
1

Multiple cross-docks scheduling with multiple doors using fuzzy approach and meta-

heuristic algorithms

Mitra Movassaghi1, Soroush Avakh Darestani 1, 2*

1 Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Islamic

Azad University, Qazvin Branch, Qazvin, Iran

2 Guildhall School of Business and Law, London Metropolitan University, London, United Kingdom

s.avakhdarestani@londonmet.ac.uk

Abstract

The issue of supply chain in today's world is a major competitive advantage in reducing costs. Supply

chain includes procurement, logistics and transportation, marketing, organizational behavior,

networking, strategic management, information systems management and operations management. One

of the most important practices in logistics is Cross-Docking which sets its goals as inventory reduction

and customer satisfaction increase. Customers receive goods through docks. Docks are responsible to

provide a place for goods before being delivered to the customers. Then, these materials are directly

loaded into outbound trucks with little or no storage in between to send to customers in the shortest

possible time. This paper is mainly aimed at introducing a mixed integer linear programming model to

solve scheduling several cross-docking problems. The proposed model is highly facilitated to allocate

the optimal destinations to storage doors and truck scheduling in docks while selecting the collection

and delivery routes. Using optimization approaches at uncertainty conditions is also of great

importance. Mathematical programming techniques vividly fail to solve transportation problems that

include fuzzy objective function coefficients. A fuzzy multi-objective linear programming model is

proposed to solve the transportation decision-making with fuzzy objective function coefficients in this

paper. On the other hand, the existences of computational complexities lead this model to be categorized

as a NP-Hard one. Therefore, we applied Meta-heuristic Algorithms such as Genetic and Ant Colony

in order to solve our proposed problem.

Keywords: Cross Docks Scheduling, Fuzzy Logic, Genetic and Ant Colony Meta-heuristic

1. Introduction

Existing technologies are hastily moving towards the specialization and globalization. In order

to survive in this field, suppliers need to be capable of responding consumer demands at different

conditions. In today's competitive environment, the significant role of distribution centers in timely

delivery of goods and inventory cost reduction has attracted the attention of numerous supply-chain

managers. Many companies use Cross-docking as a logistic strategy to ensure storage costs reduction

and customer satisfaction improvement within a shorter delivery lead-time. Space requirements,

inventory warehousing costs, labor intensive, and order picking tasks can be mentioned among the main

reasons behind the high expense of goods storage. Cross-docking is the true tool to eliminate a large

portion of such warehousing costs. A cross-dock is defined as an I-shaped facility with strip and stack

dock doors located at opposite sides of the terminal and minimal storage space in between. Strip docks

located in one side of the distribution terminal receive inbound shipments arriving at the cross-dock. As

soon as the inbound trucks are unloaded, the freights are screened and sorted by destination. Then, a

forklift or a conveyor belt is used to move them across the terminal via their designated stack dock

doors and here is where the loads are charged into departing trucks to be carried to their destinations.

mailto:s.avakhdarestani@londonmet.ac.uk

2

Since workers are responsible for unloading, sorting, and transferring a wide variety of loads from

incoming trucks to outgoing trailers, freight handling is vividly considered as a labor intensive and

costly task in a cross-dock terminal.

Products with the best matching to cross-docking include (a) products with a stable demand; (b)

perishable bulk materials, consist of some chemical and food compounds, requiring immediate

shipment; (c) frozen foods and other refrigerated products like pharmaceuticals that should be directly

moved from cooled inbound to cooled outbound trucks to keep the cooling chain unbroken; (d) high-

quality items of low quality inspection requirements during the receiving process and (e) ready pre-

tagged products for being sold to the customers. Furthermore, hazardous chemicals drums and waste

materials containers are aggregated at cross-dock facilities and immediately transferred to remedy sites

for treatment and disposal. Cross docking is regarded as a tool for pharmaceutical, food and chemical

industries day in day out in order to achieve more competitive advantages. In practical approach,

successful implementation of cross-docking strategies are evident in chemical and manufacturing

companies such as Eastman Kodak Co., Goodyear GB Ltd. and Toyota [1]. Comprehensive reviews on

cross-docking was also offered by [1] and [2].

Both location and physical layout of a cross-dock facility have been subject to many researches

so far regarding shape and number of dock doors, and related truck scheduling. Routing aspects of the

problem were neglected, though. Operational issues at the cross-dock terminal are considered in the

truck scheduling (TS) problem and are mainly addressed in assigning vehicles to dock doors, the

processing sequence of trucks at every strip and stack door and transferring goods from inbound to

outbound vehicles. The presence of a temporary storage is always necessary despite the fact that cross-

docking is supposed to unload inbound trucks and immediately reload the freights into delivery

vehicles. The absence and impossibility of a perfect synchronization in limited numbers of pickup and

delivery trucks lead goods to fail in arriving at the cross-dock in the sequence they must be reloaded

into the departing vehicles. Tsui and Chang [3] proposed a bilinear programming model to deal with

the truck scheduling (TS) in an early work. In their research, the workers efficiency extremely depend

on the cross-dock plan and how trailers are assigned to dock doors. Bartholdi and Gue [4] presented

suitable attributes of an effective cross-dock plan and proposed a model that also considered the dock

door assignment problem. In the model, the objective is to minimize the transfer time, material handling

and compaction. Yu and Egbelu [5] presented two approaches for trunks scheduling at the dock and

found a better items exchange between inbound and outbound trucks. One of the main features of their

model is the concurrent designation of goods transfer among trucks and the docking sequences of

inbound and outbound trucks. Li [6] also focused on truck scheduling and door assignment regarding a

multi-door cross-dock and with more trucks than the doors and as a result the lines of trucks waiting for

an empty door to start unload/offload operations. A mixed integer programming (MIP) model from a

door scheduling standpoint, and a dependence ranking search (DRS) heuristic algorithm were presented

as the two mjor approaches to solve the presented model and minimize the total cross-dock operation

time. They concluded that DRS heuristic algorithm is able to find good solutions in a lot of shorter

solution times while the MILP model cannot be used for practical instances due to the high

computational cost.

Wisittipanich and Hengmeechai [7] proposed a mathematical model of mixed integer

programming for door assigning and truck sequencing in a multi-door cross docking system. Their

model aimed at minimizing total operational time or makespan. Serrano et al. [8] presented a mixed

integer linear programming model to schedule inbound trucks' arrival times, shop-floor repackaging

operations and outbound trucks' departure times. The objective of the model is to minimize penalty

costs related to inbound trucks' arrival times and therefore unstable capacity of the repackage factory.

Molavi et al. [9] developed a mixed integer programming model with the hybrid genetic algorithm-

reduced variable neighborhood search (HGARVNS) algorithm to solve the problem in medium and

large sized scales. Amini and Tavakkoli-Moghaddam [10] presented a bi-objective linear mathematical

model. A complete numeration method is applied to find optimum solutions subject to the complication

of large-scale problems, and they correct three multi-objective meta-heuristics; namely, Non-dominated

Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Simulated Annealing (MOSA) and Multi-

Objective Differential Evolutionary (MODE). Keshtzari et al. [11] proposed a new mixed integer

programming model for truck scheduling in cross-dock problems. Employing commercial optimization

solvers, the efficiency of the presented model is analyzed with the available model. Ahkamiraad and

3

Wang [12] proposed a hybrid of the genetic algorithm and particle swarm optimization (HGP) to solve

the formulated NP-hard problems. Small-size problems are solved by HGP. Major examination have

been conducted for medium and large-size problems.
Bazgosha et al. [13] presented an integer linear programming model, which is solvable only for

small-size examples by CPLEX solver in feasible times. Also, they extended two effective heuristic

solution approaches, namely parallel and serial schedule generation schemes. They also extended three

metaheuristic methods based on genetic algorithm, particle swarm optimization and cuckoo

optimization algorithm. Hasani Goodarzi and Zegordi [14] proposed a location- routing problem for

cross-docking system. The purpose is to specify the location of cross-docks, allocating suppliers to them

and routing determination, so that the location cost and total shipping cost are minimized. The proposed

model is NP-hard problems. Thus, a metaheuristic algorithm known as Biogeography-based

optimization (BBO) is applied to solve the problem. Assadi and Bagheri [15] developed a mixed integer

programming model. They solved optimally in small-sized cases. Also to solve medium to large-sized

instances, two metaheuristics named Differential evolution and Population-based simulated annealing

are applied. Maknoon et al. [16] presented a mathematical model for cross-docking problems. They

developed a successive priority-based heuristic algorithm to deal with applied problems. Conclusion

show the stability of the heuristic method for fairly large size problems. Azimi [17] developed a new

approach known as on-line docking" in an actual container port which is the principal contribution of

the research. In the model, the objective is to minimize the average yearly system costs by assigning

the best number of inbound-outbound docks and the fleet size for the interior transportations.

Motaghedi-Larijani and Aminnayeri [18] presented a model to optimize the number of outbound doors

based on minimizing the total costs, including the costs of adding a new outbound door and the expected

waiting time of customers.

BolooriArabani et al. [19] evaluated five different meta-heuristics such as the genetic algorithm

(GA), the tabu search (TS), the particle swarm optimization (PSO), the ant colony optimization (ACO)

and the differential evolution (DE) algorithms, by testing them within a large number of samples.

Taking into account delivery and pickup time, warehouse capacities and inventory-handling costs, Chen

at al. [20] studied the truck scheduling problem for a network of cross-docks. Local search techniques

like simulated annealing and Tabu search were applied to solve their proposed model and concluded

that the heuristics outperform optimization models for providing good solutions in realistic time scales.

Considering both cross-docking operations and vehicle routing problems, Lee et al. [21] developed an

MILP formulation that assumes the arrival of all the vehicles from suppliers at the cross-dock aiming

at avoiding vehicle waiting times at this point. Wen et al. [22] forced pickup and delivery tasks to be

started within specific time windows using a mixed integer programming formulation for the VRPCD

problem aiming at minimizing the travelled distance. The transportation requests were defined in terms

of two locations: the pickup node where the freight is loaded and the delivery node to which is destined.

Miao et al. [23] considered both soft and hard time windows using a multi cross-dock transshipment

problem regarding fixed transportation schedules in the suppliers' flows toward the customers via the

cross-docks. Cargoes can be delayed and consolidated in cross-docks, and both suppliers and customers

may alternatively have hard time windows or less-restrictive soft time windows. The total cost of multi

cross-dock distribution networks that includes transportation, inventory handling and penalty expenses

is minimized using adaptive Tabu search and adaptive genetic algorithm as two solution methods for

NP-Hard problems.

Logistic processes imply the presence of a large number of different types of risks, primarily in

the fields of transport, transshipment, and storage of goods. The main reason for this fact is the presence

of numerous participants of logistic systems, the existence of various interactions between large

numbers of subsystems or subprocesses, which causes disturbances and uncertainties, both locally and

at the system level [24]. Gajovic et al. [24] presented a developed fuzzy logic model based on the

analytic hierarchy process (AHP) model and fuzzy analytic hierarchy process (FAHP). Avila-Torres et

al. [25] proposed an integrated mathematical model for the frequency calculation and departure time

problem considering uncertainty in demand and travel time.

Dondo and Cerdá [26] assumed an unlimited number of dock doors and proposed a monolithic

formulation for VRPCD to determine the pickup and the delivery routes simultaneously with the truck

scheduling at the cross-dock terminal. They defined a set of constraints to assign vehicles to

pickup/delivery routes with the help of an incorporated version of sweep heuristic algorithm in the

4

MILP model. The results showed the merit of this algorithm in finding near optimal solutions to large

problems at very acceptable CPU times. Nevertheless, the negligence of dock door assignments and

queues of trucks in front of the dock doors is considered as its weak points that can be avoided using a

precise coordination among pickup vehicle routes, cross-dock activities and delivery vehicle routes. If

a limited number of dock doors is available, their assignment to incoming and outgoing trucks will be

a criterion for the efficiency of the cross-dock operations.

To achieve this goal, we presented a new monolithic MILP formulation that integrates the

pickup/delivery vehicle routing and scheduling with both the assignment of dock-doors to incoming

and outgoing trucks and the managing of truck queues at strip/stack doors. Attracted to the surveys of

Dondo and Cerdá [26], we avoided symmetrical solutions by embedding additional constraints imitating

the sweeping algorithm to develop an efficient hybrid approach capable of solving medium-size

problem instances at acceptable CPU times. In the mentioned cross dock operation planning and

scheduling models, we assumed several docks and uncertainty of parameters as one of the decision

making challenges. Not only, an efficient scheduling model are provided, but also, finding an optimal

approach in the presence of uncertainty is of great importance. Mathematical programming techniques

and equations have proved their disabilities in solving transportation decision making problems by

fuzzy objective function coefficients. To overcome these problems, we provided a fuzzy-interactive

multi-objective linear programming model for solving transportation decision problems by fuzzy

objective function coefficients in the present research and concluded its computational flexibility and

efficiency, at the end.

2. Problem description and formulation

VRPCD-TS (The Vehicle Routing Problem with Cross-Docking and The Truck Scheduling)

problem which is defined as a combinational vehicle routing and cross-dock truck scheduling problem

focuses on transporting a set of requests R from pickup to destination points passing through an

intermediate cross-dock facility at minimum routing cost. A limited number of receiving (strip) doors

RD and shipping (stack) doors SD are assumed in the cross-dock. In order to increase the cross-dock

productivity and reduce the handling cost, the dock door to which an inbound (outbound) truck arrives

(departs) at (from) the cross-dock, is determined from the very beginning. The truck scheduling (TS)

problem seeks to find the optimal assignment of inbound/outbound trucks to dock doors. The majority

of the studies on the VRPCD problem consider the same number of dock doors and trucks, so each

truck will be assigned to a different door and truck scheduling aspects can be ignored. However, if this

condition is not met, the dock doors will be seen as scarce resources that need to be scheduled overtime

and lines of trucks waiting for service can arise at every dock door and this is the real so called truck

scheduling problem. Sequential manner is offered for VRPCD and the truck scheduling (TS) problems

simultaneous solving because of their complexities. However, we didn’t categorize this combinational

problem into two phases assuming a limited number of dock doors compared to other studies in this

scope.

Different from Dondo and Cerdá [26] that studied vehicle routing and scheduling problem by a

cross dock, we modeled the vehicle routing and scheduling problem using several cross docks in this

paper. Due to the lack of data completeness and availability, decision-making of cross docks operation

scheduling and planning generally face inaccurate data as well as transport planning [27].

One of the inevitable challenges that we encounter while making decisions on cross dock

operation scheduling and planning problems is uncertainty of parameters. Therefore, there should be

proper approaches to lead us to optimized solutions in uncertainty situations besides the presence of an

efficient timing model. Parameters such as costs, demand, and production capacity are very likely to be

uncertain in the cross dock scheduling problem [28].

Supply chain planning researches mainly focus on potential distribution relying on previous data

to address uncertainties. Probable models may not be the best choice because of the lack of availability

and also reliability of the previous statistical data [29]. In the contrary, fuzzy set and possibility theories

proved to be superior to probability theories in facing an uncertain supply chain, besides their simplicity

and no requirement for data collection [30]. Baykasoglu and Göçken [31] classified fuzzy mathematical

programming problems detecting 15 different types of fuzzy mathematical programming models and

provided different solution approaches for each type. Mathematical programming techniques and

equations proved not to be capable of solving transportation decision-making problems by fuzzy

5

objective function coefficients. To get rid of this deficiency and respect computational flexibility and

efficiency, we proposed a fuzzy-interactive multi-objective linear programming model for solving

transportation decision problems by fuzzy objective function coefficients.

2.1. Problem assumptions

Inspired by Dondo and Cerdá [26] the mathematical formulation has been developed based on

the following assumptions.

1. Goods are transported from suppliers to destinations by a homogeneous vehicle fleet through a

single cross-dock terminal.

2. The well-known layout for cross-dock includes a specific number of strip and stack dock doors.

3. At the beginning of the planning horizon, all vehicles are assumed to be available, accomplish

the required pickup tasks and subsequently perform the delivery tasks.

4. Dock doors are exclusively dedicated to either unloading or loading operations, e.g. they are

designated as either strip or stack dock doors.

5. The number of strip/stack doors can be lower than the number of vehicles. Then, the dock doors

can be regarded as scarce resources that should be scheduled over time.

6. Each P/D request must be serviced by a single vehicle, i.e. orders are not split table.

7. The loading/unloading of a truck at the cross-dock cannot be interrupted, i.e. no pre-emption is

allowed.

8. The freights unloaded at the cross-dock are not interchangeable, i.e. each one must be sent to a

specific destination.

9. The amounts of loaded or unloaded goods at supply/delivery locations are given.

10. Each vehicle is allowed to service more than one pick-up/delivery location.

11. The starting and ending point for the pickup and delivery routes are set to the cross-dock.

12. The total quantity of goods carried by a vehicle must not exceed its capacity.

13. The sum of a fixed stop time (𝑓𝑡𝑟
𝑃/𝑓𝑡𝑟

𝐷) and a variable component determines the service time

at supply/delivery locations and is increased with the size of the cargo 𝑞𝑟 to be picked-

up/delivered at a rate 𝑙𝑟/𝑢𝑟.

14. The goods picked up and delivered by the same truck are not unloaded at the cross-dock and

remain inside the vehicle.

15. The total amount of goods unloaded on the receiving docks and the total freight loaded on

trucks at the shipping doors must be equal at the end of the planning horizon. Therefore, there

is no final inventory left at the cross-dock.

Sets:

N : unload events

R : requests

RD : receiving (strip) dock doors

SD : shipping (stack) dock doors

V : vehicles

W : cross-docks

Parameters:

 In the real world making decisions on cross-dock operation scheduling and planning problems

often involve inaccurate data due to incomplete information or unavailability of data. Uncertainty and

changes such as fluctuations in production and demand flows, layout and arrangement of productions

inside cross-docks and vehicles, volume of productions and their possible return and their temporary

depot inside vehicles and cross-docks, performance of human resources, Traffic of freight routes and

the use of alternative routes, etc. cause us to consider the parameters provided in this model fuzzy.

To generalize the proposed model by Dondo and Cerdá [26], we defined the following parameters

for cross- docks.

𝑑𝑟.𝑟́
𝑃̃ /𝑑𝑟.𝑟́

𝐷̃ : distance between P/D locations r and 𝑟́

𝑑𝑟.𝑤
𝑃̃ /𝑑𝑟.𝑤

𝐷̃ : distance between the P/D location r and the cross-dock w

𝑓𝑡𝑟
𝑃̃/𝑓𝑡𝑟

𝐷̃ : fixed stop time at the P/D site of request r

𝑓𝑡𝑤
𝑃̃ /𝑓𝑡𝑤

𝐷̃ : fixed stop time for P/D activities at the cross-dock terminal 𝑤

6

𝑙𝑟𝑟̃/𝑢𝑟𝑟̃ : loading/unloading rate at P/D sites of request 𝑟

𝑙𝑟𝑤̃/𝑙𝑟𝑤̃ : loading/unloading rate at the cross-dock terminal 𝑤

𝑞𝑟̃ : shipment size for request 𝑟

𝑄𝑣̃ : vehicle capacity

𝑄𝑤̃ : cross-dock capacity

𝑠𝑝𝑣̃ : vehicle travel speed

𝑡𝑡𝑑.𝑑̃́ : time spent in moving a vehicle from the unloading door 𝑑 ∈ 𝑅𝐷 to the shipping door 𝑑́ ∈ 𝑆𝐷

𝑢𝑐𝑣̃ : unit distance cost for vehicle 𝑣

µ: cost per unit of spent time for accomplishment of delivery and loading tasks.

Binary variables:

We also defined binary variables of 𝐺𝑃𝑤.𝑣/𝐺𝐷𝑤.𝑣 for modeling the allocation of vehicles to cross

dock as another aspect to generalize Dondo and Cerdá's [26] model.

𝐷𝑃𝑣.𝑑/𝐷𝐷𝑣.𝑑: denotes that vehicle v has been allocated to the strip/stack dock door d

𝑊𝑃𝑛.𝑣/𝑊𝐷𝑛.𝑣 : denotes that the unloading (U) /loading (L) activity of vehicle v is associated to the time

event n

𝑋𝑃𝑟.𝑟́/𝑋𝐷𝑟.𝑟́ : establishes the sequencing of pickup (P)/delivery (D) nodes (𝑟. 𝑟́) on the route of the

assigned P/D vehicle

𝑌𝑃𝑟.𝑣 / 𝑌𝐷𝑟.𝑣 : denotes that vehicle v visits the P/D location of request r

𝑍𝑃𝑣.𝑣́/𝑍𝐷𝑣.𝑣́ : sequences vehicles (𝑣. 𝑣́) waiting for service at the same strip/stack door

𝐺𝑃𝑤.𝑣/𝐺𝐷𝑤.𝑣 : denotes that vehicle v visits the P/D location of cross-dock w

Nonnegative continuous variables:

𝐴𝑇𝑣
𝑃/𝐴𝑇𝑣

𝐷 : P/D vehicle arrival times of vehicle 𝑣 at the cross-dock facility

𝐶𝑃𝑟/𝐶𝐷𝑟 : Cumulative travelling cost from the cross-dock to the P/D site of request r

𝐷𝑅𝑆𝑣.𝑑.𝑑́ : denotes that the receiving door 𝑑 ∈ 𝑅𝐷 and the shipping door 𝑑́ ∈ 𝑆𝐷 have been assigned to

vehicle 𝑣

𝑂𝐶𝑣
𝑃/𝑂𝐶𝑣

𝐷 : overall travelling cost for the P/D tour of vehicle v

𝑅𝑇𝑣
𝑃 : time at which vehicle v is released from its pickup duties

𝑆𝑇𝑣
𝑃/𝑆𝑇𝑣

𝐷 : starting time for the P/D tour of vehicle v

𝑇𝑃𝑟/𝑇𝐷𝑟 : vehicle arrival time at the P/D node of request r

𝑇𝐸𝑛 : unload time-event n

𝑈𝑅𝑟.𝑛.𝑣 : denotes that request r was unloaded from vehicle v before or exactly at time 𝑇𝐸𝑛

𝑈𝑇𝑟.𝑛 : denotes that the request was unloaded on the cross-dock before or exactly at time event n

𝑌𝑅𝑟.𝑣 : states that the P/D locations of request r are both served by vehicle v

2.2. Problem formulation

Considering fuzzy parameters, mathematical model of problem was calculated as follows:

𝑀𝑖𝑛 𝑧1 = ∑ [(𝑂𝐶𝑣
𝑃 + 𝑂𝐶𝑣

𝐷)]𝑣∈𝑉 (1)

𝑀𝑖𝑛 𝑧2 = ∑ 𝐴𝑇𝑣
𝐷

𝑣∈𝑉 (2)

𝑀𝑖𝑛 𝑧3 = 𝜇∑ 𝐴𝑇𝑣
𝐷

𝑣∈𝑉 + ∑ [(𝑂𝐶𝑣
𝑃 +𝑂𝐶𝑣

𝐷)]𝑣∈𝑉

(3)

S.t:

∑ 𝐺𝑃𝑤.𝑣𝑣∈𝑉 = 1 ; ∀𝑤 ∈ 𝑊 (4)

∑ 𝑌𝑃𝑟.𝑣𝑣∈𝑉 = 1 ; ∀𝑟 ∈ 𝑅 (5)

𝐶𝑃𝑟 ≥ 𝑢𝑐̃𝑣 𝑑𝑤.𝑟
𝑃̃ 𝑌𝑃𝑟.𝑣 𝐺𝑃𝑤.𝑣 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (6)

7

𝐶𝑃𝑟́ ≥ 𝐶𝑃𝑟 + 𝑢𝑐̃𝑣 𝑑𝑟.𝑟́
𝑃̃ −𝑀𝐶

𝑃(1 − 𝑋𝑃𝑟.𝑟́) − 𝑀𝐶
𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) (7)

; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

(8)

𝐶𝑃𝑟 ≥ 𝐶𝑃𝑟́ + 𝑢𝑐𝑣̃ 𝑑𝑟.𝑟́
𝑃̃ −𝑀𝐶

𝑃𝑋𝑃𝑟.𝑟́ −𝑀𝐶
𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟́ < 𝑟). 𝑣 ∈ 𝑉

𝑂𝐶𝑣
𝑃 ≥ 𝐶𝑃𝑟 + 𝑢𝑐𝑣̃ 𝑑𝑟.𝑤

𝑃̃ −𝑀𝐶
𝑃(1 − 𝑌𝑃𝑟.𝑣) ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (9)

𝑇𝑃𝑟 ≥ 𝑆𝑇𝑣
𝑃 + (

𝑑𝑤.𝑟
𝑃̃

𝑠𝑝̃
)𝑌𝑃𝑟.𝑣 𝐺𝑃𝑤.𝑣 ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (10)

𝑇𝑃𝑟́ ≥ 𝑇𝑃𝑟 + 𝑓𝑡𝑟
𝑃̃ + 𝑙𝑟𝑟̃ 𝑞𝑟̃ + (

𝑑𝑟.𝑟́
𝑃̃

𝑠𝑝̃
) −𝑀𝑇

𝑃(1 − 𝑋𝑃𝑟.𝑟́) − 𝑀𝑇
𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) (11)

; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

𝑇𝑃𝑟 ≥ 𝑇𝑃𝑟́ + 𝑓𝑡𝑟́
𝑃̃ + 𝑙𝑟𝑟̃́ 𝑞𝑟̃́ + (

𝑑𝑟́.𝑟
𝑃̃

𝑠𝑝̃
) −𝑀𝑇

𝑃 𝑋𝑃𝑟.𝑟́ −𝑀𝑇
𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) (12)

; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟́ < 𝑟). 𝑣 ∈ 𝑉

ATv
P ≥ TPr + ftr

P̃ + lrr̃ qr̃ + (
dr.w
P̃

sp̃
) − MT

P(1 − YPr.v) ; ∀r ∈ R . v ∈ V.w ∈ W (13)

∑ 𝑞𝑟̃𝑟∈𝑅 𝑌𝑃𝑟.𝑣 ≤ 𝑄𝑣̃ ; ∀𝑣 ∈ 𝑉 (14)

∑ 𝑞𝑟̃𝑟∈𝑅 𝑌𝑃𝑟.𝑣𝐺𝑃𝑤.𝑣 ≤ 𝑄𝑤̃ ; ∀𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (15)

𝑌𝑅𝑟.𝑣 ≤ 𝑌𝑃𝑟.𝑣 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉 (16)

𝑌𝑅𝑟.𝑣 ≤ 𝑌𝐷𝑟.𝑣 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉 (17)

𝑌𝑅𝑟.𝑣 ≥ 𝑌𝑃𝑟.𝑣 + 𝑌𝐷𝑟.𝑣 − 1 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉 (18)

∑ 𝐷𝑃𝑣.𝑑𝑑∈𝑅𝐷 = 1 ; ∀𝑣 ∈ 𝑉 (19)

𝑅𝑇𝑣
𝑃 ≥ 𝐴𝑇𝑣

𝑃 + 𝑓𝑡𝑤
𝑃̃ + 𝑢𝑟𝑤̃𝐺𝑃𝑤.𝑣[∑ 𝑞𝑟̃(𝑌𝑃𝑟.𝑣 − 𝑌𝑅𝑟.𝑣)𝑟∈𝑅] ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (20)

(21)

𝑅𝑇𝑣́
𝑃 ≥ 𝑅𝑇𝑣

𝑃 + 𝑓𝑡𝑤
𝑃̃ + 𝑢𝑟𝑤̃𝐺𝑃𝑤.𝑣́[∑ 𝑞𝑟̃(𝑌𝑃𝑟.𝑣́ − 𝑌𝑅𝑟.𝑣́)𝑟∈𝑅] − 𝑀𝑇

𝑃(1 − 𝑍𝑃𝑣.𝑣́) −𝑀𝑇
𝑃(2 −

𝐷𝑃𝑣.𝑑 − 𝐷𝑃𝑣́.𝑑) ; ∀𝑑 ∈ 𝑅𝐷. 𝑣. 𝑣́ ∈ 𝑉(𝑣 < 𝑣́). 𝑤 ∈ 𝑊

(22)

𝑅𝑇𝑣
𝑃 ≥ 𝑅𝑇𝑣́

𝑃 + 𝑓𝑡𝑤
𝑃̃ + 𝑢𝑟𝑤̃𝐺𝑃𝑤.𝑣[∑ 𝑞𝑟̃(𝑌𝑃𝑟.𝑣 − 𝑌𝑅𝑟.𝑣)𝑟∈𝑅] − 𝑀𝑇

𝑃(1 − 𝑍𝑃𝑣.𝑣́) − 𝑀𝑇
𝑃(2 −

𝐷𝑃𝑣.𝑑 − 𝐷𝑃𝑣́.𝑑) ; ∀𝑑 ∈ 𝑅𝐷. 𝑣. 𝑣́ ∈ 𝑉(𝑣́ < 𝑣). 𝑤 ∈ 𝑊

∑ 𝑊𝑃𝑛.𝑣𝑛∈𝑁 = 1 ; ∀𝑣 ∈ 𝑉 (23)

∑ 𝑊𝑃𝑛.𝑣𝑣∈𝑉 = 1 ; ∀𝑛 ∈ 𝑁 (24)

𝑇𝐸𝑛́ ≥ 𝑇𝐸𝑛 ; ∀𝑛. 𝑛́ ∈ 𝑁(𝑛 < 𝑛́) (25)

𝑇𝐸𝑛́ ≥ 𝑅𝑇𝑣
𝑃 +𝑀𝑇

𝑃(𝑊𝑃𝑛.𝑣 − 1) ; ∀𝑛. 𝑛́ ∈ 𝑁(𝑛 < 𝑛́). 𝑣 ∈ 𝑉 (26)

𝑅𝑇𝑣
𝑃 ≤ 𝑇𝐸𝑛́ +𝑀𝑇

𝑃(1 −𝑊𝑃𝑛.𝑣) ; ∀𝑛. 𝑛́ ∈ 𝑁(𝑛 < 𝑛́). 𝑣 ∈ 𝑉 (27)

∑ 𝑇𝐸𝑛𝑛∈𝑁 = ∑ 𝑅𝑇𝑣
𝑃

𝑣∈𝑉 (28)

𝑇𝐸𝑛 ≤ 𝑅𝑇𝑣
𝑃 ; ∀𝑛 = 𝑓𝑖𝑟𝑠𝑡(𝑁). 𝑣 ∈ 𝑉 (29)

𝑇𝐸𝑛 ≥ 𝑅𝑇𝑣
𝑃 ; ∀𝑛 = 𝑙𝑎𝑠𝑡(𝑁). 𝑣 ∈ 𝑉 (30)

8

𝑈𝑅𝑟.𝑛.𝑣 ≤ 𝑊𝑃𝑛.𝑣 ; ∀𝑛 ∈ 𝑁. 𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉 (31)

∑ 𝑈𝑅𝑟.𝑛.𝑣𝑛∈𝑁 ≤ 𝑌𝑃𝑟.𝑣 ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉 (32)

𝑈𝑅𝑟.𝑛.𝑣 ≥ (𝑊𝑃𝑛.𝑣 + 𝑌𝑃𝑟.𝑣 − 1) ; ∀𝑛 ∈ 𝑁. 𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉 (33)

𝑈𝑇𝑟.𝑛 = ∑ ∑ 𝑈𝑅𝑟.𝑛́.𝑣𝑣∈𝑉𝑛́∈𝑁
𝑛́≤𝑁

 ; ∀𝑛 ∈ 𝑁. 𝑟 ∈ 𝑅 (34)

𝑍𝑃𝑣.𝑣́ ≤ 2 −𝑊𝑃𝑛.𝑣 − ∑ 𝑊𝑃𝑛́.𝑣́𝑛́∈𝑁
𝑛́<𝑛

 ; ∀𝑛 ∈ 𝑁 . 𝑣. 𝑣́ ∈ 𝑉 (𝑣 < 𝑣́) (35)

𝑍𝑃𝑣.𝑣́ ≥ 𝑊𝑃𝑛.𝑣 + ∑ 𝑊𝑃𝑛́.𝑣́𝑛́∈𝑁
𝑛́>𝑛

− 1 ; ∀𝑛 ∈ 𝑁 . 𝑣. 𝑣́ ∈ 𝑉 (𝑣 < 𝑣́) (36)

∑ 𝐺𝐷𝑤.𝑣𝑣∈𝑉 = 1 ; ∀𝑤 ∈ 𝑊 (37)

∑ 𝑌𝐷𝑟.𝑣𝑣∈𝑉 = 1 ; ∀𝑟 ∈ 𝑅 (38)

∑ 𝐷𝐷𝑣.𝑑́𝑑́∈𝑆𝐷 = 1 ; ∀𝑣 ∈ 𝑉 (39)

𝐷𝑅𝑆𝑣.𝑑.𝑑́ ≤ 𝐷𝑃𝑣.𝑑 ; ∀𝑣 ∈ 𝑉. 𝑑 ∈ 𝑅𝐷. 𝑑́ ∈ 𝑆𝐷 (40)

𝐷𝑅𝑆𝑣.𝑑.𝑑́ ≤ 𝐷𝐷𝑣.𝑑́ ; ∀𝑣 ∈ 𝑉. 𝑑 ∈ 𝑅𝐷. 𝑑́ ∈ 𝑆𝐷 (41)

𝐷𝑅𝑆𝑣.𝑑.𝑑́ ≥ 𝐷𝑃𝑣.𝑑 + 𝐷𝐷𝑣.𝑑́ − 1 ; ∀𝑣 ∈ 𝑉. 𝑑 ∈ 𝑅𝐷. 𝑑́ ∈ 𝑆𝐷 (42)

∑ ∑𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ = 1 ; ∀𝑣 ∈ 𝑉 (43)

(44)

𝑆𝑇𝑣
𝐷 ≥ 𝑅𝑇𝑣

𝑃 + ∑ ∑ 𝑡𝑡𝑑.𝑑̃́𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ + 𝑓𝑡𝑤
𝐷̃ + 𝑢𝑟𝑤̃𝐺𝐷𝑤.𝑣[∑ 𝑞𝑟̃𝑟∈𝑅 (𝑌𝐷𝑟.𝑣 −

𝑌𝑅𝑟.𝑣)] ; ∀𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

(45)

𝑆𝑇𝑣́
𝐷 ≥ 𝑆𝑇𝑣

𝐷 + ∑ ∑ 𝑡𝑡𝑑.𝑑̃́𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣́.𝑑.𝑑́ + 𝑓𝑡𝑤
𝐷̃ + 𝑢𝑟𝑤̃𝐺𝐷𝑤.𝑣́[∑ 𝑞𝑟̃𝑟∈𝑅 (𝑌𝐷𝑟.𝑣́ −

𝑌𝑅𝑟.𝑣́)] − 𝑀𝑇
𝐷(1 − 𝑍𝐷𝑣.𝑣́) − 𝑀𝑇

𝐷(2 − 𝐷𝐷𝑣.𝑑́ − 𝐷𝐷𝑣́.𝑑́) ; ∀𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

(46)

𝑆𝑇𝑣
𝐷 ≥ 𝑆𝑇𝑣́

𝐷 + ∑ ∑ 𝑡𝑡𝑑.𝑑̃́𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ + 𝑓𝑡𝑤
𝐷̃ + 𝑢𝑟𝑤̃𝐺𝐷𝑤.𝑣[∑ 𝑞𝑟̃𝑟∈𝑅 (𝑌𝐷𝑟.𝑣 −

𝑌𝑅𝑟.𝑣)] − 𝑀𝑇
𝐷 𝑍𝐷𝑣.𝑣́ −𝑀𝑇

𝐷(2 − 𝐷𝐷𝑣.𝑑́ − 𝐷𝐷𝑣́.𝑑́) ; ∀𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

∑ 𝑊𝐷𝑛.𝑣𝑛∈𝑁 = 1 ; ∀𝑣 ∈ 𝑉 (47)

𝑈𝑇𝑟.𝑛 ≥ (𝑊𝐷𝑛.𝑣 + 𝑌𝐷𝑟.𝑣 − 1) ; ∀𝑛 ∈ 𝑁. 𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉 (48)

(49)

𝑆𝑇𝑣
𝐷 ≥ 𝑇𝐸𝑛 + ∑ ∑ 𝑡𝑡𝑑.𝑑̃́𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ + 𝑓𝑡𝑤

𝐷̃ + 𝑢𝑟𝑤̃𝐺𝐷𝑤.𝑣[∑ 𝑞𝑟̃𝑟∈𝑅 (𝑌𝐷𝑟.𝑣 −

𝑌𝑅𝑟.𝑣)] − 𝑀𝑇
𝐷 (1 −𝑊𝐷𝑛.𝑣) ; ∀𝑛 ∈ 𝑁. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

𝑊𝐷𝑛.𝑣 ≤ ∑ 𝑊𝑃𝑛́.𝑣𝑛∈𝑁
𝑛≤𝑛́

 ; ∀𝑛 ∈ 𝑁. 𝑣 ∈ 𝑉 (50)

𝐶𝐷𝑟 ≥ 𝑢𝑐𝑣̃ 𝑑𝑤.𝑟
𝐷̃ 𝑌𝐷𝑟.𝑣 𝐺𝐷𝑤.𝑣 ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (51)

CDŕ ≥ CDr + ucṽ dr.r ́
D̃ −MC

D(1 − XDr.r ́) − MC
D(2 − YDr.v − YDŕ.v) (52)

; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

𝐶𝐷𝑟 ≥ 𝐶𝐷𝑟́ + 𝑢𝑐𝑣̃ 𝑑𝑟.𝑟 ́
𝐷̃ −𝑀𝐶

𝐷𝑋𝐷𝑟.𝑟 ́ −𝑀𝐶
𝐷(2 − 𝑌𝐷𝑟.𝑣 − 𝑌𝐷𝑟́.𝑣); ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟́ < 𝑟). 𝑣 ∈ 𝑉 (53)

9

𝑂𝐶𝑣
𝐷 ≥ 𝐶𝐷𝑟 + 𝑢𝑐𝑣̃ 𝑑𝑟.𝑤

𝐷̃ −𝑀𝐶
𝐷(1 − 𝑌𝐷𝑟.𝑣) ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (54)

𝑇𝐷𝑟 ≥ 𝑆𝑇𝑣
𝐷 + (

𝑑𝑤.𝑟
𝐷̃

𝑠𝑝̃
)𝑌𝐷𝑟.𝑣 𝐺𝐷𝑤.𝑣 ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (55)

𝑇𝐷𝑟́ ≥ 𝑇𝐷𝑟 + 𝑓𝑡𝑟
𝐷̃ + 𝑢𝑟𝑟̃ 𝑞𝑟̃ + (

𝑑𝑟.𝑟́
𝐷̃

𝑠𝑝̃
) −𝑀𝑇

𝐷(1 − 𝑋𝑃𝑟.𝑟́) − 𝑀𝑇
𝑃𝐷(2 − 𝑌𝐷𝑟.𝑣 − 𝑌𝐷𝑟́.𝑣) (56)

; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

𝑇𝐷𝑟 ≥ 𝑇𝐷𝑟́ + 𝑓𝑡𝑟́
𝐷̃ + 𝑢𝑟𝑟̃́ 𝑞𝑟̃́ + (

𝑑𝑟́.𝑟
𝐷̃

𝑠𝑝̃
) −𝑀𝑇

𝐷 𝑋𝑃𝑟.𝑟́ −𝑀𝑇
𝐷(2 − 𝑌𝐷𝑟.𝑣 − 𝑌𝐷𝑟́.𝑣) (57)

; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟́ < 𝑟). 𝑣 ∈ 𝑉

𝐴𝑇𝑣
𝐷 ≥ 𝑇𝐷𝑟 + 𝑓𝑡𝑟

𝐷̃ + 𝑢𝑟𝑟̃ 𝑞𝑟̃ + (
𝑑𝑟.𝑤
𝐷̃

𝑠𝑝̃
) −𝑀𝑇

𝐷(1 − 𝑌𝐷𝑟.𝑣) ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (58)

∑ 𝑞𝑟̃𝑟∈𝑅 𝑌𝐷𝑟.𝑣 ≤ 𝑄𝑣̃ ; ∀𝑣 ∈ 𝑉 (59)

∑ 𝑞𝑟̃𝑟∈𝑅 𝑌𝐷𝑟.𝑣𝐺𝐷𝑤.𝑣 ≤ 𝑄𝑤̃ ; ∀𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (60)

𝑍𝐷𝑣.𝑣́ ≤ 2 −𝑊𝐷𝑛.𝑣 − ∑ 𝑊𝐷𝑛́.𝑣́𝑛́∈𝑁
𝑛́<𝑛

 ; ∀𝑛 ∈ 𝑁 . 𝑣. 𝑣́ ∈ 𝑉 (𝑣 < 𝑣́) (61)

𝑍𝐷𝑣.𝑣́ ≥ 𝑊𝐷𝑛.𝑣 + ∑ 𝑊𝐷𝑛́.𝑣́𝑛́∈𝑁
𝑛́>𝑛

− 1 ; ∀𝑛 ∈ 𝑁 . 𝑣. 𝑣́ ∈ 𝑉 (𝑣 < 𝑣́) (62)

𝐴𝑇𝑣
𝑃 ≥ (1 − 𝜂𝑃) [𝑆𝑇𝑣

𝑃 + (
𝑂𝐶𝑣

𝑃

𝑢𝑐𝑣̃ 𝑠𝑝̃
) + ∑ (𝑓𝑡𝑟

𝑃̃ + 𝑙𝑟𝑟̃ 𝑞𝑟̃)𝑌𝑃𝑟.𝑣𝑟∈𝑅] ; ∀𝑣 ∈ 𝑉 (63)

𝐴𝑇𝑣
𝑃 ≤ (1 + 𝜂𝑃) [𝑆𝑇𝑣

𝑃 + (
𝑂𝐶𝑣

𝑃

𝑢𝑐𝑣̃ 𝑠𝑝̃
) + ∑ (𝑓𝑡𝑟

𝑃̃ + 𝑙𝑟𝑟̃ 𝑞𝑟̃)𝑌𝑃𝑟.𝑣𝑟∈𝑅] ; ∀𝑣 ∈ 𝑉 (64)

𝐴𝑇𝑣
𝐷 ≥ (1 − 𝜂𝐷) [𝑆𝑇𝑣

𝐷 + (
𝑂𝐶𝑣

𝐷

𝑢𝑐𝑣̃ 𝑠𝑝̃
) + ∑ (𝑓𝑡𝑟

𝐷̃ + 𝑙𝑟𝑟̃ 𝑞𝑟̃)𝑌𝐷𝑟.𝑣𝑟∈𝑅] ; ∀𝑣 ∈ 𝑉 (65)

𝐴𝑇𝑣
𝐷 ≤ (1 + 𝜂𝐷) [𝑆𝑇𝑣

𝐷 + (
𝑂𝐶𝑣

𝐷

𝑢𝑐𝑣̃ 𝑠𝑝̃
) + ∑ (𝑓𝑡𝑟

𝐷̃ + 𝑙𝑟𝑟̃ 𝑞𝑟̃)𝑌𝐷𝑟.𝑣𝑟∈𝑅] ; ∀𝑣 ∈ 𝑉 (66)

∑ 𝐷𝑃𝑣.𝑑 ≥ ∑ 𝑊𝑃𝑛́.𝑣𝑛́∈𝑁
𝑛́<𝑛

𝑑∈𝑅𝐷
𝑑<𝑛

 ; ∀𝑣 ∈ 𝑉 . 𝑛 ∈ 𝑁 (𝑛 ≤ |𝑅𝐷|) (67)

Objective function 𝑧1 tries to minimize cumulative routing cost of vehicle; and objective function

𝑧2 aims at minimizing cumulative distribution time. Objective function 𝑧3 seeks to minimize coordinated

composition of the first and second objectives. It should be noted that coefficient μ indicates costs per

unit time spent on accomplishment of delivery and loading tasks in the third objective function.

Eq.(4) refers to the allocation of loading vehicle to docks. Each vehicle should be allocated to a

dock. If the allocation variable 𝐺𝑃𝑤.𝑣 is equal to 1, vehicle v will serve dock w.

Eq. (5) assigns requests to pickup vehicles. The pickup location of each request must be allocated

to a single vehicle. The pickup node of request r will be served by the inbound vehicle v provided that

the assignment variable 𝑌𝑃𝑟.𝑣 is equal to 1. Eq.(6) defines the routing cost from the cross-dock up to the

first visited node on a pickup route and provides a lower bound on the routing cost from the cross-dock

to any pickup node served by vehicle v, including the first visited location. The parameter 𝑢𝑐̃𝑣 represents

the routing cost per unit distance and 𝑑𝑤.𝑟
𝑃̃ , denotes the distance between the cross-docks, identified by

the subscript w, and the pickup site of request r.

 Both constraints (7) and (8) try to relate the cumulative routing costs from the cross-docks to the

pickup sites of a pair of requests (𝑟. 𝑟́ 𝜖 𝑅) served by the same vehicle v (i.e. 𝑌𝑃𝑟.𝑣 = 𝑌𝑃𝑟́.𝑣 = 1). A

single binary variable 𝑋𝑃𝑟.𝑟́ (with r < 𝑟́) to select the relative order of any pair of pick-up nodes (r, 𝑟́)

located on the same inbound route in this formulation. If 𝑋𝑃𝑟.𝑟́ = 1 (r < 𝑟́), then the request r is served

earlier than 𝑟́. By Eq. (7), therefore, 𝐶𝑃𝑟́ must be larger than 𝐶𝑃𝑟 by at least the routing cost along the

path directly connecting both locations, i.e. the shortest route between the pickup sites of r and 𝑟́.

10

Otherwise, 𝑋𝑃𝑟.𝑟́ = 0 and node 𝑟́ are seen before node r. Consequently, 𝐶𝑃𝑟́ should be lower than 𝐶𝑃𝑟

by at least the cost term (𝑢𝑐𝑣 𝑑𝑟.𝑟́
𝑃) which is met by Eq.(8). It is worth mentioning that parameter 𝑀𝐶

𝑃 is

a relatively large number.

Eq.(9) indicates overall routing cost for the tour allocated to pickup vehicle v. each pickup route

should end at the cross-dock facility. Since there is unknown string of nodes on the route before solving

the model, Eq. (9) provides a lower bound on the total routing cost for the vehicle tour 𝑂𝐶𝑣
𝑃 considering

any node on the route as the last visited one. The value of 𝑂𝐶𝑣
𝑃 determined by the largest bound is set

by the pickup location that is actually last visited by vehicle v. pickup node visiting times and vehicle

arrival times at the cross-docks are presented in Eqs (10)-(13). These equations provide the opportunity

to determine both the visiting time for the pickup location r (𝑇𝑃𝑟) and the vth-vehicle arrival time (𝐴𝑇𝑣
𝑃)

at the cross-dock. Vehicle v should wait its turn on the queue of the assigned strip dock door till the end

of unloading operations. The timing constraints (11)-(12) present the same mathematical structures as

Eqs (7)-(8). These sequencing constraints consider routing time parameters instead of routing cost

coefficients. The service time at any pickup node r is the sum of two terms: a fixed preparation time

𝑓𝑡𝑟
𝑃 plus the variable loading time that directly increases with the load size 𝑞𝑟. The proportionality

constant 𝑙𝑟𝑟 stands for the loading rate at the pickup node r. Moreover, the routing time along the path

connecting the pickup nodes r and 𝑟́ is given by the ratio between the distance 𝑑𝑟.𝑟́
𝑃 and the vehicle speed

𝑠𝑝𝑣. If all pickup routes are started at time t = 0, then 𝑆𝑇𝑣
𝑃 = 0 for all 𝑣 ∈ 𝑉, the continuous variable

𝑆𝑇𝑣
𝑃 stands for the starting time of the vth-pickup route.

Eq. (14) doesn’t allow the load transported by vehicle v to exceed its maximum capacity (𝑄𝑣).
Eq.(15) doesn’t allow the load transported by cross-dock w cannot exceed its maximum capacity (𝑄𝑤).
Eqs (16)-(18) represent pickup node visiting times and vehicle arrival times at the cross-docks. When

pickup and delivery sites of the request r are both served by the same vehicle, the related transshipment

operations at the cross-dock are not required. In such a case, 𝑌𝑃𝑟.𝑣 = 𝑌𝐷𝑟.𝑣 = 1 for some vehicle v and

the load of request r is not discharged on the receiving dock, i.e. it remains into the vehicle v. define

𝑌𝑅𝑟.𝑣 be a non-negative continuous variable with a domain [0, 1] to identify requests fully served by

vehicle v. Eqs (16)-(18) drives 𝑌𝑅𝑟.𝑣to one while 𝑌𝑃𝑟.𝑣 = 𝑌𝐷𝑟.𝑣 = 1, and drops 𝑌𝑅𝑟.𝑣 to zero if either

of such variables are null.

Eq. (19), causes a vehicle returning to the cross dock from its pick-up trip to perform the

unloading operations in just one receiving dock door (𝑑 ∈ 𝑅𝐷). Let us define the binary variable 𝐷𝑃𝑣.𝑑

to denote that the pickup vehicle v has been assigned to the strip dock door d whenever 𝐷𝑃𝑣.𝑑 = 1. In

Eq. (19), the set RD includes all the receiving doors available at the receiving dock.

Eq. (20) indicates sequencing pickup vehicles assigned to the same strip dock door. The trucks

leave the cross-dock after all freight has been unloaded. Eq. (20) defines a lower bound for the release

time (𝑅𝑇𝑣
𝑃) at which the pickup vehicle v completes the off-load operations at the cross-dock and is

ready to perform delivery tasks. We need to this bound to set the value of (𝑅𝑇𝑣
𝑃) for the vehicle first

served at any receiving dock door. In turn, constraints (21) and (22) relate the times at which vehicles

(𝑣. 𝑣́) ∈ 𝑉 (𝑣 < 𝑣́) end their unloading tasks just in case both vehicles have been assigned to the same

strip door d (𝐷𝑃𝑣.𝑑 = 𝐷𝑃𝑣́.𝑑 = 1). The relative order of a pair of vehicles v and 𝑣́ on the queue of the

common assigned door d is defined by a single variable 𝑍𝑃𝑣.𝑣́ (with v < v)́. If 𝑍𝑃𝑣.𝑣́ = 1, provided that

vehicle v is served before. Otherwise, 𝑍𝑃𝑣.𝑣́ = 0 and truck 𝑣́ are unloaded earlier. After being serviced

at different strip dock doors, the constraints (21) and (22) become redundant. The service time is the

sum of two components at every door including a fixed preparation time (𝑓𝑡𝑤
𝑃) and a variable service-

time contribution which directly increases with the cargo to be unloaded given by ∑ 𝑞𝑟(𝑌𝑃𝑟.𝑣 −𝑟∈𝑅

𝑌𝑅𝑟.𝑣).
Eqs (23)-(24) are representatives for sequencing unloads events at the cross-docks. An unload

event n occurs at the cross-dock whenever a pickup vehicle v just completes the discharge of the cargoes

to be delivered by other vehicles. Therefore, there will be as many unloads events in the set N as the

number of pickup vehicles on duty. N is an ordered event set with the element n occurring before event

𝑛́ (𝑛 < 𝑛́). Let us define the binary variable 𝑊𝑃𝑛.𝑣 allocating pickup vehicles to unloads events, and

the continuous variable 𝑇𝐸𝑛 representing the time at which the event n occurs. The event-time 𝑇𝐸𝑛 will

be set by the release time of vehicle v from its pickup assignments (𝑅𝑇𝑣
𝑃) only if 𝑊𝑃𝑛.𝑣 = 1. Eqs (23)-

(24) force an inbound vehicle to be exactly assigned to a single time event and an inbound vehicle to

11

be allocated to only one event. Dummy events are those assigned to unused vehicles that will never

occur.

Furthermore, Eq. (25) proves the occurrence of event n prior to event (𝑛 < 𝑛́). Through Eq (25),

the pickup vehicles should be assigned to unloads events in the same order that they complete their

pickup duties. If the event n has been allocated to vehicle v (𝑊𝑃𝑛.𝑣 = 1), then 𝑇𝐸𝑛 = 𝑅𝑇𝑣
𝑃. Eq (26) sets

the value of 𝑅𝑇𝑣
𝑃 as a lower bound for 𝑇𝐸𝑛 whenever vehicle v has been assigned to either an earlier

event (𝑛́ < 𝑛) or to event n itself. The equality condition is met by Eqs (27)-(30).

The subset of requests already unloaded at the cross-dock at the event time 𝑇𝐸𝑛 is involved in

Eqs (31)-(33). Let 𝑈𝑅𝑟.𝑛.𝑣 be a continuous variable with domain (0,1) denoting that request r collected

by vehicle v is available for delivery on the cross-dock at the event time 𝑇𝐸𝑛 only if 𝑈𝑅𝑟.𝑛.𝑣 = 1. When

the request r is not collected by vehicle v (𝑌𝑃𝑟.𝑣 = 0) or is assigned to an event 𝑛 ≠ 𝑛́ (𝑊𝑃𝑛.𝑣 = 0),
Eqs (31) and (32) drive 𝑈𝑅𝑟.𝑛.𝑣 to zero. If the reverse situation holds, 𝑈𝑅𝑟.𝑛.𝑣 is set equal to one by Eq

(33).

Continuous variable 𝑈𝑇𝑟.𝑛 with domain (0,1) provides the subset of requests already unloaded

on the receiving dock at time TEn. If 𝑈𝑇𝑟.𝑛 = 1, then the request r has been discharged from the pickup

vehicle at a time earlier than or equal to 𝑇𝐸𝑛. In case the request r still remains on the cross dock at

𝑇𝐸𝑛, it will be available for delivery at that time. The value of 𝑈𝑇𝑟.𝑛 is defined by Eq (34).

There are normally some loads temporarily stored in front of the stack doors waiting for the

arrival of the other goods to be also delivered by the assigned outbound truck.

Eqs (35)-(36) address the further queuing constraints for vehicles assigned to the same receiving

door. When the inbound vehicles v and 𝑣́ (with 𝑣 < 𝑣́) have been allocated to the same receiving door

𝑑 ∈ 𝑅𝐷 and vehicle v features an earlier unload event (𝑊𝑃𝑛.𝑣 = 𝑊𝑃𝑛́.𝑣́ = 1 with 𝑛 < 𝑛́), then by Eqs.

(35) and (36) vehicle v must be served before 𝑣́ and 𝑍𝑃𝑣.𝑣́ = 1. Otherwise, vehicle 𝑣́ is unloaded before

and 𝑍𝑃𝑣.𝑣́ = 0 by Eq. (35). When vehicles v and 𝑣́ fail to share the same strip dock door, Eqs (35)-(36)

become redundant.

Eq. (37) allocates unloading vehicle to docks. Each vehicle should be allocated to a dock. If the

allocation variable 𝐺𝐷𝑤.𝑣 is equal to 1, vehicle v serves dock w. As stated by Eq. (38), each

transportation request must be allocated to a single outbound vehicle. A binary variable 𝑌𝐷𝑟.𝑣 should

be defined to denote the allocation of request r to the outbound vehicle v only if 𝑌𝐷𝑟.𝑣 = 1.

Eq. (38) allocates delivery vehicles to shipping dock doors. We set 𝐷𝐷𝑣.𝑑́ as a binary variable

allocating outbound vehicles to shipping doors. If 𝐷𝐷𝑣.𝑑́ = 1, then the loading operations for vehicle

v will take place at the shipping door 𝑑́ ∈ 𝑆𝐷. As stated by Eq. (39), an outbound vehicle on duty must

be loaded at just one stack dock door. The set SD comprises the shipping doors available at the cross-

dock.

Eqs (40)-(43) aim at identifying the strip and stack dock doors assigned to each vehicle. The

continuous variable 𝐷𝑅𝑆𝑣.𝑑.𝑑́ with domain (0, 1) has been introduced to indicate that vehicle v should

move from the strip door 𝑑 ∈ 𝑅𝐷 to the stack door 𝑑́ ∈ 𝑆𝐷 before starting the loading operations. Eqs

(40)-(43) drive the variable 𝐷𝑅𝑆𝑣.𝑑.𝑑́ to one whenever 𝐷𝑃𝑣.𝑑 = 𝐷𝐷𝑣.𝑑́ = 1, and drops 𝐷𝑅𝑆𝑣.𝑑.𝑑́ to zero

if either of such variables are null.

Eqs (44)-(46) clarify the sequence of outbound vehicles assigned to the same shipping door. The

continuous variable 𝑆𝑇𝑣
𝐷 denotes the time at which the delivery vehicle v starts the loading of the

assigned requests at the cross-dock. Considering the same fleet of vehicles for pickup and delivery

tasks, a pair of constraints are essential to be defined on the value of 𝑆𝑇𝑣
𝐷:

(a) Pickup assignments need to be completed to let the loading of a delivery vehicle v start, i.e.

it shouldn’t be earlier than 𝑅𝑇𝑣
𝑃; and (b) all the preceding trucks on the queue of the assigned

stack dock door 𝑑́ ∈ 𝑆𝐷 (i.e. 𝐷𝐷𝑣.𝑑́ = 1) should be served to let the loading of vehicle v

begin. Eq. (44) accounts for constraint (a) while Eqs (45)-(46) mathematically describe the

condition (b) by relating the times 𝑆𝑇𝑣
𝐷 and 𝑆𝑇𝑣́

𝐷 at which the pair of vehicles (v , 𝑣́) ∈ V

(with v < 𝑣́) assigned to the same shipping door 𝑑́ (𝐷𝐷𝑣.𝑑́ = 𝐷𝐷𝑣́.𝑑́ = 1) finish their loading

activities at the cross-dock. If vehicle v precedes 𝑣́ on the queue of door 𝑑́, then the

sequencing variable 𝑍𝐷𝑣.𝑣́ will be equal to one as explained in Eq. (45) applies. Otherwise,

𝑍𝐷𝑣.𝑣́ = 0 and Eq. (46) becomes the relevant constraint. When two vehicles are allocated to

different stack dock doors, constraints (45)-(46) both become redundant. The total loading

12

time is equal to the sum of a fixed preparation time 𝑓𝑡𝑤
𝐷 plus a variable time contribution that

directly increases with the load size regarding Eqs (44) and (45)-(46). Furthermore,

𝑡𝑡𝑑.𝑑́ states the time spent by a vehicle to move from the receiving door 𝑑 ∈ 𝑅𝐷 to the

shipping door 𝑑́ ∈ 𝑆𝐷. Constraint (44) should be omitted when the fleets of inbound and

outbound vehicles are different. If the vehicles are either inbound or outbound trucks, the

model will still be applied.

(b) Since there is small travel time between the docks in comparison with the time during which

the freights should temporarily remain on the cross-dock, the constraint (44) will keep

redundant.

Eqs (47)-(50) assign delivery vehicles to unloads events. All of the requests should be delivered

by an available truck at the cross-dock to let an outbound vehicle start its loading. The main reason is

that the loading sequence is generally determined by: (a) the need of having the loads tightly packed

into the truck and putting the fragile goods on the top, and (b) the ordering of the delivery nodes on the

vehicle route [1]. The binary variable 𝑊𝐷𝑛.𝑣 is defined to denote that the outbound vehicle v has been

assigned to the unload event 𝑛 ∈ 𝑁𝐷 only if 𝑊𝐷𝑛.𝑣 = 1. Allocating the outbound vehicle v to event n

(𝑊𝐷𝑛.𝑣 = 1) states that the requests assigned to vehicle v (𝑌𝐷𝑟.𝑣 = 1) have already been unloaded on

the cross-dock at a time earlier than or equal to TEn. Such requests all feature 𝑈𝑇𝑟.𝑛 = 1 and, therefore,

the condition 𝑊𝐷𝑛.𝑣 + 𝑌𝐷𝑟.𝑣 = 2 implies that 𝑈𝑇𝑟.𝑛 = 1 and the loading of vehicle v is forced to begin

after 𝑇𝐸𝑛.

Eq. (47) insures the assignment of each outbound vehicle on duty to a single unload event 𝑛 ∈ 𝑁.

Several delivery vehicles can be allocated to the same unload event, though. Eq. (48) will be able to set

𝑊𝐷𝑛.𝑣 = 𝑌𝐷𝑟.𝑣 = 1 only if the variable 𝑈𝑇𝑟.𝑛 is equal to one. In this way, Eq. (48) avoids the allocation

of event n to an outbound vehicle v if 𝑈𝑇𝑟.𝑛 = 0 for some requests r with 𝑌𝐷𝑟.𝑣 = 1.

Furthermore, Eq. (49) doesn’t let an outbound vehicle v allocated to event n to start the loading

operations prior to time TEn. In addition, Eq. (49) will drive the variable 𝑊𝐷𝑛.𝑣 to zero if the unload

event for vehicle v occurs at some later event (𝑛́ > 𝑛), i.e. 𝑊𝑃𝑛́.𝑣 = 0 for some (𝑛́ ≤ 𝑛). If every truck

is either inbound or outbound, we should omit Eq. (50).

We apply similar constraint sets with mathematical structures to the proposed ones for the pickup

phase for delivery routes. Replacing the assignment variable 𝑌𝑃𝑟.𝑣 by 𝑌𝐷𝑟.𝑣, the routing cost 𝐶𝑃𝑟 by

𝐶𝐷𝑟, the visiting time 𝑇𝑃𝑟 by 𝑇𝐷𝑟, the sequencing variable 𝑋𝑃𝑟.𝑟́ by 𝑋𝑃𝑟.𝑟́ (r < 𝑟́), and the superscript

P by D, formulations can be derived from Eqs (6)-(15).

Eqs (51)-(54) define sequencing constraints providing the outbound routing costs from the cross-

docks up to the delivery site of request r are defined by Eqs (51)-(54). The parameter 𝑀𝐶
𝐷 is a relatively

large number.

Eqs (55)-(58) elaborate on the set of constraints providing lower bounds for the vehicle stop times

at delivery locations.

Eq. (59) forces the load transported by vehicle v not to exceed its maximum capacity (𝑄𝑣). Eqs

(60) states that the load transported by cross-dock w cannot exceed its maximum capacity (𝑄𝑤).
Eqs (61)-(62) demonstrate the requirement of further queuing constraints for vehicles sharing the

same shipping door. If delivery vehicles v and 𝑣́ are loaded at the same stack dock door and vehicle v

is allocated to an earlier event, then vehicle v will be served before and 𝑍𝐷𝑣.𝑣́ = 1 regarding Eqs. (61)-

(62). In the contrary, vehicle 𝑣́ is loaded earlier and 𝑍𝐷𝑣.𝑣́ = 0. The value of 𝑍𝐷𝑣.𝑣́ can also be

meaningless when the vehicles have been allocated to different shipping doors.

Related constraints to the total routing cost and the vehicle arrival times are considered as

additional constraints to speed up the solution process.

If there is a relationship between arrival time 𝐴𝑇𝑣
𝑃 and the total routing cost for the pickup tour

of vehicle v, lower and upper bounds on the value of 𝐴𝑇𝑣
𝑃 will be obtained through Eqs (63) and (64),

respectively. Estimating 𝐴𝑇𝑣
𝑃 as the sum of the starting time 𝑆𝑇𝑣

𝑃 plus the total service time at the visited

locations and the total traveling time, such bounds will be obtained. Regardless of the time windows

for the service start at the P/D locations, the parameter 𝜂 will be equal to zero. Nonetheless, it has been

chosen 𝜂𝑃 = 0 ∙ 001 to account for round off errors. Since the pickup vehicles sometimes are required

to wait for the opening of the time window at some visiting sites, the value of 𝜂𝑃 should be increased

to 0.1-0.3 for problems with narrow time windows.

Constraints (65)-(66) that are similar to Eqs (63)-(64) are dedicated to the delivery phase.

13

Eq. (67) explains the valid inequality constraints for allocating received dock doors to the vehicles.

Constraint (67) is incorporated into the mathematical model to solve large problems and eliminate

symmetric solutions. If the set RD comprises three elements {𝑟𝑑1. 𝑟𝑑2. 𝑟𝑑3}, then constraints (67)

allocates the dock door 𝑟𝑑1 to the vehicle v* that first unloads the cargo on the cross-dock terminal

(e.g., 𝑊𝑃𝑛1.𝑣∗ = 1), the dock door 𝑟𝑑2 to the vehicle 𝑣⋕ completing the unloading operations in the

second place (e.g., 𝑊𝑃𝑛2.𝑣⋕ = 1) and 𝑟𝑑3 to the truck finishing the pickup duties on third place. The

optimal solution is not excluded from the feasible region by Constraint (67) but avoids symmetrical

assignments.

3. Solution methodology

3.1. Fuzzy-interactive approach

Defuzzification is an important step in fuzzy systems. In fuzzy systems, the results of an

approximate argument are usually obtained in the form of one or more fuzzy sets. In these cases, the

fuzzy output of the system needs to be converted to a normal (non-fuzzy) number. There are several

methods in this field, which in this article uses a two-step approach.

Mathematical programming techniques and equations vividly fail to solve transportation

decision-making problems by fuzzy objective function coefficients. Accordingly, a fuzzy-interactive

multi-objective linear programming model is presented to overcome this deficiency while facing a

transportation decision problems with fuzzy objective function coefficients. The proposed model has

proved to be far better than the previous ones in terms of computational flexibility and efficiency.

As it is obvious from the presented model, the majority of parameters are fuzzy and include

correct values and technological coefficients. Moreover, objective functions and main deterministic

variables are set as the constraints. We use a two-phase approach in order to solve the proposed fuzzy

model. In the first phase, the initial fuzzy model is altered to a deterministic equivalent auxiliary model.

In the second phase, a fuzzy method is applied to obtain the final preferred compromise solution.

3.1.1. Deterministic equivalent model

We apply Jimenez et al.'s (2007) method to convert possible model to a deterministic equivalent

model which contains the inaccurate coefficients in constraints. Fixing the number of objective

functions and unequal constraint, this method proved to be highly efficient when it comes to face

uncertainty. Aiming at modeling the vague nature of inaccurate parameters to achieve computational

efficiency and simplicity in data acquisition, a fuzzy trigonometric distribution is applied. Considering

𝑐̃ = (𝑐𝑝. 𝑐𝑚. 𝑐𝑜) as a triangular fuzzy number. The reason for this choice is that these numbers are often

used in applications of fuzzy controllers, managerial decision making, business and finance, etc., and

graphical representations and operations with triangular numbers are very easy and they also have a

linear membership function and all parameters are assumed to be triangular fuzzy numbers.

The membership function (𝜇𝑐̃(𝑥)) will be as follows:

 (68)

𝜇𝑐̃(𝑥) =

{

 𝑓𝑐(𝑥) =

𝑥−𝑐𝑝

𝑐𝑚−𝑐𝑜
 𝑖𝑓 𝑐𝑝 ≤ 𝑥 ≤ 𝑐𝑚

1 𝑖𝑓 𝑥 = 𝑐𝑚

𝑔𝑐(𝑥) =
𝑐𝑜−𝑥

𝑐𝑜−𝑐𝑚
 𝑖𝑓 𝑐𝑚 ≤ 𝑥 ≤ 𝑐𝑜

0 𝑖𝑓 𝑥 < 𝑐𝑝 𝑜𝑟 𝑥 > 𝑐𝑜

The following equation represents the expected interval (EI) and expected value (EV) of fuzzy

number 𝑐̃ [32]:

𝐸𝐼 (𝑐̃) = [𝐸1
𝑐 . 𝐸2

𝑐] = [∫ 𝑓𝑐
−1(𝑥)𝑑𝑥.

1

0 ∫ 𝑔𝑐
−1(𝑥)𝑑𝑥

1

0
] (69)

𝐸𝑉 (𝑐̃) =
𝐸1
𝑐+𝐸2

𝑐

2
 (70)

Display parameters are obtained using a triangular fuzzy distribution as follows:

𝐸𝐼 (𝑐̃) = [
1

2
(𝑐𝑝 + 𝑐𝑚).

1

2
(𝑐𝑚 + 𝑐𝑜)] (71)

𝐸𝑉 (𝑐̃) =
𝑐𝑝+2𝑐𝑚+𝑐𝑜

4
 (72)

14

A fuzzy mathematical programming model with fuzzy parameters is considered:

(73)

𝑀𝑖𝑛 𝑍 = 𝑐̃𝑥

s.t. 𝑎̃𝑖𝑥 ≥ 𝑏̃𝑖 𝑖 = 1.⋯ . 𝑙

 𝑎̃𝑖𝑥 = 𝑏̃𝑖 𝑖 = 𝑙 + 1.⋯ .𝑚

 𝑥 ≥ 0

Feasibility and optimality are two major issues to compare fuzzy numbers and address the non-

deterministic and uncertain nature of problem parameters. Furthermore, it is essential to answer the

following two questions [33]:

1) Regarding the existence of fuzzy numbers in constraints, how we can define the feasibility of

decision vector x.

2) How we can measure the optimality of objective function can be defined by fuzzy coefficients.

Inspired by Jimenez et al.'s ranking method [33], a degree is defined for each air of fuzzy

numbers ã and b̃ in which ã is larger than b̃ as follows: (74)

𝜇𝑀(𝑎̃. 𝑏̃) =

{

0 𝑖𝑓 𝐸2

𝑎 − 𝐸1
𝑎 > 0

𝐸2
𝑎−𝐸1

𝑏

𝐸2
𝑎−𝐸1

𝑏−(𝐸1
𝑎−𝐸2

𝑏)
 𝑖𝑓 0 ∈ [𝐸1

𝑎 − 𝐸2
𝑏 . 𝐸2

𝑎 − 𝐸1
𝑏]

1 𝑖𝑓 𝐸1
𝑎 − 𝐸2

𝑏 > 0

If 𝜇𝑀(𝑎̃. 𝑏̃) ≥ 𝛼, then ã is larger than or equal to b ̃at least in degree α. Regarding [19], decision

vector 𝑥 ∈ ℛ is feasible in degrees α if 𝑚𝑖𝑛𝑖=1.⋯.𝑚{𝜇𝑀(𝑎̃𝑖𝑥. 𝑏̃𝑖)} = 𝛼. Accordingly, problem

constraints are defined as follows:

𝐸2
𝑎𝑖𝑥−𝐸1

𝑏𝑖

𝐸2
𝑎𝑖𝑥−𝐸1

𝑎𝑖𝑥+𝐸1
𝑏𝑖−𝐸2

𝑏𝑖
≥ 𝛼 𝑖 = 1.⋯ . 𝑙 (75)

Equation (75) will be changed to the following equation after simplification:

[(1 − 𝛼)𝐸2
𝑎𝑖 + 𝛼𝐸1

𝑎𝑖]𝑥 ≥ 𝛼𝐸2
𝑏𝑖 + (1 − 𝛼)𝐸1

𝑏𝑖 (76)

For equal state, we also have:

𝑎̃ ≥𝛼

2
𝑏̃ . 𝑎̃ ≤𝛼

2
𝑏̃ (77)

The above-mentioned equation can be rewritten as follows:

𝛼

2
≤ 𝜇𝑀(𝑎̃. 𝑏̃) ≤ 1 −

𝛼

2
 (78)

Feasibility solution of x0 will be an acceptable optimal solution for model (73) provided that the

following condition is true:

𝜇𝑀(𝑐̃𝑥. 𝑐̃𝑥
0) ≥

1

2
 (79)

We can conclude that x0 provides better solution than feasibility vectors (with minimization goal)

at least in
1

2
 degree; we also have:

𝑐̃𝑥 ≥1

2

𝑐̃𝑥0 (80)

Regarding previous equations, we will have:

𝐸2
𝑐𝑥−𝐸1

𝑐𝑥0

𝐸2
𝑐𝑥−𝐸1

𝑐𝑥+𝐸1
𝑐𝑥0−𝐸2

𝑐𝑥0
≥

1

2
 (81)

15

Or

𝐸2
𝑐𝑥+𝐸1

𝑐𝑥

2
≥

𝐸2
𝑐𝑥0+𝐸1

𝑐𝑥0

2
 (82)

We place the equations (76), (78) and (82) in model (73) to obtain its α-parameter model as

follows:

 (83)

𝑀𝑖𝑛 𝑍 = 𝐸𝑉(𝑐̃)𝑥

s.t.

[(1 − 𝛼)𝐸2
𝑎𝑖 + 𝛼𝐸1

𝑎𝑖]𝑥 ≥ 𝛼𝐸2
𝑏𝑖 + (1 − 𝛼)𝐸1

𝑏𝑖 𝑖 = 1.⋯ .𝑚

[(1 −
𝛼

2
)𝐸2

𝑎𝑖 +
𝛼

2
𝐸1
𝑎𝑖] 𝑥 ≥

𝛼

2
𝐸2
𝑏𝑖 + (1 −

𝛼

2
)𝐸1

𝑏𝑖 𝑖 = 𝑙 + 1.⋯ .𝑚

[
𝛼

2
𝐸2
𝑎𝑖 + (1 −

𝛼

2
)𝐸1

𝑎𝑖] 𝑥 ≥ (1 −
𝛼

2
)𝐸2

𝑏𝑖 +
𝛼

2
𝐸1
𝑏𝑖 𝑖 = 𝑙 + 1.⋯ .𝑚

𝑥 ≥ 0

We can formulate an auxiliary deterministic equivalent model of the original problem using the

method above:

𝑀𝑖𝑛 𝑧1 = ∑ [(𝑂𝐶𝑣
𝑃 + 𝑂𝐶𝑣

𝐷)]𝑣∈𝑉 (84)

𝑀𝑖𝑛 𝑧2 = ∑ 𝐴𝑇𝑣
𝐷

𝑣∈𝑉 (85)

𝑀𝑖𝑛 𝑧3 = ∑ 𝐴𝑇𝑣
𝐷

𝑣∈𝑉 + ∑ [(𝑂𝐶𝑣
𝑃 +𝑂𝐶𝑣

𝐷)]𝑣∈𝑉 (86)

s.t.

∑ 𝐺𝑃𝑤.𝑣𝑣∈𝑉 = 1 ; ∀𝑤 ∈ 𝑊 (87)

∑ 𝑌𝑃𝑟.𝑣𝑣∈𝑉 = 1 ; ∀𝑟 ∈ 𝑅 (88)

(89)

𝐶𝑃𝑟 ≥ [𝛼 (
𝑢𝑐𝑣

𝑚+𝑢𝑐𝑣
𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑤.𝑟
𝑃)𝑚+(𝑑𝑤.𝑟

𝑃)𝑜

2
) + (1 −

𝛼) (
(𝑑𝑤.𝑟
𝑃)𝑝+(𝑑𝑤.𝑟

𝑃)𝑚

2
)] 𝑌𝑃𝑟.𝑣 𝐺𝑃𝑤.𝑣 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉. 𝑤 ∈ 𝑊

(90)

𝐶𝑃𝑟́ ≥ 𝐶𝑃𝑟 + [𝛼 (
𝑢𝑐𝑣

𝑚+𝑢𝑐𝑣
𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑟.𝑟́
𝑃)𝑚+(𝑑𝑟.𝑟́

𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑑𝑟.𝑟́
𝑃)𝑝+(𝑑𝑟.𝑟́

𝑃)𝑚

2
)] −

𝑀𝐶
𝑃(1 − 𝑋𝑃𝑟.𝑟́) − 𝑀𝐶

𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

(91)

𝐶𝑃𝑟 ≥ 𝐶𝑃𝑟́ + [𝛼 (
𝑢𝑐𝑣

𝑚+𝑢𝑐𝑣
𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑟.𝑟́
𝑃)𝑚+(𝑑𝑟.𝑟́

𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑑𝑟.𝑟́
𝑃)𝑝+(𝑑𝑟.𝑟́

𝑃)𝑚

2
)] −

𝑀𝐶
𝑃𝑋𝑃𝑟.𝑟́ −𝑀𝐶

𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) ; ∀r. ŕ ∈ R (ŕ < r). v ∈ V

(92)

𝑂𝐶𝑣
𝑃 ≥ 𝐶𝑃𝑟 + [𝛼 (

𝑢𝑐𝑣
𝑚+𝑢𝑐𝑣

𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑤.𝑟
𝑃)𝑚+(𝑑𝑤.𝑟

𝑃)𝑜

2
) + (1 −

𝛼) (
(𝑑𝑤.𝑟
𝑃)𝑝+(𝑑𝑤.𝑟

𝑃)𝑚

2
)] − 𝑀𝐶

𝑃(1 − 𝑌𝑃𝑟.𝑣) ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

16

𝑇𝑃𝑟 ≥ 𝑆𝑇𝑣
𝑃 + (

[𝛼(
(𝑑𝑤.𝑟
𝑃)𝑚+(𝑑𝑤.𝑟

𝑃)𝑜

2
)+(1−𝛼)(

(𝑑𝑤.𝑟
𝑃)𝑝+(𝑑𝑤.𝑟

𝑃)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)𝑌𝑃𝑟.𝑣 𝐺𝑃𝑤.𝑣 ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (95)

(94)

𝑇𝑃𝑟́ ≥ 𝑇𝑃𝑟 + [𝛼 (
(𝑓𝑡𝑟

𝑃)𝑚+(𝑓𝑡𝑟
𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝑃)𝑝+(𝑓𝑡𝑟

𝑃)𝑚

2
)] + [𝛼 (

𝑙𝑟𝑟
𝑚+𝑙𝑟𝑟

𝑜

2
) + (1 −

𝛼) (
𝑙𝑟𝑟
𝑝
+𝑙𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] + (

[𝛼(
(𝑑𝑟.𝑟́
𝑃)𝑚+(𝑑𝑟.𝑟́

𝑃)𝑜

2
)+(1−𝛼)(

(𝑑𝑟.𝑟́
𝑃)𝑝+(𝑑𝑟.𝑟́

𝑃)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)−

𝑀𝑇
𝑃(1 − 𝑋𝑃𝑟.𝑟́) − 𝑀𝑇

𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

(95)

𝑇𝑃𝑟 ≥ 𝑇𝑃𝑟́ + [𝛼 (
(𝑓𝑡𝑟́

𝑃)𝑚+(𝑓𝑡𝑟́
𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟́
𝑃)𝑝+(𝑓𝑡𝑟́

𝑃)𝑚

2
)] + [𝛼 (

𝑙𝑟𝑟́
𝑚+𝑙𝑟𝑟́

𝑜

2
) + (1 −

𝛼) (
𝑙𝑟𝑟́
𝑝
+𝑙𝑟𝑟́

𝑚

2
)] [𝛼 (

𝑞𝑟́
𝑚+𝑞𝑟́

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟́
𝑝
+𝑞𝑟́

𝑚

2
)] + (

[𝛼(
(𝑑𝑟́.𝑟
𝑃)𝑚+(𝑑𝑟́.𝑟

𝑃)𝑜

2
)+(1−𝛼)(

(𝑑𝑟́.𝑟
𝑃)𝑝+(𝑑𝑟́.𝑟

𝑃)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)−

𝑀𝑇
𝑃 𝑋𝑃𝑟.𝑟́ −𝑀𝑇

𝑃(2 − 𝑌𝑃𝑟.𝑣 − 𝑌𝑃𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟́ < 𝑟). 𝑣 ∈ 𝑉

(96)

𝐴𝑇𝑣
𝑃 ≥ 𝑇𝑃𝑟 + [𝛼 (

(𝑓𝑡𝑟
𝑃)𝑚+(𝑓𝑡𝑟

𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝑃)𝑝+(𝑓𝑡𝑟

𝑃)𝑚

2
)] + [𝛼 (

𝑙𝑟𝑟
𝑚+𝑙𝑟𝑟

𝑜

2
) + (1 −

𝛼) (
𝑙𝑟𝑟
𝑝
+𝑙𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] + (

[𝛼(
(𝑑𝑤.𝑟
𝑃)𝑚+(𝑑𝑤.𝑟

𝑃)𝑜

2
)+(1−𝛼)(

(𝑑𝑤.𝑟
𝑃)𝑝+(𝑑𝑤.𝑟

𝑃)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)−

𝑀𝑇
𝑃(1 − 𝑌𝑃𝑟.𝑣) ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

∑ [𝛼 (
𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)]𝑟∈𝑅 𝑌𝑃𝑟.𝑣 ≤ [𝛼 (

𝑄𝑣
𝑚+𝑄𝑣

𝑜

2
) + (1 − 𝛼) (

𝑄𝑣
𝑝+𝑄𝑣

𝑚

2
)] ; ∀𝑣 ∈ 𝑉 (97)

∑ [𝛼 (
𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)]𝑟∈𝑅 𝑌𝑃𝑟.𝑣𝐺𝑃𝑤.𝑣 ≤ [𝛼 (

𝑄𝑤
𝑚+𝑄𝑤

𝑜

2
) + (1 − 𝛼) (

𝑄𝑤
𝑝+𝑄𝑤

𝑚

2
)] (98)

; ∀𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

𝑌𝑅𝑟.𝑣 ≤ 𝑌𝑃𝑟.𝑣 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉 (99)

𝑌𝑅𝑟.𝑣 ≤ 𝑌𝐷𝑟.𝑣 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉 (100)

𝑌𝑅𝑟.𝑣 ≥ 𝑌𝑃𝑟.𝑣 + 𝑌𝐷𝑟.𝑣 − 1 ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉 (101)

∑ 𝐷𝑃𝑣.𝑑𝑑∈𝑅𝐷 = 1 ; ∀𝑣 ∈ 𝑉 (102)

(103)

𝑅𝑇𝑣
𝑃 ≥ 𝐴𝑇𝑣

𝑃 + [𝛼 (
(𝑓𝑡𝑤

𝑃)𝑚+(𝑓𝑡𝑤
𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑤
𝑃)𝑝+(𝑓𝑡𝑤

𝑃)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑤
𝑚+𝑢𝑟𝑤

𝑜

2
) + (1 −

𝛼) (
𝑢𝑟𝑤

𝑝
+𝑢𝑟𝑤

𝑚

2
)] 𝐺𝑃𝑤.𝑣 [∑ [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] (𝑌𝑃𝑟.𝑣 − 𝑌𝑅𝑟.𝑣)𝑟∈𝑅] ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

17

 (104)

𝑅𝑇𝑣́
𝑃 ≥ 𝑅𝑇𝑣

𝑃 + [𝛼 (
(𝑓𝑡𝑤

𝑃)𝑚+(𝑓𝑡𝑤
𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑤
𝑃)𝑝+(𝑓𝑡𝑤

𝑃)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑤
𝑚+𝑢𝑟𝑤

𝑜

2
) + (1 −

𝛼) (
𝑢𝑟𝑤

𝑝
+𝑢𝑟𝑤

𝑚

2
)] 𝐺𝑃𝑤.𝑣́ [∑ [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] (𝑌𝑃𝑟.𝑣́ − 𝑌𝑅𝑟.𝑣́)𝑟∈𝑅] − 𝑀𝑇

𝑃(1 − 𝑍𝑃𝑣.𝑣́) −

𝑀𝑇
𝑃(2 − 𝐷𝑃𝑣.𝑑 − 𝐷𝑃𝑣́.𝑑) ; ∀𝑑 ∈ 𝑅𝐷. 𝑣. 𝑣́ ∈ 𝑉(𝑣 < 𝑣́).𝑤 ∈ 𝑊

(105)

𝑅𝑇𝑣
𝑃 ≥ 𝑅𝑇𝑣́

𝑃 + [𝛼 (
(𝑓𝑡𝑤

𝑃)𝑚+(𝑓𝑡𝑤
𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑤
𝑃)𝑝+(𝑓𝑡𝑤

𝑃)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑤
𝑚+𝑢𝑟𝑤

𝑜

2
) + (1 −

𝛼) (
𝑢𝑟𝑤

𝑝
+𝑢𝑟𝑤

𝑚

2
)] 𝐺𝑃𝑤.𝑣 [∑ [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] (𝑌𝑃𝑟.𝑣 − 𝑌𝑅𝑟.𝑣)𝑟∈𝑅] − 𝑀𝑇

𝑃(1 − 𝑍𝑃𝑣.𝑣́) −

𝑀𝑇
𝑃(2 − 𝐷𝑃𝑣.𝑑 − 𝐷𝑃𝑣́.𝑑) ; ∀𝑑 ∈ 𝑅𝐷. 𝑣. 𝑣́ ∈ 𝑉(𝑣́ < 𝑣). 𝑤 ∈ 𝑊

∑ 𝑊𝑃𝑛.𝑣𝑛∈𝑁 = 1 ; ∀𝑣 ∈ 𝑉 (106)

∑ 𝑊𝑃𝑛.𝑣𝑣∈𝑉 = 1 ; ∀𝑛 ∈ 𝑁 (107)

𝑇𝐸𝑛́ ≥ 𝑇𝐸𝑛 ; ∀𝑛. 𝑛́ ∈ 𝑁(𝑛 < 𝑛́) (108)

𝑇𝐸𝑛́ ≥ 𝑅𝑇𝑣
𝑃 +𝑀𝑇

𝑃(𝑊𝑃𝑛.𝑣 − 1) ; ∀𝑛. 𝑛́ ∈ 𝑁(𝑛 < 𝑛́). 𝑣 ∈ 𝑉 (109)

𝑅𝑇𝑣
𝑃 ≤ 𝑇𝐸𝑛́ +𝑀𝑇

𝑃(1 −𝑊𝑃𝑛.𝑣) ; ∀𝑛. 𝑛́ ∈ 𝑁(𝑛 < 𝑛́). 𝑣 ∈ 𝑉 (110)

∑ 𝑇𝐸𝑛𝑛∈𝑁 = ∑ 𝑅𝑇𝑣
𝑃

𝑣∈𝑉 (111)

𝑇𝐸𝑛 ≤ 𝑅𝑇𝑣
𝑃 ; ∀𝑛 = 𝑓𝑖𝑟𝑠𝑡(𝑁). 𝑣 ∈ 𝑉 (112)

TEn ≥ RTv
P ; ∀n = last(N). v ∈ V (113)

URr.n.v ≤ WPn.v ; ∀n ∈ N. r ∈ R. v ∈ V (114)

∑ URr.n.vn∈N ≤ YPr.v ; ∀r ∈ R. v ∈ V (115)

URr.n.v ≥ (WPn.v + YPr.v − 1) ; ∀n ∈ N. r ∈ R. v ∈ V (116)

UTr.n = ∑ ∑ URr.ń.vv∈Vń∈N
ń≤N

 ; ∀n ∈ N. r ∈ R (117)

ZPv.v́ ≤ 2 −WPn.v − ∑ WPń.v́ń∈N
ń<n

 ; ∀n ∈ N . v. v́ ∈ V (v < v́) (118)

𝑍𝑃𝑣.𝑣́ ≥ 𝑊𝑃𝑛.𝑣 + ∑ 𝑊𝑃𝑛́.𝑣́𝑛́∈𝑁
𝑛́>𝑛

− 1 ; ∀𝑛 ∈ 𝑁 . 𝑣. 𝑣́ ∈ 𝑉 (𝑣 < 𝑣́) (119)

∑ 𝐺𝐷𝑤.𝑣𝑣∈𝑉 = 1 ; ∀𝑤 ∈ 𝑊 (120)

∑ 𝑌𝐷𝑟.𝑣𝑣∈𝑉 = 1 ; ∀𝑟 ∈ 𝑅 (121)

∑ 𝐷𝐷𝑣.𝑑́𝑑́∈𝑆𝐷 = 1 ; ∀𝑣 ∈ 𝑉 (122)

𝐷𝑅𝑆𝑣.𝑑.𝑑́ ≤ 𝐷𝑃𝑣.𝑑 ; ∀𝑣 ∈ 𝑉. 𝑑 ∈ 𝑅𝐷. 𝑑́ ∈ 𝑆𝐷 (123)

𝐷𝑅𝑆𝑣.𝑑.𝑑́ ≤ 𝐷𝐷𝑣.𝑑́ ; ∀𝑣 ∈ 𝑉. 𝑑 ∈ 𝑅𝐷. 𝑑́ ∈ 𝑆𝐷 (124)

𝐷𝑅𝑆𝑣.𝑑.𝑑́ ≥ 𝐷𝑃𝑣.𝑑 + 𝐷𝐷𝑣.𝑑́ − 1 ; ∀𝑣 ∈ 𝑉. 𝑑 ∈ 𝑅𝐷. 𝑑́ ∈ 𝑆𝐷 (125)

∑ ∑𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ = 1 ; ∀𝑣 ∈ 𝑉 (126)

18

 (127)

𝑆𝑇𝑣
𝐷 ≥ 𝑅𝑇𝑣

𝑃 + ∑ ∑ [𝛼 (
𝑡𝑡
𝑑.𝑑́
𝑚 +𝑡𝑡

𝑑.𝑑́
𝑜

2
) + (1 − 𝛼) (

𝑡𝑡
𝑑.𝑑́

𝑝
+𝑡𝑡

𝑑.𝑑́
𝑚

2
)]𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ + [𝛼 (

(𝑓𝑡𝑤
𝐷)𝑚+(𝑓𝑡𝑤

𝐷)𝑜

2
) +

(1 − 𝛼) (
(𝑓𝑡𝑤

𝐷)𝑝+(𝑓𝑡𝑤
𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑤
𝑚+𝑢𝑟𝑤

𝑜

2
) + (1 − 𝛼) (

𝑢𝑟𝑤
𝑝
+𝑢𝑟𝑤

𝑚

2
)]𝐺𝐷𝑤.𝑣 [∑ [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 −𝑟∈𝑅

𝛼) (
𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] (𝑌𝐷𝑟.𝑣 − 𝑌𝑅𝑟.𝑣)] ; ∀𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

(128)

𝑆𝑇𝑣́
𝐷 ≥ 𝑆𝑇𝑣

𝐷 + ∑ ∑ [𝛼 (
𝑡𝑡
𝑑.𝑑́
𝑚 +𝑡𝑡

𝑑.𝑑́
𝑜

2
) + (1 − 𝛼) (

𝑡𝑡
𝑑.𝑑́

𝑝
+𝑡𝑡

𝑑.𝑑́
𝑚

2
)]𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣́.𝑑.𝑑́ + [𝛼 (

(𝑓𝑡𝑤
𝐷)𝑚+(𝑓𝑡𝑤

𝐷)𝑜

2
) +

(1 − 𝛼) (
(𝑓𝑡𝑤

𝐷)𝑝+(𝑓𝑡𝑤
𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑤
𝑚+𝑢𝑟𝑤

𝑜

2
) + (1 − 𝛼) (

𝑢𝑟𝑤
𝑝
+𝑢𝑟𝑤

𝑚

2
)]𝐺𝐷𝑤.𝑣́ [∑ [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 −𝑟∈𝑅

𝛼) (
𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] (𝑌𝐷𝑟.𝑣́ − 𝑌𝑅𝑟.𝑣́)] − 𝑀𝑇

𝐷(1 − 𝑍𝐷𝑣.𝑣́) − 𝑀𝑇
𝐷(2 − 𝐷𝐷𝑣.𝑑́ − 𝐷𝐷𝑣́.𝑑́)

; ∀v. v́ ∈ V (v < v́). w ∈ W

(129)

𝑆𝑇𝑣
𝐷 ≥ 𝑆𝑇𝑣́

𝐷 + ∑ ∑ [𝛼 (
𝑡𝑡
𝑑.𝑑́
𝑚 +𝑡𝑡

𝑑.𝑑́
𝑜

2
) + (1 − 𝛼) (

𝑡𝑡
𝑑.𝑑́

𝑝
+𝑡𝑡

𝑑.𝑑́
𝑚

2
)]𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ + [𝛼 (

(𝑓𝑡𝑤
𝐷)𝑚+(𝑓𝑡𝑤

𝐷)𝑜

2
) +

(1 − 𝛼) (
(𝑓𝑡𝑤

𝐷)𝑝+(𝑓𝑡𝑤
𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑤
𝑚+𝑢𝑟𝑤

𝑜

2
) + (1 − 𝛼) (

𝑢𝑟𝑤
𝑝
+𝑢𝑟𝑤

𝑚

2
)]𝐺𝐷𝑤.𝑣 [∑ [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 −𝑟∈𝑅

𝛼) (
𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] (𝑌𝐷𝑟.𝑣 − 𝑌𝑅𝑟.𝑣)] − 𝑀𝑇

𝐷 𝑍𝐷𝑣.𝑣́ −𝑀𝑇
𝐷(2 − 𝐷𝐷𝑣.𝑑́ − 𝐷𝐷𝑣́.𝑑́) ; ∀v. v́ ∈ V (v́ < v).w ∈ W

∑ 𝑊𝐷𝑛.𝑣𝑛∈𝑁 = 1 ; ∀𝑣 ∈ 𝑉 (130)

𝑈𝑇𝑟.𝑛 ≥ (𝑊𝐷𝑛.𝑣 + 𝑌𝐷𝑟.𝑣 − 1) ; ∀𝑛 ∈ 𝑁. 𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉 (131)

 (132)

𝑆𝑇𝑣
𝐷 ≥ 𝑇𝐸𝑛 + ∑ ∑ [𝛼 (

(𝑓𝑡𝑤
𝐷)𝑚+(𝑓𝑡𝑤

𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑤
𝐷)𝑝+(𝑓𝑡𝑤

𝐷)𝑚

2
)]𝑑́∈𝑆𝐷𝑑∈𝑅𝐷 𝐷𝑅𝑆𝑣.𝑑.𝑑́ +

[𝛼 (
(𝑓𝑡𝑤

𝐷)𝑚+(𝑓𝑡𝑤
𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑤
𝐷)𝑝+(𝑓𝑡𝑤

𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑤
𝑚+𝑢𝑟𝑤

𝑜

2
) + (1 −

𝛼) (
𝑢𝑟𝑤

𝑝
+𝑢𝑟𝑤

𝑚

2
)] 𝐺𝐷𝑤.𝑣 [∑ [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)]𝑟∈𝑅 (𝑌𝐷𝑟.𝑣 − 𝑌𝑅𝑟.𝑣)] − 𝑀𝑇

𝐷 (1 −

𝑊𝐷𝑛.𝑣) ; ∀𝑛 ∈ 𝑁. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

(133)

𝐶𝐷𝑟 ≥ [𝛼 (
𝑢𝑐𝑣

𝑚+𝑢𝑐𝑣
𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑟.𝑤
𝐷)𝑚+(𝑑𝑟.𝑤

𝐷)𝑜

2
) + (1 −

𝛼) (
(𝑑𝑟.𝑤
𝐷)𝑝+(𝑑𝑟.𝑤

𝐷)𝑚

2
)] 𝑌𝐷𝑟.𝑣 𝐺𝐷𝑤.𝑣 ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

(134)

𝐶𝐷𝑟́ ≥ 𝐶𝐷𝑟 + [𝛼 (
𝑢𝑐𝑣

𝑚+𝑢𝑐𝑣
𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑟.𝑟́
𝐷)𝑚+(𝑑𝑟.𝑟́

𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑑𝑟.𝑟́
𝐷)𝑝+(𝑑𝑟.𝑟́

𝐷)𝑚

2
)] −

𝑀𝐶
𝐷(1 − 𝑋𝐷𝑟.𝑟 ́) − 𝑀𝐶

𝐷(2 − 𝑌𝐷𝑟.𝑣 − 𝑌𝐷𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

19

 (135)

𝐶𝐷𝑟 ≥ 𝐶𝐷𝑟́ + [𝛼 (
𝑢𝑐𝑣

𝑚+𝑢𝑐𝑣
𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑟.𝑟́
𝐷)𝑚+(𝑑𝑟.𝑟́

𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑑𝑟.𝑟́
𝐷)𝑝+(𝑑𝑟.𝑟́

𝐷)𝑚

2
)] −

𝑀𝐶
𝐷𝑋𝐷𝑟.𝑟 ́ −𝑀𝐶

𝐷(2 − 𝑌𝐷𝑟.𝑣 − 𝑌𝐷𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟́ < 𝑟). 𝑣 ∈ 𝑉

 (136)

𝑂𝐶𝑣
𝐷 ≥ 𝐶𝐷𝑟 + [𝛼 (

𝑢𝑐𝑣
𝑚+𝑢𝑐𝑣

𝑜

2
) + (1 − 𝛼) (

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼 (

(𝑑𝑟.𝑤
𝐷)𝑚+(𝑑𝑟.𝑤

𝐷)𝑜

2
) + (1 −

𝛼) (
(𝑑𝑟.𝑤
𝐷)𝑝+(𝑑𝑟.𝑤

𝐷)𝑚

2
)] − MC

D(1 − YDr.v) ; ∀r ∈ R. v ∈ V.w ∈ W

(137)

𝑇𝐷𝑟 ≥ 𝑆𝑇𝑣
𝐷 + (

[𝛼(
(𝑑𝑟.𝑤
𝐷)𝑚+(𝑑𝑟.𝑤

𝐷)𝑜

2
)+(1−𝛼)(

(𝑑𝑟.𝑤
𝐷)𝑝+(𝑑𝑟.𝑤

𝐷)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)𝑌𝐷𝑟.𝑣 𝐺𝐷𝑤.𝑣 ; ∀𝑟 ∈ 𝑅. 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

 (138)

𝑇𝐷𝑟́ ≥ 𝑇𝐷𝑟 + [𝛼 (
(𝑓𝑡𝑟

𝐷)𝑚+(𝑓𝑡𝑟
𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝐷)𝑝+(𝑓𝑡𝑟

𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑟
𝑚+𝑢𝑟𝑟

𝑜

2
) + (1 −

𝛼) (
𝑢𝑟𝑟

𝑝
+𝑢𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] + (

[𝛼(
(𝑑𝑟.𝑟́
𝐷)𝑚+(𝑑𝑟.𝑟́

𝐷)𝑜

2
)+(1−𝛼)(

(𝑑𝑟.𝑟́
𝐷)𝑝+(𝑑𝑟.𝑟́

𝐷)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)−

𝑀𝑇
𝐷(1 − 𝑋𝑃𝑟.𝑟́) −𝑀𝑇

𝑃𝐷(2 − 𝑌𝐷𝑟.𝑣 − 𝑌𝐷𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟 < 𝑟́). 𝑣 ∈ 𝑉

(139)

𝑇𝐷𝑟 ≥ 𝑇𝐷𝑟́ + [𝛼 (
(𝑓𝑡𝑟́

𝐷)𝑚+(𝑓𝑡𝑟́
𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟́
𝐷)𝑝+(𝑓𝑡𝑟́

𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑟́
𝑚+𝑢𝑟𝑟́

𝑜

2
) + (1 −

𝛼) (
𝑢𝑟𝑟́

𝑝
+𝑢𝑟𝑟́

𝑚

2
)] [𝛼 (

𝑞𝑟́
𝑚+𝑞𝑟́

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟́
𝑝
+𝑞𝑟́

𝑚

2
)] + (

[𝛼(
(𝑑𝑟́.𝑟
𝐷)𝑚+(𝑑𝑟́.𝑟

𝐷)𝑜

2
)+(1−𝛼)(

(𝑑𝑟́.𝑟
𝐷)𝑝+(𝑑𝑟́.𝑟

𝐷)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)−

𝑀𝑇
𝐷 𝑋𝑃𝑟.𝑟́ −𝑀𝑇

𝐷(2 − 𝑌𝐷𝑟.𝑣 − 𝑌𝐷𝑟́.𝑣) ; ∀𝑟. 𝑟́ ∈ 𝑅 (𝑟́ < 𝑟). 𝑣 ∈ 𝑉

 (140)

𝐴𝑇𝑣
𝐷 ≥ 𝑇𝐷𝑟 + [𝛼 (

(𝑓𝑡𝑟
𝐷)𝑚+(𝑓𝑡𝑟

𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝐷)𝑝+(𝑓𝑡𝑟

𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑟
𝑚+𝑢𝑟𝑟

𝑜

2
) + (1 −

𝛼) (
𝑢𝑟𝑟

𝑝
+𝑢𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)] + (

[𝛼(
(𝑑𝑟.𝑤
𝐷)𝑚+(𝑑𝑟.𝑤

𝐷)𝑜

2
)+(1−𝛼)(

(𝑑𝑟.𝑤
𝐷)𝑝+(𝑑𝑟.𝑤

𝐷)𝑚

2
)]

[𝛼(
𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)−

𝑀𝑇
𝐷(1 − 𝑌𝐷𝑟.𝑣) ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

(141)

∑ [𝛼 (
𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)]𝑟∈𝑅 𝑌𝐷𝑟.𝑣 ≤ [𝛼 (

𝑄𝑣
𝑚+𝑄𝑣

𝑜

2
) + (1 − 𝛼) (

𝑄𝑣
𝑝+𝑄𝑣

𝑚

2
)] ; ∀𝑣 ∈ 𝑉. 𝑟 ∈ 𝑅

20

(142)

∑ [α (
qr
m+qr

o

2
) + (1 − α) (

qr
p
+qr

m

2
)]r∈R YDr.vGDw.v ≤ [α (

Qw
m+Qw

o

2
) + (1 −

α) (
Qw

p+Qw
m

2
)] ; ∀v ∈ V.w ∈ W

𝑍𝐷𝑣.𝑣́ ≤ 2 −𝑊𝐷𝑛.𝑣 − ∑ 𝑊𝐷𝑛́.𝑣́𝑛́∈𝑁
𝑛́<𝑛

 ; ∀𝑛 ∈ 𝑁 . 𝑣. 𝑣́ ∈ 𝑉 (𝑣 < 𝑣́) (143)

𝑍𝐷𝑣.𝑣́ ≥ 𝑊𝐷𝑛.𝑣 + ∑ 𝑊𝐷𝑛́.𝑣́𝑛́∈𝑁
𝑛́>𝑛

− 1 ; ∀𝑛 ∈ 𝑁 . 𝑣. 𝑣́ ∈ 𝑉 (𝑣 < 𝑣́) (144)

(145)

𝐴𝑇𝑣
𝑃 ≥ (1 − 𝜂𝑃) [𝑆𝑇𝑣

𝑃 + (
𝑂𝐶𝑣

𝑃

[𝛼(
𝑢𝑐𝑣
𝑚+𝑢𝑐𝑣

𝑜

2
)+(1−𝛼)(

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼(

𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)+

∑ ([𝛼 (
(𝑓𝑡𝑟

𝑃)𝑚+(𝑓𝑡𝑟
𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝑃)𝑝+(𝑓𝑡𝑟

𝑃)𝑚

2
)] + [𝛼 (

𝑙𝑟𝑟
𝑚+𝑙𝑟𝑟

𝑜

2
) + (1 −𝑟∈𝑅

𝛼) (
𝑙𝑟𝑟
𝑝
+𝑙𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)])𝑌𝑃𝑟.𝑣] ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

 (146)

𝐴𝑇𝑣
𝑃 ≤ (1 + 𝜂𝑃) [𝑆𝑇𝑣

𝑃 + (
𝑂𝐶𝑣

𝑃

[𝛼(
𝑢𝑐𝑣
𝑚+𝑢𝑐𝑣

𝑜

2
)+(1−𝛼)(

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼(

𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)+

∑ ([𝛼 (
(𝑓𝑡𝑟

𝑃)𝑚+(𝑓𝑡𝑟
𝑃)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝑃)𝑝+(𝑓𝑡𝑟

𝑃)𝑚

2
)] + [𝛼 (

𝑙𝑟𝑟
𝑚+𝑙𝑟𝑟

𝑜

2
) + (1 −𝑟∈𝑅

𝛼) (
𝑙𝑟𝑟
𝑝
+𝑙𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)])𝑌𝑃𝑟.𝑣] ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊

(147)

𝐴𝑇𝑣
𝐷 ≥ (1 − 𝜂𝐷) [𝑆𝑇𝑣

𝐷 + (
𝑂𝐶𝑣

𝐷

[𝛼(
𝑢𝑐𝑣
𝑚+𝑢𝑐𝑣

𝑜

2
)+(1−𝛼)(

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼(

𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)+

∑ ([𝛼 (
(𝑓𝑡𝑟

𝐷)𝑚+(𝑓𝑡𝑟
𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝐷)𝑝+(𝑓𝑡𝑟

𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑟
𝑚+𝑢𝑟𝑟

𝑜

2
) + (1 −𝑟∈𝑅

𝛼) (
𝑢𝑟𝑟

𝑝
+𝑢𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)]) 𝑌𝐷𝑟.𝑣] ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉.𝑤 ∈ 𝑊 (148)

𝐴𝑇𝑣
𝐷 ≤ (1 + 𝜂𝐷) [𝑆𝑇𝑣

𝐷 + (
𝑂𝐶𝑣

𝐷

[𝛼(
𝑢𝑐𝑣
𝑚+𝑢𝑐𝑣

𝑜

2
)+(1−𝛼)(

𝑢𝑐𝑣
𝑝
+𝑢𝑐𝑣

𝑚

2
)] [𝛼(

𝑠𝑝𝑣
𝑚+𝑠𝑝𝑣

𝑜

2
)+(1−𝛼)(

𝑠𝑝𝑣
𝑝
+𝑠𝑝𝑣

𝑚

2
)]

)+

∑ ([𝛼 (
(𝑓𝑡𝑟

𝐷)𝑚+(𝑓𝑡𝑟
𝐷)𝑜

2
) + (1 − 𝛼) (

(𝑓𝑡𝑟
𝐷)𝑝+(𝑓𝑡𝑟

𝐷)𝑚

2
)] + [𝛼 (

𝑢𝑟𝑟
𝑚+𝑢𝑟𝑟

𝑜

2
) + (1 −𝑟∈𝑅

𝛼) (
𝑢𝑟𝑟

𝑝
+𝑢𝑟𝑟

𝑚

2
)] [𝛼 (

𝑞𝑟
𝑚+𝑞𝑟

𝑜

2
) + (1 − 𝛼) (

𝑞𝑟
𝑝
+𝑞𝑟

𝑚

2
)]) 𝑌𝐷𝑟.𝑣] ; ∀𝑟 ∈ 𝑅 . 𝑣 ∈ 𝑉. 𝑤 ∈ 𝑊

21

∑ 𝐷𝑃𝑣.𝑑 ≥ ∑ 𝑊𝑃𝑛́.𝑣𝑛́∈𝑁
𝑛́<𝑛

𝑑∈𝑅𝐷
𝑑<𝑛

 ; ∀𝑣 ∈ 𝑉 . 𝑛 ∈ 𝑁 (𝑛 ≤ |𝑅𝐷|) (149)

3.1.2. Fuzzy solution approach

Zimmermann [34] firstly introduced fuzzy solution approach in order to solve multi-objective

programming problems. The related literature review indicates the appearance of several different

approaches for investigating possibility models [29]; [35]; [36]. Inspired by [37], the present research

tries to solve the presented deterministic model. The above-mentioned methods steps are as follows:

Step 1: Determine appropriate possibility triangular or trapezoidal distributions for problem parameters,

and then formulate the problem model.

Step 2: Convert the inaccurate objective function of model into the deterministic function model

through expected value according to inaccurate parameters.

Step 3: Calculate α-value (minimum acceptable feasibility degree of decision vector) and convert fuzzy

constraints of problem into the deterministic constraints, and then formulate auxiliary deterministic

equivalent model of problem.

Step 4: Determine α-positive ideal solution (α-PIS) and α- negative ideal solution (α-NIS) for each

objective function and feasible α-level.

Step 5: Determine linear membership function for each objective function as follows:

(150)

𝜇1(𝑥) =

{

1 𝑖𝑓 𝑍1 ≤ 𝑍1

𝛼−𝑃𝑖𝑠
𝑍1
𝛼−𝑁𝑖𝑠−𝑍1

𝑍1
𝛼−𝑁𝑖𝑠−𝑍1

𝛼−𝑃𝑖𝑠 𝑖𝑓 𝑍1
𝛼−𝑃𝑖𝑠 ≤ 𝑍1 ≤ 𝑍1

𝛼−𝑁𝑖𝑠

0 𝑖𝑓 𝑍1 > 𝑍1
𝛼−𝑁𝑖𝑠

(151)

𝜇2(𝑥) =

{

1 𝑖𝑓 𝑍2 ≤ 𝑍2

𝛼−𝑃𝑖𝑠

𝑍2
𝛼−𝑁𝑖𝑠−𝑍2

𝑍2
𝛼−𝑁𝑖𝑠−𝑍2

𝛼−𝑃𝑖𝑠 𝑖𝑓 𝑍2
𝛼−𝑃𝑖𝑠 ≤ 𝑍2 ≤ 𝑍2

𝛼−𝑁𝑖𝑠

0 𝑖𝑓 𝑍2 > 𝑍2
𝛼−𝑁𝑖𝑠

(152)

𝜇3(𝑥) =

{

1 𝑖𝑓 𝑍3 ≤ 𝑍3

𝛼−𝑃𝑖𝑠
𝑍3
𝛼−𝑁𝑖𝑠−𝑍3

𝑍3
𝛼−𝑁𝑖𝑠−𝑍3

𝛼−𝑃𝑖𝑠 𝑖𝑓 𝑍3
𝛼−𝑃𝑖𝑠 ≤ 𝑍3 ≤ 𝑍3

𝛼−𝑁𝑖𝑠

0 𝑖𝑓 𝑍3 > 𝑍3
𝛼−𝑁𝑖𝑠

In which 𝜇ℎ(𝑥) is the satisfaction degree with objective function h.

Step 6: Convert the three-objective deterministic equivalent model into a mixed integer linear

programming (MILP) through a cumulative function. The above-mentioned cumulative function is as

follows:

𝑚𝑎𝑥 𝜆(𝑥) = 𝛾𝜆0 + (1 − 𝛾)∑ 𝜃ℎ𝜇ℎ(𝑥)ℎ (153)

s.t. 𝜆0 ≤ 𝜇𝐻(𝑥) . ℎ = 1.2.3

 𝑥 ∈ 𝐹(𝑥) . 𝜆0 𝑎𝑛𝑑 𝜆 ∈ [0.1]
F(x) represents that the feasibility section contains the deterministic equivalent model variables;

and θ and γ indicate the importance of objective function h and the correction factor, respectively. It is

worth mentioning that 𝜆0 = 𝑚𝑖𝑛ℎ{𝜇ℎ(𝑥)} is obtained by objective functions as the minimum degree of

satisfaction.

Step 7: Calculate γ and 𝜃ℎ values and solve the single-objective mixed integer linear programming

model. Stop if a decision maker is met by the current solution, otherwise create another compromise

solution by changing γ and α values (and 𝜃ℎ, if necessary) and shifting to step 3.

3.2. Heuristic approach

Inspired by local and structural search approaches for the efficient and effective search through

the solution space, metaheuristic algorithms are offered as a new generation of approximation

algorithms relying on heuristic methods. Unique search strategies are mainly used in metaheuristic

22

algorithms to prevent them from being trapped in local optimal solutions. Being popular, the existed

techniques are extended to plentiful current ones to apply. No matter, what kind of techniques they are,

simple local search approaches or complicated learning processes are always involved. Therefore, this

is the main philosophy to consider numerous metaheuristic algorithms such as the ant colony

optimization and evolutionary computation algorithms including the genetic algorithm, the simulated

annealing algorithm, tabu search.

Meta-heuristics characteristics

Regarding high levels of complexity and computation, operations planning and cross docks

scheduling can be taken into account as combinatorial optimization and NP-hard problems. The most

difficult part of traditional approaches and conventional optimization tools is to find an optimal solution

for a high dimensional problem within a reasonable computation time traditional approaches and

conventional optimization tools. Solving such complicated problems cannot be expected by polynomial

algorithms considering a reasonable computation time. Hence, accurate methods are not capable of

finding solutions for problems in high dimensions. To provide an optimal solution within a reasonable

time, heuristic and metaheuristic algorithms give us a hand. Genetic algorithm (GA) and ant colony

optimization (ACO) are offered respectively as two meta-heuristics to solve the proposed model.

3.2.1. A GA for cross-docking problem

Local search procedures are the main bases for GA as the most favorable class of evolutionary

algorithms. Functioning as follows, this algorithm considers several features, such as population,

chromosomes, genes, reproduction parameters and generation to evolve its search procedures: firstly,

an initial population consisting of sets of chromosomes and genes is created at random; secondly,

genetic reproducing parameters such as crossover and mutation are applied to the primary population

to achieve to the related descendant populations. We do the same in each iteration (generation) of the

algorithm, till the best possible solution is obtained regarding a related stopping criterion. Being

combined via crossover or mutation operations in the mating pool, the GA can provide us a wide variety

of strategies and alternatives in order to create more chromosomes.

Here is the right place to offer the overall framework of our applied GA as follows: (1) we create

random chromosomes (sequences) within initialization phase to create the population by merging them;

(2) we set the value of an objective function as the fitness function to evaluate the generated solutions

(chromosomes). Since we aim at minimizing the objective function, the utility function is defined as

follows:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒
 (154)

 (3) roulette wheel selection and the tournament selection are two parameters of selection operator

that select a chromosome; (4) reproduction scheme including three major approaches, elitism, crossover

and mutation; (5) The termination or stopping condition is defined as follows: The First Priority: The

convergence of the algorithm on a specific solution. The Second Priority: No progress. In other words,

if the genetic algorithm continues running on previous chromosomes and does not improve after x

iterations, it should be terminated. The stopping condition is supposed to be x= 30 in this paper. The

Third Priority: The number of iterations. Not meeting the above conditions, the number of iterations is

set to a specific value. In the present paper, the termination condition included 300 generations.

Displaying the Solutions to the Proposed Genetic Algorithm

Despite the type and number of vehicles in each dock, research problem includes several constraints

such as capacity constraints on cross docks and vehicles. Regarding the mentioned logics and

constraints, chromosomes were shown more flexibly in this study to eliminate infeasible solutions. In

this study, solutions were supposed to take the following steps:

1. Determining the way through which Demands are Allocated to Vehicles in the Loading

Process:

This section is dedicated to find an answer for the above question. This part of the chromosome is a

matrix made up of two dimensions indicating the number of demands and the number of vehicles. The

order of allocation and sequence of routes by every vehicle in the loading process are presented in

Table (1). As an example, the demand points 16, 10, 36, and 23 were allocated to vehicle 1 and are set

to be taken in the same sequence.

23

Table (1). Displaying a Solution in the Genetic Algorithm

Determining the way through which Demands are Allocated to Vehicles in the Loading Process

31 30 19 17 29 34 25 10 8 33 26 37 35 21 16 7 5 40 9 𝑞0

7 1 7 6 4 4 5 1 3 5 10 9 3 8 1 3 9 3 2 𝑞1

2. Determining the way through which Demands are Allocated to Vehicles in the Delivery

process:

This section evaluates the way through which demands are allocated to vehicles. This part of the

chromosome is a matrix of two dimensions which shows the number of demands and the number of

vehicles. The order of allocation and sequence of routes taken by every vehicle in the delivery process

are presented in Table (2). The applied allocation method is the same as that of the delivery phase. We

corrected 𝑞4 in this paper in several ways. We should deliver the same demand points, allocated to a

warehouse by vehicles in the previous phase with the help of the same vehicles.

Table (2). Displaying a Solution in the Genetic Algorithm

Determining the way through which Demands are Allocated to Vehicles in the Delivery process

7 12 5 38 10 23 39 20 17 33 15 32 21 36 19 26 14 2 31 13 𝑞2

9 5 8 2 1 1 2 8 1 4 8 10 6 6 4 4 8 9 7 5 𝑞4

3. Determining the Way through which Vehicles are Allocated to Cross-docks:

This section examines how to allocate vehicles to cross-docks. This part of the chromosome is a matrix

of two dimensions which are representatives for the number of vehicles and the number of warehouses,

respectively. The way through which chromosomes are displayed to allocate vehicles to cross-docks is

presented in Table (3). For instance, vehicles 1, 3, 6, 8, and 9 were allocated to cross-docks 2.

Table (3). Displaying a Solution in the Genetic Algorithm

Determining the way through which vehicles are allocated to cross-docks

10 9 8 7 6 5 4 3 2 1 𝑞3

1 2 2 1 2 1 1 2 1 2 w

4. Determining the Way through which Vehicles Are Allocated to Receiving Doors:

Determination of a way through which vehicles can be allocated to receiving doors of cross-docks is

the main purpose of this section. This part of the chromosome is a matrix of two dimensions defining

the number of vehicles and the number of receiving doors of cross-docks. The way through which

vehicles can be allocated to receiving doors of cross-docks are demonstrated in Table (4) like the

following array. For instance, Vehicles 8, 6, 4, 2, and 1 were allocated to Receiving Door 2.

Table (4). Displaying a Solution in the Genetic Algorithm

Determining the Way through which Vehicles Are Allocated to Receiving Doors

1 9 2 3 7 6 5 10 4 8 𝑞5

2 3 2 2 1 2 3 1 3 2 𝑞6

5. Determining an appropriate method to allocate vehicles to Sending Doors:

This section mainly aims at finding an appropriate method to allocate vehicles to sending doors of cross-

docks. This part of the chromosome is a matrix of two dimensions indicating the number of vehicles

and the number of sending doors. Table (5) demonstrates an appropriate method to display

chromosomes to allocate vehicles to sending doors of cross-docks like the following array. For instance,

Vehicles 7 and 9 were allocated to Sending Door 3.

Table (5). Displaying a Solution in the Genetic Algorithm

Determining the Way through which Vehicles Are Allocated to Receiving Doors

6 5 1 3 9 10 2 7 4 8 𝑞7

1 2 2 2 3 2 1 3 2 1 𝑞8

24

3.2.2. A SACO for cross-docking problem

Firstly developed by [38], Ant Colony Optimization (ACO) can be considered as another class

of population-based meta-heuristics aiming at offering solution for combinatorial optimization

problems. Inspired by the social behavior of ant colonies, this algorithm copies the social behavior of

ant colonies through which each ant tries to communicate with others by laying pheromone trails. Since

it detects the solution space and creates new solutions iteratively by copying the real behavior of ants,

the pheromone trail plays a crucial role in ACO.

Simple-ACO (SACO) is an elementary version of ACO algorithm which assumes similarity

between artificial ants’ behavior and their natural counterpart. There is an experimental way to test this

algorithm with the help of finding shortest paths in graphs as a simple example. Despite the fact that

the shortest path problems can be solved with deterministic algorithms in polynomial time, it is an

interesting problem for studying the behavior of ACO algorithms, since (i) the problem is solved by

real ant colonies, (ii) due to its simplicity and the fact that algorithm behavior is not obscured by

technicalities of the problem under consideration, and (iii) significant features are expected in solving

this simple problem to be strengthened while attacking much more difficult combinatorial optimization

problems.

It seems that finding the shortest path on a graph G = (N,A) is the first step to be considered. S-

ACO exploits a set of variables T = 𝜏𝑖𝑗 (t) called artificial pheromone trails that are associated to the

arcs (i,j) of the graph G. Pheromone trails are read and written by the ants. The amount (intensity) of

each pheromone trail is proportional to the utility, as estimated by the ants, of using the corresponding

arc to build good solutions.

The responsibility of each ant is to start from the source node and create a candidate solution for

the shortest path problem considering a step-by-step decision policy in S-ACO. Local pheromone

information storing at a node itself and/or on its outgoing arcs, is read (sensed) by the ant and used in a

stochastic way to determine which node should move next: being located at a node I, an ant k uses the

pheromone trails τij to compute the probability 𝑝𝑖𝑗
𝑘 of choosing j as the next node:

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼

∑ 𝜏𝑖𝑗
𝛼

𝑗𝜖𝑁𝑖
𝑘

 𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘

0 𝑖𝑓 𝑗 ∉ 𝑁𝑖
𝑘

 (155)

In which 𝑁𝑖
𝑘 is the feasible neighborhood of ant k which is located in node i. (to avoid division

by zero at the beginning of the search process, an amount of pheromone 𝜏0 = 1 is assigned to all the

arcs of the graph G). The feasible neighborhood 𝑁𝑖
𝑘 of ant k located in node i contains all the nodes

directly connected to node i, except for the predecessor of node i in S-ACO (that is, the last node ant k

visited before moving to i). The ants are tempted to avoid returning to the same node they visited

immediately before node i considering this way. Only in case 𝑁𝑖
𝑘 is empty (corresponding to a dead end

in the graph), node i’s predecessor is included into 𝑁𝑖
𝑘. It is worth mentioning that this decision policy

can lead the ants to enter a loop.

Applying its decision policy, an ant repeatedly hops from node to node and stops moving when

reaches the destination node. The time step at which ants reach the destination node may differ from

ant to ant, due to differences among the ants’ paths (no doubt, ants traveling on shorter paths will reach

their destinations faster). The ants remove loops they might get entangled in so far while searching for

the destination node when they get to it, and then take deterministic retracing backwardly to the source

node step by step being exonerated from loops.

The ant adds pheromone to the edges it passes when it gets back to the source: the generic ant k

deposits an amount ∆𝜏𝑘 of pheromone on each visited arc during its return trip (in the loop-free path).

The pheromone value 𝜏𝑖𝑗 will be updated if ant k at time t passes the arc (i,j) in particular using the

following equation:

𝜏𝑖𝑗(𝑡) ← 𝜏𝑖𝑗(𝑡) + ∆𝜏
𝑘 (156)

25

We can also make ∆𝜏𝑘 a function of the generated solutions quality which is affected by the path

length- the shorter the path the more the pheromone deposited by the ant as another complex method

for updating the pheromone trails. In general, the amount of pheromone deposited by an ant is assumed

to be a non-increasing function of the path length. In S-ACO, in particular, an ant deposits an amount

of
1

𝐿𝑘
 , where 𝐿𝑘 is the length of ant k’s path. We also expect pheromone trails to “evaporate” in order

to avoid a quick convergence of all the ants towards a sub-optimal path. It should also be considered

that the results reveal the hidden part of evaporation, even when real pheromone trails evaporate,

evaporation fails to perform correctly in shortest path cases including real ants. We assume evaporation

as an important tool for obtaining desired results with artificial ants regarding this fact that optimization

problems faced artificial ants are much more complex than those of real ants. Hence, the existence of a

mechanism for artificial ants is crucial to provide a “learning form” of the problem structure. Removing

the memory of bad choices in the past, evaporation provides a platform for learning of new policies.

To stick to a practical approach, we calculate evaporation by decreasing pheromone trails at

exponential speed, applying it to all pheromone trails at each iteration of the algorithm with the help of

the following equation:

𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗 . ∀(𝑖. 𝑗) ∈ 𝐴 (157)

Where 𝜌 ∈ (0.1] is a paremeter.

It is worth mentioning that pheromone trail evaporation does not play any role while facing real

ants. Thus, we test the performance of S-ACO when setting ρ =0, that is in an experiment, when there

is no evaporation. We conclude that the more complex the graph, the more important the role of

pheromone evaporation to obtain the desired behavior of convergence on a shortest path. It should be

considered that if the pheromone trails evaporate completely, that is, when ρ = 1, then the algorithm

will be abated to a random search. We should revise the cross-docking problem to let it be admitted by

the proposed ACO algorithm, there is a strong similarity between the trucks embedded in the travelling

salesman problem (TSP) and these ants. In other words, each of the trucks stands for each of the ants.

In order to clarify this algorithm, we are going to get through the main procedure.

We present different steps of the S-ACO algorithm in this section [39]:

Step 1: Initiating 𝜏𝑖𝑗(0) randomly.

Step 2: Repeating Step 3 and Step 4 for all of the 𝑛𝑘 ants.

Step 3: Creating 𝑥𝑘(𝑡) route for the kth ant in accordance with Equation (155).

Step 4: Calculating the fitness of the created route (𝑓(𝑥𝑘(𝑡))).

Step 5: Using the process of pheromone evaporation to all of the (i, j) edges in the graph of possible

routes in accordance with Equation (157).

Step 6: Repeating Step 7 for all of the nk ants.

Step 7: Increasing the pheromone of each edge like (i, j) on the route created by the kth ant in accordance

with Equation (156) (∆𝜏𝑘 =
1

𝑓(𝑥𝑘(𝑡))
).

Step 8: Repeating Steps 2-7 until the termination condition is convinced.

In the S-ACO algorithm, 𝑥𝑘(𝑡) is the solution found at t, and 𝑓(𝑥𝑘(𝑡)) shows the quality of solution.

As mentioned earlier in this paper, generating solution in the ant colony optimization is

considered to be the same as other permutation problems such as TSP. nonetheless, regarding the

method of displaying solutions, there are 9 strings. Colony optimization acts similar to genetic algorithm

in applying methods for offering solutions.

26

Computational Results

This section is trying to analyze the results of solving the proposed model. Due to test the

accuracy of the proposed model, several problems are solved in GAMS. This model mainly aims at

minimizing costs. Models outputs and objective functions value are presented at the last part of this

section. Regarding this fact that the majority of model parameters are fuzzy and it also includes

parameters of right values and technological coefficients, and considers objective functions and main

deterministic problem variables as constraints, a two-phase approach is applied to solve the proposed

fuzzy model. We transform the initial fuzzy model into a deterministic equivalent auxiliary model in

the first phase. Then we apply a fuzzy method to obtain the final preferred compromise solution, in the

second step.

In order to generate triangular fuzzy numbers, we also estimate three sensitive points (the most

probable value, the pessimistic value, and the optimistic value). To achieve this purpose, we generated

the most probable value (𝑐𝑚) of every parameter at first. In the next step, we used normal distribution

to generate two random numbers (𝑟1. 𝑟2) between 0.2 and 0.8 without changing the generality of

problem. Then, the pessimistic (𝑐𝑝) and optimistic (𝑐𝑜) values were calculated using the fuzzy numbers

[28]. Considering numerical solutions different dimensions, it included 4 cross docks, 3 doors (entrance

and exit), 8 types of vehicles, and 40 types of customer demands. Parameters such as the speed of a

vehicle (v), vehicles cost per a distance unit (𝑢𝑐𝑣), the cargo size for a request (qr), loading locations

and deliveries positions, cross docks position, other parameters constant values and the solution outputs

are presented in Tables (6) – (13). The problem of different dimensions solved in GAMS is presented

in Table (13) considering the following parameters. Input values of parameters helped us in solving

these problems. Being solved in GAMS, The model resulted in answers to the objective functions that

are analyzed in the fuzzy mode and presented in Tables (14) – (16) per different α parameters. Then,

we employed metaheuristic algorithms such as genetic algorithm and ant colony optimization to solve

the problem and analyzed their results using MATLAB outputs.

Table (6). The speed of a vehicle (v)

8 7 6 5 4 3 2 1 v

70 70 70 70 70 70 70 70 𝑠𝑝𝑣

Table (7). Vehicle transportation time from a receiving door (𝑑 ∈ 𝑅𝐷) to a sending door (𝑑́ ∈ 𝑆𝐷)

𝐑𝐃3 𝐑𝐃2 𝐑𝐃1 𝒕𝒕𝒅.𝒅́

8 4 2 𝑅𝐷1

5 2 4 𝑅𝐷2

2 6 7 𝑅𝐷3

Table (8). Vehicles cost per a distance unit (𝑢𝑐𝑣)

8 7 6 5 4 3 2 1 v

270 210 230 200 270 210 230 200 𝑢𝑐𝑣

Table (9). The cargo size for a request (qr)

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 𝒓

9 17 12 2 19 8 20 23 19 12 16 16 9 5 3 26 19 13 7 10 𝑞𝑟

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 𝑟

14 21 6 17 10 14 12 17 9 14 8 11 7 22 15 8 12 29 18 11 𝑞𝑟

27

Table (10). Loading locations and deliveries positions
Y X Y X Y X Y X

Deliveries position Loading position r Deliveries position Loading position r

42 30 30 5 17 20 20 49 41 1

3 40 40 20 18 52 31 17 35 2

5 60 60 15 19 12 24 45 55 3

56 65 65 45 20 40 35 20 55 4

68 20 20 45 21 37 41 30 15 5

69 10 10 45 22 52 53 30 25 6

48 5 5 55 23 30 45 50 20 7

50 22 22 44 24 25 40 43 10 8

39 25 25 28 25 14 11 60 55 9

39 22 47 40 26 7 65 60 30 10

33 31 23 48 27 12 60 42 20 11

20 50 29 26 28 52 13 35 50 12

43 18 22 18 29 65 63 25 30 13

29 50 38 45 30 47 47 10 15 14

15 18 43 53 31 60 40 5 30 15

42 27 19 40 32 55 20 20 10 16

8 71 24 16 37 41 60 51 29 33

83 17 85 47 38 22 39 36 20 34

74 5 66 21 39 42 45 25 50 35

7 30 31 74 40 85 37 19 67 36

Table (11). Cross docks position

Y X
w

The position of cross docks

35 35 1

40 40 2

45 45 3

50 50 4

55 55 5

Table (12). Other parameters constant values

0.5 𝒍𝒓𝒘 0.5 𝒇𝒕𝒘
𝑷 0.2 𝒍𝒓𝒓 0.5 𝒇𝒕𝒓

𝑷

0.5 𝑢𝑟𝑤 0.5 𝑓𝑡𝑤
𝐷 0.2 𝑢𝑟𝑟 0.5 𝑓𝑡𝑟

𝐷

Table (13). Solution outputs

 Objective function (s)Time
 W R V RD SD 𝑄𝑤 𝑄𝑣 𝑧1 𝑧2 𝑧3 𝑧1 𝑧2 𝑧3

1 2 8 2 2 2 150 100 166173.637 29304.471 166229.651 16 15 16

2 2 9 3 2 2 150 100 318251.243 55180.808 318358.691 16 15 31

3 2 10 3 2 2 150 100 368669.011 59195.042 368793.394 16 16 31

4 2 11 3 2 2 150 100 378523.958 62444.011 378651.872 31 32 15

5 2 12 3 2 2 150 100 434579.378 68074.483 434726.175 16 31 16

6 2 8 2 3 3 150 100 166173.637 29304.471 166229.651 15 15 15

7 2 9 3 3 3 150 100 318251.243 55180.808 318358.691 16 15 16

8 2 10 3 3 3 150 100 368669.011 59195.042 368793.394 31 32 31

9 2 11 3 3 3 150 100 378523.958 62444.011 378651.872 32 0.031 31

10 2 12 3 3 3 150 100 434579.378 68074.483 434726.175 16 31 31

11 2 14 3 3 3 150 100 521462.033 82596.812 521638.012 32 31 31

12 2 16 4 3 3 150 100 897492.505 134105.579 897786.751 62 47 105.22

There is obviously many differences between the fuzzy mode and the definite mode in terms of

objective functions values. This difference proves the importance of considering uncertainty.

Furthermore, the problem is not feasible for certain values of α. This problems solution is offered in

Table (14).

28

Table (14). Objective Functions solutions for Different Parameters of α in the Fuzzy Mode

1 0.95 0.9 0.8 0.7 0.6 0.5 0.4 α

3129893.391 3474780.440 3837059.586 4613174.659 5458032.107 6371896.774 7354925.293 8406835.676 𝑧1

451032.532 501029.047 553518.909 665978.677 788411.837 920818.388 1063283.697 1215756.610 𝑧2

3130917.928 3475918.247 3838316.386 4614686.417 5459821.455 6373986.425 7357338.019 8409594.156 𝑧3

These tables prove our claim about the significant difference between the definite and fuzzy

modes, and consequently, the importance of considering uncertainty in the model.

Due to provide solutions for the fuzzy multi-objective model, we applied the proposed approach.

We consider different values of θ were considered; nonetheless, a preferable value is selected by the

decision maker. In order to obtain the functions weights in the presence of different objective functions,

we can apply other decision-making methods such as AHP. Tables (15) and (16) represent the

sensitivity analysis (SA) performed on the problems parameters within different positions. In other

words, the values of membership functions are presented in Table (15) for different parameters of α,

and the final results of solving the model for α, β, and γ are presented in Table (16):

Table (15). The Values of the Membership Functions for Every Objective Function for Different Values of α

𝝁𝟑 𝝁𝟐 𝝁𝟏 α

0.600220716 0.714405423 0.601384482 0.8

0.229718001 0.252944375 0.230709369 0.9

0.154744266 0.124077384 0.155614454 0.95

0.080958103 0.028796304 0.081764138 1

Table (16). The Final Results of Solving the Model for α, β, and γ

λ 𝑍3 𝑍2 𝑍1 θ 𝛾 α λ 𝑍3 𝑍2 𝑍1 θ 𝛾 α
0.0905

4898500

692830

4898300

(0.2 ،0.35،0.45)
0.4

0.95

0.5732

4989100 719680 4988200

(0.2 ،0.35،0.45)
0.9

0.8

0.1203 (0.8 ،0.15،0.05) 0.5972 (0.8 ،0.15،0.05)
0.1039 (0.5 ،0.23،0.27) 0.5840 (0.5 ،0.23،0.27)
0.1017 (0.37 ،0.33 ،0.3) 0.5822 (0.37 ،0.33 ،0.3)

- (0.02 ،0.58 ،0.4) 0.5762 (0.02 ،0.58 ،0.4)
0.0961

4898500

692830

4898300

(0.2 ،0.35،0.45)
0.5

0.1780

4848700 697160 4848400

(0.2 ،0.35،0.45)
0.5

0.9

0.1209 (0.8 ،0.15،0.05) 0.2239 (0.8 ،0.15،0.05)
0.1073 (0.5 ،0.23،0.27) 0.1987 (0.5 ،0.23،0.27)
0.1054 (0.37 ،0.33 ،0.3) 0.1952 (0.37 ،0.33 ،0.3)

- (0.02 ،0.58 ،0.4) - (0.02 ،0.58 ،0.4)
0.1017

4898500

692830

4898300

(0.2 ،0.35،0.45)
0.6

0.1883

4848700 697160 4848400

(0.2 ،0.35،0.45)

0.6
0.1215 (0.8 ،0.15،0.05) 0.2251 (0.8 ،0.15،0.05)
0.1106 (0.2 ،0.35،0.45) 0.2049 (0.5 ،0.23،0.27)
0.1091 (0.8 ،0.15،0.05) 0.2021 (0.37 ،0.33 ،0.3)
0.8623 (0.5 ،0.23،0.27) - (0.02 ،0.58 ،0.4)
0.1073

4898500

692830

4898300

(0.2 ،0.35،0.45)
0.7

0.1987

4848700 697160 4848400

(0.2 ،0.35،0.45)

0.7
0.1222 (0.8 ،0.15،0.05) 0.2262 (0.8 ،0.15،0.05)
0.1140 (0.5 ،0.23،0.27) 0.2111 (0.5 ،0.23،0.27)
0.1129 (0.37 ،0.33 ،0.3) 0.2090 (0.37 ،0.33 ،0.3)
0.1091 (0.02 ،0.58 ،0.4) 0.2021 (0.02 ،0.58 ،0.4)
0.1129

4898500

692830

4898300

(0.2 ،0.35،0.45)

0.8

0.2090

4848700 697160 4848400

(0.2 ،0.35،0.45)

0.8
0.1228 (0.8 ،0.15،0.05) 0.2274 (0.8 ،0.15،0.05)
0.1173 (0.5 ،0.23،0.27) 0.2173 (0.5 ،0.23،0.27)
0.1166 (0.37 ،0.33 ،0.3) 0.2159 (0.37 ،0.33 ،0.3)
0.1141 (0.02 ،0.58 ،0.4) 0.2113 (0.02 ،0.58 ،0.4)
0.1184

(0.2 ،0.35،0.45)

0.9

0.2193

4848700 697160 4848400

(0.2 ،0.35،0.45)

0.9
0.1234 (0.8 ،0.15،0.05) 0.2285 (0.8 ،0.15،0.05)
0.1207 (0.5 ،0.23،0.27) 0.2235 (0.5 ،0.23،0.27)
0.1203 (0.37 ،0.33 ،0.3) 0.2228 (0.37 ،0.33 ،0.3)
0.1191 (0.02 ،0.58 ،0.4) 0.2205 (0.02 ،0.58 ،0.4)

29

These tables evidently prove that objective functions are highly sensitive to changes in γ for

different parameters of α. When α= 0.9, the sensitivity is higher. In other cases, changes of γ are

relatively less effective. In order to make decisions for selecting a position, the decision maker considers

all of the certain conditions. The degree of satisfaction depends on the importance of the objective

function. The Z3 is the most important objective function and also Z1 and Z2 are actually relative

measures from Z3. Therefore the compromise solution with highest satisfaction degree for Z3 is of

particular interest and it makes sense to establish levels of satisfaction in this case.

The Results of Solving the Model by Using the Metaheuristic Algorithms (GA and Ant Colony

Optimization):

We apply the proposed input parameters to generate sample problems for evaluating algorithms

performances. We include 4 cross docks, 3 doors (entrance and exit), 8 types of vehicles, and 40 types

of customer demands in our numerical solution.

In general, the required time for accessing optimal solutions or the solution space obtained by an

accurate approach are regarded as the main criteria applied for determining dimensions of the problem.

We will consider problem as a low-dimensional one provided that the accurate approach is able to find

an optimal solution to the model in less than one hour or one and half an hour. In the contrary, we regard

a problem as high-dimensional one provided that the accurate approach cannot even find an optimal

solution during the same period. Considering it as an NP-hard problem, a time limitation was defined

in executing GAMS to obtain an accurate solution. This interval lasted for one hour or 3600 seconds to

clarify that if GAMS cannot solve the problem in the preset interval, the process will be stopped. Then,

due to test the accuracy of the solution for the proposed model, we applied the genetic algorithm and

ant colony optimization to solve several problems in MATLAB.

In the next step, we performed many tests to regulate the algorithms with the help of different

values of parameters. Finally, we obtained the best results of genetic algorithm and ant colony

optimization using the following set of values which are presented in Tables (17) and (18).

Table (17). Parameters values in the Genetic Algorithm

nPop=30 Population Size

pc=0.8 Crossover Percentage

nc=2*round(pc*nPop/2) Number of Off-springs (Parents)

pm=0.3 Mutation Percentage

nm=round(pm*nPop) Number of Mutants

mu=0.02 Mutation Rate

beta=8 Selection Pressure

Table (18). Values of Parameters in the Ant Colony Algorithm

nAnt=30 Number of Ants (Population Size)

tau00=1 Initial Phromone

alpha=1 Phromone Exponential Weight

rho=0.05 Evaporation Rate

Q=1

The features of the system on which the tests were performed are as follows: a computer with a

processor operating at 2.30 GHz and 6400 GB of RAM. As mentioned earlier in this paper, the genetic

algorithm and ant colony optimization led us to design the appropriate method in MATLAB. It was

assumed that the test would determine and evaluate the performance of the proposed algorithms in

different conditions. Validating the genetic algorithm and the ant colony optimization in real (high)

dimensions problem resulted in the values in Table (19). After running on the 12 defined problems, the

optimal results of each problem in two methods are given in Table (19).

30

Table (19). The Computational Results of the Proposed Algorithms in Sample Problems

 ACO optimum results GA optimum results
 W R V RD SD 𝑄𝑤 𝑄𝑣 ACO CPU Time (s) GA CPU Time (s)

1 2 18 4 3 3 150 100 229927.8807 81.240 138893.5181 50.836

2 2 20 4 3 3 150 100 259149.7328 87.961 176261.5039 53.214

3 2 22 5 3 3 150 100 304650.2628 100.785 247566.2008 60.160

4 3 24 6 3 3 300 150 313717.9571 120.353 278415.6472 71.930

5 3 26 6 3 3 300 150 348449.0109 124.339 287649.5143 71.149

6 3 28 6 3 3 300 150 359000.0415 127.068 276982.581 73.750

7 3 30 6 3 3 300 150 370536.2703 148.522 277125.5252 75.815

8 3 32 7 3 3 300 150 402247.6574 143.144 324996.7977 84.363

9 3 34 7 3 3 300 150 443071.4481 150.269 350999.1235 87.880

10 3 36 7 3 3 500 300 456653.4925 150.359 357160.0109 85.863

11 3 38 8 3 3 500 300 516185.6917 164.877 407473.0801 95.500

12 4 40 8 3 3 500 300 578132.8091 173.107 466194.8065 105.894

As Table (19) verifies the algorithms reached nearly optimal solutions in reasonable intervals.

Considering the value of the objective function and runtime as two main criteria to compare these meta-

heuristics, genetic algorithm performed far better than ant colony optimization. The results are given in

Table (20).

Table (20). The Runtimes of the GA and Ant Colony Optimization

Conclusion and Suggestions for Future research

Supply chain management has convinced many researchers within recent years aiming at

facilitating industrial companies and organizations particularly in developed countries. A fruitful

approach through supply chain management is the implementation of lean production and consequently,

lean supply chain.

On the other hand, a successful supply chain can't be considered without designing appropriate

cross docks; accordingly, logistic companies warmly welcome cross-docks in large-scale

transportations. Cross docks set their target as applying the main policy for aggregating products within

warehouses. Instead of being sent to customers, required demands from different suppliers will be

aggregated in cross docks. In order to reduce the transportation costs, the products are better to be

classified regarding customer demands and then, sent to destinations.

With respect to Dando and Cerda’s model [26] on scheduling and planning cross-docking

operations, we extended our model by adding several cross docks in this paper. To consider the

uncertainty of fuzzy parameters, an interactive fuzzy approach was offered. There is no way to

encounter the inaccurate and uncertain nature of parameters and model them except using a fuzzy

distribution.

Mathematical programming techniques vividly fail to solve transportation decision making

problems by fuzzy objective function coefficients. To overcome this deficiency, we provided a fuzzy-

interactive multi-objective linear programming model for solving transportation decision problems by

fuzzy objective function coefficients in this paper. The proposed method proved to be flexible and

efficient, computationally.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Genetic Algorithm 39.749 38.783 39.407 39.469 40.212 39.483 39.965 40.201 41.596 40.211 40.443 54.552 50.836 53.214 60.16 71.93 71.149 73.75 75.815 84.363 87.88 85.863 95.5 105.894

Ant Colony Algorithm 49.366 52.878 54.134 55.764 59.321 52.543 56.006 57.003 57.091 60.721 65.032 67.529 81.24 87.961 100.785 120.353 124.339 127.068 148.522 143.144 150.269 150.359 164.877 173.107

0

20

40

60

80

100

120

140

160

180

200

C
P

U
 T

im
e

 (
s)

31

As mentioned earlier, our proposed approach is a two-phase method that converts the initial fuzzy

model to an equivalent auxiliary definite one in the first phase, and applies a fuzzy method to obtain the

approved preferable solution, in the second step.

Using both definite and fuzzy methods for different parameters, a couple of numerical examples

were conducted. Then, the final solutions were compared and analyzed. The results show high level of

similarity between definite and fuzzy solutions while using certain parameters and high level of

difference while using uncertain parameters to prove the importance of considering uncertainty.

No wonder, this problem is categorized as an NP-hard one regarding its time consumption and

computational complexities. Accordingly, the genetic algorithm and ant colony optimization were used

to solve the proposed model. Furthermore, the results of the genetic algorithm and those of the ant

colony optimization were compared to each other and proved the algorithms efficiencies while being

conducted on scheduling and planning cross-docking problems. It is also worth mentioning that the

genetic algorithm performed better than ant colony optimization regarding time and solutions

requirements.

Suggestions for Future research

Due to the extensive nature of cross dock problems, different methods have been offered to solve

them. In order to change the previous models to more flexible versions, new assumptions can also be

considered as follows:

• The relationship between suppliers and customers should be improved.

• Finding and applying other metaheuristic algorithms can also be left to the interested readers.

• Designing efficient and effective algorithms with the help of combining methodologies.

References:

[1] Van Belle, J., Valckenaers, P., Cattrysse, D.: Cross-docking: State of the art. Omega. (2012)

[2] Boysen, N., Fliedner, M., Scholl, A.: Scheduling inbound and outbound trucks at cross docking

terminals. OR spectrum. 32, 135-161 (2010)

[3] TSUI L, Y., CHANG, C.H.: Microcomputer based decision support tool for assigning dock

doors in freight yards. Computers & Industrial Engineering. 19, 309-312 (1990)

[4] Bartholdi, J.J., Gue, K.R.: The best shape for a cross-dock. Transportation Science. 38, 235-244

(2004)

[5] Yu, W., Egbelu, P. J.: Scheduling of inbound and outbound trucks in cross docking systems with

temporary storage. European Journal of Operational Research. 184 (2008)

[6] Li, Y., Lim, A., Rodrigues, B.: Crossdocking-JIT scheduling with time windows. Journal of

Operational Research Society. 55, 1342–1351 (2004)

[7] Wisittipanich, W., Hengmeechai, P.: Truck scheduling in multi-door cross docking terminal by

modified particle swarm optimization. Journal of Computers & Industrial Engineering. 113, 793-

802 (2017)

[8] Serrano, C., Delorme, X., Dolgui, A.: Scheduling of truck arrivals, truck departures and shop-

floor operation in a cross-dock platform, based on trucks loading plans. International Journal of

Production Economics. 194, 102-112 (2017)

[9] Molavi, D., Shahmardan, A., S.Sajadieh, M.: Truck scheduling in a cross docking systems with

fixed due dates and shipment sorting. Journal of Computers & Industrial Engineering. 117, 29-

40 (2018)

[10] Amini, A., Tavakkoli-Moghaddam, R.: A bi-objective truck scheduling problem in a cross-

docking center with probability of breakdown for trucks. Journal of Computers & Industrial

Engineering. 96, 180-191 (2016)

[11] Keshtzari, M., Naderi, B., Mehdizadeh, E.: An improved mathematical model and a hybrid

metaheuristic for truck scheduling in cross-dock problems. Journal of Computers & Industrial

Engineering. 91, 197-204 (2016)

32

[12] Ahkamiraad, A., Wang, Y.: Capacitated and multiple cross-docked vehicle routing problem

with pickup, delivery, and time windows. Journal of Computers & Industrial Engineering. 119,

76-84 (2018)

[13] Bazgosha, A., Ranjbar, M., Jamili, N.: Scheduling of loading and unloading operations in a

multi stations transshipment terminal with release date and inventory constraints. Journal of

Computers & Industrial Engineering. 106, 20-31 (2017)

[14] Hasani Goodarzi, A., Zegordi, S.H.: A location-routing problem for cross-docking networks: A

biogeography-based optimization algorithm. Journal of Computers & Industrial Engineering.

102, 132-146 (2016)

[15] Assadi, M.T., Bagheri, M.: Differential evolution and Population-based simulated annealing

for truck scheduling problem in multiple door cross-docking systems. Journal of Computers &

Industrial Engineering. 96, 49-161 (2016)

[16] Maknoon, M.Y., Kone, O., Baptiste, P.: A sequential priority-based heuristic for scheduling

material handling in a satellite cross-dock”, Journal of Computers & Industrial Engineering. 72,

43-49 (2014)

[17] Azimi, P.: On-line cross docking: A general new concept at a container port. Scientia Iranica.

22, 2585-2594 (2015)

[18] Motaghedi-Larijani, A., Aminnayeri, M.: Optimizing the number of outbound doors in the

crossdock based on a new queuing system with the assumption of beta arrival time. Scientia

Iranica. 25, 2282-2296 (2018)

[19] BolooriArabani, A.R., FatemiGhomi, S.M., Zandieh, M.: Meta-heuristics implementation for

scheduling of trucks in a cross-docking system with temporary storage. Expert systems with

Applications. 38, 1964-1979 (2011)

[20] Chen, P., Guo, Y., Lim, A., Rodrigues, B.: Multiple cross docks with inventory and time

windows. Computers & Operations Research. 33, 43-63 (2006)

[21] Lee, Y.H., Jung, J.W., Lee, K.M.: Vehicle routing scheduling for cross-docking in the supply

chain. Computers & Industrial Engineering. 51, 247-256 (2006)

[22] Wen, M., Larsen, J., Clausen, J., Cordeau, J.F., Laporte, G.: Vehicle routing with cross-docking.

Journal of the Operational Research Society. 60, 1708-1718 (2009)

[23] Miao, Z., Lim, A., Ma, H.: Truck dock assignment problem with operational time constraint

within cross docks. European journal of operational research. 192, 105-115 (2009)

[24] Gajovic, V., Paunović, M., Kocovic, J.: Modeling and simulation of logistic processes: risk

assessment with a fuzzy logic technique. Simulation Transactions of the Society for Modeling

and Simulation International. 94(6), 507-518 (2017)

[25] Avila-Torres, P., Caballero, R., Litvinchev, I., Lopez-Irarragorri, F., Vasant, P.: The urban

transport planning with uncertainty in demand and travel time: a comparison of two

defuzzification methods. Journal of Ambient Intelligence and Humanized Computing. 9(3), 843-

856 (2018)

[26] Dondo, R., Cerdá, J.: A SWEEP-HEURISTIC BASED FORMULATION FOR THE VEHICLE

ROUTING PROBLEM WITH CROSS DOCKING. Computers & Chemical Engineering. (2012)

[27] Mousavi, S. M., Tavakkoli-Moghaddam, R.: A hybrid simulated annealing algorithm for

location and routing scheduling problems with cross-docking in the supply chain. Journal of

Manufacturing Systems. 33, 335-347 (2013)

[28] Rajabi, M., Akbarpour Shirazi, M.: Truck scheduling in a cross-dock system with multiple

doors and uncertainty in availability of trucks. Journal of Applied Environmental and Biological

Sciences, 6, 101-109 (2016)

[29] Liang, H., Wang, N.: Partially linear single-index measurement error models. Statistica Sinica.

15, 99-116 (2005)

[30] Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modeling flexible constraints vs.

coping with incomplete knowledge. European Journal of Operational Research. 147, 231-252

(2003)

[31] Baykasoğlu, A., Göçken, M., Unutmaz, D.: New approaches to due date assignment in job

shops. European Journal of Operational Research. 187, 31-45 (2008)

[32] Heilpern, S.: The expected value of a fuzzy number. Fuzzy Sets and Systems. 47, 81-86 (1992)

33

[33] Jimenez, M., Arenas, M., Bilbao, A.: Linear programming with fuzzy parameters: an interactive

method manufacturer. Applied Mathematical Modelling. European Journal of Operational

Research. 36(6), 2762-2776 (2007)

[34] Zimmermann, H.J.: Fuzzy programming and linear programming with several objective

functions. Fuzzy Sets and Systems. 1, 45-55 (1978)

[35] Inuiguchi, M., Ramı́k, J.: Possibilistic linear programming: a brief review of fuzzy

mathematical programming and a comparison with stochastic programming in portfolio selection

problem. 111, 3-28 (2000)

[36] Parra, M.A., Terol, A.B., Uria, M.V.R.: A fuzzy goal programming approach to portfolio

selection. European Journal of Operational Research. 133, 287–297 (2001)

[37] Torabi, S.A., Hassini, E.: An Interactive Possibilistic Programming Approach for Multiple

Objective Supply Chain Master Planning. Fuzzy Sets and Systems. 159, 193-214 (2008)
[38] Dorigo, M., Caro, G. Di.: Ant colony optimization: a new meta-heuristic. Proceedings of the

1999 Congress on Evolutionary Computation-CEC99. 2, 1470-1477 (1999)

[39] Saniee Abadeh, M., Habibi, J., Soroush, E.: Induction of fuzzy classification systems via

evolutionary ACO-based algorithms. International Journal of Simulation Systems. Science and

Technology. 9(2008)

