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A numerical study of the interaction of tidal flows in the Mersey estua! y and 
Liven2ool bay 

Qin Li 

ABSTRACT 

A numerical model for coastal and estuary waters has been developed to study the 

dynamic processes in estuaries and shallow water. The model is based on joining together 

a multi-level two dimensional river model with a three-dimensional hydrodynamic bay 

model. An interactive sigma coordinate splicing scheme is used to match the sigma 

coordinates with different vertical and time resolution so that the exchange of dynamic 

information between two models can be achieved. 

The river model has been used for the modelling of the flow and relevant transport 

processes, including salinity and sediment transport in the estuary. The bay model has 

been used to provide real time tidal forcing information to the river model across the 

common boundary of two models. 

After the joined model was set up and operated satisfactorily, the numerical experiments 

were carried out in Liverpool bay and the Mersey estuary to study the interaction of tidal 

flow in these two areas. The model was applied with real time tidal forcing due to an M2 

tidal constituent at the open boundary of the bay model and freshwater discharge from 

the Mersey estuary into Liverpool bay. The relevant results obtained from the numerical 

model have been compared with the data reported according to the observations and have 

shown good agreement with the data. It is shown that the M2 tide plays an important role 
in the mixing of freshwater with the sea water in the Mersey estuary and Liverpool bay. 

The discharge of freshwater from Mersey into the bay leads to a plume of low salinity 

water around the mouth of river. The flow in the river driven by tidal forcing from 

Liverpool bay and the freshwater flow leads to the transport of suspended sediment from 

the Mersey estuary into Liverpool bay. 



Chapter I Introduction 

As an important part of Oceanography, sea waves have attracted the attention of 

researchers and have been the subject of study as early as around 300 BC. Tides are a 

special type of wave which are generated by the gravitational attractions of the Sun 

and the Moon, but constrained by the configuration of the ocean basins. Waves and 

tidal currents are responsible for sediment movement and deposition in the coastal 

region, but in estuaries the tidal processes are more important than wave processes. 

Estuaries, can be defined as a partially enclosed body of water where freshwater from 

rivers and streams flows into the ocean, and mixing with the salty sea water. They are 

places where rivers meet the sea and are strongly influenced by the ocean dynamics in 

the shelf seas. Meanwhile they also have influence on the shelf seas. 

The shelf sea influences the estuary through its dyn=ic forcing, such as tidal currents, 

wind stresses, surface waves and climate circulations. Among these, tidal currents are 

often the dominant force as they play an important part in determining the patterns of 

the currents and their dynamic structure. One important consequence of tidal currents 

in the coastal and nearshore regions is that some of their energy is transferred to the 

movement of sediment. Sediment transport plays a very important part among the 

processes in the coastal and shelf sea. A number of numerical studies have been 

reported in recent years (Chen and Dyke 1996,1998; Xing and Davies, 2003 ). What 

sort of sediment is moved, how much and where it is moved to, depend significantly 

on the energy of the tidal currents and their direction of motion. 
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While rivers are influenced by the ocean dynamics from the shelf seas, they also have 

an effect on the processes in the shelf seas. The effects of freshwater discharge into a 

coastal region have attracted increasing attention in recent decades. For example, 

Duxbury (1965) and Bowden (1983) reported that the discharge from the Columbia 

River at a rate of order 7000 rn 3 /sec into the Pacific Ocean leads to the formation of a 

distinct plume of relatively low-salinity water at the surface of the adjacent shelf. 

Theoretical models have been developed to study the spread of an estuarial outflow 

over the adjacent shelf. Beardsley and Hart (1978) describe a two-layer analytical 

model which is characterized by there being a mean alongshore flow into which the 

river discharges. Observations by Gopala Krishna and Sastry (1985) along the East 

Coast of India show the extent of the southward spread of a low salinity plume and 

suggest the discharge of freshwater from the Hugli and Mahanadi rivers during the 

monsoon season has an inhibiting effect on the occurrence of upwelling. Johns et al. 

(1992a) studied the coastal wind-driven circulation in the western Bay of Bengal 

incorporating the effects of an estuarial discharge of relative freshwater using a 

numerical model. The results showed that the coastal upwelling off Visakhapatnam is 

expected to be in the presence of the local application of southwesterly surface wind- 

stress forcing. It is found to be suppressed by the northern fresh water discharge and is 

replaced by local sinking. Observations in Liverpool Bay by Sharples and Simpson 

(1993) also showed a semi-diurnal stratification cycle driven by tidal straining of a 

freshwater induced horizontal density gradient. The principal processes in the control 

of stratification have been identified by Simpson et al. (1990) as: (1) density-driven 

circulation caused by the freshwater run-off-, (2) tidal straining of the density field by 
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vertical shear in the tidal currents; and (3) the springs-neaps cycle of tidal mixing 

allowing the possibility of stratification following neap tides and causing a return to 

vertical homogeneity by the following springs. 

It is obvious that there are interactions between an estuary and the adjacent shelf sea 

region. The study of their interaction is necessary to improve our understanding of the 

processes in both the ocean and the river. However, our understanding of the detailed 

mechanism of the interaction between the processes in the ocean and the river is by no 

means complete due to the fact that in the coastal and shelf areas the circulation 

patterns are normally determined by combined forces and hence it is difficult to 

measure the effect of each individual force solely by observation. Numerical models 

are very useful in the study of the interaction between the estuary and shelf sea and a 

number of models have been developed over the past decade (Hsu et. al 1999; Davies 

and Xing 1999; Pietrzak et al., 2002). 

1.1 The Hydrodynamic Equations 

Numerical models have been used to describe the fields of velocity and density in the 

coastal and shelf sea (Davies et al., 1997a; Dyke, 2000), and are based on the 

hydrodynamic equations which incorporate the law of conservation of momentum, 

mass and energy. 

The equation of the conservation of momentum can be written in the following format 

(Kowalik and Murty, 1993): 
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aui au ap ao-Y 
p-+ PU -" + 2P'Ci 

kn Uk ý -- - PON + 

at J axi yi axi axi 

Here, a tensor summation notation is used, the three axes in Cartesian coordinate ( x, 

y, z) are denoted by xi , X2 and x3 and the velocity components along each axes are 

denoted by ul, U2 and U3 , respectively. In this notation system, an index appearing 

twice in a term implies summation over all three index values. In the above 

expression, p is the density of water, t is time, p is the pressure, Oj is the component 

of the Earth's angular velocity and cry are the stress components due to the molecular 

viscosity. Also note that Cok = +1 when Q, k are in cyclic order, Cuk = -1 when 1j, k 

are in anticyclic order, and cuk =0 if any pair or all three have the same value; 83j= 1 

when i =3 otherwise 831 = 0- 

The components of the stress tensor, ay can be expressed in the form of- 

aui au 
UU =p( axi + ý, -) 

wherep is the molecular viscosity. 

The conservation of mass can be expressed in terms of the continuity equation 

ap+aPu, 
at axi 

or OýU, 
=0 for an incompressible fluid. 

axi 
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The conservation equation for any other property of the fluid such as salinity, 

temperature, etc., is given by 

OpT 
+ 

apTu, W, 
+ (1.4) 

at axi &i 

where F, is the flux of the property T due to internal forces or pressures and Q is the 

total intemal source of T. 

Only in a few simple cases can the above equation be solved exactly, even so it needs 

to be simplified to determine which terms in the general equations are responsible for 

a particular phenomenon. One way to do so is to separate the motion of flow into two 

parts: the average motion and the departures from the average. The equations are 

consequently separated into two sets. This is usually used to separate the motion into 

the average and turbulent parts (Hinze 1975). 

After the separation and modification, the equation of motion and continuity for the 

average motion can be written as 

aTo-u, 
+ 

WUJW' ORM 
+ 2cuk -k 971531 + JU 

p C' 
i 
TU- 

at axi oxi axi axiaxi 

a; 5 
+ 

a; 5u-, aQj 0 (1.6) 
at k axi 

Here 

Q, = -Puj 9 
(1.7) 

5 



here, the overbar signifies an average value over a short period of time T and is 

defined by 

i+T/2 

(D J(Ddt 
i-TI2 

The prime denotes a departure from the average. 

The equations for the turbulent part of motion are 

au, 
+ 

a; 5u, ' W, 
- 

PRU, 
t -': 

ap ?I 
++ 2eyk flj; 5Uk ---- 9P 831 +P X-9) 

at axi kk oxi O-xj k 

op, 

+ ii, ap, + Ul a; 5 
- 
2-QI' 

= at axi axt axi 

Where 

-; 5u'ul i J) (I. 11) 

Ry = -; 5(u, u, ' - uu, ), (1.12) 

IpFII -(P uj -P uj), 

these two equations are not independent of each other due to their nonlinear nature. 

Here, Ry is called Reynolds stress tensor and represents the influence of the turbulent 

flow upon the average motion and Q, represents the mass transported by fluctuating 

motion. 
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The above equations of motion include a complete spectrum of motion. In order to 

use them in an application, a specific set which describes only certain types of motion 

has been derived from the general set of equations by means of dimensional analysis 

(Pedlosky 1982). It is assumed that certain information related to the temporal and 

spatial scale of motion is known as a priori. There are two examples for such priori, 

hydrostatic approximation and Boussinesq approximation. 

The horizontal dimensions of the ocean are much larger than the vertical, so the 

vertical motion is much weaker than the horizontal motion. If the flow is 

predominantly horizontal and the vertical acceleration is small compared to the 

gravity acceleration, the simple hydrostatic law (Proudman 1953) can be applied to 

rewrite the vertical equation of motion as 

0 -g 
I op 

p az 

where water is considered as incompressible and the variations in the density lead to a 

new term which is related to the buoyancy force (Landau and Lifshitz 1959) in the 

equation of motion. On making the Boussinesq (1903) approximation, the variation of 

density is only retained in the buoyancy force. 

1.2 Hydrodynamic Models of Shallow Sea 

The hydrodynamic models have been developed by solving the above equations in the 

specific area of interest, subject to appropriate simplifications and parameterizations. 

The approach used depends on the characteristics of the area. In the shallow sea 
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regions, the most common method for the tidal hydrodynamic modelling is to solve 

the equations with the tidal forcing input from the model's open boundary (Davies et 

al., 1997a), normally the tidal forcing is obtained from the measurements or output of 

a coarser grid model covering larger area. In this approach, the tide is prescribed as a 

co-oscillatory. In the shallow sea the water mass is small compared with that in deep 

ocean. 

Due to the computational requirements, early numerical models of physical 

oceanography of shallow sea regions solved the two-dimensional vertically integrated 

hydrodynamic equations and were restricted to computing elevations and transports. 

Such models can be applied to solve problems which do not depend on the vertical 

structure and were ideal for examining the changes due to tides (e. g. Flather, 1976), 

and storm surges (e. g. Heaps, 1983), which involved essentially barotropic (a state of 

a fluid for which the density p is a function of only the pressure) processes and were 

confined to the continental shelf, These models have been applied to predict the 

surface elevations in time and averaged current in tides, storm surges and tsunamis 

(Murty 1984). 

In the mean time, basin wide three-dimensional ocean circulation models were being 

developed. These models included important baroclinic (a state in which the variation 

with depth of motions associated with variation of density with depth) ocean effects. 

However, as computational limitations existed, they were available only with a coarse 

grid and could not resolve the shallow sea regions. In these models, the 

parameterisations of sub-grid scale processes are accomplished by using fixed 
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diffusivity parameters which are often artificially set a high value on coarse grid 

models to maintain stability. 

In recent years the advances in computational power allow the development of three- 

dimensional shallow sea models. Leendertse and Liu developed and tested a full set of 

models (Leendertse et al., 1973; Leendertse and Liu 1975). Initially, a two- 

dimensional model was used for the long wave propagation, then a three-dimensional 

model and afterwards turbulent exchange processes were included (Liu and 

Leendertse 1978). One of the significant applications is in tidal modelling. The 

determination of tidal elevations and currents in shallow sea regions requires the 

solution of the hydrodynamic equations, subject to variations in bottom topography 

and appropriate parameterization of energy loss by frictional dissipation. 

Blumberg and Mellor (1978) created a numerical model which included the 

turbulence closure sub-model (Mellor, 1973) to provide vertical mixing coefficients. 

The turbulence closure sub-model is based on the turbulence hypotheses by Rotta 

(1951) and Kolmogorov (1941) and has been extended to model stratified flows. As 

the results of subsequent contributions made by many others, the model has been 

developed and applied to oceanographic problems. The horizontal grid uses 

curvilinear orthogonal coordinates and an Arakawa C differencing scheme which is 

staggered (Mesinger and Arakawa, 1976). The vertical coordinate uses a sigma 

coordinate which is a necessary attribute in dealing with topographical variability. 

Together with the turbulence sub-model, the model produces a realistic bottom 

boundary layer which is important in coastal waters (Mellor and Blumburg, 1985). 
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The horizontal time differencing is explicit whereas the vertical differencing is 

implicit. The latter eliminates time stepping constraints for the vertical coordinate and 

allows the use of fine vertical resolution in the surface and bottom boundary layers. It 

has a free surface and a split time step. 

Heaps (1972 and 1974) introduced a three dimensional hydrodynamic model of the 

Irish Sea which has been developed into sophisticated models. Whereas vertically 

integrated two-dimensional (in the horizontal) models were used for tidal storm and 

tsunami modelling, Heaps and researchers at Bidston Observatory first used three 

dimensional models for tidal and storm surge computation, this bridged the gap 

between two-dimensional coastal models and three-dimensional circulation models. 

In recent years, with advances in computational power, more sophisticated three- 

dimensional shallow sea models have been developed. Unlike ocean circulation 

models in which the parameterisation of sub-grid scale processes is accomplished 

using fixed diffusivity parameters (which are often artificially high in order to 

maintain stability on the coarse grid), the fine grid nature of shallow sea models 

enables these processes to be included by using turbulence energy closure sub-models. 

Also, fine grid models incorporating turbulence closure schemes can both resolve the 

changes in topography associated with the shelf edge and the resulting boundary layer 

currents, as well as the turbulent mixing and across shelf exchange which occurs in 

this region. 
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A study by Pietrzak et al., (2002) presented a three dimensional hydrostatic model 

that combines a generalised vertical coordinate system with an efficient implicit 

solution for the free surface. 

One of the ma or problems related to three dimensional modelling has been the j 

excessive amount of time consumed in the computer simulations. One solution to this 

problem is using the time splitting scheme to solve the model equations. The velocity 

can be written into two parts which include the depth-mean velocity and the depth- 

dependent velocity. These two velocities are included in external and internal modes, 

respectively. The external mode represents the fast moving gravity waves and uses a 

small time step; the internal mode represents slower moving waves and larger time 

step can be used. This method was utilized by Simons (1974,1980), Madala and 

Piacsek (1977), Berntsen et al., (198 1), Blumberg and Mellor (1983) and Hess (1985). 

In addition to splitting into physical modes, Berntsen et al., (1981) also used a time 

splitting into fractional time steps. The stability conditions of an external or barotropic 

model of motion in the numerical computation is governed by the CFL condition, 

which requires very short time step in computation (Ramming and Kowalik, 1980). 

This mode does not need to be described by the full three-dimensional equations, it 

can be studied by a two-dimensional, vertically averaged set of equations. 
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1.3 Numerical Models of Estuarial Circulation 

In parallel with the development of these three-dimensional hydrodynamic models for 

shallow sea, numerical models of estuaries which are regions of transition from river 

to ocean were also developed. Estuaries are characterized by the possibility of tidal 

motions communicated from the sea, and by gradients of salinity and density 

associated with the progressive mixing of river water and sea water. The effect of 

gravity on the density difference between sea water and freshwater tends to bring 

about vertical salinity stratification and a convection flow known as estuarine 

circulation. The distribution of salinity, flow circulation within the estuary are 

dominantly determined by freshwater flow and tides. The interaction of tidal forcing, 

surface wind stress, irregular topography and density stratification results in complex 

flow and transport processes in estuaries. Numerical models used in cstuarial studies 

should account in detail for both advective and turbulent transport. Early numerical 

models of estuaries have been used to investigate tidal dynamics using a one 

dimensional flow theorem (Harleman, 1971), but its application has severe limitations 

to a partially mixed estuary, and can not adequately describe the tidal current which 

has large vertical amplitude and phase variations. 

A vertical two dimensional numerical model of a rectangular geometry has been 

developed by Hamilton (1975) in a study of circulation in the Rotterdam Waterway 

and vertical mixing within a tidal cycle. Blumberg (1975), Elliot (1976) and Rao 

(1995) had used nonuniform geometry in their two dimensional models; while Festa 
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and Hansen applied the steady-state, uniform geometry model to study internal 

circulation and turbidity. A semi-implicit two dimensional model for circulation in a 

partially mixed estuary was implemented by Wang and Kravitz (1980) to indicate 

large longitudinal and vertical changes in tide, density driven and wind driven 

circulations. These models appear to be able to reveal some major features 

characteristic of partially mixed estuary. 

Johns (1978,1983) developed a multi-level two-dimensional channel model using a 

turbulence energy equation in a scheme of turbulence parameter. The turbulence 

closure was achieved at the level of the turbulence energy equation. A transport 

equation had been added to the modelling system later on (Johns and Oguz, 1990) 

which describes how salinity is advected and diffused through the channel. The 

inclusion of this process leads to an extra term in the turbulence energy equation and 

this has its maximal effect in regions of strongly stable vertical salinity stratification 

where it has a marked suppressive influence on turbulence generation. 

Hsu et al., (1999) suggested a laterally averaged two-dimensional numerical model 

and extended the model to handle the tributaries as well as the mainstream of an 

estuary. 

1.4 Numerical Solution of the Modelling Equations 

The first step towards the solution of the numerical models is discretization of the 

model equations. These include the discretization in the horizontal and vertical, as 

well as time stepping. 
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1.4.1 Horizontal Discretization 

The traditional approach used in the horizontal is a uniform finite difference grid. In 

most of tidal hydrodynamic models, most commonly used scheme is space staggered 

grid. A well known scheme is the Arakawa C grid in which elevation and the two 

components of velocity are solved at different grid points. Another scheme is to 

compute the two components of velocity at the same grid point, while elevation is 

computed at a different point. This is known as 'the Arakawa B grid' (James, 1990 

and Lardner and Song, 1992). The disadvantage of the uniform grid is that it can give 

rise to spurious residual flows in the near coastal region due to the irregular coastline. 

Johnson (1980) and Spaulding (1984) reported their work using boundary-fitted 

coordinates in which the grid is transformed to fit the coastline in a smooth regular 

manner. This significantly improved the representation of the coastline. 

In recent years, the finite element method has been used in the horizontal by many 

researchers, among them there are: Foreman and Walters (1990); Lynch and Naimie 

(1993); Luettich and Westerink (1994); Lynch et al., (1995). The method is suited to 

problems involving tidal propagation from the ocean to the shallow sea where the 

wavelength of tide decreases and therefore enhanced resolution is required. 

Additionally, the higher harmonics of the tide are generated in the shallow sea 

through the nonlinear interactions (Xing and Davies, 1995). These higher harmonics 

have shorter wavelengths than the fundamental tide and hence the increased 

horizontal resolution is necessary to resolve them accurately. It has been shown that 

the finite element method with a progressive refinement of the grid at the near coastal 
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region can produce highly accurate solutions (Le Provost et al., 1995; Foreman et al., 

1993; Luettich and Westerink 1994). 

1.4.2 Vertical Discretization 

The discretization in the vertical can use the similar techniques to those used in the 

horizontal, namely, finite difference grid along z coordinate. This scheme often fails 

to represent properly the near-bed region, where a very fine grid is needed. Koutitas 

and O'Connor (1980) applied the finite element method to the vertical discretization. 

The resolution can be improved by using finer elements in the near-bed region where 

the greatest shear of tidal currents exist and frictional effects are most important. 

The difficulties are often encountered in the region of abrupt topography variations or 

in the surface of bottom boundary layers. To overcome these obstacles a coordinate 

dimensionless coordinate is introduced through the transformation: 

(B- A) 
Z-4 

+B. h+iý 

The new coordinate transforms the column of water from the surface (z =ý) to the 

bottom (z = -h) into a uniform depth ranging from A to B. The vertical discretization 

in a-coordinate can be chosen in such manner as to provide an optimal vertical 

resolution. Using finite difference grid in a-coordinates has the advantage of having 

the same number of grid points in the vertical at each horizontal location and avoiding 

the problem related to the free surface. The a coordinate not only transforms the 
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vertical direction but it also depends on the horizontal coordinates. So all partial 

derivatives must be restated in the new system of coordinates. 

It is obvious that in the tidal hydrodynamic models with a-coordinate system the 

variables are calculated at non-fixed physical levels, because water column depth 

varies with time. 

However, the use of a-coordinates in regions of steep bottom topography can lead to 

spurious results (Gary 1973; Haney 1991). Sharp topographic change from one grid 

point to the next means that the pressure gradient calculation involves taking the 

difference between two large terms that can lead to large roundoff errors. 

1.4.3 Time Discretization 

Tbe- integration- of the hydrodynamic equations through time is usually achieved by 

discrete timc-stepping method in which the solution is integrated from one time level 

to the next (Aldridge and Davies, 1993). 

In tidal problems where the solution is known to be periodic in time, an alternative 

approach is to use an expansion method in the time domain (Le Provost and 

Fomerrino, 1985; Baptista et al., 1989; Westerink et al., 1989; Walters and Werner, 

199%). This approach describes the elevation and the two components of current as a 

time-dependent component PO and a sum of amplitudes of periodic components P, 

with known frequencies o),. 

N 
P= Po + EP,, exp(-ico,, t), 

n--]V 
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where P could denote ý, u, or v. Tidal frequency for component P,, is denoted by co,, . 

N is number of tidal harmonics in the expansion. 

With the expansions for ý, u and v, the time derivatives in the hydrodynamic 

equations are removed, leaving a complex set of equations without time variable. 

These can be solved using a finite element or finite difference mesh to determine the 

amplitude and phase of each tidal harmonic at each horizontal grid point. 

1.4.4 Surface and Bottom Boundary Conditions 

At the sea surface, the condition of the free surface is affected by specifying a zero 

stress surface boundary condition. At the seabed, the condition of zero flow at the 

bed is effected by specifying a no-slip condition. 

In the three-dimensional model, the most common solution is to apply a slip condition 

at a reference height above the seabed and relate the bed stress to the currents at this 

reference height. It is found in the literature that the quadratic slip condition is one of 

the commonly used formulations: 

POUh NFUh (I. I 7a) Khh 
2+ 

Vh 
2 

22 GB 
"ý ICPO Vh 

VUh 
+ Vh (1.17b) 

where FB, GB are the bed stress components; Uh. Vh are currents at reference height z= 

h, ic is a constant coefficient given by 
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K 
ln(zlzo)) 

where K is von Karman's constant and zo is the roughness of the seabed. 

In the two-dimensional model the bed stress is usually related to the depth mean 

currents instcad of currents at reference height. Davies (1988) used a convolution 

method to produce a bed stress that is cquivalent to that in a three-dimensional model. 

1.4.5 Diffusion Coefficients 

Consideration needs to be given to the choice of diffusion coefficients. A good 

representation of turbulence is necessary for the simulation of flows in estuaries and 

coastal areas. Both surface and bottom mixing is considered an essential property of 

the choice, because wind and thermal forcing dominate the surface of the ocean, while 

in shallow sea the bed friction is important. A two-equation k-c turbulence closure 

model has been applied by many researchers (Blumberg and Mellor, 1987; Burchard 

et al., 1998; Davies and Xing, 1999). The model involves prognostic equations for the 

turbulence energy and mixing length which can then be used in the computation of 

viscosity and diffusivity. Baumert and Radach (1992) have used prognostic equations 

for turbulence energy and dissipation rate. 
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1.5 Aims and Objective of Present Work 

Although numerical models have been used to simulate processes in both estuaries 

and shallow sea, their space scales are different. If all the processes were resolved by 

a numerical model the computer time required to obtain the solution may be very 

large. This will be difficult when coastal engineers need to select a computational 

model to assess the impact of engineering works in coastal and estuarial waters. A 

solution to this problem is to subdivide the modelling domain into two subdomains, 

where spatial resolution can be different. 

The overall aim of the work described in this thesis is to develop a numerical model 

based on joining together a two-dimensional river model with a three-dimensional 

shallow sea model. The model will be used to study the interaction of the tidal flow 

between the shelf sea and the estuary where the sea reaches the river valley. Both the 

role of shelf sea flow circulation in changing the flow in the river and the role of the 

river discharge in modifying the circulation in the shelf sea are involved. To achieve 

this, the following objectives need to be addressed. 

To select a two-dimensional river model which is able to describe the flow and 

relevant transport processes including advective and turbulent transport in 

estuaries. The high resolution in the horizontal direction is required for the 

hydrodynamic processes in the estuaries. The river model should be able to 

simulate the tidal elevation and allow the propagation of tidal motion through the 

seaward open boundary. 
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(2) To select a three-dimensional hydrodynamic model for the shallow sea 

(hereafter referred to as the bay model) to simulate the tidal current and provide 

the real-time variables to be used as boundary conditions of river model. 

(3) To combine together the river model with the bay model to develop a joined 

model which enables combined modelling of tides, freshwater flow and sediment 

transport. 

(4) To test the joined model against the observations of tidal component M2. 

In Chapter 2 and Chapter 3, the basic tools, namely, the river model and the bay 

model are described respectively. Using a turbulence energy equation in a scheme of 

turbulence parameterization, the river model is able to describe tidal and density 

driven circulations of flow, as well as sediment transport in the estuaries. The bay 

model is capable of simulating and predicting many of the complex flows in the 

shallow sea. It is used to produce real time tidal regimes and provide tidal forcing to 

the river model as open boundary condition. 

The horizontal resolution in the river model has been increased and tested before it is 

joined with the bay model later in Chapter 4. 

Chapter 4 presents the implementation of the joining work. The linkage is set up at the 

horizontal point where the river meets with the shallow sea. Two models are linked 

together dynamically by the surface elevations. The problems that are encountered 

and the methods of solution are described in detail. An interactive vertical grid 

splicing scheme is used for exchanging information between the river model and the 
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bay model along the common vertical boundary. This scheme converted the variables 

which are calculated at non-fixed physical levels into the variables at the same 

physical levels so that the time extrapolation can be carried out. 

Results are given in Chapter 5 for test cases and several numerical experiments. 

Simulations from the joined model for the M2 tidal amplitude are compared with the 

observations reported by Aldridge and Davies (1993). The significance of differences 

between the results of joined model and the bay model has also been tested by using a 

global estimator (Ozer et al., 2000). The following experiments are performed in 

Liverpool bay and Mersey estuary: 

(1) Rivcr modcl without joining with bay modcl whcre a singic hannonic with pcriod 

of 12.4 lirs is used to produce the tidal amplitude imposed on the mouth of river. 

(2) Bay model without joining with river model where the M2 tidal component is 

input along the open boundary. 

(3) Joined model driven by M2 tidal force and freshwater discharge. 

(4) Joined model driven by freshwater discharge only. 

The results from above experiments are then used to investigate the ability of the 

joined model to simulate the relevant transport process in the estuary and shallow sea. 

Chapter 6 contains the conclusions and suggestions for future research work. 
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Chapter 2 Two Dimensional Single River Model 

The model used in the study is based on that initially developed by Johns and Oguz 

(1990) and applied in a study of the elevation of the flow and salinity distribution in 

the Bosphorus. It is a multi-level two-dimensional channel model with an energy- 

based turbulence closure scheme and topography following coordinates. Suspended 

sediment concentration has been incorporated into the present model. 

2.1 Governing Equations 

The model is set up on a two-dimensional analysis domain as shown in Fig. 2.1. The 

water in the channel is considered to be a cross section frame (xz) with the origin, 0, 

at the equilibrium level of the free surface of the water. All conditions are referred to 

rectangular Cartestian coordinates. The axis OX points horizontally from the head of 

the estuary towards open sea along the channel. The positive z axis is directed 

vertically upwards from z=0. The water motion is described by the velocity 

components u, w, and the pressure is denoted by p. We consider the water to be 

frictionless, inhomogeneous and incompressible. The external forces acting on a unit 

volume element will then be pressure gradient plus possible volume forces, primarily 

the gravity force. According to the theory of Newton's mechanics, the rate of change 

of momentum is related to the external force and has the form of 

au 
+u clu +w 

au 
=-1- 

op 
, at & o'z p O'x 

and 

0 "'W "W 
+UOW+WO =-9- 

I ap 
(2.2) 

at ax az p oz 
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(a) Longitudinal Section View 

z 
Free surface of water Tidal oscillation 
at z ý(X, t) imposed here 

x 

h 
Bed of estuary at 

z -h(x) 

X-0 X-L 

X 

Freshwater b(x) < 
Open sea 

now _> 
tidal flow 

(b) Plan View 

Fig. 2.1 The illustration of the analysis area along the 
river channel. 

The fluid density p (x, z), velocity u, w, and pressure p are averaged across the 

channel with rectangular cross-section of breadth b(x). 

The equation of continuity for the unit volume element of water flow can be 

expressed in the form: 

a (bu) + -2- (bw) = 0. 
a az 

(2.3) 

The pressure is taken as hydrostatic, so the vertical equation of motion reduces to: 

0=-g- 1 op 
(2.4) 

p& 
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Setting the cross-sectionally averaged position of the surface of the water at time t at 

z= ý(xj) and the cross-sectionally averaged position of the immobile bed to be at 

z= -h(x) , the integration of (2.4) from a general depth to the free surface will give: 

c 
p --2 p. + fgpdz, (2.5) 

where p. is the atmospheric pressure assumed constant. 

Making partial differentiation on (2.5) w. r. t. x and simplifying with the Boussinesq 

approximation leads to 

I ap 
= -g 

a4- I 'ý a 
K-- 

f- (gp)dz, (2.6) 
p&Az ax 

where po is the density of pure water. 

Multiplying Equation (2.1) by b(x) together with continuity equation in flux form 

leads to: 

(bu) +a (bu') +a (buw) = -gb 
a 

(gp)dz. (2.7) 
at ax az ax Po 

! 
FX- 
u 

The salinity, S and the sediment concentration, C, satisfy the transport equations 

(bS) + -2- (buS) + cl (bwS) = 0, (2.8) 
at & az 

and 

a (bC)+ a (buC)+ a [b(w - w,, )C] = 0, (2.9) 
at & az 

where w, is the settling velocity of typical sized sediment particle under consideration. 

Thus, the velocity at which particles are advected in the vertical is reduced by w,. The 
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settling velocity is a crucial quantity governing the concentration distribution and it is 

proportional to the surface area of sediment particles. Following Johns (1997), its 

value is set to 10-4 m/sec for the sediment grains with a diameter of order 1011m for 

which the bulk density is 2100 kg m3. 

Integrating the equation of continuity vertically from the bottom z= -h to the surface 

z=4 will give another form of the continuity equation: 

b aH 
+D (bH(u» = 0, it- ex 

where H= 4+h is the total depth, and (u) is the depth-averaged velocity given by 

(u) =1f udz Hh 
(2.11) 

The density p is related to the salinity, S, and the suspended sediment concentration in 

terms of 

p 
P= P. +(I- r-w)c, (2.12a) 

and 

P. = Po 0+ ys), (2.12b) 

where po is the density of pure water. p, and p. are the densities of the sediment 

material and the saline water. Here, we follow Johns et aL (1992) and take y= 

7.5x 104/ppt. 

Like most natural flows, the motion of water in the river is turbulent. The velocity and 

the pressure depend on space coordinates and time. These can be presented as the sum 
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of a time average and a time dependent fluctuating component. The instantaneous 

variables at a fixed point in space are expressed as, 

u=ii+u' , 

w=T+w', (2.14) 

p= j5+p" 

where a prime signifies the fluctuating part and an overbar denotes a time averaged 

value defined by 

+T 
X)dt. 

-T 2 
(2.16) 

In the above, T is the averaging period typically of the order of one minute and much 

less than a characteristic tidal period Of M2 tide (12.4 hours). Likewise, the densities, 

salinity and sediment concentration are decomposed as, 

(2.17) 

P. = T. + Pw 9 
(2.18) 

S=S+S', (2.19) 

C=C+C'. (2.20) 

Substituting the flow parameters in (2.7), (2.8) and (2.9) by their mean and fluctuating 

components and taking time average lead to 

b (bW) + (bu) + (buw) = -gb 
L 4' (g; 5)dz+l-(-bu")+- a (-buw') at cix az ax Po ax az 

(2.21) 

(bg) + -ý- (bWS) +a (bWg) =0 (-bý T) + -ý- (-bw'S'), (2.22) at ax az ax az 
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a (bU) + (biff) + -ý 
[b(T 

-w, )Z7] -L9 (-býýC) + -ý (-bw'C'). (2.23) 
at az ax az 

Here wý is assumed constant and 

;5= ; 5" + (I - )C (2.24a) 
A 

; 5. = po (I + 19). (2.24b) 

The continuity equation when averaged becomes 

a (bff) +a (bw) = 0, (2.25a) 
ax az 

or 

bL+ ±- (bH(W)) =0 (2.25b) 
at ax 

In equations (2.21), (2.22), and (2.23), there are several terms which have similar 

formation and are related to turbulent flux. They are 

- bu'u', - buw', -buS', -bw'S, -bu'C', - WC. 

These terms are of fundamental importance in nearshore processes and need to be 

parameterised properly. 

A conventional method is based on the gradient transfer law, in which the effect of the 

turbulent flux is expected to produce a shear in the Reynolds-averaged flow. 

Consequently: 

- ulw'= K. -9 (2.26) 
az 

as 
- w'S'= Ks -q (2.27) 

az 
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- 
7C-; = Kc 

ac 
az 

(2.28) 

where KM, Ks, KC are vertical coefficients of turbulent exchange of momentum, 

salinit/ and sediment concentration, respectively. In this work we prescribe that the y 

diffusion coefficients for all transport processes are equal in value, thus 

Km= Ks=Kc= K. (2.29) 

All other turbulent flux terms represent a horizontal diffusive effect and will be 

ignored. 

Now the equations (2.2l)-(2.23) can be written as 

a_ba( )d +a 
a'T) (2.30) (b W) + 

(bu) 
+ -i 

(b-uw) 
= -gb 

2! L 
g; 5 z (bK- 

at az ax PO ax az az 

aaay (bg) + (bUY) + (bWg) (bK aS (2.31) 
at ax az az az 

a (bU)+ a (biff)+ ' [b(T-w, )U]=±-(bKC). (2.32) 
at ax az az az 

In above equations: 

- gb 
L is the barotropic contribution to pressure gradient resulting from the slope of 

free surface. 

b0 (g; 5)dz is the baroclinic contribution to pressure gradient resulting from 
A ax 

horizontal density gradient consequent upon the different ambient salinity of the water 

in the head and mouth of river. 
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a aw a as a ac (bK ), (bK ), (bK -) are vertical turbulent transports of momentum, 
az az az az az az 
salinity and sediment, respectively. 

Equations (2.25), (2.3 0), (2.3 1) and (2.32) have to be solved together with appropriate 

boundary conditions through which the system is driven. Additionally an appropriate 

assumption about K is also needed. For a homogeneous estuary flow, it may be 

acceptable to prescribe a constant value of K provided that appropriate boundary 

condition is applied at the outer limit of the bottom shear layer adjacent to z= -h . 

However, it is much more satisfactory to compute the value of K by an energy based 

turbulence closure scheme. This requires to derive the turbulent energy E from a 

prognostic equation. This equation can be obtained by inserting the velocity, pressure 

and density in form of mean plus turbulence into the basic hydrodynamic equations 

which now include the molecular viscous terms. 

To do this it is necessary to define the Reynolds-averaged turbulence energy in the 

flow by 

1 
(; 

72 
+ 

;; T). 
(2.33) 

2 

Multiply the equations with turbulent velocity and take Reynolds-average, then apply 

a lengthy manipulation to retain the dominant terms and ignore the rest of the items. 

This results in: 

aaaaI 
t2 gb ( 7- 

-(bf)+ (bTE)+ (bTE)+-Ibw'(p'lpo+-u )J=b(-ýýWff+- W, 
)- 

I be 
at ax az az 2 az PO 

(2.34) 

Here c is the dissipation rate of turbulent kinetic energy which specifies the loss of 

turbulence energy by dissipative processes. 
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The expression b w'(p'l po +IU t2 represents the redistribution of turbulence 
1- 

2 

energy by turbulence itself and can be replaced by 

bK( OK ). 

az 
(2.35) 

The first term on the right hand side in equation (2.34) represents the production of 

turbulence energy from the mean flow. It will always be positive so is a source of 

turbulence energy. From (2.26) and (2.29), this term can be parameterised by 

b(-u w bK (2.36) 
Oz az 

The second term on the right hand side of (2.34) represents the vertical transfer of 

density fluctuations by the fluctuating vertical turbulent velocity. This term could be 

either positive or negative and will act as either a source or sink of turbulence energy. 

Again it is frequently parameterised according to the gradient transfer law applied to 

density fluctuation, hence 

gb 
-L 

bK0; ý 
(2.37) 

A PO az 

All the transfer processes are therefore contributing to the vertical gradients in the 

corresponding Reynolds-averaged quantities. Consequently equation (2.34) is 

equivalent to: 

aaa OiT 2aa gbK aýi (bE)+ (bUK)+ (bWK)=bK( )+ [K (bE)]+---bg, (2.38) 
a& az az az az A az 

According to Johns(1978), the exchange coefficient is related to the turbulent energy 

density by 
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K=c 1/40/2. (2.39) 

The turbulent energy density, E, satisfies (2.39) and r, is the dissipation rate and given 

by 

C 
3/4f3/2 

(2.40) 'D 

where c is an empirical constant and its value is recornmended by Launder and 

Spalding (1972) as, 0.08. The vertical mixing length, 1, is given by Johns et al. (1991) 

as: 

jrB I=1 (2.41) 
I 1(z +h+ zo) +1/(, ý -z + z, )' 

where r, is Von Karman's constant, zo is bottom roughness length, z, is a surface 

roughness length whose primary role is to prevent the occurrence of a zero in I at z 

The damping coefficient, P, is defined by local Richardson number: 

1- 
1 

2)1/2 
]2 (2.42) 

R, +(I+ Ri 

Rj, - 61 
ey / az 

(2.43) 
(aiT / ez) 2 

2.2 Boundary Conditions 

The boundary conditions at the free surface and the floor of channel are defined by: 

D 
0" - Z) =0 at z=ý, (2.44) 

Dt 

D 
(h+z) =0 at z= -h, (2.45) 

Dt 

31 



where 

Da0a 
= +u +w 

Dt at ax az 
(2.46) 

A condition of no-slip and zero normal velocity at the topography is prescribed. 

W=0 at z= -h, (2.47) 

W+W 
ah 

=0 at z= -h. (2.48) aý 

No momentum transfer across free surface: 

aw " TZ 0 atz=4 (2.49) 

aE " 
az 

0 atz=-h and z=ý, (2.50) 

which means no vertical transfer of turbulence energy across topography or free 

surface. 

The boundary conditions on the salinity and sediment concentration at the topography 

and free surface are: 

K as 
=0 atz=-h and z=ý, ez 

this means no vertical transfer of salinity across topography or free surface. 

The boundary conditions on the concentration at the topography are prescribed 

according to the following two cases: 

Case A: when the bottom friction velocity, u *, is less than some critical value, u *, , 

there is a flux of concentration across the bed due to the settling; when u* exceeds 

that critical value, u *,, there is no flux across the bed, thus 
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ac 
=0 for u* 5 u*,, (2.52) 

az 

and 
ac 

KT+WsU=O foru*>u*c. (2.53) 
z 

Case B: when the bottom friction velocity u* is less than some critical value, u*, , 

there is a flux of concentrate across the bed due to the settling; when u*, exceeds the 

critical value, u*,, it allows sediment pickup, 

ac 
=0 for u* -! ý u*c, (2.54) 

az 

-K 
ac 

=P for u* > u*c, (2.55) 
az 

where P is a pick up function which is suggested by Van Rijn (1984) which is defined 

as 

p= cr,: 
fWpo3l2 (2.56) 

where 

0=0 for u* :5 u*c, (2.57) 

0= [U*/ U*c ]2 _I for u* > u*c. (2.58) 

C,, f is a reference concentration whose value is determined by the available erodible 

bed material and must be prescribed. In this study C,.,, f = 10-4 (Johns 1997). The pickup 

velocity, wp, is defined by: 

wp =[I(p, - po)IA )gDjo]1/2, (2.59) 

where D50 is the median grain diameter of the concentrate. 
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The critical friction velocity, U*c, is suggested to have a value of 16.3x 10-3 m/sec by 

Van Rijn (1984,1986). 

At the head and mouth of channel, radiation boundary conditions are used (Johns et 

al., 1983), they have the following forms: 

iZ_(9)112,; = -2(< 17 ýý')x-L at x (2.60) 
h 

and 

W+( 
9) 1/2 4' = 2(< W >),. o at x= 

where (< W >),,. o is set equal to a quantity, uo, which must be able to reflect the 

fteshwater flow across the landward end of the channel or estuary. 

The value of (< 17 will be set to reflect the effect of tidal wave with period, tp, 

propagating from seaward end of the estuary, and it is chosen to produce the tidal 

amplitude at x=L. Here the tidal wave is considered as a single harmonic. 

Consequently the boundary conditions become: 

4'=(A)"'[2uo-<W>] at x=O, (2.62) 
9 

and 
h) 112 [2ULsin(27d/tp)+<W>j atx=L. (2.63) 
9 

A streamfunction y is introduced in the model to illustrate the circulation pattern in 

the river, this is defined by: 

aV1 
= -bW (2.64) 

az 
av 
ý5C = bw. (2.65) 
0 
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The application of the boundary conditions at z= -h(x) and z= ý(xj) results in the 

choice of z as a vertical coordinate unsuitable, it is often unable to reproduce the 

processes in the region of abrupt topography variations or in the surface or bottom 

boundary layers. As presented by Johns (1978), a dimensionless coordinate is 

introduced through the transformation 

z+h (2.66) 
4'+ h 

In cr-coordinates, the vertical differentiation has the form: 

5-L 
= -bllu-, (2.67) 

Oa 
and taking V/= 0 at a=0, we have 

V/ = -bII 
fWda. (2.68) 

By using the value of u at the discrete a-levels in above equations, the integral in 
0 

(2.68) may be evaluated numerically to provide corresponding values of V/. The 

streamlines of the volume transport in the river can be delineated by plotting the 

contours along which V is a constant. 

The new coordinate converts the column of water from bottom (z = -h) to the surface 

(z =,; ) into a uniform depth ranging from 0 to 1. The illustration of it is shown in Fig. 

2.2. The vertical discretization in a coordinates can be chosen in such a way that an 

optimal vertical resolution can be provided. It follows smoothly the contours of the 

variable topography with the number of the vertical layers being conserved over the 

computational domain. This method was originally introduced into meteorology by 

Phillips (1957) and has been applied in marine modelling by Freeman et al. (1972) 
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and Nihoul (1977) and many others since. Its application in free-surface channel 

modelling has also been considered by Smith and Takhar (1977). 

C 

Z 

Fig. 2.2 The sigma coordinate system 

a-0 

It is clear that the sigma coordinates not only transform the vertical direction but also 

depends on horizontal coordinates. Therefore all partial derivatives must be 

transferred into the new system of coordinates. Derivatives with respect to z transform 

according to: 

00 

=I CIO o9z ; +h Oa' 

a=l 

0.75 

0.5 

a- 0.25 

(2.69) 

where 0 represents a dependent variable. The derivative with respect to the horizontal 

coordinate in the old system is transformed according to 
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ao ao 
--1 

(0, a(ý, + h) 
+ 

a,; ) ao 
(2.70) 

ax ax Tý + h) & ax)ac 

The time derivatives transform according to 

00 aol I (I+, ) ,, ý 10 
at at + h) at aa 

(2.71) 

The previous equations are now transferred into new coordinates with the definition 

of the following prognostic variables: 

6= bHu-, (2.72) 

S= bHS, (2.73) 

E= HIE, (2.74) 

C= bHC. (2.75) 

Using new variables in (2.72)-(2.75) and substituting for the density from (2.24), 

equation (2.30) becomes: 

05 
+a (UR) +a at ex ac 

= -gbH 
a; 

- gAH' 
t LS du + gAH[ýI. - o-)g - 

tgdalah 
9 (2.76) 

ax 
1 cl (K ao. ) 

& H' ea 

where new dependent variable, m, is defined by: 

U= a# + Wax + ýWaz 9 (2.77) 

here a subscript denotes a partial differentiation. 

The continuity equation (2.29) leads to a diagnostic equation for w- 
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0 {bH(ii - (ii») +a (bHtu) = 0, (2.78) 
ex acr 

where tor =0 at a =0 and a=1, and (W) is given by: 

(W) =I Wdcr . (2.79) 

Equations (2.3 1) and (2.32) now become 

as 
+a (ug) +a (ug) =Ia (K 

as 
(2.80) 

at ax aa H' ac acr 
and 

cic a1 19 (W(ý) (K 
OC 

at -ý ao-[(U-2Hýs)C1 FTa 
19c) 

The turbulence energy equation is also transformed to 

aE a- bK ai7 2c as I 1+ýs ac + (UE) + (UE) =-- ) +g yK(I--.: '-) -+gbK(-- at & aa H3 aa PS 
Ta 

A p, aa 

Ia aE 
- We 

aa 
(K 

aa 
(2.82) 

The boundary conditions to accompany this set of transformed equations are now 

expressed as: 

iT =0 at cr=O , (2.83) 

aw 
=0 at a=l, (2.84) 

Oc 

aE as 
-=0, =0 at a =0 and a= 1. (2.85) 
ac ao- 

2.3 Numerical Solution 
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The governing equations are solved by finite difference numerical scheme over a 

discrete grid in a x-or domain. 

x=(i-I)Ax, i=1,2,..., m, Ax=L/(m-1), (2.86) 

a= (j - I)Aa, j=1,2,..., n, Aa= 11(n-1). (2.87) 

In the horizontal dimension, staggered finite differencing grids are used, the odd value 

of i correspond to the points at which surface elevation, 4, and salinity, S, are 

calculated; the even value of i correspond to the point at which velocity u and the 

turbulent energy density K are calculated. m is selected to be odd so that the ends of 

horizontal domain correspond to ý points. A non staggered grid is used in the vertical 

dimension. 

The finite difference form of equations are solved by a combined centred finite 

differencing and averaging method. For the horizontal advective terms in the salinity 

and sediment concentration equations a globally conserving upstream scheme of 

differencing is applied that guarantees the positive advected quantity. The evaluation 

of vertical derivatives is derived by the use of simple centred difference replacements. 

The elevations, ý, at the grid points 1=3,5,7.... m-2 are calculated from: 

4', P+l - Iýip 
(16, P+I, jda- 

I ii, ýI, 
jda) 

At + 2bjAx = 0. (2.88) 

The value of ý at i =1 is specified according to (2.62), and at i =m it is specified 

according to (2.63). 

At each time step, p, the horizontal velocity u is computed at i=4,6,... m-3 by 

discretized form of the momentum equation: 
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-P pau -(tup +V7p 1)(i!, 
P P, 

i+ 2, j 
(mr, ", + tu p 

+1 
)(WPi + ilipm ) 

2, J 
(w 

J+ ui, + -)i- 
ij ij ij- 

At 4Ax 4Aa 
P+l + +1 +1 - I; p )Sip 

P+l J-1 (,;, P+, + h, 
+, +I, j - (i; jýj + hi-I)ýiPl, j 

-gb, + h) 
2Ax gbi7(;, P+ + h, )[(-+ 

2Ax 
)Aa 

+1 (hj+j - h, 
-, 

) gip 9j` 
- a, ) +a, (4"P++' 4oLl Sl p+ =2 [(KP,, j 'n 2Ax -i 2Ax j 2(; iP+' + h, )'(Aa) 

i. j_l)Wjp+, -(KP+l +2KP +KP_I)iiP+l +(KP+j +KP )i7lP+l 
. j2 + KP Ij Ij Ij 

(2.89). 

The turbulence energy is calculated by the discrctized form of energy equation: 

+I -Ap PPPPP ,j 
(Wt) 

2. j 
p -(a7 +Uip-l)(, E tip 07iý)1-2, 

j 
(u 

Q-1 
) 

+ i+ Q+ 
uipj+l Oij 

+ 
tij+l 

iijQ 

At 4Ax 4Aa 
KP (, qp 

_i7p 
)2 P cp gK II+ vs 

P 
P )(S P )(Ui. pj+l - cip 

-1 b13(ý, p +hd)3 

U, 

,i (2Aa)2 2Aa P, PO AJ 

(KIP P+l 
- +2KP +KP c 

3/4(r 
,p 

)1/2 (KP +KP ++ 
. j-l 

+KP KP II J+l i1i I Ij ij 
- Xb]tP+ - 

ij I, J+l 
) kipil 11 

2 )2(, &a)2 
+1 +' + h, ) 2 (Aor) 21P 

+h )2(, &a)2 
,J .j 

+h, 2 2(4'iP 
(2.90), 

where 

1/41 pCP c I. J9 
II+ ýs P 

Ij 
-sp 

ij 
Xb =- - F*j )(S pI- 

, J- -)(CP+l - CP-I)l 
2Aa(ý', 11 + h, )(KjP )1/2 

ry(" 
ij+ IM 

AA JjA 

(2.91) 

and 

KP = c' 141p (Kp )112. 
I, j ij li 

(2.92). 

In the salinity transport equation, the treatment of all terms except the horizontal 

advection is analogous to the evaluation of the corresponding terms in the momentum 

equation shown as above. We simply describe the basic form of the solution process 

to be: 

as 
+a 91 (2.93) 

at ax 
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where 91 incorporates the effects of vertical advection, vertical diffusion and 

horizontal diffusion. 

The salinity transport equation now has the form 

91 
-9, P -iilýlj - 

laiý 
jpj+ j 

ýaip+lj 
-laip. I, JIXP, 2, j +(aipll. j +Iaip. l, jl li 

+( Id 
I XýI. 

j 
I 

At 
+ 4Ax 

93 

(2.94) 

where 91ij are calculated partly implicitly and partly explicitly. 

Similarly, for the sediment transport we have: 

ac a- 

at + ex 
(ac) =N (2.95) 

and therefore: 

C-I- (5 P+ l(gij +ip+lj1p, P. J +(iiip+l. j +, p+l'il-ýa1ý1j +Iii, ý,, JPIP , PJ+ 
At 

I, j +2 

4Ax 

J= 
NY 

(2.96) 

Nij has a similar character as 91ij. 

Eq. (2.88) is used to provide an updating in time of ý. This updated value of ý is then 

used in (2.89) with a one-sided replacement of au /at. The last term on the right hand 

Ia ai7 
side of (2.89) is the discretized form ofT 

17 -F It is evaluated at the 
0_ 

(K 

TO-) 

advanced time level p+I, and the process leads to the determination of u by solving a 

linear system: 

a,,, X, 
-, + a2., X, +a3,, X, +, = a4,, (2.97) 
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The turbulence energy equation (2.90) is solved consequently using the same scheme 

with the updated ý and u for time level p+L 

The eddy viscosity coefficient K is updated by (2.92) when the evaluation of 

turbulence energy density for the advanced time level p+ I is completed. 

This chapter described a two-dimensional single-section estuary model which is 

capable of describing the tidal flow in a channel using a turbulence energy closure 

scheme and topography following coordinates. The governing equations are solved on 

a staggered finite-difference grid in the horizontal. A combination of centred- 

differencing and averaging is used to evaluate the horizontal derivatives for elevation, 

velocity and energy. The evaluation of vertical derivatives is achieved by simple 

centred-difference replacements although the discretization of the boundary 

conditions involves the use of second-order accurate forward and backward 

replacements. The equations are integrated ahead in time from an initial state of rest 

with the periodic tidal forcing at the mouth of river and the integration is continued 

until the initial transient response is dissipated by the friction and radiated out of the 

analysis domain. The final cycle of integration may then be analysed. 
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Chapter 3 Shelf Sea Model 

This chapter describes a high resolution, three-dimensional shelf sea model based on 

the eastern Irish Sea model developed by Proudman Oceanography Laboratory (POL). 

This model is highly advanced and is capable of accurately describing the current 

circulation driven by tidal and meteorological forcing (Aldridge and Davies, 1993; 

Xing and Davies, 1995b). In the latter part of this thesis this model is applied to join 

with the river model as bay model and study the interaction of the tidal flow between 

two models. 

3.1 The Description of Model 

3.1.1 Basic Equations 

The model is a three dimensional, free surface, baroclinic sigma(d) system model. 

4 

z =0 

Fig. 3.1. The a coordinate system 

a=O 

Cy =. 
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The model equations are described in a spherical coordinate system with o- given by 

z- 
H 

(3.1) 

where H= h+;, h(xy) is the bottom topography and 4(xyt) is the surface elevation. 

Thus o- ranges from a=0 at z=; to cr =-I at z= -h ( Fig. 3.1). The a coordinate 

system was first introduced into meteorology by Phillips (1957). For the derivation of 

the sigma coordinate equations, the reader is referred to Blumberg and Mellor (1980, 

1987). 

After coordinate transformation to a coordinates, the basic equations are written as: 

Momentum equations: 

ailu allu 
+V -(PHÜ) + 

eHU0) 
- fllv g, ' a'ý 

+ BPF 
,t+a 

(K. + F., 2 et au Rcos0 aA H au a, 
) 

1; 10 aHv aHv 
+V- (fHv) + 

ÖIIV 0) 
- fHu gHL+BPF, + (K, )+F, 

at acr R a0 H' au etr 

Continuity equation: 

(3.2) 

(3.3) 

aý-, 
+V. HVda 0 (3.4) 5T 

(I 

Temperature equation: 

allT allcoT Ia allT ai 
+V-(PHT)+ =F-(Kh-)+FT+-, (3.5) 

at aa aa aa au 

allS 
+V- (PHS) allwS Ia allS 

)+Fs. (3.6) 
at ac aa 

+= -F T, - 11h - 

Hydrostatic approximation: 
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ap 
= -, PgH. (3.7) 

aa 

The density is related to salinity and temperature by 

1000.0 + a,, (3.8) 

where 

28.152 - 0.75T - 0.00469T 2+ (0.802 - 0.002T)(S - 35). (3.9) 

In the above equations: 

V=(u, v), (uvw) are the velocity components corresponding to the (AOa) 

coordinates with A the longitude and 0 the latitude; H is the total water depth; V is 

the horizontal divergence operator; t is time; f is the Coriolis parameter; R is the 

radius of the earth; T is the temperature; S is the Salinity; ý is the sea surface elevation 

above the equilibrium level; z is water depth increasing vertically upwards; p is the 

density; K,,,, Kh are the vertical eddy viscosity and diffusivity coefficient respectively; 

I is the incoming solar radiation and P is the pressure field. 

F. F, , FT, FS are the horizontal diffusion terms, and have the Laplacian form using a 

transformation suggested by Mellor and Blumberg (1985), 

F(��) =A. f7 (H i7(u, v», 

F(T, S)ý--Ah V7*(H V7(TS))- 

Here A. , Ah are coefficients of horizontal diffusion terms for momentum and density 

(temperature and salinity) respectively. 

BPF, z, BPFo are the baroclinic pressure gradient force terms having the forms: 
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liap, H (a(Pb 
- Pbj) 

+a 
a(Ph - Pbl) OH 04. BPF4 =b+ 

a(Pb 
- 

Pbl) 

poRcos Al RcosOaA H au R cos 60A Haa R cos 60A 
(3.12) 

HIM H (iD(Pb - Pb, ) cr iD(Pb - Ph, ) aH (? (Ph - Ph, ) 101; BPFO h! Is 
-- --- -+- -+ poRa9 PO ý ým 11 aa Ra9 Haa Ra9). 

Pbj is a reference baroclinic pressure or initial baroclinic pressure field. The first terms 

on the right hand of above two equations are the pressure gradient forces calculated in z 

coordinates, therefore only deviations of the pressure gradient force are calculated in a 

coordinates. In this way the errors due to the vertical coordinates transformation can be 

reduced (Xing et al, 1999). 

3.1.2 Turbulence Mixing 

A one-cquation turbulence model (Johns and Oguz 1990; Davies and Xing 1995) is 

applied to calculate the vertical eddy viscosity (K,, ) and eddy diffusivity (Kh), it includes 

a prognostic equation for turbulence energy and an algebraic form of the length scale. 

Turbulence kinetic energy prognostic equation in a coordinates is given by: 

allE 
+V- (PHE) + 

allEO 
= 

K. , 9u)2+(clv 2]+_L 
Kh 

Lp 
_ Ell + -L-L(Kh 

allE 
+FE 

cit 
ýo- -H 

a 0a) po cla H Oa cla 
(3.14) 

Where FE is the horizontal diffusion term and has the same form as FT. The parameters 

required by the equation are: 

CIE 3/2 

I (3.15) 

Km =Kh = 
COE 1/2 

1 (3.16) 
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where cis the turbulence dissipation. Co=C"4, CI=Co3 and C= 0.046 (Davies et al, 

1988). 1 is the mixing length scale. Xing and Davies (1995b, 1996a, 1996b) use a 

turbulence energy closure scheme of this form to simulate M2 and M4 in the Irish Sea. 

The length scale is prescribed diagnostically by an algebraic expression proposed by 

Xing and Davies (1995): 

I=1 
1/11 +1/12 

where 

11 = K(aH +H+ zo) exp(A a), (3.18) 

12 = ic(z, - aH), (3.19) 

K--- 0.4, is Von Karman's constant ; fil is an empirical constant. zo is the bed roughness 

length; z, is the surface roughness length, which controls the o- value at the sea 

surface. 

In the above formulations the influence of vertical stratification on the length scale is 

not included, but it is important to adjust the length scale under stratified conditions. 

Following Beckers (1991) the length scale is modified with the Richardson number 

(Rj) as: 

I= IOT, (3.20) 

here 10 is determined as I in (3.17) and 

'-I' = [(R, 2 + 1)1/2 + R, ]2. (3.21) 

where 
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Ri Hap 
2V 

(3.22) a A ac 

[( 
ilawu) 

0. 

)2] 

Together with a range of turbulence energy models, above formulation was used to 

study the sensitivity of the internal tide to the parameterization of vertical viscosity 

and diffusivity (Xing and Davies 1998). 

3.2 Boundary Conditions 

3.2.1 Surface and Bed Boundary Conditions 

At the sea surface the internal stress is set equal to the externally applied wind stress 

., and ry. Thus the boundary conditions of velocity are: components r 

poK. - 
au 

rx 9 (3.23) Tclo- «2 

A. M-av =ry. (3.24) ý7a-c 
Here, T,, -ry are calculated from wind data following Davies and Flathcr (1987). 

At the sea bed, a quadratic bottom friction condition (Davies 1986) is applied: 

au 22 112 
, au (3.25) poKm T= 

CDUb (Ub + Vb )9 

I poK. CDVb (Ub 2+ 
vb 

2)1/2. (3.26) i7acr 

Here, Ub P Vb are components of bottom velocity and CD is a coefficient of bottom 

friction which is determined from: 

2 

CD 

In(z, / zo)] 
(3.27) 
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In the above formula, z, is the reference height above the bed at which CD and bed 

currents Ub and Vb are calculated, in practice it takes the value according to the height 

of the first grid box from the bottom. 

The sea surface boundary condition for the turbulence energy equation is: 

Kh _ýE =x, )- (3.28) 
Hau Po 

Where r is the surface wind stress and pa constant (taken as 100) for parameterizing 

the input of turbulence kinetic energy from breaking wave surface waves (Craig 

1996). The equation (3.28) introduces a gradient of turbulence energy in the surface 

layer, with the product of the turbulence energy and the mixing length (3.15,3.16) 

determining the profile of viscosity and diffusivity in this layer. Recently Stacey and 

Pond (1997) have proposed an increase in the value of the mixing length in the 

surface layer to reflect enhanced roughncss due to wind waves. Calculations by 

Davies et at (2001) have shown that this reduces the near surface current and shear 

although the current at a depth of about 5 meters below the surface does not change. 

The boundary condition for the turbulence energy equation at the seabed is: 

aE 82 
Kh F� =-(COCIE (3.29) 

Km 

where 8 is the lowest model level height; U- is the bottom friction velocity. 

The boundary condition for temperature at sea surface is: 

Kh 
aT 

=Q) (3.30) 
Hau c ppo 
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with Q=Q, + Kq(Td- T, ) Q, is the observed surface insulation; T, is the modelled 

sea surface temperature. Td is the dew point temperature; Kq is the heat loss coefficent 

and K, (TeT, ) is the heat loss and heat gain at the sea surface 

The short wave solar insolation I(ms"K) is given by: 

I= Q., 
cppo 

here a is a constant with value 0.62. 

A,, A2 are extinction depths and Al= 1.5m A2=20m. 

The lateral boundary conditions at the coast are no-slip for velocity and no flux for 

temperature and turbulence. 

At the sea surface and the sea bed there is no salinity flux, so 

as 
=0, 

IS 
=0. (3.32) 

ea 0 aa 
-1 

3.2.2 Lateral Boundary Conditions 

Along the closed boundaries the normal component of the current was set equal to 

zero. 

ucosV/+v sin V/ = 0, (3.33) 

where V is the inclination of the nonnal to the direction of increasing x. 

In very shallow water, regions flood and dry at various stages of the tidal cycle and 

this dynamic lateral boundary condition was considered by an algorithm of Flather 

and Heaps (1975). The review of incorporating drying conditions into the nearshore 

models has been given by Flather and Hubbert (1990). 
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Along open boundaries a radiation condition is applied, the six dominant tidal 

constituents are introduced. It has the form (Davies and Fumes 1980) 

q=q,. + 
Egh 

(3.34) 
h 

where q is the normal component of depth mean current and 

Q, (x, 0) COSK t-Y, (x, 0)1, (3.35) 
9 

cos[wt - Gi (3.36) 

where pi the speed of the various tidal constituents, 11, and Glare the amplitude and 

phase of tidal elevation; Q and yj are the tidal currents. Index i denotes each tidal 

constituent such as M2. WW S2, N2. 

An alternative way to apply a radiation condition is to use an elevation specified open 

boundary with ý prescribed by ý, at ý points along the boundary. 

3.3 Numerical Solution 

The model equations are solved numerically using a mixed spectral-finite difference 

approach given by Davies (1983b, 1986,1987b). 

In the spectral-finite difference approach, a regular finite-difference grid in the 

horizontal, namely the Arakawa C grid (Arakawa and Lamb, 1977) in which 4, u, v 

are evaluated at different points. Fig. 3.2 shows the sample of Arakawa C grid, grid at 

, ýpoints in the middle the elevation ý, and pressure p are calculated and at the comers 

the vorticity q is treated, velocities u and v are calculated in the middle of the sides 

between the q points. 
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Fig. 3.2 The Arakawa C-grid 

In the vertical, the Galerkin method with a basis set of functions is employed and 

gives a continuous current profile from sea surface to sea bed. A range of basis 

functions can be used with the Gaterkin method, for example, Legendre Polynomials 

(Gordon and Spaulding 1987; Spaulding and Isaji 1987). In this model, however, a 

basis set of eigenfunctions (Davies 1983a; Fumes 1983; Fumes and Mork 1987) of the 

eddy viscosity profile is employed, in the linear case this gives an uncoupled set of 

equations and is computationally economic (Davies and Stephens 1983) and ideal for 

integration on the new generation of multiprocessor vector computers. 

The discretization of the model equations is implemented in the modelling domain 

and the equations are integrated forward in time. 

The full set of the equations is solved by an alternating direction implicit (ADI) 

method (Stelling et al. 1986; Wilders et al. 1988; Wolf 1983). By this means an 

unconditionally stable set of equations can be obtained that can be solved with a 

larger time step than that required by the Courant-Friedrichs-Lewy (CFL) condition. 
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The equations, governing the dynamics of coastal circulation, contain fast moving 

external gravity waves and slow moving internal gravity waves. It is desirable in 

terms of computer economy to separate the vertically integrated equations (external 

modc) from the vertical structure equations (internal modc). 

The velocities can be separated in to: 

u =U+u', (3.37) 

v= V+v', (3.38) 

where U, V are the depth-mean velocity (barotropic or external mode) represent the 

motions related to fast moving gravity waves, it requires a small time step DTS for 

integration to satisfy the CFL condition. u' ,V are the depth-dependent velocity 

(baroclinic or internal mode) represent the velocities related to slower moving waves, 

larger time steps can be used. 

This technique, known as time-split method (Simons, 1974; Madala and Piacsek, 

1977) allows the calculation of the free surface elevation with little sacrifice in 

computational time by solving the velocity transport separately from the three- 

dimensional calculation of the velocity and the thermodynamic properties. 

The velocity transport, external mode equations are obtained by integrating the 

internal mode over the depth, thereby eliminating all vertical structure. 

The calculation of the external mode results in updates for surface elevation and the 

vertically averaged velocities. The internal mode calculation results in updates for u, 

v, t, S and the turbulence quantities. 

The time stepping process for the external and internal mode in simplified form is 

shown in Fig. 3.3. Assume everything is known at time t" and P, the previous leap 

53 



frog time step have just been finished. Integrals involving týe baroclinic forcing and 

the advcctivc terms are supplied to the external mode along with the bottom stress; 

their values arc held constant during in <, < t"+'. The external mode 'leap frogs' many 

times, with the time step, dts, that is much smaller than that for the internal mode, 

until t=t"+'. The vertical and time averaged velocities and those from the previous 

time step, are time averages of the external variables. The internal and external modes 

have different truncation errors so that the vertical integrals of the internal mode 

velocity may depart slightly from the external variables during the course of a long 

integration. Therefore the internal velocities are adjusted. 

In order to avoid errors in mass conservation as a result of using the time splitting 

method, the sea surface elevation is recomputed using the temporal mean of the depth 

mean velocities in the smaller time steps prior to the solution of the internal mode. 

Therefore equation (3.4) is numerically satisfied not only during the integration of the 

external mode but also in the larger time step integration of the internal mode. The 

vertical velocity is calculated using the internal mode solution only, therefore: 

-f aH0) 
V. (HV)+- = 0, (3.39) 

where P' = (u', V) is depth-dependent velocity (internal mode). 
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Fig. 3.3 Flow chart of the code of the time stepping process for the external and 
internal modes. The boxes with sidebars contain subroutines. 
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The finite difference equations are solved by a central difference scheme except for 

the advection of density(temperature) where a total variation diminishing (TVD) 

method is applied to preserve the sharp gradients in the temperature field as they are 

advccted by the tidal flow. 

Calculation starts from an initial condition of zero elevation and motion. A tidal 

regime is set up in the region by tidal forcing across the western open boundary. 
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Chapter 4 Development of Joined Model 

The work presented here describes the joining together of the two models that were 

described in chapters 2 and 3. A joined model is developed for the exchange of water 

flow between the Mersey Estuary and Liverpool Bay. The essential part of the joining 

procedure is to link together the models dynamically through the elevation at the 

meeting point. The linkage of salinity is achieved by matching the sigma (or) 

coordinates with the different vertical and time resolution, so that a linear 

interpolationlextrapolation of computed values of salinity at the meeting point can be 

carried out from one set of computational levels to the other. 

The main feature of the method is to match the variables along the vertical boundary 

between the two models. Both models use vertical c7 coordinate systems which are 

defined differently and have a different number of computational levels in the vertical. 

The variables are calculated at topography-following coordinates in the vertical. They 

are not located at a fixed physical z level and their locations vary with time. This is 

the main problem that has to be considered and solved in this work. 

4.1 Combined Model with Identical Time Resolution 

In this section, we construct the joining scheme using a simple method. An identical 

time step of 200sec is used when the two models are linked together. 

In the bay model, the computational domain covers the region of the Eastern Irish Sea 

as shown in Fig. 4.1. The Cartesian coordinates (x, y) in the horizontal, combined 

with cy coordinate in the vertical are used. So that the model variables have a general 
6 
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Fig. 4.1 Computational area and the location of the meeting point MP(XR, YR)- 
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form of f(x, y, a, t). The horizontal resolution in the north-south direction is 0.5', and 

as there are 120 grid boxes per degree of latitude this leads to a resolution of order 0.9 

km. In the east-west direction it is 1.0' and there are 60 grid boxes per degree of 

longitude leading to a resolution of order 1.0 km. There are 104x214 grid-points in a 

horizontal computational plane and 18 computational levels in the vertical. 

The meeting point between the Mersey and Liverpool bay corresponds to (53" 26"N, 

P OPW) where the breadth of the Mersey is 1.6 km. The coordinate of the point 

where the river model is linked to the bay model is (xp, yR) (hereafter referred to the 

meeting point as MP). The river model uses an arrangement of horizontal grid-points 

that is identical to that described in chapter 2, Fig. 2.1. The origin, 0, of the axis Ox' 

is located at the head of the Mersey and points toward Liverpool bay. The seaward 

end of the Mersey, x'= L, corresponds to the MP in Liverpool bay. This requires that 

the MP is an elevation point in both models. 

The bay model runs to provide real time information of tidal elevation and salinity at 

the MP and then updates the water elevation and salinity values in the Mersey at x'= 

L. However, when the river model is run alone without joining, the surface elevation 

at x'= L is prescribed to represent the form of tidal amplitude as a simple sinusoidal 

oscillation on the open boundary, as described by equation (2.63). The flow chart of 

joining processes is presented in Fig. 4.2. 

It is necessary to describe the notation used in defining the variables this chapter. 

Subscripts are used to refer to the location where a quantity is calculated; For example, 

r for the river and b for the bay. The superscript notation, p, refers to the time level . 
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Fig. 4.2 Flow diagram of the joining process 
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For example, ý, P represents the elevation in the bay model at time level p, and 

P+I 
, ý, represents the elevation in the river model at time p+l. 

In the bay model, the cr coordinate is denoted as Crb , the elevation at MP is ý,, . 

In the river model, the sigma coordinate is a, the elevation at the MP (where x'= L) 

is 4, - 

The sigma in the river model is defined as 

ar 
z+h 
, ý+h 

Thus a,. =I refers to the surface and a,. =0 refers to the bottom. 

In the bay model, sigma is defined as 

ab «2 
Z 

(4.2) 

Thus a, =0 refers to the surface and 6b = -1 refers to the bottom. 

From (4.1) and (4.2), we obtain 

ab = a,, -' - (4.3) 

The computation of salinity involves more detailed work. A two-way linkage of the 

salinity in the vertical direction from bay to river and from river to bay is required. 

The exchange of information regarding the salinity between the river and bay models 

is much more complex. This is mostly because in the vertical, the salinity is calculated 
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at a discretized set of computational levels which are not located at a fixed physical 

position. Another problem is caused by different number of computational levels in 

the river model and the bay model. Fig. 4.3 gives an example of the relative grid 

layout between the two models. 

G=1 

a=O 

1+1 

x k 

1 

Fig. 4.3 The vertical grid distribution for SbP` (1) and SP" (k) 

62 



Using expression (4.3), the salinity at the MP can be exchanged between the two 

models. At this stage the processes of integration in both models are carried out at the 

same time level. 

Let us depict the derivative of salinity at MP when the integration is developed from 

time level p top+ 1, the salinity in the river model at x'=L is denoted by 

SP (k), k-- 1,2,3 

where k is the computational level index for o-,.. There are n levels for the river model. 

The salinity in the bay model at the MP is denoted by 

SbP (1), I= 1,2,3 

where 1 is the computational level index of qb. There are m levels for the bay model. 

Assuming everything is known at time p, then at time p+l, the first step is to calculate 

the new values in the bay model, including those at the MP, namely, ;, "" and SP*'(1). 

The next step is to calculate the variables in the river model at time level p+]. The 

boundary conditions at the river mouth, x=L, must be determined through the 

calculation of ý, P` and S. P"(1). 

The river model is dynamically linked to the bay model at the MP by elevation, ý. 

At first, the elevation at each grid-point in the river model is updated by the surface 

elevation at the MP, i. e., x'ý--L. This is supplied by the bay model in which 

P+l - PA 
'; b (4.4) 
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The next step is to calculate the salinity in the river model. This requires using the 

input from the bay model, SbP` (1), to update the salinity in the river model at its open 

boundary at x=L, SP" (k) . 

The salinity from the bay model, SP" (1), is calculated at each discretised level of ab, b 

where the thickness between each level, Aab is not constant (Table 4.1). But in the 

river model SP"' (k) is calculated at discretised levels of o-, (Table 4.2) with Aq, = 

0.05. The physical z level of ab is different from that of o-,. In order to obtain 

SP" (k) from SP*' (1), they have to be transferred using a common coordinate system. 

The method used here is to convert oý, using (4.3), into the sigma system of the river 

model and denote it by arb,. The last step is to define the derivative SP*' (k) by linear 

interpolation according to the sigma coordinate of the river model, q,.. First of all, we 

need to find the location of q#) in the a, -b coordinate, let us assume that 

a,. b (1) :5a, (k) < c,, b (I + 1) , 

where ab (1) and ab Q+ 1) are the cr coordinates for Sbp"I (1) and Sbp*'(1 + 1) 
, 

respectively. The following expression is then used to find SP"' (k), 

SP"(k)-SP+'(1) SP+'(I+I)-SP+'(1) 
rbb--b (4.5) 
ar (k) - ab (1) arb (1 + 1) - 0rb (1) 

Rearranging above formula leads to 

. Qp+l +1 (1 + 1) -Sp+'(1))a, (k) - SP+'(1 + 1)c,. 
b 
(1) 

S, P+'(k) = 
"b 

. 

Marb (1 + 1) + (Sbp 
bb 

(4.6) 
a, b 

(1 + 1) 
- arb (1) 
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The following prescriptions are necessary to satisfy the interpolation, 

At the surface 

s P+l (1) =s PA (1) 
rb (4.7) 

At the bottom 

SP+l 
, 

(n) = SP+'(m) (4.8) 

The flow diagram for implementing the expression (4.6) is shown in Fig. 4.4. 

The river model is then called by the bay model as a subroutine. The dynamic 

variables, u, w and E, in the river are subsequently updated in the time stepping 

process. 

When the calculation in the river model at time level p+1 is completed, the joined 

model returns to the main program, and the water elevation and salinity in the bay 

model at the MP are recalculated using the 'new ý,, P" and SP"' (k) from the river 

model. Thus the exchange of the information between the river model and the bay 

model is interactive. A similar procedure is carried out for the interpolation of 

salinity values from the river model to the bay model. 

The finite-difference analogue of the salinity transport equation in the river model, 

equation (2.90), shows that the horizontal advection scheme has a desirable upstream 

property. When the river model is joined with the bay model in this study, this scheme 

implies that at the mouth of the river where x'= L, if there is an inflow into the river, 

the bay model supplies salinity for updating the corresponding quantities in the river. 

On the other hand, if there is an outflow from the river into the bay, the river model 

supplies salinity to update the corresponding quantities in the bay. 
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START 

K=2, N- I 
L=2, M- I 

No 

ab(l)<a, (k)<ab(1+1) 

Yes 

Formula of interpolation 
for salinity (4.6) 

RETURN 
TO MAIN 

Fig. 4.4 The interpolation procedure of salinity from the bay 

model to the river model at time level p+ I 
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Table 4.1 The vertical discretization of ab from the surface (c7b = 0) to the seabed 

(ab = -1) and transferred arb- 

Level I Ub 0rb 

14 0 1 

13 -0.02 0.98 

12 -0.06 0.94 

11 -0.12 0.88 

10 -0.19 0.81 

9 -0.3 0.70 

8 -0.41 0.59 

7 -0.52 0.48 

6 -0.63 0.37 

5 -0.74 0.26 

4 -0.84 0.16 

3 -0.91 0.09 

2 -0.96 0.04 

1 -1.0 0 
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Table 4.2 The vertical discretization of from the surface (o-,. = I)to the bottom(q. = 0) 

Level k ar 

21 1 

20 0.95 

19 0.9 

18 0.85 

17 0.8 

16 0.75 

15 0.7 

14 0.65 

13 0.6 

12 0.55 

11 0.5 

10 0.45 

9 0.4 

8 0.35 

7 0.3 

6 0.25 

5 0.2 

4 0.15 

3 0.1 

2 0.05 

1 0 
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4.2 Increase the Horizontal Spatial Resolution in the River 

In section 4.1, the length of the river used in the computation is 30 km, and there are 

21 staggered grid-points in the horizontal dimension. This results in a distance of 3.0 

krn between successive elevation computational points. The hydrodynamic processes 

involved in the river usually occur at small scales, and a fine resolution will be 

required. This is the main motivation for increasing the horizontal spatial resolution in 

the river. 

Furthermore, in order to increase the spatial resolution in the river model, 89 

staggered grid points in the horizontal are used in the calculation. So the horizontal 

distance between successive elevation computational points is reduced. For the river 

with a length of 30 km, the spatial grid increment is reduced from 3.0 km to 0.68 km. 

As the requirement of numerical stability, the following CFL condition needs to be 

satisfied: 

At < 
Ax (4.9) 

In the above At is the time step and Ax is the space step, and h,,. is the maximum 

water depth in the computation domain. With the decrease of the space step, the time 

step also needs to be reduced to satisfy the stability condition. 

Different time steps are to be implemented in the river model and the bay model in 

this section. The integration time step in the bay model is much longer than that 

needed in the river model. One way to achieve the linkage of the two models with 
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different time steps is to split the integration process in the river model into several 

shorter steps during each successive integration in the bay model. Therefore, each 

model has a time step of its own which should be matched at MP. 

At the time level p, the bay model provides updated values for the surface elevation 

and salinity, ýbfand SP, for the river model at the MP. The integration in the river b 

model from time level p top+ I is performed at several shorter steps, and the number 

of the steps is denoted by ns. The time step index in the river model, denoted by inr, 

is expressed as 

inr = p+ 
in in = 

1P 

2, ... n., (4.10) 
ns 

The calculation in the river model requires the input of elevation and salinity from the 

bay model as boundary conditions at each small time step defined above. They are 

i"r 1r 
referred to as iý, an S, - 

Care is needed in constructing the derivatives of ý, " and S"", as they can not be 
p 

derived directly from ;, " and SP by the approach used in section 4.1. The boundary 

conditions that are needed at each of the small time steps are not provided by the bay 

model values of ýbfand SbP alone. However, as the elevation and salinity at previous 

time level p-I are also known, then it is possible to apply the elevation and salinity in 

the previous two steps p- 1, and p to construct the derivatives of ý, "' and Sr"' . 
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If Q and Sb are known at the time levels p-1 and p, stored as ;, P-' , S6P-1, ; bP and S6Pq 

then the derivatives of ý; ̀ and S"" can be deduced from (; bP-', 
SP-' 

, 
ýP and SP by 

rpbbb 

means of extrapolation. 

The extrapolation formula for given by 

i"r -1) in ; 
bp + (4'bp - 1; bp 

ns 

Because the elevation is changing with time, the physical level of sigma is changing 

as well. Therefore the salinity SP-'and S. ' are calculated at different physical z-levels. 

Let us use Fig. 4.5 to illustrate the displacement of the location where salinity is 

computed in the bay model at MP. We shall consider the verticalj andj+1 levels in a 

coordinates at time p-I and p. The computed values of salinity at these levels are 

denoted by S", Sf , SP-' and SP I. The physical positions for j and j+I levels in 
jj J+I J+ 

fixed z coordinates are denoted by, zP , zP-' and zP., . At time p-I and p the i J+l 

computed elevations at MP are ýbf` and 4, P - 

According to (4.2), we have 

zP = crj(ýf +h)+ýf ibb 

And 

zp-l =aI (ýP` 
ib 
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From (4.12) and (4.13), it is clear that zP-' # zP , because ; 
bP-' #,; bP . In order to 

predict salinity value at zjP for the next time level by means of extrapolation, we need 

to know the previous value of salinity at z' (i. e. for time p- 1). 

Assuming the previous salinity is SP-' and its a coordinate is o-,. The following q 

expression shall be true: 

zp = z. = cr, (, ýP-' +h)+ýP-' (4.14) 
ibb 

Therefore 

O'q 
a, (4', P + h) +, ýbf -, ýbf` 

, ýbf` +h 

Next step is to find out the location ofaqat the a levels, and if 

cr, +, 
> (T 

q> 
aj 9 

then SP-1 can be estimated from an interpolation using 1, SP-1 and cr q 
Sip- 

J+I 1 6j 1 6j+l 
q 

the following formulas are used 

Sqp-' Sjp-l 

= 
O'q -aj 

(4.16) 
sp-I J+l SP-' a, +, -a, 

hence 

sp-, (O- 
- aj) +S P` (aj, 

l - aq 
SP-1 = 

JA qi 
q (4.17) 

As the calculation proceeds in time, SP-' is replaced by SP at zP, so we can predict qjj 

the value of salinity at next time step, p+l, by using SqP-' and SjP * 

The surface and bottom boundary conditions are: 

At the surface 

SP-1 = SPA 
qI (4.18) 
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at the bottom 

SPA - SP-1 
qn (4.19) 

When SP-' is known, the salinity at zP for time level inr of the river model, S, "' 
, can 

be calculated by extrapolation using an expression similar to (4.11): 

r inr in SP + (SP 
q 

ns 
(4.20) sb 

-bb-s 
P-1) 

Here the salinity S'"'refers to the value at the MP and are input to river model as a 

boundary condition at x ý=L. It should be an array of n elements to prescribe the value 

at each a level in the bay model. When calculation is proceeded in the river model, 

these values need to be transferred according to the a coordinate of the river model. 

The method used is similar to that in section 4.1. 

After the calculation in the river model has been processed from p to p+ 1, the values 

of the surface elevation and salinity at the mouth of the river are recalculated by the 

river model and used to update the variables in the bay model at the MP. 

4.3 Problem of Non-linear Instability in Joined Model 

In section 4.1, the length of the time step for the bay model is taken to be the same as 

that of the river model, namely 200 sec. When the horizontal space resolution of the 

river model is increased in section 4.2, the total number of grid-point increases from 

21 to 89, which is approximately four times as many as the total number in the case of 

low resolution as in section 4.1. During each integration in the bay model, the 

integration in the river model is subdivided into several smaller time steps, and 

initially five steps are chosen. Therefore, if the time step used in the bay model is 200 
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seconds, the time step in the river model will be 40 seconds. But running the joined 

model with these values generates an exception, due to the floating-point overflow in 

the river model, and results in the termination of the programme. 

In order to overcome this problem, the joined model was run several times using 

different time steps in the river model. It has been found that the stability of 

calculation is achieved after the integration in the river model is subdivided into 20 

time steps of shorter integration, which means the time step in the river model is 

reduced to 10 seconds. 

The reason for this instability may be the input of short wave components from the 

bay model into the river model, which leads to a rapid spatial variation that can not be 

resolved if the time-step is too long. In the single river model, the surface elevation is 

prescribed to represent the form of tidal amplitude as a simple sinusoidal oscillation 

on the open boundary. In the joined model, it is updated by the real time elevation 

that is provided by the bay model. 

This chapter describes an interactive grid-splicing scheme capable of exchanging 

information between two models with different sigma coordinate systems along the 

vertical common boundary. In order to achieve the interaction, the variables that are 

calculated at the same sigma level, but different physical levels, are converted into 

variables at the same physical levels, so that the time extrapolation can be carried out. 

In the joining of the higher resolution in the river model, the integration is divided 

into smaller time steps, which reduces the horizontal resolution of the river model. 

The next chapter presents the application of this joining technique to link together the 
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2D single river model with a 3D shelf sea model to study the interaction of the tidal 

flow between Liverpool Bay and the Mersey Estuary. 

Time 

Surface a =1 

zjp 

Bottom a=0 

Fig. 4.5 The displacement of vertical levels in time process 

75 

P-1 0, 



Chapter 5 Application of the Joined Model to Liverpool 

Bay and the Mersey Estuary 

In this chapter, the joined model described in chapter 4 is used to investigate the tidal 

flow interaction between Liverpool bay and the Mersey estuary. 

An estuary is a partly enclosed coastal body of water. It has a free connection with 

the open sea but its salty sea water is diluted with freshwater from inland rivers. The 

estuary is usually divisible into three sectors: (i) a marine or lower estuary, in free 

connection with the open sea; (ii) a middle estuary, subject to strong salt and 

freshwater mixing; and (iii) an upper estuary, characterized by freshwater but subject 

to tidal action. (Fairbridge, 1980). 

In the regions of estuary and its adjacent open shallow sea, the freshwater is 

discharged into a region of more saline and dense sea water. The features of the 

dynamic structure of the estuary are strongly influenced by the tidal features involved. 

The main features are: 

1) Salt wedge estuaries develop in virtually tideless seas and where the sediment 

discharge is low. 

2) Partially mixed estuaries develop where there is a moderate tidal range. 

3) Well mixed estuaries develop where the tidal range is high. 

The area of interest in this study, namely, the Mersey estuary and Liverpool bay are 

dominated by the tidal currents and during the spring-neap tidal cycle the ranges at the 
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mouth vary from 4 to 10 m. The Mersey is a macrotidal cstuary MId LISLially In Nvell- 

Illixed conditiolls. 

5.1 1 In ple mell tatio it 

In the river niodel, the parameters arc Chosen to represent tile NICI-scy estuary. I lie 

estuary is describcd as I'Mir main sections (Fig. 5.1.1 ). An important 1eature is that the 

river at the seaward end is deeper and narrower than the remaining section. The 
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Lý 
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RIJW ORN lo"Jý ...... i'VA 

'Wý 

mix, N, 

ILUSMERL POR 

1.1 

Fig. 5.1.1 The Nlcl-. scv cstilary 

11,11TOW 11101.1th I-CSLIhS III IlIgh VCIOCIty tid, 11 CLII'I'CIltS, gIN'llIg tile CS(LIII-y ýl Stl'Ollg tILkIl 

Scour and high SLISPCII(ICCI particulate mattcr. In the Lipper cstuary the river becomes a 

meandering channel fi-om Runcorn. In this Nwrk, the Mersey is modelled as a 

gin of' tile axis is located at landward end of' the rectangular domain, where the ont 

Inner estuary. The Ox axis is (firected towards the sea\\ard cild along the main chamicl 

ofthe river, the Oz axis is directed wrtically upwards. Thc computation scclion starts 

The length Of the CalculatiOll at Weston near Runcorn and ends at New BrIvIlton. 

domain is 30 kin with 89 finite grid points along the domain in the horizontal, and 21 

Computational levels through tile depth in the vertical. The implied distance bet\wen 
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computational elevation points (or current points) is about 0.68 krn. The bottom 

topography of the Mersey Estuary is unusually irregular, and it is difficult to 

determine the depth at discrete grid points. The depth and breadth data cross main 

channel are taken from the Chart of River Mersey surveyed by the Mersey Docks and 

Harbour Company and HR Wallingford Ltd (1997). The depth varies from 

approximate 19. Om at the deepest section near the mouth to around 2.2m. at the 

landward end. The breadth varies between 825 m, and 4875 rn along the 

computational domain. 

The boundary conditions for the river model are chosen to simulate a discharge of 

freshwater from the Mersey estuary into Liverpool bay. ' This is carried out by 

adjusting the values of uo in the equation (2.62) until the calculated mean value at the 

head of river yields the desired input of freshwater flow into the bay. As the 

freshwater flow in the Mersey estuary is not constant and can vary from 10 rn 3/S to 

600 rn 3/S. To test the sensitivity with respect to the freshwater discharge rate a wide 

range of values between 300 m 3/s and 1000 M3/S is used. The salinity of the oceanic 

water into which the freshwater is discharged is set at 35 ppt. The salinity at the 

landward end of the river during the freshwater inflow is set at 5 ppt. 

Sediment concentration at both ends of the river channel are set initially to zero, this 

implies that the sediment concentration flux in the river will solely be result of the 

concentration pickup across the bed of the channel by the dynamic processes related 

to the freshwater and tidal current. 

The point of communication between the Mersey and Liverpool bay corresponds to 

(53" 26"N, P OPW) where the breadth of Mersey is 1.6 km. 
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In the bay model, the calculation domain is chosen to represent the region of the 

eastern Irish Sea (Fig. 5.1.2 and Fig. 5.1.3). The western boundary of the modelling 

domain is open at a location about 4*30" W. The real time tidal forcing due to M2 

tidal component is used to produce tidal currents in the modelling domain. All other 

boundaries are closed to represent the coast of East Irish sea. The horizontal 

resolution is approximately I. Ox 0.9 km. In the vertical there are 14 cr levels used. The 

integration proceeds with a time step of 200s for the depth-dependent variables 

(internal model) and I Os for the depth-mean flow (external model) in the bay model. 

The bay model is driven by tidal current and the real time tidal forcing due to the M2 

tidal component imposed at the western boundary of the domain. 

In the following part of this chapter, a series of calculations are performed to examine 

the joined model's ability to simulate the interaction between local and offshore 

processes. 
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Figure 5.1.2 Model area for the eastern Irish Sea. Depths In metres. 
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Fig. 5.1.3 Finite-difference grid of the bay model for eastern Irish Sea 
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5.2 Test of Joined Model 

The initial calculations are performed with the joined model to test the model's ability 

to predict the M2 tidal elevations and currents. qalculations start from an initial state 

of zero elevation and motion and tidal component M2 is input at the open boundary. 

At this stage, the results are analysed during the fourth tidal cycle. Four places located 

in the model domain including Formby(FO), Liverpool Bay (LB), Barrow (BA) and 

Liverpool (MP) where the river model is linked with bay model are selected to 

analyse the tidal elevations and currents. The observations Of M2 tidal elevations are 

available at these locations which are shown on Fig. 5.1.2 (Aldridge and Davies 

1993). 

Fig. 5.2.1 and Fig. 5.2.2 show the computed time series Of M2 tidal elevations at MP 

and LB. The time series for M2 tidal currents are presented in Fig. 5.2.3. 
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Fig. 5.2.3 Time series of M2 current speed 
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From the time series plots for elevations, we can see that elevations at both MP and 

LB present a semi-diumal harmonic. The tidal range is 6.0 rn at MP and 5.7 m at LB. 

Table 5.2.1 Comparison of computed M2 tidal amplitude (m) against observations 

(Aldridge and Davies 1993) 

MP LB FO BA 

Computation 

Observation 

2.93 

3.08 

2.81 

2.62 

2.89 

3.13 

3.02 

2.97 

From the above table, it is noted that the overall fit with the observations is good. The 

joined model is able to reproduce the main features Of M2 tidal elevations and 

currents. 

Apart from this test of the joined model for M2 tidal features, another test has been 

made to deal with the significance of differences between the joined model and the 

bay model. The test is based on time series of differences between results of these 

two models. Hourly values of three parameters at four positions (MP, LB, FO, BA in 

Figure 5.1.2) in the bay area have been computed by both models. Here, a global 

estimator is used (J. Ozer et al. 2000): 

83 



I" 
(x, (k) - Xb(k))' 

G(x) = loo. 
nk-I 

X2 
11 ý' 

b(k) n 

where x is a model parameter, n is the number of values in the time series, xj(k) and 

Xb(k) are the values of x at time tk in the joined model and the bay model, respectively. 

Table 5.2.2 The global estimator G for the differences between the joined model 

and the bay model at four positions over the period of 10 days integration. 

MP LB FO BA 

Current 18.92 32.52 4.78 22.2 

Elevation 10.84 5.41 3.36 2.82 

From Table 5.2.2, we note that the joined model has introduced a change from 5% to 

33% in current speeds, and a change from 3% to 11% in surface elevations. Therefore, 

the result of the joined model is different from that of the bay model. 

5.3 Numerical Experiments 

5.3.1 Introduction 

In the following sections, a series of numerical experiments is performed to assess the 

ability of the joined model to produce various features of tidal flow interaction 

between the bay model and the river model. 

The following cases are considered in the calculation: 
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(1) Single river model without joining with bay model. 

(2) Bay model without joining with river model. 

(3) Joined model with the bay model is driven by tidal forcing and freshwater is 

discharged from the river. 

(4) Joined model with the tidal forcing is absent from the bay model and freshwater is 

discharged from the river. 

The results from above cases then are analysed and compared. 

In case (1), the river model is run without being linked to bay model. At the mouth of 

the river, a current of 1.5 m/s is used to characterise the river Mersey. The current 

speed at the head of the river, uO, is chosen so that a desired freshwater discharge rate 

can be obtained. It is found that uO has to be set to a value between 0.2 m/s and 0.35 

m/s to support the discharge rate between 300 m 3/S to 1000 M3/S. 

5.3.2 Comparison of Results in the Mersey Estuary 

In this section, the flow fields in the Mersey is analysed both with and without the 

input of tidal elevation from the bay model. All the results correspond to 10 days of 

integration from a state of rest at t=0. In the subsequent comparative descriptions, 

panel (a) represents the case of single river model without joining with bay model, 

and panel (b) represents that of the joined model. Both panels are applied for the 

freshwater discharge rate of 300 m'/s. 

The computed salinity distribution in the channel is shown in Fig. 5.3.1 (a, b). It is 

clear from Fig. 5.3.1 (a) that a strong horizontal salinity gradient exists in the channel 

and there is salinity transportation from the seaward end. There is very little variation 

of salinity with depth, and it became uniform on the bottom of the channel. It also 
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shows that the salinity is vertically mixed up by the tidal current. Fig. 5.3.1 (b) shows 

the tidal forcing from the bay model has led to a well mixed structure in the vertical 

and there is no variation at all with the depth. 

The computed streamlines of instantaneous volume transport in the river channel are 

shown in Fig. 5.3.2(a, b). The different colours refer to the numbers representing 

transport rates in m3 s". In Fig. 5.3.2(a), there is an inflow from the seaward end into 

the river. This flow dominates the most part of the channel and turns around at about 

8-12kin from the head of the river, where the depth is less than 10m. At the head of 

the river where there is an inflow into the channel, the streamlines direct towards the 

surface as it entering the channel. In Fig. 5.3.2 (b), however, the whole river channel 

is dominated by a seaward outflow, indicating the existence of an ebb tide. 

In Fig. 5.3.3(a, b), we show the associated velocity profiles at a sequence of positions 

along the channel. In Fig. 5.3.3(a), the velocity profile is directed towards the 

seaward end of the river and it becomes weaker along the channel. It is clear that the 

seaward flow effectively controls the channel as far as about 8 krn from the head of 

the river. From here to about 13 krn away from the head, the profile reverses at mid 

depth. This corresponds to the location where the streamlines arc turning back in Fig. 

5.3.2(a). The remaining part of the river which covers the channel beyond 13 krn is 

controlled by the inflow from the open sea. Comparison with Fig. 5.3.3(a), Fig. 

5.3.3(b) shows the velocity profile towards the seaward end over the whole of the 

channel with no reversal. The maximum computed velocity is about 1.5 M/s at the 

surface, while in Fig. (a) it is about 0.5m/s. 
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Sediment transport and deposition are affected where the tidal current dominates the 

dynamic processes. The distribution of sediment concentration over the river channel 

is presented in Fig. 5.3.4(a, b). It appears that after 10 days of integration there is a 

net pick up of sediment concentration from the bed of the channel. In Fig. 5.3.4(a), 

there is a maximum concentration of 117mg/litre near the shallow landward end. The 

concentration in the deeper section close to the mouth of the river is much lower and 

less than 20 mg/litre. In Fig. 5.3.4(b), however, the maximum concentration is over 

2800 mg/litre and it appears at the deeper part of channel near the mouth of the river. 

It is clear that the strong influence of tidal flow from Liverpool bay has led to a 

significant sediment transport within the Mersey. 

Fig 5.3.5(a, b) are the plots of mean flux of sediment concentration settling at the bed 

of the river. From this we can see that the downward sediment concentration flux is 

negative at the landward end indicating net pick up in this region. This is transported 

towards the seaward end of the river. The concentration is settling down to the bed 

while it is transported. 

From above discussion, we can note that the tidal range in this region is high and the 

tidal flow is strong relative to the river flow, the water column becomes completely 

mixed. The tidal movements in the estuary caused by predicted M2 tide in Liverpool 

bay using the bay model are large. They give rise to the well mixing of the fresh and 

saline water in the vertical. The M2 tide plays an important role in the transport of 

suspended sediment concentration in the river flow. 
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5.3.3 Comparison of Results in Liverpool Bay 

The computational tidal elevations and currents, as well as salinity contours after 10 

days of integration of the joined model are used to describe the processes in 

Liverpool bay. This shows the influence of the river flow upon the shelf sea as 

feedback of tidal current. 

Shown in Fig 5.3.6(a, b) are computed M2 tidal currents using (a) bay model alone 

and (b) joined model with freshwater of 300 m3A discharged from the Mersey. By 

comparing (a) and (b) it is possible to evaluate the influence of freshwater from the 

Mersey on the current field in Liverpool bay. This is seen as an enhancement of the 

surface current at the 10 to 15 kin west of the mouth of the river. Table 5.3.1 gives the 

surface currents at selected positions at the west-east cross- shelf zone off the river 

mouth. Here, positions are selected at 1.0 km interval of distance from the MP. It can 

be noted that the current speeds predicted by the joined model are slightly higher than 

that by the bay model at a location within 3 kin from the mouth of the river. The 

currents calculated by bay model become stronger than that of the joined model from 

3km to 9 km with maximum difference of 0.137 m/s at about 4 km. From about 10 

to IS km, there is a region where the joined model predicts stronger currents and at 13 

kin from the mouth of river the highest current difference between the joined model 

and the bay model is found to be 0.2 m/s. Fig. 5.3.6(c) is the plot of currents similar 

to Fig. 5.3.6(b), but with freshwater discharge from the Mersey set at 1000 m 3/S. The 

enhancement of surface currents in the above region becomes stronger. 
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Table 5.3.1 Surface currents at selected position. (m/s) 

Distance from MP 

(km) 

Results of bay 

model 

Results of joined 

model 

Difference between 

the two models 

2 0.87 0.91 0.04 

3 1.12 1.14 0.02 

4 0.40 0.34 -0.06 

5 0.83 0.69 -0.14 

6 0.71 0.57 -0.13 

7 0.64 0.53 -0.11 

8 0.52 0.45 -0.07 

9 0.51 0.43 -0.08 

10 0.50 0.49 -0.01 

11 0.51 0.65 0.14 

12 0.53 0.72 0.19 

13 0.53 0.72 0.19 

14 0.50 0.70 0.20 

15 0.51 0.60 0.09 

It is noted that in most parts of the region there is a small variation of the current 

fields between both models. This implies that the computational region is dynamically 

dominated by tidal currents and the influence of the river flow is outweighed by the 

tidal flow. 
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Fig 5.3.7(a, b, c) show the contours of salinity at the surface, middle and bottom of 

the region of Liverpool bay when the freshwater discharge rate is 300 m3 /sec. The 

distribution of the salinity presents a character of bulge in the region around the 

mouth of the Mersey estuary, indicating a dispersion of freshwater from the Mersey 

into Liverpool bay. The low saline flow plume spreads out towards the coastal sides 

of the estuary with the contours of 34 and 33 ppt extending northward along the 

coastline. Although the region of the bulge is slightly reduced from the surface to the 

bottom, there is a very small difference of salinity variation with depth. This is 

consistent with the result in the river (see section 5.3.1). 

We also run the joined model with higher freshwater discharge(I 000m 3/S) with the 

rest of the parameters remaining the same as previous runs. 

Contours of salinity in Fig 5.3.8(a, b, c) show a similar structure to Fig 5.3.7, but the 

value of the contour is lower. The 30 ppt contour extended to the region where the 

value is between 32 to 34 ppt in low freshwater case. 

5.3.4 Results of Numerical Experiment without Tidal Forcing 

From the discussion above we note that with the M2 tide as the driving force of the 

model, the salinity distribution in Liverpool bay and the Mersey estuary is vertically 

well mixed. It implies the importance of tidal currents in the mixing of salt and 

freshwater. In a subsequent calculation, the joined model was run without including 

the tidal forcing across the open boundary of the bay model and the freshwater 

discharge from the river model was set to 1000 rn 3 /sec. As stated previously the 

amount of freshwater discharge was given by the adjustment of uo in the river model. 

This value was chosen to be 0.85 m/sec to support 1000 m3 /sec of freshwater 
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discharge when tidal forcing is involved in the model. When the tidal forcing is 

absent, such a high value for uO is not required and it can be reduced to 0.18 m/s. 

In the absence of tide, the contours of salinity after 10 days of integration (Fig 

5.3.9(a)-(c)) show that the freshwater distributes as a plume spreading on the surface 

layer away from the discharge point. From the surface to the sea bed, the area that is 

covered by the 34 ppt contour is diminished rapidly towards the Mersey estuary. The 

plume extends northwards as far as approximately 40 km from the Mersey estuary. 

The spreading of the plume in the east-west direction remains the same as was in Fig 

5.3.8. It implies that the low salinity plume tends to spread to the right as a result of 

the Coriolis effect and is confined by the coastline. 

The results in the Mersey when there is no tidal current included as a driving force are 

also presented here (see Fig 5.3.10). A consequence of the absence of the tide in the 

river shows the existence of a strong vertical gradient of isohalines. The salinity of the 

bottom water near mouth of the Mersey is of the order of 40 ppt and the salinity of the 

surface water is reduced below 24 ppt. 

A feature of dynamics in the river can be noted from the associated streamlines of 

volume transport (Fig. 5.3.11) and corresponding velocity profiles (Fig 5.3.12) and 

presents a three-layer structure of flow. The surface seaward flow has a velocity of 

order 0.5 m/sec while the bottom seaward flow is very weak and extends 13 km from 

the open sea. In the middle layer across the whole computational channel of Mersey, 

there is an inflow from Liverpool bay into the river. 
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The comparison shows that the dispersion of freshwater discharge from the Mersey 

into Liverpool bay is held back and mixed vertically by the tidal current. The 

existence of tidal currents in Liverpool bay has a dominant effect on the local coastal 

dynamics. 

The contours of salinity in Fig. 5.3.10 show a maximum salinity of 46.9 ppt near the 

bottom of the river at the seaward end. This implies a transport of salinity from 

Liverpool bay into the Mersey in the case considered here. In theory, if the model is 

initialized with no forcing, zero velocity and horizontal isopycnals, there should be no 

velocity developed in the integration. However, we noted that in our study here, the 

model has produced non-zero velocities in Liverpool bay when there is no forcing 

involved. This might be related to an error caused by the use of sigma coordinates. A 

disadvantage of using sigma coordinates is that there exists a numerical, baroclinic 

pressure gradient error (Mellor et al. 1998). The pressure gradient force in the sigma 

coordinate model consists of two terms, one term involves the pressure gradient along 

the a- surface, the other involves the pressure gradient due to bottom topography. 

These terms can be large on the steep topography, comparable in magnitude and 

opposite in sign. In this case a small truncation error can result in a large error in the 

pressure gradient force (Mellor et aL 1994; Haney 1991). Fig 5.3.13(a, b) shows a 

time series of surface and seabed current speed at location MP in the bay model. The 

seabed velocity at this location has a peak value of 0.3 m/sec with a mean value of 

0.15 m/sec. The maximum surface velocity reaches as high as 0.43 m/sec with mean 

value of 0.3 1 m/sec. From these results we can identify that there are velocity errors 

caused by sigma coordinate error and they may give rise to a salinity transport from 

the bay model into the river model. 
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1.. o 

5.3.5 Sediment Transport from the Mersey Estuary into Liverpool 

Bay 

One of the important features of the river model is that it includes the process of 

sediment transport. The movement of sediments occur when the force that water 

current exerts on the sediment is sufficiently large to overcome the gravity force 

acting on the sediment particles and the friction between the particles and underlying 

bed. The river model can calculate the flux of the sediment concentration across the 

bed of the estuary. When the sediments are picked up by the motion of the flow, they 

are transported with the flow in a form of suspended particles and may settle down to 

the bed during the movement or they may be transported out to the sea with the 

outflow. In the calculation here, the mean flux of sediment concentration across the 

seaward end of channel in the last day of integration is estimated. This indicates the 

amount of sediment concentration that may be transported out of the Mersey estuary 

and into Liverpool bay. The results show that when the joined model is run with M2 

tidal forcing along the western open boundary of bay model and with a freshwater 

discharge from the estuary into the bay of 300 m3 /sec, the total mean flux of sediment 

into Liverpool bay from Mersey is 9.846 kg/sec. When the freshwater discharge is 

increased to 1000 m3 /sec, the total mean flux of sediment is increased to 12.282 

kg/sec. We also calculated the sediment flux when the tidal forcing is absent, and the 

corresponding sediment flux out of Liverpool bay is nearly reduced to zero. 

Obviously, the influence of tidal current on the sediment transport in the Mersey 

estuary and Liverpool bay is significant. 
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Figure 5.3.13(a) Surface current(mls), after 10 days integration of bay model wth M2 tide 
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Figure 5.3.6(b)Surface curT ent(rnls), after 10 days integration of joined model, M2 tide, freshwater 300m3/s 
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Figure 53 6(c)Surface current(ryVs), after 10 days integration of joined model, M2 tide, freshwater 900M3/s 
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Figure 5.3.7(a)surface salinity, 10 days Integration of joined model with M2 tide, freshwater 300m3/sec 
100,1 11111111 1`1 111 -1 

120 

UC 

16( 

IN 

200 

50 55 60 65 70 75 80 85 so 95 100 105 

102 



Figure 5.3.7(b)rnid depth salinity, iO days Integration of joined model with M2 tide, freshwater 300m3/sec 
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Figure 5.3.7(c)seebed salinity, 10 days integration of joined model with M2 tide, freshwater 300m3/sec 100.1 
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Figure 5.3.8(a)surface salinity, 10 days Integration of joined model with M2 tide, freshwater I OOOm3/sec 
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Figure 5.3.8(b)mid depth salinity, 10 days integration of joined model with M2 tide, freshwater I OOOm3/sec 
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Figure 5.3.8(c)seabed salinity, 10 days Integration of joined model with M2 tide, freshwater 1OOOm3/sec 
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Figure 5.3,9(a)bottom salinityj 0 days Integration of joined model without tide, freshwater 900m3lsec 
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Figure 5.3.9(b)Md depth salinity, 10 days Integration of joined model without tide, frestrwater 900m3lsec 
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Figure 5.3.9(c)bottom salinity, 10 days Integration of joined model withotA tide, freshwater 9OOm3/sec 
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Fig. 5.3.10 Salinity in the Mersey when tidal force is absent from the joined model 

with freshwater of 1000 rn 3 /sec discharged from the Mersey (x 10 ppt ) 
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Fig 5.3.13a time series of surface current at NIP 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

This thesis presents details of an interactive sigma co-ordinates splicing based 

numerical model of tidal flow interaction in estuarine and coastal waters. It is 

characterized by a combination of tidal forcing from the western open boundary of the 

Eastern Irish Sea and estuarially driven forcing from the river Mersey. The basic 

framework is implemented by the incorporation of an adaptation of an early river 

model described by Johns and Oguz (1990) with the bay model originally developed 

by the Proudman Oceanographic Laboratory for the Eastern Irish Sea. This high- 

resolution three-dimensional hydrodynamic tidal model is used as a bay model to 

provide the real-time tidal current profiles from sea surface to sea bed. 

These two models are linked together at their common boundary through the surface 

elevation. The dynamic information is exchanged between the two models through 

continuity equations in both models. This is implemented by updating the boundary 

condition of one model using the output of the other. The model is capable of 

predicting a combination of the tidally- and estuarially- driven circulations of water 

flow in the nearshore regions. 

The modelling of hydrodynamic processes in the estuary is performed by the river 

model. This model describes the computational domain by solving a set of governing 

equations numerically. An essential feature of this model is that it uses a turbulence 

energy equation in a scheme of parameterization for the vertical exchange coefficient. 

This involves the parameterization of the Reynolds stresses in terms of the turbulent 

energy density and velocity shear. The salinity and sediment concentrations have also 
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been incorporated in the model by the use of transport equations. Consequently, the 

local density of the water is also expressed in terms of the local salinity and sediment 

concentration. The governing equations are solved subject to a prescribed tidal 

oscillation at the mouth of the river. Other boundary conditions also have to be 

provided appropriately. 

In the solution processes of the joined model, a difficulty is caused by the way that the 

discretization of the z variable is defined directly through the depth. As the 

computational levels are set with a fixed bottom and a free surface, they will not 

correspond to a set of the fixed physical levels. To avoid this difficulty, the sigma 

coordinate has been used in this model, so that the bottom of the river and the free 

surface always correspond to 0 and 1, respectively. This is then suitable for the fixed 

computational levels and numerical modelling can be implemented after 

transformation of the equations according to the new coordinates. 

For the same reason, the basic equations of the bay model have been cast in a bottom 

following sigma coordinate system. In the transformed equations, the bottom of the 

water column and the free surface correspond to -1 and 0, respectively. 

The bay model is used to simulate the tidal response in Liverpool bay and provide the 

real-time tidal elevations to the river model which is applied to the Mersey estuary. In 

the model, the hydrodynamic equations are solved in Liverpool bay and the 

surrounding shallow sea subject to the tidal forcing from the western open boundary. 

Other boundary conditions include land, sea surface, seabed and drying conditions. 

Salinity and temperature are incorporated in the model and the density is consequently 

expressed in terms of them. In this application the temperature is set to be constant. 
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The vertical eddy viscosity and eddy diffusivity are calculated by a one-equation 

turbulence model and it includes a prognostic equation for turbulence kinetic energy. 

Although the sigma coordinate in the bay model is defined differently from that in the 

river model, they can be transformed from one to another when joining the models 

together. 

In this thesis, the river model and the bay model are linked together through the 

surface elevation at the boundary between the Mersey river and Liverpool bay. The 

advantage of this work is to provide the river model with continuous dynamic 

information from the shelf sea. On the other hand, it is also possible to improve the 

understanding of the influence of estuary flow on the nearshore hydrodynamic 

processes. 

The three-dimensional bay model was originally compiled using a Fortran complier 

using the Unix system and necessary adaptation of the model codes have been made 

in this study so that it can be run by the Fortran compiler on a PC. Then the model 

codes were modified for an efficient and correct exchange of information. 

The first stage of the joining process is to combine the two models with an identical 

time step of 200 sec. During each time stepping procedure, the calculations in the bay 

model are performed one time step forward first and the result from this provides 

information of boundary condition to the river. This allows the variables to be updated 

so that they are ready to be used in the river model. Then the river model is called as a 

subroutine of the joined model, and the calculations in the river model can be 

performed one step forward to update the computed values in the river domain. The 

next step involves feeding back the values from the river model into the bay model 

along the common boundary. At this stage, both models have completed one time step 

116 



of forward integration. The variables along the common boundary are exchanged 

between two models at the same level of time. The result from previous step alone is 

enough for the calculation. This procedure goes back to the bay model to effect the 

next step of calculation and then to the river model and so on. 

When both models are run with identical time steps the information can be exchanged 

directly between them if the a-coordinate of each model are matched correctly at the 

same physical level. This is done by using a scheme to match two different sigma 

coordinates. 

In order to obtain computational stability, the time step in the bay model needs to be 

chosen at about 200 sec for aI km space resolution. To consider the hydrodynamic 

processes in the estuary area, higher resolution is desirable. A solution to this is to 

treat the domain of the bay model and that of the river model with different time steps, 

so that the spatial resolution can be adjusted separately. Here the spatial resolution in 

the bay model is kept unchanged as before, while the resolution in the river is 

increased. The horizontal spatial resolution in the river has been increased by four 

times, which leads to a change of total staggered grid points from 21 to 89 and 

reduces the spatial grid increment from 3.0 kin to 0.68 km. 

The second stage of the joining procedure is to increase the total number of horizontal 

grid points while keeping the length of the computation domain unchanged in the 

river model to achieve a higher spatial resolution. 

As a consequence of this, the time step of integration in the river model has to be 

changed in order to maintain the stability of the numerical scheme. This has been 

done by means of trial and error. The results show that the stability was very sensitive 

to the length of the time step. It was found that when the grid size was reduced to 
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25% of the original size, the time step required by the river model had to be reduced 

to 5% of the original time step. 

In implementing the exchange of information between two models, we have 

introduced an interactive grid-splicing scheme to match the variables along the 

common vertical boundary. This scheme is able to convert the variables that are 

calculated in the topography following sigma coordinates and are therefore not at the 

same fixed physical levels along the time dimension. By using this scheme, the 

variables at a fixed physical level for two successive time steps are determined 

depending on the values that were originally calculated using the sigma coordinates. 

The variables for the next step of river model calculations are determined by linear 

extrapolation. 

For each of the shorter time steps in the river model, variables, including the surface 

elevation and salinity at the common boundary of the two models need to be updated 

from the bay model. The variables from previous one step in the bay model are not 

enough to provide information to the river model. Instead, the results of the previous 

two steps are used to predict the boundary condition of each step for the river model. 

During the development of the joined model with increased spatial resolution, it was 

found that the reduction of the time resolution was much more than that of the spatial 

resolution. With a reduction of about four times in spatial resolution, the time step has 

to be reduced by 20 times to achieve the stability of the calculations. 

The joined model has been used in Liverpool Bay and the Mersey estuary and the 

results indicate that the model is effective at simulating (1) the circulation of tidal 

current approaching the coastal and estuary area; (2) The freshwater discharge from 
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the estuary into the bay; (3) The salinity structure caused by tidal forcing moving up 

the river; (4) The sediment transport from the river into the bay. 

The joined model was first tested for predicting M2 tidal elevation and currents. The 

results are compared with data from Aldridge and Davies (1993) at four locations in 

Liverpool bay. From the modelling results, it can be seen that a semi-diumal 

harmonic has been correctly predicted by the joined model and is consistent with the 

observations. The tidal ranges in the area of interest in this study, namely, Liverpool 

bay and the Mersey estuary are large and represent a feature of macrotidal and well- 

mixed conditions in the vertical direction. The M2 tidal component has a dominant 

influence on the dynamic structure of the Mersey estuary and coastal region of 

Liverpool bay. 

The freshwater discharge from the river into the bay presents a feature of bulge in 

Liverpool bay around the mouth of Mersey. There is a very small difference in the 

vertical variation of salinity as a result of tidal mixing. The influence of tidal forcing 

is tested by comparison of the results of modelling with and without the tidal forcing. 

The results show that when the tidal forcing is absent from the model, the discharge of 

the freshwater will lead to a low salinity plume extending 40 km northwards from the 

mouth of the Mersey and spreading to the right as it extends north due to the Coriolis 

effect. 

As the tide moves up the river, the joined model predicts a vertically well-mixed 

salinity structure in the Mersey estuary. There is almost no vertical salinity gradient. 

However, when there is no tidal forcing included in the joined model, the vertical 

gradient is very strong. 
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The joined model also includes sediment transport in the river and it can estimate the 

amount of sediment concentration that may be transported from the river into the bay. 

It is clear that the sediment transport in the Mersey and Liverpool bay is also strongly 

affected by the tidal forcing. 

6.2 Future Work 

From the foregoing numerical experiments using the joined model it is suggested that 

there are several ways the present results may be improved: (1) use an appropriate 

smoothing subroutine in the river model to reduce the effects of the nonlinear terms in 

the dynamic equation; (2) use different tidal components other than M2 as driving 

forcing of the bay model; (3) incorporate the sediment concentration in the bay model. 

The present model in the river is limited to one-dimension in the horizontal. It is 

suggested that the river model to be extended to two dimensions in the horizontal 

direction. There is one meeting point in the surface used in the present joined model, 

to improve the information exchange between the river model and bay model it is 

recommended to use more than one point as meeting point. One possible method is to 

embed the fine grid of river model within the coarse grid of bay model. 

Further improvements can be made to the present joined model. The effort should be 

directed towards understanding the detail of the nonlinear instability in the river 

model when joining with fine horizontal resolution. It may be that there are short 

wave components input from the bay model which leads to a rapid spatial variation 

that necessitate the short time step. There is a need for further testing of the joined 

model with smoothing subroutine of the salinity in the river model. 
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