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Abstract—Injection moulding is an increasingly automated
industrial process, particularly when used for the production
of high-value precision components such as polymeric medical
devices. In such applications, achieving stringent product quality
demands whilst also ensuring a highly efficient process can be
challenging. Cycle time is one of the most critical factors which
directly affects the throughput rate of the process and hence is
a key indicator of process efficiency. In this work, we examine
a production data set from a real industrial injection moulding
process for manufacture of a high precision medical device. The
relationship between the process input variables and the resulting
cycle time is mapped with an artificial neural network (ANN)
and an adaptive neuro-fuzzy system (ANFIS). The predictive
performance of different training methods and neuron numbers
in ANN and the impact of model type and the numbers of
membership functions in ANFIS has been investigated. The
strengths and limitations of the approaches are presented and
the further research and development needed to ensure practical
on-line use of these methods for dynamic process optimisation in
the industrial process are discussed.

Index Terms—Injection Moulding, Cycle time, ANN, ANFIS,
MSE

I. INTRODUCTION

Injection moulding has been developed to manufacture
plastic components rapidly, in large volumes, and with high
precision. A key objective in injection moulding process is
to minimise the cycle time without affecting the part quality.
A shorter cycle time results in higher throughput rate and
thus efficiency improvement. However, the optimisation of
the cycle time is a challenging task since a high number
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of process parameters should be monitored and controlled
simultaneously. A method that can model the relationship
between the input parameters and key responses pertaining
to the cycle time and hence the process efficiency is highly
desired.
One of the most popular methods for predicting and mapping
nonlinear relationships between input and response data is
Artificial Neural Network (ANN) which has the ability of
adaptive learning and real-time performance [1]. This method
has been used in injection moulding for prediction of part
quality factors such as warpage and shrinkage [2–5], quality
optimization of particular components such as a bi-aspheric
lens [6], prediction of optimal process variables like injection
pressure, injection time, filling time [7] and temperature [8]
and prediction of the component weight [9].
ANN has been combined with Fuzzy logic to capture the
benefits of both systems and overcome their drawbacks, so
an Adaptive Neuro-Fuzzy Inference System (ANFIS) has
emerged. It employs the linguistic and numerical language
in Fuzzy logic and the nonlinear mapping in ANN. This
method addresses the difficulty of defining fuzzy rules by
experts, and it can build a fuzzy inference system based on
a hybrid training method. Besides that, ANFIS can overcome
the uncertainties originating from different variables and
experiment by defining fuzzy membership functions [1].
The other advantages are rapid response, rapid learning, and
robustness [10]. The method has previously been applied to
predict different aspects of the injection moulding process.
For example, Hernandez et al. used this approach to predict
the internal dimensions of an injection moulded component
[11] and it has also been used to find the optimal initial
process setting [12, 13].



TABLE I: Comparison of the different training algorithm

Training Method Number of Epochs Training MSE Test MSE Network MSE R-value
Bayesian Regularisation (trainbr) 1000 0.002 0.065 0.012 0.997

Levenberg-Marquart (trainlm) 14 0.298 0.264 0.315 0.91
Gradient Descent (traingd) 6 104.47 99.78 104.05 -0.031

Gradient descent with momentum (traingdm) 6 88.76 92.79 88.811 0.25
Scaled conjugated Gradient (trainscg) 11 3.535 0.444 2.571 0.72

One step secant (trainoss) 32 2.515 2.058 2.058 0.744

The primary objective of this paper to develop an intelligent
model that can predict the cycle time of an injection moulded
medical device component based on the process variables. In
this study, two different modelling approaches are compared.
In section II, an Artificial Neural Network (ANN) has
been investigated using the feedforward back-propagation
method with two hidden layers and six different training
algorithms. The training algorithm yielding the best predictive
performance is selected. Then, the effect of increasing the
number of neurons on the performance has been investigated.
In section III, an Adaptive Neuro-Fuzzy Inference System
(ANFIS) is studied. The influence of changing the number
of membership functions and the Fuzzy controller type has
been investigated. In the final section, these two approaches
are compared and the challenges and limitations associated
with the practical application of the methods in an industrial
injection moulding process is discussed.

II. ARTIFICIAL NEURAL NETWORK APPROACH

The data set has been provided by an industrial partner from
a commercial medical device production process and contains
six hundred data points. The input variables are the mould
temperature, injection pressure, and switch-over pressure from
filling to packing phase. The output variable is the cycle time.

A. Comparison of six training algorithms in two-hidden layers
network

The feedforward back propagation ANN with two hidden
layers and eight neurons has been used with six different
training methods as: Bayesian regularization back-propagation
(trainbr), Levenberg Marquardt (trainlm), Gradient Descent
(traingd), Gradient descent with momentum (traingdm), Scaled
Conjugate Gradient (trainscg), and One Step Secant (trainoss).
These training methods use different computation algorithms
to optimise the performance of the network and minimise the
mean square error. The data set has been divided into three
parts; 70% for training, 15% for hyper parameter tuning and
validation, and 15% for testing unseen data and evaluating the
performance of the network. The transfer function which has
been used for hidden layers is Tangent Sigmoid defined in (1):

tansig(n) =
2

1 + exp(−2n)
− 1 (1)

This function is similar to tangent hyperbolic function, but
it speeds up the computation in MATLAB software. A linear
transfer function (purelin) has been implemented for the output

Fig. 1: Neural Network Structure

layer. The schematic of the network with three inputs, two
hidden layers, and eight neurons is illustrated in Fig. 1.

The Mean Square Error (MSE) of training, test and the
overall network performance has been compared for these six
methods. The MSE error computes as (2), where (yactual) is
the actual cycle time and (ypredict) is the predicted one and i
is the number of iterations from 1 to n.

MSE =
1

n

n∑
i=1

(
yactuali − ypredicti

)2
(2)

The quality of the regression model between the inputs and
the cycle time has also been examined by the Pearson correla-
tion coefficient R-value. Fig. 2, shows the overall regression of
different training algorithms. The summary of the performance
of each training algorithm has been shown in Table I.
As outlined in Table I, the Bayesian regularisation back-
propagation (trainbr) and Levenberg-Marquardt (trainlm) have
the minimum MSE and the best performance. Besides that,
the R-value is the maximum value for these two algorithms,
indicating the data has been fitted well. Therefore these two
training algorithms have been selected to assess the effect of
neuron numbers.

B. Effect of Number of Neurons

To evaluate the effect of the number of neurons on the net-
work, the number of neurons was increased from eight to ten
and the Bayesian regularization back-propagation (trainbr) and
Levenberg Marquardt (trainlm) have been compared together.
As a result of the increase in the number of neurons, the mean
square error of the network for the Bayesian algorithm reduced
from 0.012 to 0.003, and for the Levenberg-Marquardt from
0.315 to 0.098 with the R-value slightly increasing for both
methods as shown in Fig. 3. Hence, the network performance
is improved by the enhancement of neuron numbers.
In summary, in this section, the training of an ANN with six
different training algorithms was investigated. The structure
of the network is two hidden layers with eight neurons. The
Bayesian regularization algorithm demonstrated the best result.
The data is from a real industrial injection moulding process



(a) trainbr (b) trainlm (c) traingd
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Fig. 2: ANN regression plots for six training algorithms.

and thus contains uncertainties due to process disturbances and
measurement noise. The Bayesian method explicitly considers
this uncertainty in the model training. Levenberg-Marquardt
training converges quickly, after just fourteen iterations. How-
ever, the mean square error is not quite as low as that
of the Bayesian method. The number of neurons was then
increased from eight to ten for these two best-performing
training algorithms. This improves the predictive performance,
although it should be considered that an increase in the number
of neurons also increases the computational time and cost.

III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
(ANFIS) APPROACH

The ANFIS method has been applied to fit the model
between the inputs and the output and also evaluate the
network performance by the unseen data. The data set has
been divided into three parts. Four hundred data points have
been used for training, a hundred for validation, and a hundred
for testing.
A Gaussian Membership Function (MF) is applied for each
input. The next step is specifying the number of membership
functions (MFs); first, we examine the application of two MFs
for each input and this is then increased to four to study the

effect of the number of MFs. The Fuzzy Inference System
(FIS) is Sugeno (See Fig. 4), and the impact of the change
of Sugeno type from constant to linear (First order) is also
investigated.
The structure of the ANFIS with two Membership Functions

(MFs) for the inputs is illustrated in Fig. 5. The white nodes
in this Figure are the adaptive nodes [14]. The first layer
makes the inputs fuzzy by defining the membership functions
(MFS), and the hyperparameters of MFs should be tuned. For
the Gaussian membership function with input value of x, the
hyperparameters are the mean (c) and the standard deviation
(σ), defined as (3):

Gaussian(x, c, σ) = e
−(x−c)2

2σ2 (3)

The second layer is based on the Fuzzy system rules, and
the output of each node is the combination of the inputs of
that node based on the defined rules in the fuzzy system. For
example, for a system with two inputs (x1, x2), three MFs
for each input in which Ai are the MFs of x1 and Bi are the
MFs of x2 (i=1,2,3) and linear Sugeno fuzzy inference, the
rules can be defined as [14]:



(a) trainbr
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Fig. 3: ANN regression graphs for two hidden layers neural
network with ten neurons

Fig. 4: Sugeno-based Fuzzy Inference System (FIS)

Rule 1: If x1 is A1 And x2 is B1 Then f1=p1x1+q1x2+r1
Rule 2: If x1 is A2 And x2 is B2 Then f2=p2x1+q2x2+r2
Rule 3: If x1 is A3 And x2 is B3 Then f3=p3x1+q3x2+r3

The number of rules is the product of the number of MFs
and the number of input variables. In a system with two
inputs and three MFs, there would be six rules (here just three
rules have been shown for illustration purposes). Any T-norm
operator, which is a demonstrator of ”AND”, can be used to
combine the MFs. In this study ’Product’ function has been
used and for example, the first rule ”If x1 is A1 And x2 is
B1” can be defined as A1 × B1.

Fig. 5: ANFIS network structure with 2MFs.

TABLE II: Summary of ANFIS

Number of MFs Sugeno type Training MSE Testing MSE

2 Constant 0.111 0.132
Linear 0.057 0.11

4 Constant 0.087 0.127
Linear 0.048 0.052

The fourth layer is adaptive again, and the Sugeno parameters,
defined in the rules, will be tuned there. The last layer obtains
the desired output by summation of the inputs.
The method for generating the FIS network and classifying the
data in this study is grid partitioning, which creates a Sugeno-
type FIS (explained above) as initial conditions for ANFIS
training. The next step is defining the neural network algorithm
and the hybrid method selected to find the optimal error and
speed up the process, a combination of Back Propagation and
Gradient Descent methods [15].
The summary of the training and testing MSE based on the
number of MFs and the Sugeno type is presented in Table II.
Fig. 6 shows the network performance for the test data. The
X-axis shows the number of the data point and the output on
the Y-axis is the value of the cycle time (s). The red asterisks
and the blue dots are the predicted value from the network
and the actual cycle time value respectively.

Comparison of the results in Table II shows that by in-
creasing the number of MFs, the training MSE and test MSE
have been reduced slightly with both constant and linear
Sugeno. Through keeping the number of MFs the same and
changing the Sugeno type from constant to linear, the errors
have also shown to decrease. For instance, for the ANFIS
network with 4MFs, the testing and training MSE is almost
halved. Hence, increasing the number of MFs and changing
the Sugeno type from constant to linear will both improve the
network performance, while the effect of the Sugeno type on
the network error is more considerable.
It should be also considered that the increase of MFs and
Sugeno type to linear means an increased the number of hyper-
parameters that should be tuned and a rise in the computation
time and cost.



(a) 2MFs- Constant Sugeno (b) 4MFs- Constant Sugeno

(c) 2MFs- Linear Sugeno (d) 4MFs- Linear Sugeno

Fig. 6: ANFIS result for test data with different MFs and Sugeno types.

IV. CONCLUSION

In this paper, the prediction of cycle time in the injec-
tion moulding process and its relationship with three input
variables (mould temperature, injection pressure, and switch-
over pressure) have been studied with ANN and ANFIS. For
the ANN method comparing six different training algorithms,
the Bayesian regularization had the best performance but the
response is slow to train at 1000 iterations ( See Table I).
Increasing the number of neurons reduced the prediction error.
A minimum error of 0.003 has been achieved with ANN
by Bayesian regularisation training with a two-hidden layer
network with ten neurons. The ANFIS results showed that
the network performance could be improved by increasing the
number of MFs and changing the Sugeno model order. The
minimum error obtained with ANFIS is 0.052 with first-order
Sugeno and four membership functions.
By comparison of these two methods, the ANN with the
Bayesian regularisation algorithm had the best performance.
However, it should be mentioned both methods had error
results below 0.2s which is acceptable variation for the cycle
time of this injection moulded part. It should also be noted
that the ANN cannot guarantee convergence and it is possible
that even after a long learning process, the model diverges as
occurred in this study with gradient descent algorithms (see
Fig. 2 & Table I ). Divergence problems were not observed
with the ANFIS method. It should also be considered that
increasing the number of parameters in both approaches (by
increasing the neuron numbers, MFs and switch to a more
complex Sugeno type) will lead to increased computation
complexity and increased time and cost.

This work highlights the potential of intelligent approaches
for accurate prediction of cycle times in an industrial injection
moulding process. Such models can be exploited within a pro-
cess control scheme to maximise the process efficiency without
compromising product quality, which is critical for industrial
competitiveness in high-value, high-throughput manufacturing.
Further research will involve investigation of the influence of
other process settings on the cycle time, a study of the impact
of layer numbers in ANN and the type of MFs and training
method in ANFIS. Finally the comparison of these methods
with other machine learning approaches within a wider process
control strategy will be further investigated.
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