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Abstract 

This paper presents a multi-objective mathematical model which aims to optimize and harmonize a 

supply chain to reduce costs, improve quality, and achieve a competitive advantage and position using 

meta-heuristic algorithms. The purpose of optimization in this field is to increase quality and customer 

satisfaction and reduce production time and related prices. The present research simultaneously optimized 

the supply chain in the multi-product and multi-period modes. The presented mathematical model was 

firstly validated. The algorithm's parameters are then adjusted to solve the model with the multi-objective 

simulated annealing (MOSA) algorithm. To validate the designed algorithm's performance, we solve some 

examples with General Algebraic Modeling System (GAMS). The MOSA algorithm has achieved an 

average error of %0.3, %1.7, and %0.7 for the first, second, and third objective functions, respectively, in 

average less than 1 minute. The average time to solve was 1847 seconds for the GAMS software; however, 

the GAMS couldn't reach an optimal solution for the large problem in a reasonable computational time. 

The designed algorithm's average error was less than 2% for each of the three objectives under study. These 

show the effectiveness of the MOSA algorithm in solving the problem introduced in this paper.  

Keywords: Supply Chain, Metaheuristics, Logistics, Fuzzy Sets, Multi-objective. 

 

1. Introduction 

The business that competes in today's world is based on the production of goods and services 

based on customer needs and, at the same time, cost-effective. In many companies, customer 

orientation has been adopted to reduce the amount of time spent to meet customer needs and 

improve products' quality. These companies seek to gain a competitive advantage by effectively 

managing their purchasing processes and creating better interaction with their suppliers. 

Coordinating the flow of materials across multiple organizations within each organization is one 
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of the major management challenges in the supply chain that achieving it requires the use of 

technologies and tools to track materials along the route from source to destination and record 

information at each step. Due to its ability to recover value from returned and used products, 

reverse logistics has received a lot of attention and has become a key element in the supply chain. 

The supply chain is a chain that includes all activities related to the flow of goods and 

conversion of materials, from the stage of preparation of raw materials to the stage of 

delivery of the final goods to the consumer. There are two other streams about the flow 

of goods: the flow of information, and the other is the flow of financial resources and 

credit. The design of a reverse logistics network is critical because of the need for materials and 

products to flow in the opposite direction of the supply chain for a variety of reasons. Legal 

requirements, social responsibilities, environmental concerns, economic interests, and 

customer awareness have forced manufacturers to produce environmentally friendly 

products, reclaim and collect returned and used products. Marketing, competitive and 

strategic issues, and improving customer loyalty and subsequent sales are also 

motivations for reverse logistics. Therefore, different industrial sectors need to improve 

their structures and activities to meet these challenges. Hence, a decision-making tool for 

supply chain coordination is presented in this study based on existing contracts using 

heuristic algorithms. Adopting the right strategy to improve supply chain performance 

brings many benefits to improve productivity in companies and organizations  

Considering the supply chain optimization under different circumstances will lead to 

lower costs and improve quality and thus achieve a competitive advantage. Optimization 

problems in this area seek to increase quality and customer satisfaction and reduce 

production time and related costs. Several variables are considered inputs of these kinds 

of problems.  

The goal is to find the optimal design points fitted with the mentioned objective 

functions. Given the pricing role in reducing the uncertainty of returned products and 

the impact of product returns on the number, location, and capacity of facilities needed 

for product revival in this paper, designing a closed-loop supply chain network (SCN) 

will be a model for designing a closed-loop SCN developed considering discounts, and 

financial resource flows. Also, the network of the mentioned model is derived from 

Ramezani et al. [1]. In a direct direction, the model includes the levels of suppliers, 

distributors, warehouses, retailers, and customers that warehouses are considered 

separately (allocating warehouse to a group of retailers) to make the paper's model more 

realistic. In the opposite direction, the network includes the collection, recycling, and 

disposal centers, which are produced in the direct flow of products using materials 

provided by suppliers, and through distribution centers to warehouses, and from there 

to retailers, and finally, to customers. This paper's main objective is to develop a multi-
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objective contingency optimization model for closed-loop supply chain design, which 

involves modeling the closed-loop supply chain problem considering discounts and flow 

of funds under uncertainty and two secondary objectives of solving the proposed model 

using fuzzy perspective and obtaining optimal design points values. The rest of the article 

is structured as follows: the theoretical foundations, literature review, and the research 

gap were discussed in the second part. Then, the solution method provided in the third 

section, and the research data is analyzed, and the numerical results are presented in the 

fourth section. The results were presented in the fifth and sixth sections, and the 

conclusion and future suggestions were presented in the seventh section. 

 

2. Literature Review 

Logistic Network Design is a part of supply chain planning focused on long-term 

strategic planning [2]. The logistics network design itself is divided into three parts, 

Forward Logistic Network Design, Reverse Logistic Network Design, and Integrate 

Forward Reverse Logistic Network (closed-loop). 

Forward Logistics Network: A network of suppliers, manufacturers, distribution 

centers, and channels between them and customers to obtain raw materials, convert them 

into finished products, and distribute finished products to customers efficiently (Amiri, 

[3]). 

Reverse Logistics Network: The process of efficiently planning, implementing, and 

controlling the flow of incoming and storing second-hand goods and related information 

in the opposite direction to the traditional supply chain to recover value or disposal [4]. 

The previous related literature is reviewed in the following. 

Peng et al. [5] designed a multi-period forward supply chain network. They 

presented complex linear programming to solve the problem of explaining the supply 

chain network. The proposed multi-period model is designed with two objective 

functions of optimal distribution and cost reduction. Ramezani et al. [1] presented a 

multi-objective and multi-product stochastic model for forward/reverse network design 

under uncertainty. The model objectives include maximizing profits, maximizing 

customer service levels, and minimizing the total number of defective raw materials 

purchased from suppliers, thereby determining the facilities' locations and flows 

between facilities in line with capacity constraints. This model is based on the scenario. 

In this paper, the ε-constraint method is used to obtain a set of optimal Pareto supply 

chain configurations. 

Hassanzadeh and Zhang [6] presented a multi-objective, multi-product problem in 

which communication flow is such that the products first are sent to demand markets. 
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Then, the products are sent from demand markets to collection centers. The product can 

be improved, and it is transferred to production workshops, otherwise transferred to 

recycling centers. This problem has been solved with two summing weights and ε 

constraints to convert the two-objective problem into a single-objective one. Vahdani and 

Sharifi [7] proposed a new mathematical model for designing a closed-loop SCN that 

integrated the network design decisions in both forward and reversed supply chain 

networks. They considered that the model's parameters are uncertain and modeled this 

uncertainty by fuzzy parameters. They presented an inexact-fuzzy-stochastic solution 

methodology to deal with various uncertainties in their proposed model. 

In this context, Pishvaee et al. [8] developed a feasible multi-objective programming 

model for designing a network of sustainable medical supply chains under uncertainty, 

considering the conflicting economic, environmental, and social goals. The present 

study provides a robust mathematical model for designing a medical needle and syringe 

supply chain as an essential strategic medical requirement in health systems. A product 

and a period have been evaluated in this research. A rapid Benders analysis algorithm 

using three efficient acceleration mechanisms that consider the proposed model 

solution's computational complexity was proposed to solve this model. Moreover, 

Braido et al. [9] addressed optimizing the SCN using the Tabu search method. 

Considering the importance of reducing logistics costs through supply chain 

optimization and the complexity of realistic problems, the present study aims to 

implement and evaluate the Tabu search's exploratory method to optimize a supply 

chain network. According to their research results, the proposed exploratory 

optimization can be used for networks with complex supply chains and can provide 

acceptable results on a computer that has been sufficiently optimized. 

Qin and Ji [10] designed a reverse logistics network to deal with uncertainty during 

the recovery process in a fuzzy environment. They formulated a single-objective, single-

period, single-product model to minimize costs, applied three types of fuzzy 

programming optimization models based on different decision criteria, and used a 

hybrid smart algorithm to integrate genetic algorithm (GA) and fuzzy simulation in 

order to solve the proposed models. Yang et al. [11] developed a two-stage optimization 

method for designing a Multi-purpose SCN (MP- SCN) with uncertain transportation 

costs and customer requirements. They developed two objectives for the SCN problem 

according to the neutral and risky criteria. They also designed an improved multi-

purpose biography-based optimization algorithm (MO-BBO) to solve the approximate 

complicated optimization problem and compare it with the Multi-Objective GA (MO-
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GA). According to their results, the improved MO-BBO algorithm outperforms MO-GA 

in terms of solution quality. 

By clicking on recent research, Avakh Darestani and Pourasadollah [12] used a multi-

objective fuzzy approach to design a closed-loop SCN concerning Dynamic Pricing. The 

model objectives include maximizing profits, minimizing delays in delivering goods to 

customers, and minimizing the return on suppliers' raw materials. Since the model is 

multi-objective, the fuzzy mathematical programming approach is used to convert the 

multi-objective model into a single objective in order to solve a large-sized version the 

problem. The results show the efficiency and effectiveness of the model. Sarkar et al. [13] 

provided optimal production delivery policies for suppliers and manufacturers in a 

constrained closed-loop supply chain for returnable transport packaging through a 

metaheuristic approach. The model objectives include profit maximization and carbon 

emissions minimization of the system. A weighted goal programming technique and 

three distinct meta-heuristic approaches are applied to obtain efficient trade-offs among 

model objectives. Three heuristic methods, particle swarm optimization, interior point 

optimization algorithm, and genetic algorithm, were used, and the best method was 

presented for the given data. The results provided by the interior-point optimization 

algorithm and GA were the best ones. The weighted goal programming results while 

using the single setup multi-delivery (SSMD) policy were compared with the SSMD 

policy. Results show an SSMD policy for supplier and manufacturer-focused decision-

making in a proposed supply chain management to improve proper economic 

sustainability. 

Rahimi Sheikh et al. [14] designed a Resilience supply chain model by identifying 

the factors creating instability in the supply chain. Govindan et al. [15] reviewed big data 

analytics and application for logistics and supply chain management. This study 

summarizes the big data attributes, effective methods for implementation, effective 

practices for implementation, and evaluation and implementation methods. Their 

review papers offer various opportunities to improve big data analytics and applications 

for logistics and supply chain management. Vanaei et al. [16] proposed a new multi-

product multi-period mathematical model for integrated production-distribution three-

level supply chain. They considered the uncertainty of the model's parameters using the 

Markowitz model and solved the presented model by GA. 

Mahmoudi et al. [17] presented a new multi-product, multi-level, and multi-period 

mathematical model for a reverse logistic network which aimed to minimizes 

transportation and facilities establishing cost, and lowers purchasing from suppliers, 

and solved the proposed model using a genetic algorithm. Khorram-Nasab et al. [18] 
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presented an integrated management model for the electronic supply chain of products 

in gas and oil companies by investigating the effective parameters on the company's 

performance. Zahedi et al. [19] designed a closed-loop SCN considering multi-task sales 

agencies and multi-mode transportation. The proposed model has four echelons in the 

forward direction and five echelons in the backward direction. The model considers 

several constraints from previous studies and addresses new constraints to explore 

better real-life problems that employ different transportation modes and rely on sale 

agency centers. The objective function is to maximize the total profit. Besides, this study 

firstly considers a distinct cluster of customers based on the product life cycle. The 

model's structure is based on linear mixed-integer programming, and the proposed 

model has been investigated through a case study regarding the manufacturing 

industry. The findings of the proposed network illustrated that using the attributes of 

sale agency centers and clusters of customers increases total revenue and the number of 

returned products. 

Srivastava and Rogers [20] researched how to manage various industries of global 

supply chain risks in India. They believe that in each industry sector, the global supply 

chain risks and their mitigation strategies differ. They used profile deviation and ideal 

profile methodology to identify top performers in three industry sectors (Audit, Finance 

and Consulting, Automotive, and IT and Software) and evaluated their best practices 

towards managing global supply chain risks. They then found the 'ideal' risk mitigation 

profiles for all three industries. These findings provide new insights to practitioners as 

they will serve as a helpful reference tool for Indian executives planning to 

internationalize.  

Jaggi et al. [21] presented a multi-objective production model in the lock industry 

case study. In the proposed model, an attempt has been made for the production 

planning problem with multi-products, multi-periods, and multi-machines under a 

specific environment that takes into account to minimize the production cost and 

maximize the net profit subject to some realistic set of constraints. In a multi-objective 

optimization problem, objective functions usually conflict with each other, and any 

improvement in one of the objective functions can be achieved only by compromising 

with another objective function. To deal with such situations, the Goal Programming 

approach has been used to obtain the formulated problem's optimal solution. This 

optimal solution can only be obtained by achieving the highest degree of each of the 

membership goals. 

Talwar et al. [22] reviewed big data in supply chain operations and management. 

Their research is a systematic review of the literature (SRL) to uncover the existing 
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research trends, distill key themes, and identify future research areas. For this purpose, 

116 studies were identified and critically analyzed through a proper search protocol. 

The key outcome of this SRL is the development of a conceptual framework titled the 

Dimensions-Avenues-Benefits (DAB) model for adoption and potential research 

questions to support novel investigations in the area offering actionable implications for 

managers working in different verticals and sectors. Maheshwari et al. [23] reviewed the 

role of big data analytics in supply chain management. A review from the year 2015–

2019 is presented in this study. Further, the significance of DAB in supply chain 

management (SCM) has been highlighted by studying 58 papers, which have been 

sorted after a detailed study of 260 papers collected through the Web of Science 

database. Their findings and observations give state-of-the-art insights to scientists and 

business professionals by presenting an exhaustive list of the progress made, and 

challenges left untackled in the field of DAB in SCM. 

Recently, Atabaki et al. [24] used a priority-based firefly algorithm (FA) for the 

network design of a closed-loop supply chain with price-sensitive demand. A mixed-

integer linear programming model is developed to make location, allocation, and price 

decisions maximize total profit regarding capacity and number of opened facilities 

constraints. The proposed FA uses an efficient solution representation based on the 

priority-based encoding. Moreover, the algorithm utilizes a backward heuristic 

procedure for decoding. For large-sized problems, the performance is compared with a 

differential evolution algorithm, a genetic algorithm, and an FA relying on the 

conventional priority-based encoding through statistical tests and a chess rating system. 

The results indicate the superiority of the proposed approach in both FA structure and 

encoding-decoding procedure. In the same year, Avakh Darestani and Hemmati [25] 

optimized a dual-function closed-loop SCN for corrupt commodities according to the 

queuing system using three multi-criteria decision-making methods, namely the 

weighted sum method method, the LP-Metrics. The objectives of this study are to 

minimize total network costs and minimize greenhouse gas emissions. The results 

indicate a significant difference between the mean of the first and second objective 

functions and the computational time. According to Zaleta & Socorrás [26], no algorithm 

can solve the supply chain design problem for large cases in a reasonable time period. 

Lee and Kwon [27] suggest that although computing power has increased, and several 

efficient and powerful software programs have been introduced in the market, 

computing time is still very long for hundreds of products and customers and dozens of 

plants. The research model was developed based on previous research studies and 

literature review and gaps identified in modeling and solution methodology.  
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2.1 Contribution of this work 

Overall, this research offers a comprehensive yet multi-objective model for closed-

loop supply chain design, and to make the model more adaptable to the real world, hence 

uncertainty in demand, return rates when delivering products to customers is considered 

that fuzzy numbers are used to describe these factors and fuzzy mathematical 

programming for modeling given the fuzzy capability to interact with uncertainty 

patterns. This paper's contribution is to present an optimized fuzzy model based on 

several objective functions and consider discounts and financial flows that show the 

model is complicated due to the objectives mentioned above and variables mentioned in 

this environment and has not been presented so far. Since the closed-loop supply chain 

problem is one of the NP-hard problems, some extraordinary approaches to solving this 

problem, which is part of the paper, contribute to the research literature. 

 

 

3. Problem Modelling  

The structure of the studied chain was presented in Figure 1. A transportation system 

must be considered in this chain for each of the existing connections between the chain 

members. For this purpose, several predefined transportation systems are investigated, 

and each of them establishes material connections between different chain members. 

Moreover, this chain's key parameters, including demand, return rate, and delivery time 

to customers, are assumed to be uncertain, aiming to get closer to the real situation. 

Insert Figure 1 here 

 

The research assumptions can be stated as follows: 

• The supply chain understudy is multi-level, multi-product and multi-

period 

• Discounts are considered in the supply of raw materials 

• The current chain value is considered in the feasibility studies of the chain 

• The problem is based on the demand uncertainty and the delivery amount 

and time 

• Except for disposal centers, other chain components have limited capacity 

• Hybrid centers can distribute and collect returned goods simultaneously 

• The suppliers' locations in the chain are fixed 

• The non-deterministic parameters are provided as the triangular fuzzy 

numbers 
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• The problem objectives include maximizing the profit's present value, 

minimizing the total weight of the delivery time, and minimizing the defective 

items received from the suppliers. 

A multi-echelon multi-product closed-loop supply chain is designed for this problem. 

The chain consists of suppliers, manufacturers, distributors, and collection and disposal 

centers. The 'suppliers' location is fixed, but the manufacturing 'plants' location must be 

determined. There is also a set of potential points that can be distribution, collection, or 

combination centers. Combination centers can distribute as well as collect 

simultaneously. The disposal center location should also be determined from among its 

potential points. Then, a mathematical model was presented in this research. 

Moreover, the network of the current research's model is derived from Ramezani et al. 

[1]. Three objectives were optimized simultaneously in this model. The first objective is 

to maximize the value of the chain profit; the second objective is to minimize the 

transition times. The third objective is to minimize defective parts purchased. In this 

regard, due to the uncertainty of some parameters, the fuzzy theory approach was 

applied to the mathematical model. Professor Lotfi Asgar Zadeh first introduced fuzzy 

logic in new computation after setting the fuzzy theory. The fuzzy method is a very 

efficient method that helps managers control these uncertainties and is therefore used in 

our model to achieve the desired objective. Moreover, the Multi-Objective Simulated 

Annealing Algorithm is used to solve the model due to the complexity of the 

mathematical model. 

 

3.1. Mathematical model 

The proposed mathematical model is presented in the following: 

Indices 

S: Supplier fixed location (𝑠 =  1,2, . . . , 𝑆) 

i: Potential locations of plants (𝑖 =  1,2, . . . , 𝐼) 

j: Potential locations for distribution centers / collection facilities / hybrid centers (𝑗 =

 1,2, . . . , 𝐽) 

c: Customers’ fixed locations (𝑐 =  1,2, . . . , 𝐶) 

k: Potential centers of goods disposal (k =  1,2, . . . , K) 

p: Products (𝑝 =  1,2, . . . , 𝑃) 

r: Raw materials (𝑟 =  1,2, . . . , 𝑅) 

l: Transportation systems (𝑙 =  1,2, . . . , 𝐿) 

t: Time periods (𝑡 =  1,2, . . . , 𝑇) 

 

Parameters 

�̃�𝑐𝑝
𝑡 : Customer c demand for product p in period t, 

𝑃𝑅𝑐𝑝
𝑡 : The selling price of each unit of product 𝑝 to customer 𝑐 in period 𝑡, 
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𝑆𝐶𝑠𝑟
𝑡 : Cost of purchasing 1 unit of raw material 𝑟 from supplier 𝑠 in period 𝑡, 

𝐷𝑆𝑠
𝑡: Discount on purchase of raw materials from supplier 𝑠 in period 𝑡, 

𝑀�̇�𝑖𝑝
𝑡 : Production cost per unit of product 𝑝 in plant 𝑖 in period 𝑡, 

𝑂𝐶𝑗𝑝
𝑡 : Operating cost on product p at the collection center 𝑗 in period 𝑡, 

𝐼𝐶𝑗𝑝
𝑡 : Inspection and recycling cost per unit of product 𝑝 at the facility location 𝑗 in period 𝑡, 

𝑅𝐶𝑖𝑝
𝑡 : Cost of recovering product 𝑝 in plant 𝑖 in period 𝑡, 

𝐷𝐶𝑘𝑝
𝑡 : Disposal cost per unit of product 𝑝 at the disposal center 𝑘 in period 𝑡, 

𝐻𝐶𝑗𝑃
𝑡 : Maintenance cost per unit of product 𝑝 in the facilitation center 𝑗 in period 𝑡, 

𝑅𝐷𝑠𝑟
𝑡 : The failure rate of raw material 𝑟 in supplier 𝑠 in period 𝑡, 

𝑤𝑟: Significance coefficient of raw material 𝑟, 
𝐹𝑋𝑠

𝑡: Fixed cost of supplier 𝑠 selection in period 𝑡, 

𝐹𝑋𝑖
𝑡: Fixed cost of setting up plant 𝑖 in period 𝑡, 

𝐹𝑌𝑗
𝑡: Fixed cost of setting up facility 𝑗 in period 𝑡, 

𝐹𝑍𝑗
𝑡: Fixed cost of setting up a collection center 𝑗 in period 𝑡, 

𝐹𝑈𝑗
𝑡: Cost of setting up a hybrid center at point 𝑗 in period 𝑡, 

𝐹𝑉𝐾
𝑡: Fixed cost of setting up a disposal center 𝑘 in period 𝑡, 

𝐶𝑆𝑠𝑟
𝑡 : The capacity of supplier 𝑠 for supplier 𝑟 in period 𝑡, 

𝐶𝑋𝑖
𝑡: Production capacity in plant 𝑖 in period 𝑡, 

𝐶𝑌𝑗
𝑡: The capacity of distribution center 𝑗 in period 𝑡, 

𝐶𝑍𝑗
𝑡: The capacity of the collection center 𝑗 in period 𝑡, 

𝐶𝑈𝑗
𝑡: The capacity of the hybrid center 𝑗 in period 𝑡, 

𝐶𝑅𝑖
𝑡: Plant capacity 𝑖 to recover products returned in period 𝑡, 

𝐶𝑉𝑘
𝑡: The capacity of the disposal center 𝑘 in period 𝑡, 

𝐶𝑆𝐼𝑠𝑖𝑟
𝑡 : The unit cost of transporting raw material 𝑟 from supplier 𝑠 to plant 𝑖 in period t, 

𝐶𝐼𝐽𝑖𝑗𝑝𝑙
𝑡 : The unit cost of transporting product 𝑝 from plant 𝑖 to distribution center 𝑗 in period 𝑡 

with transportation system 𝑙, 

𝐶𝐽𝐶𝑗𝑐𝑝𝑙
𝑡 : The unit cost of transporting product 𝑝 from the distribution center 𝑗 to the customer 𝑐 

with the transportation system 𝑙 in period 𝑡, 

𝐶𝐶𝐽𝑐𝑗𝑝𝑙
𝑡 : The unit cost of transporting product 𝑝 from the customer 𝑐 to the collection center 𝑗 

with the transportation system 𝑙 in period 𝑡, 

𝐶𝐽𝐼𝑗𝑖𝑝𝑙
𝑡 : Cost of transporting product 𝑝 inspected from the collection center 𝑗 to the plant 𝑖 for 

recovery in period 𝑡 with the transportation system 𝑙, 

𝐶𝐽𝐾𝑗𝑘𝑝
𝑡 : The unit cost of transporting product 𝑝 from the collection center 𝑗 to the disposal center 

𝑘 in period 𝑡, 

𝑇𝐼𝐽𝑗𝑖𝑝𝑙
𝑡 : Product transporting time 𝑝 from plant 𝑖 to distribution center 𝑗 in period 𝑡 with 

transportation system 𝑙, 

𝑇𝐽�̃�𝑗𝑐𝑝𝑙
𝑡 : Product transporting time 𝑝 from distribution center 𝑗 to customer 𝑐 with transportation 

system 𝑙 in period 𝑡, 

𝑇𝐶𝐽𝑐𝑗𝑝𝑙
𝑡 : Product transporting time 𝑝 from customer 𝑐 to collection center 𝑗 with transportation 

system 𝑙 in period 𝑡, 

𝑇𝐽𝐼𝑗𝑖𝑝𝑙
𝑡 : Product time 𝑝 inspected from collection center 𝑗 to plant 𝑖 for recovery in period 𝑡 with 

transportation system 𝑙, 
𝑛𝑟𝑝: Raw material consumption coefficient 𝑟 in product 𝑝, 
𝑚𝑝: Rate of capacity utilization in producing product 𝑝, 

𝑅�̃�𝑝: The return rate of product 𝑝 from customers, 
𝑅𝑋𝑝: The reproduction rate of product 𝑝, 

𝑅𝑉𝑝 Disposal rate of product 𝑝, 
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𝑖𝑟: Interest rate, 
𝛾: Discount rate, 
𝛽: The importance weight of the direct chain and 1 −  𝛽 is the important factor of the 

reverse chain, 
𝐵𝑀: A very large number 

 

Variables 
𝑄𝑆𝐼𝑠𝑖𝑟

𝑡 : Amount of raw material 𝑟 sent from supplier 𝑠 to plant 𝑖 in period 𝑡, 

𝑄𝐼𝐽𝑖𝑗𝑝𝑙
𝑡 : Quantity of product 𝑝 sent from plant 𝑖 to distribution center 𝑗 with transportation 

system 𝑙 in period 𝑡, 

𝐼𝑁𝑉𝑗𝑝
𝑡 : Inventory of product 𝑝 in the distribution center 𝑗 at the end of period 𝑡, 

𝑄𝐽𝐶𝑗𝑐𝑝𝑙
𝑡 : Amount of product 𝑝 transferred from the distribution center 𝑗 to the customer 𝑐 with 

the transportation system 𝑙 in period 𝑡, 

𝑄𝐶𝐽𝑐𝑗𝑝𝑙
𝑡 : Quantity of product 𝑝 returned from the customer 𝑐 to the collection center 𝑗 with the 

transportation system 𝑙 in period 𝑡, 

𝑄𝐽𝐼𝑗𝑖𝑝𝑙
𝑡 : Amount of recyclable product 𝑝 sent from the collection center 𝑗 to plant 𝑖 with the 

transportation system 𝑙 in period 𝑡, 

𝑄𝐽𝐶𝑗𝑘𝑝
𝑡 : Amount of defective product 𝑝 sent from the collection center 𝑗 to the disposal center 𝑘 

in period 𝑡, 
𝑊𝑠

𝑡: A binary variable equal to 1 if the supplier 𝑠 is selected in period 𝑡, 

𝑋𝑖
𝑡: A binary variable equal to 1 if plant 𝑖 is started in period 𝑡, 

𝑌𝐽
𝑡: A binary variable equal to 1 if the distribution center is set up at point 𝑗 in period 𝑡, 

𝑍𝑗
𝑡: A binary variable equal to 1 if the collection center is set up at point 𝑗 in period 𝑡, 

𝑈𝑗
𝑡: A binary variable equal to 1 if a hybrid center is set up at point 𝑗 in period 𝑡, 

𝑉𝑘
𝑡: A binary variable equal to 1 if the disposal center is set up at point 𝑘 in period 𝑡, 

𝐴𝑖𝑗𝑙
𝑡 : A binary variable equal to 1 if the transportation system 𝑙 connects plant 𝑖 and 

distribution center 𝑗 in period 𝑡, 

𝐵𝑗𝑐𝑙
𝑡 : A binary variable equal to 1 if the transportation system 𝑙 connects the distribution 

center 𝑗 to customer 𝑐 in period 𝑡, 

𝐶𝑐𝑗𝑙
𝑡 : A binary variable equal to 1 if the transportation system 𝑙 connects customer 𝑐 to the 

collection center 𝑗 in period 𝑡, 

𝐷𝑗𝑖𝑙
𝑡 : A binary variable equal to 1 if the transportation system 𝑙 connects the collection center 𝑗 

to plant 𝑖 in period 𝑡, 

 

3.2.Mathematical Model Relationships 

The problem consists of three objectives that are presented in detail as follows. 

 

• Maximize the value of chain profit 

The first objective function maximizes the chain's net present value, derived from the 

difference between incomes and costs. Equation (2) is the specified income from the sale 

of products in each period. Equation (3) indicates the total chain costs in each period. 

These costs include fixed costs of setting up plants and facilities, costs of supply and 

purchase from suppliers, discounts from suppliers, costs of production and recovery of 
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defective products, operating costs in distribution centers and disposal centers, inventory 

costs in distribution centers, and transportation costs by different transportation systems 

in the supply chain. 

( )
1

1

t t

t
t

Income -Cost
Max NPV

ir
−

=
+

  (1) 

. t

t jcpl cp

j c p l

Income OJC PR=  (2) 

( ) ( ) ( )

( ) ( )

1 1 1

1 1

. . .

. . . .

. . .

.

t t t t t t t t t

t i i i j j j j j j

i j j

t t t t t t t t t t

ij j j k k k s s sir sr

j k s s i r

t t t t t t

s s ijpl ip jipl ip

s i r i j p l j i p l

t t

jcpl jp

l

Cost FX X X FY Y Y FZ Z Z

FU U U FV V V FW W QSI SC

q DS QIJ DC QIJ DC

QJC OC

− − −

− −

= − + − + − +

− + − + + −

+ + +

  

   

  

 . .

. . .

. .

. .

t t t t

cjpl jp jkp kp

j c p c j p l j k p

t t t t t t

jp p sir sir ijpl ijpl

j p s i r i j p l

t t t t

jcpl jcpl cjpl cjpl

j c p l c j p l

t t t

jipl jipl jkp

j i p l

QJC IC QJK DC

INV HC QSI CSI QIJ CIJ

QCJ CJC QCJ CCJ

QJI CJI QJK

+ + +

+ + +

+ +

+

  

  

 

 t

jkp

j k p

CJK

 (3) 

 

• Minimize the transition times 

The second objective function minimizes the weighted total of the transmission 

times in the direct and reverse chains as follows: 
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 (4) 

 

• Minimize defective parts purchased 

The last objective function minimizes the total amount of defective raw materials in 

suppliers. This goal seeks to select suppliers that minimize the return of final goods as 

follows: 

3 . .t t
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Min f QSI RD w=  (5) 
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The model's constraints are presented in Equations (6) to (33) as follows. Equation (6) 

indicates that the amount of raw material imported to each plant in each period is equal 

to the amount of output from that plant in the same period. Equation (7) ensures that the 

amount imported for each product in each period to each distribution center and the 

remaining inventory from the previous period is equal to the amount sent to customers 

and the remaining inventory at the end of the period. 

. . ; , ,t t t

rp ijpl sir rp jipl

j p l s j p l

n QIJ QSI n QIJ i j t= +     (6) 

1 ; , ,t t t t

jp ijpl jp jcpl

i l c l

INV QIJ INV QJC j p t− + = +    (7) 

 

Equation (8) shows that for each product and each period, the amount available in 

each of the distribution centers or hybrid centers must meet the demand for that product. 

Equation (9) describes the relationship between customer demand and the amount 

returned to collection centers and hybrid centers. Equation (10) ensures that the total 

amount received from customers in collection centers and recyclable centers that can be 

recycled is equal to the total amount sent from these centers to plants. Equation (11) 

ensures that the total amount of recyclable goods received from customers at collection 

centers and recycling centers is equal to the total amount sent to disposal centers. 

; , ,t t

jcpl cp

j l

QJC d c p t=   (8) 

. ; , ,t t

cjpl cp p

j l

QCJ D RR c p t=   (9) 

. ; , ,t t

jipl cjpl p

i l c l

QJI QCJ RX j p t=    (10) 

; , ,t t t

jkp jipl cjpl

k i l c l

QJK QJI QCJ j p t+ =     (11) 

 

Equation (12) ensures that suppliers' raw material does not exceed the suppliers' 

capacity. Equation (13) indicates material capacity constraints in plants similar to 

suppliers. Equation (14) indicates that each distribution center's remaining inventory and 

the hybrid center should not exceed its capacity. Equation (15) ensures that the flow of 

goods from collection centers to plants and disposal centers does not exceed these centers' 

capacity. Equation (16) states that the total amount of goods returned to each plant should 

not exceed that plant's recovery capacity. Equation (17) states that the total amount sent 

to the disposal centers should not exceed these centers' capacity. Equation (18) is the 

maximum number of facilities that can be established. 
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Equation (19) ensures that raw materials are received from selected suppliers. 

Equations (20) and (21) determine the minimum amount received from each of the 

selected suppliers, so that very small orders are not sent to a particular supplier. 
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Equation (22) to (25) requires that only one transportation system be used in each 

chain member. 
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Equation (26) to (29) indicates that the transportation system is used between the 

chain members who send goods. 
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; , , ,t t

cjl cjpl

p

C QCJ c j l t   (28) 

; , , ,t t
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p
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Equation (30) to (33) indicates that the chain members with no transaction do not 

also send goods to each other. 
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. 

 

3.3. Fuzzification approach and model solution in fuzzy conditions 

Each of the non-deterministic parameters is considered as a triangular fuzzy number 

displayed as �̃� = (𝑑1, 𝑑2, 𝑑3). The alpha cut is used to determine the values of 𝑥 with an 

alpha confidence level in its uncertainty. The following equation obtains these values of 

𝑥: 

{ : , ( ) , [ 0,1] }Ax x x X x   =   
 (34) 

 

The lower the alpha, the higher the confidence level and the smaller the confidence 

interval, and the higher the alpha, the lower the confidence level and the more the 

confidence interval. Considering the specified alpha level, the range of changes x can be 

reduced, and the investor can be assured that the investment risk is somewhat reduced. 

Determining the alpha level or the same level of confidence is the decision 'maker's 

responsibility and is added as a predefined parameter in the model. 

So generally, the fuzzy demand �̃� = (𝑑1, 𝑑2, 𝑑3) becomes an interval of 𝐷 = [𝑑𝑚, 𝑑𝑛] 

considering value for alpha. The following process is then performed to optimize the 

mathematical model considering the demand interval. 

Step 1: Set the demand value at the lower limit of 𝑑𝑚 and determine the optimal value 

of each of the objective functions and name them as𝑓1
𝑚, 𝑓2

𝑚, 𝑓3
𝑚. 
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Step 2: Set the demand value at the lower limit of nd   and determine the optimal value 

of each of the objective functions and name them as 𝑓1
𝑛, 𝑓2

𝑛, 𝑓3
𝑛. 

Step 3: State the optimal amount of each goal using the following equation. 
*

1 1 1(1 )m nf f f = + −

 

(35) 
*

2 2 2(1 )m nf f f = + −

 

(36) 

*

3 3 3(1 )m nf f f = + −

 

(37) 

 

3.4. Multi-Objective Simulation Annealing Algorithm 

The Multi-Objective Simulation Annulling (MOSA) is a meta-heuristic algorithm 

based on the Simulation Annulling (SA) algorithm's overall structure. Due to the 

existence of more than one goal for optimization in this algorithm, the answers' 

superiority in each step is based on the concept of non-dominance. Answer x is dominant 

to answer y if the value of each objective function for answer x is better than its equivalent 

for answer y. In each iteration in the MOSA algorithm, the answers' dominance relative 

to each other is checked after generating a neighborhood answer. If one answer is 

dominated by the other, we save it in the list of non-dominant answers. Otherwise, the 

answers are checked based on the probability of Relation 38, and one of them is deleted, 

and the other is used in the next step. Therefore, generally, MOSA and SA's main 

difference is how to delete the answers and apply new solutions. 

1 0

0

, f
Δfp{accept}

ce , f

 
=

 
 

(38) 

 

In the above Relation, 𝑃 is the probability of accepting the next point. It ∆𝑓 is the 

changes in the objective function for the established neighborhood, and 𝐶 is the control 

parameter, which is considered equal to the current temperature. A stop criterion is 

required to complete this algorithm. One criterion for this purpose can be reaching the 

final temperature. Another criterion is the degree to which the answer does not improve 

in a certain number of iterations. 

In this research, the initial temperature value is 1000, and the temperature reduction rate 

is equal to 0.01 of the previous stage temperature for the solved examples (Sharifi et al., 

[28]). In other words,  𝑇𝑖+1 = 0.99 × 𝑇𝑖 the stopping criterion is no improvement in the 

last 100 repetitions or reaching a temperature of less than 1. 

 

4. Computations and results  

First, the proposed mathematical model was validated. In order to determine the 

validity of the model and the accuracy of its performance, an example of the problem 
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generated in GAMS software was solved with linear programming SOLVER called 

CPLEX on a personal computer with Intel Core i5-3230M 2.6GHz processor and 6 GB of 

executive RAM with Windows 8 version 1. The data for this example is provided in Table 

1. 

Insert Table 1 here 

 

Other problem parameters are randomly assigned. Since the mathematical model is 

multi-objective and GAMS software solves the mathematical model in a single objective, 

the objects presented to this software are a total of 3 objective functions presented in the 

mathematical model. Problem-solving is done with GAMS software and with a BARON 

solver. The optimal value of each of the objective functions is shown in Table 2. 

Insert Table 2 here 

 

Since the most important elements of this chain are plants, distribution centers, and 

recycling and disposal centers, the following outputs regarding location are presented 

after solving the mathematical model. Then, the supplier selection is determined. The 

number 0 means no selection, and the number 1 means the supplier selection, which is 

shown in Table 3. 

Insert Table 3 here 

 

The plant's location is also indicated in Table 4. 

Insert Table 4 here 

 

The results related to distribution centers, collection, and hybrid location are shown 

in Table 5. 

Insert Table 5 here 

 

Considering that the answers obtained for decision variables are feasible and 

consistent with the manual analysis, then the proposed mathematical model is efficient 

and valid. The efficiency of the proposed meta-heuristic algorithms for solving the 

desired model is analyzed in the following. First, it is necessary to optimize the value of 

the algorithm parameters. To do this, the technique of designing experiments will be used 

based on the Taguchi method. 

 

4.1. Designing experiments for MOSA algorithm parameters 
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Based on the Taguchi method structure, three values are first proposed for each of 

the MOSA algorithm parameters. The suggested values are shown in Table 6. 

Insert Table 6 here 

 

The following modes of the MOSA algorithm are implemented based on the Taguchi 

L9 scheme, and its outputs are presented in Table 7. 

Insert Table 7 here 

 

After entering this information into MINITAB software and implementing the 

Taguchi method, the S/N diagram is presented in Figure 2. 

Insert Figure 2 here 

 

According to the diagram above, a value with the lowest S / N value is appropriate 

for each parameter. Therefore, the values shown in Table 8 are optimal values relating to 

the MOSA algorithm, and other examples will be executed with these values. 

Insert Table 8 here 

 

4.2. Numerical results 

It is required to measure the MOSA algorithm's performance in several examples in 

different dimensions to evaluate the introduced algorithm's performance. For this 

purpose, 11 examples in different dimensions have been generated. Information about 

these examples is provided in Table 9. 

Insert Table 9 here 

 

In Table 9, 𝑆 is the number of suppliers, 𝐼 is the potential plants, 𝐽 is distribution, 

collection, and hybrid centers, 𝐶 is the number of customers, K is the number of potential 

disposal centers, 𝑃 is the number of products, 𝑅 is the number of raw materials, 𝐿 is the 

number of transportation systems, and 𝑇 is the number of studied periods. The examples 

generated in GAMS software are solved with a time limit of 3600 seconds and solved with 

the MOSA algorithm. It should be noted that the MOSA algorithm provides several 

answers in the form of the Pareto boundary. However, GAMS software only presents one 

answer as the optimal answer. Now, in order to better compare these two solution 

methods, the answer with the highest value of swarm index as a candid answer from 

MOSA is compared with the answer provided by GAMS. The swarm index is calculated 

as follows. 
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max min
1

( 1) ( 1)
( )

n
i i

i i i

f k f k
d k

f f=

− − +
=

−
  (39) 

 

In Relation (39), d is the swarm index value, and k is the counter of Pareto boundary 

responses; n is the number of goals, and f represents the value of the goal function for 

each goal for the kth answer the Pareto boundary. The answer that has the highest value 

of the swarm index is very close to the other answers. In other words, the answer in the 

middle of the Pareto border is known as the answer with the highest swarm index. After 

identifying this answer, each of its objective functions' value is reported in Table 10 and 

compared with its equivalent value in GAMS. It should also be noted that the alpha cut 

method has been used due to the fuzzy amount of demand. In all solved examples, the 

alpha value is assumed to be 0.75. Table 10 summarizes the results of these examples. 

Insert Table 10 here 

According to Table 10, 𝑧1 to 𝑧3 are the three objective functions obtained from both 

methods. 'Time' is the execution time by both methods. 'GAP' provides the error rate of 

the MOSA algorithm. As can be seen, GAMS software has not been able to solve the last 

two examples. On the other hand, it has consumed the entire defined time in examples 7, 

8, and 9. In other words, the optimization of these examples in GAMS software has been 

performed for a longer time, but it has stopped after 1 hour due to the time limit of 3600 

seconds. The MOSA algorithm solves all the examples presented in less than 1 minute, 

while the average solution time of GAMS software was 1847 seconds. The following 

Figure compares the solution times of the two methods. 

Insert Figure 3 here 

 

As shown in Figure 3, the solution time increase in GAMS software is much higher 

than the slope of the solution time increase in MOSA. This algorithm has reached the 

optimal answer for the first and second objective functions regarding the MOSA 

algorithm error, in example 1. In the third objective function, the general optimal answer 

is reached in the first four examples. The average MOSA error is 0.3% for the first 

objective function, 1.7% for the second objective function, and 0.7% for the third objective 

function, which shows this algorithm's efficiency in different examples. 

 

4.3. Checking the efficient border of the MOSA algorithm 

Since this algorithm optimizes the problem in a multi-objective way and its output 

includes several answers (the efficient boundary of a multi-objective problem), it is 
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necessary to examine this algorithm's features in terms of different solutions of the 

optimal center. Several indicators are provided to evaluate the performance of multi-

objective meta-heuristic algorithms. These criteria include Mean Ideal Distance (MID), 

and Maximum spread or diversity (MD), relative distance from straight answers (SM), 

and outstanding achievement (RAS). The following is the method of calculating the above 

indicators: 

The MID criterion is used to calculate Pareto's average distance from the ideal answer 

or, in some cases, from the origin of the coordinates. In the following Relation, it is clear 

that the lower this criterion, the higher the efficiency of the algorithm. In this Relation, 

NOS is the number of answers, g shows the objectives, and sol shows the answers. 
2 2

,1

1
1

n

sol gsol g
MID f

NOS =
= = 

 
(40) 

 

The maximum diversity (MD), proposed by Zetzeler, measures the length of the 

space cube diameter used by the end values of the objectives for the set of non-dominated 

solutions. The Relation shows the computational procedure of this index. The larger 

values for the criterion are more desired. 

2 2

1
(max min )g g

sol sol sol solg
MD f f

=
= −

 
(41) 

 

The SM index calculates how Pareto answers are distributed using the relative 

distance of consecutive answers. 

M Ae

m im i

M e

mm

d d d
SM

d A d

= =

=

+ −
=

+

 


1 1

1  

(42) 

 

In this equation, 𝑀 is the number of objectives, and di shows distance. 𝑑𝑚
𝑒  is the 

distance between the optimal Pareto boundary's side solutions and the Pareto boundary 

obtained in the 𝑚𝑡ℎ objective function. The lower the value of this measure, the better the 

boundary obtained. 

The RAS index, calculated based on the following equation, shows the simultaneous 

achievement of all objective functions' ideal value. The lower the value of this index, the 

higher the efficiency of the algorithm. 

1 1 2 2

1

( ) ( ) ( ) ( )
n

best best

i i i i

i

f x f x f x f x

RAS
n

=

− + −

=


 

(43) 
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Then, for 11 solved examples, 𝑀𝐼𝐷, 𝑀𝐷, 𝑆𝑀, and 𝑅𝐴𝑆 indices are calculated and 

presented in the Table 11 and Figure 4. 

Insert Table 11 here 

 

Insert Figure 4 here 

 

The average MID index for the MOSA algorithm is 150878. Figure 4 shows the trend 

of this indicator in different examples. The value of this index will increase with 

increasing the problem dimensions due to this index's nature. Accordingly, the MOSA 

algorithm should increase the value of this index according to the problem dimensions. 

As can be seen in Figure 4, the MOSA algorithm has done it well. 

The average MD index for the MOSA algorithm is 5162. Figure 4 shows the value of 

this index for different examples. The MD index is not related to the problem dimensions. 

Therefore, it is expected that this index's value has a relatively similar trend in different 

examples. As can be seen, there is a relatively similar trend in this index in all examples 

except in examples 7 and 9 (due to algorithm error). 

The average of the SM index is 6164. Figure 4 shows the value of this index for 

different examples. As mentioned before, the lower the value of this index, the better the 

status. This is well seen in the first six examples, and small amounts of this index are 

given. The sudden increase in this index's value from Examples 9 onwards is due to the 

enlargement of the problem dimensions and the complexity of finding its optimal 

boundary. 

After running the sample examples, the average value of the RAS index is about 

0.204. Figure 4 also shows the value of this index in various examples. Examining the 

above chart, it is clear that this index's value, in most examples, was between 0.25 and 

0.45. The index's value does not change much due to averaging this index while 

increasing the problem dimensions. It should be noted that the lower the index value, the 

proximity of the found Pareto boundary to the optimal boundary is further approved. 

 

4.4. Discussing the results 

The numerical results obtained in this study are discussed in this section. After 

designing the meta-heuristic algorithm, 11 examples were run in different dimensions 

with this algorithm's help, and the results are reported separately. The trend of increasing 

the problem dimensions has affected the objective function's values and the studied 

indices, which are briefly expressed below. 

1. Increasing the problem dimensions means increasing the limits of the 

problem indices, increasing each objective function's values. 
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2. Based on the comparisons, increasing the problem dimensions leads to a 

sharp increase in the MID index 

3. If the problem dimensions increase, the SM and MD indices increase 

relatively. However, it is possible to create fluctuations in these indicators in some 

problems. 

4. Increasing the problem dimensions does not affect the limits of the RAS 

index values , and this is due to the nature of averaging in this index. 

Also, it is necessary to compare these results with similar research in order to prove 

the superiority of the obtained numerical results. Accordingly, Pishvaee et al., 2014 have 

been found to have only evaluated one product and one period, while the present 

research simultaneously optimizes the supply chain in multi-product and multi-period 

modes. Therefore, its results will be closer to the real conditions of supply chains. 

Ramezani et al. [1] are another important researches in this field. In this study, the two 

objectives of increasing profits and increasing service levels have been evaluated. In this 

research, the Epsilon Constraint method has been used to solve the problem. Although 

the method proposed in this research is inefficient in solving large-scale problems, the 

method proposed in this research can solve problems in all possible scales [29]. 

 

5. Conclusion and further studies 

The presented mathematical model was firstly validated. This algorithm's 

parameters are first adjusted to solve the model with the MOSA1 algorithm, and then 11 

different examples are designed using this algorithm. The reason for using the MOSA 

algorithm compared to the SA algorithm to solve the problem is the ability to optimize 

multiple goals simultaneously. The best way to evaluate this algorithm's performance is 

to compare the results' objective function values obtained from this algorithm with the 

exact solution value in GAMS software. For this purpose, 11 examples were produced in 

different dimensions to evaluate this algorithm's ability to solve different examples. Of 

the 11 examples solved, GAMS only managed to solve 9 of them. However, the proposed 

algorithm solves all 11 examples with an average error of .3% for the first objective 

function, 1.7% for the second objective function, and .7% for the third objective function. 

On the other hand, the GAMS software time to solution on examples 7, 8, and 9 was 

precisely 3600 seconds, equivalent to one hour. However, the MOSA algorithm's average 

solving time for all solved examples is 25 seconds, and all the examples are solved in less 

than 60 seconds. Therefore, it can be concluded that a trade-off is created between the 

quality of the solutions and time to solution to choose between the MOSA algorithm and 

 
1 Multi-Objective Simulated Annealing 
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GAMS, as shown in Table (10) and Figure (3). The average time to solution by GAMS 

software is 1847 seconds and the average time to solution by MOSA is 25 seconds. That 

is, an average decrease of 730% is created, and at the same time, an average error of 0.3% 

for the first objective function, 1.7%, and 0.7% for the second and third objective functions 

should be considered in the MOSA method. The trade-off between the time and the 

solutions' quality shows the MOSA algorithm's outstanding performance in reducing the 

time to solve the problem ahead and providing near-optimal solutions. 

On the other hand, since the MOSA algorithm introduces a set of solutions as the 

Pareto problem, it is necessary to examine the characteristics of the set of solutions from 

the Pareto boundary evaluation indices. Accordingly, four different indices have been 

introduced in this field, and the value of these indices has been calculated for all solved 

examples. By analyzing the trend of these indices' values on different examples, it can be 

well pointed out that the Pareto boundary created by the MOSA algorithm covers well 

an integrated boundary and all the Pareto frontal space. 

 

5.1. Implications for researchers  

As a planning process, executing and controlling operations and raw materials 

storage, supply chain management is critical in various industries during operations and 

finished products from the starting point to the endpoint of consumption. Hence, 

optimizing and synchronizing the supply chain is conducted in this research using 

heuristic algorithms to reduce costs, improve quality, and achieve a competitive 

advantage and position. The goal of optimization in this area is to improve the quality 

and 'customers' satisfaction and reduce the time of production and its related price. This 

research aims to design a multi-objective optimization algorithm for multi-period and 

multi-product reverse logistics problems. First, due to the uncertainty of some 

parameters and considering the discounts and financial flows, the fuzzy mathematical 

model is presented, then the optimal MOSA algorithm is designed to solve it. Three 

objectives were optimized simultaneously in this model. The first objective is to maximize 

the value of the chain profit; the second objective is to minimize the transition times. The 

third objective is to minimize defective parts purchased. This algorithm's average error 

for each of the three objectives understudy was less than 2%. These illustrate the 

efficiency of the MOSA algorithm in solving the problem presented in this study. Finally, 

the performance of the MOSA algorithm compared to the GAMS method shows that 

GAMS software cannot provide a solution for some large-scale problems, while the 

MOSA algorithm is well able to provide the optimal solution with minimum error for 

different conditions. The MOSA algorithm solves all the examples presented in less than 
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1 minute. However, the average time to solve was 1847 seconds for the GAMS software. 

This study's results are consistent with Lee and Kwon [27] and Braido et al. [9] research. 

The objectives and parameters considered in this study have been increased in terms of 

complexity and number, but with optimized design, the algorithm has achieved an 

average error of 0.3% for the first objective function, 1.7% for the second objective 

function, and 0.7 for the third objective function. Also, despite being multi-objective, the 

convergence time in this study is less than 1 minute, which has also reduced the time 

compared to previous works (Braido et al., [9]; Lee and Kwon, [27], Yang et al., [11]), which 

shows the efficiency of this algorithm compared to previous research. Accordingly, if we 

look at previous research (Pishvaee et al., [8]; Ramezani et al., [1]), they considered only 

one product and in one period or used inefficient methods to solve the problem on large 

scales. While the present research simultaneously optimized the supply chain in the 

multi-product and multi-period modes, its results will be closer to the supply chains' 

actual conditions. Also, the method proposed in this research can solve problems in larger 

dimensions. Adopting the right strategy to improve supply chain performance brings 

many benefits, such as saving energy resources, reducing pollutants, eliminating or 

reducing waste, creating value for customers, and ultimately improving companies and 

organizations' productivity. Since the closed-loop SCN consists of facilities to achieve this 

goal, and since customers' demand is uncertain, this factor is necessary to find the 

required number of facilities and the amount of flow transmitted between them. 

 

 

5.2. Suggestions for future research 

The supply chain design problem has become more complex, and more elements are 

needed today according to the new global regulations and considering the environmental 

protection rules. It is suggested to use dynamic systems and simulation models to 

consider different parameters. Supply chain design can also take into account the impact 

of uncertainties and various parameters on it. Besides, more and more parameters such 

as financial considerations, risks, and uncertainties can be considered in other models. 

Other optimization methods and fuzzy programs with different indices can also be 

considered. Finally, an effective and accurate heuristic solution for larger-size problems 

can be developed and compared with the method presented here in terms of time and 

accuracy. 

As one of the limitations of this method, the MOSA algorithm requires many initial 

selections to become an optimal solution method. There should also be a trade-off 

between the optimization time and the convergence of the final answer so that too much 
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time can reduce the answer's accuracy. The sensitivity to optimization parameters, which 

affects algorithm performance quality, is another limitation of this method. Therefore, to 

resolve each algorithm's weaknesses, it is suggested to use a combination of different 

algorithms such as genetics and annealing simulation to optimally solve the multi-

objective multi-period and multi-product reverse logistics problem in future research. 

 

6. Reference 

[1] Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. “A new multi-objective stochastic model 

for a forward/reverse logistic network design with responsiveness and quality level”. Applied Mathematical 

Modelling, 37(1- 2), pp. 328-344. (2013).  

[2] Basu, R., & Wright, J. N. “Total supply chain management”. Routledge. (2010). 

[3] Amiri, A. “Designing a distribution network in a supply chain system: Formulation and efficient 

solution procedure”. European journal of operational research, 171(2), pp. 567-576. (2006).  

[4] Ghazanfari, M., & Fathollah, M. “A holistic view of supply chain management”. Iran University of 

Science & Technology Publications. (2006). 

[5] Peng, Y., Ablanedo-Rosas, J. H., & Fu, P. “A multiperiod supply chain network design considering 

carbon emissions”. Mathematical Problems in Engineering, (2016).  

[6] Hassanzadeh, A.S., & Zhang, G. “A multi-objective facility location model for closed-loop supply 

chain network under uncertain demand and return”. Applied Mathematical Modelling, 37(6), pp. 4165-4176. 

(2013).  

[7] Vahdani, B., & Sharifi, M. “An inexact-fuzzy-stochastic optimization model for a closed loop 

supply chain network design problem”. Journal of Optimization on Industrial Engineering, 12, pp. 7-16. 

(2013). 

[8] Pishvaee, M. S., Razmi, J., & Torabi, S. A. “An accelerated Benders decomposition algorithm for 

sustainable supply chain network design under uncertainty: A case study of medical needle and syringe 

supply chain”. Transportation Research Part E: Logistics and Transportation Review, 67, pp. 14-38. (2014). 

[9] Braido, G. M., Borenstein, D., & Casalinho, G. D. “Supply chain network optimization using a 

Tabu Search based heuristic” Gestão & Produção, 23(1), pp. 3-17. (2016).  

[10] Qin, Z., & Ji, X. “Logistics network design for product recovery in fuzzy environment”. European 

journal of operational research, 202(2), pp. 479-490. (2010).  

[11] Yang, G. Q., Liu, Y. K., & Yang, K. “Multi-objective biogeography-based optimization for supply 

chain network design under uncertainty”. Computers & Industrial Engineering, 85, pp. 145-156. (2015).  

[12] Avakh Darestani, S., & Pourasadollah, F. “A Multi-Objective Fuzzy Approach to Closed-Loop 

Supply Chain Network Design with Regard to Dynamic Pricing”. Journal of Optimization in Industrial 

Engineering, 12(1), pp. 173-194. (2019).  



Page 26 

 

[13] Sarkar, B., Tayyab, M., Kim, N., et al. “Optimal production delivery policies for supplier and 

manufacturer in a constrained closed-loop supply chain for returnable transport packaging through 

metaheuristic approach”. Computers & Industrial Engineering, pp. 135, 987-1003. (2019). 

[14] Rahimi Sheikh, H., Sharifi, M., & Shahriari, M. R. “Designing a Resilient Supply Chain Model 

(Case Study: the Welfare Organization of Iran)”. Journal of Industrial Management Perspective, 7(3, Autumn 

2017), pp. 127-150. (2017). 

[15] Govindan, K., Cheng, T.C.E., Mishra, N., et al. “Big Data Analytics and Application for Logistics 

and Supply Chain Management”. Transportation Research Part E: Logistics and Transportation Review, pp. 

114. 343-349. (2018).  

[16] Vanaei, H., Sharifi, M., Radfar, R., et al. “Optimizing of an Integrated Production-Distribution 

System with Probabilistic Parameters in a Multi-Level Supply Chain Network Considering the 

Backorder”. Journal of Operational Research In Its Applications (Applied Mathematics)-Lahijan Azad University, 

16(3), pp. 123-145. (2019). 

[17] Mahmoudi, H., Sharifi, M., Shahriari, M. R., et al. “Solving a Reverse Logistic Model Mahmoudi 

for Multilevel Supply Chain Using Genetic Algorithm”. International Journal of Industrial Mathematics, 

12(2), pp. 177-188. (2020). 

[18] Khorram Nasab, S. H., Hosseinzadeh Lotfi, F., Shahriari, M. R., et al. “Presenting an Integrated 

Management Model for Electronic Supply chain of Product and its Effect on Company'Performance (Case 

Study: National Iranian South Oil Company)”. Journal of Investment Knowledge, 9(34), pp. 55-70. (2020). 

[19] Zahedi, A., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., et al. “Designing a closed-loop supply 

chain network considering multi-task sales agencies and multi-mode transportation”. Springer 

International Publishing. (2021). 

[20] Srivastava, M., & Rogers, H. “Managing global supply chain risks: effects of the 

industry sector”. International Journal of Logistics Research and Applications, pp. 1-24. (2021). 

[21] Jaggi, C. K., Hag, A., & Maheshwari, S. “Multi-objective production planning problem for a lock 

industry: A case study and mathematical analysis”. Revista Investigacion Operacional, 41. Pp. 893-901. 

(2020).  

[22] Talwar, S., Kaur, P., Fosso Wamba, S., et al. “Big Data in operations and supply chain 

management: a systematic literature review and future research agenda”. Springer International 

Publishing. (2021).  

[23] Maheshwari, S. Gautam, P., & Jaggi, C. K. “Role of Big Data Analytics in supply chain 

management: current trends and future perspectives”. International Journal of Production Research. (2020).  

[24] Atabaki, M. S., Khamseh, A. A., & Mohammadi, M. “A priority-based firefly algorithm for 

network design of a closed-loop supply chain with price-sensitive demand”. Computers & Industrial 

Engineering, 135, pp. 814- 837. (2019).  



Page 27 

 

[25] Avakh Darestani, S., & Hemmati, M. “Robust optimization of a bi-objective closed-loop supply 

chain network for perishable goods considering queue system”. Computers & Industrial Engineering, pp. 

136, 277-292. (2019). 

[26] Zaleta, N. C., & Socarrás, A. M. A. “Tabu search-based algorithm for capacitated 

multicommodity network design problem”. In 14th International Conference on Electronics, Communications 

and Computers, 2004. CONIELECOMP 2004. (pp. 144-148). IEEE. (2004, February).  

[27] Lee, Y. H., & Kwon, S. G. “The hybrid planning algorithm for the distribution center operation 

using tabu search and decomposed optimization”. Expert systems with applications, 37(4), pp. 3094-3103. 

(2010).  

[28] Sharifi, M., Mousa Khani, M., & Zaretalab, A. “Comparing Parallel Simulated Annealing, Parallel 

Vibrating Damp Optimization and Genetic Algorithm for Joint Redundancy-Availability Problems in a 

Series-Parallel System with Multi-State Components”. Journal of Optimization in Industrial Engineering, 

7(14), pp. 13-26. (2014). 

[29] Hajipour, Y., & Taghipour, S. (2016). Non-periodic inspection optimization of multi-component 

and k-out-of-m systems. Reliability Engineering & System Safety, 156, 228-243. 

 

  

https://doi.org/10.1016/j.eswa.2009.09.020


Page 28 

 

Caption of the tales 

Table 1. Model validation example data. 

Table 2. Value of objective functions obtained from GAMS software. 

Table 3. Selected suppliers in optimal mode. 

Table 4. Selected plants in an optimal mode. 

Table 5. Selected distributors in an optimal mode. 

Table 6. Parameters and their values levels for the MOSA algorithm. 

Table 7. Value of answer variable in the Taguchi technique for MOSA. 

Table 8. The optimal value of MOSA parameters. 

Table 9. Information on generated problems. 

Table 10. The output of solved problems. 

Table 11. MOSA algorithm output for solved examples. 

 

 

  



Page 29 

 

Caption of the figures 

Fig. 1: The SCN of this work. 

Fig. 2: Output for the Taguchi method in the MOSA algorithm. 

Fig. 3: Comparison of computational times of GAMS and MOSA. 

Fig. 4: Comparison of MOSA algorithm based on indices. 



Page 30 

 

 
Fig. 1: The SCN of this work. 
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Fig. 2: Output for the Taguchi method in the MOSA algorithm. 
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Fig. 3: Comparison of computational times of GAMS and MOSA. 

  

0.24 16
167

942

1754

2948

3600 3600 3600

4.78 5.16 6.24 10.68 13.67 19.47 24.67 39.41 44.63 49.77 56.81

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(S

ec
o

n
d

s)
Number of problem

Gams MOSA



Page 33 

 

 
Fig. 4: Comparison of MOSA algorithm based on indices. 
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Table 1. 

Model validation example data. 

Parameter Value 

Number of products 3 

Number of suppliers 3 

Number of factories 4 

Number of distribution, collection, and combination 

centers 
5 

Number of customers 7 

Number of disposal centers 3 

Number of raw materials 2 

Number of transportation systems 2 

Number of periods 1 
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Table 2. 

Value of objective functions obtained from GAMS software. 

Objective function Value 

First goal (maximizing current value) 165785 

The second objective function (minimizing sending 

times) 
3497 

Third Objective Function (minimizing Defective Items) 2794 

 

  



Page 36 

 

Table 3.  

Selected suppliers in optimal mode. 

Supplier 1 2 3 

Selected/not selected 0 1 0 
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Table 4. 

Selected plants in an optimal mode. 

Warehouse 1 2 3 4 

Selected/not selected 1 0 1 0 
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Table 5. 

Selected distributors in an optimal mode. 

Retailer 1 2 3 4 5 

Selected/not 

selected 

1 

Distribution 

center 

1 

Hybrid 

center 

0 0 

1 

Disposal 

center 
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Table 6. 

Parameters and their values levels for the MOSA algorithm. 

Solving 

algorithm 
Parameter 

Values of each level 

Level 1 Level 2 Level 3 

MOSA 

Number of neighborhood production per 

iteration (NM) 
2 3 5 

Initial temperature (T) 500 1000 1500 

Temperature reduction coefficient (alpha) 0.85 0.9 0.95 

Max-iteration 100 200 300 
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Table 7. 

Value of answer variable in the Taguchi technique for MOSA. 

Run 

order 

Algorithm parameters Response 

NM T Alpha 
Max-

iteration 
MOSA 

1 1 1 1 1 21.98 

2 1 2 2 2 33.79 

3 1 3 3 3 28.91 

4 2 1 2 3 27.83 

5 2 2 3 1 26.47 

6 2 3 1 2 15.55 

7 3 1 3 2 48.05 

8 3 2 1 3 19.34 

9 3 3 2 1 20.02 
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Table 8. 

The optimal value of MOSA parameters. 

Solving 

algorithm 
Parameter 

Optimal 

value 

MOSA 

Number of neighborhood generation per 

iteration (NM) 
2 

Initial temperature (T) 500 

Temperature reduction coefficient (alpha) 0.95 

Max-iteration 200 
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Table 9. 

Information on generated problems. 

Problem S I J C K P R L T 

P1 2 2 3 5 2 1 1 1 1 

P2 3 5 5 7 2 2 2 2 2 

P3 5 6 5 10 3 3 4 2 3 

P4 6 5 6 12 5 5 4 3 5 

P5 7 8 10 15 6 6 4 4 6 

P6 8 9 12 20 6 6 5 5 8 

P7 9 10 13 25 9 7 5 6 10 

P8 9 12 15 30 9 7 5 6 12 

P9 10 15 20 35 10 8 5 7 13 

P10 10 15 22 37 10 8 5 8 14 

P11 10 15 25 40 10 8 5 8 15 

 



Page 43 

 

Table 10. 

The output of solved problems. 

NO 
GAMS MOSA GAP(%) 

𝑧1 𝑧2 𝑧3 time 𝑧1 𝑧2 𝑧3 time 𝐺𝑎𝑝1 𝐺𝑎𝑝2 𝐺𝑎𝑝3 

P1 96211 1294 671 0.24 96211 1294 671 4.78 0 0 0 

P2 114254 2197 948 16 114394 2200 948 5.16 0.122 0.1365 0 

P3 135425 3478 1375 167 135495 3499 1375 6.24 0.051 0.6038 0 

P4 139115 3999 1927 942 139378 4124 1927 10.68 0.189 3.1258 0 

P5 144287 4875 2348 1754 144894 4951 2394 13.67 0.420 1.559 1.959 

P6 149672 5367 2974 2948 149957 5547 3001 19.47 0.190 3.353 0.907 

P7 151026 6748 3157 3600 151399 6847 3195 24.67 0.247 1.467 1.203 

P8 155324 7015 3644 3600 156014 7248 3658 39.41 0.444 3.321 0.384 

P9 160021 7548 4016 3600 161948 7713 4109 44.63 1.204 2.186 2.315 

P10 - - - - 164997 8019 4876 49.77 - - - 

P11 - - - - 170006 8996 5438 56.81 - - - 

Mean 138370.6 4724.56 2340 1847.47 144063 5494.36 2872 25.03 0.32 1.750 0.75 
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Table 11. 

MOSA algorithm output for solved examples. 

No. MID MD SM RAS 

1 2128.40 1948.63 388.30 0.45 

2 9901.84 2994.92 947.17 0.34 

3 14960.24 4251.83 1626.80 0.18 

4 26614.19 4860.00 656.54 0.22 

5 43885.55 7192.19 3292.81 0.27 

6 65925.99 5793.68 1670.30 0.03 

7 170150.20 27237.34 7986.59 0.16 

8 252032.80 13156.25 5583.60 0.11 

9 284951.50 34799.20 16779.53 0.21 

10 381924.00 10841.66 15844.87 0.08 

11 407187.70 15401.89 13023.62 0.17 

Mean 150878.00 11679.8 6164 0.20 

 

 


