, lack of sensor accessibility, high cost, poor accuracy, high latency etc. 32

In this case, concepts like soft sensing and data and sensor fusion may provide a solution, 33

enabling the variable(s) of interest to be inferred from available information in a connected 34

cyber-physical system. Often, this may be achieved through purely data-based approaches 35

via Machine Learning, however this will often require a large amount of historical training 36

data, high computational resources for model training and typically results in models 37

which do not generalise well to different systems/raw materials and which may exhibit 38

poor long-term robustness. An alternative in some situations is to use an observer-based 39

state estimation method, whereby the future value of the system states is predicted based 40

on the current value according to some model of the system. Then in the next time step, the 41

estimate is updated with measurement data available from the system - which may be indi- 42

rectly related to the variables of interest and/or of limited reliability. This ’predict-correct’ 43

structure, as illustrated in Figure 1, exploits, an often approximate, physical model of the 44

system to derive an algorithm which provides sufficiently accurate and fast estimates with 45

limited need for training data and with good robustness to variations in the process over 46

time. 47

Figure 1. Predict-Correct Structure of State Estimators.

State estimators can be deterministic (’observers’) or stochastic (Bayesian filters such 48

as the Kalman filter and its extensions). In the stochastic case, uncertainties in models and 49

measurements are explicitly handled to derive an optimal estimate of the variable(s) of 50

interest together with a measure of the uncertainty in the estimate. These state estimation 51

methods have been applied to navigation problems since the late 1960s, with the Kalman 52

filter famously considered a key factor in the success of the Apollo 11 moon landing [5]. 53

The Kalman filter is the optimal state reconstructor for linear systems subject to white 54

noise, however this optimality is lost with nonlinear systems and/or systems with non- 55

Gaussian noise distributions [6]. In recent decades, increasing computational power has 56

facilitated more sophisticated algorithms, which deal better with nonlinear systems and 57

more complex uncertainty distributions, which are fundamental to recent developments in 58

self-driving cars for example [7]. The concepts are less well known in some aspects of the 59

manufacturing community, however we show in this review that several studies indicate 60

the potential of various state estimation methods in manufacturing processes, moving from 61

automation of a defined task (Industry 3.0) to a wider systems-level approach (Industry 4.0). 62

As manufacturing enterprises are currently undergoing a period of considerable disruption, 63

driven on one hand by an urgent need to enhance sustainability and on the other hand 64

enabled by progress in sensorisation, connectivity, and computation, state estimation 65

concepts can in future play a greater role in driving improvements in the flexibility and 66

quality of manufacturing processes as well as reducing energy consumption and waste 67

generation. 68

This paper provides an accessible introduction to the key concepts and methods of 69

state estimation with a comprehensive review of the application of such methods to improv- 70
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ing the sustainability of manufacturing processes and systems across a range of industrial 71

sectors including: material processing, machining, additive manufacturing, semiconductor 72

and industrial robotics. Current trends in combining state estimation concepts with Ma- 73

chine Learning and/or physics-based computational models are highlighted. We discuss 74

the future potential for state estimators to be incorporated into ’digital twin’ approaches 75

for improving the sustainability of manufacturing processes. 76

2. State Estimation Methods 77

2.1. State Observers 78

Originating in control theory, a state space model is a specific model structure whereby 79

a dynamic system is described by inputs u, outputs y and state variables x related by 80

first order differential equations (continuous case) or difference equations (discrete case). 81

State variables are variables of the system whose values evolve over time depending on 82

the current value of the variables and any external input to the system. For example, in 83

modelling a d.c. motor, motor position and speed are suitable state variables to capture 84

the system dynamics in response to changes in input voltage. The complete state space 85

model comprises the ’state equation’ (or ’system model’) which describes the evolution of 86

the values of the state variables, and a ’measurement equation’ (or ’measurement model’), 87

which describes the relationship between the state variables and measurements (outputs) 88

of the system over time. Equations (1) illustrate the general form of a state space model for 89

a discrete linear system. We focus here on the discrete case due to the dominance of digital 90

systems in manufacturing. In simple terms, the values of the state variables at the next time 91

step are predicted by the state equation from the current values of the variables and the 92

current value of any input to the system. The relationship between the actual measurements 93

of the system and the state variables is described by the measurement equation. 94

x(k + 1) = A x(k) + B u(k)

y(k) = C x(k) + D u(k)
(1)

Observability of a system relates to the ability to reconstruct the values of all the state 95

variables from the measurements and the input in a finite time. Obviously this requires that 96

the unmeasured states are not independent from the measurements which can be checked 97

by construction of an observability matrix derived from the system A and C matrices. 98

Provided a system is indeed observable, an observer can be constructed as in Figure 2 99

which depicts the discrete time Luenberger observer [8]. The values of the state variables at 100

the next time step are predicted from the current values and the input via the state equation, 101

and the measured values are then predicted from the estimated values of the state variables. 102

In the next time step, the predicted and measured values are compared and the error is fed 103

back to correct the estimates of the state variables. 104

x̂(k + 1) = A x(k) + B u(k) + L (y(k)− ŷ(k)) (2)

Provided the measurement equation is accurate (which is usually the case, as typically 105

the measurements are a subset of the whole state variables), the estimates converge to the 106

true values. The gain feedback matrix L requires careful design such that convergence can 107

be ensured to occur more rapidly than the dynamics of the plant (i.e. faster than the values 108

of the variables are themselves changing) but without introducing excessive noise into the 109

estimates. The Luenberger observer is a full-order observer, i.e. it estimates the values of all 110

the state variables, not just the unmeasured ones. Reduced-order observers, in contrast, use 111

the system measurements to estimate only the ’hidden’ states. They are more complicated 112

to design but can result in better performance [9]. 113

The estimator equation for the Luenberger observer is given by (2). 114
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Figure 2. The Luenberger observer.

Luenberger observers are however usually unable to estimate the plant states in pres- 115

ence of unknown disturbance signals or model uncertainties. The sliding mode observer 116

(SMO) has emerged as one of the most popular approaches in recent years to deal with 117

such issues. A sliding mode observer feeds back the output estimation error via a nonlinear 118

switching term rather than via a simple gain matrix. Essentially there is a suite of feedback 119

control laws and a decision rule. The decision rule, termed the switching function, has as 120

its input some measure of the current system behaviour and produces as an output the 121

particular feedback law which should be used at that instant in time. Provided a bound on 122

the magnitude of the disturbances is known, the ability to generate a sliding motion on 123

the error between the measured plant output and the output of the observer ensures that 124

a SMO can force the output estimation error to converge to zero in finite time, while the 125

observer states converge asymptotically to the system states. Consider 3 as an uncertain 126

linear system, where ξ is an unknown but bounded function representing the disturbance. 127

ẋ(t) = Ax(t) + Bu(t) + Dξ(t, y, u)

y(t) = Cx(t)
(3)

An observer can be defined as in 4, where e = z− x, G1 and Gn are gain matrices and v is the 128

discontinuous ’injection’ term which is designed to force the trajectories of the state estima- 129

tion error onto the sliding surface. The behaviour of the system varies on either side of the 130

sliding surface. The details of designing the sliding motion and surface can be found in [10]. 131

132

ż(t) = Az(t) + Bu(t)− G1 Ce(t) + Gn v (4)

An advantage of the SMO is that the applied observer injection signal (equivalent signal) 133

can be used for the identification of the mismatch between the actual system and the 134

observer model. This equivalent signal has been used in many applications such as fault 135

detection and condition monitoring [11]. 136

Sliding mode observers have also been developed for uncertain nonlinear systems, for 137

details on designing an SMO for second and high order systems see [12–14]. 138

Although sliding mode is currently one of the most popular approaches, many differ- 139

ent methods of nonlinear observer design have been proposed. The interested reader is 140

referred to this recent reference [15] giving an overview of the general designs available in 141

the literature. 142

2.2. Kalman Filter and Extensions 143

The Kalman filter (KF) is essentially a stochastic observer, that is, it explicitly models 144

the uncertainty in the state equation and in the measurements and utilises Bayesian infer- 145

ence to determine the optimum estimate of the states (in the sense that the uncertainty is 146
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minimised) [16]. Compared to the linear discrete state observer, the Kalman filter state and 147

measurement equations (Equation (5)) contain noise terms. w(k) represents the uncertainty 148

in the model (’process noise’) while e(k) represents the measurement noise associated with 149

sensor readings. All noise terms are assumed to be normally distributed. 150

x(k + 1) = A x(k) + B u(k) + G w(k)

y(k) = C x(k) + D u(k) + e(k)
(5)

Bayes law (Equation (6)) determines a posterior probability distribution p(x | y) from 151

the product of a prior distribution p(x) and the ’likelihood’ distribution p(y | x) which 152

arises from the measurements. In the context of the Kalman filter, the likelihood is the 153

probability distribution for the observed measurements y at sample k as a function of the 154

state variables x at sample k through the measurement equation. 155

p(x | y) ∝ p(x)p(y | x) (6)

The concept is illustrated with a simple one dimensional example in Figure 3. The 156

previous estimate of the state variables, x̂k−1|k−1 (i.e. the estimate of x at sample k − 1 given 157

all the information up to and including at sample k − 1), and its covariance Pk−1|k−1 is 158

propagated through the state Equation (5) to give x̂k|k−1 (i.e. the estimate of x at sample 159

k given all the information up to and including at sample k − 1). This step is sometimes 160

referred to as the ’time update’. The estimate x̂k|k−1 has a larger covariance Pk|k−1 as more 161

uncertainty is introduced due to the process noise term w(k) in the state equation. This 162

estimate is the prior distribution at sample k. The new measurement data y at sample k 163

yields the likelihood function p(yk|xk). The optimal (minimum variance) estimate of x 164

at sample k x̂k|k is then determined from combining the prior and the likelihood in the 165

’measurement update’ step. 166

Figure 3. One-dimensional illustration of the operation of Kalman filter.

The Kalman estimation equation can be written in terms of the Kalman gain matrix K: 167

x̂(k|k) = x̂(k|k − 1) + K (y(k)− ŷ(k)) (7)

where ŷ(k) is the predicted measurement vector (obtained by substituting x̂(k|k − 1) into 168

the measurement equation (Equation (5)). The Kalman gain matrix K is designed to min- 169

imise the posterior error covariance P(k|k). If the process noise w(k) is low, the predicted 170

measurement is trusted more than the actual measurements. However, if the measurement 171

noise e(k) is low then the predicted measurement will be more heavily corrected. The 172

Kalman estimator equation (Equation (7)) has a similar ’predict-correct’ structure to the 173

Luenberger observer estimation equation (Equation (2)). However, the KF has functions 174
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beyond the observation of unmeasured states as it also allows for the optimal fusion of 175

multiple sources of measurement data according to their uncertainty. 176

The Kalman Filter applies to linear systems with an assumption that the model un- 177

certainty and sensor noise can be described by a Gaussian distribution. A challenge in the 178

practical implementation is that the covariance matrices of the process and measurement 179

noises must be provided a priori, and this is a difficult task, particularly for the process noise 180

which is usually difficult to quantify [17]. To fulfil the requirement of achieving the filter 181

optimality, an adaptive Kalman filter (AKF) can be utilized for tuning the noise covariance 182

matrices [6]. Adaptive filters are based on dynamically adjusting the parameters of the 183

supposedly optimum filter based on the estimates of the unknown parameters. Another 184

solution to circumvent the system noise matrix specification is to parameterise the gain and 185

include its elements in the estimation process [18]. 186

The Kalman Filter has been extended to non-linear systems under two main approaches. 187

The first, the Extended Kalman Filter (EKF) involves linearisation of nonlinear system 188

equations using a Taylor series expansion and then applying the usual KF recursions [19]. 189

The classic EKF involves retaining only the first order terms of the Taylor series expansion, 190

however if the system behaviour is significantly nonlinear over the sample period or the 191

noise is high, then better performance may be achieved by including the second derivative 192

term in the Taylor series expansion. A drawback is that determination of the first and 193

second order derivative terms can be computationally intensive [20]. 194

195

An alternative approach is to use a nonlinear transformation and the Unscented 196

Kalman Filter (UKF) [21], which utilises the unscented transform, has emerged as a popular 197

alternative to the EKF. The unscented transform involves generating sigma points from 198

the distribution of the model input parameters. In the case of the UKF, these points are 199

the mean of the state estimates and symmetric deviations around the mean which are 200

computed from the covariance matrix. These sigma points are then propagated through 201

the nonlinear model and the mean and covariance of the model output (predicted state 202

estimates or predicted measurements) are estimated by applying weights to the sigma 203

points after the nonlinear mapping as illustrated in Figure 4. The UKF has the advantage of 204

not requiring the formation of derivative terms as needed for the EKF, and it may result in 205

better performance, depending on the form of the nonlinearity in the system. It should be 206

noted that the optimality of the Kalman filter is lost with EKF, UKF or any higher-order 207

filter. 208

Figure 4. 2D illustration of the unscented transform to estimate the mean and covariance of state
estimates in the UKF ’time update’. Sigma points are generated from the noise distribution following
the last measurement update Pk|k and propagated through the nonlinear state equation f (x). The
mean and covariance of the state estimates x̂k+1|k are estimated by a weighted sum of the sigma
points following the nonlinear transformation.

The Kalman Filter and the EKF and UKF extensions have limitations in very high 209

dimensional nonlinear systems (i.e. having a large number n of state variables), since it 210

is necessary to calculate the n × n covariance matrix at each recursion, requiring a large 211

amount of time, high-capacity storage and high-speed processors [22]. The ensemble 212
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Kalman filter (EnKF), originally developed in modelling of geophysical systems, instead 213

estimates the full covariance matrix using a sample of evolved states (the ’ensemble’) 214

[23]. The EnKF is a Monte Carlo-based application of KF, propagating only the mean of 215

an ensemble of N< n state estimations through the KF recursions. The resulting mean 216

and covariance matrices are then estimated from the evolved samples. This method has 217

reduced computational complexity and can be applied to nonlinear state-space models and 218

non-Gaussian noise. For linear Gaussian systems if N → ∞, the EnKF converges to the KF 219

results [24]. 220

2.3. Particle Filter 221

The particle filter was developed to deal with systems having multi-modal probability 222

distributions i.e. as opposed to the estimates having a normal (Gaussian) probability 223

distribution, there may be a distribution with more than one peak [25–27]. In navigation 224

problems, where the technique emerged, this would arise where there may be more than 225

one likely map location for a target vehicle based on the information available. In this 226

scenario, a numerical approximation of the distribution which can be propagated through 227

the prediction and correction recursions is needed. This can be done by representing the 228

probability distribution of the state estimates as a set of samples or ’particles’ via Monte 229

Carlo methods (repeated random sampling). Figure 5, illustrates the principles of the 230

particle filter in 5 general stages which can be described as: 231

1. Weighted particles from last measurement update (usually sampled from a uniform 232

distribution on initialization). 233

2. Bootstrap resampling: Take N samples with replacement from the set, where the 234

probability of selection is proportional to the weighting. All new samples have equal 235

weighting so that the distribution is represented by particle density rather than weight. 236

3. Each particle is propagated through the state equation adding noise generated by 237

sampling from the distribution for the process noise w(k), to give the time update 238

(prediction at t=k+1). 239

4. Measurement update: the predicted measurements given by the particles are com- 240

pared to the true measurements to update the weights. 241

5. The states are estimated by e.g. maximum a posteriori (MAP) estimate of the approxi- 242

mated posterior distribution. 243

Figure 5. Schematic illustrating the basic principles of a particle filter.

Particle filter methods are very flexible, easy to implement, and present an attractive 244

approach to approximate the posterior distributions when the model is nonlinear and when 245

the sources of noise are not Gaussian. The main constraint of particle filter methods is that 246
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Table 1. Comparison of different state estimators

State estimator Advantages Limitations

Luenberger observer 1. Simple to design and implement
2. Suitable for well-defined linear systems

1.Poor estimation in the presence
of model uncertainties

Reduced-Order observer 1. Better Performance
2. Lower computational cost Complicated to design

Sliding Mode Observer

1. Suitable for linear
and nonlinear systems
2. High robustness
3. Fault detection capabilities

1. Chattering of the estimator
2. Complexity of the design

Kalman Filter
1. Suitable for noisy systems
2. Allows fusion of different
measurement sources

1. Suitable for linear system
2. Not Suitable for
non-Gaussian noise
3. Not suitable for
high order systems

Adaptive Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for unknown noise covariance

1. Suitable for linear system
2. Not suitable for
non-Gaussian noise
3. Not suitable for high
order systems

Extended Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for nonlinear systems

1. High computational time
2. Not suitable for
high order systems

Unscented Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for nonlinear systems
4. Lower computational cost

Not suitable for
high order systems

Ensemble Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for nonlinear systems
4. Low computational cost
5. Suitable for high
order systems

Not suitable for
non-Gaussian noise

Particle Filter
1. Suitable for multimodal
probability distributions
2. Suitable for nonlinear systems

High computational time
and cost

they are computationally demanding, however they have been used in practical application 247

in systems with up to four state variables [28]. They are used in self-driving cars for 248

Simultaneous Localisation and Mapping (SLAM) tasks and also have applications in image 249

processing, econometrics and in industrial fault detection and diagnostics applications. 250

For more in-depth reading on the theory and implementations of the particle filter, the 251

reader is referred to the following excellent resources by Gustafsson ([28], [29], [30]). Table 252

1 summarises the advantages and limitations of the main types of state estimator. 253

3. Application of State Estimators in improving Manufacturing Sustainability 254

3.1. Industrial Robotics 255

As the global manufacturing industry enters its fourth revolution, innovations such 256

as robotics, combined with artificial intelligence (AI) and IoT, are considered a corner- 257

stone of competitive manufacturing, which aims to combine high productivity, quality, 258

and adaptability at minimal cost [31]. Industrial robots were first used commercially on 259

assembly lines in the early 1960s. Essentially these devices were primitive in that they 260

were sensorless, and featured limited programmability, mostly featuring hydraulic and 261

pneumatic arms, primarily used for heavy lifting. Throughout the late 1960s and early 262

1970s, industrial robotics gradually shifted away toward handling and precision work, as 263
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the need for automation of manpower-intensive tasks in manufacturing increased. Eventu- 264

ally, smaller electric robots with advanced controls, microprocessors, miniaturized motors, 265

gyros, and servos were realized, which were ideal for lighter assembly tasks, e.g., bolt and 266

nut tightening. As a natural progression, the capabilities of robots expanded further to 267

include tasks such as material transferring, painting, and arc welding, replacing humans in 268

certain dangerous and hazardous scenarios, by the late 1970s [32]. 269

Advancements in sensors and machine vision, coupled with a substantial reduction 270

in the costs of computer hardware, has resulted in a steep of advancement in industrial 271

robotic capabilities. Through the application of high precision sensors, e.g., force sensors, 272

vision and lasers etc, combined with suitable observers and estimators and high compu- 273

tational power, enhanced high fidelity perception of the robot workspace as well as the 274

surrounding environment become possible. Features attainable through such accurate reli- 275

able perception includes enhanced safety through collision detection and implementation 276

of effective human-robot collaboration which ultimately paves the way forward towards 277

more sustainable manufacturing. 278

279

Traditionally, industrial robots operate within a safety fence without any human inter- 280

action. Cobots are relatively small manipulators that are specially designed to operate safely 281

in close proximity or even in direct contact with humans, sharing workspace. This effec- 282

tively results in bringing together the best of each partner, robot and human, by combining 283

coordination, dexterity and cognitive capabilities of humans with the robots’ accuracy, 284

agility and ability to produce repetitive work [33]. They utilize advanced technology, 285

including force-limited joints and computer vision to detect the presence of humans in their 286

environment. Cobots are often much smaller and lighter than traditional industrial robots, 287

easily moveable, and trainable to perform specific tasks. Robots’ external perception relies 288

on sensing technology, thus, capturing accurate sensor information is vital for ensuring 289

robotic security and improving human-machine interaction performance. Amongst other 290

sectors, the manufacturing industry has benefited significantly by using mobile robots to 291

increase efficiencies and reduce costs while operating autonomously alongside humans, 292

including for material handling [34]. However, to allow the mobile robot to navigate its 293

environment, self-localization is critical autonomous mobile robots. SLAM algorithms 294

serve exactly this purpose and are thus the most widely used strategy for self localization in 295

an unknown environment through continuously constructing and/or updating the map of 296

the environment while keeping track of the robot in the environment [35]. SLAM comprises 297

the simultaneous (i) estimation of the state of a robot equipped with on-board sensors 298

and (ii) the construction of a map (grid of obstacles) of the environment as perceived by 299

onboard robot sensors. While usually the robot state is described by its pose (position 300

and orientation), the map is a representation of aspects of interest (e.g., position of land- 301

marks,obstacles) describing the environment in which the robot is able to operate. 302

303

In [36] the main methods of sensor data fusion for cobot environment perception are 304

classified as ’AI’ or ’stochastic’. The latter group encompassing Bayesian filtering and 305

Dempster-Shafer evidence theory, while the former includes fuzzy algorithms, neural 306

networks and fuzzy-neuro approaches. Kalman filtering has been applied for robot po- 307

sitioning [37–39], while the particle filter is shown to give accurate positioning together 308

with consistent mapping of the 3D environment of the robot via simultaneous localisation 309

and mapping [34,40–43]. In their recent review, Ding et al. [36] conclude that the stochastic 310

algorithm approaches are accurate and mature while the AI approaches currently have 311

limitations in practical cobot applications. 312

313

Recently, Li et al. [44] developed an Augmented Reality (AR) teleoperation method 314

to monitor and control a robot in real-time using a Kalman filter. Precise teleoperation 315

can facilitate the use of robots in applications where high precision is required and in 316

environments where human safety is compromised. In this work, a LeapMotion sensor is 317
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used to track the movement of the operator’s hands for gesture detection while a Kinect V2 318

camera measures the corresponding motion velocities in 3D. The authors used a Kalman 319

filtering (KF) algorithm to fuse the position and velocity signals to teleoperate a Baxter 320

robot in real-time. It was shown that with the application of the KF sensor fusion, the 321

performance index is improved on average by about 33%. It is concluded that the proposed 322

teleoperation strategy has better tracking performance after the application of the KF based 323

sensor fusion. 324

325

It has been demonstrated that both the Kalman filter and particle filter are highly 326

beneficial approaches for sensor fusion in industrial robotics, and currently have advantages 327

over AI-based approaches. Sensor fusion via these Bayesian filtering methods results in 328

robotic systems with higher precision, speed and adaptability and safer robot-human 329

interaction, ultimately leading to more efficient manufacturing processes and reducing the 330

exposure of human workers to hazardous environments. 331

3.2. Chemical Process Industries 332

While state observer concepts were initially applied and developed in tasks related to 333

localisation, tracking and navigation, such as in the field of robotics, the same algorithms 334

were later applied to various other state estimation problems. In particular, state estimation 335

methods have been of considerable interest in process industries since the 1990s. Many 336

industrial chemical processes have a high degree of variability and a large number of 337

process variables requiring measurement and control in real-time. However, online mea- 338

surement of many variables of interest, such as reactant concentrations etc, is not possible 339

using physical sensors and as such require sensorless control. A ’soft sensor’ measurement 340

can yield lower cost, increased reliability, lower maintenance requirements, and thereby 341

increased sustainability [45]. 342

State estimation concepts in monitoring and controlling industrial chemical processes has 343

been the subject of previous reviews e.g. [46–48]. Here, we focus on recent examples of 344

state estimation as a form of sensorless measurement in improving the sustainability of 345

polymerisation as an important source of raw materials for manufacturing industries. 346

3.2.1. Polymerisation 347

Polymerisation is a chemical process for the synthesis of polymers, which are long- 348

chained molecules made of repeating monomer units. Although traditionally synthesised 349

from petroleum-based products, much research activity is ongoing to replace such poly- 350

mers with those derived from more sustainable and eco-friendly plant sources such as 351

polylactide (PLA), which can be synthesised from natural feedstocks including corn starch, 352

rice, potatoes, sugar beet and seaweed [49]. The process of manufacturing polymers via 353

chemical polymerisation has inherent nonlinear and time-varying dynamics which are 354

a challenge to control [50]. Various studies have been carried out to model and control 355

the dynamics of polymerisation processes to improve yield, improve product quality and 356

reproducibility, and enhance safety and sustainability [51]. 357

Salas et al [52] applied an EKF for approximation of the nonlinear behaviour in semi- 358

batch polymerisation to track the molecular weight (Mw) trajectories. Molecular weight is 359

critical to the properties of the resulting polymer product but can only be directly measured 360

off-line using time consuming techniques such as gel permeation chromatography (GPC). 361

They used a state-space mathematical model for the free radical polymerisation process and 362

followed the proposed approach by Crowley [53] for the calculation of molecular weight 363

distribution (MWD). They tested the method in an open-loop system to estimate Mw and 364

MWD and good estimation capability was confirmed with offline GPC analysis. They 365

compared closed-loop control of the polymerisation process using a PID controller with 366

and without the EKF state estimation. The result showed that with the incorporation of the 367

EKF there was approximately a 50% reduction in the absolute error between the actual and 368

the set point of the Mw trajectory after initialisation of the experiment. The experiments 369
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confirm that the nonlinear state estimation provides the opportunity of achieving full 370

polymer characterization in real-time. 371

372

Zhao et al [54], proposed a method using data fusion and cubature KF for nonlinear 373

state estimation with delayed measurement. The cubature KF is equivalent to a UKF with 374

specific parameters for generating the sigma points. For the delayed measurement, they 375

introduced and compared two data fusion methods; excluding mutual information (EMI) 376

and covariance intersection (CI). These data fusion methods were then combined with 377

cubature KF to incorporate delayed measurements, for example measurements from off- 378

line testing which are only available post-production. They implemented their proposed 379

method in the nonlinear chemical polymerisation process. The results illustrated that the 380

combination of EMI and cubature KF has a higher speed, while CI is more accurate for non- 381

linear and complex systems. Under classic state estimation approaches, data from delayed, 382

off-line measurements cannot be incorporated, although these are usually more accurate. 383

The proposed method offers a potential framework to improve the accuracy of real-time 384

estimation of unmeasured process states by exploiting these delayed measurements. 385

Luo et al. [55] studied batch-to-batch polymerisation and proposed an adaptive hing- 386

ing hyperplane (AHH) model for the process, which is a type of piecewise linear model for 387

nonlinear systems. A MIMO (multi-input multi-output) model was developed to predict 388

the process behaviour. They used a KF to reduce the measurement noise which corrects 389

the AHH predictions of the current batch by applying information gathered from previous 390

batches. A sequential quadratic programming method (SQP) was applied, to solve the opti- 391

mal control of each batch. The method was implemented for the polymerisation of styrene 392

to achieve the desired values for number-average and weight-average chain length. The 393

method resulted in improved accuracy and stability for the estimated process behaviours. 394

395

Recently, Rangegowda et al. [56], used a new approach, receding-horizon KF (RHKF), 396

to estimate the state of methyl methacrylate polymerisation. RKF is a combination of 397

moving window-based methods, such as moving horizon estimator (MHE), and Bayesian 398

estimators. It has the advantages of both methods, including simultaneous smoothing and 399

filtering with a relatively low computational cost. The RHKF applies simultaneous state 400

and parameter estimation in a moving-window. They also compared partial likelihood 401

and complete likelihood parameter estimations for the measurement update in RHKF. 402

Results in polymerisation illustrated that RHKF based on complete likelihood parameter 403

estimations performed better and this method required much less computational time and 404

produced accurate state estimations. 405

3.3. Material Forming Processes 406

The sustainability of raw material supply is an urgent, global challenge. Economies 407

must adapt to become more climate change resilient, resource efficient and at the same time 408

remain competitive. As a fundamental step in the lifecycle of many products and systems, 409

efficiency in material processing is paramount, as is increasing capability in processing 410

’circular’ materials derived from waste and products which have reached the end of life. 411

This presents new challenges for producers with raw material properties typically being 412

more variable and making the manufacture of consistent quality products more challenging. 413

In this section, we review the application of state estimation methods in material processing 414

towards zero-defect sustainable manufacturing. 415

3.3.1. Injection Moulding 416

Injection moulding involves melting a polymer and injecting it at high pressure into a 417

mould. It is one of the most used industrial processes for the formation of polymer products. 418

Improvements in monitoring and control of the process can reduce energy consumption 419

and waste generation as well as enable the processing of more complex, sustainable raw 420
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material streams [57]. 421

422

Liu et al. [58] used an EKF to improve the part quality in a micro-injection moulding 423

process by controlling the pressure signature. The pressure signature is generated by a 424

pressure transducer as the plastic melt passes through the nozzle. Electromagnetic noise on 425

the pressure signature can lead to short-shot (under-filling the mould) or flashing (overfill- 426

ing the mould) because of incorrect control of injection volume. The authors proposed an 427

adaptive EKF based on F-distribution to track the pressure signature around the nozzle. The 428

experimental results on a real microinjection moulding process showed that the adaptive 429

EKF performed well in eliminating the noise and tracking the true pressure signature at 430

both high and low injection speeds. Cao et al. [59] combined KF with iterative learning 431

control to consider the effect of disturbances and random noises from batch to batch in 432

repetitive processes like injection moulding. First, they used a KF to estimate the current 433

batch based on the information from previous batches - they called this estimation a ‘coarse 434

guess’. They then refined it with iterative learning control. They proposed two different 435

types of optimal control and two different types of suboptimal controllers to save memory 436

and computational cost. They developed a linear steady-state model for the air shot phase 437

in injection moulding and compared these four optimal controllers with conventional KF 438

in 100 batches. The result illustrated that, unlike the standard KF, the four optimal and 439

suboptimal controllers (combining conventional KF with iterative learning control) are able 440

to reject the batch-to-batch noises and disturbances in injection moulding. 441

442

In the injection moulding process in order to change from the filling phase (veloc- 443

ity control scheme) to the packing phase (pressure control scheme), a switch-over point 444

exists. The switch-over point is determined empirically by experiment, however if ap- 445

plied at the wrong time the cavity pressure profile is affected, resulting in defects in the 446

injection moulded parts. Stemmler et al. [60] proposed a cross-phase controller method 447

to eliminate this switch-over point and replace it with a continuous pressure trajectory. 448

They first derived a model for the filling and packing stages of the process. Then the 449

model was piece-wise linearised. The proposed model was applied in an EKF to estimate 450

the states in an MPC (Model Predictive Controller) for optimization. Based on the EKF 451

predictions, the MPC specifies the controller output corresponding with the reference 452

input. The comparison of the proposed approach to a PID controller in an actual injection 453

moulding process resulted in superior performance of the cross-phase controller method. 454

Recently, they further developed the work to propose a modelled-based norm-optimal 455

iterative learning controller to track a desired reference for the cavity pressure (based on 456

PVT-optimisation) to optimise the part weight during an injection moulding cycle [61]. 457

They used the piece-wise linearised steady-state model for injection moulding based on 458

their previous work [60]. EKF was applied to track the desired cavity pressure and estimate 459

the process state. The experimental set-up with the embedded pressure sensors resulted in 460

manufacturing injection moulded parts that weighed 50% less than the non-optimised ones. 461

The approach has the potential to achieve significantly higher efficiency in raw material use. 462

463

Chen et al. [62] proposed a method to detect the presence of a foreign body in an 464

injection mould and minimise the ’detected distance’ (i.e., the amount which a detected 465

foreign body is compressed by the mould closure). Such a system can prevent damage 466

to the mould which results in defective parts, downtime, and costly repair. A state-space 467

model is derived for the toggle mechanism, driven by a servo system (which closes the 468

mould), and an EKF was used to filter the electric current readings of the drive for the 469

toggle mechanism, which was then used to self-adapt the mould protection system to keep 470

the current in a safe range. The system showed a reduction in the detected distance of 471

foreign bodies of 22%. As damaged tools result in the fabrication of poor-quality parts and 472

harm to the whole injection moulding machine, this approach can enhance the lifespan of 473

the equipment as well as reducing scrap. 474
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3.3.2. Other Forming Processes 475

Extrusion is a continuous process for forming polymer or metal products by forcing 476

the material through a die to achieve a certain geometrical profile of the part. In polymer 477

extrusion, it is essential to find the appropriate operating conditions for each feed material, 478

as incorrect operating conditions can waste large amounts of energy, time, and material. 479

Melt viscosity is one of the most important parameters relating to the product quality, 480

but is challenging to measure online with physical sensors. Liu et al. [63] implemented a 481

non-linear state observer approach to estimate the melt viscosity. Viscosity and pressure 482

were modelled by a Genetic Algorithm (GA)-based dynamic Gray-box model with NFIR 483

(nonlinear finite impulse response) structure. The viscosity was predicted from the process 484

input parameters and the predicted viscosity was then used to estimate the barrel pressure. 485

The error between the predicted and measured barrel pressure was used to correct the 486

viscosity estimation. The proposed method was applied to a real extrusion process with six 487

different polymers and resulted in an RMS (root mean square) error of less than 1%. The 488

method is proposed for use in the production of consistent products from recycled polymer 489

feedstock despite having inherently variable viscosity behaviour. 490

491

Amoaoui et al. [64] developed an observer for the liquid composite molding process 492

which is a method for fabricating large composite parts with complex geometries, such as in 493

the aerospace industry. This process suffers from issues of void formation at the flow front 494

during resin impregnation which reduces the mechanical performance. An observer was 495

developed for monitoring the system pressure (output) and the permeability (unmeasured 496

state) which is inaccessible to physical measurement. They first derived a steady-state 497

model for the process and designed a non-linear state observer using a Lyapunov theory 498

and a linear matrix inequalities technique. The performance of the observer was demon- 499

strated through simulation which showed that the estimated permeability values converge 500

to the true state values. Application of the method to real-time monitoring of void forma- 501

tion has the potential to reduce production of scrap parts which do not meet the required 502

specifications. 503

504

Remelting is a process to produce homogeneous metal ingots. The ingots should be 505

defect-free with a fully dense and desired grain structure, as defects cannot be removed 506

with heat treatment post-production. Achieving the desired grain structure requires pre- 507

cise control of temperatures in the process. Ahn et al. [65] investigated the temperature 508

distribution in the electrode of the electroslag remelting process. They proposed a reduced- 509

order melting model for the process and estimated the temperature using three different 510

estimators; EKF, UKF and steady-state nonlinear estimators. The controller with UKF had 511

the best performance as it had less overshoot, undershoot, and responded to disturbances 512

better. Lopez et al. [66] studied the Vacuum Arc Remelting Process, used in aerospace 513

applications. A dynamic model capturing the melting and solidification stages was used 514

and the goal was to track the solidification front. For state estimation, a PF was applied 515

to the system, however, the system is nonlinear and noisy with low signal to noise ratio, 516

meaning a lot of particles are required for high accuracy. They applied the PF with a GPU 517

containing a large number of processors to enable parallelisation. The PF outperformed a 518

KF when used with a large number of particles. 519

520

To improve resource efficiency and reduce weight there is a demand for increasingly 521

thin yet high strength steel sheeting. In automotive and aerospace sectors a reduction in 522

weight has a direct impact on reducing the energy consumption and carbon emissions 523

associated with transport. However, metal forming processes are a challenge to control and 524

model because of strong nonlinearity, complex material behaviour and high variability due 525

to e.g. varying raw material and lubrication properties, tool wear etc. The mechanical prop- 526

erties of steel sheets are determined by the temperature profile during cooling which affects 527

the resulting microstructure. Precise control of the cooling curve is therefore extremely 528
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important but is hampered by the difficulty in physically monitoring the temperature 529

distribution. Various studies have been done to estimate the internal spatial temperature 530

distribution in sheet rolling using state estimation concepts. 531

Zheng et al. [67] used EKF to estimate the transient temperature distribution in the hot- 532

rolled strip cooling process. They developed a nonlinear high-dimension (14 state variables) 533

state space model from a thermodynamic model of partial differential equations using a 2D 534

finite volume scheme. Validation of the method with numerical simulation resulted in an 535

accurate temperature estimation with EKF. Speicher et al. [68] used full and reduced EKF to 536

estimate plate temperature in heavy plate rolling based on a few thermocouples’ measure- 537

ments. They used a similar approach to discretise a partial differential equation model of 538

the thermodynamics using a finite difference method. As quantification of the process noise 539

is the major practical challenge in implementing an EKF, they propose a systematic method 540

for tuning of the process noise covariance matrix via analysis of the extended dynamic 541

system. The approach was tested in an industrial rolling mill and successfully estimated 542

the temperature. The reduced and full EKF performed similarly in estimation, however the 543

reduced EKF simplifies the simulation and reduces the computational time. 544

Kloeser et al. [69] examined spatio-temporal estimation of temperature distribution in 545

the hot sheet metal forming process. Rather than using a course grid finite difference 546

method to derive the state space model, they instead designed a dynamical Reduced Order 547

Model (ROM) from a high-dimensional thermo-mechanical model by proper orthogonal 548

decomposition (POD). Starting with a refined model of several thousand states they use 549

POD to project the states onto a reduced order state space model which preserves the most 550

important dynamics in the system. A disturbance model was added to EKF to address the 551

simplifications and modelling errors. The approach was validated in the simulation of the 552

hole-flanging process by reduction of the states from 17000 to 30. The experimental results 553

confirmed the approach in the estimation of spatial-temporal temperature distribution in 554

real-time by using sparse local temperature measurements. 555

Havinga et al. [70] used a PF with on-line force measurements to estimate the physical 556

state (sheet thickness, friction, angle after bending etc) of the product in a metal forming 557

process in real-time for mass production, based on force measurements. They built a 2D 558

FEM model of the bending process and then applied POD along with Radial Basis Func- 559

tion interpolation to create a fast model. The proposed approach was used in numerical 560

simulation of the bending process and successfully predicted the state changes based on 561

variation in process forces. 562

563

The application of state estimators in polymer synthesis and material processing, and 564

the resulting potential impact on sustainability is summarised in Table 2. 565
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Table 2. State-estimators used to improve material synthesis and forming processes

Process industry Method Desired output Sustainability impact Refs

Polymerisation Cubature KF
Concentrations and
molecular weight
distribution (MWD)

Inline monitoring of the process and
efficiency improvement [54]

Polymerisation PID & EKF Molecular weight (Mw)
Better estimation of process,less
waste and higher process quality [52]

Polymerisation KF
Number-average and
weight-average
chain length

Better estimation of process
and efficiency improvement [55]

Polymerisation Receding-horizon KF
State of methyl
methacrylate
polymerisation

Less computational time
and efficiency improvement [56]

Micro-injection moulding EKF Pressure signature
Improvement in part quality
and less material waste [58]

Injection moulding
KF & iterative learning
control State estimation

Improvement in machine control and
part quality and efficiency [59]

Injection moulding EKF and MPC Pressure trajectory
Improvement in part quality
and process [60]

Injection moulding EKF Cavity pressure
Production of lighter parts
and less raw material use [61]

Injection moulding EKF Detected distance
Increase the tool life
and efficiency improvement [62]

Polymer Extrusion Nonlinear State Observer Melt viscosity
Part quality enhancement
Ability to process recycled materials
less waste and rework

[63]

Liquid composite
molding State observer

Pressure and
permeability

Part quality and process efficiency
enhancement by less waste
and rework

[64]

Electroslag Remelting Linear KF Temperature distribution
Defect-free ingots and efficiency
improvement [65]

Vacuum Arc Remelting PF Solidification front
Production of defect-free ingots
without heat treatment [66]

Hot-rolled Strip Cooling EKF
Transient Temperature
distribution

Better control of microstructure
resource efficiency and quality. [67]

Heavy Plate Rolling Full & reduced EKF Plate temperature
Better control of microstructure.
Reduction in material use and weight [68]

Hot Sheet Metal Forming EKF
Spatial-temporal
Temperature distribution

Prediction of material properties and
reduction in material use and weight [69]

Metal Forming PF
Physical properties
(thickness, bend angle etc)

Improvement in production accuracy
and efficiency [70]

3.4. Machining Processes 566

Machining processes include milling, grinding, turning, drilling etc. which contribute 567

about 5% of the gross domestic product (GDP) in the developed world [71]. A significant 568

factor in the cost of machining has been associated with sub-optimal tooling setups, with 569

cutting tool failure contributing to almost 20% of the machining downtime [72]. Machining 570

processes are less efficient and consume unnecessary energy while working with faulty 571

tooling. Machining processes account for approximately 33% of primary energy use in the 572

manufacturing industry globally [73], but approximately only 25% of the energy consumed 573

accounts for actual cutting [74]. Researchers have explored various methods to improve 574
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efficiency within the industry, with particular emphasis on improving monitoring methods 575

for the condition of tools and various part quality indicators. The application of state 576

estimation methods for predicting tool wear and part quality estimation in machining 577

processes has become more prevalent over the past 10-15 years. 578

579

Tool wear is an important aspect of machining processes, as worn tools result in 580

unnecessary energy consumption, waste generation and process downtime. A number of 581

researchers have explored the use of state observers and Bayesian methods with mathemat- 582

ical models of tool wear within machining processes. 583

Niaki et al.[75] developed a discrete linear model from a mechanistic model of tool 584

wear to be used with a Kalman filter. While the true dynamic behavior of tool wear is 585

nonlinear at the initial stages, linear at intermediate stages, and nonlinear at the final stages 586

before catastrophic failure [76], their work focused only on the linear stage. From the 587

mechanistic model of cutting, a linear relationship is derived between power consumption 588

and tool wear. In-line measurements of spindle current allow for power consumption 589

estimation which is used to correct the tool wear and tool wear rate estimates. In an 590

experimental trial, the designed Kalman filter resulted in a maximum average error of 10% 591

of tool flank wear using this low-cost method. Tiwari et al. [77] further extended the KF 592

scheme proposed by Niaki [75] in an end milling process to incorporate machine vision 593

measurements of the surface texture of the cut surfaces. Linear regression was used to 594

formulate a measurement model of flank wear with the cutting force and image histogram 595

variance as the measurement vector y. An alternative measurement model excluding 596

cutting force was also tested. In experimental trials, both KF implementations were able 597

to predict the progression of tool failure, providing better accuracy than the standalone 598

regression model (without the mechanistic model of tool wear progression). Both models 599

gave adequate estimates of the flank wear, meaning that the force measurement could be 600

neglected. 601

Zhang et al. [78] proposed the use of Least Squares Support Vector Machines (LS- 602

SVM) in a Kalman Filter for tool wear estimation, also incorporating visual images into the 603

measurement update. LS-SVM is used to train a tool wear prediction model from cutting 604

conditions, cutting time and wear position based on a historical data set. A KF framework 605

is implemented to ’correct’ the LS-SVM model predictions using observed tool wear from 606

visual images (LS-KF model). Because the model process noise and the measurement 607

noise covariances are assumed to be fixed, the Kalman gain converges to a steady-state 608

KF, which occurs after six time-steps. The steady-state KF was then used to update the 609

LS-SVM model without the actual tool wear images (LS-KF-S model). The KF approach 610

significantly improved the prediction errors relative to the open-loop LS-SVM model alone. 611

While the best performance is achieved using the continual visual measurements of tool 612

wear in the LS-KF model, the LS-KF-S also gave good estimation performance. In this case 613

the KF framework facilitates significant improvement in the LS-SVM predictions with a 614

small set of images to correct the model. 615

Sadhukhan et al. [79] presented an unscented Kalman Filter (UKF) for flank wear 616

estimation in a turning process. A discrete flank wear model is developed where two com- 617

ponents of flank wear due to abrasion and diffusion are considered as state variables. The 618

system model parameters are determined from experimental data. A linear measurement 619

equation, derived via linear regression from the experimental data set, relates the state 620

variables to the measured cutting force. Both a UKF and Extended Kalman Filter (EKF) 621

were compared for tool wear estimation in a simulation. The simulation of both methods 622

showed flank wear estimation by UKF outperformed that of EKF with a 50% reduction in 623

the error of the UKF estimates relative to EKF. 624

625

The application of a particle filter framework for tool wear monitoring has been ex- 626

plored in a series of works [80–84]. A PF method for tool wear estimation in a milling 627

process was proposed in [80] and further developed in [81]. This work proposes a physics- 628
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based analytical tool wear model for prediction of the tool wear state, with the model 629

parameters described by uniform probability distributions. A particle filter based scheme is 630

investigated to estimate the model parameters and the tool state based on online measure- 631

ment. Tool vibration signals and force measurements are used as indirect measurements of 632

the actual tool wear state. First, various features of the signal measurements (statistical, 633

frequency-domain, time-frequency domain) were extracted and analysed for relationship 634

with tool wear using an experimental dataset. It was found that wavelet energy in the 635

x-direction of the force measurement has a strong linear correlation with the tool wear 636

and hence it was selected as a single measurement for use in a particle filter measurement 637

update. In [81] both an autoregressive (AR) model and support vector regression (SVR) 638

were investigated to formulate the measurement model in order to predict the online mea- 639

surement from the estimated tool wear state. In general, SVR outperformed the AR model. 640

The use of a PF with an SVR or AR measurement model improved the tool wear prediction 641

2% compared to a PF using a simple linear measurement model. In [82] a similar scheme 642

was explored with the addition of evaluating various dimension reduction techniques for 643

improving the signal feature selection step of formulating an SVR measurement model. 644

Principal Component Analysis (PCA), kernel Principal Component Analysis (k-PCA) and 645

Locally Preserving Protection were explored with the best performance yielded by k-PCA. 646

The performance of two different PF algorithms was explored in [84]. A Local Search 647

Particle Filter (LSPF) is compared against a conventional sequential importance resampling 648

(SIR) method. LSPF showed a reduction in prediction error by over 30% in comparison to 649

the standard SIR approach which suffered from the particle population diminishing too 650

soon. In [83], the system model allows for time-varying machining settings and uses a 651

particle filter for joint state and parameter estimation. A refined particle resampling strategy 652

is proposed for the implementation of the PF. In this work the online measurements include 653

acoustic emission (AE) data. Changes in the distribution of vibration and AE data were 654

interpreted as indicators of tool wear. This method allows for good accuracy of tool wear 655

prediction under changing settings of feed rate, cutting depth, and cutting speed. 656

657

Bayesian estimation methods have also been used to estimate the surface roughness 658

of parts while they are being machined. Conventionally, surface roughness is measured 659

post-manufacturing, which can result in waste due to rejects detected too late for corrective 660

action to be taken. Moliner-Hereida et al. [85] examined three approaches for surface 661

roughness monitoring of machined parts in real-time. In the first, they used an open-loop 662

system to estimate the surface roughness on the assumption that the surface roughness 663

increases at a constant rate (as the cutting tool wears over time). In the open-loop scheme, 664

the surface roughness is estimated based on an empirical model of the relationship between 665

cutting parameters, surface roughness and power consumption. In the second scheme, 666

a steady-state Kalman filter was used for surface roughness estimation (i.e. both the 667

process noise and the measurement noise covariances are assumed to be constant). The 668

system model predicts both surface roughness and power consumption - again under the 669

assumption that both increase at a constant rate, which depends on the cutting parameters. 670

Actual power consumption measurements are obtained every ten parts and allow for 671

correction of the state estimates. The third scheme incorporated surface roughness readings 672

from a profilometer in addition to power consumption information at the same rate of 673

every ten parts. The profilometer checks the surface roughness post-machining. All three 674

approaches were compared in a simulation study. While the Kalman Filter implementation 675

in scheme two improved results over the open loop system, significantly better performance 676

was achieved by also including the profilometer measurements. 677

Zhang et al. [86] examined tool wear estimation and surface roughness prediction in a 678

micro-milling process with a particle filtering approach. An improved analytical surface 679

generation model was developed from analysis of the process geometry-kinematics. The 680

theoretical trajectory of tool wear including the non-linear behaviour of tool run-out was 681

predicted. Using the particle filter framework, the predicted tool wear was updated with 682



Version March 14, 2022 submitted to Sustainability 18 of 34

Table 3. State-estimator methods used improve sustainability of Machining processes

Machining Process Method Desired output Sustainability impact Refs

Milling KF Tool flank wear
Estimation of tool life
and tool changes schedule [75]

End-Milling KF Remaining tool life
Estimation of tool life, efficient
tool changes and reduced waste [77]

Milling Least Square SVM and KF Remaining tool life
Improve tool life prediction
and process efficiency [78]

Turning Unscented KF Remaining tool life
Tool life prediction, tool changes
and process efficiency [79]

Milling PF Wear width of the tool
Tool width estimation, tool change
scheduling and process efficiency [80]

Milling PF Remaining tool life
Tool life prediction, tool change
scheduling and process efficiency [81]

Milling Augmented PF Estimation of tool degradation
Tool life estimation and process
efficiency [82]

Milling PF Tool life estimation
Tool life monitoring, tool change
scheduling and process efficiency [83]

Milling Local Search PF Tool life estimation
Tool life monitoring, tool change
scheduling and process efficiency [84]

Milling Model-based KF Surface roughness
Improved part quality and
efficiency improvement [85]

Micro-Milling PF
Surface roughness and
Surface topology

Improved part quality
and reduced waste [86]

tool vibration and dynamic cutting force measurements. The resulting stochastic model 683

of the cutting process was used to predict surface roughness under 5 different machining 684

conditions. The influence of the machining parameters on the stochastic surface generation 685

are also analyzed. The model allows for prediction of the machined surface quality prior to 686

the costly micro milling operations, and provides a basis for optimization of the machining 687

parameters to improve quality and efficiency. 688

Table 3 summarizes the studies undertaken using various Machining technologies and 689

applying state estimators and it captures desired outputs and the sustainability impacts. 690

The application of state estimation approaches as presented in this section, has demon- 691

strated greater accuracy in condition and part quality monitoring in machining processes 692

compared to using open loop models. In many cases the proposed Bayesian filtering frame- 693

works incorporate machine learning methods into the measurement update for dealing 694

with complex high dimensional data, such as vibration and acoustic emission signals and 695

visual images. The application of Bayesian inference is shown to improve over use of 696

the machine learning approaches alone. The improved condition and part monitoring 697

performance can lead to greater control over the process, resulting in reduced downtimes 698

due to unexpected tool failures and a reduction of energy use and waste generation from 699

faulty tooling and components [87]. 700

3.5. Semiconductor Manufacturing 701

Semiconductors have an invaluable role to play in meeting global climate goals as 702

they are intrinsic to solar panels, wind turbines, electric vehicles and many other green 703

technologies. However, as the demand for computer chips continues to grow, semiconduc- 704

tor manufacturing itself has many challenges with regard to sustainability, as it requires 705

significant input of energy and water and creates hazardous waste [88]. A recent analysis 706

showed that the greatest source of carbon emissions in computing is from hardware manu- 707
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facturing and infrastructure [89]. As a result, there is increasing attention on approaches to 708

minimise resources and the production of waste in semiconductor manufacturing. State 709

estimation plays an important role to this end as a persistent challenge in semiconductor 710

manufacturing control is the lack of critical in situ sensors to provide real time information 711

on the wafer status for feedback control and optimization. 712

713

Semiconductor processing consists of many different operations to create the finished 714

product and due to physical constraints it is not feasible to conduct the high precision 715

metrology needed for quality validation until after a step is completed. However, processes 716

such as lithography are subject to many sources of variations caused by environmental 717

changes, regular maintenance and operational drift over time. Therefore metrology steps 718

are integrated into the production line to minimise the delay [90]. Typically, each main 719

processing step utilizes ’run-to-run’ (R2R) control which integrates process control theory 720

with statistical process control (SPC). In R2R, the wafer measurements following a run of a 721

unit process are used to update the process settings for the next run in order to achieve the 722

required quality targets. The basic structure of a run-to-run controller consists of a process 723

model, a state estimator, and a control law. Successful implementation of R2R control 724

in commercial facilities has been achieved for processes including chemical mechanical 725

polishing, chemical deposition, and plasma etching and has proven that it can efficiently 726

improve the product yield and reduce scrap, rework, and cycle time [91]. Exponential 727

weighted moving average (EWMA) control, (composed of EWMA filtering followed by a 728

deadbeat controller), is the established method of R2R control and has been shown to be 729

optimal for processes subject to integrated moving average (IMA) disturbances, which is 730

the most common type of disturbance signal in semiconductor manufacturing. Kim et al., 731

[92] explored a Kalman filter based R2R controller and compared performance against an 732

EWMA controller for minimising variation in the quality variables of the product under 733

different types of process disturbance signals. The Kalman filter provides the optimal 734

one-run-ahead prediction of the model parameters perturbed by the disturbance, and 735

the controller computes the control input for the next run to compensate for the effect 736

of the disturbance. For IMA and integrated white noise (IWA) disturbances the EWMA 737

and Kalman filter have the same structure and show identical performance. However for 738

integrated auto-regressive (IAR) and auto-regressive integrated moving average (ARIMA) 739

type disturbances the Kalman filter R2R controller outperformed the EWMA controller. 740

741

Disturbance observers aim to identify the specific nature of a disturbance in a system 742

and to subtract this from the control input in order to reject the disturbance. This involves 743

feeding the output y of a plant through an inverse model of the plant and subtracting 744

the input signal u to estimate the disturbance signal. Disturbance observers have shown 745

to be effective in high precision motion control for mechatronic stages in semiconductor 746

processes including lithography and chip packaging [93–96]. The disturbance observer 747

concept has also been applied to run-to-run control to deal with some of the shortcomings 748

of EWMA control. If there is severe aging of a production tool or the process drifts, EWMA 749

control produces an offset in the process output, which can be corrected by different means 750

such as a predictor corrector controller (PCC) or double EWMA controller. Lee et al., [97,98] 751

proposed an output disturbance observer (ODOB) structure as a unified framework for 752

these controllers and provided a systematic method to obtain the optimal parameters for 753

guaranteed optimal nominal performance. They showed in simulation studies that the 754

performance of the controllers was improved using this method. 755

756

A challenge for R2R control is the trend towards high-mix manufacturing, i.e., a single 757

machine may process several different products at different times, and products with the 758

same specification may be fabricated on different machines in different lots. This led to 759

the introduction of ’threaded’ R2R control which partitions historical data into different 760

’threads’ based on the specific manufacturing context (tool, product etc.). However, as 761



Version March 14, 2022 submitted to Sustainability 20 of 34

product mixes are becoming increasingly diversified this can lead to too many threads, 762

some of which have insufficient data. A long delay between adjacent lots in one thread may 763

make the estimation unreliable for infrequently manufactured products. Further, a lack of 764

information sharing on data relating to tool degradation means that all the threads using 765

the same tool must address this shift disturbance separately [99]. To address this, several 766

non-threaded state estimation methods have been proposed which involve an observer 767

to identify the contribution from different production contexts. Of these methods, the 768

Kalman filter is one of the most important [91]. Haririchi et al., [99] proposed a modified 769

Kalman filter to overcome the problem that in a non-threaded system, the model structure 770

can be such that the system states may not be completely observable. Wang et al., [100] 771

proposed a modified, simple to implement, Kalman filter scheme (involving periodic reset 772

of the P covariance matrix), which considers the fact that if a context item is not involved 773

in a process run, then its state does not change. The method was shown to be robust to 774

uncertainty in the disturbance parameter and to outperform the conventional KF scheme 775

for the common IMA-type disturbances. 776

777

A drawback of the KF methods is that the nominal performance of the controller can 778

only be maintained when the disturbance model is known. In recent work, an extended 779

state observer (ESO) was investigated for R2R control in semiconductor manufacturing 780

[101]. In the ESO algorithm disturbances, including plant-model mismatch, are lumped into 781

a total disturbance which is set as a new state. An advantage of ESO is that the disturbance 782

can be reconstructed without an accurate model. A threaded ESO R2R controller was 783

shown to outperform other threaded approaches in a photolithography process fabricating 784

five different products. The authors further developed a discrete sliding mode observer 785

for the same process, which estimates the disturbance without using a process model. The 786

system was shown to outperform EWMA and double EWMA controllers in rejection of 787

IMA disturbances with a shift or drift (as occurs in tool ageing). It also performed better 788

under plant-model mismatch and had better tolerance for metrology delay [102]. 789

790

Tsai et al. [103] developed a discrete sliding mode observer to estimate the core tem- 791

perature of multi-layer metal plates in semiconductor manufacturing process for real-time 792

(rather than run-to-run) thermal control. While the middle and top layers are monitored by 793

thermocouples, the middle layer is not accessible to physical measurement. This can result 794

in either excessive heating which can damage the material, or heating which is insufficient 795

to result in the desired metal phase change. A state space model was developed from the 796

physics of the heat transfer processes. A sliding mode observer was proposed due to the 797

high robustness of the approach to plant-model mismatch and external disturbances. The 798

system was shown in experiment to accurately estimate the core temperature of the system 799

despite being influenced by an unknown external cooling temperature. 800

In summary, state estimation has a powerful role in semiconductor manufacturing due 801

to the problems in achieving physical measurements to the required precision in situ. State 802

estimation methods are combined with SPC approaches in run-to-run control to minimise 803

the effect of process disturbances. Sophisticated algorithms have been devised which 804

can enable tight quality tolerances to be achieved, despite many sources of variation in 805

fabrication sites having a high product mix. Most recent developments show potential for 806

good performance without an accurate model of the process disturbances making practical 807

implementation more feasible. Due to the high environmental impact of semiconductor 808

manufacturing (energy and water use, toxic waste products), the ability to produce wafer 809

products ’right first time’ can reduce scrap, rework, resource use and emissions. 810

3.6. Additive Manufacturing 811

Additive manufacturing (AM) is the fabrication of objects from computer-aided de- 812

sign (CAD) data, by translating the 3D CAD data into 2D cross-sectional profiles. Material 813

is then deposited layer by layer following the form of the generated 2D cross-sections, 814
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which fuse to form the 3D object. Early applications of additive manufacturing were for 815

rapid prototyping of non-functional models. However, with advances in materials and 816

technology, AM is now widely used in various industries to produce products that offer 817

both form and function and it is no longer limited to basic model creation [104]. 818

819

AM processes are near net-shape, that is the initial fabrication of the product is very 820

close in size and shape to the final requirements, meaning minimal material removal is 821

required. Compared to conventional and subtractive manufacturing such as machining, 822

additive manufacturing is significantly more resource efficient and can reduce the need for 823

additional, energy-intensive post-processing steps [105]. The main advantage of AM over 824

conventional machining methods is that it can produce complex parts with geometries not 825

possible through conventional methods with a high degree of precision. AM can be used to 826

manufacture one-off bespoke products, such as customised medical devices, cost-effectively 827

and close to the point of use, eliminating distribution steps. However, challenges remain 828

in production of defect-free parts by AM processes and the development of inline process 829

monitoring and control of critical features is still at any early stage with most commercial 830

systems having only-loop temperature regulation schemes [106]. 831

832

There are different types of AM processing techniques, which can be classified into 833

seven general categories: powder bed fusion, material jetting, vat polymerization, sheet 834

lamination, fused deposition modelling, binder jetting and directed energy deposition [107]. 835

Within these, there are three main classes that have the greatest application in manufactur- 836

ing processes, namely Powder Bed Fusion (PBF), Directed Energy Deposition (DED), and 837

Fused Deposition Modelling (FDM) (see Figure 6). 838

In the PBF process, the parts are built from a bed of powder particles (polymer or metal) 839

that fuse together selectively by a heat source, layer by layer. This heat source can be a 840

laser or electron beam [108]. The DED process fabricates the components by melting the 841

material, in the form of powder or wire, together with a focused laser beam [109]. The 842

last class, FDM, also known as fused filament fabrication (FFF), feeds a polymer filament 843

through a nozzle which heats it to a molten state. This molten filament extrudes through 844

the nozzle, which deposits the polymer onto a build plate based on the 2D cross-sectional 845

layers of the 3D design [110]. 846

847

These three classes have a lot of process parameters and design criteria which affect 848

the quality of the additively manufactured parts. These include, material selection and 849

properties, melt pool temperature, melt pool width, laser power, support structure design, 850

bed adhesion, layer height, wall thickness, infill parameters, etc. A number of recent studies 851

have explored improving the quality of the process and final printed parts with real-time 852

monitoring by using KF, PF and other state observers to improve on the limitations of 853

physical measurement. 854

855

Monitoring and control of processing temperatures is one the most vital factors in 856

metal AM since it affects the metallurgic phase formation and thereby the microstructure 857

of the printed part [111]. The energy to melt the material in PBF and DED processes is 858

localised in a small melt pool, and as a result the temperature gradients are extremely large. 859

This causes differential thermal contraction and local micro-distortions which can integrate 860

to form large milliscale distortions [112]. It is not possible to place a physical temperature 861

sensor on the surface being built, so temperature measurement must always be remote. 862

Most commercial systems have a thermocouple in the build plate but the temperature here 863

is hundreds of degrees lower than at the melting plane. Some more expensive systems use 864

digital camera based pyrometer systems to monitor the melt pool or to obtain a thermal 865

image of the top surface. 866

In a low-cost approach, Oakes et al. [113], proposed a two-step Kalman filter in Laser 867

Metal Deposition (a DED method) to monitor the melt pool temperature in a closed-loop 868
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Figure 6. Classes of AM widely used in manufacturing industries.

model-based controller. They compared the performance of a temperature controller with 869

and without the KF on two different temperature references (time-varying and constant). 870

Comparison of the results showed a reduction of average absolute error by almost 32% and 871

23% for the constant and time-varying references respectively. Despite the high system 872

uncertainty, KF performed well in estimation of the melt pool temperature. 873

Research undertaken by Jiang et al. [114] used a Kalman filter to control the tempera- 874

ture of the powder bed in a PBF process. They introduced a multi-zone temperature control 875

in which nine temperatures from different locations of powder bed were extracted by in- 876

frared cameras and each of them were fed back to a seperate PID controller. They compared 877

the result, first to a single loop controller that used only one average temperature reference 878

and one PID controller; and secondly to a Model Predictive Control (MPC) controller. For 879

all methods, KF was used to filter the measurements with large noise covariances. They 880

demonstrated that multi-zone control has a superior performance compared to single-loop 881

and provided similar performance as MPC. However, it had the advantage that it reduced 882

the computational cost in comparison to MPC. 883

884

Besides control of temperature, research has also been done into the control of other 885

quality factors within AM processes. Lopez et al. [115] studied uncertainty identification 886

and propagation in the prediction of melt pool width in a Laser PBF process. They further 887

developed a thermal model from a laser cladding process [116] to be applied to PBF for 888

melt pool width prediction. They validated their model using a case study of printed 889

overhanging structures and showed how thermographic monitoring is effective in uncer- 890

tainty identification and reduction. A KF was used for process estimation using the noisy 891

measurements of melt pool width. The approach has the potential to be applied to control 892

the melt pool dimensions in real-time. 893

894

The high laser power in PBF evaporates and fuses the metal powder. If the boiling 895

point is reached, a vapour plume arises in the melt pool that causes formation of a void in 896

the printed parts. The evaporation also generates sparks, known as spatter, that can lead to 897

instability in the melt pool and discontinuity at the surface. Hence, real-time monitoring 898

of plume and spatter can aid better control of the process to avoid such defects [117]. 899

Zhang et al. [118] monitored and extracted various features from the melt pool in laser 900

PBF, including plume and spatter, with an off-axis vision monitoring system employing a 901

high-speed camera. The contrast of images from the camera was enhanced using an optical 902

filter. They introduced a novel image processing method to segregate melt pool, plume, and 903

spatter from each other. They also used KF tracking to find the exact location of the melt 904

pool. Various features such as melt pool intensity, plume area, plume orientation, spatter 905

area, direction and velocity were extracted in four different single-track scenarios using 906



Version March 14, 2022 submitted to Sustainability 23 of 34

this approach. These features are the potential indicators that assist with the investigation 907

of, and decisions on printed part quality. 908

909

As the temperature history directly influences the phase formation, the ability to esti- 910

mate the complete temperature history of the entire part, not just the melt pool, would be 911

extremely valuable for process validation and precise control over resulting part properties. 912

Wood et al. [106], explored using state-observation for the estimation of temperature states 913

throughout the printed part itself from the measurement of surface temperature in the 914

laser PBF process. Here a Finite Element Method (FEM) was utilized to model the complex 915

spatio-temporal temperature dynamics of the process. A high-dimensional state-space 916

model (196 state variables) was extracted from the FE model, from which a KF temperature 917

state observer was defined. They successfully estimated the temperature evolution in 918

several simulated test parts. 919

920

They further developed their work in later research to estimate internal temperature 921

distribution and proposed a two-dimensional linear model with FEM, not only for a laser 922

heat source (L-PBF) but also for electron beam PBF (E-PBF) [119]. They applied an ensemble 923

KF to this system to deal with the high dimensionality. In their research, the EnKF esti- 924

mates temperature by correcting the linear model temperature to agree with measurements 925

extracted from a Finite Element model in lieu of physical measurement data. In simulation 926

tests, they assessed the EnKF estimation error for E-PBF and L-PBF systems when the 927

assumed material properties matched the FEM simulation, and when they differed. Figure 928

7 presents the L∞-norm of the temperature errors (i.e. comparison of the maximum errors) 929

for E-PBF (noted as 3) and L-PBF (noted as 4) for the open loop and EnKF estimates for 304 930

stainless steel (SS) at low temperature (Figure 7 (a)) and elevated temperature (Figure 7 (b)). 931

The EnKF scheme presented up to a 44% reduction in the L∞-norm of the temperature field 932

error relative to the open-loop FE model predictions when the material properties differed. 933

The method has the potential for exploitation in a closed-loop control scheme to modulate 934

laser power in order to ensure the desired microstructure is achieved despite uncertainty in 935

the raw material properties. 936

937

Figure 7. Comparison of L∞-norm error of open loop with EnKF for E-PBF (3), L-PBF (4) with (a) 304
SS at low temperature and (b) high temperature

Several studies have also been done to investigate the processing parameters and part 938

quality of polymer printed parts. Kim et al. [120], proposed a digital twin method for 939

part temperature measurement in FDM. Similar to the work of Wood et al. [106,119], they 940

defined a spatio-temporal thermal model, here using the finite difference method. They 941

fused this model with sensor data (IR camera) using a linear KF to estimate the tempera- 942

ture. Verification of the method was performed with a virtual experiment set-up, which 943

demonstrated that this closed-loop approach can estimate the temperature and measure 944

the related uncertainties accurately. 945

946

Garanger et al. [121] proposed an optimal control law to control the mechanical prop- 947

erties in leaf springs produced by fused deposition modelling. They printed the stacked 948

leaves with a simple FDM printer using PLA filament and used a KF framework to estimate 949

the stiffness of the parts. The KF was applied to update the stiffness estimates following 950

a physical test of the stiffness of each printed leaf. The proposed KF method resulted 951
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Table 4. State-estimators used to improve sustainability of AM processes

AM Process Method Desired output Sustainability impact Refs

DED Two-step KF Melt pool temperature
Better estimation of the process
and efficiency improvement [113]

PBF PID and KF Temperature of powder bed
Enhance the profits by
reduction of computational cost [114]

Laser PBF KF Melt pool width
Part quality
and efficiency enhancement
by less waste and rework

[115]

Laser PBF Image processing and KF Various features of melt pool,
plume, and spatter

Part quality
and efficiency enhancement
by less waste and rework

[118]

Laser PBF State-observer
Temperature estimation of
underlying layers of the part

Higher precision part
and less rework [106]

E-PBF & L-PBF Ensemble KF Internal Temperature fields
Higher part quality
and waste reduction [119]

FDM Linear KF Printed part Temperature
Uncertainty estimation and
process quality enhancement [120]

Polymer AM KF Stiffness of the printed part
Part quality
and efficiency enhancement
by less waste and rework

[121]

Polymer AM KF Stiffness of a printed cantilever beam
Part quality
and efficiency enhancement
by less waste and rework

[122]

in higher accuracy in stiffness estimation in comparison with an unfiltered open-loop 952

prediction model. In 2020, they followed a similar approach to estimate the stiffness in a 953

printed cantilever beam [122]. They proposed a dynamic model for the printing process 954

of the beam and fused this model with force sensor data in an optimal control law with 955

KF. Comparison with an open-loop system showed an improvement in predicted stiffness 956

error of about 94% and a reduction in noise by almost 80%. 957

958

Table 4 summarises the studies that have been done to date in AM with state estimators 959

and their related sustainability impacts. State estimators enable inline monitoring of process 960

parameters which cannot be directly measured or for which only noisy measurements 961

are available. Enhanced monitoring of the process and on-line estimation of part quality 962

indicators can reduce defects in the printed parts such as delamination and warpage. Hence, 963

as the failures are predictable, there will be less wasted material, energy, and time and 964

greater practical realisation of the benefits of AM. 965

4. Discussion 966

State estimation is an important concept in manufacturing, providing a suite of tools 967

for improved monitoring and control of manufacturing systems. In this review, we have 968

highlighted recent advances and applications of state estimation in industrial robotics, 969

chemical processes, material forming, machining, semiconductor manufacturing and ad- 970

ditive manufacturing sectors. In particular, Bayesian filtering concepts have emerged 971

as a popular approach to estimate system variables which cannot be measured directly 972

or for which only noisy, uncertain and/or latent information is available. Compared to 973

deterministic state observer approaches, the Bayesian methods have enhanced flexibility 974

in facilitating the incorporation of knowledge about the uncertainty of both system and 975

measurement models and different sources of data about the process. This means that 976

not only is the most accurate estimate of the system states derived under a probabilistic 977
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framework, but also a measure of the associated uncertainty is derived, which provides 978

useful information to operators and manufacturing managers about the appropriateness of 979

corrective action. Particle filtering is more flexible than the Kalman filter as it can deal with 980

non-Gaussian probability distributions and advances in computing power mean that it is 981

now a feasible approach in systems where the dimensionality is relatively low (i.e. in the 982

order of two state variables). Kalman filtering and particle filtering have been shown to 983

improve the precision, speed and perception of industrial robotics, improving the capability 984

of robots to work alongside humans for more efficient, flexible and safer manufacturing 985

processes. These Bayesian filtering methods have also found wide application in estimation 986

of product quality variables in material synthesis and processing (see Table 2), tool condi- 987

tion and part quality monitoring in machining processes (Table 3), compensation of process 988

disturbances in high precision semiconductor manufacturing (Section 3.5), and for quality 989

monitoring and control in additive manufacturing processes (Table 4). Below we outline 990

the main challenges and limitations in implementation of state estimation approaches 991

in manufacturing, and discuss emerging and future trends in the context of sustainable 992

manufacturing. 993

994

4.1. Limitations and practical issues 995

A problem with the practical implementation of the Bayesian methods is that the 996

model uncertainty is often difficult to quantify, particularly with regard to process noise. In 997

practice, the measurement noise is usually estimated from experimental data (comparing 998

sensor measurements to known ground truth values) and the process noise covariance is 999

tuned until good filtering performance is achieved. In operation, the estimates should be 1000

monitored for divergence over time - if the difference between the predicted measurements 1001

and actual measurements is significantly higher than the expected covariance then the 1002

reason for the divergence should be investigated. If it is due to sensor errors (outliers, 1003

missing data) or numerical issues then the filter should be restarted. However, if the 1004

divergence is due to model errors then the filter should be redesigned. Reference [? ] 1005

provides useful information on troubleshooting these practical issues. A useful starting 1006

point for model uncertainty analysis is to examine the sensitivity of the model predictions to 1007

initial conditions and/or model parameters. A sensitivity analysis will reveal what model 1008

outputs are most influenced by different states/parameters and can reveal weaknesses 1009

in the information flow - for example to identify where in the process sensors should 1010

be located and if additional sensor data is needed (see for example [123–125]. That said, 1011

the Bayesian filtering approaches have limitations where the actual nature of the system 1012

uncertainty is unknown, as is the case with manufacturing systems which may be subject 1013

to different sources of variability in the interval between measurement data being available. 1014

This arises particularly in the case of semiconductor manufacturing where high precision 1015

metrology for analysis of part quality can only be conducted after each run and used to 1016

update the process settings for the next run. In this context, the application of a disturbance 1017

observer framework (where the system output measurements are input to an inverse model 1018

of the plant to estimate the disturbance signal directly) has been found to be useful in 1019

improving control performance. Further, the sliding mode observer, which has the property 1020

of high robustness to unknown disturbances, has shown excellent potential for practical 1021

application where accurate models of process disturbances are unavailable. 1022

1023

4.2. Spatio-temporal monitoring 1024

While state observers and Bayesian filters have traditionally been used to estimate 1025

system states which vary over time at a particular point, recent developments have ex- 1026

tended the approach to observe dynamic variables which are spatially distributed - taking 1027

inspiration from approaches applied in geostatistics. This has been investigated in addi- 1028

tive manufacturing and metal forming where a number of works have applied Bayesian 1029
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filtering methods to estimation of spatio-temporal temperature dynamics [119,120]. In 1030

these processes, physical measurements of temperature are limited by physical accessibil- 1031

ity. However, the temperature profile is directly related to the quality of both metal and 1032

polymer parts affecting microstructure and void formation in the former, and the resulting 1033

residual stresses and warpage in both. Because of the complex spatio-temporal dynamics, 1034

the system model in these cases is derived from numerical finite element models. In metal 1035

forming this has been addressed by either (i) using a course 2D grid with low spatial 1036

resolution, or (ii) using a reduced order model which allows for a more complex model and 1037

higher spatial resolution but preserves only the most important dynamics of the system. 1038

In AM a very high number of state variables from an FE approach were preserved and 1039

an Ensemble Kalman Filter (EnKF) proposed to deal with the high dimensionality [120]. 1040

However, this work is still in its early stages and has only been tested in simulation and on 1041

2D models to date. 1042

1043

4.3. Relationship between state estimators and machine learning in manufacturing 1044

The literature points to an emerging trend in combining machine learning with model- 1045

based state estimation, and this been pursued in monitoring and control of machining 1046

processes in particular. Physics-based models of cutting have been exploited to predict the 1047

progression of tool wear and increasing surface roughness in milling and turning processes, 1048

while available machine measurements such as cutting force power consumption are used 1049

to correct predictions. However, increasingly indirect measurements including visual 1050

images, vibration signals and acoustic emission data are used to provide information on 1051

the tool and/or part state and it can be difficult to derive physical relationships between 1052

changes in these types of signals and the wear of the tool. A number of recent works have 1053

therefore applied machine learning to develop a suitable measurement model for applica- 1054

tion in a Bayesian filtering framework. Notably, the combination of a system model which 1055

predicts the progression of tool wear and/or part roughness together with measurement 1056

information from the process is shown to outperform the machine learning models on their 1057

own [78]. In the case of robot perception, Bayesian filtering is also currently regarded as a 1058

more accurate and mature approach than AI-based methods such as ANN and neuro-fuzzy 1059

approaches [36]. 1060

1061

4.4. Systems-level approach 1062

A trend in recent works on state estimation in manufacturing is a greater tendency 1063

towards a more holistic systems level approach to evaluating, optimising and controlling a 1064

manufacturing system. It is shown that a predict-correct state estimation framework can: (1) 1065

incorporate post production inspection and QA data into real-time monitoring and process 1066

control (e.g. [54]); (2) exploit historical data for process modelling via machine learning 1067

where physical relationships are not well defined; and (3) integrate computational models 1068

typically used for product design/process set-up into the process monitoring and control 1069

scheme. State estimation algorithms have also been applied to the issue of cybersecurity in 1070

the context of industrial Internet of Things. While IoT is an enabling technology for the 1071

capture, sharing, storage and utilisation of data in distributed industrial control systems, it 1072

also makes industrial processes vulnerable to cyber attacks which can result in economic 1073

and environmental damage as well as risks to human safety and health. In [126] a Kalman 1074

filter is proposed for time series prediction of process states in a petroleum gas oil treatment 1075

process. The KF is shown in simulation to be effective for rapid anomaly detection in a 1076

framework which facilitates automated control action to correct the plant operation to safe 1077

levels. Other research works examined Kalman filter-based fault detection and isolation 1078

methods to enhance cyber security of water treatment plants, and found that these state 1079

estimation methods excel in certain types of attack but have limitations in others and cannot 1080

always effectively isolate and correct the system [127,128]. There remain several challenges 1081
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in secure state estimation and control of cyber-physical systems, and further research on 1082

data-driven and AI-based secure state estimation approaches is anticipated [129]. 1083

4.5. State estimation and ’Digital Twins’ 1084

A digital twin is a computational representation of a physical process where there 1085

is exchange of data in real-time between the real and virtual processes. Digital twins 1086

are seen to be a vital tool for design, optimisation, control, virtual testing and predictive 1087

maintenance of industrial processes [130]. A digital twin must be capable of processing real- 1088

time data for monitoring a system, and ideally can generate optimal control inputs to the 1089

system to ensure product quality and process efficiency. However for many manufacturing 1090

processes, an accurate computational model requires complex systems of partial differential 1091

equations which can only be solved via finite element and computational fluid dynamics 1092

(CFD) approaches. These approaches are widely developed and deployed for exploring 1093

process design and set-up, however the high computational resources required mean that 1094

such models cannot typically be deployed in real-time for the purposes of monitoring 1095

and control. Hence, the development of methods to generate low-dimensional ’surrogate’ 1096

models from high-fidelity computational models of nonlinear, multi-physics and multi- 1097

scale dynamic systems for use as a digital twin is currently a very active area of research. 1098

State estimation algorithms can then provide a framework for the integration of such 1099

models with available sensor data for process monitoring and control. Surrogate models 1100

or ’emulators’ can be developed using machine learning to derive a simpler and faster 1101

model from physics-based models, with Gaussian Process regression (GPR or ’kriging’) 1102

being one of the most successful [130]. A Kalman filtering framework for spatio-temporal 1103

dynamics of uncertain systems captured by Gaussian process models using a network 1104

of distributed sensors has recently been proposed and may have significant potential for 1105

complex, distributed manufacturing systems[131]. An alternative emerging approach to 1106

develop model surrogates which can be used in real-time state estimation and process 1107

control is the model order reduction approach (MOR) approach. MOR aims to compute a 1108

reduced order model (ROM) of low dimension that captures the important characteristics 1109

of the original high dimensional model. Under this approach the physics of the problem is 1110

embedded in the reduced-order representation, typically using a projection-based method 1111

such as proper orthogonal decomposition (POD), which requires less training data and 1112

greater generalisation capacity relative to purely data-driven machine learning approaches 1113

[132–134]. Such methods have recently been explored for state estimation in structural 1114

health monitoring [135] and hydraulic systems [136,137] and, as discussed here, metal 1115

forming [69,70]. The extension of the state observer/Bayesian filter framework to utilise 1116

surrogate model approaches has great potential for process monitoring and control of 1117

complex manufacturing problems with uncertain spatial dynamics, for example in Additive 1118

Manufacturing, and promises to be a rewarding avenue for future research. 1119

5. Conclusions 1120

A review of recent works in the development and application of state estimation 1121

methods in manufacturing demonstrates that such algorithms play an important role in 1122

soft sensing and sensor fusion to improve product quality, reduce material use, waste 1123

and downtime, and improve efficiency and safety in manufacturing. As manufacturing 1124

industries are under increasing pressure to improve sustainability through greater resource 1125

efficiency, reduction of pollutants, and greater use of ’circular’ materials, state estimation 1126

algorithms can be an important tool to use alongside developments in sensorisation, com- 1127

puting and IoT in advanced manufacturing. Bayesian filtering in particular is a popular and 1128

flexible approach capable of integrating physical knowledge and various data sources of 1129

information in an optimal way. The framework provides a natural way to synthesise both 1130

physics and data-based modelling approaches with real-time data in a connected cyber- 1131

physical system under the Industry 4.0 concept. Recent works have highlighted how state 1132

estimation algorithms such as the Kalman filter can incorporate complex partial differential 1133
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equation models through a variety of approaches for real-time monitoring and control of 1134

systems with spatial and temporal dynamics. Further research on the integration of state 1135

estimation methods in digital twin approaches promises to be a vital tool in optimisation 1136

and control of complex manufacturing systems. 1137
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[h] IoT Internet of Things
SMO Sliding Mode Observer
KF Kalman Filter
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
UKF Unscented Kalman Filter
PF Particle Filter
SLAM Simultaneous Localisation and Mapping
AI Artificial Intelligence
ROS Robot Operating System
AMCL Adaptive Monte Carlo Localization
Mw Molecular Weight
EMI Excluding Mutual Information
CI Covariance Intersection
MPC Model Predictive Controller
APF Augmented Particle Filter
AHH Adaptive Hinging Hyperplane
RHKF Receding Horizon Kalman Filter
PID Proportional Integral Derivative
LS-SVM Least Square Support Vector Machine
SSKF Steady-State Kalman Filter
SVR Support Vector Regression
GDP Gross Domestic Product
PCA Principle Component Analysis
K-PCA Kernel Principle Component Analysis
LSPF Local Search Particle Filter
R2R Run to Run
SPC Statistical Process Control
EWMA Exponential Weighted Moving Average
IMA Integrated Moving Average
IAR Integrated auto-regressive
PCC Predictor Corrector Controller
ESO Extended State Observer
AM Additive Manufacturing
CAD Computer-aided Design
PBF Powder Bed Fusion
DED Directed Energy Deposition
FDM Fused Deposition Modelling
FFF Fused Filament Fabrication
L-PBF Laser beam Powder Bed Fusion
E-PBF Electron beam Powder Bed Fusion
FEM Finite Element Method
MOR Model Order Reduction
ROM Reduced Order Model
POD Proper Orthogonal Decomposition
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