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ABSTRACT 

Financial options are central to controlling investor's risk exposure. However, since 

1987 parametric option pricing models have performed poorly in assessing risk levels. 

Also, electronic trading systems were introduced in this period, and these produce 

option price quotations at a rate of up to several times per second. There is a large and 

rapidly expanding amount of data to be analysed. A new generation of techniques for 

pattern recognition in large datasets has evolved, collectively termed 'computational 

knowledge discovery techniques' in this work. Preliminary evidence suggests that 

certain of these techniques are superior to parametric approaches in pricing options. 

Statistical confidence in models is of paramount importance in finance, hence there is a 

need for a systems framework for their effective deployment. In this thesis, a dedicated 

computational framework is developed, for the application of computational knowledge 

discovery techniques to options market databases. The framework incorporates 

practical procedures, methods, and algorithms, applicable to many different domains, to 

determine statistical significance and confidence for data mining models and 

predictions. To enable a fuller evaluation of the uncertainty of model predictions, these 

include a new method for estimating pointwise prediction errors, which is 

computationally efficient for large datasets, and robust to problems of regression and 

heteroskedasticity typical of options market data. A number of case study examples are 

used to demonstrate that computational knowledge discovery techniques can yield 

useful knowledge for the domain, when applied using the framework, its components, 

and appropriate statistical and diagnostic tests. They address an omission in the 

literature documenting the application of these techniques to option pricing, which 

reports few findings based on hypothesis testing. A contribution to the field of 

nonparametric density estimation is made, by an application of neural nets to the 

recovery of risk-neutral distributions from put option prices. The findings are also new 

contributions for finance. Finally, in a discussion of software implementation issues 

emerging technology trends are identified. Also, a case is made that future vertical data 

mining solutions for options market applications, should incorporate statistical analysis 

within the tool, and should provide access to values of partial derivatives of the models. 
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Guide to Notation 

The following symbols are used throughout the text. Other symbols are defined locally 

so are not included here. 

D 

S 

d, t, ory 

Jl(x) 

x 

x 

A data set 

A sample fromD. 

Vector of targets (response, or dependent variables) 

Conditional mean of the target given the input x. 

A vector of inputs (explanatory variables, or regressors) 

A matrix of inputs (explanatory variables, or regressors) 

A scalar random error term, or a small increment. 

Estimated conditional mean of the target given the input x. ,u(X) or Jl*(x) 

p 

Q 

Set of parameters ( coefficients) in a parametric regression function 

Set of weights in a non-parametric regression function 

I(x, P),/(x, Q) 

I(x, /3), I(x, iJ) 

E[-] 

Var[-] 

N 

p(x) 

flex) 

P(x) 

o 
d 

d" 

a 
ax 
8 

8x 

True regression functions. 

Estimated regression functions. 

An expected value (mathematical expectation), or mean 

A variance 

Sample size 

Probability density of the variable x. 

Estimated probability density of the variable x. 

Probability distribution function for the variable x 

An observed value 

Differential operator 

Differential operator (partial differentiation) 

Differential operator (functional differentiation) 

C( ., ... ,. ) Call option pricing function 

P( ., ... ,. ) Put option pricing function 

I(x) Function of the variable(s) x 

0'2 (x) Noise variance function 

0- 2 (x) or 0' *2 (x) Estimated noise variance function 
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CHAPTER i . OVERViEW 

1.0 Introduction 

The financial securities industry has been particularly enthusiastic in its adoption of 

computer systems. Over the past 15 to 20 years the industry has been transformed by 

the introduction of technology that captures detailed transaction information on 

securities trading. The London Stock Exchange abandoned 'open outcry' trading on a 

physical trading floor where traders met face to face as long ago as 1986. In that year, 

decentralised trading via computer and telephone was introduced and the trading floor 

closed. This was facilitated by the SEAQ and SEAQ International computer systems, 

which displayed stock quotes in broker's offices. In order to bring greater speed and 

efficiency to the market a new system, SETS (Stock Exchange Electronic Trading 

Service), was launched in 1997. Also the settlement service, transferring stock from 

seller to buyer and arranging payment, was switched to the CREST system operated by 

a new company CRESTCo. Between them these systems handle the stock of more than 

4,700 member companies of the exchange valued at £1,200 billion. The systems daily 

handle approximately 140,000 transactions in more than 3,000 securities, move £30 

billion in cash, and handle 3 million electronic messages. They now support more than 

270,000 member accounts. 

In 1998 LIFFE (London International Financial Futures Exchange), the UKs mam 

derivatives exchange, began the process of transforming itself into an electronic market. 

The LIFFE CONNECTTM trading platform was introduced, allowing electronic 

transactions in all the exchanges products. Migration from the trading floor to LIFFE 

CONNECTTM began with Individual Equity Option contracts on 30 November 1998. 

The process was completed on 27 November 2000 with the migration of LIFFE's non­

financial products, and LIFFE became a fully automated exchange. The LIFFE 

CONNECTTM system permits anonymous screen based trading, where traders are 

unaware of their actual counterparty both pre and post trade. The system is designed to 

handle greater order flows and transaction volumes than any other electronic trading 

system. It is distributed to over 400 sites in 23 countries in all major time zones, more 

than any other electronic trading system in the world. It offers the widest range of 

futures and options products offered by any electronic exchange. These comprise 

futures and options on short-term interest rates, government bonds, equities, indices and 

commodity products. Currently LIFFE CONNECTTM handles transactions worth over 

US$875 billion a day on average, making LIFFE the world's largest electronic 

12 



CHAPTER 1. OVERVIEW 

exchange by value. Following the merger of Euronext and LIFFE the Brussels and 

Paris derivatives markets migrated to LIFFE CONNECTTM in spring 2003, Amsterdam 

and Lisbon are to follow. With the conversion of the London Stock Exchange and 

LIFFE into electronic exchanges via the SETS/CREST and LIFFE CONNECTTM 

systems all UK dealing in exchange traded financial securities, and most commodity 

futures and options, is now screen based. These technologically driven developments 

place the City at the forefront of what has become an increasingly competitive 

marketplace. 

1.1 Knowledge Discovery in Databases and Data Mining 

The SETS/CREST, LIFFE CONNECTTM, and similar electronic trading systems, can 

produce time stamped records of price quotations and transactions, up to several times 

per second, for all traded securities. This data is available in real time, either directly 

from the exchange or through data vendors such as Reuters, Bloomberg, or Bridge. 

Exchanges such as LIFFE also sell archived historical data generated by these systems. 

As a result market practitioners now have available huge historical databases to track 

trends, perform technical and quantitative analysis, and build and back test' trading 

models. This creates both an opportunity and a problem. 

1.1.1 The Opportunity 

Until the late 1980s sparse data was a dominant factor in financial modelling. Because 

so little data was available, models derived from data were limited in their precision, 

due to the resulting statistical uncertainty. Today, data availability is no longer a 

problem thanks to electronic trading systems, and velY large high-frequency datasets2 

allow greater precision. Statistically, the more observations there are in a data set, the 

greater the allowable degrees of freedom, and the greater the precision of the estimators 

obtained. Also, discrimination between different models and model validation becomes 

more statistically precise. Sparse data constrains model choice to simple models with 

few parameters. With large datasets however, the number of independent observations 

approximates an asymptotic environment. This allows exploration of more complicated 

I Unlike the 'hard' sciences (i.e. physics, chemislly, biology) it is rarely possible to set up an experiment to 
test a theory or model in finance . Instead models must be 'back tested' using historical data. 
2 A set of high frequency data for a single days trading in a liquid market is equivalent to 30 years of daily 
data [Dacorogna, M.M., Gencay, R., Muller, U., Olsen, R.B., Pictet, O.V. 2001. An Introduction to high 
Frequency Finance, Academic Press . p 6.]. 
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CHAPTER 1. OVERVIEW 

(non-linear) models with more parameters. Moreover, the application of new modelling 

methodologies, statistical methods, and data exploration techniques becomes possible 

and necessary3. 

1.1.2 The Problem 

The amount of data available to market practitioners today is very large and growing 

rapidly. This complicates investment and trading decision making, since there is so 

much data and complexity that may be applicable to any proposed transaction. 

Moreover, the instantaneous order execution and real-time data feeds of screen based 

dealing systems, demand rapid reaction to exploit short lived profit opportunities. 

Consequently, the knowledge required by decision-makers to undertake a transaction 

places immense stress on the analysis and modelling techniques and tools traditionally 

used for decision support in securities markets. When data was scarce it was natural to 

develop analysis and modelling techniques optimised to extract maximum information 

from sparse data sets. However, many of these tools and techniques are not well 

adapted to rapid analysis of very large complex datasets. Traditional analysis and 

modelling techniques usually rely on a verification-based approach. That is, the analyst 

hypothesises the existence of specific relationships in the data. The tools are then used 

to verify or reject the hypotheses. This approach rests on the prior knowledge of the 

analyst to formulate the hypotheses and develop the analysis based on results. The 

effectiveness of a verification-based approach is therefore limited by the ability of the 

analyst to quickly pose appropriate questions and return results, while simultaneously 

coping with the complexity and size of the data space. 

1.1.3 The Solution 

A new generation of computational techniques and tools has been developed to facilitate 

the extraction of useful knowledge from large complex databases. In contrast to the 

tools and techniques traditionally used in the financial securities domain, these 

analytical tools use a discovery-based approach where pattern recognition and other 

algorithms are applied to find important relationships in data. They can handle multiple 

high-dimensional data relationships concurrently, identifying exceptional or dominant 

relationships. These techniques are central to the fields of knowledge discovery in 

databases (KDD) and data mining, which aims to automate as far as possible the process 

3 Neural nets, extreme value theory, and Knowledge Discovery in Databases (KDD) for example. 
14 



CHAPTER 1. OVERVIEW 

of data analysis, including hypothesis selection. The techniques available include 

algorithms for 

• CLASSIFICATION- generating a function that maps data into disparate classes. 

• REGRESSION - which maps data into real-valued prediction variables4
. 

• CLUSTERING - identifying a set of categories to describe data. 

• DEPENDENCY MODELLING - generating models describing significant 

dependencies between variables. 

• CHANGE and DEVIATION DETECTION - finding the most significant changes in 

data compared to normative or previously measured values. 

They are the result of research in the fields of databases, machine learning, pattern 

recognition, statistics, artificial intelligence, data visualisation, and high performance 

computing. KDD and data mining software systems incorporate developments from all 

of these fields. The following standard definitions5 are adopted here: KDD is defined as 

"The non trivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in data". Data mining is defined as "A step in the KDD process 

consisting of particular data mining algorithms that, under some acceptable 

computational efficiency limitations, produce a particular enumeration of patterns". 

1.1.4 The Objectives of This Work 

In contrast to established techniques used in financial modelling, the computational 

knowledge discovery techniques considered here are relatively new. There is therefore 

a need to provide a systems framework for their effective deployment in the financial 

options domain. Statistical confidence in models is an especially important concern in 

finance. The objectives of this thesis are threefold. First, to outline a formal systems 

framework for the application of computational knowledge discovery techniques to 

options market databases, in the context of a KDD and data mining process consistent 

with established statistical principles for estimation and prediction. That is, a 

statistically principled KDD and data mining process. Second, to develop practical 

procedures, methods, and algorithms, to reliably estimate the true statistical significance 

4 The regression techniques traditionally used in financial econometrics are a subset of this category. 
5 Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. 1996. "From Data Mining to Knowledge 
DiscovelY: An Ovel1)iew", in Advances in Knowledge Discovery and Data Mining, eds. Fayyad, U. M., 
Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. AAAI Press/MIT Press, pp 1-34. 
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CHAPTER I. OVERVIEW 

and the confidence which can be placed in predictions and models, for use within this 

computational framework. Thirdly, to demonstrate the procedures and methods 

developed, by practical application to problems of interest in the options market 

domain. 

1.2 Financial Market Databases and Modelling 

Current price quotations for stocks, bonds, and other financial instruments are available 

in real time from Bloomberg, Reuters, and other financial information vendors. These 

films have contracts with the data originators allowing them to sell on the data. Real 

time quotation services are generally available only by subscription and are expensive. 

A dedicated terminal is often required, and these are generally closed systems, which 

restrict the transfer of data to other computers. Near real time quotation services are 

increasingly available via the Internet. These supply quotations after a time delay, they 

are also subscription services, but do not require dedicated terminals. 

Most data driven model development in finance relies on the use of historical data 

however. The principal source of daily historical price data for securities is Datastream 

owned by Thompson Financial6
. For some financial instruments this database is the 

only source of daily historical data. There is growing interest in the use of high 

frequency historical intra-day data (i.e. 'tick data') for financial modelling. This lS 

increasingly available, usually directly from the data originator in CD-ROM format. 

Financial market data is mostly time series data . Well-known examples are the Dow­

Jones Industrial Average and FTSE 100 index series, which are frequently presented 

graphically in the financial media. Data consisting of a time series of several 

synchronously observed variables is termed 'panel data' in the telminology of finance. 

An example is the time series of daily closing prices of all European (American) options 

on the FTSE 100 index. This is an example of an 'unbalanced panel' since the number 

of options on offer varies from day to day. If the number of variables in the panel is 

constant over time it is telmed a 'balanced panel'. 

6 http://www.datastream.com/ 
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CHAPTER i. OVERViEW 

1.2.1 Pricing and Prediction 

The most common tasks in financial modelling are the pricing of financial instruments 

in relation to other (synchronously observed) financial instruments or economic 

variables, and the production of predictive models for future prices or returns. In cases 

where the dynamics of the time series in question are well understood the modelling 

task reduces to the estimation of parameters of the assumed fixed functional form to fit 

the data. The result is called a parametric model in the terminology of finance. 

Provided there is sufficient data available such models can be quite accurate. However, 

many problems of interest in finance are not in this category. 

It is often the case that a set of observations is available but the underlying data 

dynamics are imperfectly understood. This is the situation applying to option pricing, 

where most theoretical models rely on numerous simplifying assumptions to work. In 

these cases it is usual to assume the existence of one or more "state variables" which 

determine the values of the time series. A general state space form of the model can 

then be formally defined 

Yt=/(Xt)+Et (1.1 ) 

where Yt,Yt-I'Yt-2' ..... 'Yt-(n-l) is a time series of n observations, Et is random noise at 

time t, and xt is a vector of state variables. Here Xi EXt' and 

i = 1, .... ,n (1.2) 

where gi is some function, and Xj,t is the l' element of a vector of up to k raw input 

variables, and t-(n-1) lagged values of the dependent variable. The multivariate form 

shown here contains the univariate form as a special case. The state variables may 

correspond to certain features of the time series. The modelling task now consists of 

a) Applying selection criteria and transformations to the raw data to arrive at a 

suitable data representation, symbolised by the function gi in the state space 

form of the model. 

b) Applying an appropriate technique to fit the data, symbolised by the function/in 

the state space form of the model. 

The problem for the modeller lies in choosing which selection criteria, transformations, 

and modelling technique to apply. 

17 



CHAPTER 1. OVERVIEW 

1.2.2 Other Modelling Tasks 

Once a pricing or predictive model has been developed, a natural question is how 

reliable is the model? It is essential in finance to have an accurate estimate of the 

confidence we can place in the model, and the reliability of predictions from the model. 

Also, given the non-stationary nature of most financial data, there is a need to know 

when a model can be considered "dead", that is, no longer able to make useful 

predictions. 

To be of practical use, models must be integrated into a trading strategy. Evaluation of 

a trading strategy needs to be in terms of the returns it realises, and how reliable it is in 

realising them, and not just statistical performance measures. This may require the 

definition of en-or measures other than the usual statistical measures of performance. 

A few well-publicised large losses involving derivatives in recent years have brought 

the issue of financial risk, and its management, to the fore. Prudent risk management 

and regulatory requirements under the Basle Capital Accord, require frequent 

calculation of the Value at Risk (VaR) for an institution, portfolio, or market position. 

VaR is, formally, the probabilistic bound of market losses over a given period of time 

(the holding period) expressed in terms of a specified degree of certainty (the 

confidence interval). Put more simply, the VaR is the worst-case loss expected over the 

holding period within the probability defined by the confidence interval. Larger losses 

are possible, but with low probability. For example, a portfolio whose VaR is £20 

million over a one-day holding period, with a 95% confidence interval, would have only 

a 5% chance of suffering an overnight loss greater than £20 million. Calculation of 

VaR entails modelling possible market moves over the holding period, incorporating 

con-elations among market factors, calculating the impact of such potential market 

moves on portfolio positions, and combining the results to examine risk at different 

levels of aggregation. The three main approaches to this analysis are historical 

simulation, an analytical approach using a con-elation matrix (as exemplified by JP 

Morgan's RiskMetrics TM) 7, or empirical (Monte Carlo) simulation. 

Options play a central role in controlling risk exposure. They make it possible to 

construct portfolios of assets having a selected predetermined level of risk. This is a 

7 J.P.MorganiReuters, 1996. "Risk Metrics - Technical Document", Fourth Edition, New York 
18 



CHAPTER i. OVERViEW 

pnmary motivation for choosing options, and options market data, for this study. 

Moreover, options market data contains valuable information on market sentiment and 

risks, which can be extracted and used to aid investment and policy decisions. 

1.3 A Knowledge Discovery in Databases Approach 

KDD is a process not a technique. It is a multi-disciplinary activity utilising techniques 

developed in machine learning, statistics, database technology, expert systems, data 

visualisation, and other areas. The KDD approach and how it relates to financial market 

databases and modelling is now outlined. The process is described with reference to its 

application to options market databases. Fig. 1 shows an options market instantiation of 

the KDD process. 

Fig. 1 The KDD Process Applied to Options Market Data 

Data Cleaning Data Preparation Data Mining Reporting & 

Selection • domain Reduction I • standardisation • select configuration Deployment 
• extract data for oons~tency Enrichment of variables & initialization values • ~ualisation 
target securities • remove rris- • delete unwanted • add derived • modaling • statistics 

• innial data recorded prices I fields variables • hypothesis tests • recorm>endations 
exploration inoomplete records • add fields from • scaling. • model vafldation • priceslforecasts 

otrer sources • data partnioning. • VaR 

Pricingl 
Hedging 
Problem 

LLt t 

UUU U 
Market LlBOR 
Data Asset Prices 

(LiFFE) Div. Yield 
(Datastream) 

Feedback 

The KDD process is not linear. It is interactive, involving user decisions based on 

domain knowledge, and the possibility of looping back at any point for further iterations 

through one or more stages. KDD differs from traditional econometric and modelling 

approaches used in finance in that it is concerned with the whole process of extracting 

knowledge from data, in the form of patterns or models. It addresses issues of data 

storage and access, and the efficiency, scaling and robustness of algorithms for massive 

noisy datasets, in addition to questions of statistical inference common to all data 

analysis. KDD is especially concerned with finding understandable patterns, which 

constitute useful knowledge. The data mining stage of KDD relies on a variety of 

computational knowledge discovery techniques to find such patterns in data. 
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1.3.1 Stages in the KDD Process 

The KDD process involves numerous stages. Fayyad et al (1996) has produced a 

widely accepted summary of these as follows: 

1) Learning the application domain: includes relevant prior knowledge and the goals of 

the application. 

2) Creating a target dataset: includes selecting a dataset or focusing on a subset of 

variables or data samples on which discovery is to be performed. 

3) Data Cleaning and pre-processing: includes basic operations, such as removmg 

noise or outliers if appropriate, collecting the necessary information to model or 

account for noise, deciding on strategies for handling missing data fields, and 

accounting for time sequence information and known changes, as well as deciding 

DBMS issues such as data types, schema, and mapping of missing and unknown 

values. 

4) Data Reduction and projection: includes finding useful features to represent the 

data, depending on the goal of the task, and using dimensionality reduction or 

transformation methods to reduce the effective number of variables under 

consideration, or to find invariant representations for the data. 

5) Choosing the function of data mining: includes deciding the purpose of the model 

derived by the data mining algorithm (e.g. summarisation, classification, regression 

and clustering) 

6) Choosing the data mining algorithm(s): includes selecting methodes) to be used for 

searching for patterns in the data, such as deciding which models and parameters 

may be appropriate (e.g. models for categorical data are different to models for 

vectors over reals) and matching a particular data mining method with the overall 

criteria of the KDD process (e.g. the user may be more interested in understanding 

the model than in its predictive capabilities). 

7) Data mining: includes searching for patterns of interest in a particular 

representational form or a set of such representations, including classification rules 

or trees, regression, clustering, sequence modelling, dependency, and line analysis. 

8) Interpretation: includes interpreting the discovered patterns and possibly returning to 

any of the previous steps, as well as possible visualisation of the extracted patterns, 

removing redundant or irrelevant patterns, and translating the useful ones into terms 

understandable by users. 
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9) Using discovered knowledge: includes incorporating this knowledge into the 

performance system, taking actions based on the knowledge, or simply documenting 

it and reporting it to interested parties, as well as checking for and resolving 

potential conflicts with previously believed (or extracted) knowledge. 

Not all of the stages enumerated above are applicable to a given KDD exercise. The 

application of KDD to options market data illustrated in Fig. 1 presents a simplified 

schema where the nine stages described above are concatenated to give six stages. 

1.3.2 Data Selection and Preparation 

The bulk of the literature on KDD and data mining is concerned with the data mining 

stage. This is understandable as the main difference between particular KDD processes 

lies in the computational knowledge discovery techniques used for data mining. 

However, successful practical implementation of KDD relies crucially on stages 1) to 6) 

as summarised by Fayyad et al (1996), and these usually account for 80% of the time 

and effort involved in specific KDD exercises. These stages are concerned with data 

selection and preparation prior to the data mining stage. In the example application of 

KDD to options market data illustrated in Fig. 1, the nine stages enumerated by Fayyad 

et al (1996) are replaced by the following six stages: 

a) Data Selection: data for the options of interest over the chosen time period is 

extracted from the database of raw data (In this work we consider pricing and 

hedging LIFFE options on the FTSE 100 index and the database of raw data is 

sourced from LIFFE). 

b) Cleaning: Records with inconsistent values (according to defined criteria), and 

important missing variables, are filtered out. 

c) Data Reduction I Enrichment: Fields in the dataset not relevant to pncmg and 

hedging the selected options are deleted. Information required to achieve the goals 

of the pricing or hedging exercise, obtained from other sources, is added to the 

dataset as new fields (e.g. appropriate LIBOR interest rates, dividend yields on the 

FTSE 100, FTSE 1 00 closing prices, all obtained from Datastream). 

d) Preparation: The option prices are normalised (e .g. by the exercise price) where 

required. The risk-free interest rate, time to maturity, implied volatility and other 

explanatory variables are scaled to the required input ranges. Essential derived 

variables are created in the dataset (e.g. moneyness, FTSE 100 price at maturity). 
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The data is partitioned into a training set and a test set. To ensure that each is 

statistically representative of the data as a whole, it is created by randomly drawing 

observations (without replacement). 

e) Data Mining: The data-mining task is determined. For option pricing and hedging 

the task is regression. An appropriate computational knowledge discovery technique 

is selected (in this work neural nets are chosen). Initialisation criteria and network 

configuration are set. The network is trained and tested on the target data files. 

Appropriate hypothesis tests are applied. If several alternative models are created 

appropriate statistical tests are performed to select the best model. 

f) Reporting: The results of the KDD exercise are reported. The report can include; 

Detailed statistics. Graphical presentations of model performance. Buy / sell / hold 

recommendations. Current prices. Forecast prices / returns. Hedge ratios. And 

VaR, or any other desired outputs. Any or all of these may be used to implement 

some trading action. 

Stages a) to d) of the application of KDD to options market data described above are 

concerned with data selection and preparation and correspond to the application of the 

function gi in the state space representation of the financial modelling task given in 

section 1.2.1. For this work, these stages were implemented systematically usmg 

relational database technology, allowing the rapid creation of target data files. 

1.3.3 Computational Knowledge Discovery Techniques 

Stage e) of the KDD process applied to options market data described in section 1.3.2 is 

the data mining stage. Data driven modelling in finance has traditionally relied on 

linear and non linear regression techniques including ordinary least squares regression 

(OLS), generalised least squares (GLS), and non linear least squares (NLLS). Recently, 

there has also been increasing interest in the use of non-parametric regression 

techniques, particularly Kernel regression. The data mining stage of the KDD process 

can of course employ any of the above techniques. However, data mining software 

suites include a variety of computational knowledge discovery techniques, and offer the 

financial modeller many alternative approaches. Computational knowledge discovery 

techniques intended for tasks other than regression though may not be suitable for 

modelling real valued data. 
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Modelling with options market data involves real valued problems. The main interest 

of users of this data is pricing and hedging options, and extracting risk neutral densities 

from quoted option prices. Hence, the applicable model is a continuous real valued 

function, and the appropriate data-mining task is regression. Various computational 

knowledge discovery techniques have been applied to the pricing and hedging of 

options8
. Not all of these are regression techniques. Table 1 tabulates and classifies the 

main computational knowledge discovery techniques, those which have been applied to 

option pricing and hedging tasks are indicated with an arrow. 

Table 1. Classes of Computational Knowledge Discovery Techniques 

REGRESSION 

CLASSIFICATIONI 
CLUSTERING 

RULE BASED 

~ 

~ 

~ 

~ 

~ 

~ 

• 
~ 

• 
• 

SUPERVISED 
LEARNING 

OLS 
NON-LINEAR LS 
MLP 
RBF 
K-NN (Euclidean distance) 
MLP 
BUILDRULE(decision tree) 
CART (decision tree) 
C.5 (decision tree) 
GRI (association rule) 

UNSUPERVISED LEARNING 

• KOHONEN NETWORKS 
(clustering) 

• APRIORI (association rule) 

In Table 1 Supervised Learning refers to techniques which are designed to fit a number 

of independent (explanatory) variables to one or more dependant (response) variables. 

Unsupervised Learning refers to techniques that are designed to search for patterns, 

cluster, or segment data, without reference to any response variables. Unsupervised 

Learning techniques are not suitable for option pricing and hedging as the data mining 

task is regression. Nevertheless, as Table 1 shows Supervised Learning techniques for 

Classification and Rule Induction, as well as for regression, have been applied to option 

pricing. Studies suggest9 however, that the most suitable computational knowledge 

discovery technique for option pricing and hedging applications is a regression 

technique, namely, the form of neural net known as a multi layer perceptron (MLP). 

Consequently, neural nets were chosen as the specific computational knowledge 

8 See section 4.1.2 below for a literature review. 
9 Galindo, 1. 1999. ''A Frameworkfor Comparative Analysis of Statistical and machine learning Methods: 
An Application to the Black-Scholes Option Pricing Equation", in Computational Finance. (1999) Abu­
Mostafa, Y.S., LeBaron, B., Lo, A.W., and Weigend, A.S. (Eds.) Proceedings of the Sixth International 
Conference on Computational Finance (CF99, New York, January 1999). Cambridge, MA: MIT Press. 
Hutchinson, 1., Lo, A., and Poggio, T. 1994. "A Non-parametric Approach to Pricing and Hedging 
Derivative Securities via Learning Nenvorks. " Journal of Finance, 49, No.3, pp 851-889. 
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discovery technique for use in this work. It is important to note however, that the 

procedures and methods developed here, apply to other computational knowledge 

discovery techniques of comparable flexibility. 

Stage e) of the application of KDD to options market data described in section 1.3.2, 

corresponds here to the application of the function f in the state space representation of 

the financial modelling task given in section 1.2.1. For this work, the data mining stage 

was implemented using the commercial data mining software suite SPSS Clementine. 

Post processing of results from stage e), was performed in MS Excel, Statistica, Matlab, 

and other packages as appropriate, to obtain statistical and graphical results for stage f), 

the reporting stage ofthe KDD process described in section 1.3.2. 

1.3.4 Model Training 

There is an important difference between the OLS and parametric NLLS regression 

methods traditionally used in data driven financial modelling and econometrics, and the 

computational knowledge discovery techniques used for regression tasks. This 

difference relates to the way the minimum of the cost function is found. In OLS and 

parametric NLLS, the function mapping the response variable to the explanatory 

variables is linear in the parameters in the first case, and limited to a class of 

analytically tractable non-linear forms in the latter case. Indeed, for parametric NLLS 

the form of the non-linearity must be specified in advance. These restrictions on the 

parametric form a model can take mean that the error surface has a general parabolic 

form 10. Hence, there is a single global minimum, and finding it is a straightforward 

optimisation problem. This means OLS and parametric NLLS can find the minimum of 

the cost function in a single pass through the data, and all the regression parameters are 

uniquely identified. 

In contrast, neural nets and other similar computational knowledge discovery techniques 

for regression, do not impose restrictions on the parametric form a model can take. The 

function relating the response variable(s) to the explanatory variables can be arbitrarily 

complex, and the fit to the data arbitrarily accurate. This has several important 

consequences. It means that if the data are noisy the model will fit the noise unless it is 

10 Bishop C. M., 1995. Neural NeMorks for Pattern Recognition, Clarendon Press, Oxford, p15-17 and 
255. 
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prevented, a problem termed "overfitting". It also means that the error surface is not 

constrained to convexity, and can in fact be highly convoluted with many peaks and 

local minima. As a result, for neural nets and similar techniques, finding the global 

minimum of the cost function requires an iterative search involving many passes 

through the data. Also, the weights may not be uniquely identified. For large datasets 

and complex models, this search may take appreciable amounts of time. However, the 

iterative search needs to be stopped before the data is overfitted. This is often done by 

stopping the search when the cost function is minimised on a separate validation 

datasetll. Performance of the model is then assessed using an independent test set. For 

neural nets and other computational knowledge discovery techniques, fitting data is 

termed "training", because of its iterative nature. It necessitates the partitioning of the 

available data into separate training, validation, and test sets. 

The differences discussed above between regression methods traditionally used in data 

driven financial modelling and econometrics, and modem computational knowledge 

discovery techniques for regression, have resulted in differences in the ways they are 

used. It is not uncommon, even in published papers, to see OLS or NLLS results 

presented, which were obtained by fitting a single data sample, without testing of the 

model on an independent test set. OLS and NLLS are not sensitive to overfitting. 

However, they are still sensitive to sampling variation, and the best test of any model 

derived from data is how it performs on an unseen data set. When using neural nets and 

other computational knowledge discovery techniques for regression, the need to deal 

with overfitting dictates testing on independent data sets. The unsatisfactory procedure 

of presenting only in-sample results is thus avoided. In this work the statistical results 

presented were obtained by testing models on independent test sets. 

1.4 The 'Data Mining Problem' and Model Reliability 

The KDD process is intended to facilitate learning from data. Traditionally this has 

been the domain of statistics. The emphasis of KDD differs from that of statistics, 

focussing on issues of computational efficiency, scalability, and the interpretability of 

patterns or models extracted from data. Statistics remains a key component of KDD 

however. This is especially true for the data mining stage of the KDD process in a 

financial markets context. For options market applications, it is imperative that due 

11 These issues are discussed in greater detail in section 3.3 
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consideration is given to the statistical procedures used to evaluate the results of any 

data mining exercise. The term "data mining" has pejorative connotations in financial 

econometrics 12
, and is used to describe indiscriminate exploration of data. This practice 

also termed "fishing" or "data dredging" must be avoided if meaningful results are to be 

obtained. The nature of this problem, how to avoid it, and the proper evaluation of 

models derived from a data mining process are considered in this section. 

1.4.1 The Problem of Spurious Models 

It is well known that if an explanatory variable is fitted to a response variable that has a 

trend in the same direction, a good fit can often be obtained. Even if the variables are 

completely unrelated, the fit may appear statistically significant. Accepting such a 

result is an elementary en'or, as it is an example of a spurious regression. Spurious 

regressions of this kind can be avoided by using appropriate data transformations or 

models. Fitting log differences of the data, or using an "elTor conection" model, are 

standard approaches to dealing with non-stationary data. In finance, it is customary to 

work with returns in preference to prices for this reason. Asset prices have trends, 

whereas returns (log price differences) are usually trend free. However, there is a 

subtler source of spurious models that is especially important in a data-mining context. 

As an illustration, consider a database with 100 records each with 1000 fields. Suppose 

that each field is an independent nOlTnally distributed random sample. Thus there are 

1000 possible regressors (Xi>X2, ' " ,XI 000) all totally unrelated. Suppose this database is 

searched for a model by randomly selecting some field Xi as the response variable, and 

fitting each of the remaining regressors to it in turn using univarite OLS, to obtain 999 

separate models. Suppose that the regressors are now tested for significance at the 0.05 

level using a t-test. In such a test a regressor has a 1 in 20 chance of appearing 

significant, even if it is entirely unrelated to the response variable. In this example there 

are 999 regressors, so it is possible around 50 of them could appear "significant". 

Accepting that these "significant" regressors actually influence the response variable is 

a Type I error (rejecting a null hypothesis Ho when it is true), in statistical terms. This 

search procedure is an extreme example of what is meant by "data dredging" or "data 

mining" in the econometric literature. Nevertheless, it is tempting for researchers to 

create multiple models in this manner, report only the "significant" ones, and discard the 

12 See e.g. Thomas, R.L. 1997. Modern Econometrics, Addison Wesley, p 350. 
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rest. In the above example, because of the multiple hypothesis tests, the nominal 

significance level of 0.05 is incorrect. In order to arrive at the correct significance level, 

the number of modelling attempts, or more precisely the number of hypothesis tests 

made, must be accounted for. In this example, there are n independent regressors, n 

mutually exclusive regressions are attempted, and n simultaneous hypotheses tested. A 

well-known procedure exists in statistics for multiple simultaneous hypothesis tests, 

according to which the true significance level for each test is
l3

; 

a=l-(1-a)" (1.3) 

In (1.3) a is the nominal significance level (0.05 in the above example). To set the true 

significance level to a given value, for example 0.05 then the following equation must 

be solved for a to obtain the nominal significance level to be used. 

0.05=1-(1-a)" (1.4) 

If in the above example, the modeller had accepted the (say) 50 nominally "significant" 

variables found, for inclusion in a preferred model, then the adjusted significance level 

for the model is given byl4; 

a=l-(l-a)(lIlk) (1.5) 

where n is the total number of regressors and k is the number included in the model. 

Equation (1.5) gives an adjusted significance level of 0.641 in the above example. The 

following approximation to (1.5) may be used for small n. 

a = (n/ k)a (1.6) 

The formulae presented above rest on the assumption that all the regressors are 

independent, and the correctness of the models obtained is mutually exclusive. This 

condition rarely applies in practice. The regressors in real world data sets are unlikely 

to all be independent, nor the models generated entirely mutually exclusive. If 

regressors are not independent the true significance level may be lower than indicated 

by equation (1.5). However, Lovell (1983) points out that the t-test requires an estimate 

of the variance of the error term, and this is likely to be underestimated in a search 

process like that described above. Consequently, the t-ratios are likely to be 

overestimated. The result is that the two errors may cancel out and, according to Lovell, 

equation (1.5) still provide a good indicator of the true significance level even when 

13 Thomas (1997), pp 352-353. 
14 Lovell, M.e. 1983. "Data Mining", Review of Economics and Statistics, 65, pp 1-12. 

27 



CHAPTER i. OVERViEW 

regressors are correlated. Sidak (1967), Holm (1979), and others 15 have proposed 

improved adjustment procedures. Analogous adjustments also exist for confidence 

intervals. Modellers rarely obtain good results with a model on the first trial against an 

independent test set. They almost invariably wish to fine tune a model, add extra 

regressors, or compare it with other modelling techniques, in an effort to find the "best 

model". This all too often leads to ad-hoc explorations that make valid statistical 

inference impossible. Moreover, a researcher's own past results, as well as those of 

others, all have the potential to bias conclusions. Section 1.4.2 is concerned with a 

systematic approach to dealing with these difficulties. 

1.4.2 Systematic Variable Selection and Avoidance of Ad-hoc Modelling 

The example in section 1.4.1 shows why it is necessary to avoid ad-hoc approaches to 

modelling, and take account of the number of modelling attempts in a data mining 

model search. A systematic approach to variable selection will clearly help. But how 

can it be achieved? The only way of being certain a model is the "best model" is to test 

all possible models. An exhaustive comparison of all possible models for the data is 

intuitively appealing, and superficially seems a sensible way of proceeding l6
. The 

limitations of this approach are now considered. 

Suppose there exists a dataset containing n variables which may influence some 

response variable y. Since each variable can be either in or out of the model the total 

possible number of separate models is given by; 

m=2" (1.7) 

In the example in section 1.4.1 the data set contains 1000 variables. One of these is 

selected as the response variable, leaving 999 potential regressors. Applying equation 

(1.7) shows there is a total of 5.357543035 x 10300 possible separate models. Clearly, 

this is an unfeasibly large number to test, even for fast computers. As few as twenty 

regressors still gives 1,048,576 possible models according to (1.7). Thus, an exhaustive 

comparison is only a feasible model search strategy where the total number of potential 

regressors is small. 

15 Sidak, Z. 1967. "Rectangular Confidence Regions jor the Means oj Multivariate Normal Distributions", 
Journal of the American Statistical Association, 62, pp626-633. 
Holm, S. 1979. ''A Simple Sequentially Rejective Multiple Test Procedure", Scandinavian Journal of 
Statistics, 6, pp65-70. 
16 This is the basis of simple stepwise regression. 
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An alternative to an exhaustive search is to allow the model search process to be guided 

by domain knowledge. One approach that employs this principle is the "Specific to 

General" modelling methodology. In the "Specific to General" methodology the 

modeller starts off with a simple model, perhaps including one regressor which he 

believes influences the response variable. The model is then tested. If it fails to satisfy 

the test criteria, the model may be re-estimated using alternative techniques. Extra 

variables or lagged values of the response variable( s) may also be added. Variations of 

the model are tried until a satisfactory result is finally achieved. The "Specific to 

General" approach is a divergent branching search without obvious stopping points17
• 

The numbers of tests required and their dependencies are thus unclear, leading to a lack 

of control of significance levels. Consequently, it is difficult to make a meaningful 

judgement of the significance of the final model obtained. Hence, this approach does 

not adequately address the issues discussed in section 1.4.1. The "Specific to General" 

approach to modelling was widespread in the financial modelling domain until fifteen 

years ago. However, it is widely regarded as outmoded today. 

A far more systematic approach to addressing the difficulties described in section 1.4.1 

is provided by the "General to Specific" approach pioneered by Hendry and Richard 

(1983)18. This starts off with a general model containing all the competing models the 

modeller wishes to test as special cases. The special cases are said to be nested within 

the general model. There may be several levels of nesting, and some models may be 

non-nested on the same level. The special cases can be obtained by placing restrictions 

on the general model. The process commences by defining the general model. Once 

the modeller is satisfied with the specification of this, a systematic (ideally sequential) 

simplification search is performed, proceeding from the general model to simpler and 

simpler cases. At each step diagnostic tests are performed. A simpler model will not be 

adopted if it displays a serious deterioration in test statistics. This process is known as 

"testing down". In reporting a "General to Specific" model search, results for all the 

steps are presented. Since there are a known number of steps it is possible to estimate 

the true as opposed to the nominal significance level of the final model. Some 

uncertainty may be introduced where a choice has to be made between non-nested 

17 HendlY, D.F., and Krolzig, H.M. 2002. "Nevv Developments in Automatic General-to-specific 
Modelling", paper presented at the ESAM02 conference, Brisbane, July 2002, p4. 
18 Hendry, D.F., and Richard, J.F. 1983. "The Econometric AnalYSis of Economic Time Series", 
International Statistical Review, 51, pp63-111. 
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models, or where there is more than one route to the final model. Also, choice of the 

initial general model may involve some preliminary data exploration. However, the 

approach emphasises the importance of out of sample tests for the final model, on new 

data not available when the model was chosen. Assuming the original general model 

includes all possible regressors which might influence the response variable, it is likely 

some irrelevant variables will be included. The error due to inclusion of irrelevant 

variables though, is less serious than mis-specification due to a missing relevant 

variable. Moreover, irrelevant variables will be removed in the simplification search. 

Thus far, the model search has been considered only in terms of which regressors 

should be included. Computational knowledge discovery techniques such as neural nets 

also require initial choices on model configuration, for example the number of hidden 

layer nodes (degrees of freedom) the model will have. It is important to realise that two 

different neural net models which have the same regressors, but different 

configurations, count as two different models for the purposes of estimating true 

significance levels. Model configuration issues are discussed further in Chapter 2 

section 2.4.5 of this document. 

1.4.3 Metrics for Model Performance 

In a simplification search for the "best model" it is desirable that the models selected at 

each step satisfy appropriate selection criteria. The most important criteria are 

• Statistical Significance and Fit: In out of sample tests, the model predictions should 

not be significantly different from the actual values of the response variable(s). The 

coefficient of determination should explain a proportion of the variance of the 

response variable consistent with the statistical significance of the model predictions. 

• Random Residuals: Ideally, the residuals from the model should not display any 

pattern. They should be free from autocorrelation and heteroskedasticity. If they are 

not, it suggests that the model is mis-specified. For this reason it is important to 

inspect a plot of the residuals, and perform diagnostic tests for autocorrelation. 

• Uncorrelated Regressors and Residuals: There should be no contemporaneous 

correlation between the regressors and the residuals from the model. The presence of 

such correlations implies the model may be biased and inconsistent. 
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• Stable Parameters: Parameter stability over the input space is a desirable 

characteristic. A model with stable parameters is likely to perform well out of 

sample, particularly when extrapolating outside of the range of its training data. 

• Feasible Predictions: A model should not produce predictions of the response 

variable, which are inadmissible. For example, an option pricing model which 

predicted negative prices. 

• Parsimony: A model with fewer regressors and degrees of freedom is preferable to 

a more complicated model, all other things being equal. Models with fewer 

regressors and degrees of freedom generally perform better in out of sample tests. 

Consideration of the issues discussed in section 1.4.1, employment of systematic model 

selection procedures as described in section 1.4.2, and testing of models using the 

criteria outlined above, are notably absent in the extant literature reporting applications 

of neural nets and other computational knowledge discovery techniques to option 

pricing. Indeed, it is rare for significance tests to be performed at all, much less for true 

significance levels to be calculated. In this literature, models are mostly evaluated by 

ranking them by some goodness-of-fit, or error measure. Most researchers have used 

some combination of the following measures19
. 

Goodness-of-F it: 

a) R2: the Coefficient of Determination. The square of the correlation coefficient r. 

A measure of the proportion of variance of the response variable that is explained by 

the regressors. 

b) IF: (Adjusted R2), a) adjusted for the number of regressors in the model. Models 

with more regressors will generally give a better fit even if the extra regressors have 

no explanatory power for the response variable, b) adjusts for this effect. However, 

it is rarely seen in this literature. 

c) The correlation coefficient r: Formally, Pearson's product moment correlation 

coefficient. A measure of the linear association of data. A value of ±1.0 

corresponds to perfect correlation (i.e. a straight line). A value of 0.0 corresponds to 

no linear association, however some non-linear association may still be present. 

Of these, a) is the most widely used. 

19 See e.g. Benell, 1., and Sutcliffe, C. "Black-Scholes Versus Artificial Neural Networks in Pricing FTSE 
100 Options", Discllssion Paper 00-156, School of Management, Southampton University, 2000 
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Enor measures: 

1) ME: The mean error, ME = ~ I (Yi - y), where Y is the actual response variable, 
n i~ 1 

y is the model prediction, and n is the number of observations. 

1 1/ 

2) MAE: The mean absolute eiTOr. MAE = - LIYi - yl 
n i~ 1 

1 1/ 

3) MSE: The mean squared error. MSE = - L(Yi _ y)2 
n i~ 1 

1 1/ 

4) RMSE: Root mean squared error RMSE = - L(Yi _ y)2 
n i~ 1 

1 1/ (y-y) 
5) MFE: Mean frac tional en ol' MFE = - L~'--'-

n i~ 1 Yi 

11/ (y-y) 
6) MAFE: Mean absolute fractional eiTor MAFE = - L'-"--' --'-I 

n i~ 1 Yi 

Of these, 1) and 5) are measures of bias, whereas 2), 4), and 6) are measures of 

dispersion, for model predicted values. Enor sizes are reported in the original units for 

1), 2), and 4), the original units squared for 3), and nOlmalised by the original units for 

5) and 6). Thus 1), 2), 3), and 4) are absolute measures and can only be interpreted if 

the scale of the response variable is known. On the other hand 5) and 6) are scale free 

relative measures, but cannot be computed if any Y is equal to zero. 

It is arguable that statistical measures of goodness-of-fit and error performance, as 

defined above, do not adequately characterise the practical value of improvements in 

option pricing performance. The most important use of options is in hedging portfolios 

of securities. Also, the existence of a replicating portfolio and the absence of arbitrage 

are fundamental factors, which impose bounds on option prices. Thus, it has been 

suggested that the "tracking error" of replicating portfolios in hedging options provides 

a more meaningful performance measure for an option pricing model2o
. The idea is that 

the difference between the value of an option at expiration, and the value of its 

replicating portfolio of the underlying asset and a risk free bond, should serve as a 

practical measure of the accuracy of the model. In principle, (and assuming continuous 

20 Hutchinson, 1. Lo, A. and Poggio, T. 1994. "A Non-parametric Approach to Pricing and Hedging 
Derivative Securities via Learning Nell·vorks. " Journal of Finance, 49, No.3 , section3.3. 

32 



CHAPTER i. OVERViEW 

cost free hedging) this difference should be zero. In practice, it should be as small as 

possible. Suppose that ~ denotes the combined value of an option and its replicating 

portfolio, and t is some date between time zero when the option is purchased, and its 

maturity at time T. 

v = (s air J + [err B - (oJ; - af(l_r) JJ - I' 
I I as (I-r) as as il 

I I (I-r) 

(1.8) 

In equation (1.8) f, is an option pricing function, S, is the price of the underlying asset, 

B (,- r) is the value of a risk free bond, and T is the interval at which the portfolio is 

rebalanced (usually daily). At time zero an option is sold, and a quantity of stock 

equivalent to the first right hand telID in (1 .8) is purchased. Also, a bond whose value is 

equal to the option plus the stock is sold. Thereafter, the portfolio is rebalanced at 

intervals according to equation (1.8). The tracking elTor is the value of (1.8) at maturity 

of the option, that is Vr. A performance measure based on the tracking error proposed 

by Hutchinson, Lo, and Poggio (1994) is 

(1.9) 

Equation (1.9) is the expected value of the tracking elTor discounted to its present value 

at the risk free interest rate. Hutchinson et al (1994) also define a "prediction error" 

which combines the expected value and variance of the tracking error, given by 

(1.10) 

In equation (l.8) the option is only hedged against movement of the underlying asset, so 

that considerable risk remains. Alternative definitions of tracking error which take 

account of further risks are also available. The claim that tracking elTor provides a 

better measure of option pricing performance than statistical measures of goodness-of­

fit or error measures does not appear to have been subjected to empirical tests 

however21. 

1.4.4 Confidence in Models and Predictions 

The goodness-of-fit and elTor measures described III section 1.4.3 are summary 

measures of performance. They provide an incomplete picture of model performance, 

since for each of them, there is only a single global parameter for model fit or accuracy. 

Moreover, they reveal little about the confidence that can be placed in models and 

21 The author is unaware of any comparative empirical studies on this topic in the literature . 
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predictions, as they do not reveal statistical significance levels. To establish 

significance levels, suitable hypothesis tests (i.e. F and t-tests) should always be 

perfOlmed. The results of hypothesis tests can be supplemented by an appropriate 

choice of the goodness-of-fit and error measures given above. 

However, a single global hypothesis test may not provide an adequate confidence 

measure in an options market context. It is not unusual for option pricing models to 

perform well in one part of the input space, and perform poorly in another. For 

example, a specific model may give poor fits at low and high exercise prices, but fit 

well at exercise prices close to the value of the underlying asset. The same model might 

also display poor fits at long maturities, or high volatilities, and good fits at short 

maturities and low volatilities. Consequently, market practitioners and researchers are 

often interested m exammmg model perfOlmance over various subsets of the input 

space. In the option pricing literature, this has traditionally been achieved by 

partitioning data along various dimensions. Partitioning by exercise price / moneyness 

and by maturity is the most frequent example. However, when data is partitioned in this 

manner the location of the partitions is inevitably arbitrary. As a result different values 

for statistical significance or other perfOlmance measures can be obtained for the same 

options, depending on partition size and boundary location. Clearly, this is 

unsatisfactory. Computing pointwise confidence and prediction intervals provides a 

solution to this difficulty. 

With few exceptions22
, the literature documenting the application of computational 

knowledge discovery techniques to options market data does not make use of formal 

hypothesis tests or statistical significance levels for models or predictions. Goodness­

of-fit and error measures alone are almost exclusively used. Pointwise confidence or 

prediction intervals are almost never computed, perhaps because of the difficulties 

involved. In contrast, the results presented in this work are based on formal hypothesis 

tests, and true significance levels for results are reported where appropriate. Moreover, 

a new practical method of computing pointwise confidence and prediction intervals, and 

the prediction risk criterion, for neural nets and a broad class of similar computational 

knowledge discovery techniques was developed and tested for this work. 

22 One exception is Amilon, H. 2001. "A Neural Network Versus Black-Scholes: A Comparison oj Pricing 
and Hedging Pel!ormances", Working Paper, Department of Economics, Lund University, Lund, 
Sweden. 
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1.5 Major Contributions 

This section outlines the major contributions and unique features of the work presented 

in this thesis. These are in three main areas. 

I) A detailed computational framework is presented for the application of 

computational knowledge discovery techniques to options market data. The framework 

includes the following novel features: 

• The framework is designed to combine the flexibility offered by computational 

knowledge discovery techniques, and the methodological rigour and diagnostic 

techniques of established modelling approaches from econometrics and statistics, in a 

theoretically well founded KDD process for options market applications. 

• The framework is based on a specialised Options Market Process Model described 

in telIDS of the industry standard CRISP-DM Generic Process Model. 

• The framework provides practical guidance for the data preparation stages of the 

KDD process in an options market context, and recognises that models generated in a 

model selection process are associated with given "training" datasets. Complete 

description of a model therefore includes the metadata for the dataset used for 

training. 

• The framework integrates a systematic approach to model search in the data mining 

stage of the KDD process, in terms of both variable selection and model topology 

(architecture), in order to address the "data mining" problem and allow estimation of 

the true statistical significance of resulting models. 

II) To address the need to assess model predictions on a pointwise basis, a new 

robust practical method for obtaining confidence and prediction intervals for 

computational knowledge discovery techniques used for regression is developed. The 

method has the following novel characteristics: 

• The method is applicable to neural nets and a broad class of equivalent 

computational knowledge discovery technique of comparable flexibility. 

• The method does not use computations involving the set of network weights or 

parameters or its derivatives to obtain standard errors . 
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• The method does not reqUIre use of data resampling techniques, and is not 

computationally costly. 

• The method is robust to diagnostic problems of regression typically encountered 

with options market data, for example, non-constant variance of error terms, and 

non-normality of residuals. 

• The method allows an alternative means of estimating the 'prediction risk' 

performance criterion. This, and prediction intervals, can be used as model selection 

criteria. Thus, the method is a contribution to the field of model selection. 

III) A demonstration of the computational framework is gIVen III two practical 

applications. The first application is primarily concerned with the model search, and 

focuses on the extraction of pricing models from options market data. The second 

application is concerned with the discovery of patterns in options market data, namely, 

the implied risk-neutral distribution (RND) for the value of the underlying asset at 

maturity. Novel features of the practical demonstrations of the computational 

framework include: 

• A first evaluation of the merits of neural nets for extracting option pricing models 

from market data in a KDD context, based on a systematic model search 

methodology, formal hypothesis tests, and the use of true as opposed to nominal 

significance levels. 

• An empirical investigation of the effects of transaction costs for trading the 

underlying asset on the performance of option pricing models, using neural nets, the 

Black-Scholes model, and estimates of transaction costs for the FTSE 100 index. 

• A first use of neural nets to smooth and regularise option prices in order to extract 

fully non-parametric estimates of RNDs from American put option price series. 

Additionally, a discussion of implementation issues is presented. This focuses on the 

suitability of currently available software implementations of computational knowledge 

discovery techniques for operational deployment in options market applications. 

Emerging technology trends and issues requiring resolution in the next generation of 

software solutions are identified. 
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1.6 Organisation of the Document 

The remainder of the thesis is organised as follows. Chapter 2 presents the 

computational framework. The proposed practical method for obtaining confidence and 

prediction intervals is described in Chapter 3. The computational framework and 

proposed method for obtaining confidence and prediction intervals are applied in 

Chapter 4 and their practical utility is demonstrated. Chapter 5 summarises and 

evaluates the results presented in this thesis. Software implementation issues raised by 

the work are discussed. Finally, conclusions are presented and directions for further 

research are suggested. 
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2.0 Introduction 

In this chapter a Computational Framework for the application of computational 

knowledge discovery techniques to options market data, in an overall KDD context, is 

outlined. The framework is intended to be prescriptive enough to ensure that models 

and predictions satisfy the standards of statistical rigour expected in this specialised 

domain, while remaining flexible enough to be easily adapted to other areas of finance. 

The framework was developed in telms of the emerging industry standard CRISP-DM 

Reference Model for data mining. However, it encompasses the full KDD process 

using a process model specific to the financial options market, with specialised tasks 

and outputs. The framework incorporates systematic approaches to data cleaning, 

variable selection, model topology, and statistical testing and significance. The 

Computational Framework and its specialised process model, can therefore be directly 

applied by the data analyst or software developer operating in the options market 

domain, in contrast to the uninstantiated CRISP-DM generic process model. 

2.1 CRISP-DM: Origins and Structure 

Data mining first attracted widespread market interest in the early 1990's. At that time 

it was still a very new immature concept. The first commercial software package for 

data mining SPSS Clementine, was introduced by SPSS in 1994, only ten years ago. At 

the time a number of large, mainly European, companies involved with data mining 

recognised the need for a standard process model (or framework) for data mining, if it 

was to be adopted by firms as a key part of their business processes. To address this 

need, Daimler Chrysler, SPSS, and NCR set up a consortium in 1996 which was funded 

by the European Commission. The consortium began work on the Cross Industry 

Standard Process for Data Mining (CRISP-DM) from which it takes its name. The 

CRISP-DM was intended to be non-proprietary, and freely available. It was also 

intended to be industry, tool, and application-neutral. The consortium formed the 

CRISP-DM Special Interest Group (SIG) as a vehicle for wider industry input in order 

to achieve this outcome. CRISP-DM was developed and refined in live large-scale data 

mining projects, over a two and a half year period. By mid 1999 when the EU funded 

part of the project was completed, a draft of the process model had been developed. 
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The completed CRISP-DM version 1.0 process modet23 was finally published in August 

2000. It was quickly adopted as a de facto standard. 

2.1.1 Methodology and Structure of CRISP-DM 

The CRISP-DM data mining methodology (or computational framework) has two 

components: the CRISP-DM Reference Model which is a top-down hierarchical process 

model of a data mining project, and the CRISP-DM User Guide which gives a more 

detailed explanation of the Reference Model, and guidance for its use. The CRISP-DM 

methodology breaks down the tasks involved in a data mining exercise into four levels, 

going from the general to the specific. The levels are termed: Phases, Generic Tasks, 

Specialised Tasks and Process Instances, respectively. The top level is the most abstract 

and consists of Phases, that is, the main stages involved in all KDD exercises. At the 

second level, each Phase is broken down into one or more Generic Tasks. The tasks are 

termed generic because they are intended to be industry, tool, and application-neutral, 

and thus general enough to apply to all possible data mining situations. The Generic 

Tasks are intended to be complete and stable; complete in the sense that they cover the 

full data mining process and all possible applications, and stable in the sense that they 

allow for tools and techniques yet to be developed. The third level consists of 

Specialised Tasks. The Specialised Tasks are specific detailed actions that are carried 

out for a given class of data mining exercises, in a defined domain, using specified tools 

and applications. The fourth level consists of Process Instances, which are records of 

the actions, decisions, and results, for any given single data mining exercise. 

The structure of the CRISP-DM methodology is illustrated in Fig.2. The Phases and 

Generic Tasks are the top two levels of the CRISP-DM methodology, and make up the 

CRISP-DM Generic Process Model. The CRISP-DM Reference Model describes the 

Generic Process and thus contains only these levels. The Specialised Tasks, and 

Process Instances, are the third and fourth levels of the CRISP-DM methodology, and 

form the specialised levels. The Specialised Tasks, and Process Instances, are part of a 

Specialised Process Model for a particular industry or domain, using specific tools and 

applications. Before CRISP-DM can be applied in practice, the Generic Process Model 

(or Reference Model) must be instantiated by mapping the second level Generic Tasks, 

23 Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R., 2000. 
"CRlSP-DM 1.0", CRISP-DM Consortium. 
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to third level Specialised Tasks specific to a given data mining activity, to obtain a 

Specialised Process Model. Two kinds of mappings between Generic and Specialised 

process models are defined in the CRISP-DM methodology. The first is a single 

mapping, which is a mapping for a particular data-mining project, intended for only one 

use. The second is where the Generic Process Model is systematically specialised 

according to a pre-defined Data Mining Context, for application to a given class of data 

mining activities . This is a Specialised Process Model written in terms of CRlSP-DM 

The Computational Framework described here, for the application of computational 

knowledge discovery techniques to options market data is a Specialised Process Model 

(explicitly developed) in terms ofCRISP-DM. 

Fig.2 Structure and Components of the CRISP-DM Methodology 
CRISP·OM Methodology 

Reference Model (Generic Process Model) User Guide 
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Data Mining Context --

~------.---------,----~ 

Specialised Process Model 

It is important to understand that the discrete phases and tasks forming the CRISP-DM 

Reference Model or Specialised Process Model are not constrained to a particular 

sequence. In reality the process is cyclical, with only the required phases included in 

each cycle, terminating when the desired outcome is achieved. Thus, in practice 

feedback can occur from any stage to any previous stage, and given tasks may be 

repeated several times. In Fig.2 the loop connecting the phases in Level I indicates the 

cyclical nature of the process. 
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2.1.2 KDD and the Phases of CRISP-DM 

The CRISP-DM methodology was conceived as a standard process model for data 

mining. However, the phases of the CRISP-DM Reference Model broadly correspond, 

to the stages of the KDD process as defined by Fayyad et al (1996) introduced in 

Chapter 1 section 1.3.1. They differ mainly in their terminology and demarcations. 

Thus, CRISP-DM provides a process model for the full KDD process and not merely 

for its data mining stage. Fig.3 shows how the stages of the KDD process as defined by 

Fayyad et al (1996) map on to the Phases of the CRISP-DM ver. 1.0 Reference Model. 

Fig.3 Correspondence of the Stages of the KDD Process to the 
Phases of the CRISP-DM Reference Model. 

Stages of the KOO Process 
[Fayyad et al (1996)] 
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2.2 The CRISP-DM Reference Model (Generic Process Model) 

FigA illustrates the full CRISP-DM Reference Model. The CRISP-DM Reference 

Model gives an overview of the life cycle of a data-mining project at the generic level. 

It describes the phases of a project, the tasks included within each phase and the 

relationship (sequence) of the tasks. It also describes the outputs for each task. At the 

Reference Model level of the CRISP-DM methodology it is not possible to identify the 

actual relationship (sequence) of tasks which would occur in any given data mining 

exercise. Rather, the Reference Model diagram illustrates an idealised sequence of 

phases and tasks. The arrows linking the phases and enclosing the diagram indicate the 

cyclical nature of the process however. The CRISP-DM Reference Model is described 

in detail in Section II of Chapman et al (2000). 

2.3 Specialised Options Market Process in terms of CRISP-DM 

Application of the CRISP-DM methodology to a specific data mining problem, or class 

of problems, requires the creation of a Specialised Process Model. This is done by 

'instantiating' the CRISP-DM Reference Model. This section describes how the CRISP­

DM Generic Process Model was systematically specialised, to provide a Specialised 

Process Model, or Computational Framework for Options Market Applications, 

developed in terms of the overall CRISP-DM methodology. Instantiating the CRISP­

DM Reference Model involves mapping the CRISP-DM Generic Model to a Specialised 

Process Model. The mapping concerned is between the tasks of the Generic Model, and 

the specific tasks required in the Specialised Process Model. Essentially, a Specialised 

Process Model under CRISP-DM is a Generic Process Model with the generic tasks and 

outputs replaced by appropriate specialised tasks and outputs. Appropriate that is, to the 

Data Mining Context. The Data Mining Context is the component of the CRISP-DM 

methodology that drives the mapping between the generic levels (Levels I and II) of the 

CRISP-DM methodology and the specialised levels (Levels III and IV). The CRISP­

DM Data Mining Context distinguishes between four different dimensions of data 

mining, these are: 

1) The Application Domain 

This is the specific business or technical subject area or discipline in which the 

data mining takes place. 

2) The Data Mining Problem Type 

This is the specific classification of data mining problem being dealt with. 
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3) The Technical Aspect 

This describes specific issues and challenges that must be addressed during the 

data mining exercise(s). 

4) The Tools and Techniques 

Specifies which data mining tools (software), and techniques (computational 

knowledge discovery techniques), are to be employed for the data mining. 

In the CRISP-DM methodology a specific Data Mining Context is a concrete value for 

one of the dimensions. The more values there are for each dimension the more concrete 

the Data Mining Context is. The mapping process proceeds as follows: 

a) Define the Data Mining Context. 

b) Remove components of the Reference Model not applicable to the specific Data 

Mining Context. 

c) Replace generic tasks and outputs with specialised tasks and outputs relevant to 

the concrete characteristics of the specific Data Mining Context. 

d) Rename generic components of the Reference Model to comply with the 

terminology and usage of the Specific Data Mining Context 

Table 2 shows the specific Data Mining Context for the application of computational 

knowledge discovery techniques to options market data. 

T bl 2 a e , D t M" C t t~ 0 f aa mmg on ex or 'PI IOns M k tA r f ar e .pPJ lca IOns, 
Data Mining Context 

Dimensions Application Data Mining Technical Techniques 
Domain Problem Type Aspects and Tools 

Extracting Iterative search v. VBAmacro 
Implied Volatility. 

SQL Query 
Newton-Raphson /MS Excel! Access 

Option Pricing. Regression. Statistical NN Node/SPSS 
Confidence. Clementine 

Values Hedging with 
Regression. 

Adjusting for NN Node/SPSS 
Options. transaction costs Clementine 

Extracting 
Regression. 

Analytic v. numerical NN Node/SPSS 
RNDs. differentiation Clementine 

Value at Risk 
Regression. 

Economic v. statistical NN Node/SPSS 
(VaR) VaR measures Clementine 

Using the Data Mining Context given in Table 2, the generic phases of the CRISP-DM 

ver. 1.0 Reference Model are renamed to obtain the phases of the Specialised Process 

Model for Options Market Applications, in the CRISP-DM framework. The 

correspondence between the generic phases of the CRISP-DM ver. 1.0 Reference Model 
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and the stages of the specialised KDD process for options markets described in Chapter 

1 section 1.3.2 illustrated in Fig.5, is the source of the new names. 

Fig.5 Correspondence of the Phases of the CRISP-DM Reference Model 
To Sta es of the KDD Process for 0 tions Market Data 
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Fig.6 shows the full Specialised Process Model for Options Market Applications. This 

forms the Computational Framework for the application of computational knowledge 

discovery techniques to options market data. 
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Fig.6 Specialised Process Model for Options Market Applications inTerms of CRISP-DM. 
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2.4 The Options Market Instantiation: Phases and Specialised Tasks 

The previous section described the use of the CRISP-DM methodology to create a 

Specialised Process Model for Options Market Applications. In this section the specific 

Specialised Tasks and outputs of the Specialised Process Model are elaborated and 

detailed. Domain knowledge helps suggest which specialised tasks should be included 

in any specialised process model. However, extensive practical experience of using 

computational knowledge discovery techniques for option pricing in the course of this 

research was an important factor in guiding this choice. The application domain is well 

defined in this case, and the available data is in a format specified by the originating 

institutions. Thus, the Business Understanding and Data Understanding phases of the 

CRISP-DM generic process simplify to the choice of data to use. The first phase in the 

Specialised Process Model for Options Market Applications is therefore Data Selection. 

2.4.1 Data Selection 

In an options market context a practitioner may need to price options for one or more of 

the following reasons: 

a) The practitioner needs to know whether the quoted prices for a proposed 

purchase or sale of options is reasonable. 

b) The practitioner wishes to hedge a portfolio of securities and needs a suitable 

pricing model from which to derive the hedge ratios . 

c) The practitioner wishes to extract risk neutral densities from market prices of 

options for forecasting or risk management purposes, and requires a suitable. 

pricing model for smoothing purposes. 

d) The practitioner wishes to price new or non-tradable securities by using a 

replicating portfolio of traded options. 

d) The practitioner wishes to price options for the purposes of calculating the Value 

at Risk (VaR) of a replicating portfolio of securities. 

The nature of the problem, the specific securities involved, and domain knowledge, will 

dictate the selection of data involved. The data miner will need to select the appropriate 

data from the historical database ( data warehouse) maintained by the client organisation 

or obtain it from the originating institution. 
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Task: Confirm Project Details 

The first specific task in the Data Selection phase is confirmation of the details, scope, 

goals, and business purpose of the proposed data mining / modelling exercise with the 

client. Information the data miner requires includes : The specific securities involved. 

The client's goals for the data mining exercise. The models or deliverables the client 

requires. How the client proposes to deploy any models developed. Relevant details of 

any related investment or hedging programme. The time, resources, and budget, 

available to complete the data mining exercise. It is imperative that all pertinent 

information is available before proceeding to the next task. 

Output: Project Specification 

A document giving the business background and all relevant particulars of the proposed 

data mining exercise. This will be a contractual document, specifying the nature and 

goals of the project to be undertaken, and serving as instructions for the data mining 

team. The Project Specification can range in size from a single A4 page to a large 

document depending on the complexity of the data-mining task to be undertaken. 

Task: Formulate Project Plan 

When the client has signed the Project Specification and the data mining team has 

received instructions to proceed, project planning can take place. A detailed Project 

Plan, developed using suitable formal methods for project management and control is 

required. Formal project control methods which may be relevant here include PRINCE 

and DSDM24. However, organisations may have their own preferred method. The plan 

should include schedules, critical paths, and milestones. Responsibilities should be 

clearly allocated between the members of the project team. The plan should state the 

resources, constraints, methods, risks, and budget applying to the project. The 

completed plan should be agreed and signed offby the client. 

Outputs: 

Resources 

The Project Plan should list the hardware, software, and human, resources that will be 

required to attain the project goals. These may differ from, or exceed, the resources the 

24 Bentley, C. 2002. 'PRINCE2: A Practical Handbook', Butterworth-Heinemann, 2 edn., ISBN: 07506 

53302. 
Stapleton,1. 1997. Dynamic Systems Development: The Method in Practice, Addison-Wesley, Longman, 
Harlow, England, ISBN 0-201-17889-3. 
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client initially allocated to the project. In that case, the client will need to be informed, 

and agreement reached on the actual resources to be used. The client needs to be aware 

at the outset of any constraints on attaining project goals arising from lack of required 

resources. 

Constraints 

The time, data, and budgetary constraints, affecting attainment of the project goals 

should be identified and allowed for in the project plan. 

Methods 

The plan should state which computational knowledge discovery technique(s) are to be 

used for the project, and why. It should also specify what tools (software) are to be 

used to implement the techniques. 

Risks 

The project plan should identify any risk factors that may prevent attainment of the 

project goals, quantifying the risk wherever possible. The location in the project plan 

where (when) these risks occur should be specified. 

Budget 

If the project plan calls for a large scale, ongoing data mining project, substantial 

operational costs will be incurred, and cost of capital and cash flow considerations will 

corne into play. In this situation the project should be evaluated using discounted cash 

flow techniques, and the NPV used as a project acceptance criteria. 

Task: Extract Data for Target Securities 

Once the project has been specified and a detailed project plan has been drawn up the 

data miner is in a position to extract data for the specific options involved. The required 

data may be obtained either from the client's own historical database (data warehouse) 

of options market data, or downloaded (on payment of a subscription) from the relevant 

financial institution. The nature of the data-mining project will dictate the dates and 

recency of the option prices involved, and the overall size of the data set. The data 

miner will need to import the raw data files into the software application to be used for 

the initial data exploration. This is often a non-trivial task involving complex file 

format conversions. 

Output: Project Database 

The output from this task is a project dataset of raw data in a format suitable for further 

processing using the tools chosen by the data miner. Relational database management 

systems (RDBMS) for example, are suitable tools for this stage of the process. 
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Task: Initial Data Exploration 

At this stage an initial data exploration should be carried out to gain familiarity with the 

project dataset and to check for any obvious anomalies. The initial data exploration can 

be as simple as calculating summary statistics and plotting variables of interest. 

Outputs: 

Data Description and Summary Statistics 

The data description is meta data describing the source of the project dataset in sufficient 

detail to create a clear audit trail. The summary statistics will be required for the Data 

Cleaning phase. 

Data Quality Report 

The data quality report is a brief statement concerning the quality of the raw data in the 

project database, confirming whether it is suitable for the purposes of the project. It 

may take the form of ticking boxes in a checklist. 

2.4.2 Data Cleaning 

Data originating from organised exchanges where options are traded, such as LIFFE, is 

normally of high quality. Even so, it almost invariably contains some bad quotes and 

other errors. These errors are of two types: 

• Human Errors 

These can be either unintentional such as typing errors, or intentional errors such as 

dummy quotes generated for technical testing. 

• System Errors 

These are errors arising from computer system failures or flaws. 

Mining data containing errors will produce poor results. If there are extreme outliers 

present in the data the results may well be unusable. Even without errors, the raw data 

may be unusable due to the existence of null values, that is, fields which have been left 

blank. Data mining software will not normally accept null values as inputs, and it is 

necessary to eliminate them by applying a zero fill or other coding scheme. Relational 

database management systems (RDBMS) are an effective tool for most data cleaning 

operations, and SQL queries provide a natural mechanism for implementing the 

required filters. Certain data cleaning operations on high frequency 'tick' data are an 

exception however, and require the use of special software25
. 

25 Dacorogna, M.M., Gencay, R., Muller, U., Olsen, R.B., Pictet, O.V. 200l. An Introduction to high 
Frequency Finance, Academic Press. pp 82-120. 
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Task: Data Consistency Check 

The first and most basic task in the Data Cleaning phase is a detailed check of the 

domain consistency of the data. The table of summary statistics resulting from the 

Initial Data Exploration task of the Data Selection phase is a starting point here. The 

maximum, minimum, range, and variance, of the values for each field in the data set, 

together with domain knowledge, will help identify the presence of outliers. Each field 

in the dataset must be individually checked for consistency using filters incorporating 

appropriate criteria. For example; Call Option prices should be positive, not violate 

upper or lower bounds26, and for the same maturity, vary inversely with the strike price. 

Bid and ask prices should be positive, with the bid price less than the ask price. Implied 

volatility values should not be unfeasibly large or small. Prices of underlying assets 

should be consistent with quoted exercise prices. A check for the existence of duplicate 

records should also be made. 

Output: Data Consistency Report 

A short report explaining the criteria used to assess data consistency and enumerating 

the inconsistencies found. The report may include a tabulation of the records containing 

inconsistencies, provided this is not too large. 

Task: De-Duplicate Records, Fill Null Values 

Once the data consistency check has been completed the required data cleaning actions 

can be taken. First and most basic of these are removal of any duplicate records, and 

the filling of null values. 

Output: Datasetfree of Duplicate Records and Null Values 

A new dataset that is a sub-set of the project dataset with duplicate records filtered out, 

and empty numeric fields filled. 

Task: Delete Inconsistent Prices / Values 

Following de-duplication and the filling of null values, remaining inconsistent prices 

and values are deleted by the application of appropriate filters. RDBMS select queries 

are an effective tool for this task. 

Output: Domain Consistent Dataset 

The output of this task is a dataset containing only domain consistent data. 

26 Hull, 1. 2000. "Options, Futures and Other Derivative Securities", 4th. Ed. Prentice Hall International. p 

168-182. 
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Task: Delete Incomplete Records 

The data miner now has a dataset containing only domain consistent data. However, it 

is possible that a few records remaining in the dataset are incomplete in that fields 

required as inputs for the data mining phase contain no information. Such records 

should be deleted to avoid skewing the data mining results. 

Output: Dataset of Complete Records 

The output of this task is the final result of the Data Cleaning phase. A domain 

consistent dataset containing only complete records. In this context, a complete record 

means a record where all variables required as inputs for the data-mining phase contain 

information. 

2.4.3 Data Reduction and Enrichment 

The Data Cleaning phase is concerned with removing bad quotes, elToneous values, and 

unrepresentative outliers, and results in a domain consistent dataset, containing 

complete records, in the sense defined above. Cleaned datasets are often much smaller 

than the uncleaned datasets from which they were derived. It is not unusual for up to 

90% of the original raw data to be discarded in a data cleaning exercise. Even so, 

cleaned datasets derived from options or other financial markets, can still be very large. 

This may lead to problems with file handling or software tools. To deal with this, file 

sizes are further reduced in the Data Reduction and Enrichment phase by discarding any 

fields which are not required for the proposed data mining project. However, it may be 

necessary to add other fields to the project dataset, which are required for the proposed 

data-mining project, but not present in the original database. An example is interest 

rates . LIFFE options market data does not include the applicable risk-free interest rate 

for each trading day. This is required for option pricing, and for calculating implied 

volatilities. However, it must be extracted from a third-party database and added to the 

project dataset as an extra field. A RDBMS is an appropriate tool for the Data 

Reduction and Enrichment phase. Unwanted fields can be filtered out using select 

queries. New fields can be added by importing the required data as a new table and 

joining to the table containing the project dataset. 

Task: Reduce Dataset Dimensions 

Delete all fields not required as inputs for the Data Mining phase. 

Output: Dataset Free of Redundant Fields 

Project dataset with all its redundant fields deleted. 
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Task: Enrich with External Data 

Add any extra variables (from third-party databases) required as inputs for the Data 

Mining phase, but not present in the project dataset. 

Olltput: Dataset with Extra Fields from Other Sources 

Project dataset free of all redundant fields and complete with any required extra fields 

containing variables added from third-patty databases. 

2.4.4 Data Preparation 

At this point in the process the data miner is in possession of a clean project data set 

free of redundancies and enriched with any required additional data obtained from third 

parties. However, the variables in the dataset may require transformation before they 

are in the form required for the Data Mining phase. The data miner may wish to input 

functions of certain variables in the data set rather than the variables themselves. To 

facilitate this 'derived variables' are created in the dataset, that is new fields containing 

the desired function values. For example, in option pricing applications it is sometimes 

desirable to use the ratio (asset price / exercise price), termed 'moneyness', as an input 

rather than the two variables separately. Derived variables that involve combinations of 

fields in the same record can be straightforwardly created in a RDBMS. Creating more 

complex derived variables, for example exponential moving averages, involving 

combinations of fields spanning several records may require coding. Variables must be 

consistently scaled for the Data Mining phase. Computational knowledge discovery 

techniques often perfOlm better if the input variables have similar distributions. For this 

reason it may be desirable to standardise the inputs to minimise the effects of different 

input dimensions. Finally, the non-parametric nature of many computational 

knowledge discovery techniques used for data mining means they are prone to over­

fitting. To guard against over-fitting, models should be tested on an independent test 

set, held out from the available data, and used only for testing. The specialised tasks of 

the Data Preparation phase are thus : 

Task: Generate Derived Variables 

Derived fields required as inputs for the Data Mining phase are created within the 

project dataset, using a RDBMS or other appropriate tool. 

Output: Dataset Complete with Derived Variables 

Project dataset with additional fields containing all required derived variables. 
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Task: Scale Input Variables 

Variables are converted to the scales required for the Data Mining phase by application 

of an appropriate scale factor. 

Output: Dataset with Scaled Variables 

Project dataset with all input variables correctly scaled. 

Task: Standardise Input Variables 

If required, standardise the project dataset to minimise the effect of different input 

dimensions. The following formula is a suitable transformation, which is widely used 

for data standardisation. It has the effect of mapping x to the domain [0,1]. 

. (x -mm(x)) 
Standardlsed( x) = _-,--,-I --"---'-'-

, (max(x)-min(x)) 
(2.1) 

Equation (2.1) should be applied to all variables in the data set to be standardised 

including the target (response variable). It may sometimes be useful to normalise inputs 

to their Z values, which can be accomplished using the following transformation. 

Z(x.) = (Xi-X) 
, O"(x) 

(2.2) 

[N.B. If these measures are adopted an inverse transformation should be performed 

prior to comparing predictions and target values, error measures are only meaningful in 

terms of the original input dimensions27.] 

Output: Standardised Dataset 

A project dataset with all variables standardised. 

Task: Partition Data 

The project dataset is partitioned into a separate training set and test set by applying an 

appropriate random sampling algorithm. This ensures that both data sets have 

distributions representative of the project dataset. [N.B. in the case of ensemble 

techniques such as bootstrapping, many training sets will be required, created by 

randomly re-sampling the original training set (with replacement) 28] 

Output: Separate Training Set and Test Set 

Two datasets, a training set, and a separate test set independent of that used for training. 

27 See e.g. Herrmann, R., and Narr, A. 1997. "Neural Networks and the Valuation 0/ Derivatives - Some 
Insights into the implied Pricing Mechanism o/German Stock Index Options." Working paper, University 
of Karlsruhe, Institute for Decision Theory and Management Science, Department of Finance and 
Banking. p 11. 
28 Efron, B., Tibshirani, RJ. 1993. An Introduction to the Bootstrap. Chapman & Hall, New York. 
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Output: Data Set Description 

A description of the data set including the following : The data origins, names and 

locations (paths) of raw data files, cleaned datasets, reduced and enriched datasets, and 

final prepared training and test sets. The variables and number of records in the original 

raw data set. The data cleaning report. Variables which have been added and deleted. 

Derived variables. Transformation, scaling, and standardisation formulas applied to 

variables. Method used to partition the data into training and test sets. Variables and 

number of records included in final training and test sets. 

2.4.5 Data Mining 

The quality of an option-pricing model depends on its ability to correctly predict option 

prices. The use of a particular model is only justified if its prediction error is less than 

that of competing models with the same, or fewer, parameters and inputs. However, in 

the literature documenting the application of computational knowledge discovery 

techniques to option pricing, the data mining model search is seldom conducted in a 

way conducive to statistically valid comparisons of the relative performance of 

competing models. Because of this, the Data Mining phase of the computational 

framework is considered here in rather more detail than the other phases. 

For neural nets and similar non-parametric non-linear regression techniques, the data 

mining model search problem can be characterised as follows; Suppose that D = 

{(Xi,ti);i= 1, ... ,n} is a training dataset containing targets (response variables) ti, and 

vectors of inputs (explanatory variables) Xi, and there exists an unknown true regression 

(2.3) 

where p(x) is the unknown function generating t, known as the true data generating 

process (DGP), and 8 is a scalar random error term. The set of input vectors X is 

mapped to t by the general unrestricted model (GUM). If a model can account for the 

findings of other models it is said to encompass them. The GUM is said to nest the 

DGP if the latter is a special case of the former. It is assumed that X nests or 

encompasses some subset of inputs S, with significant explanatory power, which is 

mapped to t by the DGP. The data mining model search problem is to find an estimate 

itA (x,D) (2.4) 

of p( x) , given the training set D, and a set of possible model architectures (topologies) 
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It A (x) , indexed by A, in general A E A = (S, A, Q). Here, A is a particular architecture. 

S is a set of input variables associated with the DGP, and.Q is a set of weights 

associated with architecture A and the set of inputs S. Thus, the estimate ,it depends 

explicitly on the dataset D used for training, since XeD and SeX, hence SeD. 

,it also depends explicitly on the selected architecture A, though this may have little 

effect29
. The data mining model search therefore consists of a search of the space of 

input variables and topologies, starting from a carefully selected GUM, with an initial 

architecture which can accommodate some non-linearity but is not overparameterized. 

The goal is to identify a terminal model, encompassed by the GUM, in the sense 

described above, which can generate data that are statistically indistinguishable from the 

DGP on given criteria. Such a model is said to be congruent with the data generating 

process. If several congruent models exist, a model which encompasses them should be 

chosen. There should be no other model with fewer inputs or parameters (weights) 

which fits better. The result is termed the parsimonious undominated model3o
. 

There are two possible strategies for the model search. The first involves a parallel 

search of both the input space and the space of possible architectures, based on pruning 

redundant nodes or weights31
. This approach has the advantage that the data miner is 

presented with a unique terminal model free of nodes which are redundant on the basis 

of the pruning criteria. Significance testing is simplified in this case and does not 

require multiple model adjustments. The disadvantages are that the data miner has no 

control over which inputs are retained in the model. There is also a lack of control of 

the selection criteria used at each stage. There is no guarantee that the terminal model 

represents the end point of a statistically valid search path where all the models are 

congruent, so that its true significance remains uncertain. Moreover, the approach is 

computationally costly, as a search for an optimum architecture is canied out for each 

model generated in the search of the input space. 

29 LeBaron, B., and Weigend, A. S. 1998. "A Bootstrap Evaluation of the Effect of Data Splitting on 
Financial Time Series ", IEEE Transactions on Neural Networks 9, p 213-220. The authors present 
evidence suggesting there is no significant correlation between network performance and architecture or 
initial weights, on the same training, validation, and test sets , for the kind of data typically found in 
economics, finance, and business. 
30 Hendry, D. F. 1995. Dynamic Econometrics. Oxford: Oxford University Press. Contains extensive 
discussions of the theory of model reduction. 
31 Automatic sensitivity based pruning is offered as an option in several commercial data mining software 
packages including SPSS CLEMENTINE. 
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The second strategy is a sequential search of the input space and the space of potential 

architectures. This is feasible since the model search described above can be 

decomposed into a search for the set of significant inputs S, and a search for an 

optimum architecture A (given some S). The second strategy has several advantages 

over the first. It is computationally less costly, since the search for an optimum 

architecture is only carried out once, for the set of inputs S found in the search of the 

input space. It amounts to a coarse to fine development of the model. First, an initial 

coarse architecture is chosen, and the input space is searched for S. Then, the space of 

feasible architectures is searched for a fine (i.e. in some sense optimal) architecture, 

starting from the initial coarse architecture. Different methodologies appropriate to 

each search can be applied. In the search of the input space, the data miner is able to 

exercise control over the inputs retained in the model, and the variable deletion criteria, 

and tests, used at each stage. It is possible to ensure that only congruent models are 

included in search paths, so a better estimate of the true significance of the terminal 

model is obtained. 

In the domain of economic and financial modelling the General-to-Specific (GeTS) 

procedure has been shown to display superior performance properties, and provide a 

coherent statistical framework for a model search methodology32. However, the GeTS 

algorithm was developed for use with OLS regression
33

. A model search algorithm 

based on the GeTS methodology but designed for use with computational knowledge 

discovery techniques for non-parametric non-linear regression is developed here. The 

model search algorithm is integrated into the Computational Framework for the input 

space search task. 

Selection of the optimal architecture (topology) is one of the most difficult problems 

when using neural nets and related techniques for non-linear regression. A sizeable 

literature on this topic exists, but there is little consensus on the solution
34

. The 

available approaches can be classified as : a) the heuristic techniques described in the 

neural net literature, mainly based on pruning. b) Statistical procedures based on 

hypothesis tests or goodness-of-fit criteria. It is difficult to estimate the true 

32 Hoover, K. D. and Perez, S. 1. 1999. "Data mining reconsidered: Encompassing and the general-to­
specific approach to specification search". Econometrics Jouma12, p1-25. 

33 Hendry et al (2002). 
34 See e.g. Bishop (1995), Chap.9. 
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significance of models resulting from approaches of type a). However, this is less of a 

problem for approaches of type b). To avoid overparameterised models Anders and 

Korn (1996)35 suggest hidden layer nodes should only be included when they contribute 

significantly to the explanation of the response variable. An inclusion criterion based 

on the estimated prediction error is often used for neural nets and non-parametric 

models. An architecture selection algorithm based on such a criterion, the Prediction 

Risk, is presented here. The algorithm is integrated into the Computational Framework 

for the architecture selection task. The prediction risk contains more information than 

rival criteria36, and provides information on the expected error for predictions made by a 

model. Existing methods of estimating the prediction risk usually rely on cross 

validation and are computationally costly. A method of estimating the prediction risk 

that does not require cross validation, is presented in Chapter 3 section 3.4.3. 

The data mining model search commences with an initial model choice. Once a terminal 

model has been selected by the search procedure the final task is to calculate its true 

significance and performance characteristics. It is important to note that all testing of 

models must be carried out on independent test data not previously used for model 

training, or as validation data for early stopping. A description of the tasks and outputs 

of the data-mining phase follows. 

Task: Select General Unrestricted Model and Initial Topology 

The data mining model search commences with the selection of a general unrestricted 

model. Include as inputs, all variables in the data sets produced in the Preparation 

phase, which could possibly explain the response variable. Next, select an initial 

topology for the model search. If neural networks are to be used, a network with a 

single hidden layer containing h nodes should be selected, h is given by; 

h=k l<h<k 
2 ' 

(2.5) 

where k is the number of input variables, and h is rounded to the nearest integer. This 

value is chosen so the network can accommodate some non-linearity in the relationship 

of inputs to the response variable, while containing as few hidden nodes as possible. 

35 Anders, U., Korn, 0., Schmitt, C. 1996. "Improving the Pricing ojOptions - A Neural Network 
Approach", ZEW Discussion Paper, pp96-04. 
36 Moody, lE. 1994. "Prediction Risk and Architecture Selection jar Neural Networks", in From Statistics 
to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, lH. Friedman and H. 
Wechsler (eds.), NATO ASl Series F, Springer-Verlag 1994. 
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The upper bound k on the number of hidden nodes, reflects the empirical observation 

that neural networks with a non-pyramidal topology have been found to not train as well 

as networks with a pyramid topology. 

Output: Specification/or General Unrestricted Model and Initial Topology. 

Specification of the input variables, response variable(s), and topology, to be used for 

the GUM is the starting point for the data mining model search. 

Task: Search Input Space (GeTS) 

Table 3 shows the General-to-Specific search algorithm, adapted for use with 

computational knowledge discovery techniques for non-linear non-parametric 

regression, in a data mining context involving options market data. The algorithm is 

presented in step-form, in the style of a defining diagram and using a pseudocode-like 

structured English syntax. The principle underlying the GeTS search algorithm is that 

inclusion of an insignificant variable in a model is a less serious form of mis­

specification than omission of a significant variable. Therefore the GUM is chosen so 

as to include all potentially significant variables, and the model is progressively 

simplified by elimination of insignificant variables. The main difficulty in applying the 

GeTS procedure to NNs and other computational knowledge discovery techniques, is 

that F and t tests on regression parameters, used for variable deletion tests on linear 

models, require OLS procedures and therefore cannot be utilised for non-linear 

techniques37
. The same is true of the regression diagnostic tests, excepting the Jarque­

Bera test for residual normality. There are three well-known tests based on maximum 

likelihood principles, which can be used for variable deletion with NLLS models. 

Namely, the likelihood ratio (LR) test, the Wald test, and the Lagrange Multiplier (LM) 

test. In principle, these can be applied to neural nets provided the assumption of 

normally distributed residuals holds, and the network weights are uniquely identified 

(estimable). In practice, the former condition does not usually hold for options market 

data, and the latter is not met if the network contains redundant hidden layer nodes. 

Terasvirta et al (1993) and White (1989)38 describe the procedures required for 

37 Thomas (1997), p 255. 
38 Terasvirta T., Lin C.F., Granger C.W. 1993. "Power of the Neural Network Linearity Test", Journal of 
Time Series Analysis, 14(2), pp209-220. 
White, H. 1989. "An Additional Hidden Unit Test for Neglected Non-linearity in Multilayer Feedforward 
Networks". Proceedings of the International Joint Conference on Neural Networks, Washington, DC. San 
Diego: SOS Printing, 11, pp451-455. 
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a e ° e o e T bl 3 G TS M dIS earc Igon m or hAl °th f I np" tS _pace S h earc ° 

INPUT 
Data Description 

a) Training dataset: D = {(xi,li);i= 1,. " ,11} with 11 observations, targets (response 
variables) Ii, and vectors of inputs (explanatory variables) Xi. 

b) Independent test set T= {(Xi,li);i=l, ... ,I11} to matchD. 
(NOTE: Trainin~ set D and test set T are outputs of the Data Pr~aration Phase) 

PROCESSING 
Step Operations 

1 
1.1) Specify General Unrestricted Model (GUM) 
1.2) Select initial topology. 
2.1) Using data set D, fit target(s) to the GUM input variables using OLS. 

Perform F and t-tests on the OLS parameters to suggest the significance of the 
input variables. 

2 
2.2) Perform diagnostic tests, ( LM tests for serial correlation, RESET test for functional 

form, Jarque-Bera test for residual normality, White test for heteroskedasticity). 
2.3) IF diagnostic test results suggest non-linear model appropriate GOTO Step 3 

ELSE apply GeTS procedure for OLS 
ENDIF 

3.1) Train network using dataset D, GUM specification, and initial topology. 
3.2) Using dataset T, perform F and t-tests on the actual and fitted values of the targets. 

Apply Jarque-Bera test for residual nonnality, if hypothesis of normality is rejected, 
do not repeat this test for subsequent steps. 

3 3.3) IF the F and t statistics suggest there is no significant difference between the actual 
and fitted values of the target, designate the GUM as the Current Model (CM) 
GOTO Step 4 
ELSE GOTO Step 1 
ENDIF 

4.1) Specify a Restricted Model (RM) by deleting input variable(s) from the CM. Using 
dataset D, train a network using the RM specification and initial topology. 

4.2) Using dataset T, perform F tests and paired t-tests, on the residuals from the CM 
and the RM. Apply Jat'que-Bera test for residual nOlmality, if hypothesis of 

4 
normality is rejected, do not repeat this test for subsequent steps. 

4.3) IF hypothesis of no difference between the residuals is accepted in the F and t tests, 
designate the RM as the next CM REPEAT Step 4 
ELSE discard RM 
ENDIF 

4,4) REPEAT Step 4 UNTIL restrictions / search paths exhausted. GOTO Step 5 
5.1) IF number of terminal models generated by Step 4> 1 

Specify an encompassing model (EM). Using dataset D, train a network using the 
EM specification, and initial topology 
ELSE GOTO Step 6 
ENDIF 

5.2) Using dataset T, perform F and t-tests on the actual and fitted values of the target. 
5 Apply Jarque-Bera test for residual nOlmality, if hypothesis ofnonnality is rejected, 

do not repeat this test for subsequent steps. 
5.3) IF the F and t statistics suggest there is no significant difference between the actual 

and fitted values of the target, designate the EM as the CM GOTO Step 4 
ELSE discard EM. 
ENDIF 

5,4) REPEAT Step 5 UNTIL a PARSIMONIOUS UNDOMINATED EM is obtained. 

6 6.1) GOTO Architecture Selection Algori tlUll. 

OUTPUT 
Data Description 

c) Parsimonious undominated model, jJ (x, S), congruent with the true Data 

Generating Process. 
d) Identity of those input variables, (comprising subset S of the training dataset 

D), which have significant explanatory power for the target(s) Ii' 
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constructing the test statistics, they are complex and cannot be used with standard 

neural net software. 

A limited range of tests is therefore available for use with NNs or related techniques. 

The larque-Bera test for residual normality can be used to indicate model mis­

specification. Non-normality of the residuals means the NN is not an efficient 

estimator, though it remains consistent and asymptotically unbiased. Plots of residuals 

or squared residuals against each input variable, must be relied on to indicate the 

existence of heteroskedastic error terms. F tests and paired t tests on the predicted 

values and the residuals can be used for model comparison. If a significant variable is 

eliminated from a model, there will be a significant change in the residuals at each 

observation. If an insignificant variable is eliminated, then there will be no significant 

change at each observation. Thus, the modified GeTS algorithm shown in Table 3, 

employs F tests and paired t-tests of the residuals for variable deletion tests39
. 

Output: 

Model(s) that are congruent parsimonious undominated encompassing models of the 

DGP, nested within the GUM. 

Task: Search for Optimal Architecture 

Techniques for selecting the optimal architecture for a NN can take the form of pruning 

algorithms or growing algorithms. With pruning algorithms, a large network is first 

trained, and redundant hidden layer nodes (and usually input variables) are eliminated 

by the application of a selection criterion. The criterion used can be either statistical, or 

a version of sensitivity based pruning. It is difficult to determine the true statistical 

significance of the terminal model when sensitivity based pruning is used. This is 

because sensitivity based pruning is an automatic procedure which works by eliminating 

weights, hidden layer nodes, and inputs, if the partial derivatives of the network outputs 

with respect to them are below some arbitrarily selected small threshold value. 

Moreover, pruning algorithms require the estimation of models with redundant weights, 

consequently some weights are unidentified, so the assumptions underlying the usual 

statistical tests are violated40
. 

39 See Appendix F for details of the statistical tests discussed here. 
40 Anders, U. 1996. "Statistical Model Buildingfor Neural Networks", Proceedings of the 6th International 
AFIR Colloquium, NUrnberg, Germany, October 1-3, 1996. p969. 
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To avoid these problems, a growing algorithm is used to select an optimal architecture 

with minimal or no redundant hidden layer nodes. The selection criterion used at each 

step is the prediction risk (PR) criterion41
. The PR is chosen because the goal of 

network training is to find a network that gives good predictions on new (unseen) data. 

That is, a network with low variance which generalises well. The PR is the expected 

mean squared error (E[MSEJ) of an estimator in predicting new observations, and is 

thus a measure of generalisation ability. PR is a summary statistic closely related to 

prediction intervals. Prediction intervals can be used as an alternative instrument for 

network architecture selection42
, however PR is more straightforward to use. Prediction 

intervals, and PR, are discussed in detail in Chapter 3, methods of estimating them are 

discussed, and a new approach suitable for use with large databases of option market 

data is presented. 

Table 4. shows the Architecture Selection Algorithm. This is a heuristic algorithm 

described in terms of NNs, but it can be used with most computational knowledge 

discovery techniques for non-linear non-parametric regression. 

The algorithm shown in Table 4 has the advantage that a sequence of 'nested' models is 

generated, permitting estimation of the true significance of the final results of the full 

model search process. Prediction Risk is normally calculated using independent test set 

data, or individual observations randomly omitted from the training data (cross­

validation). It does not decrease monotonically as the number of hidden layer nodes is 

increased, because of the existence oflocal minima, as discussed by Moody (1994). For 

this reason the algorithm is not terminated as soon as PR increases. Instead, sufficient 

iterations of Step 2 are performed to create a set of architectures that might reasonably 

be expected to span the optimal architecture. The model with the smallest PR is then 

identified. It is selected as the 'optimal' architecture, unless there is another model with 

fewer hidden layer nodes and a PR which is little different,. 

Output: 

Congruent parSImOnIOUS undominated encompassmg model(s) of the DGP, with 

optimised architecture, having minimal or no redundant weights. 

41 Moody, 1. 1994. "Prediction Risk and Architecture Selection jor Neural Nets ", in From Statistics to 
Neural Netrvorks: TheOl)' and Pattem Recognition Applications, V. Cherkassky, lB. Friedman and H. 
Wechsler (eds.), NATO ASl Series F, Springer-Verlag. 
42 Hwang, 1. T.G. and Ding, A.A. 1997. "Prediction Intervals jor Artificial Neural Networks ", Journal of 
the American Statistical Association, Vol. 92 No. 438, p754. 
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a e ° rc I ec ure T bi 4 A hOt t e ec .on Igon S I f Al °th m 
INPUT 

Data Description 
e) Training dataset: D = {(xj;);i= 1, ... ,11} with 11 observations, targets (response 

variables) Ii, and vectors of inputs (explanatory variables) Xi. 
f) Independent test set T = {(xi,li);i= 1, .. . ,I11} to match D. 

g) Parsimonious undominated model, II (x, S), from Input Space Search Algorithm. 

h) Maximum numbers of hidden layer nodes to be considered. 
(NOTE: Training setD and test set Tare outputs of the Data Preparation Phase) 

PROCESSING 
Ste~ Operations 

1.1) Designate the parsimonious undominated model, II (x, S), as the Current Model 
1 (CM). 

1.2) Using dataset T, Estimate the PR for the CM. 
2.1) Add ONE hidden layer node to the network architecture of the CM. Train a new 

model with this revised architecture, using dataset D . (Freeze the random starting 
2 weights, or use estimated weights from the CM as starting weights.) 

2.2) Using dataset T, estimate the PR for the new model. 
2.3) REPEAT Step 2 UNTIL number of hidden layer nodes = maximum. 
3. 1) Select model with the smallest PR from the set of models created in Step 2. 

Designate as CM. 
3.2) IF in the set of models there is a model with f ewer hidden layer nodes than the 

3 CM, AND its PR is not significantly different from the CM. Select this model as 
the Optimal Model. 
ELSE select eM as the model with optimal architecture 
ENDIF 

OUTPUT 
Data Description 

i) Parsimonious undominated model with optimised architecture, jI, (x, D) . 

(NOTE: A E A = (S, A, .o) , where A is a particular architecture, (in this case the 

optimised architecture). S is the set of input variables associated with the true Data 
Generating Process, and.o is the set of weights associated with architecture A and the 
set of inputs S) 

Task: Evaluate Terminal Model(s) 

Evaluate the performance and estimate the true significance of the final model(s) 

resulting from the complete model search. Take account of the numbers of hypothesis 

tests performed and whether models are nested within one another. Assuming the 

models are all nested within one another and} steps are required to reach the final 

model, then the true significance of the i" hypothesis test in the sequence is given by 

a' = 1-(1- a)l (2.6) 

where a IS the nominal significance level43
. It is usual to test for a gIven level of 

significance, normally a* = 0.05. In order to ensure that all tests in a sequence have a 

true significance of a* = 0.05, the nominal significance must be adjusted for each) by 

43 Maddala, G. S. 1988.il1tl'Oduction to Econometrics, New York, Macmillian, p425. 
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solving the following equation for a. 

0.05 = 1- (I-a)} (2.7) 

Table 5 shows true and nominal significance for a sequence of 10 consecutive 

hypothesis tests, obtained by solving (2.6) and (2.7), assuming nominal and true 

significance of 0.05 respectively. 

Tabl 5 N t d M d I T e . es e o e s: rue an dN omma I St f f I S· 'ficance a IS Ica Igm I 
j True a* for a = 0.05 Nominal a for a * = 0.05 
1 0.050 0.0500 

2 0.098 0.0253 

3 0.143 0.0170 

4 0.185 0.0127 

5 0.226 0.0102 

6 0.265 0.0085 

7 0.302 0.0073 

8 0.337 0.0064 

9 0.370 0.0057 

10 00401 0.0051 

OlitPllt: Model Performance Statistics and True Significance Levels 

Performance statistics, and estimates of the true statistical significance, for final 

model(s) resulting from the data-mining model search. 

2.4.6 Reporting and Deployment 

The final phase in the Specialised Process Model for Options Market Applications is 

Reporting and Deployment. The final report is a record of the findings of the entire 

KDD and data mining exercise. It is essential for management decisions regarding 

operational deployment of the models developed in the Data Mining phase. It is also a 

useful guide for similar exercises in the future. 

User manuals will be required for any models which are to be deployed throughout the 

enterprise. Also, the operational performance of models needs to be monitored, so that 

models can be replaced or updated when necessary. This is important in an options 

market context, as the performance of models may decay quickly due to the non­

stationary nature of market data. It is best if a systematic monitoring and maintenance 

plan is in place at the time of deployment. 
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The Reporting and Deployment Phase has the following tasks : 

Task: Prepare Statistics and Graphics 

Collate and tabulate all statistics produced in the different Phases of the process that are 

to be included in the final report. Produce all necessary associated graphical 

presentations. 

Output: Tables and Figures for Final Report 

All tables of statistics, figures, and graphs, to be included in the final report document. 

Task: Recommend Deployment / Non-use 

Prepare advice to management for inclusion in the final repOli, in favour or against 

deployment of the models developed, based on performance test results and statistics. 

An estimate of model risk44
, the risk to the business of loss due to weakness of the 

model should also be included. 

Output: Deployment Advice 

Estimates of model risk, and advice to management concernmg deployment of the 

model(s) for inclusion in the final report. 

Task: Produce Final Report 

Prepare the final report document, include the tables and figures, and the deployment 

advice, from the previous steps. The document should take the form of a short formal 

report, and be based on a standard template. 

Outputs: 

Final Report Document 

Final report document, including executive summary. 

Users Manual 

Contingent on a recommendation to deploy the modele s), prepare a users manual. The 

users manual should be a short manual describing the model, specifying its performance 

characteristics and limitations, and precisely stating the circumstances when it should or 

should not be used. 

44 See e.g. Rebonato, R. 2003. "Them]! and Practice of Model Risk Management", Quantitative Research 
Centre (QUARC) of the Royal Bank of Scotland, Oxford Financial Research Centre - Oxford University. 
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Task: Plan Monitoring and Maintenance 

Subject to a decision to deploy the model(s), prepare a Monitoring and Maintenance 

Plan. The plan should be developed following consultation with the intended users. 

Users should be required to keep a log of model use, and make periodic performance 

reports to the development team. Suitable forms should be designed for the purpose. 

The maintenance plan should take account of the expected life cycle of the model, 

including its eventual retirement and replacement. 

Output: Monitoring and Maintenance Plan. 

A Monitoring and Maintenance Plan for the full model life cycle. 
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2.5 Multiple Iterations and Process Instances 

Fig.6 illustrates an idealised single iteration through the Specialised Process Model for 

Options Market Applications. The sequence of phases and tasks is designed to 

minimise repetition. However, multiple iterations through all or part of the process may 

still be required to attain a particular KDD or data mining goal. Some steps in the 

process may need to be repeated more than once. For example, to introduce new data in 

the Data Reduction I Enrichment phase, it may be necessary to cycle through the Data 

Cleaning phase again. The sequence of phases and tasks illustrated in Fig.6 should not 

therefore be thought of as fixed. Rather, the Process Model overall is cyclical not 

linear, with many possible pathways through it. Fig.7 is a diagrammatic representation 

of multiple iterations through the process. The outer circle with solid arrows represents 

the cyclical nature of the process, and the inner circle represents a feedback loop. The 

actual software implementation of the full Specialised Options Market Process may 

require the use of multiple software tools for each phase, in addition to specialised 

software for the data mining phase, and these are shown. 

Fig.7 Specialised Options Market Process: Phases and Tools 
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A Process Instance is a record of a single iteration through the Process Model. It is a 

record of actions, decisions, and results, and consists of all of the outputs from all of the 

tasks completed for each phase. Fig.8 overleaf illustrates the content of a process 

instance for a typical single iteration through the full Specialised Process Model for 

Options Market Applications. 

Fig.8 Specialised Options Market Process: A Process Instance 
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2.6 Conclusions 

A framework for applying computational knowledge discovery techniques to options 

market data in a manner designed to avoid attributing significance to spurious 

relationships was developed and presented in Chapter 2. Procedures and methods were 

described to estimate true global statistical confidence in models, and diagnose 

problems that may affect model assumptions, for example tests of functional fOlID, and 

the nOlIDality of residuals. The testing procedures described in this chapter, reveal little 

about how a model will perform on new unseen data, however. Also, the nature of 

financial data, and the input dimensionality and function complexity of models used in 

options markets, make it desirable to obtain local estimates of confidence. These 

central questions of how to estimate the confidence, which can be placed in models and 

predictions are addressed in Chapter 3. 
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3.0 Introduction 

In this chapter, a theoretically well founded and robust method for determining 

prediction intervals, and prediction risk, useable with computational knowledge 

discovery techniques for non-parametric non-linear regression is presented. The 

exposition is based on arguably the most successful type of computational knowledge 

discovery technique for options market applications. Namely, the form of neural 

network termed a multi layer perceptron (MLP). However, it is shown here that the 

method is equally applicable to a broad class of related techniques. The method was 

subjected to extensive empirical testing using a standard synthetic data set, and 

compared with a method applicable only to the MLP. Following this, to assess its 

perfOlmance in more realistic settings, the method was applied to synthetic option 

prices, and then to observed market prices of options. 

3.1 Motivation 

Neural nets are a flexible computational knowledge discovery technique widely used to 

model high-dimensional real-valued non-linear data. Hornik et al (1989) have shown 

that an MLP with a single hidden layer can approximate arbitrarily closely, virtually any 

linear or non-linear continuous function. They also demonstrate45 that MLPs are twice 

differentiable so first and second order partial derivatives of the network with respect to 

its inputs are obtainable. These characteristics make MLPs suitable for applications in 

option pricing, hedging, and the recovery of probability distributions from option 

market data. This is supported by Galindo 46 who presents evidence suggesting that 

MLPs out-perform other computational knowledge discovery techniques for option 

pricing. A number of researchers have applied neural nets to option pricing and report 

favourable results, compared with modem parametric option pricing models47
. 

Surprisingly, there has been little reported for the confidence factors associated with the 

modelling of option prices using neural nets. Even more surprising is the absence from 

the literature of standard statistical hypothesis testing 48, so comparisons between models 

45 Homik, K., Stinchcombe, M., White, H. 1990. "Universal Approximation of an Unknown Mapping and 
Its Derivatives Using Multilayer Feedfonvard Networks", Neural Networks, Vol. 3, pp 551-560. 
46 Galindo (1999). 
47 See Literature Review Chapter 4, section 4.1.2 
48 Sutcliffe, C. Private Communication. January 2003. I am grateful to Professor Sutcliffe for confirming 
this observation. 
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are made on measures such as mean-squared-error and R2 , which give an incomplete 

picture of performance. 

Typical NN models contain large numbers of weights and bias terms (parameters). The 

number of these often greatly exceeds the number of input variables. Because a NN is a 

linear combination of large numbers of basis functions, these parameters are 

uninterpretable. They are frequently also unidentified. Hence, neural nets are often 

regarded as "black box" models49
. This may explain the tendency among users to 

ignore the uncertainty inherent in predictions produced by the networks. However, like 

other regression methods, neural net prediction accuracy varies with data density and 

noise. Also, in options market applications particular models can often be statistically 

acceptable for a set of data, but if inputs are partitioned, for example, by moneyness and 

maturity, then some partitions fail the statistical tests. Consideration of en'or estimates 

on a point by point basis is therefore essential if a fuller picture of performance is to be 

obtained. Moreover, prediction intervals, and the closely related prediction risk, are 

useful statistical criteria for application to the model selection problem, as discussed in 

Chapter 2 section 2.4.5. 

49 The structure and functioning of neural nets is explained in Appendix A. 
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3.2 Theory 

This section is mainly pedagogical. To define terms and develop notation the theory 

relating to confidence and prediction intervals applied to regression is first reviewed. A 

discussion of how this theory applies to neural nets then follows. 

3.2.1 Confidence and Prediction Intervals for Regression 

Regression is the name given to the family of statistical techniques used to model the 

relationship between a response (or dependent) variable y , and a vector x of explanatOlY 

(or independent) variables, the regressors. In the neural net literature the terminology 

targets for response variables, and inputs for the regressors, with the vector x telmed the 

input vector is used. The following discussion adopts this usage. In regression, it is 

assumed there is a relationship between the target y and the input vector x. Equation 

(3 .1) shows a possible fOlm this may take. 

(3.1) 

The relationship has both stochastic and deterministic components. Here c ~ N(O,0' 2) is 

a nOlmally distributed random elTOr. The stochastic component consists of the resulting 

random fluctuation of y about its mean J-i:J,(x). The deterministic component is the 

function relating J-i:J,(x) and x . Suppose that the true but unknown function relating J-i:J,(x) 

and x is given by 

liy (x) = f(x ; fJ) (3.2) 

where fJ is a set of parameters. Regression attempts to model this relationship by 

estimating the parameter values from the data set. To achieve this, the values of fJ are 

adjusted under the assumption thatfis the true function, giving 
~ ~ 

fi/x ,' fJ) = f(x;fJ) (3.3) 

where a hat denotes an estimated value. The right hand side of equation (3 .3) is termed 

a regression fimction . If fi/x ,}) is estimated from a finite sample S, {(X"Yl) , (X2,Y2), 

... , (XIl,YIl) E S}, sampling variation in S will result in variation in jJ and hence variation 

in /i/X,}) . It follows fi/xo;jJ) has a sampling distribution about J-i:J'(xo) , where Xo is 

a particular value of x. A 95% confidence interval for J-i:J,(xo) is an interval [AL(S, xo), 

Au(S, xo)] about fi/xo;jJ) such that J-i:J,(xo) is within the interval in 95% of cases. A 

95% prediction interval is an interval [~L(S,XO), ~u(S, xo)] about fiy(xo ; jJ) such that 
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the unknown value yo associated with Xo is within the interval in 95% of cases. As an 

example consider the univariate ordinary least squares (OLS) regression of yon x for a 

sample S, {(XI,YI), (X2,Y2) , ... , (xmYn) E S}. The 95% confidence interval for /-0'(xo) is 

given by 

ft,( xo; fj) ± t.",,,_y, l Sy 

and the 95% prediction interval by 

fty (xo;fj) ± t,,,,,,,, l Sy 

(3.4) 

(3.5) 

where Sy is the standard deviation of the Y values and x is the mean of the x values
50

. In 

equations (3.4) and (3.5), Sy is given by 

(3.6) 

where e = (ity (Xi; /3) - Yi) are the residuals. This follows from the classical assumptions 

for OLS regression under which Var(Yi) = Yare s) = (J" 2. An unbiased estimate of (J" and 

hence of the standard deviation of the Yi is given by equation (3.6). Equations (3.4) and 

(3.5) can be generalised to the multivariate case for OLS regression to obtain a (1-

a)100% confidence interval for /-0'(xo). In matrix notation this is 

it/xo ;/3) ± t(aI2)(Il-H) (~x~ (XT Xr1 xos~ ) 

and a (1-a) 1 00% prediction interval is 

ity (xo ;/3) ± t(aI2)(Il-k-l) (~(1 + x~ (XT Xr1 )xos~ ) 

(3.7) 

(3.8) 

In equations (3.7) and (3.8) Xo is a k x 1 column vector of inputs and X is a n X k matrix, 

containing first a column of ones, and then the k - 1 values of each of the n row vectors 

xJ. The scalar s~ is the mean squared residual (MSR). It is an unbiased estimate of 

0"2 and hence of the variance of the Yi. For equations (3.7) and (3.8), s~ is given by 

T ~T T 

MSR = S2 = Y Y - P X y 
y n-k-1 

(3.9) 

50 Thomas (1997), pp150-153. 
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In equation (3.9), X is as previously defined, Y is a n X 1 vector of target values, and 

jJ is a k x 1 vector of estimated parameters given by jJ = (XT Xr1 XTy. If the x 

values in equations (3.4) to (3.9) are continuously valued over the interval [XI, X2], X2 > 

XI a continuous confidence band and prediction band are obtained. From equation (3.2) 

f(x,' fJ) is the true but unknown function relating flJ,(x) and x (the true regression). 

Equation (3.3) it/x; /3) = f(x; jJ) is an estimate of this regression. It follows that the 

confidence intervals (3.4) and (3.7) are for the true regression functions. The prediction 

intervals (3.5) and (3.8) are for predicted values associated with a new unseen input. 

The relationship between confidence intervals and prediction intervals can be 

understood by considering the following equation. 
A A 

[y - f(x; fJ)] = [f(x; fJ) - f(x; fJ)] + &(x) (3.10) 

Prediction intervals are concerned with the left hand side of this equation, the difference 

between the target value and its predicted value from the estimated regression function. 

The left hand term decomposes into the two right hand terms. Confidence intervals are 

concerned with the first of these, the difference between the true and estimated 

regressIOn functions. This difference is determined by the parameter difference 

(fJ - jJ). The remaining term on the right hand side is the (sample dependent) random 

noise term. Neither the noise or the true parameters fJ can be directly observed. 

However, the variance of the noise can be estimated as Var(&) = S2 , and confidence 

intervals constructed for the true fJ. 

3.2.2 Estimating Confidence and Prediction Intervals for NNs 

The theory presented in the previous section can be applied where the right hand side of 

equation (3.3), the regression function, is a neural net. Existing methods are discussed 

in this section. The discussion is confined to the case of a MLP with one hidden layer. 

In this case, from equation (3.3), 

(i,(x, fJ) ~ e( t, wl/,lTi (t. w",x, +lU,,)+ lU, J (3.11) 

In equation (3.11), the MLP consists of one layer of K input nodes XI, ... , XK, a layer of I 

output nodes, and H hidden layer nodes51
. The functions e and (jJ are termed 

activation functions. For the hidden layer, (jJ is usually a sigmoid function such as the 

51 Bishop (1995), pp 117-119. 
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logistic function or the hyperbolic tangent function. For a continuously valued target 

variable, the output functions e are usually linear and may be the identity. The ware 

referred to as the weights and the OJ are constant intercept terms known as biases. The 

set of estimated weights and biases IS denoted by {n, (w" ... ,WKH+Hl, 

OJ" ... ,OJH+I,)E n}. Unlike conventional NLLS regreSSIOn, In neural nets the non­

linearity involved is not parametrically defined a priori, and can assume any form. 

Consequently, the error surface can have many local minima, and a closed form solution 

for the global minimum is not generally possible. The network is fitted (,trained' in the 

neural net literature) by searching a weight space to select fJ to minimise a cost 

function. This is done by employing a search algorithm such as gradient descent, 

conjugate gradient, or quasi-Newton52
, These methods require initialisation of the 

vector n with a set of small random values. The vector n that minimises the cost 

function is then iteratively estimated. Because the vector n is typically large, search 

methods involving computation of the Hessian matrix of second order partial 

derivatives of the cost function with respect to each of the elements of n are 

computationally intensive. In common with other non-parametric methods, neural nets 

can over-fit data. To prevent over-fitting, training is terminated when the error function 

is minimised on a validation data set (early stopping). Alternatively, some form of 

regularisation (weighting) can be used. See Appendix A for further explanation of the 

workings of MLPs. 

When the cost function used for (3.11) is the sum of squared errors, the activation 

functions are not all linear (the usual case), and early stopping is used to prevent over 

fitting, the optimisation is effectively a NLLS regression. The theory for estimating 

standard errors for non-linear regression is then directly applicable. Hwang and Ding 

(1997)53 show this theory can be extended to MLPs to obtain asymptotically correct 

standard errors. The estimation of standard errors for MLPs using the Delta Method54 

and Sandwich Method55 for non-linear regression is explained in Appendix B. 

Alternative bootstrap and Bayesian approaches are explained in Appendix C. 

52 Bishop (1995), pp 253-294. 
53 Hwang et al (1997). 
54 Seber, G.A.F., and Wild, C,J. 1989. Nonlinear regression, John Wiley & Sons, New York. 
55 Huber, P. 1. 1967. "The behavior of maximum likelihood estimation under nonstandard conditions", 
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, LeCam, L. 
M. and Neyman, J. editors. University of California Press, pp 221-233. 
White, H. 1982. "Maximum likelihood estimation of misspecified models". Econometrica, 50, pp 1-25. 
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3.3 Literature Review: Confidence and Prediction Intervals for NNs 

In this section, the literature on the performance of existing methods of estimating 

standard elTors for NNs is reviewed. Recent research, aimed at obtaining improved 

estimates of standard errors, confidence, and prediction intervals for neural nets, is also 

discussed. 

3.3.1 Existing Methods of Estimation 

Tibshirani (1996)56 has performed tests of seven different standard error estimates for 

MLPs with single hidden layers and a linear output layer. These were obtained using 

three variants of the delta method, two variants of the sandwich estimator, and the 

bootstrap pairs and bootstrap residuals methods. The delta method variants used are the 

standard, a method using the inverse Hessian matrix, a method using an approximation 

to the Hessian matrix omitting second order telms, and the delta method with a 

regularisation term. The sandwich method variants are the standard sandwich method 

and a variant using an approximate Hessian matrix. 

A small data set was used for these tests, consisting of III observations on air pollution. 

For the bootstrap methods, B = 20 bootstrap replicates were used. In these tests, it was 

found that the bootstrap methods provided the most accurate estimates of standard 

errors. The delta methods and sandwich estimators missed the substantial variability 

due to random starting weights. Tibshirani suggests these latter estimators may perform 

better where there is less sensitivity to the choice of starting weights (initialisation 

parameters), for example with larger data sets where gradient descent is used. 

This suggestion is consistent with findings by LeBaron and Weigend (1994)57 who used 

a training set of 3200 observations on market trading volume at the New York Stock 

Exchange. This data was relatively noisy, with predictions explaining approximately 

0.5 of the variance. They created 2523 bootstrap replicates for both an MLP and a 

linear model. The error measure used was (I-R\ and 2523 bootstrap replicates were 

generated on the test set of 1500 observations to obtain out-of-sample distributions for 

56 Tibshirani, R. , 1996. "A comparison oj some error estimates j or neural network models ". Neural 
Computation, 8, pp 152-163 . 
57 LeBaron, A. and Weigend, A. 1994. "Evaluating Neural Network Predictors by Bootstrapping ", In: 
Proceedings of the International Conference on Neural Information Processing (lCONIP'94), Seoul. 
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this error. F or the MLP, 697 networks were also trained on a single sample and 

initialisation parameters were randomly drawn for each one. It was found that the 

randomness due to the splitting of the data generated more variability than the 

randomness due to network initialisation. Indeed, no significant correlation was found 

between the choice of initialisation parameters or network topology, and performance. 

Moreover, the error distributions obtained from the bootstrap procedure on the test set 

are almost identical for both the linear and MLP models. This suggests that for the data 

used, the MLP was unable to extract non-linear features that generalised out-of-sample 

from the (noisy) training set. 

In tests using synthetic data with an input-dependant noise variance, Bishop and Qazaz 

(1995)58 demonstrate the Bayesian approach can give an improved estimate of noise 

variance compared with maximum likelihood based approaches. However, Ungar et al 

(1995) question whether the improved performance of Bayesian approaches justifies the 

extra computational cost involved59
. 

Heskes (1997)60 proposes a method based on bootstrap pairs for obtaining prediction 

intervals for a pair {(xo, Yo) ~ S:oo/, b = 1 to B} using the relationship in equation (3.10) 

, and equations (C.1) and (C.2) given in Appendix C. To achieve this a separate neural 

net X 2 (X)is trained to model the noise variance Var(&). The targets for this network 

are residuals satisfying 

r2 (Xv) = Max ( e;oo/ (Xv) - §E!oo,(f(X,,;.Q)),o) (3.12) 

obtained from the validation sets used for training the B networks used in the bootstrap 

ensemble (C.2). Alternatively, these may be obtained by applying (C.2) to an 

independent test set. In equation (3.12), e;ooJXv) = (y-.uY,Boo,(X,.)f ' the residuals 

from (C.2) when applied to the validation sets. The cost function used for training the 

auxiliary network is the negative log likelihood function, hence the use of the Max( -,0) 

function in (3.12). The resulting bootstrap prediction interval is 

58 Bishop, C.M., Qazaz, C.S. 1995. "Bayesian Inference of Noise Levels in Regression", Technical 
Report, Neural Computing Research Group, Aston University. 
59 Ungar, L.H., De Veaux, R.D., Rosengarten, E. 1995. "Estimating Prediction Intervals for Artificial 
neural Networks", Department of Computer and information Science, University of Pennsylvania, 
Philadelphia, PA 19104. 
60 Heskes, T 1997. "Practical confidence and prediction intervals", in: M.Mozer, MJordan & TPetsche, 
eds, Advances in Neural InfOlmation Processing Systems 9, MIT Press, Cambridge, MA, pp 176-182. 
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fiy,Boor(X) ± t(a/2)B (SEBoor(f(X;,Q)) + x( X)) (3.13) 

The prediction interval (3.13) offers the advantage that it allows for the uncertainty of 

the regression function as well as that of the noise. In addition, it does not rely on the 

assumption that the network is an unbiased estimator of the conditional mean of the 

target value (i.e. that the error due to bias is negligible compared with the error due to 

variance). 

Nix and Weigand (1995)6\ have proposed a novel method of computing prediction 

intervals for neural nets. The method uses a NN with two output nodes, one for 

fiy (x; b) , the predicted value, and a second for a-~ (x; U) , the variance of the predicted 

value. The network has a non-standard structure, with a second hidden layer for 

a-~ (x; U) receiving inputs from both the hidden layer for fi/ x; b) and from the input 

layer. A negative log likelihood cost function is used, modified by inclusion of the 

input-dependent variance term a-.~ (x;). Usually a-2 (X) is assumed constant and drops 

out after differentiation. A linear activation function is specified for the fi/ x ; b) 

output unit. To ensure only positive outputs, an exponential activation function is 

specified for the a-~ (x; U) output unit. A hyperbolic tangent activation function is used 

for the hidden layer units. Using these activation functions, differentiating the cost 

function with respect to the network weights gives weight update equations containing 

terms 11 a-~(x), which act as a form of weighted regression. An improved fit in low 

noise regions of the input space is claimed. The outputs obtained from this network are 

equivalent to training a separate network for a-.~ (x; U) using the squared residuals from 

fiy (x; b) as targets. 

The Nix-Weigend network requires a three phase training process. In Phase 1 the 

network is trained on a training set A for the output fi/x; b). This is equivalent to 

normal network training using a sum of squares cost function with early stopping to 

prevent over fitting. In Phase 11, the weights trained in Phase I are frozen and the 

second hidden layer for a-~ (x; U) added. The squared residuals from the Phase I 

61 Nix, D.A., Weigend, A.S. 1995. "Learning Local Error Bars/or Non-Linear Regression", In: 
Proceedings of NIPS 7, pp 489-496. 
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model are used as targets for the second output node a-.~ (x,' U). The network is now 

trained for the output a-:, (x; U) using the validation set B from Phase I as the training 

set, with set A as the validation set. In Phase 111 (vveighted regression), the available 

data are re-split into a new training set A' and validation set B'. All network weights 

are unfrozen, and the network is re-trained for both output nodes on training set A', 

using B' as the validation set. Training is now considered complete. 

The Nix-Weigend method can provide prediction intervals without bootstrap res amp ling 

or use of the Hessian matrix. Improved performance in low noise regions of the input 

space is claimed, due to the use of a fmID of weighted regression. However, the use of 

weighted regression means the standard elTors obtained do not have their usual 

interpretation. This is because inference for NNs rests on the assumption the network 

performs a NLLS regression. In the case of weighted regression a penalty term is added 

to the error function and this is not the case. Weighted regression also introduces local 

minima in the error surface, complicating learning62
. Moreover, since the Nix-Weigend 

method requires use of a special non-standard architecture, and other features specific to 

neural networks, it is not a generally applicable method. In tests using both synthetic 

data with added non-uniform Gaussian noise, and real-world data with uniform non­

Gaussian noise, compared with the use of a separate network to estimate the variance, as 

proposed by Satchwell (1994)63, or used by Heskes (1997) the Nix-Weigend method 

produces improved prediction intervals. 

3.3.2 Limitations of Existing Methods 

Existing methods for computing standard errors, confidence, and prediction intervals for 

neural nets are of three types. First, the delta method, sandwich method, and their 

variants, which use the Hessian matrix of second order partial derivatives of the cost 

function with respect to the weights and biases. Second, methods using bootstrap 

resampling. Third, methods which rely on directly modelling the noise. Empirical tests 

suggest that methods of the first type do not perform as well as methods of the second 

type, at least for small samples. Moreover, it is not always possible to use the delta and 

sandwich methods. Where there is over-fitting the required matrix inversions are 

62 Nix and Weigend (1995), p496. 
63 Satchwell, C. 1994. "Neural Networks jar Stochastic Problems: More than One Outcome jar the input 
Space", In: NCAF Conference, Aston University, September 1994. 
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unstable and may fail, making the necessary computations impossible. Methods based 

on bootstrap resampling are reported by Tibshirani (1996) to give estimates that are 

more accurate. While the bootstrap can provide confidence intervals for the true 

regression function, on its own it cannot provide prediction intervals where the target 

variable is unknown. Heskes (1997) has sought to overcome this limitation by 

proposing a method that uses a separate neural network to model the noise, in 

conjunction with bootstrap resampling. However, the naIve bootstrap does not provide 

heteroskedasticity consistent standard errors64
. For these, the use of a more complex 

wild bootstrap is required. The method proposed by Nix and Weigand (1995) is of the 

third type. It does not have any of the above limitations, and is less computationally 

costly. However, it relies on a form of weighted regression. Consequently, the validity 

of inference using the estimated standard errors is questionable. Moreover, the method 

uses a non-standard topology, and features specific to the MLP, and is not generally 

applicable. 

3.4 Robust Practical Prediction Intervals and PR 

A new method for obtaining standard errors, confidence, and prediction intervals that is 

applicable not only to MLPs, but to any non-linear regression method of comparable 

generality is now described. The method is robust to heteroskedasticity and practical to 

implement. It allows the standard error to be obtained directly and avoids the 

bootstrapping that is otherwise a practical necessity in obtaining confidence intervals for 

the true regression. 

The method is based on a network with two outputs; one fitted to the target variable and 

the other to its squared error. It differs from the Nix and Weigend (1995) method 

because: a) It deploys a standard NN architecture and b) It uses a sum of squares cost 

function and does not assume a Gaussian noise distribution. c) It uses a training 

algorithm with independent training and validation sets, rather than interchanging 

validation sets. This latter feature is due to a suggestion by Heskes (1997), that it is 

desirable that the training set for fitting the squared errors, is disjoint from either the 

training or validation sets used for fitting the target variable. The reason is, when a 

network is trained using early stopping, training is stopped when the sum of squared 

64 Wu, C.J.F. 1986. "lacknife Bootstrap and other Resampling Methods in Regression Analysis", Annals 
of Statistics 14, pp1261-l295. 
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errors is minimized not on the training set, but on a separate validation set. Thus, the 

model obtained is a function of both data sets, and the validation set cannot be viewed 

as independent for the purpose of fitting the squared errors. The theoretical basis of the 

method follows. 

3.4.1 Least Squares Derivation 

The object in training (fitting) a MLP is not to memorise features specific to the training 

set, but to model the underlying data generating process, so that when presented with a 

new input vector x, the trained network gives the best possible estimate of the target. 

The most comprehensive description of the DGP is a statistical one, in terms of the joint 

probability density P(x,d) of the input vector x and the target vector d. This density can 

be expressed as the product of the conditional distribution P(d I x) of the target vector d 

conditioned on the input vector x, and the unconditional distribution P(x) of the input 

vector 

P(x,d) = P(d I x)P(x) (3.14) 

where 

P(x) = fp(x,d)dd (3.15) 

An MLP trained by minimising a sum-of-squares error defined over a training set, 

approximates the means of the elements of a target vector d conditioned on a 

corresponding input vector x. The optimisation results in estimation of a vector Q of 

weights and biases that minimises the cost function. The function to be minimised takes 

the form 

(3.16) 

In equation (3.16) dij is the jth element of the ith target vector. f/ x;; Q) is the 

corresponding network estimate. Asymptotically as n, the size of the data set, tends to 

infinity and assuming the function f/x;;Q) has sufficient flexibility (i.e. degrees of 

freedom), bias and variance tend to zero yielding the optimum least squares solution. 
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In the limit, the summation over n in (3 .16) becomes an integral over the joint 

probability densitl5 

1 11m 

CLS = Lim -LL[fj (x;,Q)-dij]2 
11-----) 00 2n i= 1 j=i 

(3.17) 

(3.18) 

where lin in (3.17) is a convergence factor. The cost function can be minimised using 

functional differentiation with respect to fj (x, Q) and setting the derivative to zero. 

scLS 

--~~-=O (3.19) 
Sf/x,Q) 

Substituting (3.18) into (3 .19) and using (3.14) yields the following solution for the 

minimising function 

(3.20) 

Thus, the output of the network function cOlTesponds to the conditional means of the 

elements of the target vector d, conditioned on the input vector x. The result (3.20) 

depends only on the generality of the non-linear mapping represented by the network 

function. It does not specifically require use of a MLP and thus extends to any 

comparable non-linear mapping of sufficient flexibility. 

The (global) conditional variance cOlTesponding to the conditional mean (3.20) is given 

by 
/I 

Le~ 
Var(d I X) = ----'i---'-= I __ 

) (n-k-l) 
(3.21) 

where X is the matrix of input data, e~ is the squared residuals for dj (Xi) at the 

minimum of the cost function, n is the number of observations in the data set, and k is 

the applicable degrees of freedom. Given (3.21 )the conditional distribution of the target 

P(d; I Xi) is characterised by a two parameter distribution with a mean given by 

f/x, Q) and a (global) variance given by Var(dj I X). However, the use of a least 

squares cost function does not require the assumption that this distribution is Gaussian. 

65 Bishop (1997), p201 . 
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Suppose, that as well as et the target vector d has an additional element (J"] (x) where 

(J"](x) = {d
j 
-E(d

j 
I X)}2, the squared residuals from the network estimate of et(x). 

Then it follows from (3.20) that 

(3.22) 

The function a-](x) is modelled by adding an additional output node to the MLP 

~ 

trained to fit the squared residuals of dj (x). Using (3.22) in place of (3.21) facilitates 

estimation of a separate variance parameter for each target et conditioned on the 

corresponding input vector x, and is equivalent to using White's heteroskedasticity 

consistent estimator66
. 

3.4.2 Maximum Likelihood Derivation 

If the conditional distribution of the target data is assumed to be Gaussian, the result 

(3.20) can be derived using maximum likelihood67
. Under the Gaussian assumption 

P(etl x) can be written as 

(3.23) 

where (J"2 is a global variance parameter that can be estimated by (3.21). Again, this is 

easily extended to obtain a more general distributional assumption by substituting (3.22) 

for (3.21) in equation (3.23) giving. 

P(dj I x) = l/! exp( 
(2;r) (J"/x) 

(3.24) 

Maximising the likelihood is equivalent to minimising the negative log likelihood. 

Forming the negative log likelihood of (3.24) and omitting constants gives 

(3.25) 

Taking the limit as before gives the integral form 

III ( [f (x .Q)-d Y} C-LL = L If Ln (J"/x) + j '2 j (dj I x)P(x) ddj dx 
j=\ 2(J"j (x) 

(3.26) 

66 Thomas (1997), p 290. 
67 Bishop, C.M. 1994. "Mixtllre Density Networks", Technical report NCRG/4288, Neural Computing 
Research Group, Aston University. 
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Functional differentiation is again used to minimise the errors for the network outputs 

for the mean and variance functions. For the mean 

S:C-LL [f (x iJ) - d ] 
_u_-:~_= 0 = P(x) f j '2 j P(d. I x) dd. 
8f

j
(x,fl) a j (x) } } 

(3.27) 

Rearranging and simplifying (3.27) gives the standard result of equation (3.20). For the 

variance, (3.26) is minimised with respect to the function a j (x) giving 

8C-
LL 

=O=P(x) l_l __ [fj(X,iJ)-djf]p(d. Ix) dd. 
8a/x) Jl a/x) aJ(x)3 } } 

(3.28) 

Using (3.20) again and solving foraJ(x)gives (3.22). This approach is based on 

maximum likelihood and gives a biased estimate of the variance, because it makes use 

of an estimated mean, rather than the (unknown) true mean. The relationship between 

the true variance and its estimate obtained under maximum likelihood is given by 

n-k-l n 
6- 2 = a 2

, hence a 2 = 6- 2 

n n-k-l 
(3.29) 

where k is the appropriate degrees offreedom68
. 

Thus, it is shown here that a MLP with two output nodes, the first trained to fit a target 

value, and the second trained to fit the squared residuals of the first fit, can produce an 

estimate of the mean and variance of the conditional distribution of the target in both the 

least squares and maximum likelihood frameworks. The maximum likelihood 

derivation requires the assumption that the conditional distribution of the target data is 

Gaussian. This assumption is not made for the proposed method. However, maximum 

likelihood and least squares estimators are otherwise equivalent. Moreover, the result 

(3.20) which is central to the proposed method requires only the use of a least squares 

cost function, and a sufficiently flexible form of non-linear regression. 

3.4.3 Derivation of the PR Criterion 

The prediction risk is defined as the expected performance of an estimator on future 

data, and is the expected value of the mean squared error E[MSE]. In the infinite data 

limit the P R is given by 

(3.30) 

68 Equation (3.29) also applies to least squares estimators. The value of k depends on the particular 
regression technique used. 
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where a: in (3.30) is the (unknown) noise variance, p(x) is the unconditional 

distribution of x, and the remaining term is the squared error of the regression. The 

prediction risk can also be defined for other cost functions but the squared error is used 

here. For finite data sets (3.30) can be approximated by 

(3.31) 

In equation (3.31) (xi' dJ are new observations, not used in training or validating the 

network, and N is the total number of such observations. Note that the summation in 

(3.31) is over the expected squared error [di -f(xi'.Q)]2. This spans the squared error 

of the regression, and the noise variance, of equation (3.30). From equation (3.20) 

f/x,.Q) = E(dj ! x) = d/x) 

also 

a~(x) = E[ {dj - E(dj ! X)}2! x] = Var(dj I x) 

so that (3.22) can be written as 

a~(x) = E[ {dj -f/x,.Q)}21 x] = Var(dj ! x) (3.32) 

Thus, a~ (x) is nothing other than the expected squared error for ~ given some input 

vector x. Equation (3.31) can be rewritten as 

(3.33) 

Equation (3.31) can only be used to estimate the prediction risk for test sets where ~ is 

known, (so-called test set validation). Test set validation is only reliable where the test 

set is 1arge69 . Otherwise, PR must be estimated using resampling techniques such as 

cross-validation, which is computationally costly. By contrast, the PR estimator (3.33) 

can be used to estimate the prediction risk for new inputs x, for which there is no 

corresponding target d. Moreover, the method of estimation does not require large test 

sets, or use of res amp ling techniques. 

69 Moody (1994), section 3.1. 
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3.5 Practical Implementation and Tests 

Practical application of the proposed method requires the use of a special training 

algorithm. The algorithm given in Table 6 is the result of extensive investigations to 

find an effective practical implementation of the theory presented in section 3.4.l. 

T bl 6 a e T rammg AI 'th 19on m 
Phase Description 

a) Randomly split the training data into two data sets, Set A and Set B. 
I b) USING SET A, train a Phase I NN to fit the target variable d(x) . 

c) Run the trained NN model ON SET B, create a set of squared residuals. (1) 
a) USING SET B, train a Phase II NN with two output nodes. Use the variable d(x) 

II as the target for the FIRST output node. Use the squared residuals created in 
Phase I in SET B as the target for the SECOND output node. 

a) Run the Phase II model on SET A, create a set of squared residuals for the target 

III d(x). 

(optional) 
b) USING SET A, train a Phase III NN with two output nodes. Use the variable 

d(x) as the target for the first output node. Use the squared residuals created in 
step III a) in SET A as the target for the second output node. (2) 

(1) By using squared residuals on a test set (Set B) as the second target for Phase II, 
over fitting and consequent underestimation of the standard error is avoided. 

Notes 
(2) Phase III may give improved results on certain data, but generally produces 

inferior results to Phase II, and may thus be omitted. 
For training, Set A is itself randomly split into a training and a validation portion; as is 
Set B. Testing of each Phase is performed on an independent test set, Set C. 

3.5.1 Testing the Method 

The following sequence of tests was performed. First the method was tested as 

Example#l, using the same synthetic data, and single input variable used by Nix and 

Weigend (1995). This allowed a performance comparison with their method. Next the 

method was tested as Example#2, using options market data. Synthetic option prices 

and noise generated by known underlying functions were used. Example#2 is 

deliberately restricted to two input variables, moneyness, and maturity [m,t], following 

Hutchinson et al (1994). This is to allow the use of a known smooth noise variance 

function. The purpose of Example#2, was to test the method in a more realistic multi 

dimensional, option pricing context, while retaining comparability with Example#l. 

The method was next tested using actual option prices, as Example#3 . The same 

options market data as used for Example#2 was again used. For comparability with 

Example#2 the model was again restricted to the two inputs [m,t] . The underlying true 

regression function and noise variance function were unknown for Example#3 however, 

in contrast to Example#l and #2 where synthetic prices and noise were used, generated 

by known functions. Finally, the method was tested as Example#4 using actual prices, 

and the five BS inputs[S,x,!,r,JV] as defined in Appendix D. The same data sets were 
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again used. This allowed comparison with the benchmark BS formula on the one hand, 

and the preceding Example#3 on the other. 

The sequence of examples features increasing dimensionality from the one dimensional 

Example#l, through the two dimensional Example#2 and #3, to the five dimensional 

Example#4. The sequence also relaxes the condition of synthetic inputs, target data, 

and noise, used for Example# 1. It moves through the synthetic target and noise, but 

actual market inputs of Example#2, to the actual prices, market inputs, and residuals of 

Example#3 and #4. At the beginning of the sequence, a direct comparison was possible 

with the method of Nix-weigend, and at the end, a direct comparison with the 

benchmark BS formula was possible. The remainder of section 3.5 of the thesis gives 

the details and test results for Examples#l to #4. 

3.5.2 Tests Using Standard Synthetic Data 

Nix and Weigend (1995) defined a univariate synthetic example to demonstrate the 

effectiveness of their model. For comparison purposes the proposed training algorithm 

and network were applied to the same univariate synthetic data, and called Example # 1 

in their paper and here. This example used a one-dimensional data set where y(x) the 

true regression, and (j2 (x) , the variance of the noise, were known. The true regression 

y(x), is given by the equation y(x) = Sin(3x)Sin(5x) , where x is a uniformly distributed 

random number from the interval [0, n12]. The noise n(x) consists of numbers from the 

normal distribution N[O, (j'2 (x)] , where (j2 (x) = 0.02 + 0.25[1- Sin(5x)]2 70. The target value 

for training is d(x) = y(x) + n(x). 

The following procedure was adopted. For Phase I, a network with a single input node, 

10 hidden layer nodes and a single output node to fit d(x) was used. Phases II and III 

used a network with a single input node, 20 hidden layer nodes and 2 output nodes, one 

to fit d(x) and one to fit (j'2(X). The numbers of hidden nodes used were the same as in 

the Nix-Weigend method, except that here they were fully connected, in a single layer. 

Fig. 9 shows a plot of the data points, the true regression y(x), and the approximate 

prediction band, for the Phase III model, obtained on a test set. The effect of Phase III 

was to improve the Adj. R2 figure, and the F -statistic, for the estimated noise variance 

70 Heskes (1997) used similar trigonometric functions for the true regression and the noise variance. 
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function. Table 7 shows the results of statistical tests for Example#l in predicting the 

tme regression, the tme noise variance function, the target data points d(x) , and the 

actual squared residuals. 

Fig. 9 Prediction Bands for Example#l 
4 

2 

-2 

-4 +------------+------------~----------_+--

o 0.5 1.5 

I-y(x) - y*(x) - L* - U* - L -u • d(x) I 

Fig.9 Here, y(x) is the true regression. d(x) are the target data points. y*(\:) is the estimate of the true 
regression. Land U are the true lower and upper prediction intervals and L * and U* are the estimated 
prediction intervals obtained using 0'*2(X) , the network estimate of the noise variance function. 

In Table 7 f-l/(x) is the estimate produced by the node having d(x) as target, and 

() *2 (x) is the estimate produced by the node having squared residuals as target. In the 

comparison of the network estimates with the tme regression function and noise 

variance function, unbiased estimates of the mean of the tme regression y(x), and the 

tme noise variance function () 2(X) were obtained for both Phase II and Phase III. For 

Phase III, the F-statistics suggest the distributions of values for the tme regression and 

tme noise variance functions, were also well recovered. Approximate upper and lower 

prediction intervals based on the estimated noise variance function were also unbiased 

estimates of the tme upper and lower prediction intervals. The fit to the tme regression 

function is very good in Phase II and III with R2 and Adj. R2 figures > 0.99. The fit to 

the noise variance function was also excellent with Phase II and III R2 and Adj. R2 

figures >0.94 in all cases. In the comparisons of the network estimates with the actual 

target d(x) , and the actual squared residuals, the much poorer R2, Adj . R2, and F­

statistic figures are consistent with the noisy, scattered, target data points. However, in 

both Phases II and III, the t-test results indicate unbiased estimates of the mean of the 

target d. In Phase III, the estimate of the mean of the squared residuals is also unbiased. 
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Table 7 Estimates by Proposed Network (Example#l) 
Phase Layers Inputs Outputs R2 Adj.R2 F-stat t-statistic t-test 

[nodes] x Feril tail) Fealc(0.05) teril(2 tail) tealc(0.05) [bias] 

Comparison with True Regression Function 
I 1-10-1 x Jil' *(x) 0.561 0.561 1.03 1.75 1.96 0.28 Unbiased 

Comparison with True Regression Function & Noise Variance Function 
II 1-20-2 x Jil' *(x) 0.994 0.994 1.03 1.01 1.96 0.95 Unbiased 

II 1-20-2 x a*2(x) 0.965 0.944 1.03 1.74 1.96 1.64 Unbiased 

III 1-20-2 x Jil' *(x) 0.992 0.991 1.03 1.01 1.96 -1.12 Unbiased 

III 1-20-2 x a*2(x) 0.987 0.989 0.97 0.86 1.96 -1.96 Unbiased 

Comparison with Actual Target (d) 

I 1-10-1 x Jil' *(x) 0.234 0.234 1.03 4.18 1.96 0.15 Unbiased 

Comparison with Actual Target (d) & Squared Residuals 
II 1-20-2 x Jil' *(.\:) 0.423 0.423 1.03 2.41 1.96 0.68 Unbiased 

II 1-20-2 x a*2(x) 0.211 0.967 1.03 4.41 1.96 -8.55 Biased 

III 1-20-2 x Jil' *(.\:) 0.422 0.422 1.03 2.4 1.96 -0.91 Unbiased 

III 1-20-2 x a*2(x) 0.338 0.337 1.03 4.38 1.96 0.32 Unbiased 

Table 7 Shows the proposed network produces unbiased estimates fly* (x) , of the underlying true 
regression function, and (J"*2(X) of the noise variance function. Phase III estimates of the actual target d 
and actual squared residuals are also unbiased. The t-test for the means shows no difference at the 95% 
level. 

For comparison of the proposed network performance with that of Nix-Weigend, the 

statistics used by Nix and Weigend (1995) were computed. These are shown in Table 8 

for Example#l and Table 9 for Example#2. The two tables are shown together, 

however the Table 9 results are discussed in section 3.5.3. Table 8 shows that 

compared to the Nix-Weigend network there was little improvement in the fit to the 

target dry) between Phases II and III. However, the Phase III fit (row 3) for the 

proposed network was close to the best attainable, deviating only by 0.6%. The Nix­

weigend network does not approach the best attainable figure quite so closely, deviating 

by 1.4%. The proposed network figures for correlation of the actual absolute errors 

with the network prediction and the true values (rows 5 and 6), improved slightly on the 

corresponding figures for the Nix-Weigend network, even in Phase II. The distributions 

of errors reported in rows 7 and 8 differed only slightly from those of Nix-Weigend. 

Overall, the results in Table 8 show the proposed network performed comparably with a 

Nix-Weigend network and outperformed it slightly on the errors and correlations. 

However, the results in Table 8 are not based on hypothesis tests or confidence 

intervals, therefore the results presented in Table 7 are preferred. The results presented 

in Table 7 showed that the proposed network was able to provide unbiased estimates of 

an underlying true regression function, an associated noise variance function, and the 

actual targets and squared errors in the univariate case. 
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Table 8 Results for Example#l: Methods Compared 
'This Work Nix-Weigend 

row Test Set (n=104) Test Set (n=I<f) 

Target d ~iv\s Our Mean Cost ~iv\s NWMeanCost 

1 Phase I 0.764 0.454 0.593 0.882 

2 Phase II 0.577 0.344 0.593 0.566 

3 Phase ill 0.578 0.344 0.570 0.462 

4 n(x) (exact additive noise) 0.575 0.343 0.563 0.441 

Target e2 p(PIII) p(PII) p (PIlI) p(PII) 
5 p(O*(x), residual etTors) 0.571 0.569 0.548 N/a 

6 p(o(x), residual elTors) 0.586 0.585 0.584 N/a 

Distribution pem) I std. 2 std. I std. 2 std. 

7 % of en"Ors < a*(x); 2a*(x) 67.4 93.1 67.0 94.6 

8 % of elTors < o(x); 2o(x) 66.9 95.0 68.4 95.4 

9 (exact Gaussian) 68.3 95.4 68.3 95.4 

Table 8 ENMs is the mean squared error normalised by the (global) variance of the target d. The Mean 
Cost is the mean of the cost function (d_d*)2. Row 4 gives these figures for [(d-Y(X»2 = n(.,lJ and 
represents the best performance attainable. Row 5 gives the correlations between the absolute errors and 
the network estimate for the standard deviation of the errors. Row 6 gives the correlations between the 
absolute errors and the true noise standard deviation. Row 7 gives the percentage of absolute errors that 
are less than I and 2 times the corresponding network estimate for the standard deviation of the error. 
Row 8 gives the percentage of absolute errors that are less than I and 2 times the corresponding true noise 
standard deviation. Row 9, which is included for comparison purposes, gives the percentage of 
observations that are less than I and 2 standard deviations in a Gaussian distribution. 

Table 9 Results for Example#2: Synthetic Option Prices + Noise 
row Test Set 

Target d = CNN + noise ENMS Our Mean Cost 

1 Phase I 0.059 564.6 

2 Phase II 0.062 599.4 

3 Phase III 0.059 566.8 

4 n(x) (exact additive noise) 0.058 556.9 

Target e2 p (PIlI) P (PII) 

5 p(cr*(x), residual errors) 0.537 0.536 

6 p(cr(x), residual errors) 0.562 0.591 

Distribution (pn) 1 std. 2 std. 

7 % of errors < cr*(x); 2cr*(x) 51.3% 81.4% 

8 % of errors < cr(x); 2cr(x) 70.0% 96.1% 

Distribution (PIlI) 

9 % of errors < cr*(x); 2cr*(x) 32 .5% 60.2% 

10 % of errors < cr(x); 2cr(x) 71.4% 96.2% 

11 (exact Gaussian) 68.3% 95.4% 

Table 9 Rows 1 to 8 are as Table 8. Rows 9 and 10 for PhaseIll correspond to rows 7 and 8 for Phase II. 
Row 11 , corresponds to row 9 in Table 8. Here (x) represents the vector of input variables [t,m]. 
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3.5.3 Tests Using Synthetic Option Prices 

This section reports results for Example#2 where the proposed network was applied in 

the more realistic multivariate setting of option pricing. The method was tested using 

synthetic option prices and synthetic noise. The option market data used were from 

LIFFE. They consisted of daily closing prices for the FTSE-lOO index call option for 

all trading dates from 13 March 1992 to 1 April 1997. The raw data set contained 

119,413 records. The procedures used for cleaning and preparing the data are described 

in section 4.2.1. The cleaned data set comprised 14,254 records. This data set was 

randomly split into a training set and a test set. The resulting training sets contained 

7,083 records with 3629 in Set A and 3454 in Set B. 50% of these were randomly 

sampled and used for validation. The test set contained 7,171 records. 

The synthetic option prices were created using a trained neural net option pricing model 

as the underlying known true regression function. For this purpose, the approach of 

Hutchinson et al (1994) was followed, and the volatility and risk-free interest rate were 

omitted as inputs. The neural net was trained using observed market prices as the target 

and the variables moneyness, (m = S/.x), and time to maturity, t, as inputs; S represents 

the price of the asset in index points and X is the strike price for the option. Analysis of 

squared residual errors for neural net option pricing models indicated that 

(J'2(t,m) = 510t4 + 361m17 was an acceptable parameterization for the known true noise 

variance function for approximating the underlying residuals; it is important to 

emphasize that this function has no significance other than providing a noise variance 

model for this example. Using (J'2 (t, m), a synthetic noise distribution very similar to 

that for real residual errors for neural net option pricing models was obtained, as 

indicated by variance, standard deviation, skewness, and kurtosis. Synthetic noise from 

the normal distribution N was drawn as N(0,cr2(t,m)) and added to the outputs of the 

trained NN to generate a synthetic target option price d(t,m). The obtained target d(t,m), 

was not significantly different from observed market prices in t-tests and F-tests. As in 

Example #1, the aim was to determine whether the method could successfully recover 

an underlying known regression function and noise variance function. The results for 

Example#2 are presented in Table 10. 
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a e T bl 10 sima es IY Eft b P ropose dN t e wor k(E I #2) xampe 
Phase Layers Input Outputs R2 Adj.R2 

F Statistic t-statistic t-test 

[nodes] X- [I.I1I] F" i,(1 tail) F,, 1c(0.05) t,",(2 tail) t,aIJO.05) [bias] 

Comparison with True Regression Function 
I 2-10- 1 x Il/(x) 0.997 0.998 1.04 1.08 1.96 -0.02 Unbiased 

Comparison with True Regression Function & Noise Variance Function 

II 2-20-2 x Il / (x) 0.995 0.997 0.96 0.98 1.96 -1.62 Unbiased 

II 2-20-2 x a*2(x) 0.845 0.561 0.96 0.45 1.96 1. 52 Unbiased 

III 2-20-2 x Il / (x) 0.997 0.998 1.04 1.08 1.96 -0.61 Unbiased 

III 2-20-2 x cr*2(X) 0.900 0.856 0.96 0.75 1.96 6.20 Biased 

Comparison with Actual Target (d) 

I 2-10-1 x Il / (x) 0.942 0.967 1.04 1.11 1.96 0.49 Unbiased 

Compal"isoll with Actual Target (d) & Squared Residuals 

II 2-20-2 x Il / (x ) 0.939 0.965 1.04 1.00 1.96 -1.11 Unbiased 

II 2-20-2 x a*\x) 0.246 -0.743 1.04 1.29 1.96 1.16 Unbiased 

III 2-20-2 x Ily *(x) 0. 942 0.967 1.04 1.11 1.96 -0.10 Unbiased 

III 2-20-2 x a*2(x ) 0.2 19 -0.627 1.04 1.51 1.96 4.39 Biased 

Table 10 shows the proposed network produces an unbiased estimate, II/ (X) , of both the underlying true 
regression function and the target d in all three training phases. The estimate a*2(X) is also an unbiased 
estimate of both the true noise variance function and actual squared error for PhaselI; the corresponding 
Phase III estimates are biased. 

In Table 10 fJ.-/ (x) is the estimate produced by the node having d(x) as target, and 

(j" *2 (x) is the estimate produced by the node having the squared residuals as target. In 

the comparison of the network estimates with the hue regression function and noise 

variance function, unbiased estimates of the mean of the hue regression y(x), and the 

true noise variance function (j" 2 (x) were obtained for Phase II. The Phase III estimate 

of the mean of the noise variance function (j" 2 (x) was biased. For both Phase II and III, 

the F-statistics suggest the distribution shapes for the true noise variance function, were 

again well recovered. The fits to both the true regression and noise variance function 

for both PhaseII and III are again very good, as measured by R2 and Adj. R2. In the 

comparisons of the Example#2 estimates with the actual target d(x) , and the actual 

squared residuals, the R2, and Adj . R2 figures for /-l;' * (x) are much better than the 

corresponding results for Example#1. This is because the synthetic option price data is 

far less noisy than the cOlTesponding data used for Example# 1. Again, in both Phases II 

and III, the t-test results indicate unbiased estimates of the mean of the target d(t,m). In 

Phase II, the estimate of the mean of the squared residuals is also unbiased. 

For comparison of the proposed network perfOlmance with that of the Nix-weigend 

network, the statistics used by Nix and Weigend (1995) were computed. These are 

shown in Table 9 in section 3.5.2. In Table 9 The Phase III fit for the target d(t,m), 

(Row 3) is only 0.001, (1.7%) more than the lowest attainable value (Row 4). The 
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Phase II fit (Row 2), was not quite as good but still only 0.004 (7%) more than the 

lowest attainable value. Although there was no statistically significant difference at the 

95% level in the t-tests, the Phase II fit to ENMS was slightly poorer than the Phase I fit 

(Row 1). This may be because, in contrast to Nix and Weigend (1995), the Phase II 

used here involved training a new model constrained to fit both the target d(t,m) and the 

squared residuals from Phase 1. Like Nix and Weigend (1995) 10 hidden layer nodes 

per output node were used, but here these were in a single hidden layer of 20 nodes with 

full connectivity to all input and output nodes. Pruning runs, not reported here, 

indicated fewer nodes could achieve the relevant accuracy. As in Example#l the 

correlation of the absolute errors with the estimated absolute errors and with the true 

noise standard deviation (Rows 5 and 6) improved slightly from Phase II to Phase III. 

The correlation results in Table 9 are of a similar order to those for Example#l in Table 

8. Row 7 and Row 9 distribution results show the dispersion of the actually occurring 

absolute errors was greater than indicated by the estimated and true noise standard 

deviation results given in Row 8 and Row 10. The decreased correlation of absolute 

values of residual errors with the known noise standard deviation (Row 6) suggested 

that Phase III training should be omitted in the more realistic multivariate setting for 

this data. This conclusion was supported by Table 10, where hypothesis tests for 

Example#2 showed that the Phase III estimate (J' *2 (x) , was a biased estimate of both 

the true noise variance and the squared residuals. 

The Table 9 and 10 results for Phasell training in Example#2 showed the proposed 

network produced an unbiased estimate (J' *2 (x) , of the input dependent noise variance 

function (i(t,m), which is a smooth function of time to maturity t, and moneyness m. 

Moreover, (J' *2 (x) was also an unbiased estimate of the actually occurring residual 

errors for f-lJ'* (x). These results suggested that given a set of unseen input variables for 

which there is no corresponding targets, the proposed network was capable of producing 

an unbiased estimate of a target d(t,m), in this case synthetic option prices. An unbiased 

estimate of the underlying regression giving rise to the target data, and a corresponding 

(known) noise variance function, was also obtained. The unbiased estimate of both the 

mean of the target and the true noise variance function suggested that prediction 

intervals based upon the proposed network, provided a good estimate of the 95% 

prediction intervals. 
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3.5.4 Tests Using Actual Option Prices 

Example#3 used the same data set as Example#2. However, actual observed market 

prices of options, corresponding to the input variables t, and m, were now used as 

targets in place of the synthetic prices created as targets for Example#2. 

Table 11 Estimates by Proposed Network (Example#3) 
Phase Layers Input Output R2 Adj.R2 F Statistic t -statistic t-test 

[nodes] x = [t,m] Fe-ril(\ tail) Fe-alc(0.05) tCliP tail) te-alc(0.05) [bias] 

Comparison with Actual Target (0) 

I 2-10-1 x llv *(x) 0.960 0.999 1.04 1.09 1.96 0.47 Unbiased 

Comparison with Actual Target (0) & Squared Residuals 

II 2-20-2 x llv *(x) 0.932 0.972 1.04 l.l3 1.96 -0.31 Unbiased 

II 2-20-2 x cr*2(X) 0.385 0.347 1.04 6.14 1.96 0.63 Unbiased 

ill 2-20-2 x ll/(X) 0.957 0.974 1.04 l.l0 1.96 0.70 Unbiased 

ill 2-20-2 x cr*2(X) 0.435 0.365 1.04 1.14 1.96 -6.59 Biased 

Table 11 shows the proposed network produces an unbiased estimate, f.1y *~Y), of the mean of the target 0 
in all three training phases. The estimate a*2(X) is also an unbiased estimate of the actual squared error 
for PhaselI; the corresponding Phase III estimate is biased. 

Table 11 reports the results for Example#3. In this case, the compansons of the 

network estimates are with the actual target 0, and the actual squared residuals for the 

estimate f..lJ,* (x) only. There is no known underlying regression and true noise variance 

function. The pattern for Example#2 was repeated. The Example#3 estimate for the 

mean of the target 0 was unbiased for all three training phases with high values for R2 . 

and Adj. R2. The Phase II estimate (7 *2 (x) , was an unbiased estimate of the actual 

squared residuals of f..lJ,*(x) , as indicated by the t-test results. However the Phase III 

estimate was biased, like the corresponding Example#2 result. The R2 and Adj. R2 

figures for the estimate (7 *2 (x) were better than the corresponding Example#2 results. 

These results suggested that the proposed network could produce unbiased estimates of 

both the mean and squared residuals of the target values, where those targets were 

actual observed option prices cOlTesponding to unseen input variables. The biased 

estimate (7 *2 (x) obtained in Phase III is further evidence that Phase III training is 

superfluous in the more realistic setting. Moreover, the estimate f..lJ,* (x) is not improved 

in Phase III, as indicated by the poorer t-statistic. The unbiased Phase II estimates of 

the target mean, and the actually occurring squared residuals, suggested a good estimate 

of the 95% prediction intervals was given in this case also. 

This is confirmed by inspection of Fig. 10 where the estimated prediction intervals (the 

blue dashed lines) correspond well with intervals calculated using the actually occurring 

residual errors (the green dashed lines). The option price series illustrated in Fig. lOis 
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new unseen data. The Example# 3 model gives an unbiased price prediction for the 

series, with a t-statistic of -0.27 in an independent t-test assuming unequal variances. 

By comparison, the BS prediction of the option price is also unbiased for this series 

with a t-statistic of -0.20. In a paired t-test of the model predictions, the two models 

show no significant difference and the t-statistic is -1.12. In a paired t-test of the model 

residuals, a statistic of 1.12 is obtained. These results suggest that both the Example#3 

model and the BS formula provide good models of the DGP for this sample. The 

relatively good result for the BS formula given the small sample of 21 observations is 

surprising, as the BS formula usually gives biased results for large samples. The 

Example#3 NN model though, has only two inputs, moneyness, and time to maturity, 

compared to the five inputs of the BS formula however. 

To facilitate equal comparison with the BS formula a further NN model, Example #4, 

was trained. Example #4 used the same training and test data used for Example#3. For 

Example#4 however, all five of the BS inputs were used. In addition, the network 

architecture was optimized, using sensitivity based pruning, to give 4 hidden layer 

nodes. Table 12 gives the results for Example#4. 

T bI 12 a e Eft b P S lrna es 'Y ro~ose dN t e wor k(E I #4) xarnJ!le 
Phase Layers Input Output R2 Adj.R2 F Statistic t-statistic t-test 

[nodes] x ~ [S,X,t,r,iv] Fcri,(l tail) Fcalc(0.05) t'ri,(2 tail) tcnlc(0.05) [bias] 
Comparison with Actual Target (0) 

I 5-4-\ x J.l.*(x) 0.995 0.997 1.04 1.02 1.96 -0.6\ Unbiased 

Comparison with Actual Target (0) & Squared Residuals 

II 5-4-2 x J.l/(x) 0.992 0.995 1.04 1.02 1.96 -0.44 Unbiased 

II 5-4-2 x a*2(x) 0.294 0.07\ 1.04 258.32 1.96 4.8\ Biased 

III 5-4-2 x J.lv*(x) 0.990 0.994 1.04 1.04 1.96 -0.46 Unbiased 

III 5-4-2 x a*2(x) 0.335 0.3\2 1.04 7.27 1.96 2.40 Biased 

Table 12 shows the proposed network produces an unbiased estimate, fly *(x), of the mean of the target 0 
in all three training phases. The estimate (J'I<2(X) is biased for both Phasell and Ill. 

In Table 12 the estimate f..L:,,* (x) is again unbiased for all three phases. The fit to the 

observed option prices 0, is very good with Phase II and III R2 and Adj. R2 figures 

>0.99, which is higher than the corresponding figures for Example#3. In addition, the 

F-test figures for the estimate f..L:,,*(x) , indicate no significant difference in the variance 

compared with the target O. However, the phase II estimate 0' *2 (x) , is now biased, as 

well as the Phase III estimate. Inspection of the means of the actual squared residuals, 

and their estimates given by 0'*2 (x), indicate an underestimate. This result suggests 

the proposed method underestimates the magnitude of squared residuals when the fit to 

the target 0 (or d) is very good. However, it is unlikely to be a problem in practice, as 
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the underestimate only occurs when 1-0'* (x) is an unbiased estimate of the target 0, and 

the fit is better than R2 >0.99, and calculated F-statistics are less than their critical 

values?l. 

Fig. 11 shows the results of applying Example#4 to the same option price senes 

illustrated in Fig. 10. In Fig 11 the estimated prediction intervals (the blue dashed 

lines), correspond well with intervals calculated using the actually occurring residual 

errors (the green dashed lines), for the region of moneyness >1.05 where the fit of 

1-0'*(x) to 0 is in general poorer than the region where moneyness is <1.05. However, 

the overall fit for Example#4 is much better than the fit for Example#3, which is itself 

unbiased. It can be seen that the BS price predictions are outside the prediction bands 

for the Example#4 predictions, for moneyness > 1.0. Figures 10 and 11 graphically 

illustrate the performance of the proposed method for estimating prediction intervals, 

and the utility of prediction intervals for assessing the differences in performance over 

the input space of option pricing models. 

71 The method is based on the use of a least squares cost function. However, maximum likelihood and 
least squares estimators are equivalent in terms of performance, and the tendency for maximum likelihood 
estimators to underestimate the variance is known, and has been remarked in Bishop (1995) Chapter 6, 
section 6.3. 
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Fig. 10 Prediction Intervals for Example#3 

Estimated Call Prices & Prediction Intervals (Phase II) 
[Trading 03/03/95 for 16/06/95 expiration] 
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Fig. 11 Prediction Intervals for Example#4 

Estimated Call Price & Prediction Intervals (Phase II) 
[Trading 03/03/95 for 16/06/95 expiration] 
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Figs. 10 and 11. Prices of FT-SEIOO Call Options trading on the 3
rd 

March 1995 for June 1995 
expiration. The crosses are the observed option prices. The red lines are the network estimates of the 
prices. The green and blue dashed lines are estimated upper and lower prediction intervals. The black and 
purple dashed lines are corresponding intervals calculated using the actually occurring residual errors. 
The heavy black dashed and dotted line is the BS price prediction. 
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3.6 Conclusion 

In this chapter, a method for computing standard en'ors, confidence intervals, and 

prediction intervals, for any sufficiently flexible technique for non-linear regression is 

presented, The method rests on the classical framework for least squares regression and 

maximum likelihood estimation, The implementation of the theOlY described here is 

new, and relies on a special training algorithm. It can be applied to a broad class of 

computational lmowledge discovery techniques for non-parametric non-linear 

regression, but was demonstrated here using neural nets. 

The method was applied successfully to a standard synthetic set of data and gave 

statistically acceptable results . It performed comparably with a similar though non­

general method proposed by Nix and Weigend (1995). A synthetic option pricing test 

was constructed and the true noise variance function recovered. In a test with actual 

option prices, an unbiased estimate of the actual squared en'ors for the fitted option 

prices was obtained. However, further tests with actual option prices suggested the 

noise variance is underestimated when Adj . R2 is greater than 0.99, but this is a feature 

of all methods based on least squares or maximum likelihood. The theory presented, 

and the overall results of the tests, suggest that the method is appropriate for 

determining prediction intervals for target data with heteroskedastic enors. 

Other possible applications within the options market domain include; Recovery of risk 

neutral densities from option prices, where the method may be useful in avoiding the 

limitations of bootstrap and Monte Carlo methods for computing statistical intervals72
; 

Recovering the time dependent conditional densities of asset price series; And, volatility 

modelling. Possible extensions of the technique include the addition of extra output 

nodes to model higher moments, and thus recover a more complete description of the 

enor distribution. 

72 Melick, W.R., and Thomas, c.P. 1998. "Confidence Intervals and Constant Maturity Series for 
Probability Measures Extracted from Option Prices". Paper presented at the conference 'Information 
Contained in Prices of Financial Assets' , Bank of Canada. 
Andersson, M. , and Lomakka, M. 2003. "Evaluating Implied RND's by Some New Confidence Interval 
Estimation Techniques", Sveriges Riksbank Working Paper Series, No. 146. 
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CHAPTER 4. APPLICATION OF THE CONfPUTATIONAL FRAMEWORK 

4.0 Introduction 

In this chapter, demonstrations are gIven of key aspects of the Computational 

Framework and proposed methods for establishing statistical confidence in models and 

predictions, described in Chapters 2 and 3. This is done by practical application to 

questions of interest to options market practitioners and researchers. First, use of the 

GeTS Model Search Algorithm for Input Space Search (Table 3) is demonstrated in a 

case study concerning the question of option pricing under transaction costs. Then, 

selection of an appropriate model architecture is demonstrated using the Architecture 

Selection Algorithm (Table 4), and the Prediction Risk criterion discussed in Chapter 3 

section 3.4.3. Next, use of computational knowledge discovery techniques as a tool to 

perform statistical tests, is demonstrated in a further investigation of transaction costs. 

Finally, the framework and methods are applied to the extraction of patterns implicit in 

options market data, which provide probabilistic information on fi/lure prices of the 

underlying assets . Namely, Risk Neutral Densities (RNDs). The object of these 

demonstrations, is to show that when computational knowledge discovery techniques 

are applied to options market data, within a systematic KDD framework incorporating 

statistically principled practical procedures, the result is improved statistical confidence 

in the models and results obtained, and fresh insights for the application domain. 

4.1 Application I: Option Pricing 

Three decades ago, the development of the Black-Scholes option pncmg model, 

revolutionised options markets. Black and Scholes had the insight that prices of options 

could be modelled by a particular stochastic differential equation, now known as the BS 

differential equation. The famous BS formula is an exact solution to this differential 

equation. The BS fOlmula applies only to European exercise options on non-dividend­

paying assets and rests on a severely restrictive set of assumptions. There have been 

many attempts to extend and improve on the BS model, and a large academic literature 

exists. Extensions and improvements to the BS model documented in this literature are 

mostly based on alternative solutions to the BS differential equation. The majority of 

the extended and improved option-pricing models rely on analytical approximations or 

numerical methods, to solve the differential equation where no closed-form solution 

exists. However, as discussed below, the practical success of these models is 

questionable. The BS model retains its importance as a key benchmark, and the search 

for improved option pricing models remains a central concern of options market 
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researchers and practitioners. A review of the literature on option pricing is beyond the 

scope of this thesis, but can be found in Healy (2000)73. An explanation of the 

benchmark BS model is given in Appendix D. Hull (2000) provides a good description 

of the most important option pricing models. Here, comment is confined to empirical 

evidence on performance, and is presented in the next section. 

4.1.1 Modern Parametric Option Pricing 

The BS formula was the first successful tool for rational valuation of options. It was the 

first option pricing model where all the parameters were measurable. However, it and 

its extensions show systematic and substantial bias74
. To improve pricing performance, 

the BS formula has been generalised to a class of models referred to here as modern 

parametric option pricing models. The developers of these modern parametric option 

pricing models hoped to obtain well-specified models, consistent with the dynamics of 

the underlying assets, and which were straightfOlward to estimate and consistently 

outperformed rival specifications. Arguably, their efforts were largely unsuccessful75
. 

Even the most complex modern parametric models are outperformed by less general 

simpler models. They often produce parameters inconsistent with the time series of the 

underlying asset, give inferior hedging performance, and display systematic pricing 

biases76
. To overcome these problems, there has been increasing interest among 

researchers in non-parametric techniques77 and in model-free methods designed to 

discover/induce a model from data, including several of the computational knowledge 

discovery techniques. A review of the literature documenting applications of 

computational knowledge discovery techniques to option pricing follows in the next 

section. 

73 Healy, 1. V. , 2000. "Data Mining, Machine Learning, and KDD: Applications to Option Market Data", 
discussion paper, Department of Computing Communication Systems and Mathematics, London 
Guildhall University. 
74 MacBeth, J. , and Merville, L. 1979. "An Empirical Examination of The Black-Scholes Call Option 
Pricing Model", Journal of Finance 34, pp 1173-1186. 
Galai, D. 1983. "A survey of empirical tests of option-pricing models," in Option Pricing: Theol )) and 
Applications (M. Brenner, ed.), Lexington Books, Lexington, pp45-81. 
Rubinstein, M. 1985. "Nonparametric tests of alternative option pricing models using all reported trades 
and quotes on the 30 most active CBOE option classes frOIl1 August 23, 1976 through August 31 1978", 
Journal of Finance 40, No.2, pp 455-480. 
75 Lajbcygier P. 1999. "Literature Review: The problem with 1I10dern Parametric Option Pricing" 
Journal of Computational Intelligence in Finance Vol.7 No.5 pp6-23. 

76 Bakshi, G., Cao, c., and Chen, Z. 1997. "Empirical peljormance of alternative option-pricing models", 
The Journal of Finance, Vol.52, No.5 , pp2003-2049. 
Bakshi , G., Cao, C., and Chen, Z. 1998. "Pricing and hedging 10ng-terll1 options", Journal of 
Econometrics, pp 277-318. 
77 Pagan, A., Ullah, A. 1999. Nonparametric Econometrics , Cambridge University Press. 
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4.1.2 Literature Review: Computational Knowledge Discovery Techniques 

and Option Pricing 

A number of researchers have applied computational knowledge discovery techniques 

to option pricing. Although these techniques were originally developed for entirely 

different purposes, they are well suited to this application. The mapping between option 

prices and their determinants is highly non-linear, and the price dynamics of the 

underlying assets on which option prices depend are not easily modelled to sufficient 

levels of accuracy. In addition, an important input to option pricing models, the asset 

price volatility is not directly observable. Computational knowledge discovery 

techniques provide an arguably superior alternative to modern parametric option pricing 

methods for dealing with these difficulties. They allow prior assumptions regarding 

distributional parameters to be avoided, making it possible to discard generalised 

diffusion processes entirely. 

An early and influential application of computational knowledge discovery techniques 

to option market data is that of Hutchinson, Lo and Poggio (1994), who used three 

different methods. Namely, projection pursuit regression (PPR), radial basis functions 

(RBF), and multi layer perceptrons (MLP). The authors used a training set of 2 years of 

daily option prices generated by the BS formula, where the underlying stock price was 

simulated using the Monte Carlo method. They used a two dimensional model with 

moneyness, and time to maturity as inputs (SIX, t). They showed that training sets of as 

little as six months of daily data is sufficient to accurately recover the BS price, and to 

delta-hedge options. 

The authors then applied the techniques to 5 years of daily closing prices for the 

Standard and Poor 500 index option to recover the implied pricing model and delta­

hedge the options. They found "some evidence" that the computational knowledge 

discovery techniques outperformed the BS formula on this data. Paired t-tests were 

used for comparative tests of the delta-hedging performance of the different techniques 

and the BS formula. However, this was not done in the context of a systematic model 

search methodology, and the results were not adjusted for true significance. When the 

input space was partitioned into three parts, it was found that the three techniques 

performed differently in the different regions. Overall, the tests performed did not 

allow a conclusion as to which computational knowledge discovery technique was 

supenor. Hutchinson, Lo, and Poggio did not attempt to optimise the architecture of the 

104 



CHAPTER 4. APPLICATION OF THE CONJPUTATIONAL FRAMEWORK 

methods they used. Four non-linear functions were used for each method, that is, four 

projections, basis functions, and hidden units respectively, for the PPR, RBF, and MLP. 

This number was chosen because of results obtained in preliminary trials. In their 

conclusion, the authors remark on the need for statistical techniques for network 

optimisation, the desirability of a data-dependent metric for model performance such as 

model prediction error, and the limitations of performance measures such as R2. These 

are precisely the issues addressed in this thesis. 

Kelly (1994)78 used neural networks to price and hedge American style put options 

traded on four different common stocks. He used a data set of 1369 daily observations 

covering October 1 1993 to April 4 1994, and the closing daily bid price was used as the 

target. The resulting price estimates were compared with prices yielded by the 

Binomial Tree model of Cox, Ross, and Rubinstein (1979)79. Kelly found that neural 

networks valued and hedged American put options significantly better than the lattice 

based model. The neural nets had an R2 of 0.996 and mean absolute error of $0.12 

compared to 0.72 and $0.99 respectively for the Binomial Tree model. 

Following the approach of Hutchinson, Lo and Poggio (1994), Herrmann and Narr 

(1997)80 applied neural networks to the Dax index option traded on the Deutsche 

Terminborse (DTB), one of the world's most liquid index options. The Dax index 

option is a European exercise option and the Dax index is dividend adjusted with no 

dividends to consider. Thus, it is ideally suited for use of the BS model. Unlike 

Hutchinson, Lo and Poggio (1994) and Kelly (1994) Herrmann and Narr used 

synchronous time stamped transaction data (i.e. tick data) for the whole of 1995. The 

dataset used was provided by the Karlsruher Kapitalmarktdatenbank and contained 

more than 500,000 observations (records). Herrmann and Narr used their learning 

network to recover the market-implied pricing model from the dataset, and then 

compared its performance to the simple BS model. They concluded that neural nets are 

significantly better in explaining market prices than the BS formula, and that there were 

no observable signs of overfitting even when using networks with 11 hidden nodes. 

78 Kelly, D. 1994. "Valuing and Hedging American Options Using Neural Networks", Working paper, 
Carnegie Mellon University. 
79 See Appendix D for a description of the CRR model. 
80 HelTmann, R., and Narr, A. 1997. "Neural NelYvorks and the Valuation of Derivatives - Some Insights 
into the implied Pricing Mechanism of German Stock Index Options." Working paper, University of 
Karlsruhe, Institute for Decision Theory and Management Science, Depaliment of Finance and Banking. 
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They also found that the fit of the networks in out-of-sample tests was sometimes even 

slightly better than the results for the training set. Since neural nets are twice 

differentiable, Herrmann and Narr were able to extract the implied RNDs. They found 

that the implied RNDs differed markedly from those obtained using the BS formula. 

They concluded that neural networks can discover the implied pricing mechanism of 

derivatives and are able to explain market prices far better than the BS formula. They 

characterised learning networks as a fast and easily handled valuation tool, once trained 

on market data, observing that additional input factors are easily incorporated. 

Galindo (1999) followed up one suggestion for further research made by Hutchinson, 

Lo and Poggio (1994), that the relation between sample size and approximation error 

should be explored. He performed a comparative analysis of a variety of computational 

knowledge discovery techniques, the aim of which was to define a metric for 

comparison of different approaches. The methodology he developed is based on the 

study of error curves of the root mean square error (RMSE), as sample sizes and degrees 

of freedom, (e.g. numbers of hidden nodes, basis functions, projections etc) are varied. 

The methodology was tested by analysing the performance of a number of state-of-the­

art techniques in recovering the BS formula from simulated option price data with 

added noise. Galindo found neural networks (MLPs) provided the best estimation with 

average RMSE of 0.7825 for a training sample of 6,000 records. OLS (used as a 

benchmark) was second best with average RMSE of 0.7861, and best for small samples 

with fewer than 1,125 records. K-nearest neighbour (KNN), and decision tree (CART), 

methods were worst with average RMSE of 0.8380 and 0.8721 respectively. When the 

BS assumptions were relaxed and interests rates and volatility were allowed to vary, 

Galindo found that the above performance ranking no longer held. Neural nets (MLPs) 

remained the best performer, but CART was now second, OLS with added explanatory 

variables third, standard OLS fourth, and KNN the worst performer. In summary, this 

study presented a framework for ranking performance, as the model capacity and 

training set size were varied for different computational knowledge discovery 

techniques. The performance rankings for the different techniques, displayed some 

sensitivity to the function (model) implicit in the data, however MLPs were found to be 

the best performer. 
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There have been a number of applications of genetic programming techniques to option 

pncmg. These techniques are based on the random generation of a multiplicity of 

models. The 'fittest' (i.e. those with the best fit) are paired off using a combination 

algorithm, to form the next 'generation' of models. The process is repeated until a 

terminal model is obtained. The telminal model is considered the optimal solution for 

the particular modelling task. Genetic algorithms can be used with neural nets to create 

genetically adaptive neural nets (GANNs). GANNs use a form of bootstrap and have a 

low demand for data. It is claimed they overcome the problem of NNs finding local 

minima of the cost function, and always find the global minimum. GANN s are 

effectively a type of automated model search. They share with sensitivity based pruning 

the limitation that the true statistical significance of the terminal model is uncertain, 

since there is no way of knowing whether all models in the search path are statistically 

significant or properly nested. 

White, Hatfield, and Dorsey (1998)8\ used GANNs to price options with futures-style 

margining, as traded on LIFFE. They found the pricing errors obtained were not 

significantly different from zero in t-tests, and the method was free from the pricing 

biases exhibited by current option pricing models for this class of option. Keber 

(1999)82 applied genetic programming algorithms to the valuation of American put 

options on non-dividend paying stocks. His study used simulated data, and he found 

that his model outperformed other pricing methods described in the option pricing 

literature. Another application of genetic programming algorithms to option pricing is 

that of Chidambaran Jevons-Lee and Trigueros (1999)83 who used Monte Carlo 

simulation to create a set of synthetic stock prices following a jump-diffusion process. 

They found that the genetic programming model approximated the true pricing formula 

better than the BS model. They also found that the genetic programming model 

outperformed a number of other models in a variety of settings. Lajbcygier Connor and 

81 White, AJ., Hatfield, G.B., and Dorsey, R.E. 1998. ''A Genetic Algorithm Approach to Pricing Options 
With Futures-style Margining", working paper, Munay State University, MS KY 42071. 
82 Keber, C. 1999. "Option Valuation with the Genetic Programming Approach." Proceedings of the 6th 

Conference on Computational Finance (formerly Neural Networks in the Capital Markets), Leonard N. 
Stern School of Business, New York University January 6-8, 1999. 
83 Chidambaran, K.N., Jevons-Lee, C.H., and Trigueros, 1.R. 1999. "An Adaptive EvolutionaiJI Approach 
to Option Pricing via Genetic Programming", Proceedings of the 6th Conference on Computational 
Finance (formerly Neural Networks in the Capital Markets), Leonard N. Stern School of Business, New 
York University, January 6-8,1999. 
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Tsang (1999/4 proposed a new neural network architecture for option pricing which 

they called a 'constrained hybrid' approach. They identify a limitation of neural 

networks and other non-parametric option pricing methods. Namely, they do not use 

boundary condition infOlmation inherent in the data. The authors claim their method 

overcomes this limitation and can guarantee zero bias at the boundaries of the input 

space, thereby providing superior pricing performance to both conventional option 

pricing models and previously used neural network approaches. 

Bennell and Sutcliffe (2000)85 applied MLPs to LIFFE FTSE-l 00 index options. These 

options are ideally specified for application of the BS model. Daily closing prices were 

used. They concluded that NNs are superior in pricing performance to the BS model for 

options with a moneyness (SIX) less than 1.15, and maturity less than 200 days. 

Bennell and Sutcliffe studied the distribution of residual errors across the input space. 

They did not compute formal statistical intervals, or perform hypothesis tests for 

differences among the various models they considered, however. 

Amilon (2000)86 compared the BS model and MLPs in pricing and hedging Swedish 

stock index call options for the period 1997-1999. Daily data was used and models 

using both historical and implied volatility were tested. Both the bid and ask prices 

were used in order to model the spread (transaction costs) on the option premium rather 

than the more usual procedure of using the average of the two as the market price. 

MLPs using implied volatility were found to fit market prices better than MLPs using 

historical volatility, or the BS model using either implied or historical volatility. 

However, MLPs using historical volatility were found to give the best hedging 

performance. A moving block bootstrap procedure was used to compute confidence 

intervals, which were used to test the statistical significance of the results. Although the 

MLPs were found to produce superior fits to the data, the differences were often 

insignificant at the 5% level. This study is the only one reviewed here in which 

confidence intervals were computed and used for significance tests. 

84 Lajbcygier, P., Connor, 1., and Tsang, R. 1999. "A Constrained Hybrid Approach to Option Pricing", 
Proceedings of the 61h Conference on Computational Finance (formerly Neural Networks in the Capital 
Markets), Leonard N. Stern School of Business, New York University, January 6-8, 1999. 
85 Bennell, J. Sutcliffe, C. 2000. "Black-Scholes Versus Artificial Neural Networks in Pricing FTSE 100 
Options" discussion paper 00-156, School of Management, Southampton University. 
86 Amilon H. 2001. "A Neural Network Versus Black-Scholes: A Comparison of Pricing and Hedging 
Peljormances" Working Paper Department of Economics, Lund University, Lund, Sweden. 
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With certain exceptions, the claims for superior option pricing performance of MLPs 

and other computational knowledge discovery techniques in the works reviewed above 

were based on ranking of competing models by global R2 and error measures. The 

rankings were usually based on results for a single sample. Ensemble techniques and 

resampling (i.e. cross-validation, bootstrapping) were rarely used. Moreover, 

hypothesis tests for significant differences between models were generally not 

performed. Exceptions are: Amilon (2000), who computed statistical intervals using a 

bootstrap procedure, and used the resulting confidence intervals as the basis of tests for 

significance. White, Hatfield, and Dorsey (1998) whose results are based on t-tests. 

Hutchinson, Lo and Poggio (1994), who performed a small number of simple t-tests. 

And Galindo (1999), who used bootstrap replicates to produce averaged values of the 

RMSE for his work. An overall KDD framework, systematic data mining model search 

methodology, and true as opposed to nominal statistical significance levels, were not 

used in any of these studies. 

4.2 Pricing FTSE 100 Index Options 

The demonstrations in this section are performed using data relating to options on the 

FTSE 100 Index. The FTSE 100 Index is a share index of the 100 largest listed UK 

companies. The value of the index is a weighted average of the market capitalisation 

(i.e. number of shares x share value) of each company. The index is updated at one­

minute intervals between 0830 and 1630 daily. It is a broad index, which accounts for 

75%, by capitalisation, of the FT-Actuaries All Share Index. The FTSE 100 Index 

exhibits a 99.1 % correlation with the FT -Actuaries All Share Index, which accounts for 

its widespread acceptance as a proxy for the whole market. Options on the FTSE 100 

Index are chosen for study because they are effectively options on the market as a 

whole. They are highly liquid instruments for which data is readily available. Because 

of their payoff characteristics, quoted prices of FTSE 100 index options can be 

interpreted as realisations of the market's information and expectations concerning 

future price levels of the index. Moreover, these options have an important role in risk 

management, and are frequently used to hedge index tracking portfolios. 
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4.2.1 The Data: Selection, Cleaning and other Preparation Phases 

Brief details of the data selection, transformations to the data, and nature of the data sets 

output from each of the data preparation phases prior to the data mining phase, are noted 

in this section. 

Data Selection Phase 

Output: Project Database 

The option market data used was obtained from LIFFE's Market Data Service. The data 

set consists of daily closing prices for FTSE-1 00 index options for all trading dates from 

13 March 1992 to 1 April 1997. The raw data set contained 119,413 European exercise 

(ESX) calls, and the same number of puts. A corresponding set of 153,710 American 

exercise (SEI) options was included. A small sample of this data is shown in Table 13. 

Data Cleaning Phase 

Output: Cleaned Data Set 

The data was cleaned to exclude options with invalid or missing parameters. Only 

options that had actually been traded, as indicated by positive values of bid-ask spread, 

trading volume, and open interest (number of unclosed transactions) were used. To 

exclude outliers, options with moneyness (SIX) below 0.8 and above 1.4 were omitted. 

The volatility measure used was LIFFE tabulated at-the-money implied volatility (IV). 

There is evidence87 that this is a good predictor of actual future volatility, and it gives a 

better fit as measured by Adj. R2 than either historic volatility or alternative IV 

measures. Options with at-the-money implied volatilities (as tabulated by LIFFE) 

greater than 40% were excluded. The monthly Exchange Delivery Settlement Price 

(EDSP) obtained from LIFFE was included in the data set. 

Data Reduction / Enrichment Phase 

Output: Enriched Dataset 

All quoted London interbank offer rates (LIBOR) available from Datastream were 

added to the dataset. The 3-month rate was selected as a proxy for the risk-free interest 

rate, as it matched the average maturity of the options. In addition, the FTSE 100 

closing Price, and dividend yield, from Datastream were included. 

87 Healy, 1. V. 1999. "Volatility Implied in FTSE 100 Index Option Price Series As a Future Volatility 
Predictor: A New Approach", MSc Dissertation, Department of Economics and Finance, Brunei 

University London. 
110 



CHAPTER 4. APPLICATION OF THE COMPUTATIONAL FRAMEWORK 

Table 13 Small Sample of LIFFE FTSE 100 Index Option Raw Data 
Index Trading Date Physical Commodity Expiry Contract Type Exercise Price Volume Open Interest Open Price Open Range First Open Range Last Daily High Daily Low Settlement Price Instrument Settlement Price Volatility ATM Volatility Closing Bid Closin[. Offer 
4776 08114192 ESX 09101192 P 2375 2 0 55 55 55 2375 19.18 19.18 53 58 
6148 07/01192 SEI 10/01/92 C 2600 3 3 55 47 44 2490 13.55 14.02 42 47 
6148 07/01192 SEI 10101192 P 2650 0 0 185 2490 18.87 16.13 183 188 
12296 12/24/92 SEJ 01101193 C 2900 106 5096 28 18 21 2827 18.72 18.99 19 24 
12296 12/24/92 SEI 01101193 P 2950 0 0 124 2827 14.46 16.03 122 127 
14328 03111193 ESX 05/01/93 C 2625 0 200 338 2962 17.31 14.72 336 341 
18444 11/30/92 SEJ 06/01193 C 2400 0 293 440 2778 22.14 17.06 435 445 
18444 11/30/92 SEI 06/01/93 P 2500 0 868 36 2778 18.24 15.81 30 42 
19104 05/25/93 ESX 08/01193 C 2525 0 0 338 2859 18.28 13.83 335 342 
19104 05/25/93 ESX 08/01193 P 2525 0 0 7 2859 17.02 13.74 5 9 
23880 10112/93 ESX 10101193 C 2725 0 0 368 3093 52.28 10.87 366 371 
23880 10112/93 ESX 10/01193 P 2725 0 0 0 3093 49.47 9.35 0 1 
24592 09102/93 SEI 09/01193 C 3100 1286 4473 23 20 21 3072 11.83 12.82 21 22 
28656 12/20/93 ESX 02/01194 C 3425 0 336 54 3393 12.63 12.87 51 57 
28656 12/20/93 ESX 02/01194 P 3425 0 4 85 3393 12.59 12.78 83 88 
30740 11/25/93 SEI 12/01193 P 3250 0 540 159 3092 0.5 15.01 155 160 
33432 03/03/94 ESX 05/01194 P 3325 0 100 150 3241 17.46 18.12 147 154 
36888 03/24/94 SEI 04/01194 C 2900 0 0 228 3124 23.05 19.34 225 232 
38208 05116/94 ESX 07/01/94 C 3325 0 0 17 3113 15.74 16.35 14 20 
38208 05116194 ESX 07/01194 P 3325 0 0 227 3113 15.26 16.37 224 231 
42984 07/27/94 ESX 09101194 C 3825 0 372 0 0 0 0 0 1 3087 24.16 16.22 0 2 
43036 04/06/94 SEI 07/01/94 C 3050 0 1 163 3132 16.7 16.89 158 169 
43036 04/06/94 SEI 07/01/94 P 3100 2 14 98 96 100 3132 18.59 17.88 95 105 
47760 08/02/94 ESX 12/01/94 C 3425 0 4195 0 0 0 0 0 44 3195 15.67 16.32 34 54 
49184 10/03194 SEI 10/01/94 C 3300 3 3374 0 0 0 1.5 1 1 2984 22.14 19.19 0 1 
49184 10/03194 SEI 10/01194 P 3350 0 0 0 0 0 0 0 374 2984 0.3 19 371 377 
52536 04/28/94 ESX 03/01195 C 2925 0 0 335 3167 16.57 15.9 322 348 
52536 04/28/94 ESX 03/01195 P 2925 0 0 104 3167 17.65 15.91 93 115 
55332 10/31/94 SEI 01101/95 C 3150 12 5908 0 0 0 98 90 89 3097 17.88 18.47 86 93 
55332 10/31194 SEI 01/01/95 P 3200 0 5 0 0 0 0 0 152 3097 17.34 18.59 148 156 
57312 03/03/95 ESX 05/01195 C 3225 0 45 0 0 0 0 0 17 3030 13.93 14.68 14 21 
57312 03/03/95 ESX 05/01/95 P 3225 0 5 0 0 0 0 0 212 3030 13.93 14.68 209 216 
61480 03/15/95 SEI 04/01195 C 2650 0 0 0 0 0 0 0 398 3048 31.78 15.04 395 401 
61480 03115/95 SEI 04101195 P 2700 0 1217 0 0 0 0 0 1 3048 18.98 15.14 0 3 
62088 04/26/95 ESX 07/01/95 C 3275 0 1 0 0 0 0 0 68 3243 13.41 13.53 65 72 
62088 04/26/95 ESX 07/01195 P 3275 0 0 0 0 0 0 0 100 3243 13.41 13.5 96 104 
66864 06122195 ESX 09101/95 P 3175 0 500 0 0 0 0 0 12 3431 13.62 12.29 10 15 
67628 04/04/95 SEI 07/01/95 C 3200 0 1200 0 0 0 0 0 115 3186 15.27 15.31 110 120 
73776 09/01195 SEI 10/01195 P 3550 25 229 0 0 0 90 79 76 3510 11.22 11.47 73 79 
76416 12/07/95 ESX 01101196 C 3675 380 1363 0 0 0 59 50 47 3652 11.54 11.66 44 50 
76416 12/07195 ESX 01101196 P 3675 380 1447 0 0 0 67 62 69 3652 11.58 11.71 67 72 
79924 10111195 SEI 12/01195 C 3700 51 5446 0 0 0 16 14 16 3471 13.64 15.11 13 19 
81192 12/28/95 ESX 03/01/96 C 2675 0 0 0 0 0 0 0 1002 3691 19.77 11.63 998 1006 
81192 12/28/95 ESX 03/01196 P 2675 0 0 0 0 0 0 0 1 3691 30.06 11.61 0 2 
85968 07114/95 ESX 06/01/96 C 3525 0 10 0 0 0 0 0 172 3504 14.35 14.43 160 185 
86072 02/27/96 SEI 03/01/96 C 3350 0 0 0 0 0 0 0 369 3716 17.2 12.26 0 0 
86072 02/27/96 SEI 03/01196 P 3400 0 3753 0 0 0 0 0 1 3716 19.93 11.93 0 0 
90744 05/21196 ESX 07/01196 C 3325 0 0 0 0 0 0 0 463 3792 13.56 11.4 0 0 
90744 05/21/96 ESX 07/01/96 P 3325 0 0 0 0 0 0 0 1 3792 15.68 11.37 0 0 
92220 02115196 SEI 06/01/96 C 2900 0 0 0 0 0 0 0 877 3777 25.74 12.24 0 0 
92220 02115196 SEI 06/01196 P 3000 0 752 0 0 0 0 0 3 3777 19.86 12.2 0 0 
95520 07/03/96 ESX 09/01/96 C 3475 0 10 0 0 0 0 0 242 3704 13.1 11.48 0 0 
95520 07/03/96 ESX 09/01/96 P 3475 0 987 0 0 0 0 0 16 3704 13.12 11.52 0 0 
98368 08112/96 SEI 08101/96 C 3650 0 401 153 3803 21.61 11.16 150 155 
98368 08112196 SEI 08/01196 P 3700 101 5258 1.5 I 1 3803 16.26 11.39 1 1.5 
100296 02/21/96 ESX 12/01196 C 3925 0 1056 0 0 0 0 0 106 3765 12.92 13.51 0 0 
100296 02/21196 ESX 12/01/96 P 3925 0 0 0 0 0 0 0 258 3765 12.92 13.51 0 0 
109848 12/31196 ESX 03/01197 C 3425 0 8 692 4124 19.06 11.91 
109848 12/31/96 ESX 03/01/97 P 3425 0 3290 3 4124 19.91 11.92 
116812 04118/97 SEI 04/01/97 C 3300 0 0 995 4306 0 0 
119400 03/27197 ESX 03101/98 C 4825 0 0 83 4413 12.84 13.61 70 80 
119400 03/27197 ESX 03/01/98 P 4825 0 0 495 4413 12.84 13.61 
122960 05116/97 SEI 06/01197 P 3850 0 110 1 4690 27.5 12.48 
129108 06/09197 SEI 09/01197 C 4750 0 4 135 4684 14.24 14.53 
129108 06/09197 SEI 09/01/97 P 4800 0 0 180 4684 14.03 14.54 
141404 09119197 SEI 12/01/97 C 5350 0 0 92 5029 18.62 20.87 
141404 09119197 SEI 12/01197 P 5400 0 2 402 5029 18.35 20.49 
147552 12/24/97 SEI 01101198 C 4100 0 0 931 5026 62.46 25.24 
147552 12/24/97 SEJ 01/01/98 P 4150 0 4 10 5026 44.33 24.02 
153700 12/31197 SEJ 12/01/98 C 4900 0 0 741 5135 25.68 25.27 
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Data Preparation Phase 

Outputs: 

Derived Variables 

The following derived variables were generated in the data set; Moneyness (SIX), and 

the FTSE 100 closing price on the expiration date of the option (Terminal FTSE 100). 

In addition, as bid, ask, and spread, for the FTSE 100 index are not quoted, they were 

computed. This was done by using individual bid and ask prices, and numbers of shares 

in issue for the constituent stocks comprising the index, together with data on mergers 

and acquisitions, stock splits, new issues, and listings and delistings. This data was 

obtained from Datastream. 

Training Sets and Test Sets 

The data was randomly partitioned into training sets and test sets appropriate for each of 

the data mining exercises to be undertaken. A special test set of constant maturity, non­

overlapping, complete option price series, for each available expiration month was also 

constructed for use in connection with risk neutral densities. This is discussed further in 

section 4.4.2. 

4.2.2 Data Mining Model Search: Option Pricing with Transaction Costs88 

One of the most unrealistic simplifying assumptions underlying the majority of modern 

parametric option pricing models, is that markets are 'frictionless'. That is, there are no 

transaction costs, taxes, or other factors that affect market prices. In reality, market 

frictions exist. However, their effect on option prices is an open question. This 

question was investigated, and the results are presented here as a case study, to 

demonstrate a data mining model search performed using the GeTS Model Search 

Algorithm for Input Space Search described in Chapter 2, section 2.4.5 Table 3. 

Step 1. A general unrestricted model (GUM) was formulated . In this case, the GUM 

contained the five inputs to the BS formula plus three extra inputs . The three extra 

inputs were: 1) Spread, the difference between the bid and offer price for the option. 2) 

Volume, the number of contracts traded for the option. 3) Open interest (01), the 

number of contracts traded but not yet 'closed out' for the option. Spread was included 

88 An earlier version of the material in this section appeared in; Healy, lV., Dixon, M., Read, B.l , and 
Cai, F.F. 2001. "A Data-Centric Approach to Understanding the Pricing of Financial Options" , European 
Physics Journal B: Proceedings of the 3rd International Conference on Applications of Physics to 
Financial Analysis 2001. 
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because it is a transaction cost which is paid by the purchaser of the option. Volume 

and 01 were included as measures of liquidity of a particular option. The GUM thus 

takes the form. 

C = f(S, X,t,r,IV, Spread, Volume, OJ) (4.1) 

In equation (4.1), C,S,x,t,r, and IV, are the five standard BS inputs as defined in 

Appendix D. The object of the model search was to determine whether, and to what 

degree, the variables Spread, Volume and 01 affect option prices. A model not 

including these variables, assumes the price C is unaffected by the liquidity of the 

option, or the transaction costs involved in its purchase. 

Step 2. The input variables were fitted to the target (response variable) C for the GUM, 

using OLS regression. Table 14 shows results and diagnostic statistics. 

T bI 14 a e St 2 R It f OLS ep : esu S or regressIon 0 fGUM 
Response Variable: C Sample: 7212 Method: OLS 

Variable Coefficient Std. Error t-Stat. Prob. 
INTERCEPT -55.46 7.22 -7.68 0.0000 

S 0.61 0.00 214.28 0.0000 
X -0.59 0.00 -212.73 0.0000 
t 219.54 3.18 69.04 0.0000 
r -284.43 42.24 -6.73 0.0000 

IV 490.28 20.28 24.17 0.0000 
SPREAD -2.12 0.14 -14.93 0.0000 
VOLUME 0.00 0.00 -3.23 0.0013 

01 0.00 0.00 -7.88 0.0000 
R-squared 0.89 F-statistic 7150.76 
Adjusted R-squared 0.89 Prob(F-statistic) 0.00 
S.E. of regression 35.35 Durbin-Watson stat 1.74 

Diagnostics 
Jarque-Bera Statistic 31216.94 Probability 0.00 
Ramsey RESET test: 
F-statistic 4115.98 Probability 0.00 
Log likelihood ratio 7203.26 Probability 0.00 
White Heteroskedasticity Test: 
F-statistic 51.08 Probability 0.00 
Obs*R-squared 735.60 Probability 0.00 
Breusch-Godfrey Serial Correlation LM Test: 
F-statistic 86.21 Probability 0.00 
Obs*R-squared 250.06 Probability 0.00 
Table 14 Results of an OLS regressIOn for the GUM defined by equation (4.1). 

The t-statistic, which is computed as the ratio of an estimated coefficient to its standard 

error, is used to test the hypothesis that a coefficient is equal to zero. The last column 

of the output gives the p-values for the observed t-statistics. At the 5% significance 

level in a two-tailed test, a p-value lower than 0.05 is taken as evidence to reject the null 

hypothesis of a zero coefficient. Here, all the p-values were less than 0.05 suggesting 

that all the coefficients were different to zero. Hence, all the input variables were 
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significant. The F-test is a joint test of the null hypothesis that all the coefficients 

(excepting the intercept) are zero, even if all the t-statistics are insignificant, an F­

statistic can still be highly significant. Here, the p-value for the F-statistic was less than 

the significance level of 0.05, and the null hypothesis was rejected. This result 

suggested that at least one of the coefficients was different to zero. The Durbin-Watson 

statistic measures the serial correlation in the residuals, a value of less than 2 is 

indicative of positive serial correlation. J arque-Bera is a test statistic for testing whether 

a series is normally distributed. The small p-value for this statistic suggested the null 

hypothesis of normality of the residuals should be rejected. The small p-values for 

White's test and the LM test suggested the existence of heteroskedasticity, and serial 

correlation of the residuals, respectively. The RESET test is a test of functional form 

applicable to OLS, here the results suggested an incorrect functional form. These 

results support the use of appropriate non-linear techniques for the remainder of the 

model search. 

Step 3, A MLP with a single hidden layer was trained using the GUM inputs. An 

initial topology of 4 hidden layer nodes was selected in accordance with equation (2.5). 

F and t tests were performed on the actual and fitted values of the target using the 

independent test set. The residuals were tested for normality using the Jarque-Bera test. 

Results are presented in Table 15. 

a e T bI 15 ep : esu s or I 0 St 3 R It £ MLP fit fGUM 'fi f specI Ica IOn 
Model Topology R' Adj.R' F -stat. t-stat. t-test Jarque-Bera stat. 
[GUM] [nodes] F,ri,(l tail) F"k(0.05) [t,0,(2,0.05) = 1.96] [bias] [erit. value = 5.99] 

C(S,X,t,r,IV,spread,volume,OI) 8-4-1 0.996 0.998 1.04 1.01 -0.218 Unbiased 10256784.23 

Table 15 Results of fittlllg the GUM specIficatIon gIVen III equatIon (4.1) to call optIOn pnces. 

The Jarque-Bera statistic confirmed the residuals were not normally distributed. This 

test was not repeated for further stages of the model search. The F -test result suggested 

there was no significant difference between the variances of the actual and fitted values 

of the target variable. A t-test, assuming no difference in the variances, indicated that 

the fitted values were unbiased estimates of the means of the actual target values, and 

there was no difference at the 95% confidence level. This model was designated as the 

CURRENT MODEL, and the model search proceeded to Step 4. 

Step 4, Step 4 was repeated for 5 iterations. Variable deletion tests were performed to 

test restrictions on the GUM created by omitting the variables spread, volume, 01, r, 

and IV respectively. Tests were not performed for t, S, and X, as these variables were 
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already well known as important determinants of option price. The variables r, and IV, 

were included in the tests for comparison purposes. Table 16 presents the results of the 

variable deletion tests on the restricted models. The figures relate to comparisons of the 

residuals of each restricted model in turn with the GUM. 

T hi 16 a e St 4 V . hi D 1fT t B d ep : ana e e e .on es s ase on c ompanson 0 fR 'd eSI ua S 
Model Topology R2 Adj. R2 t-stat (paired). Paired t-test Delete? 

[comparison with GUM) [nodes) [tcri2,0 .05) = 1.96) [HO:=no difference) 

GUM-volume 7-4-1 0.936 0.966 -8.25 Reject No 
GUM-r 7-4-1 0.906 0.952 -23.47 Reject No 

GUM-or 7-4-1 0.882 0.938 -8.89 Reject No 

GUM-spread 7-4-1 0.827 0.909 -4.93 Reject No 

GUM-IV 7-4-1 0.563 0.640 -6.07 Reject No 
. , L Table 16 Vallable deletIOn tests of lestllctlOns on the GUM. Results ale ranked by AdJ.R . The tests 

consist of a paired t-test of residuals of the GUM and the restricted model. The null hypothesis of no 
difference is tested. Acceptance of the null hypothesis implies a variable makes no significant difference 
to the model and can be omitted. Rejection suggests the variable is significant and should be retained if 
the model is to be correctly specified. F-statistics are not reported, as they require normality of the 
residuals. The Jarque-Bera test in Step 3 has indicated the residuals are not normally distributed. 

The results in Table 16 suggest all the variables tested are statistically significant for 

option prices, since the null hypothesis of no difference in the residuals is rejected in 

each case. It follows that a cOlTectly specified pricing model for the options considered 

should include the variables spread, volume, and or. The BS formula, Black-I formula, 

and modern parametric option pricing models do not include these variables. Thus, they 

are mis-specified models for these options, which are amongst the most widely traded 

and liquid in the UK market. A variable that is not statistically significant does not 

influence a model and should be deleted. However, a variable may be statistically 

significant, and yet have little effect on the fit to the target (response variable). To 

determine the influence of each of the variables subjected to the variable deletion tests, 

on the fit to the target, further tests were performed. Results are presented in Table 17. 

The figures relate to the ability of the GUM and the restricted models to fit option 

pnces. 

T hi 17 a e E I t xp ana ory p ower 0 fR t' t d M d I ~ D es nc e 0 es or epen d tV' hi en ana e 
Model Topology R2 Adj. R2 t-stat. t-test Omitted Var. 

[comparison with target) [nodes] [tcri,(2,0.05) = 1.96] [bias) [Adj . R2: GUM-RM.] 

GUM 8-4-1 0.996 0.998 -0.22 Unbiased -

GUM-r 7-4-1 0.996 0.998 0.09 Unbiased 0.00003 
GUM-O! 7-4-1 0.996 0.998 -0.08 Unbiased 0.00026 

GUM-spread 7-4-1 0.996 0.998 -0. 12 Unbiased 0.00028 
GUM-volume 7-4-1 0.996 0.998 -0.12 Unbiased 0.00029 

GUM-IV 7-4-1 0.994 0.996 0.01 Unbiased 0.00168 

Table 17 Fit to target (response vanable) of GUM and restncted models. Results are ranked by AdJ.R2. 
For each model, t-statistics for fit to the target are reported. Row 1 reports results for the GUM, the 
remaining rows report results for the restricted models. The right hand column headed 'Omitted VaL' 
reports the amount of variance in the target variable 'explained' by each omitted variable. The amount of 
variance in the target unexplained by the GUM is 0.002 (to 3 d.p.) . 
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Table 17 demonstrates that both the GUM and all the restricted models produced 

unbiased estimates of the mean of the target, at the 95% significance level. Virtually all 

the variance in the response variable was explained by the models. The Adj. R2 was 

identical to 3 decimal places at 0.998 for all the models, excepting that which omitted 

IV. Only approximately 0.002 of the variance of the target was unaccounted for by the 

GUM. Interestingly, the results in the last column indicated that r, the risk-free interest 

rate, had around ten times less explanatory power for option prices than the variables 

spread, volume, and OJ. The latter three are customarily omitted from modern 

parametric option pricing models. The variable IV, had the most explanatory power. 

The explanatory power of all of these variables for the target though, was very small. 

From the perspective of statistical rigour however, a model that omits any of these 

variables is a mis-specified model. Nevertheless, given they contribute so little to the 

fit, it may be expedient to omit one or all of these variables and estimate a mis-specified 

model. This is because the rate of convergence of non-parametric estimators increases 

considerably as the number of inputs decreases. In addition, the extra restrictions may 

help avoid overfitting in the learning algorithm, and improve out-of-sample 

performance. 

Step 5 The variable deletion tests performed in Step 4, reported in Table 16, indicated 

that no variables should be deleted from the GUM given by equation (4.1). The GUM 

was therefore the single terminal model resulting from Step 4. Consequently, the GUM 

was accepted as the parsimonious undominated encompassing model. 

Step 6 At this stage the model search may (optionally) proceed using the Architecture 

Selection Algorithm described in Chapter 2 section 2.4.5 Table 4. Practical use of the 

Architecture Selection Algorithm is described in Section 4.2.3. 

Assuming the data mining model search stops at Step 5, the true significance level for 

the parsimonious undominated encompassing model, is now calculated in accordance 

with the procedures described in Chapter 2, section 2.4.5, and the true and nominal 

significance levels given in Table 5. In computing true significance levels, if j 

hypothesis tests are required to reach the final model, then the true significance of the /" 

test in the sequence is given by equation (2.6). It is important to understand however, 

that only tests which result in the acceptance of a restricted model are counted. A test 
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that leads to the rejection of a restricted model is therefore not counted. In the case of 

the GUM given by equation (4.1) hypothesis test results led to rejection of the OLS 

version of the GUM, and all of the restricted MLP models. Only in the case of the MLP 

version of the GUM, did the hypothesis test lead to acceptance of the model. It follows 

that only one hypothesis test was required to reach the final model, so that the true and 

nominal significance levels are identical in this case. 

If the data mining model search proceeds to Step 6 and the Architecture Selection 

Algorithm is implemented, the true significance level should be computed for the model 

resulting from that procedure. Since there will then be at least one extra hypothesis test 

required to reach the final model, the true and nominal significance levels will differ. 

4.2.3 NN Option Pricing Models: Architecture Selection 

In this section, use of the architecture selection algorithm given in Chapter 2, section 

2.4.5, Table 4, is demonstrated. The goal of the algorithm is to choose from a set of 

models with competing architectures, the one giving the best generalisation 

performance. This algorithm is used together with estimates of the Prediction Risk (PR) 

obtained by test set validation using equation (3.31), to select the model having the 

smallest value of PR, from amongst those considered. A systematic search of a subset 

of the space of possible architectures for a MLP with a single hidden layer was 

performed using the algorithm. The training algorithm given in Chapter 3, section 3.5, 

Table 6, was then used together with equation (3.33), to construct a model which 

permits estimation of PR where target values are unknown, without using either test set 

validation, or cross validation. 

The data used for the example which follows was the same set of daily price data for the 

FTSE 100 index 'ESX' European exercise call options, used for Example#2, 3, and 4 in 

Chapter 3. The available data was randomly partitioned into an equal sized training set 

and test set. The test set was designated set 'C'. The training set was then randomly 

partitioned into two further training sets designated as sets 'A' and 'B' respectively. 

Set A was used as the training data for a set of 17 models. Only architectures with 4 to 

20 hidden units were considered, as the model that parsimoniously minimises prediction 

risk was most likely to be in this range. The models differed only in numbers of hidden 
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units, the training dataset, input variables, and the seed controlling the set of random 

initial weights, were not varied. First, a model with 4 hidden layer nodes was trained. 

Thereafter, the number of hidden layer nodes was incremented by one for each model 

trained, up to the pre-selected maximum of 20. A sequence of 'nested' models was thus 

created. The PR for each model was estimated using equation (3.31) on the test set C 

(test set validation). The architecture giving the best generalisation (lowest PR) for the 

sequence could now be readily identified. In this case, the model having 15 hidden 

layer nodes gave the lowest value for P R. 

The training algorithm given in Table 6 of Chapter 3 was now applied. The model with 

15 hidden layer nodes was used as the Phase I model, and applied to training set B to 

generate a set of residuals for Phase II training. A set of 6 Phase II models with 

numbers of hidden layer nodes incrementally increasing from 15 to 20 were trained. The 

PR for each model was estimated using equation (3.33) and test set C. The PR values 

for the Phase II models suggested that negligible improvements in performance were 

obtainable by adding further hidden layer nodes in Phase II. Hence, the Phase II model 

with 15 hidden layer nodes was accepted as giving the best generalisation performance. 

Results of the architecture selection process using the algorithms given in Table 4 and 

Table 6 are presented in Table 18. When applied to previously unseen inputs, for which 

the cOlTesponding target values are unknown, an estimate of PR is obtainable from the 

Phase II model using equation (3.33). Test set validation, or cross validation, are not 

required. 

T bI 18 E a e I fA h't t xampe 0 re I ee ure S I f e ee .on usmg P d' f Ri k re Ie .on S 
Hidden layer Nodes 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Phase I [Eqn. (3.31)] 52.8 47.0 47.2 40.8 44.4 56.0 46.3 40.2 47.1 39.6 35.6 31.4 41.3 42.6 46.5 38.4 40.7 
Phase II [Eqn. (3.33)] - - - - - - - - - - - 9.9 9.3 9.6 9.3 9.3 9.2 

Table 18 shows how PR can be used to select the number of hIdden layer nodes for a MLP wIth a single 
hidden layer. The architecture selection algorithm (Table 4) was applied and 17 models having between 4 
and 20 hidden layer nodes were created. Equation (3.31) was used to estimate the PR, (E[MSE]) for each 
model. The model with 15 hidden layer nodes was identified as giving the best generalization 
performance (lowest PR). This was used as the Phase I model in the training algorithm given in Table 6, 
and a set of Phase II models was created. Equation (3.3) was used to estimate PR for each Phase II 
model. The results suggest there is no significant gain by adding further hidden layer nodes in Phase II. 

It is important to stress here that the Phase II model using equation (3.33) allows 

prediction risk to be estimated for unknown targets, without use of cross validation or 

test set validation. No claims of superior performance compared to alternative criteria 

for architecture selection are intended. The reason for preferring PR to alternatives is 

because it is a statistical criterion which permits selection of a topology which 
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minimises the (expected) sum of squared errors on test data from a set of trained models 

with different topologies. 

4.2.4 Hedging With Transaction Costs: NNs As an Investigative Tool 

In Section 4.2.2 a data Mining Model Search algorithm was used, together with a GUM 

specification implemented in non-linear non-parametric form using a MLP, to show that 

a correctly specified option pricing model should include the spread on the option 

premium, volume of contracts traded, and open contracts (Of), as input variables. These 

variables, though statistically significant, were found to have little effect on option 

prices however. In this section, the MLP is used as an investigative tool to empirically 

examine the effects of including transaction costs for trading the underlying security in 

option pricing models. Ignoring these latter costs and using the mid price of the 

underlying asset for hedging (pricing) is incOlTect in principle. It is an open question 

whether incorporating them will improve pricing and hedging performance in practice. 

The BS and most other option pricing models assume there are no transaction costs 

involved in trading the underlying security89. However, certain authors have proposed 

models which proportionally increase the price of the underlying asset to reflect these 

transaction costs. Leland (1985/° considered hedging at fixed time intervals. His 

pricing model approximately hedges an option, and matches the payoff at maturity. A 

fixed time interval is also used in the binomial tree model of Boyle and Vorst (1992/ I. 

Hoggard, Whalley and Wilmott (1994)92 have extended the Leland fixed time interval 

approach to a more general cost structure. Henrotte (1993) and Toft (1996) have shown 

that models where hedge rebalancing occurs at variable intervals, triggered by a 

percentage change in the price of the underlying asset, are outperfOlmed by fixed time 

interval models of the Leland type93
. To obtain optimal hedging perfOlmance, Hodges 

and Neuberger (1989) and Davis, Panas and Zariphopoulou (1993) considered hedging 

89 See discussion in Appendix D. 
90 Leland, H. E. 1985. 'Option Pricing and Replication with Transaction Costs', The Journal of Finance 
40, pp1283- 1301. 
91 Boyle, P.P., and Vorst, T. 1992. 'Option Replication in Discrete Time with Transaction Costs ', The 
Journal of Finance 47, pp27l- 293. 
92 Hoggard, T. , Whalley, A.E. , and Wilmott, P. 1994. 'Hedging Option Portfolios in the Presence of 
Transaction Costs', Advances in Futures and Options. 7, pp21-35. 
93 Henrotte, P. 1993. 'Transaction Costs and Duplication Strategies ', working paper, Stanford University 
and Groupe HEC. 
Toft, K. 1996. 'On the Mean-Variance Trade-Offin Option Replication with Transaction Costs', Journal 
of Financial and Quantitative Analysis 31 , pp233- 263. 
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in the presence of transaction costs as a stochastic optimal control problem94
. The 

optimal control models allow identification of a bounded area within which no hedging 

should occur. Trading should only occur to bring the hedge ratio back to the nearest 

boundmy when it lies outside this area. However, none of the above approaches to 

transaction costs reflects the market reality. This is because they assume the correct 

underlying asset price is the mid-price, and then increase this by a constant proportion. 

In real financial markets, the original data consists of tick-by-tick quotations of ask and 

bid prices. The mid-price is an artefact derived from the original ask and bid prices. In 

organised financial markets, the price an investor pays to purchase a security is the ask 

price. The price an investor receives for the sale of a security is the bid price. An 

exchange traded asset thus has two prices rather than a single unique price. The spread 

between the ask and the bid is the compensation received by the market makers for 

providing liquidity by standing ready to sell (purchase) securities. Ask and bid prices, 

and the spread, vary with time. The use of proportional transaction costs ignores the 

existence of these two separate prices, and fails to capture their variances. 

A sufficiently liquid and frequently traded option was required, in order to test the 

significance of bid and ask prices of the underlying asset for option prices, and hence 

for hedging options positions. Thus, ESX European exercise options (both calls and 

puts) on the FTSE 100 index were chosen, rather than individual equity options. 

However the FTSE lOa index cannot itself be traded, so no ask and bid prices are 

quoted for it. It was first necessary to estimate ask and bid prices for the index. The 

FTSE-IOO index is a value weighted index of the mid (average of the ask and bid) 

prices of its constituent stocks. The weighting factors are the market values 

(capitalisation) of the stocks concerned. The market value of each stock is the product 

of the stock price and the number of shares in issue. The daily closing price of the 

FTSE-IOO index is available through Datastream. The (daily closing) ask price, bid 

price, and number of shares in issue, are also available through Datastream for the 

individual constituent stocks comprising the FTSE-IOO index. Using this data, separate 

value weighted indices of the FTSE-l 00 ask and bid prices were constructed. 

94 Hodges, S. D., and Neuberger, A. 1989. 'Optimal Replication a/Contingent Claims under Transaction 
Costs', Review of Futures Market 8, pp222-239. 
Davis, M. H. A., Panas, V.G., and Zariphopoulou, T. 1993. 'European Option Pricing with Transaction 
Costs', SIAM Journal on Control and Optimisation 31, pp470-493. 

120 



CHAPTER 4. APPLICATION OF THE COMPUTATIONAL FRAMEWORK 

After making adjustments for new share issues, mergers and acquisitions, listings, de­

listings, and other changes, the Ask and Bid prices for the index were estimated as 

follows; 

(4.2) 

and 

(4.3) 

In equations (4.2) and (4.3) J5;:;E and J5::ffE are the estimated ask and bid prices for the 

FTSE 100 index. p:Sk and Pi
Bid are the ask and bid prices of the ;th stock in the index, 

and qi is the number of shares in issue for the jth stock. In the fractional terms within 

the brackets, the numerator is the market value of the ask or bid, for the ith stock, and the 

denominator is the aggregate market value of the index for the ask or bid, respectively. 

The subscript i denotes a stock comprising the index and iE[1,100]. There were a total 

of 14,381 observations for calls and 14,063 for puts. These were randomly partitioned 

into training sets and test sets. For the calls, the training set contained 7,l38 

observations and the test set contained 7,243 observations. For the puts, the training set 

contained 7,010 observations, and the test set contained 7,053 observations. Table 19 

gives descriptive statistics of this data95
. 

The option prices were separately modelled using the estimated ask and bid prices for 

the index. First, for both the calls and the puts, a MLP model was trained using the ask 

A in place of the mid-price S, as an input to the models. Then, models substituting the 

bid B for the mid-price S were trained, for both the calls and puts. The usual BS input 

variables were used for the four remaining inputs in all the models. Paired t-tests were 

performed using the test sets, comparing residuals of models with the ask as an input, 

with those of models using the bid as an input. If significant differences were found in 

the residuals, it would strongly suggest that the bid-ask spread on the underlying asset 

95 Inspection of Table 19 reveals that the mean daily instrument settlement price S, does not lie between 
the mean ask and bid prices. S is not the 1610 price of the spot index. It is the price of an implied future, 
with the same maturity as the option, written on the spot index. This is equivalent to the FTSE 100 spot 
index level at 1610. There is no significant difference in the means of the implied fuhlres and the spot 
index, but the implied future has a slight upward bias compared to the spot index. 
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Table 19. Descriptive Statistics of the Dataset 

Calls: Training Set 
CIP S X r t IV Ask Bid 

Mean 89.38 3422.74 3435.1 0.06 0.2 0.14 3417.5 3398.11 
Std. Devia 105.78 503.86 521.87 0.01 0.21 0.03 506.48 507.59 
Range 977 2232 2700 0.07 1.01 0.34 2164.07 2162.53 
Minimum 1 2284 2125 0.05 0 0 2288.68 2273.32 
Maximum 978 4516 4825 0.12 1.01 0.34 4452.76 4435.84 
Count 7138 7138 7138 7138 7138 7138 7138 7138 

Calls: Test Set 
Mean 87.92 3428 3444.9 0.06 0.2 0.14 3422.42 3403.06 
Std. Devia 105.81 493.44 509.31 0.01 0.21 0.03 494.96 496.08 
Range 1113 2207 2700 0.07 1.01 0.34 2164.07 2162.53 
Minimum 2284 2125 0.05 0 0 2288.68 2273.32 
Maximum 1114 4491 4825 0.12 1.01 0.34 4452.76 4435.84 
Count 7243 7243 7243 7243 7243 7243 7243 7243 

Puts: Training Set 
Mean 58.19 3397.81 3304.26 0.07 0.2 0.14 3392.59 3373.19 
Std. Devia 66.78 507.03 492.29 0.01 0.21 0.03 509.24 510.36 
Range 661 2232 2700 0.07 0.99 0.25 2164.07 2162.53 
Minimum 2284 2125 0.05 0 0.07 2288.68 2273 .32 
Maximum 662 4516 4825 0.12 0.99 0.32 4452.76 4435.84 
Count 7010 7010 7010 7010 7010 7010 7010 7010 

Puts: Test Set 
Mean 58.09 3398.5 3304.49 0.07 0.2 0.14 3393.28 3373.83 
Std Deviat 65.48 509.81 497.67 0.01 0.21 0.03 511.39 512.5 
Range 739 2232 2700 0.07 0.99 0.25 2164.07 2162.53 
Minimum 2284 2125 0.05 0 0.07 2288.68 2273 .32 
Maximum 740 4516 4825 0.12 0.32 4452.76 4435 .84 
Count 7053 7053 7053 7053 7053 7053 7053 7053 

Table 19. C or P is call or put price, S is the daily settlement price of the underlying asset, X is the 
exercise price, l' is the risk free interest rate, t is the time to maturity in years, IV is the LIFFE tabulated 
at-the-money implied volatility, Ask and Bid are the estimated ask and bid prices of the underlying asset. 
Prices are expressed in index points. 

cannot be ignored, and that option pricing models using the mid-price as an input are 

mis-specified. The results of these tests are presented in Table 20. The calculated t-

statistics reported in Table 20 are greater than the critical value by a substantial margin. 

Hence, the difference between the ask and bid prices of the underlying asset is indeed 

significant for the options on the FTSE 100 for this data. 

T bl 20 a e A k d B'd f U d I' Ate s an 1 or n enymg sse: ompanson 0 fM d I 0 e s 
Options Models Sample Topology R2 F stat t-stat Paired t-test 

[f ,. v. fhKJ n [no. nodes] [1"' "1 =0.96] t ' II (I< [1' "1(2 tail)= 1.96] [HO: e'A,'= e'm,J 
Calls C' (Ask,X,t,r,lV) v. C ·(Bid,X,t, .. ,IV) 7243 5-11-1 0.881 0.98 -8.66 Reject HO: 

Puts P' (Ask,X,t,r,lV) v. P ' (Bid,X,t,r,lV) 7053 5-11-1 0.890 0.91 8.03 Reject HO: 

Table 20 Results of F tests and paired t-tests on the reSiduals of optIon pnCl11g models for FTSE 100 
index ESX options, using the ask and bid prices of the underlying asset, respectively, as inputs, rather 
than the mid price. The calculated values of the t-statistic are substantially in excess of the critical value 
suggesting that the difference between the ask and bid prices of the underling asset is statistically 
significant for option prices. 
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This suggests that transaction costs involved in trading the underlying asset should not 

be ignored in a properly specified option pricing model. But how should these costs 

enter the model? Consider an investor who writes (sells) a call option. The hedged 

short position in the call option is as follows96
; 

- Call 

+~ shares of underlying asset 
(4.4) 

The writer sells one call option. To hedge against price movements of the underlying 

asset, he must purchase ~ shares of that asset, where delta is the partial derivative of the 

call pricing function with respect to the price of the underlying asset. The price he must 

pay to purchase the underlying asset is the ask price, not the mid price. Similarly, the 

hedged short position for an investor who sells a put option is; 

- Put 

-~ shares of underlying asset 
(4.5) 

The writer sells one put option. To hedge the position he must sell ~ shares of the 

underlying asset. The price he will receive is the bid price, not the mid price. 

Therefore, call options should be hedged and priced using the ask price of the 

underlying asset, and put options should be hedged and priced using the bid price of the 

underlying asset. This is because the ask and bid prices of the underlying asset and not 

the mid price are the prices actually paid by investors to hedge call and put options, 

respectively. Use of the ask and bid prices as described, rather than the mid price, 

should therefore yield improved pricing performance. The benchmark BS model was 

used to test this hypothesis. Results are presented in Table 21. 

T bI 21 a e P' , 'thBSU' Ak dB'dP' flemgwI smg s an I flees 0 fU d I' A t n enymg sse 

O~tions Models Sam~le Adj,Ii F stat t-stat t-test 
n [Ferit =0.96] t (20.05) [terit(2 tail)= 1. 96] [HO: C=C*j p=p*] 

Calls C*BS<S,X,t,r ,IV) 7243 0.985 0.84 -3.35 Reject HO: 
Calls C*BS<Ask,X,t,r,IV) 7243 0.995 0.91 -1.6 AcceptHO: 
Calls C* BS<Bid,X,r,t,IV) 7243 0.994 0.98 3.74 Reject HO: 

[Ferit =1.04] 

Puts P*Bs(S,X,t,r,IV) 7053 0.935 1.32 14.99 Reject HO: 
Puts P*Bs(Ask,X,t,r,IV) 7053 0.952 1.29 14.17 Reiect HO: 
Puts P*BS<Bid,X,t,r,IV) 7053 0.971 1.13 8.10 Reject HO: .. 

Table 21 Pncmg FTSE 100 mdex ESX call and put optIOns with the BS formula, using the mid price and 
the (estimated) ask and bid prices of the underlying asset as inputs. The results indicate that the ask price 
provides the best fit for the calls, and the bid price provides the best fit for the puts. 

Table 21 shows that for the call options, using the ask price of the underlying asset as an 

input to the BS formula gives an unbiased estimate of actual market prices, and the best 

96 Hull (2000), Chap 13 pp312-313. 
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fit as measured by Adj. R2. Use of the mid price or the bid price produces biased 

estimates, and poorer fits. For the put options, all three estimates of actual market 

prices remain biased, as indicated by the values of the calculated t-statistics. However, 

using the bid price of the underlying as an input gives the smallest value of the t­

statistic, and the best fit as measured by Adj. R2. These results support the hypothesis 

that transactions costs in trading the underlying asset, should be accounted for in 

parametric option pricing models by using the ask price as an input for pricing and 

hedging call options, and the put price as an input for pricing and hedging put options. 

The results in Table 21 suggest that adjusting for transactions costs on the underlying 

asset, can improve the pricing performance of the BS model. Table 22 presents 

comparable results for pricing the same options with MLP option pricing models. 

T bi 22 a e P , , 'thMLP U' A k dB'dP' flemgwi s smg s an I flees 0 fU d I' A t n erlymg sse 
Options Models Sample Topolol!;Y Adj,K F stat t-stat t-test 

n [no. nodes] [F'rit =1.04] t (2.005) [t'rit(2 tail)= 1.96] [HO: c=c'/p=p'] 

Calls C*(S,X,t,r,IV) 7243 5-11-1 0.998 1.01 -0.05 Accept HO: 
Calls C*(Ask,X,t,r ,IV) 7243 5-11-1 0.996 1.02 -0.16 Accept HO: 
Calls C*(Bid,X,r,t,IV) 7243 5-11-1 0.996 1.02 0.02 Accept HO: 

Puts P*(S,X,t,r,IV) 7053 5-11-1 0.997 1.01 0.00 Accept HO: 
Puts P*(Ask,X,t,r ,IV) 7053 5-11-1 0.995 1.03 0.10 Accept HO: 
Puts P*(Bid,X,t,r,IV) 7053 5-11-1 0.994 1.03 -0.09 Accept HO: 

Table 22 Pricmg FTSE 100 mdex ESX call and put optIons WIth MLPs, usmg the mId pnce and the 
(estimated) ask and bid prices of the underlying asset as inputs. The results suggest that a MLP is able to 
determine the mapping to the option prices regardless of which of the three prices for the underlying asset 
is used. 

The results in Table 20 suggest transaction costs on the underlying asset are statistically 

significant for option prices and should be included in a properly specified model. 

However, Table 22 shows that for an MLP option pricing model in practice, there is a 

negligible difference in the quality of fit obtained regardless of whether the mid, ask, or 

bid prices of the underlying asset are used as inputs. Here, the calculated t-statistics are 

uniformly small, and there is no significant difference between the actual market prices 

of the options and the estimated prices. These results indicate that adjusting for 

transaction costs on the underlying asset is not critical in the case of MLPs. However, 

the results in Table 21 show this is not the case for the BS model, where adjustment for 

transaction costs in the manner suggested above produces marked improvements in 

performance. Overall, the results demonstrate the flexibility of non-parametric 

computational knowledge discovery techniques such as neural nets, when compared to 

parametric methods such as BS, for option pricing. 
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4.2.5 Conclusions 

Regression techniques can be used in two ways, to discover functions and to fit 

functions. Conventional parametric regression techniques start out with a pre-defined 

function, and this is placed in the data space to best fit the data. The advantage of non­

parametric computational knowledge discovery techniques such as neural nets for 

regression, is that no particular function is assumed. Instead, the function is determined 

by the data. However, in order to obtain useful results, statistically rigorous data mining 

model search methods must be used to select the variables to be included in the model. 

In addition, a trade-off in using a non-parametric modelling methodology is that a 

method of selecting the topology, architecture, or bandwith, (degrees of freedom) is 

needed. In section 4.2.2 a data mining model search method, the GeTS Model Search 

Algorithm for Input Space Search was demonstrated. A computational knowledge 

discovery technique the MLP, was used in the context of this statistically principled 

model search method, to show that correctly specified option pricing models should 

include extra variables namely, spread, volume, and open interest (OJ). In section 4.2.3 

the use of a statistically based architecture selection algorithm to choose a model 

topology that minimises the expected squared error, or prediction risk (PR), on test data 

was demonstrated. A method of estimating PR was demonstrated which is applicable 

when target values are unknown. In section 4.2.4. use of a computational knowledge 

discovery technique, the MLP, as an investigative tool to fit functions and perform a 

statistical test, rather than discover functions, was demonstrated. The MLP was used to 

model option prices, using the estimated ask and bid prices of the underlying asset as 

inputs in place of the mid price. The object was to determine whether transactions costs 

incurred in trading the underlying asset actually affected option prices. Evidence 

suggesting that these costs should be included in a correctly specified model for option 

prices was presented. Further results were presented suggesting that for the BS and 

similar option pricing models, call options should be hedged (priced) using the ask price 

of the underlying asset, and put options should be hedged (priced) using the bid price, 

rather than the customary practice of simply using the mid price. However, results for 

neural nets or equivalent techniques, suggest any of these inputs will produce predicted 

prices that are unbiased estimates of the observed prices. 
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4.3 Application II: Option Implied Probability Distributions 

Market practitioners and researchers have long sought ways to extract information on 

future asset prices from current prices quoted in financial markets. For example, prices 

of forward contracts have been used to make point estimates of future asset price levels, 

and option prices have been used to obtain estimates of future asset price volatility. In 

recent years there has been increasing interest in implied probability distributions for 

the price of the underlying asset at expiration, estimated from option price series 

observed in the market. It is reasoned that quoted prices of options impound the 

market's expectations regarding the value of the underlying asset at the expiration of the 

option. It is possible to extract not just the mean, but a complete probability distribution 

for the future price of the underlying asset, using observed option prices. Useful 

information contained in the shape of the distribution can thus be recovered. This 

distribution is often referred to as the risk-neutral distribution (RND) and that term is 

used here97
. This section deals with the application of computational knowledge 

discovery techniques to the extraction of the RND from market prices of options. 

4.3.1 Risk Neutral Distributions: Theory and Applications 

Cox and Ross (1976)98 showed that the prices of European exercise options could be 

expressed as the expected value of their payoffs, discounted at the risk-free interest rate. 

C(X,t,T) = e-I' (T-I ) r P(ST)(ST -X)dST 

P(X, t, T) = e-I'(T-I) r: peST )(X - ST )dST 

(4.6) 

In equation (4.6) C(x,t,1) and P(X,t,1) are the prices of calls and puts trading at time t 

for expiration at some later time T. X is the strike price, and r is the risk-free interest 

rate. P(ST) is the RND for the value of the underlying asset S at time t. Given an 

assumption about the functional form of P(ST) options can be priced for any value of 

exercise price X. Conversely, given a series of synchronous market prices observed at 

some time t, for options expiring at some later time T, this calculation can be inverted 

and an estimate of P(ST) extracted. Breeden and Litzenberger (1978)99 showed that the 

97 More rigorously it is the state price density (SPD). See e.g. Cont, R. 1997. "Beyond Implied Volatility ", 
in Keretz, land Konder, 1. (Eds.) Econophysics, Klewer, Amsterdam. 
98 Cox, lC. , and Ross, S.A. 1976. "The Valuation of Options for Altel'l1ative Stochastic Processes", 
Journal of Financial Economics 3, p 145-166 
99 Breeden, D. T. , and Litzenberger, R. H. 1978. "Prices of State-contingent Claims Implicit in option 
Prices", Journal of Business 4, p 621-651 . 
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cumulative density function (negatively signed) for the value of the underlying asset S 

at time t is given by the first partial differential with respect to X of equation (4.6), 

af(X,t,T) = _e-r(T-I) i peS )dS ax ly T T 

and the RND is obtained by differentiating equation (4.6) twice with respect to X. 

a
2f

(X;t,T) =e-r(T-t)p(x). 
ax 

(4.7) 

(4.8) 

In equations (4.7) and (4.8) f(X,t,T) represents the call or put option pricing functions. 

To understand why equation (4.8) gives the RND consider the portfolio known as a 

'butterfly spread'. This is given by 

C(X +&,t,T)-2C(X,t,T)+C(X -&,t,T) (4.9) 

in equation (4.9), & is a small increment. The portfolio is created by selling two call 

options at exercise price X, and by purchasing a single call option at exercise price 

(X + &) and another at (X - E). Except in the interval [X - &, X + &] the portfolio makes 

no payout. Consider 11& 2 shares of this portfolio; in the limit as & tends to zero, the 

payoff function tends to a Dirac delta function with mass at X, thus the portfolio will 

pay £11$1 if ST = X and nothing otherwise. The price of the portfolio (4.9) must be 

and 

1 
-2 [C(X + &,t,T)-2C(X,t,T)+ C(X -&,t,T)] 
& 

. (1 ) a
2
C(X,t,T) LIm -2 [C(X +&,t,T)-2C(X,t,T)+C(X -&,t,T)] = 2 

&~O & ax 

(4.10) 

(4.11) 

Thus the risk-neutral probability that ST = X is the price of a butterfly spread centered 

at X, in the limit as E~O, and this is equal to e-r(T-I) p(X) . In reality, X is not 

continuous and options are only available for a limited number of exercise prices at 

discrete intervals. However, Breeden and Litzenberger (1978) have shown that for 

discrete data, finite difference methods can be used to obtain a numerical solution to 

equation (4.8). In addition, Neuhaus (1995)100 has shown how the RND can be obtained 

via equation (4.7) using finite differences. 

RNDs have many practical applications. They are used by central banks to assess 

market expectations regarding future stock prices, commodity prices, interest rates, and 

100 Neuhaus, H., 1995. "The Information Content of Derivatives for Monetmy Policy", Discussion Paper 
3/95, Economic Research Group of the Deutsche Bundesbank. 

127 



CHAPTER 4. APPLICATION OF THE COMPUTATIONAL FRAMEWORK 

exchange rates, in connection with setting monetary pOlicylOI. They are useful to 

market practitioners as an aid to investment decisions. RNDs extracted from exchange 

traded options can be used to price exotic options. For risk management, they can 

provide measures of value-at-risk (VaR) 102. 

4.3.2 Recovering RNDs: Existing Methods 

A variety of approaches has been developed for estimating probability density functions 

from option prices including: 

a) Recovery of the assumed stochastic process for the price of the underlying asset, 

with the RND obtained as a by_product103
. 

b) Assumption of some functional form for the RND and estimation of its parameters 

by minimising the difference between actual and predicted option prices 104
. 

c) Smoothing techniques that relate option prices empirically to exercise pnces, 

allowing recovery of the RND through differentiation105
. 

d) Non-parametric techniques such as kernel regression 1 
06. 

Techniques of type a) and b) work with equation (4.6) using assumptions about the 

stochastic price process for the underlying asset or the RND itself, and evaluation of the 

integral to estimate its parameters so predicted option prices best fit observed option 

prices. Techniques of type c) and d) use equations (4.7) or (4.8) and the option pricing 

function f(X,t,T) is differentiated (numerically or analytically) to obtain the RND 107
. 

However, two techniques have been adopted as standard by practitioners. Namely, the 

mixture of lognormals, and the smoothed implied volatility smile. The first of these is a 

101 See e.g. Bahra, B. 1997. "Implied Risk-Nelltral Probability Density Functions From Option Prices: 
TheOl)l and Applications", Bank of England, Threadneedle Street, London, EC2R 8AH. 
102 Ait-Sahalia, Y., and Lo, A.W. 2000. "Nonparametric Risk Management and Implied Risk Aversion", 
Journal of Econometrics 94, pp 9-51. 
103 Maltz, A.M. 1996. "Using Option Prices to Estimate Ex-Ante Realignment Probabilities in the 
European Monetm)l System: the case of sterling-mark", Journal ofinternational Money and Finance, 15, 
pp 717-48. 
104 Ritchey, RJ. 1990. "Ca11 Option Valuation for Discrete Normal Mixtures ", Journal of Financial 
Research 13, pp285-296. 
105 Shimko, D. 1993 . "Bollnds of Probability", Risk, Vol.6, No.4, pp33-37. 
106 Ait-Sahalia, Y., and Lo, A.W. 1998. "Nonparametric Estimation of State Price Densities Implicit in 
Financial Asset Prices", Journal of Finance, Vol. LlII No2, pp499-547. 
107 For a recent review of these techniques see Jackwerth,1. C. 1999. "Option Implied Risk-Nelltral 
Distriblltions and Implied Binomial Trees: A Literature Review", Journal of Derivatives,Winter 1999, pp 
66-82. 
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parametric method of type b) which works with equation (4.6); the second is a non­

parametric method of type c) which works with equations (4.7) or (4.8). 

The mixture of lognormals technique originated with Ritchey (1990). In this method, 

the RND is represented by the weighted sum of two or more independent lognormal 

density functions. 

1/ 

P(Sr) = I[BiLnD(ai,Pi;Sr)] (4.12) 
i=1 

In equation (4.12), LnD( ail Pi; Sr) is the /h lognolmal density function for the asset 

price at maturity Sr, in the n component mixture with parameters a i and Pi' The 

parameter Bi is a probability weighting and must satisfy the condition 

1/ 

IBi =l, Bi>OVi (4.13) 
i=1 

This representation has the advantage that it offers greater flexibility than a single 

density representation. In principle, a mixture of Gaussian (or other) densities can 

approximate any continuous density to arbitrary accuracy as the number of component 

density functions tends to infinitylo8. Ritchey however used a mixture of two lognormal 

densities to minimise the number of parameters to be estimated, and this has become the 

standard procedure. If equation (4.12) is substituted into equation (4.6) the resulting 

expressions can be fitted to observed call and put prices, and the parameters estimated 

to minimise the weighted sum of fitted price errors, using non-linear optimisation 

methods. Given the parameters and the observed option prices, the implied RND can 

then be constmcted. The mixture of lognormals method is computationally intensive 

and the number of parameters to be estimated increases rapidly with the number of 

density functions included. Since option price series frequently have 20 or fewer 

observed prices corresponding to different exercise prices, this means the method is 

prone to overfitting. 

The smoothed implied volatility smile method originated with Shimko (1993) . The 

RND can be obtained directly from equation (4.8) provided the option pricing function 

f(X,t,T) is observable. Unfortunately, only a relatively small number of option prices 

corresponding to discrete exercise prices are observable for a given time t. An obvious 

108 Titterington, D.M., Smith, A.F.M. , and Makov, U.E. 1985. Statistical Analysis a/Finite 
Mixtllre Distriblltions, John Wiley: New York. 
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solution is to smooth and interpolate the observed prices by fitting a function to them. 

Shimko considered this approach, but found that the smoothing spline functions he used 

were not suitable for fitting option prices. To overcome this difficulty Shimko 

converted the prices to implied volatilities using the BS formula. He then fitted a 

quadratic polynomial smoothing function to the available implied volatilities and used 

linear extrapolation outside the range of observable exercise prices. The continuous 

implied volatilities obtained were then converted back to continuous option prices using 

BS, and a RND extracted using the relation in equation (4.8). In this method, the BS 

formula is used purely to effect a transformation from one data space to another (option 

price/exercise price to implied volatility/exercise price). The method does not rely on 

any of the assumptions underlying the BS formula. The method has been refined by 

Maltz (1997)109 and others. The smoothed volatility smile method has the advantage 

that fitting polynomial curves or splines to the smile can be done in a single pass, 

without iteration. However, the probabilities obtained in extracting the resulting RND 

cannot be guaranteed to be positive as this is not a constrained optimisation, and this 

needs to be separately checked. 

Bliss and Panigirtzoglou (2002) and Andersson and Lomakka (2003) have carried out 

comparative performance tests on the two methodsllo
. Bliss and Panigirtzoglou found 

that the smoothed implied volatility smile estimation method produced more stable 

RNDs than the mixture of lognormals method. It was found remarkably free of 

computational problems, and reasonably insensitive to small measurement errors. By 

contrast, the mixture of lognormals method was found to be sensitive to computational 

problems, suffered from frequent convergence failures, and had a tendency to produce 

spurious spikes in estimated RNDs. They suggest that despite its popularity, the 

mixture of lognormals method should not be used. Moreover, Bliss and Panigirtzoglou 

suggest the smoothed implied volatility smile method may be improved by trading 

goodness-of-fit for a more stable RND, and point out that the mixture of lognormals 

method does not permit this fine tuning. The authors warn though, that skewness and 

kurtosis cannot always be precisely estimated with either method, particularly for price 

109 Malz, A.M. 1997. "Estimating the probability distribution of the future exchange rate from options 
prices", Journal of Derivatives 5, pp 20-36. 
110 Bliss, R., and Panigirtzoglou, N. 2002. "Testing the Stability of Implied Probability Density 
Functions", Journal of Banking and Finance 26,381-422. 
Andersson, M., and Lomakka, M., 2003. "Evaluating Implied RNDs by Some New Confidence Intel1Jal 
Estimation Techniques", Sveriges Riksbank Working Paper Series, No. 146. 
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series with small numbers of observed option prices. Andersson and Lomaldca also 

concluded the smoothed implied volatility method was superior in performance to the 

mixture of lognormals. They used the width of confidence intervals, estimated using 

bootstrap and Monte Carlo methods, as a criterion for evaluating the two methods, and 

found that the smoothed implied volatility smile method yielded tighter confidence 

intervals for estimated RNDs. 

4.4 Recovering RNDs for FTSE 100 Index American Put Options 

The theory underlying RNDs is only applicable to European exercise options, and 

cannot be applied to American exercise options without modification. However, most 

exchange traded options are actually American options. American options can be 

exercised at any time prior to maturity, and it is reasonable to suppose that this feature, 

which is reflected in their price, affects any extracted RND. It is an open question 

whether RNDs extracted from American options are significantly different empirically 

to those extracted from corresponding European options. If there is no significant 

difference, then American options could be used interchangeably with European options 

for extracting RNDs. If there is a significant difference, it raises questions as to how 

that difference should be interpreted, and how and to what extent RNDs recovered from 

American options can be used in practice. 

In this section, the above questions are used as a case study to demonstrate the 

application of computational knowledge discovery techniques (specifically MLPs) to 

the recovery of RNDs from option prices. Only put options are considered. This is 

because early exercise of American call options is never optimal!!!. Therefore, 

American call options can be priced as European call options. In this case study, RNDs 

from American and European put option pricing functions are extracted and compared. 

4.4.1 Motivation 

The non-parametric extraction of RNDs from option prices is an example of an ill-posed 

problem, in that small changes in option prices can lead to large changes in the 

estimated density function. It requires the use of methods that are robust to slight 

changes in the option prices. One solution is to impose some degree of regularization 

III In the absence of dividend payments. See e.g. Hul1(2000), Chapter 7 p175. 
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(smoothing) on the data 112. In the smoothed implied volatility smile method this is 

achieved by fitting the data in the implied volatility/exercise price space. This is 

necessary because the quadratic polynomial and smoothing spline functions used to fit 

the data in that method, proved unsuitable for directly fitting option prices, with their 

exponential-like functional form, asymptotic to a slope of zero for deep out of the 

money options, and a slope of one for deep in the money options. In contrast, neural 

nets and other sufficiently general computational knowledge discovery techniques, have 

been shown to be suitable for directly fitting option pricesl13. The required smoothing 

can be controlled by the choice of bandwith, degrees of freedom, or number of hidden 

layer nodes l14. Moreover, as noted by Rebonato (1999)115 fitting directly to option 

prices is an improvement on the (in principle) least data-polluting procedure of using 

only the actually quoted option prices. For this work, RNDs were extracted by first 

estimating smoothed prices corresponding to each exercise price in a daily price series, 

by directly fitting MLP option pricing functions, and then twice differentiating the 

functions numericallyl16, partially with respect to exercise price. 

Surprisingly, there has been little study of the use of neural nets for extracting RNDs 

from option prices. A version of the parametric mixture of lognormals method was 

implemented by Schittenkopf and Dorffner (2000)117 using Mixture Density 

Networks 118. Herrmann and Narr (1997) differentiated NN option pricing functions 

fitted directly to prices of options on the German DAX index to obtain RNDs. They 

used average values for some input variables when training their models. The resulting 

RNDs were compared graphically with corresponding lognormal RNDs obtained using 

the BS formulae. No statistical tests were performed, and only goodness-of-fit and error 

measures were provided. Despite an extensive literature search, no other studies were 

found. 

112 Tikhonov, A.N., and Arsenin, V.L. 1977. Solutions of Ill-Posed Problems, Scripta Series in 
Mathematics, Halstead Press, Winston, New York. 
113 See e.g. Hutchinson, Lo and Poggio (1994) and Galindo (1999). 
114 This approach is structural regularisation as opposed to formal regularisation as defined in; Denker, 
1., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L., and Hopfield, J. 1987. "Large Automatic 
Leal11ing, Rule Extraction, and Generalisation", Complex Systems, 1(5), pp877-922. 
115 Rebonato, R. 1999. Volatility and Correlation, Wiley Financial Engineering, John Wiley & Sons Ltd. 
Chichester. p 195. 
116 Bishop (1995) notes that both first and second partial derivatives of neural networks can be obtained 
by using finite differences, with accuracy limited by a computer's numerical precision. 
117 Schittenkopf, C., and Dorffner, G. 2000. "Risk Neutral Density Extraction From Option Prices: 
Improved Pricing With Mixture Density Networks", working paper, Austrian Research Institute for 
Artificial Intelligence, Schottengasse 3, 10 10 Vienna, Austria. 
118 Bishop (1994). 
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4.4.2 Data and Methodology 

First, suitable data sets were created using the data preparation phases and tasks of the 

Computational Framework. For the European exercise options, a training set of 13,790 

FTSE 100 ESX put options was created. For the American exercise options the training 

set contained 14,619 FTSE 100 SEI put options. To ensure prices ofliquid options were 

used, only options with positive values for contract volume and open interest were 

selected. A disjoint test set of 60 daily option price series, containing data on a total of 

1,238 (European) put options on the FTSE 100 index, was created. Underlying asset 

prices for American options, which differ from those for European options, were also 

added. This test set had the following two special features: 

1) The options included were trading for one of 60 consecutive available monthly 

expirations. 

2) The options had a maturity of one calendar month (17 or 18 trading days). This 

figure was selected because any longer maturity resulted in overlapping data for 

some variables. 

In creating the test set the object was to obtain a set of option price series with constant 

maturities, which was non-overlapping. The latter feature was required to avoid serial 

dependence between successive observations, which might bias statistical results for the 

RNDsl\9. Pricing models for European and American put options were separately 

trained, using a 5-11-1 architecture. The inputs were the five BS variables, and the 

targets were market prices of European and American put options, respectively. Once 

trained, the pricing models were applied to the test set to generate series of smoothed 

European and American option prices, taking care to use the correct values of the 

underlying asset as inputs to each model. Each generated price series was then 

numerically differentiated to estimate a2 f(X, t, T) / ax2 using symmetric central finite 

differences. The following formula was applied. 

a2 f(X,S,t,r,a) f(X +&,S,t,r,a)-2f(X,S,t,r,a)+ f(X -&,S,t,r,a) (4.14) 
ax2 ~ &2 

119 Methods exist for handling overlapping data, which can lead to error reductions in calculated statistics 
in some cases. See e.g. Dacorogna et al (2001), pp 47-5l. However, this is at the cost of considerable 
computational complexity, so overlapping data was not used here. 
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where f(X,S,t,r,a) is a neural net option pricing function with the 5 standard BS 

input variables, and & is a small increment. If p(Xi ) is the estimated probability 

density over an interval [Xi -0.5&,Xi +0.5&], then 

~(X.) ~ a2
f(X i ,S,t,r,a) & 

p 1 ax2 (4.15) 

where Xi is the lh observable exercise price (or class middle) in a series of n, and & is 

the interval between adjacent values of Xi' Equation (4.15) was used to obtain point 

estimates of the probability density corresponding to each Xi' The median value, and 

probabilities in the tails of the distribution below the 1 st and above the nth observable 

option price in the series, were estimated as suggested by Neuhaus (1995), using the 

relation in equation (4.7). Finally, the first four moments of each recovered RND were 

estimated as follows: 

'" X. +X 1 ~ Mean = L.... 1 2 1+ p(Xi ) 

X.+X. ~ 

( )

2 

Stdev = L 1 2 1+1 - Mean p(XJ 

",(X. +X. 1 )3 p(X.) Skewness = L.... 1 1+ - Mean 1 

2 Stdev3 

",(X. +X. 1 )4 p(X.) Ex - Kurtosis = L.... 1 1+ - Mean 1 

2 (Stdev4 -3) 

(4.16) 

(4.l7) 

(4.18) 

(4.19) 

The annualised percentage implied volatility was also calculated from equation (4.17) 

for each series. The resulting sets of summary statistics for the RNDs are given in 

AppendixE. 

4.4.3 Comparisons of RNDs of European and American Put Options 

Table 23 gives results for direct comparisons of the time series of summary statistics 

obtained for the European and American put options. The results of the paired t-tests 

suggested that significant differences exist between RNDs for European and American 

put options. In particular, the results for skewness and excess kurtosis, suggested the 

shapes of the RNDs were different for each type of put option. 
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T bI 23 E a e uropean v. A mencan FTSE 100 I d 0 f n ex 'PItOns: c omganson 0 fRND s. 
Summary Stats. R2 F-stat. t-stat (paired). Paired t-test 

[European v. American] Fcrit Fca1c(0.05) tcril(2 tail) tC3Ic(2,0.05) [HO:=no difference] 

Median 0.999 1.54 1.00 2.00 5.07 Reject 
Ann.I.V.% 0.820 1.54 1.78 2.00 4.29 Reject 

Mean 0.999 0.65 0.99 2.00 9.09 Reject 
S.Deviation 0.640 1.54 1.45 2.00 5.35 Reject 
Skewness 0.932 0.65 0.92 2.00 19.01 Reject 

Ex.-Kurtosis 0.779 0.65 0.51 2.00 -13.04 Reject 
Table 23 Comparison of time senes of summary statistics for RNDs recovered from non-overlappmg, 
constant maturity (17/18 trading days), sets of European and American exercise put options on the FTSE 
100 Index. The test data set contained 1,238 put options in 60 daily option price series for 60 consecutive 
monthly expirations. The results of the paired t-tests suggested there are statistically significant 
differences between RNDs for European and American put options, particularly for the higher moments. 

Further tests were carried out to assess the practical effects of these differences on the 

predictive properties of RNDs from each type of put option. In these tests, results of 

which are presented in Table 24, the median120 and annualised % implied volatility from 

each RND, are compared with the actual FTSE 100 closing price (T.FTSE 100) and 

realised volatility 121 on the expiration date of the option. This is a test of the one month 

(18 trading day) forecasting performance of the estimated RNDs. 

T hI 240M th F a e ne on orecas tP f er ormance: c ompanson 0 fRND s 
Parameter R2 F-stat. t-stat t-test 

[Actual v. Forecast] FCl1t Fca1c(0.05) tcril(2 tail) tC3Ic(2,0.05) [HO:=no difference] 
RNDs From FTSE 100 Index ESX European exercise options 

T.FTSE 100 v. Median 0.955 0.65 0.99 l.98 -0.02 Accept 
Realised Vol.v. Ann.I.V.% 0.379 1.54 2.01 1.98 -3.47 Reject 

RNDs From FTSE 100 Index SEI American exercise options 
T.FTSE 100 v. Median 0.955 0.65 0.99 1.98 0.05 Accept 

Realised Vol.v. Ann.I.V.% 0.318 1.54 3.58 1.99 -2.55 Reject 
Memorandum Item 

Realised Vol. v. ATMIV(LIFFE) 0.426 1.54 l.46 1.98 -4.50 Reject 
.. 

Table 24 Tests of the predictive abIlities of the median, and annuahsed ImplIed volatilIty, of RNDs from 
each type of option for FTSE 100 closing prices and realised (historical) volatilities at expiration of the 
options, one month (17/18 trading days) later. The t-test results show that for both European and 
American exercise options, an unbiased estimate of the FTSE 100 closing price is obtained. In both 
cases, the estimate of the realised volatility is biased. However, the estimate of realised volatility 
provided by LIFFE tabulated at-the-money implied volatility, seen in the bottom line, is even more 
biased. 

The t-test results in Table 24 indicate that the medians of RNDs from both American 

and European exercise options provide an unbiased estimate of FTSE 100 closing prices 

on the expiration date of the options, one month (18 trading days) later. The annualised 

implied volatilities of the RNDs from both types of options, on the other hand, are 

120 RNDs are not symmetrical, the median is the conect statistic to use for non-symmetrical distributions 
because 50% of a distribution is above the median and 50% is below. Hence, the FTSE 100 closing price 
on the expiration date of the option is equally likely to be above or below the median. 
121 The historical volatility estimated from the time series ofFTSE 100 returns for the 18-day period up to 
and including each expiration date. This time period matches the 18-day maturity of the options. 
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biased estimates of the actual realised volatilities at expiration of the option. However, 

the volatility estimates from the RNDs compare favourably with LIFFE tabulated at­

the-money implied volatility, which gives an even more biased estimate of realised 

volatility. These results suggest unbiased estimates of future asset prices can be 

obtained from RNDs from both European and American put options on those assets. 

4.4.4 Conclusions 

The results presented in Table 24 are surprising. They suggest that in practice, RNDs 

from both European and American put options can be used interchangeably to obtain 

forecasts of future asset prices, contrary to theory, and the existence of significant 

model differences revealed by the (albeit more powerful) paired t-test results presented 

in Table 23. The early exercise feature does not appear to bias the forecasts of the 

underlying asset price at expiration obtained from the American put option RNDs. In 

addition, the standard deviation of RNDs for the American put options is smaller at 

107.77 compared to 113.48 on average for the European options. This is counter 

intuitive, as it might be supposed that the early exercise feature would increase the 

uncertainty of the forecast. The properties of the forecasts obtained from the RNDs can 

be more easily appreciated by considering Fig.l2 and Fig.l3. The two forecasts are 

difficult to distinguish visually in the figures. Interestingly, in all cases the actual FTSE 

100 closing prices lie within ±2 standard deviation (~95.46%) confidence intervals, 

constructed from the estimated standard deviations of each separate RND. 

The terminal FTSE 100 price and realised volatility are the first two moments of the 

realised asset price density function122. A few researchers, for example Anagnou et al 

(2002) 123, have suggested RND forecasts are incapable of producing unbiased estimates 

of any of the moments of the realised asset price density function. However, their 

122 Realised asset price densities are derived from the historical time series of asset prices and are risk­
adjusted, in that the rate of drift used in calculating them is the dividend yield of the asset. In contrast 
RNDs are risk-neutral and use the risk-free interest rate as their drift rate. This means that the two 
distributions are not directly comparable. They can be rendered directly comparable by applying 
Girsanov's Theorem and effecting a change of measure. However, this only changes the mean, the values 
of higher moments are unaffected. For a discussion see e.g. Ait-Sahalia, Y. Wang, Y. Yared, F. 2001. 
"Do Option Markets Correctly Price the Probabilities of Movement of the UnderlYing Asset?" Journal of 
Econometrics, 102, pp67-11O. 
123 Anagnou, 1., Bedendo, M., Hodges, S., and Tompkins, R. 2002. "The Relation Between Implied and 
Realised Probability Density Functions", working paper, Financial Options Research Centre, University 
of Warwick, Coventry, CV 4 7 AL. 
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Fig.12 ESX Put Option RNDs: One Month Forecast of FTSE 100 Level 
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Fig.13 SEI Put Option RNDs: One Month Forecast of FTSE 100 Level 

'" '" '" '" 

'" ~ ~ = M 

'0 
Q. 

"" .. 
't:I 

= '" _ ~ j---------. ----.Ll"'-

'" '" '" N 

'. . , . 

....... 
' ... ' 

'. -

, ".' 

I 3 5 7 9 II 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 5 1 53 55 57 59 

Expiration No. 
1- -T.FTSEIOO --A-m.-M-ed- .-· -· ·- ·-·-u- ·-·-· -· ·-L--'I 

Fig.12 and 13 One month forecasts of the FTSE 100 closing price from RNDs for European and 
American options respectively. The forecast values (red lines) are the medians of the RNDs. The heavy 
black dashed lines are the FTSE 100 closing price one month (17118 trading days) later. The dotted green 
lines are ±2 standard deviation (:::.95.46%) confidence intervals . The true values lie within the confidence 
band in all cases. 
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conclusions are based on the use of the double lognormal or other parametric methods, 

and the smoothed implied volatility method. In addition to their other limitations 

discussed in section 4.3.2, these methods estimate RNDs directly from unsmoothed 

quoted option prices, some of which may relate to non-traded illiquid options124
. This 

can result in biased estimates. In the method presented here, RNDs are estimated from 

smoothed (fitted) prices generated by neural networks, rather than actual observed 

quoted prices. Because the neural nets are trained only on the prices of liquid options 

they can produce smoothed price estimates that are consistent with liquid option prices, 

for any illiquid options in a price series. 

For both the European and American put options, the medians of the RNDs give 

unbiased forecasts of the terminal FTSE price. The forecasts of realised volatility were 

biased, but less so than the implied volatility tabulated by LIFFE. Some caution is 

necessary in interpreting the latter forecasts, as it is difficult to reliably estimate realised 

volatility from at most 18 daily observations of returns. These results suggest that 

neural nets and similar computational Imowledge discovery techniques of sufficient 

flexibility, provide a promising method for use in extracting RNDs from option prices, 

which merits further investigation. In addition, for finance they suggest that the early 

exercise feature of American options does not bias the forecast of the underlying asset 

price at maturity that can be obtained from the RND. 

124 Researchers sometimes estimate half of each density from out of the money calls, and the other half 
from out of the money puts in an attempt to circumvent this difficulty. 
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CHAPTER 5. EVALUATION AND CONCLUSIONS 

5.0 Introduction 

This final chapter of the thesis is in three sections. The approved scope and 

requirements for the research are given in Appendix H and the first section gives a 

summary of how these are satisfied. The second is a discussion of software 

implementation issues. This focuses on the nature of available software 

implementations of computational knowledge discovery techniques, and comments on 

their suitability for operational KDD I data mining operations involving options market 

databases. The third part closes the work by presenting conclusions and considering 

directions for further research, based on the results, knowledge, and practical 

experience, obtained in the course of the research project. 

5.1 Evaluation of Results 

In this section the results of the research are summarised and evaluated in their logical 

order. Aspects of the Computational Framework presented in Chapter 2 are discussed 

first. The proposed methods for estimating confidence and prediction intervals detailed 

in Chapter 3, are then evaluated. Next, the results reported in Chapter 4, obtained by 

applying elements of the Computational Framework to the case study examples, 

Applications I and II, are evaluated. Comments on the utility of the overall 

computational framework in practice follow. 

5.1.1 The Computational Framework 

The primary objective of this thesis was to outline a formal systems framework for the 

application of computational knowledge discovery techniques to options market 

databases. This is presented in Chapter 2. The framework is based on the industry 

standard CRISP-DM methodology introduced in August 2000. To create the 

framework the CRISP-DM Generic Process Model was systematically specialised, to 

obtain a process model specifically for options market applications, written in terms of 

CRISP-DM. First, the stages of the KDO process as defined by Fayyad et al (1996), 

were mapped to the Phases of the CRISP-DM ver. 1.0 Reference Model, after 

adjustments for minor differences in terminology and demarcations. These mapping 

which are illustrated in Fig.3, allowed the CRISP-OM methodology to formally 

encompass the full KOO process. The Phases of the CRISP-OM Reference Model in 

tum, were renamed to suit the Data Mining Context (Table 2), then mapped to the 

stages of the specialised KDO process for options markets. These are described in 
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Chapter 1 section 1.3.2. These further mappings, which are illustrated in Fig.5, defined 

the Phases of the Specialised Process Model for Options Market Applications. The 

specific Specialised Tasks and their outputs, for each Phase of the Specialised Process 

Model for Options Market Applications were then defined and detailed. These are 

described in Chapter 2, section 2.4. The result is a complete systems framework, 

compliant with the industry standard CRISP-DM methodology. 

To ensure that computational knowledge discovery techniques are used in a manner that 

avoids attribution of significance to spurious models and predictions, a systematic 

model search methodology is incorporated in the framework. This is based on a 

synthesis of the theory of model reduction described in Hendry (1995), and the 

characterisation of the learning or regression problem by Moody (1994), and is 

described in Chapter 2, section 2.4.5. Practical application of the methodology is based 

on two algorithms, the GeTS Model Search Algorithm for Input Space Search (Table 3), 

and the Architecture Selection Algorithm (Table 4). The first of these is a shrinking 

algorithm, used to select the regressors for a model. The second is a growing algorithm 

used for architecture selection. A final feature of the model search methodology is the 

use of 'BonfelToni' type techniques to detemine true significance levels based on the 

number of hypothesis tests performed in building a model. 

5.1.2 Estimation of Prediction Risk, Confidence and Prediction Intervals 

A method for determining confidence and prediction intervals and estimating prediction 

risk, applicable to a variety of different computational knowledge discovery techniques 

for non-parametric non-linear regression is presented in Chapter 3. The exposition is 

based on neural nets (MLPs), but derivations are given in sections 3.4.1 and 3.4.2 which 

show that it is equally applicable to a broad class of related techniques. The motivation 

for developing this new method was the unsatisfactory nature of existing methods 

(reviewed in section 3.3); because of their computational cost, poor scalability for use 

with large data sets, and lack of robustness to the problems of regression typical for 

options market data. 

The method presented is based on directly modelling the elTor using a special training 

algorithm. It simultaneously estimates the predicted value of the target variable and the 

variance of the predicted value, but does not have the limitations of methods using the 
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inverted Hessian matrix, or bootstrapping. In contrast to an otherwise similar existing 

method [Nix and Weigend (1995)], it deploys a standard MLP architecture, uses a least 

squares cost function, does not assume normality of the residuals, and uses independent 

training and validation sets rather than interchanging validation sets, in the training 

algorithm (Table 6). These, and other features, described in detail in section 3.4, mean 

that the method applies to any non-linear mapping of sufficient flexibility. A caveat is 

that the method underestimates the variance where the error is small (R2 > 0.99), but 

that is a limitation of all methods based on least squares and maximum likelihood 

estimators. The method is not computationally costly, and scales well to large data sets. 

5.1.3 Results for Applications I and II 

In Chapter 4 the Computational Framework and its key components were demonstrated 

in applications to several questions of interest in the financial options domain. 

Application I consisted of three applications related to option pricing. The first of these 

was used to demonstrate the Data Preparation Phases and the GeTS Model Search 

Algorithm (Section 4.2.2). It was found that correctly specified option pricing models 

should include extra variables to impound the information contained in transaction costs 

and measures of market liquidity. This result is of interest because it was obtained 

using a non-linear non-parametric regression technique rather than the OLS or 

parametric NLLS methods that are normally used for empirical tests, but are unsuitable 

for this data. The effectiveness of the Architecture Selection Algorithm and prediction 

risk criterion were tested next (Section 4.2.3), the results are discussed in the following 

section. Finally, the use of computational knowledge discovery techniques to fit data 

and perform statistical tests, outside of the context of model search, was demonstrated 

(Section 4.2.4). The results suggested that transaction costs involved in trading the 

asset underlying an option were very significant for option prices. For the BS model, 

there was some evidence that call options should be priced and hedged using the ask 

price of the underlying asset, and put options using the bid price. The pricing efficiency 

of neural nets was found to be such, that predicted prices indistinguishable from 

observed prices were obtained using either of these inputs, or the mid-price. These are 

new findings for finance. Application II is an interesting new application for 

computational knowledge discovery techniques. Namely, the non-parametric extraction 

of RNDs from option prices. Here, a neural net was used to produce smoothed and 

twice differentiable estimates of option prices. These were then numerically 

142 



CHAPTER 5. EVALUATION AND CONCLUSIONS 

differentiated to obtain estimated RNDs. In tests, the medians of RNDs from both 

American and European exercise put options gave unbiased estimates of FTSE 100 

closing prices on the expiration date of the options, one month later. The actual FTSE 

100 closing prices were all within ± 2 standard deviation confidence bands constructed 

from the standard deviations of the RNDs. These findings suggest that in practice, 

RNDs from both European and American put options can be used interchangeably to 

obtain forecasts of future asset prices. However, they relate to a single underlying asset, 

and are for a single maturity. Neural nets have not previously been evaluated in this 

context and these results suggest that they work well. However, a wider investigation 

involving different underlying assets, different maturities, and different time periods, is 

required for definitive conclusions. 

5.1.4 Utility of the Computational Framework 

The previous section focused on the findings made when the Computational Framework 

was applied to the case study examples. This section is concerned with the utility of the 

Computational Framework for obtaining those findings. A constraint in evaluating the 

framework was that operational deployment in a commercial enterprise was not 

possible. This meant that certain business related tasks in the Data Selection and 

Reporting phases were not included in the evaluation. Examples are; Formulate Project 

Plan, Recommend DeploymentlNon-use, and Plan Monitoring and Maintenance. 

Comment is therefore confined to the data preparation, data mining, and reporting 

phases. The program of research as outlined in the Approved Document (see Appendix 

H), and the decision to use UK data from LIFFE, effectively defined the outputs for the 

Data Selection phase. The activities involved in data preparation were found to factor 

naturally into the tasks of the Data Cleaning, Data ReductionlEnrichment and Data 

Preparation phases, confirming that these phases of the framework were effective in 

practice. In the Data Mining phase, the GeTS Model Search Algorithm for Input Space 

Search was found to provide a workable solution to the problem of variable selection in 

specifying models. The search algorithm has important limitations however; Model 

specification tests are limited to the Jarque-Bera test, and only paired t-tests and F tests 

of fitted values or residuals are available for variable deletion. These limitations exist 

because option pricing models have residuals that are not normally distributed, which 

rules out the use of most other tests. Moreover, it is not normally possible to use t-tests 

and F tests of individual parameters for variable deletion, since these parameters are not 
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associated with individual input variables in neural nets and similar non parametric 

regression techniques. 

The method proposed for the Search for Optimal Architecture task was the Architecture 

Selection Algorithm (Table 4) using the prediction risk criterion (PR). In a study of 

corporate bond ratings, Moody and Utans (1991)125 showed that PR was an effective 

criterion for architecture selection. However, bond rating is a classification problem 

whereas option pricing is a regression problem, and model selection via prediction risk 

proved to be less satisfactory for the option pricing application considered here. For 

NN s and similar computational knowledge discovery techniques used for regression, the 

PR criterion does allow the user to choose a model with the lowest generalisation error 

from a set of models with different architectures (see Table 17). It does not provide a 

means of discovering the globally optimum architecture however. This is because these 

techniques require an iterative search of a weight space to minimise the cost function. 

However, the search algorithm can terminate in a local minimum rather than finding the 

global minimum. The result is that the curve of PR for networks with increasing 

numbers of hidden layer nodes, does not decline monotonically, precluding 

identification of the global minimum. The remaining task in the Data Mining phase is 

Estimate True Significance. Provided the input space search and architecture search 

have been properly implemented, this is a straightforward matter, and the correct values 

can be extracted from a look-up table such as Table 5. Finally, with respect to the 

Reporting Phase, this thesis itself fills the role of the Final Project Report Document, 

which is the output of the Produce Final Report task. 

5.2 Implementation Considerations 

There is an abundance of software implementations of computational knowledge 

discovery techniques produced by academic researchers and commercial enterprises. 

These range from implementations of individual techniques, to full data mining suites 

that include data manipulation tools and a variety of computational knowledge 

discovery techniques for different tasks. However, little of what is currently available is 

truly suited for applications to options market databases. This section explains why, 

and discusses current developments that may provide tools that are more suitable. Key 

125 Moody, 1., and Utans, J. 1991. "Selecting Neural Network Architectures via the Prediction Risk: 
Application to COIporate Bond Rating Prediction ", Proceedings of the First International Conference on 
Artificial IntelligenceApplications on Wall Street. IEEE Computer Society Press, Los Alamitos, CA. 
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features that are essential for work with options market data, and should be included in 

the next generation of specialist applications for the domain are also discussed. 

5.2.1 Software Implementations of Individual Techniques 

Software implementations of computational knowledge discovery techniques for single 

tasks, for example to find clusters, or build decision trees, began to appear around 1980. 

These early tools originated in the academic community and were research orientated. 

They represent the first generation of data mining systems. The problem in using such 

generic individual software implementations is that they requires different data and 

meta data formats, have different user interfaces of varying sophistication, and lack a 

consistent and unifying working environment. They do not therefore provide support 

for a coherent KDD and data mining process. These difficulties can be partly 

overcome, by using a collection of software implementations written for a common 

operating environment. The Netlab library written for Matlab is an example. Netlab126 

is a toolbox of Matlab functions and scripts, based on Bishop (1995). It provides 

Matlab implementations of some of the newest machine learning algorithms. The 

disadvantages are that the user must be a technically sophisticated specialist. An expert 

knowledge of the algorithms, as well as the Matlab language and environment, is 

needed in order to use Netlab effectively. Moreover, a fundamental limitation is that 

Matlab is unable to accept categorical data. Such data therefore needs to be converted 

in advance, and use of techniques such as a priori and decision trees is ruled out. The 

level of expert knowledge needed, the limitations inherent in research orientated 

scientific programming tools like Matlab, and the lack of support for a KDD process, 

makes Netlab and similar toolboxes unsuitable for operational deployment for large 

scale data mining in a business enterprise. 

5.2.2 Data Mining Suites 

Data mining suites first appeared in the mid 1990s. They are generic toolkits for 

multiple tasks, with support for data pre-processing and interoperability with other 

applications, including DBMS. Data mining suites are mainly produced by commercial 

vendors, and their evolution has been vendor-driven. Currently, they offer the best 

solution for enterprise applications, for several reasons; The most obvious advantage of 

a data mining suite, is that a whole range of data manipulation tools and data mining 

126 Nabney, l.T. 2002. Netlab: Algorithms/or Pattern Recognition, Springer Verlag, London. 
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algorithms are integrated. This means only one data and metadata format is needed, and 

different approaches can be combined and their results easily compared. Such suites 

feature a GUI, usually based on a process flow metaphor, which provides a consistent 

working environment for the data mining algorithms included, making them easy to use. 

They provide better support for the KDD process because they include tools for data 

import, cleaning, and transformation. A disadvantage of data mining suites is that they 

often do not implement the newest techniques. For example, the MLP implementation 

in SPSS Clementine has a basic training algorithm I27 and the search of the weight space 

uses gradient descent which is not the most efficient or up to date search algorithm. 

However, the most advanced or most accurate tool may not be the best for a given data 

mining task. In practice, stability, ease of use, acceptable accuracy, ability to perform 

the required data mining tasks, and good reporting capabilities, are all more important 

than using the latest algorithms. Other important considerations for business enterprises 

are installation, training, and product support. Only data mining suites from a 

commercial software vendor are likely to offer suitable maintenance or support 

contracts, and these are of critical importance in an enterprise setting. Data mining 

suites are easier to use than single task implementations of individual computational 

knowledge discovery techniques, or Netlab type toolboxes. However, users still require 

significant knowledge of data analysis, statistics, and databases. 

5.2.3 Emerging Technology Trends 

Data mining suites are a new class of software application, and represent the second 

generation of data mining systems. The leading vendors of data mining suites are of 

two types. Namely, developers of statistical software who have produced data mining 

suites as companions to their statistics packages, and DBMS vendors who see data 

mining as a natural extension of their database products. These origins tend to be 

reflected in their respective products. The data mining suites offered by statistical 

software vendors 128 are now maturing products featuring refined GUls, improved 

performance, and better integration with DBMS and client-server systems. They are 

beginning to support full KDD processes, and compatibility with CRISP-DM, the SAS 

Institute's proprietary SEMMA, and other standards. The leading database vendors129 

are currently working on enhancements to run data mining models directly within their 

127 Backpropagation with momentum. 
128 For example SAS Enterprise Miner, SPSS Clementine, and STATISTICA Dataminer. 
129 e.g. IBM, Microsoft, and Oracle. 
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DBMS. Until very recently vendors have developed data mining software as a general 

problem-solving tool, which made it difficult for businesses to see how it was relevant 

to their specific needs. Data mining suites, for example, are horizontal applications 

offering a collection of tools for different tasks, with limited capacity for customisation. 

The need however, is for dedicated vertical applications that wrap a complete 

specialised KDD process in a domain-specific solution, to solve clearly defined 

business problems. The current trend of placing data mining technology within specific 

business contexts is customer-driven, and promises to deliver third generation data 

mining solutions meeting this need. This thesis is a contribution to developing such 

dedicated vertical solutions, in this case for the business-specific problem of analysing 

options market data, pricing and hedging options, and forecasting asset prices. There 

are two types of functionality in particular, not supported by the current generation of 

generic data mining suites, which third generation vertical solutions for this domain 

need to address. Namely, statistical analysis within the tool, and derivatives of 

regression functions. 

5.2.4 Statistical Analysis Within the Tool 

A statistically principled and coherent KDD and data mmmg process reqUIres a 

systematic model search in the Data Mining Phase. An adequate model search must use 

appropriate statistical tests. In section 2.4.5, the applicability of various statistical and 

diagnostic tests to a data mining model search suited to options market applications was 

discussed. Unfortunately, in currently available data mining suites, the tests considered 

are rarely made available within the package. Data mining suites produced by vendors 

of statistics software provide connectivity to the vendor's statistics packages, and it is 

clearly intended that these should be used for any desired statistical testing. This 

approach allows some basic tests to be performed. However, it is unsuitable for 

applications to options market data for a number of reasons; General purpose statistics 

packages do not normally incorporate the full range of statistical and diagnostic tests 

required for financial work, and may have file size limitations. A dedicated 

econometrics package is a more appropriate tool. However, even where a separate 

package incorporates all the required tests there will still be problems. For example, it 

is not possible to substitute the residuals from a neural net or similar non-parametric 

regression technique into the standard diagnostic tests for OLS or parametric NLLS 

regresSlOns. This is because for finite samples, the residuals are not linear functions of 
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the unknown true elTors l3
O, Hence, the significance of the test statistic values will be 

altered. Moreover, a number of important tests including LM tests, require auxiliary 

regressions to calculate test statistics, and these are more complicated for non-linear 

regression. It is much easier and more computationally efficient, to implement auxiliary 

regressions in the same package as the original regression. Therefore, an important 

specification requirement for third generation dedicated vertical data mining solutions 

for application to options market databases, is that all necessary statistical and 

diagnostic tests should be fully integrated, and implemented within the software tool. 

This would also eliminate the need to export data to separate statistical tools. 

5.2.5 Derivatives of Non-parametric Regression Functions 

The central role of partial derivatives of option pricing functions with respect to their 

input parameters, for pricing and hedging options, has been noted earlier in this thesis. 

It is well known that the first partial derivative of the pricing function with respect to 

the price of the underlying asset, is the ratio 'Delta', essential for hedging options against 

movements in the price of the underlying asset. The second partial derivative of the 

pricing function with respect to the price of the underlying asset is the ratio 'Gamma', 

used to hedge against the residual risk of changes in 'Delta'. Vega, Rho, and Theta, are 

the first partial derivatives with respect to volatility, risk free interest rate, and time to 

maturity, respectively, and are used to hedge against changes in those variables. 

Finally, the second partial derivative of the option pricing function with respect to the 

exercise price gives the RND, as discussed in section 4.3.1. Therefore, where the option 

pricing function is a neural net or other computational knowledge discovery technique 

for regression, access to the values of the first and second partial derivatives with 

respect to each input, in addition to the values of the function itself, is essential. 

Numerical differentiation can be used to compute these values. However, an analytical 

derivation is preferable and is more accurate in practice. Often the necessary 

computations are done internally, for sensitivity analysis or pruning purposes. All that 

is then required is to display results for each observation, which adds negligible 

computational cost. This functionality should be added as a menu option, allowing the 

user to select the relevant input variable and degree of differentiation. Surprisingly, this 

capability is seldom if ever, provided in cunent software implementations of 

computational knowledge discovery techniques for non-parametric regression. 

130 Pagan and Ullah (1999) p.208. 

148 



CHAPTER 5. EVALUATION AND CONCLUSIONS 

5.3 Conclusions 

The main objectives of this thesis as outlined in Chapter 1 section 1.1.4 and specified in 

Appendix H, have been successfully accomplished in that I have developed and 

presented a complete formal computational framework for the application of 

computational knowledge discovelY techniques to options market databases. The 

framework, which is described in Chapter 2, supports a full KOO process suitable for 

third generation dedicated vertical solutions for this domain, and is compliant with the 

CRISP-OM industry standard. It incorporates a number of practical procedures, 

methods, and algorithms, designed to reliably estimate the statistical significance and 

confidence which can be placed in predictions and models. These include; A new 

robust method for obtaining confidence and prediction intervals for computational 

knowledge discovery techniques for regression, allowing model predictions to be 

assessed on a pointwise basis. A related method for estimating the prediction risk 

performance criterion where target values are unknown, which does not require 

computationally costly cross-validation. A data mining model search methodology 

which decomposes the model search task into sequential searches of first, the input 

space, and then, the space of potential architectures, allowing the use of separate 

strategies optimised for each search. A shrinkage algorithm for searching the input 

space, based on the general-to-specific approach, which is robust to the diagnostic 

problems of regression encountered with options market data. And a growth algorithm 

for searching the space of potential architectures, designed to avoid the estimation of 

unidentified models, which uses prediction risk as a selection criterion. These 

procedures, methods, and algorithms, are contributions to the fields of computational 

knowledge discovery techniques, KDO and data mining, and model selection, and are 

relevant to many different domains. In particular, the method for estimating prediction 

intervals which is presented in Chapter 3, and was extensively tested, allows a fuller 

evaluation of the uncertainty of model predictions. It permits straightforward 

uncertainty calculations for large data sets, where ensemble techniques such as 

bootstrapping are too computationally costly. 

The case study examples in Chapter 4, demonstrate that useful, significant, and 

interesting insights and knowledge can be obtained, when computational knowledge 

discovery teclmiques are applied to options market databases using the computational 

framework, its components, and an appropriate choice of statistical and diagnostic tests. 
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For finance, the following findings are new contributions; Confirmation, using non­

parametric regression techniques, that widely used option pricing models omit 

significant variables. The finding that transaction costs for the underlying asset are 

significant for option prices, and that call options should be hedged (priced) using the 

ask price of the underlying asset, and put options should be hedged (priced) using the 

bid price, when using the BS option pricing model. And results suggesting that in 

practice, RNDs from both European and American put options on an asset, can be used 

interchangeably to obtain unbiased estimates of the future price of that asset on maturity 

of the options. The use of neural nets to recover RNDs from option prices, as described 

in section 4.4.2 of the thesis, is a contribution to the field of non-parametric methods of 

density estimation. The literature documenting the application of computational 

knowledge discovery techniques to option pricing, has been incomplete in that few 

results reporting statistical significance or confidence levels, or based on formal 

hypothesis tests, have been presented. In addition, systematic data mining model search 

methodologies, and KDD processes, have not been used. The results in this thesis 

address this omission. 

The work in this thesis towards the original goals is substantially complete. However, 

there are several clear directions for future research. One obvious extension is to 

develop the data mining model search methodology to include classification, clustering, 

and rule induction techniques. These techniques are relevant where trading strategies 

based on regression models must be implemented. The GeTS Model Search Algorithm 

for Input Space Search given in section 2.4.5, is based on the use of F and t-tests for 

variable deletion. Use of Wald or LM tests would be more efficient. The former 

requires only the unrestricted model to be estimated, and the latter only the restricted 

model, whereas F and t-tests require estimation of both. Thus, a model search would 

require estimation of fewer models overall. However, to use these tests, methods of 

adjusting the calculated value of test statistics to allow for non-normal residuals, as well 

as practical computation procedures, need to be found. 

A central problem affecting all available computational knowledge discovery 

techniques for non-parametric regression, is that there is no conclusive way of choosing 

the optimal architecture, or degrees of freedom, which should be used. A large 

literature on this topic exists, but no single procedure has become dominant. Moreover, 
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the algorithms that are offered mostly rely on heuristic rather than statistical approaches. 

A statistically based algorithm, using the prediction risk performance criterion was 

evaluated in section 4.2.3 of this thesis, and found to be of limited capability. This 

problem is related to the tendency for non-parametric regression techniques to produce 

models based on a local minimum of the error function, when only the global minimum 

possesses the required properties. A major theoretical advance in computer science that 

would provide a solution in most cases, is an efficient and reliable algorithm to locate 

global minima. The method for estimating prediction intervals described in Chapter 3, 

should also benefit from better search algorithms. A more effective training algorithm, 

is a further possibility for improvement in that context. Finally, the results of the 

statistical tests suggest that the method for estimating RNDs performs well, and offers 

advantages over the currently established standard methods. However, comprehensive 

comparative tests, are required to arrive at a definitive determination. 
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GLOSSARY 

Glossary of Acronyms and Technical Terms 

American Option 

Arbitrage 

At-the-Money 

Bandwidth 

Black-Scholes Model 

Brownian Motion 

Call Option 

Change of Measure 

CRISP-DM 

Data Mining 

DBMS 

Delta 

An option which can be exercised at any time prior to 
expiration. 

The practice of seeking a profit from situations where the 
same good is offered at different prices, either in different 
markets or in the same market at different times. 

An option is said to be 'at-the-money' when the price of 
the underlying asset equals its strike (exercise) price. In 
this condition it will have an intrinsic value exercised 
immediately. 

Smoothing parameter. A term synonymous with bin 
width for a histogram, window width for kernel methods, 
number of hidden layer nodes for a neural net, the value 
of K, for KNN etc. Effectively, the permitted degrees of 
freedom. 

A mathematical model (equation) for pricing European 
options on a non-dividend-paying underlying asset. 

A Markov stochastic process which is the limit of a 
random walk as the time interval tJ.t ~ 0. It has zero drift 
and unit volatility, i.e. dz ~ N(O,l) where z is a variable 
subject to the process. It is a martingale and is not 
Newtonian differentiable. It is sometimes referred to as a 
Weiner process. 

An option to buy (i .e. 'call for') an underlying asset. 

A transformation of a probability distribution which 
changes the mean, but not the higher moments . It can be 
shown to correspond to changing the set of assumed risk 
preferences. Useful in option pricing since it is often 
easier to work with risk neutral probabilities. 

Cross Industry Standard Process for Data Mining 

Defn. A step in the KDD process consisting of particular 
data mining algorithms that, under some acceptable 
computational efficiency limitations, produce a particular 
enumeration of patterns 

Data Base Management System 

of an option. A hedge ratio . The first order partial 
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European Option 

Exercise 

Exercise Price 

Expiration 

Functional 

Futures contract 

GANN 

Geometric Brownian 
Motion 

GeTS 

GLS 

Hedge 

Hedge Ratio 

Hessian Matrix 

GLOSSARY 

derivative of the option pricing function with respect to 
the price of the underlying asset. 

An option which can be exercised only at expiration. 

verb. To make use of the contractual right conferred by 
an option to buy or sell the underlying asset. 

See Strike Price. 

The date and time when an option contract expires, also 
called maturity. 

A function that has a domain that is a set of functions and 
a range belonging to another set of functions. For 
example, the differential operator d/ dy is a functional of 
differentiable functions f(x). The range of the functional 
may be a set of numbers. An example of this is a definite 
integral of f(x) with respect to x. 

A contract between two parties for the purchase of an 
asset at a future date, the price being agreed when the 
contract is struck. 

Genetically Adaptive Neural Net 

The most popular stochastic process for modelling stock 
prices. The change in the log of a variable z subject to 
geometric Brownian motion in a short time interval ~t is 
normally distributed with mean and variance both 
proportional to ~t. The process is the exponential of a 
Brownian motion with drift. 

General to Specific Search 

Generalised Least Squares 

verb. To attempt to offset potential losses on a contract 
by means of an equal and opposite transaction using 
options (or some other instrument). 

of an option. The partial derivative of the option pricing 
function with respect to the variable (e.g. the price of the 
underlying asset) whose movement is to be hedged). 

Matrix of 2nd order partial derivatives of a function. 
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Heteroskedastic 

In-the-Money 

Intrinsic Value 

KDD 

KNN 

Leverage 

LIBOR 

Markov Process 

Martingale 

Martingale Measure 

Measure 

MLP 

GLOSSARY 

Rigorously, the error terms of an unknown true 
regression model are said to be heteroskedastic if they 
have a non-constant variance. The telm is often loosely 
used to describe residuals from an estimated regression 
model which exhibit non-constant variance. 

An option is said to be 'in the money' if immediate 
exercise will realise a gross profit. 

The profit (if any) realised by immediate exercise of an 
option. 

Knowledge Discovery in Databases. Defn. The non 
trivial process of identifying valid, novel, potentially 
useful, and ultimately understandable patterns in data 

K-Nearest Neighbour. A classification algorithm. 

The use of debt to finance investment, hence magnifying 
returns on the non-debt portion of the capital sum 
invested. 

London Inter Bank Offer Rate, interest rate on 
Eurodollar deposits, often used as a proxy for ' risk-free' 
rate in UK options markets. 

A discrete stochastic process where the next value of a 
variable is conditional on its present value but 
independent of all previous values. 

A stochastic process with zero drift where the expected 
value of a variable at any future time, conditional on the 
past, is its present value. 

A probability distribution (measure) under which a 
process is a martingale. Often referred to as an 
Equivalent Martingale Measure. 

A set of probabilities (probability distribution) specifying 
the likelihood of each of all possible outcomes of a 
particular event. It can be shown to cOlTespond to a set 
of risk preferences. 

Multi Layer Perceptron. Feed-forward (i.e. with no 
feedback loops) neural networks with multiple layers of 
adaptive weights. 
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NLLS 

NN 

OLS 

Option 

OTe Option 

Out of the Money 

PPR 

PR 

Premium 

Put Option 

Random Walk 

RBF 

RDBMS 

Replicating Portfolio 

GLOSSARY 

N on Linear Least Squares 

Neural Net. A form of regression where the mapping 
between the dependent variable or target and the 
explanatory or input variables is modelled by a linear 
combination of weighted basis functions. These may be 
linear, sigmoidal, or step functions. The weights 
corresponding to the best fit to the data are iteratively 
estimated during training. 

Ordinary Least Squares. Linear regression 

A contract to buy or sell an asset at an agreed price, at or 
before some agreed future time. 

A customised options contract (i.e. 'over the counter') 
designed to meet a specific requirement, for which there 
is normally no market. 
An option is said to be 'out of the money' if immediate 
exercise will realise a loss. 

Prior Pursuit Regression 

Prediction Risk. The expected value of the mean squared 
error E(MSE). 

The purchase price of an option. 

An option to sell (i.e. 'put on the market') an underlying 
asset. 

A discrete Markov process composed of the sum of a 
number of independent steps. In a simple symmetric 
random walk, at each step a variable x increases by 1 
with probability 0.5 or decreases by 1 also with 
probability 0.5. 

Radial Basis Function 

Relational Data Base Management System 

of an option. A dynamically adjusted portfolio of bonds 
and the underlying asset (or futures on the underlying 
asset) with hedge ratios maintained equal to those of the 
option being replicated (synthesized). The position 
required to replicate an option is the reverse of that 
required to hedge it. 
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Risk-free rate 

RND 

Stochastic 

Stochastic Process 

Strike Price 

Target dataset 

Traded Options 

Volatility 

Write 

GLOSSARY 

An interest rate or return, equal to that obtainable from a 
portfolio of assets giving a guaranteed return, such as 
Government Bonds. 

The risk-neutral probability distribution of the underlying 
asset taking the values of adjacent strike prices at 
expiration. More rigorously, the State Price Density or 
set of probabilities of the option paying $1 if the 
underlying asset assumes the value of a particular strike 
price at expiration and $0 if it assumes any other value, 
worked out for all possible contemporaneous strike prices 
and option prices on the asset. It can be converted to the 
true probability distribution for the value of the asset at 
expiration by a change a/measure. 

A synonym for random. 

An equation describing the probabalistic behaviour of a 
variable whose future value is uncertain. More 
rigorously, a continuous process that can be decomposed 
into a Brownian motion term and a drift term (i.e. a 
stochastic component and a deterministic component). 

The price at which the option holder may buy or sell the 
underlying asset, as defined in an option contract. Also 
known as the exercise price. 

A dataset or subset of variables or data samples on which 
KDD operations or data mining are to be performed. 

Standardised options contracts available (usually) with 
expiration dates 1,2 or 3 months in the future and traded 
on an exchange. 

The annual standard deviation of daily price changes. A 
measure of the amount by which a price is expected to 
change. 

To sell an option in an opening transaction. The writer 
assumes an obligation to supply (or take delivery of) the 
underlying asset at the strike price if the option is 
exercised. In return for assuming the risk inherent in this 
obligation a premium is received. 
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APPENDIX A 

APPENDIX A: Neural Networks 

This thesis made use of a class of neural network (NN); the multi-layer perceptron 
(MLP). MLPs are feed-forward (i.e. with no feedback loops) networks with multiple 
layers of adaptive weights. They have either threshold or sigmoidal activation 
flmctions. Where the activation functions are differentiable, MLPs make use of the 
technique of error back-propagation to evaluate the gradients of the error (cost) 
function with respect to the weights and biases in the network. These gradients are used 
by an iterative optimisation algorithm, to search the weight space for the global 
minimum of the error function. 

The specific software implementation used in connection with this thesis was a standard 
MLP using back-propagation, together with a sequential gradient descent search 
algorithm. The hidden unit activation functions were logistic functions, and the output 
units used linear functions. Early stopping was used to terminate training. A single 
layer of hidden units and two layers of adaptive weights were used. Fig.l shows the 
basic structure of such a MLP with, in this case, a single output. 

Fig. 1 MLP with a Single Hidden Layer and a Single Output 

w 
1 

(Xo) 

11 

··W W 

Xl 

w 

w 

w w 

w w w w 

The input nodes are not activation functions, but simply take the values of the input 
variables Xi. The input Xo is a constant which is permanently set to Xo = 1. Three input 
variables are shown, but in principle there is no restriction on the maximum number. 
The (J) are known as biases, and the ware weights. The weights and biases are 
randomly initialised with small values, and the set of weights and biases corresponding 
to the minimum of the error function is determined during network training (fitting). 
The ~, are hidden units, two are shown in Fig.l, but again there is no limit to the 
number, in principle. The hidden units have a logistic activation function so that 

1 
lf1, = f(x) = (_ .) 

l+e .\ 
(A.l) 
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Fig.2 shows the structure of a typical hidden unit. The output consists of a weighted 
linear combination of the k input variables with a bias term added, transformed by the 
application of the logistic activation function. 

(Do 

1 
(X 0) 

Fig. 2 Typical Hidden Layer Node 

<Ph; 

WI W2 W3 

The function corresponding to Fig.2 can be written as 

The output units have a linear activation function such that 

(91 =g(x)=x 

.... WK 

X3 .•. XK 

(A.3) 

The structure of a typical output unit is shown in Fig.3. The output consists of a 
weighted linear combination of the h hidden units in the preceding hidden layer with a 
bias term added, transformed by the application of the linear activation function. 

Fig. 3 Typical Output Node 

(Do WI W2 ... WH 

11 ! ... <PH 

The function corresponding to Fig.3 can be written as 

@,(OJ, + w,<1j + w,<l\ +, ... , + w,,<f}, ) = @, (t. wl/,w" + OJ, J (AA) 

MLPs can have multiple outputs. FigA shows a MLP with two outputs. However, 
regardless of whether there is a single, or multiple outputs, the structure of the hidden 
layer nodes and output nodes is the same. 
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Fig. 4 MLP with Multiple Output Nodes 
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The function corresponding to the network shown in FigA is given by. 

APPENDIX A 

(A.5) 

In equation (A.5), e is a vector of separate outputs, with 2 elements in the case of the 
network in FigA. The function (A.2) for a typical hidden layer node is nested within the 
function (AA) for a typical output node shown in Fig.3, to give an expression for the 
complete network. The network shown in Fig.1 is a special case of the network in 
FigA, with /= 1. To understand how a network can fit more than one target variable it is 
necessary to consider the nature of the error function. Geometrically, the error function 
for a neural net can be thought of as a multidimensional surface located above a 
multidimensional weight space. Fig.5 is a diagrammatic representation of an error 
surface. For illustrative convenience, the surface shown is restricted to three 
dimensions, and the weight space to two dimensions. In practice the dimensionality of 
both can be much larger. 

Fig.S Error Surface in Error/Weight Space 

E 
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In Fig.5 the local gradient of the error surface at any point is given by the vector V E. 
The point ElwI, W2) on the error surface corresponds to the global minimum of the error 
surface, and the point ElwI,W2) corresponds to a local minimum. Adding more outputs 
to a network increases the dimensionality of the weight space and the complexity of the 
error function. Fig.6 illustrates the error for a network using least square error 
functions, with two outputs to fit two independently distributed target variables. 

Fig.6 Two targets: Individual and Total Errors 

Any given input Xo- -

Point on 
surface(11,t2) - -

I '.Xo 
I 

Point on 
surface (tl,t2) 

- - Total error to 
be minimized 
- j 2 2 - et1+et2 

In Fig.6 Xo is any arbitrary scalar or vector valued input to the network. The two 
corresponding actual output values are t;, and 7;.. The network estimates of these 

values are 11 and 12 respectively. The error in estimating t; is ell = (t; - ~), and for 7;. 

the estimation error is el2 = (7;. -12 ), giving a combined error of ~e\ + e\. The 

squared errors are e\ = (t; - 11 rand e\ = (7;. - 12 r respectively. In the case of 

networks with multiple outputs, the sum of squared error function therefore takes the 
form l

; 

1 J1 III _ ,,2 

E = - L L (tl - tl ) 
2 i=1 1=1 

(A. 6) 

in equation (A.6) n is the number of observations in the data set, and m is the total 
number of outputs for the network. During the training process the iterative search 
algorithm will seek the set of weights corresponding to the minimum of this error 
function. For a network with two outputs, as shown in FigA and discussed in relation to 
Fig.6, m = 2. 

1 See Bishop C. M., 1995. Neural Networks for Pattern Recognition, Clarendon Press, Oxford. p196. 
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APPENDIX B: Delta and Sandwich Methods 

B.l The Delta Method 

Consider a sample S, {(X\,Yl), (X2,Y2), ... , (XmYn) E S} where Y represents scalar targets 

and x a vector of k inputs. Suppose the true relationship between the targets Y and the 

input vectors x takes the form: 

(B.l) 

The data is modelled by the regression equation (3.2) where the right hand side of (3.2) 

is a MLP. Thus the vector of parameters p is replaced by the set of weights and biases 

Qand; 

(B.2) 

If n is large enough so that Q ~ fl, a local linear approximation of the network about 

Xo = x, where Xo is a particular value of x, can be obtained and the procedures for 

multivariate linear regression applied. From a first-order Taylor series, 

ft/xo; Q) = f(xo;Q) ~ f(xo;fl) + gJ /)"Q 

where /)"Q = (Q-fl), and go = df(xo;fl)ldfl. 

(B.3) 

Substituting this approximation into the least-squares cost function gives the following 

expression for the sum of squared residuals; 

11 

SSR ~ L(Yi - f(xi;fl) - gi /)"Q)2 
i=1 (BA) 

Rewriting (BA) in matrix notation gives, 
~ T ~ 

SSR ~ (e - G/)"fl) (e - G/)"fl) (B.5) 

where G is an n x k matrix whose lh row is the vector gi and e is an n x 1 vector of 

elTors. Setting the derivatives of (B.5) with respect to Q equal to zero and solving the 

resulting equations to minimise the SSR gives; 

/)"Q ~ (GT Gr1 GT e (B.6) 

Different samples will generate different weight vectors according to (B.6). The 

variance-covariance matrix of the weights is (the derivation is not given here), 

ValA(/)"Q) ~ S~(GT Gr1 

(B.7) 
~H-l 
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where H-1 is the outer product approximation to the Hessian matrix of second order 

partial derivatives of the cost function (B.5) with respect to each of the elements of the 

weight matrix Q. From (B.3) and (B.7) the standard error of the regression function 

can now be defined as; 

SE(f(x;;JJ)) ~ (~gJ (GT 
Gfl g;s~) 

~ ( ~ gJ H- 1 g; ) 

Using equation (A.8), a (I-a) 100% confidence interval for f-Ly(xo) is given by, 

jL/x~ ;Q) ± t(aI2)(n-H) (~g~ (G T 
Gfl gos~) 

and a (I-a) 100% prediction interval is; 

jL/x~ ;Q) ± t(aI2)(I1-H) (~(1 + g~ (G T 
Gfl go)s~ ) 

(B.8) 

(B.9) 

(B.IO) 

Equations (B.9) and (B.IO) have the same form as equations (3.7) and (3.8) in Chapter 

3, section 3.2.1, with vector g substituted for x and matrix G substituted for X. The s~ 

term is SSRI(n-k-I), the MSR obtained using (B.5) in the numerator. Note that k here is 

the number of effective weights and biases. 

If regularisation as described by Bishop (1995) rather than early stopping is used to 

prevent over fitting, the standard error given in equation (A.8) must be replaced by, 

(B.1l) 

where the cost function to be minimised is, 
11 

SSR+ALw~ (B.I2) 
i=l 

and the A term in (B.I2) is a penalty term used to induce weight decay. The Wi are the 

weights from equation (3.11). 

The value of k, the degrees of freedom to use in equations (B.9) and (B.IO) is somewhat 

problematic. When neural net training is stopped before convergence, by regularisation 

or early stopping, some weights and biases may be ineffective. An architecture 

selection algorithm should be applied, to ensure there are no redundant hidden layer 

nodes, thereby minimising or eliminating redundant weights. Assuming there are no 

redundant weights or hidden units in the network, k = 1 + H (q + 2), where q is the 

number of input variables, and H the number of hidden layer nodes. Otherwise, this is 
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an upper bound. In either case, for large data sets (e.g. 7000 + observations), provided k 

::; 50 use of the above should have minimal effect on estimation accuracy. 

B.2 The Sandwich Method 

An important assumption underlying the OLS and delta method estimators of standard 

elTor concerns the variance of the noise [; associated with the true regression. This is 

assumed [;~ N(0,o-2) with constant variance d. The presence ofheteroskedasticity will 

result in estimated standard errors that are biased. The sandwich estimator! provides a 

method of dealing with this problem. The sandwich estimator is obtained by replacing 

the variance-covariance matrix of weights given by equation (B.7) with; 

_ n[ (G'G)' G' (t,g,gJe;)G(G'G)'] 
VarSalld (!1fl) ~ --'==------.:...-:...---------=­

(n -k) 

Substituting (B.13) into (B.8) in place of (B. 7) gives; 

(B.13) 

(B.14) 

Equation (B.13) yields asymptotically consistent variance-covariance matrix estimates 

without making distributional assumptions, even if the assumed model underlying the 

parameter estimates is incolTect. Because of these desirable properties, the sandwich 

estimator is also termed the robust covariance matrix estimator or the empirical 

covariance estimator. 

1 Huber, P. 1. 1967. "The Behavior of Maximum Likelihood Estimation Under Nonstandard Conditions", 
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, I, LeCam, L. 
M. and Neyman, 1. editors. University of California Press, pp221-233. 
White, H. 1982. "Maximum Likelihood Estimation of Misspecified Models". Econometrica, 50, ppl-25. 
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APPENDIX C: Bootstrap and Bayesian Methods 

C.l Bootstrap Pairs method 

Resampling methods provide an alternative to the delta method for calculating standard 

errors and statistical intervals for neural nets. The bootstrap method] is a computer­

based technique based on res amp ling that can provide confidence intervals for any 

population parameter estimate. In the context of regression, two forms of bootstrap are 

possible. The first of these is the bootstrap pairs method. Consider a sample S, {(x\, 

Yl), (X2,Y2), ... , (xm YI1) E S}, where Y represents scalar targets and x a vector of k inputs. 

A bootstrap sample is a sample SBoOI, {(xi,yJ E SBoOI, i = 1 to n} , consisting of n 

pairs of (Xi, Yi) drawn randomly (with replacement) from S. This means that some (Xi, 

Yi) may appear more than once in shOal while others may not appear at all. The 

bootstrap estimate of the standard error of the true regression function, which is a 

function of the set of inputs X, is given by; 

~ 1 B , 2 

SEBoo,(f(X;fl)):::; -I[,Uy(Xb;fl)- ,Uy,BoO' (X) ] 
B -1 h~l 

(C.1) 

In equation (C.l), fLy (X b ;iJ) is the neural net trained on the b
th 

bootstrap sample Stool, 

where there are a total of B bootstrap samples, with typical values 20 < B < 200. The 

bootstrap estimate of the mean of the target values fLy,BOOI (X), termed a bagged 

estimate in the neural net literature, is given by the mean of the ensemble of B networks; 

fLy,BOO/ X ):::; ~ tfL/Xb;iJ) (C.2) 

In equations (C.l) and (C.2), X is an n x 1 vector of the Xi, that is, an n x k matrix of x 

values. Using equation (C.l), a (l-a) lOO% bootstrap confidence interval for f.Ly (X) is 

. b 2 gIVen y; 

fLy,BooI(X) ± t(aI2)B (SEBoOI (f(X;il))) (C.3) 

I Efron, B., Tibshirani, R.1. 1993. An Introduction to the Bootstrap. Chapman and Hall, New York. 
2Heskes, T. 1997. "Practical Confidence and Prediction Intervals", in: M. Mozer, M. Jordan and T. 
Petsche, eds., 'Advances in Neural Information Processing Systems 9', MIT Press, Cambridge, MA, 

pp176-182. 
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C.2 Bootstrap Residuals Method 

In the bootstrap residuals method the residuals from a neural net fty(X;iJ) trained on a 

sample S, defined as before, are resampled rather than the training sample itself. 

Suppose E, {el, e2, ... , en) E E} is a set of residuals from fty(X;iJ) trained on sample 

S. A bootstrap residuals sample is a sample E BOo!, {ei E E Boo!, i = 1 to n} consisting 

of n samples ei drawn randomly (with replacement) from E. The bootstrap residual 

estimate of the standard error of the true regression function is given by; 

(C.4) 

In equation (C.4), ft;:(X;iJ
b

) is the NN trained on the bth bootstrap residual sample 

E:001 , where there are a total of B bootstrap residual samples, with typical values 20 < 

B < 200. The target for ft;:(X;iJb) is (E:001+ft/X;iJ)). The bootstrap residual 

estimate of the mean of the target values, fty,BoolR (X), is given by the mean of the 

ensemble of B networks; 

~ () 1 ~ ~r( il) fly,BootR X P;:; B f::::fly X; 

Using equation (C.4), a (I-a) 100% bootstrap confidence interval for /-l;' (X) is; 

fty,Boo!R (X) ± t(a/2)B (Si; BootR (f(X; Q)) ) 

(C.S) 

(C.6) 

The bootstrap residuals method has the advantage that the same sample S is the source 

of the inputs X for all B networks that must be trained This may be an advantage in 

some experimental situations. On the other hand, it is model specific and not as robust 

to over fitting or mis-specification as the bootstrap pairs method. 

C.3 Bayesian Approaches 

The delta, sandwich, and bootstrap estimators of standard errors are based on the 

maximum likelihood framework. Bayesian statistics provides a different approach. In 

classical "frequentist" statistics, inferences about the parameters of a population Pare 

based entirely on sample statistics from sample(s) S drawn randomly from P. Bayesian 

statistics in contrast, takes account of prior beliefs about the population P, by basing 

inferences on a prior probability distribution that is combined with a sample S to 
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produce a posterior (probability) distribution p(als) , for the parameter of interest a. 

Confidence and prediction intervals are defined within the Bayesian Framework. 

Let a be a parameter of the population distribution P, and S a random sample drawn 

from P. If a is viewed as a random variable whose posterior distribution is P( a Is) , 

then [/"L(S), AU (S)] is a (1-a) 100% Bayesian confidence interval for a if from P( a Is) 

there is a (1-a) lOO% probability a E [AL(S), Au(S)]. In the Bayesian approach, a is a 

random variable and [AL(S) , AU(S)] is fixed given availability of S. In the classical 

approach, it is a which is fixed and [ALCs), AU(S)] varies with S. If S is a (univariate) 

random sample drawn from P where {(Xl, X2, ... , Xn) E S, n<p} and P(xn+lls) is the 

posterior distribution for Xn+l, then [l\JL(S), t\Ju(s)] is a (1-a)lOO% Bayesian prediction 

interval for Xn+l if from P(xn+lls) there is a (1-a)lOO% probability Xn+l E [t\JL(S), t\Ju(s)]' 

For regression, maximum likelihood based methods estimate single values for each 

(unknown) parameter of the true regression. The Bayesian approach, in contrast, 

expresses the uncertainty regarding the true weight vector n as the posterior probability 

distributionp(nIS) given a sample S. Thus, 

P(fly (x) IS) = In P(fly (x) In)p( n IS)d n 

IX Lp(fly(x)ln)p(sln)p(n)dn 
(C.7) 

where P(D) is the pnor distribution for the weights. MacKay3 shows that with 

approximations, the latter integral can be solved analytically. If the noise is assumed to 

be " ~ N(O,d) and the prior P(D) is also assumed to be Gaussian, then a Gaussian 

posterior distribution P(fly (x) In up) can be derived where; 

(C.8) 

In (C.8), ,qIfP is n at the maximum of the posterior probability distributionp(nIS) . 

The variance of P(fly (x) In AlP) is, 

(C.9) 

3 MacKay, DJ.C. 1991. "Bayesian MethodsforAdaptive Models", PhD thesis, California Institute of 
Technology. 
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where if is the (constant) noise variance and A-I is the Hessian matrix of second order 

partial derivatives (with respect to each of the elements of tJ) of the regularised cost 

function; 

(C.10) 

The second term in (C.1 0) is a regularisation term resulting from the assumption that 

P(tJ), the prior distribution in (B.7) is a Gaussian. In (C.lO), A is a constant and the Wi 

are the weights from equation (3.10). It follows that an approximate (l-a)100% 

Bayesian prediction interval for fly (x) is given by; 

jLl'(xo;n,\lP)±Z(l_a)IOO%~((J'2rl + g/ A-1go (C.ll) 

By usmg (C. 7), maximum likelihood estimation has been avoided. However, the 

derivation relies on the same assumptions of normality of the errors and unbiasedness as 

the delta method, to which it is related. Bishop and Qazaz4 have extended the method 

to the case of non-constant variance, replacing the constant noise variance term in (C.9) 

with input-dependant (variable) noise variance. An advantage of the Bayesian approach 

is that the regularisation parameter is automatically determined during training. This 

means cross validation is not required to control over fitting, so all of the available data 

can be used for training. Unfortunately, for neural nets obtaining Bayesian standard 

error estimates is substantially more complex than using maximum likelihood based 

approaches5
. This is due to the approximations required to obtain the analytical 

formulae. The Bayesian method is unreliable where crude approximations are used. 

Moreover, inversion of the Hessian matrix is required, with the attendant possibility of 

failure. 

4 Bishop, C.M., Qazaz, C.S. 1995. "Bayesian Inference of Noise Levels in Regression", Technical Report, 
Neural Computing Research Group, Aston University. 
5 Ungar, L.H., De Veaux, R.D., Rosengat1en, E. 1995. "Estimating Prediction Intervals for Artificial 
neural Networks", Department of Computer and information Science, University of Pennsylvania, 
Philadelphia, P A 19104. 
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APPENDIX D: Option Pricing 

D 1.1 Option Valuation in Continuous Time 

Option valuation models can be classified into two categories. Those derived in 

continuous time, and those derived in discrete time. The continuous time approach is 

considered first. 

The pricing methodology of Black and Scholes (1973) is the foundation of modem 

option pricing. The essential insight of Black and Scholes was that, under certain 

assumptions, a risk free hedging portfolio could be constmcted which instantaneously 

replicates the option with certainty. The authors showed that such a portfolio, 

consisting of a long stock position and a short position in an option could be 

constmcted, assuming that time and the stock price are continuous variables, and that 

the stock price follows a geometric Brownian motion. By using a technique known as 

'dynamic hedging' where the long position in the stock is continuously adjusted, a 

perfect hedge is maintained, and a unique price for the option obtained. Any option 

price different to the value of the replicating portfolio gives rise to an arbitrage 

opportunity. A central assumption underlying this analysis is that there are no 

transaction costs involved in trading the underlying asset, and that it has a single unique 

price. If there are transaction costs, however small, then dynamic hedging becomes 

unworkable. This is because the price process of the underlying asset is one of infinite 

variation, requiring the hedge portfolio to be rebalanced at every instant, so that the cost 

of hedging and hence the price of the option, becomes infinite. 

Using stochastic calculus the authors derive the stochastic differential equation (s .d.e.) 

(D. 1) for the value f of the option under the above assumptions. (The authors also 

present an alternative derivation of (D. 1 ) using the capital asset pricing modeL). 

(D.1) 

Since (D. I ) contains no terms that are sensitive to investor risk-preference, it is possible 

to assume investors are risk-neutral. Given the assumption of risk-neutrality, and the 

boundary conditions imposed by the option payoff formula, there is only one solution to 

(D.I). The s.d.e. (D.I) was recognized to be identical to the heat transfer equation, and 
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the required solution was known. The authors used the solution presented in Churchill 

(1963, p.155), following minor algebraic manipulation, the following formula for the 

theoretical fair value of a European call, or American call on a dividend-free stock was 

obtained; 
(D.2) 

For a European put the formula is; 

(D.3) 

There is no corresponding analytical solution in the case of an American put or 

American call on a dividend paying stock. 

In Equations (D.2) and (D.3); 

And; 

Where; 

C 

P 

S 

X 

r 

t 

T 

(T 

d = In(S 1 Xe-r(T-I)) + 0'2 (T - t) 12 

I O'~(T -t) 

d 2 = d 1 -O'~(T -t) 

er(t-T) == e -r(T -I) 

price of a call option on an underlying asset. 

price of a put option on an underlying asset. 

underlying asset price. 

exercise ( strike) price of the option. 

continuously compounded risk free interest rate. 

current date. 

expiration date of the option. 

(DA) 

(D.5) 

(D.6) 

the standard deviation of the instantaneous, annualized 

rate ofretum on the underlying asset (,volatility'). 

N( • ) the cumulative standard normal density function. 

The models rest on the following assumptions: 

A) The price of the underlying stock follows a lognormal distribution. The stock 

price moves randomly but smoothly, with no jumps, (i.e. in order to move from 

one price to another, the underlying stock is assumed to pass through all 

intermediate prices). 

B) The underlying stock pays no dividends. (This assumption may be relaxed.) 
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Option Valuation in Continuous Time 

C) The risk free rate r, and variance (Y 2, of returns on the underlying stock are 

constant for the life of the option. 

D) There are no taxes or transaction costs. All securities are perfectly divisible. 

Heuristically, theoretical fair value of the (call) option premium is equal to the stock 

price multiplied by the inverse of the hedge ratio, minus the discounted exercise price 

multiplied by the probability of exercise, where for each share of stock in the risk-free 

hedge portfolio, there are lIN(dl ) calls written on the stock. Also, the probability of the 

option expiring in-the-money, and hence being exercised, is given by N(d2). 

A number of authors have extended the BS option valuation model. These extensions 

mainly involve relaxation of the assumptions of the model, or adaptations to special 

cases. Because stock index options, (including the LIFFE FT-SE 100 Index Option) are 

based not on an underlying stock, but on a futures contract based on the underlying 

stock the appropriate valuation formula is the Black I fOlmula [Black (1976)]. This was 

developed by Fischer Black to price European options on commodity futures. The 

Black model for a (call) option on a future is; 

(D.7) 

where 

d _ Ln(f I X)+(Y2 12)(T-t) 
1- (Y.j(T-t) 

and 

In the Black formula, (Y is the volatility of the future, f is the future's value. The 

remaining variables are the same as in the BS model. However, this formula gives the 

same price as the BS model on the underlying stock. This is because, in the Black 

formula N(dj ) is multiplied by fe-r(T-tJ, while in the BS formula it is multiplied by S. 

However, with no dividends on the underlying asset the futures price is Ser(T-tJ. Thus, if 

ser(T-t) is substituted for f in the Black formula, the formula will be the same as the BS 

formula. This may not be obvious in d j • However if Ser(T-t) is substituted for f in d l ; 
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Option Valuation in Continuous Time 

d = Ln(Sel'(T-/) / X) + ((J"2 / 2)(T - t) 

I (J"~(T-/) 

The expreSSIOn Ln(Sel'(T-/) / X) is equivalent to Ln(S) + Ln(el'(T-/)) - Ln(X). 

Ln( el'(T -I)) = reT - t) so d1 becomes; 

d = Ln(S / X) + (1' + (J" 2 / 2)(T - t) 

I (J"~(T -I) 

which is d1 from the BS formula . 

(D.8) 

Thus, 

(D.9) 

The Black formula rests on the same assumptions as the BS formula from which it is 

derived. There is one important additional assumption however, the option and the 

future are assumed to expire simultaneously. 

D 1.2 Option Valuation in Discrete Time 

An altemative approach to option valuation IS lattice based models of the type 

developed by Cox, Ross and Rubinstein (1979) . The Cox-Ross-Rubinstein Binomial 

Model is a discrete model. The price of the underlying stock is assumed to take one of 

two states, up or down (possibly at different rates) at the end of each period in a single­

period binomial model. It is immediately obvious that in a real stock market situation 

the range of possible outcomes is much greater than the two states a binomial model 

allows. However, the model can accommodate this by increasing the number of 

periods. If the life of an option is divided into n periods, as n increases the length of 

each period will decrease. Thus, if n is made large enough, the discrete binomial model 

can be made to approximate a continuous model. Under the Cox-Ross-Rubinstein n 

period Binomial Model, the price of a European call with j periods remaining to 

expiration is given as; 

In (D.lO); 

j = number of periods remaining to expiration. 

n = total number of periods. 

If = euJ(T-/)11/ -1 = up parameter. 

(D.10) 
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d = [_1_] -1 = down parameter. 
l+u 

APPENDIX D 

To operate in the binomial framework, the continuously compounded risk-free rate must 

be converted to a discrete rate r, thus; 

(1- r)(T-I)/1I -1 = Risk-free rate r 

Other variables are as in the BS formula given above. The n period binomial model 

lends itself well to computer solution. The formula works because the factorial term 

n!/j !(n - j)! completely enumerates all possible routes a stock price can take to end up at 

a given level. 

The Cox-Ross-Rubinstein binomial model was developed after the BS model. 

However, the authors show the BS formula is the limiting case of the n period binomial 

model as n ~ 00. Discrete-time lattice based models of the Binomial tree type are more 

flexible than models of the Black-Scholes type. They are easily adapted to value 

American put options, barrier options, and various types of exotic options. Most recent 

advances in option valuation feature models of this type. 
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APPENDIX E: Summary Statistics ofRNDs 

One Month Maturity LIFFE FTSE 100 Index Put Options (Apr. 1992 to Mar. 1997) 

Dates European Exercise (ESX) American Exercise (SEI) 

Trading Expiry Median Ann. Mean Std. Skew Ex. Median Ann. Mean Std. Skew Ex. 

Day Month IV% Dev. Kurt. IV% Dev. Kurt. 
24-Mar-92 Apr-92 2313.57 25.55 2363.63 161.06 1.596 4.55 2301.01 15.93 2325.07 98.78 1.433 4.88 

21-Apr-92 May-92 2685.71 16.12 2645.07 115.70 -0.648 2.76 2670.42 16.69 2627.76 119.10 -0.699 3.07 

27-May-92 Jun-92 2742.16 12.47 2707.48 91.37 -0.577 3.08 2742.12 12.16 2700.37 89.13 -0.947 3.72 

24-Jun-92 Jul-92 2584.60 14.66 2555.61 101.25 0.163 3.42 2574.03 14.27 2540.95 98.20 0.076 3.29 

29-Jul-92 Aug-92 2463.65 16.26 2432.90 107.08 -0.227 2.39 2461.09 15.56 2422.47 102.35 -0.479 2.38 

25-Aug-92 Sep-92 2315.42 17.98 2296.90 111.24 0.356 2.24 2309.69 16.18 2284.14 99.88 0.090 1.76 

23-Sep-92 Oct-92 2626.74 16.68 2592.60 117.11 -0.475 2.62 2607.95 15.88 2566.19 110.68 -0.727 3.17 

28-0ct-92 Nov-92 2689.30 16.29 2652.84 117.08 -0.546 2.66 2681.81 15.62 2640.45 111.94 -0.714 3.18 

25-Nov-92 Dec-92 2750.36 15.20 2716.88 111.71 -0.421 2.76 2743.10 13.95 2701.34 102.27 -0.788 3.39 

21-Dec-92 Jan-93 2854.45 16.94 2820.62 129.26 -0.415 2.52 2835.39 15.54 2793.51 117.76 -0.698 3.08 

27-Jan-93 Feb-93 2883.43 13.26 2848.44 102.21 -0.539 2.91 2869.01 12.54 2827.84 96.14 -0.855 3.56 

24-Feb-93 Mar-93 2847.93 14.13 2813.25 107.57 -0.479 2.87 2852.12 13.33 2810.21 101.58 -0.796 3.44 

22-Mar-93 Apr-93 2886.20 14.95 2852.32 115.35 -0.418 2.72 2897.45 13.95 2855.48 108.04 -0.735 3.16 

27-Apr-93 May-93 2866.78 13.12 2831.73 100.53 -0.527 2.96 2865.82 12.26 2824.74 93.87 -0.859 3.60 

25-May-93 Jun-93 2882.31 13.43 2847.23 103.43 -0.537 2.90 2874.80 12.63 2833.15 97.07 -0.874 3.55 

23-Jun-93 Jul-93 2948.43 11.88 2912.37 93.58 -0.604 3.06 2942.98 11.07 2901.22 87m! -0.964 3.78 

28-Jul-93 Aug-93 2931.82 11.69 2893.49 91.56 -0.757 3.13 2924.84 11.54 2884.33 90.18 -0.887 3.65 

24-Aug-93 Sep-93 3097.19 11.83 3060.73 97.92 -0.603 3.00 3090.45 1l.l9 3047.91 92.42 -0.940 3.67 

22-Sep-93 Oct-93 3045.93 12.59 3009.68 102.46 -0.576 2.92 3044.72 12.21 3003.08 99.35 -0.802 3.44 

27-0ct-93 Nov-93 3200.41 11.20 3163.45 95.83 -0.624 3.05 3194.63 10.80 3152.31 92.21 -0.909 3.65 

24-Nov-93 Dec-93 3100.00 15.08 3066.31 124.90 -0.391 2.71 3094.02 14.76 3054.99 122.05 -0.591 3.03 

23-Dec-93 Jan-94 3438.04 11.52 3391.64 105.84 -0.855 3.11 3432.76 11.87 3386.07 108.89 -0.897 3.32 

26-Jan-94 Feb-94 3473.58 12.98 3438.71 120.54 -0.436 2.72 3465.37 12.84 3426.63 118.95 -0.594 2.98 

23-Feb-94 Mar-94 3366.86 14.25 3333.39 128.25 -0.367 2.63 3363.51 14.24 3327.00 128.05 -0.480 2.83 

21-Mar-94 Apr-94 3215.27 16.33 3184.63 140.31 -0.208 2.37 3218.22 15.84 3183.61 136.27 -0.337 2.43 

26-Apr-94 May-94 3164.31 14.42 3130.87 121.99 -0.304 2.38 3153.92 14.09 3116.26 118.73 -0.409 2.38 

24-May-94 Jun-94 3110.40 13.83 3074.88 114.94 -0.491 2.82 3123.59 13.76 3083.76 114.85 -0.659 3.13 

22-Jun-94 Jul-94 2990.44 16.53 2959.58 132.13 -0.215 2.34 2981.40 15.97 2945.77 127.28 -0.341 2.33 

27-Jul-94 Aug-94 3112.18 13.67 3076.87 113.72 -0.480 2.76 3117.40 13.53 3077.43 112.73 -0.648 3.04 

23-Aug-94 Sep-94 3224.98 12.97 3189.00 111.80 -0.524 2.80 3209.36 12.80 3168.20 109.80 -0.714 3.17 

28-Sep-94 Oct-94 3073.19 15.53 3040.65 127.52 -0.337 2.55 3066.40 14.69 3026.89 120.41 -0.576 2.80 

26-0ct-94 Nov-94 3018.80 16.47 2988.00 132.89 -0.237 2.45 3028.95 15.27 2990.12 123.58 -0.511 2.66 

23-Nov-94 Dec-94 3051.35 19.38 3027.62 158.09 -0.006 2.43 3047.91 17.01 3011.78 138.60 -0.373 2.51 

23-Dec-94 Jan-95 3133.58 14.31 3098.97 119.85 -0.429 2.72 3117.10 13.31 3075.13 110.89 -0.736 3.22 

25-Jan-95 Feb-95 3024.50 14.36 2990.82 116.06 -0.411 2.72 3012.90 13.21 2970.71 106.36 -0.780 3.22 

22-Feb-95 Mar-95 3050.37 13.04 3015.06 106.33 -0.499 2.86 3056.38 12.26 3014.72 100.13 -0.800 3.40 

27-Mar-95 Apr-95 3195.50 13.26 3160.52 113.28 -0.462 2.79 318l.l6 12.42 3139.75 105.59 -0.762 3.32 

25-Apr-95 May-95 3254.46 11.74 3217.96 102.12 -0.572 2.95 3251.28 1l.l4 3209.07 96.84 -0.833 3.53 

23-May-95 Jun-95 3340.38 11.70 3303.93 104.42 -0.578 2.91 3326.13 11.09 3284.11 98.55 -0.870 3.48 

28-Jun-95 Jul-95 3307.80 12.53 3272.63 110.80 -0.480 2.81 3307.85 11.71 3266.14 103.49 -0.784 3.32 

26-Jul-95 Aug-95 3486.92 11.39 3450.60 106.14 -0.565 2.88 3487.42 10.87 3446.15 101.30 -0.787 3.39 

22-Aug-95 Sep-95 3586.42 10.69 3549.80 102.51 -0.588 2.97 3565.49 10.24 3524.28 97.56 -0.832 3.48 

27-Sep-95 Oct-95 3509.83 11.62 3473.92 108.95 -0.512 2.86 3515.70 10.90 3474.01 102.38 -0.811 3.35 

25-0ct-95 Nov-95 3580.64 11.75 3544.96 112.41 -0.504 2.79 3570.99 11.09 3529.87 105.85 -0.751 3.27 

22-Nov-95 Dec-95 3677.14 11.29 3640.96 110.94 -0.533 2.81 3663.20 10.67 3621.49 104.42 -0.792 3.29 

22-Dec-95 Jan-96 3690.57 10.79 3652.79 106.44 -0.607 2.93 3699.25 10.37 3656.97 102.52 -0.790 3.39 

24-Jan-96 Feb-96 3808.51 10.42 377l.l3 106.02 -0.577 2.94 3789.99 10.19 3749.31 103.19 -0.747 3.31 

21-Feb-96 Mar-96 3758.83 10.80 3721.93 108.54 -0.544 2.89 3758.68 10.43 3717.36 104.74 -0.767 3.26 

25-Mar-96 Apr-96 3700.69 11.91 3664.42 117.81 -0.478 2.75 3713.84 11.51 3673.80 114.27 -0.645 3.07 

23-Apr-96 May-96 3881.05 10.47 3843.78 108.64 -0.576 2.89 3870.91 10.29 3830.32 106.43 -0.725 3.24 

29-May-96 Jun-96 3827.20 10.09 3790.05 103.22 -0.596 2.99 3815.47 9.85 3774.34 100.44 -0.806 3.37 

26-Jun-96 Jul-96 3725.59 10.72 3688.77 106.77 -0.563 2.90 3732.39 10.60 3692.23 105.79 -0.709 3.20 

24-Jul-96 Aug-96 3694.95 12.16 3659.70 120.09 -0.439 2.67 3697.07 11.91 3658.19 117.72 -0.569 2.89 

28-Aug-96 Sep-96 3987.53 9.79 3949.79 104.31 -0.613 2.98 3962.04 9.70 3921.00 102.71 -0.779 3.30 

25-Sep-96 Oct-96 3991.94 10.13 3953.90 108.11 -0.606 2.90 3974.33 10.15 3934.51 107.80 -0.688 3.18 

23-0ct-96 Nov-96 4072.83 10.30 4035.74 112.15 -0.547 2.84 4067.74 10.18 4028.21 110.63 -0.655 3.11 

27-Nov-96 Dec-96 4105.62 10.00 4068.02 109.71 -0.558 2.89 4086.24 9.74 4046.17 106.36 -0.707 3.22 

23-Dec-96 Jan-97 4128.29 10.13 4090.65 111.79 -0.570 2.86 4124.17 9.84 4083.87 108.42 -0.700 3.19 

29-Jan-97 Feb-97 4247.83 11.87 4215.61 134.77 -0.312 2.530 4230.74 11.29 4195.17 127.69 -0.456 2.766 

26-Feb-97 Mar-97 4355.22 11.19 4321.27 130.25 -0.367 2.59 4356.85 10.82 4320.78 126.03 -0.470 2.79 

180 



APPENDIXF 

APPENDIX F: Statistical Tests 

A number of statistical tests are employed and discussed, in this thesis. These tests are 
bliefly summalised here: 

The t-Test. 

Student's t-test for independent samples is used to determine whether two samples are 
from populations with different means. If both samples are large, the separate or 
unequal variances versions of the t-test are appropriate. The Central Limit Theorem 
guarantees the validity of the test even for populations with non-normal distributions. 
Sample sizes as small as 30 per group are acceptable if the two populations are 
approximately normally distributed. The more the populations depart from normality, 
the larger the sample size needed. However, 100 observations per group is often quite 
sufficient. For small and moderate sample sizes, the equal variances version of the test 
is an exact test of the equality of two population means. The equal variances t-test 
requires samples from normally distributed populations with equal (population) 
standard deviations for valid results. Table 1 gives test statistics and confidence 
intervals for the unequal variances version of the test where standard deviations are 
known, the unequal variances version where standard deviations are unknown, and the 
equal variances version. 

T bi 1 TIt t t ~ U . dDt a e wo-sampJe - es s or npalre a a 
Assumptions Confidence Interval Hypothesis Test Test Statistic Decision Rule 

Any population, 
(i) Ho: ~I'-P2 = 0, H,,: P' -P2 7' 0 Z= ~,- X2.., 

(i) Z > Z'Yz or Z < -z'Yz 
cr known, a 2 a 2 2 2 

II" 112 large 
Ct; -x,)±z~ -L+-l (ii) Ho: ~I '-P2 = 0, HA: ~I,-~12 > 0 )_0",- 0"; (ii) Z > za 

II, 112 (iii) He,: ~l, -~l, = 0, H,,: ~I,-~12 < 0 -;;:+ J1~ 
(~30) (iii) Z < -za 

Any population, , , (i) Ho: P'-P2 = 0, HA: ~I ,- ~12 7' 0 Z= X;,-:S, 
(i) Z > Z'Yz or Z < - z'Yz 

cr unknown, 
(:t, -x,)±z~ 

SI- S; 
(ii) Ho: ~I,-~12 = 0, H,,: ~l , -p, > 0 (ii) z> za 11, , 11, large 

-+~ ~+S2 II, 111 (iii) Ho: P ,-~12 = 0, H,,: p,-~l, < 0 
(~30) II, 112 (iii) Z < -z" 
Population normal , - - (i) I > 1'Yz or I < -1'Yz 
cr unknown, ' , (i) Ho: ~ldl, = 0, HA: ~l, -p, 7' 0 1 = .'\- X2, 
11" and 11, small (:t, - X,)± I~ 

SI- S; 
(ii) Ho: ~I'-P2 = 0, HA: ~l , -~l, > 0 (ii)I>la 

-+~ ~+S2 
(cach<30) II, 11). (iii) Ho: p, -~l, = 0, H,,: P'-P2 < 0 II, 112 (iii) 1< - /" df=min(II ,-1 , 1I2-1) 

Where the population valiance is unknown, it is estimated from the corresponding sample 
usmg: 

(F.l) 

A paired t-test, or t-test/or two correlated samples, is used to determine whether there is a 
significant difference between the average values of the same measurement made under 
two different conditions. Both measurements are made on each unit in a sample, and the 
test is based on the paired differences between these two values. The usual null hypothesis 
is that the difference in the mean values is zero. The paired sample t-test is a more 
powerful alternative to a two-sample t-test, but can only be used when there are matched 
samples. Pairing is usually optional. In most cases a paired analysis or one that uses 
independent samples can be designed. Table 2 gives the test statistic and confidence 
intervals for the paired t-test. 
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a e T hI 2 T wo-sampe - es or alre aa Itt tf P' dD t 
Assumptions Confidence Interval Hypothesis Test Test Statistic Decision Rule 

Matched pairs of d (i)f>f~ orf<-f~ 
!I1Id' -(Id)' f= 

observations (i) Ho: d = 0, HA : d * 0 !I1Id' -(Id)' for the same 11 d ± fa;, 
11'(11-1) (ii) Ho: d = 0, HA:d> 0 (ii)f > fa 

units. Difference (iii) Ho:d =0, HA:d <0 
11'(11-1) 

(iii) f < -fa 
d = X

colll 
- X

coll2 
• 

The null hypothesis for a two-sample paired t-test is Ho: d = X; - x2 = ° where d is the 

mean value of the difference. This is tested against one of the following alternative 
- - -

hypotheses, depending on the question posed: HA : d;f. 0, HA : d > 0, HA : d < 0. 

The t-test is also used to perform tests on the parameter values in regression models. Table 
3 shows how the test is applied in the case of multivariate linear regression. The t-test for 
univariate linear regression, is a special case of the version for multivariate linear 
regresSIOn. 

T hI 3 M I ' a e u tlvanate L' mear R egressIOn: t t t f -tit G d' t P - es s orf ra len t arame er 
Assumptions Confidence Interval Hy~othesis Test Test Statistic Decision Rule 

Normality, 
f= Pi-Pi (i)f > f~ or f < -fey; g (i) Ho: 4=0, HA: 4* 0 )g. independence, and fl· ±t;0 --' x .. (ii) Ho: 4=0, HA: 4> 0 (ii)f > fa constant variance, J ", l1-k 11 l1-k ·'.il 

of the errors e. (n-k) degrees offreedom (iii) Ho: 4= 0, HA: 4< 0 
Xjj is the jth diagonal (iii) f < -fa 

element of (x~\"r[ 

The F test. 

The F test is a test to determine whether two samples are from populations with different 
variances. The test statistic is given by: 

2 

F S, h 2 . I h 2 
11[-',112-' = -2' were s, IS arger t an S2' 

S2 
(F.2) 

S,2 and s; are the sample variances. The null hypothesis is Ho: al
2 - a2

2 = 0. This is 

tested against one of the following alternative hypotheses, depending on the question 
posed: HA: al

2 
- a22;f. 0, HA : al

2 
- a/ > 0, HA : a,2 - al < 0. 

White's test 

This is a test for heteroskedasticity in the residuals from a least squares regression. 
White's test is a test of the null hypothesis of no heteroskedasticity against 
heteroskedasticity of some unknown general form. The test statistic is computed by an 
auxiliary regression, where the squared residuals are regressed on all possible (non­
redundant) cross products of the explanatory variables. White's test statistic, is computed 
as: 

(F.3) 

from the auxiliary regression. In (F.3) n is the number of observations. White's test 
statistic is asymptotically X 2 distributed, with degrees of freedom equal to the number of 
slope coefficients (excluding the constant) in the auxiliary regression. White considers this 
approach as a general test for model mis-specification, since the null hypothesis underlying 
the test assumes that the errors are both homoskedastic and independent of the regressors, 
and that the linear specification of the model is COlTect. Failure of anyone of these 
conditions could lead to a significant test statistic. Conversely, a non-significant test 
statistic implies that none ofthe three conditions is violated. 
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The Jarque-Bera Test 

The Jarque-Bera test is for testing whether a series is normally distributed. The test 
statistic measures the difference between the skewness and kurtosis of the series and those 
of a normal distribution. The test statistic is computed as: 

(F.4) 

in (FA) S is the skewness, K is the kurtosis, n is the number of observations in the series, 
and k is the number of estimated coefficients (if any) used to create the series. Under the 

null hypothesis of a normal distribution, the Jarque-Bera statistic is X2 distributed with 2 

degrees of freedom. The associated P value is the probability that a Jarque-Bera statistic 
exceeds (in absolute value) the observed value under the null hypothesis, a small 
probability value leads to the rejection of the null hypothesis of a normal distribution. 

TheLM test 

The LM (Lagrange multiplier) test can be used to test parameter restrictions by estimating 
only the restricted equation. The LM test statistic can be computed as; 

(F.S) 

from an auxiliary regression'. The LM test statistic is X2 distributed with degrees of 

freedom equal to the number of restrictions imposed. 

The LR test 

This test is used to add extra explanatory variables to an existing equation and to ask 
whether they make a significant contribution to explaining the variation in the dependent 
variable. The null hypothesis is that the additional regressors are not jointly significant. 
The output from the test is a likelihood ratio (LR) statistic with associated p-values, or an 
F-statistic, together with the estimation results for the unrestricted model under the 
alternative hypothesis. The F -statistic is based on the difference between the residual sums 
of squares of the restricted and unrestricted regressions, thus both must be estimated. The 
LR statistic is computed as; 

(F.6) 

where LV and LR are the values of the maximized log likelihood function for the 
unrestricted and restricted regressions, respectively. Under the null hypothesis of no 

significance for the additional regressors, the LR statistic has an asymptotic X2 distribution 

with degrees of freedom equal to the number of restrictions, i.e. the number of added 
variables. 

I Details of the LM, LR, and Wa1d tests can be found in Thomas, R.L. 1993. IntroductOl)! Econometrics: 
TheOl)) and Applications, 2nd edn., Harlow: Longman. Chapter 4. 
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The Wald Test. 

The Wald test can be used to test parameter restrictions by estimating only the unrestricted 
equation. It computes the test statistic by estimating the unrestricted regression without 
imposing the coefficient restrictions specified by the null hypothesis. The Wald statistic 
measures how close the unrestricted estimates come to satisfying the restrictions under the 
null hypothesis. If the restrictions are in fact true, then the unrestricted estimates should 
come close to satisfying the restrictions. For a nonlinear regression 

y=(P)X+& (F.7) 

where p is a vector of k parameters to be estimated, restrictions on the parameters can be 
written as Ho : g(fJ) = O. Here, g is a smooth q dimensional vector imposing q restrictions 

on p. The Wald statistic is given by; 

,(ag ag J W=ng(b) -V-ap ap" 
h V 2(ax ax J 2 U'II were =ns -- s =--ap ap" n-k 

(F.8) 

In (F. 8) n is the number of observations, b is the unrestricted parameter estimates, V is the 
estimated variance of b, and II are the residuals from the unrestricted model. Under the 
null hypothesis Ho, the Wald statistic has an asymptotic (q) distribution, where q is the 

number of restrictions. 

Further details of the construction of the LM, LR, and Wald statistics can be found in 

Thomas (1993) Chapter 4. 
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Journal B: Proceedings of the 3rd International Conference on Applications of 
Physics to Financial Analysis 2001, pp219-227. 

2) Healy, lV., Dixon, M., Read, BJ., and Cai, F.F. 2003. "Confidence in Data 
Mining Model Predictions: A Financial Engineering Application", 29th Annual 
Conference of the IEEE Industrial Electronics Society, Special Session on 
Intelligent Systems, pp 1926-1931. 

3) Healy, lV., Dixon, M., Read, BJ., and Cai, F.F. 2003. "Confidence Limits for 
Data Mining Models of Options Prices", European Physics Journal A: 
Proceedings of the 4th International Conference on Applications of Physics to 

Financial Analysis 2003. 
4) Xu, L., Dixon, M., Eales, B. A., Cai, F. F., Read, B. l, and Healy, l V. 2003. 

"Barrier Option Pricing: Modelling with Neural Nets", European Physics Journal 
A: Proceedings of the 4th International Conference on Applications of Physics to 

Financial Analysis 2003. 
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APPENDIX H: Approved Program of Research 

Extracts From the Approved Document 
(FOlm RD/R approved 22 November 2000) 

4 The Programme of Research 

4.1 Title of the proposed investigation: 

Computational Knowledge Discovery Techniques and their Application to Options Market 
Databases 

4.2 Aim of the investigation 

The aim is to provide a framework for building and proving a computer system. The framework; 

• Determines which computational knowledge discovery techniques are appropriate to financial 
options databases. 

• Derives option pricing models and forecasts of prices and price variability from the discovered 
data patterns. 

• Selects appropriate statistical criteria for the assessment of the confidence that can be placed 
upon the extracted patterns and models. 

• Formulates trading strategies based upon the difference in price probabilities of options and 
assets. 

4.3.1 Introduction 

.. .... There is a need to provide a systems framework in which the criteria and assumptions are 
visible for the selection of datasets, the choice of relevant time span, the selection of knowledge 
discovery algorithms, the possible use of data cleaning strategies, the extrapolation to future time 
steps of data, extraction of a pricing model, the refinement of the findings, the establishment of a 
trading strategy, and a statistical assessment of the effectiveness of the strategy. The aim of this 
work is to provide a computational tool, which implements the required systems framework. 

4.3.3 Rationale & Proposal 

....... In summary the goals of the research are; 

• To investigate a specific question of interest in the financial options market domain utilising 
data mining / KDD techniques. 

• To use the investigation as a vehicle for the development of methodologies and new 
techniques for the effective application of data mining / KDD within this specialist domain, 
with consideration of their wider applicability. 

• To use the investigation to investigate the comparative merits of data mining / KDD 
approaches to modelling versus current approaches in this domain. 

4.3.5 Benefits expected 

... ..... The above agenda incorporates several new applications for data mining / KDD within the 
specialist domain of options markets. A data mining / KDD based approach offers a number of 
advantages over current practices for development of pricing models in options markets. First, 
there is the potential for a high level of automation and, in suitable circumstances full automation, 
allowing implementation within automated trading systems. Second, it provides an alternative 
data driven approach to modeling, which is independent of many of the theoretical assumptions 
that underpin the conventional analytical models and their numerical and analytical 
approximations . 

.... ... . .. The benefits of the research may be summarized as follows; 

For Computing / Information Systems 
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• Evaluation of the effectiveness and limitations of data mining /KDD for extracting information 
in the specific context of options market data. 

• Development of methodologies and techniques for more effective application of data mining / 
KDD technology to financial market data in general and derivatives markets in particular. 

• Testing of commonly made modelling assumptions and identification of what cannot be done 
without some model or assumption. 

• Identification of those methodologies, techniques and algorithms developed that have 
potential application in KDD for other data domains. 

For Finance 

• Improved financial risk management and forecasting. 

• Better pricing and hedging of investment portfolios. 

• New approaches to discovering trading strategies. 

4.3.6 Data Sources 

It is expected that the data used will be obtained from the Market Data Services division of LlFFE 
(London International Financial Futures and Options Exchange. The LlFFE data set will be 
enriched with additional data obtained from the Datastream database. Substantial datasets of 
daily closing prices, transaction prices, and relevant interest rates are available from these 
sources and we already have some of these available. 

4.3.7 Software 

We are currently using the commercially available SPSS data-mining package Clementine. The 
SPSS statistics package is being used for the statistical elements of the work. Other software will be 
deployed/developed as appropriate. 

4.3.10 Original Contribution to Knowledge 

A systematic methodology for applying computerised knowledge discovery to option pricing and the 
extraction of forecasts from options market data. 

RD/R approved 22.11.2000 
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