
Abstract— In this research we compare different methods to examine network packets 

using supervised learning to predict possible intrusions. Although there have been many at-

tempts to use Machine Learning for automated packet analysis, our application simplifies 

the process by taking any packet data source for analysis in a container ready for deploying 

on a private or public cloud without the need to pre-process the packet data. The packet is 

dissected extracting numerical data, describing the packet numbers, the time and length of 

the packets. Categorical variables are the source and destination IP addresses, protocol used 

and packet info/flag. The use of filters allows ability to recognize any type of packet (e.g., 

SYN, ACK, FIN, RST). Four machine learning models, i.e., Neural Networks, Support 

Vector Machines, Logistic Regression and Linear Regression, are applied respectively to 

calculate the probability of suspicious packets. Subsequently, the outcomes are compared. 

During the testing against trojan malware, the models can detect the suspicious packets sent 

to a bogus website and attempts at downloading malware by means of packet payload anal-

ysis.  

 

Keywords— Threat Intelligence, Intrusion Detection, Packet Dissection, Machine 

Learning, Containerization.  

 

1. Introduction 

VERY activity on the Internet involves communication using packets. Every 

website viewed and every email sent is a series of packets. Each of them car-

ries information such as the sender's IP address, intended destination IP address 

and is delivered using a specific protocol. Malware can hide its activity at operat-

ing system level (rootkits) but it usually leaves a trace on the network activity, 

whether it is encrypted or not. Inspecting PCAP files (packet captures) for possi-

ble intrusions is an everyday activity for security analysts. The contemporary in-

trusion detection systems (IDS) are unable to address the complexity and the 

adaptability of cyber threats. Adaptive methods of machine learning (ML) give 

better detection rates. They also lower false positives and save costs of processing 

and communicating. In this article we will examine some popular methods for ML 

from the point of view of their potential use for intrusion detection. Since our 

main goal is to use them in the cybersecurity framework we are currently develop-

ing [1] we are using applications which are containerized using Docker containers. 

IDS typically use two approaches for detection of an intruder – behavior-based or 

signature based. Behavior detection applies a profile of normal activity and com-
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pares new traffic to the profile. Signature-based detection is easy to apply, a set of 

signatures must be created though. ML has several applications in cyber security 

for intrusion detection.  It can improve the malware detection by signature. It also 

provides better analysis of the attack vectors and intrusions. Another benefit of its 

use is the automation of daily activities performed by security analysts, which 

saves time and effort for more important work.  

 

There are two general types of algorithms for learning from data: Unsupervised 

and Supervised ML. While unsupervised algorithms are used mainly for detection 

and classification, supervised algorithms can also apply experience from past to 

predict forthcoming events and trends [2]. In our research we are comparing four 

methods: 

 

• Regression is used to extrapolate the trends using examples of existing 

data [2]. 

• Logistic Regression is applied to shape the probability of existing class or 

event. It has proven to be successful for packet classification since it recognizes 

the types of packets [3]. 

• Artificial Neural Networks (NN), which are inspired by biological neural 

networks in animal and human brains can identify hidden patterns and correla-

tions. They have been particularly important mechanism for deep learning with 

more complex models of recognition and classification [3,4]. 

• Support Vector Machine (SVM) is a supervised learning model with ad-

ditional processes for analysis of classification and regression data [5,6]. 

 

The organization of the paper is as follows. Section 2 reviews the existing work 

in the field. In Section 3 we state the problem. We introduce the data analyzed by 

our models and examine model’s structure and implementation in section 4. The 

results of the analysis and the evaluation of the models are given in Section 5. In 

Section 6 we describe the incremental learning method and the containerization of 

the application. Section 7 concludes the paper and gives a brief description of the 

future work. 

 

2. Related work 

In [6] SVMs and NNs are compared from the point of view of their potential for 

enhancing threat intelligence and for data preparation. The research proves that 

SVMs surpass neural networks in training time and detection accuracy. The reduc-

tion of generalization errors is another benefit of SVMs. Autoclass is a classifier 

that can learn clusters from training data by Naïve Bayes algorithm with attributes 

of uncategorized instances. Autoclass method is used in [7]. In [8] a supervised 

Naïve Bayesian method is used to classify packets with manual input for the esti-

mator. An advantage of the method is the high accuracy thanks to adapting the al-

gorithm to the set of features. Some disadvantages are the processing cost and the 
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speed of the algorithm. 

 

A method for recognizing the application relying on examining only the first 

five TCP packets is proposed in [9]. It analyses the packets only at the negotiating 

stage, omitting the control packets. An SVM method called Enhanced SVM low-

ering the false positives rate in unsupervised learning is presented in [10]. In [11] 

an approach to deal with the shortcomings of the current hand-tuned heuristics 

packet classification is proposed, but it uses deep learning to build the decision 

tree and rule-based packet classifier. An AI-SIEM system able to disseminate true 

alerts and false alerts based on deep learning techniques is proposed by [12].  

 

Several works compare different methods and/or provide a summary of a meth-

od. [13] introduces more systematic approach for assessing the performance of 

classification algorithms. It compares Multilayer Perceptrons (MLP), Decision 

Trees and Bayesian Networks. 

Multilayer Perceptron (MLP) is a type of feed forward neural network. It con-

sists of three types of layers - the input layer, output layer and hidden layer which 

are fully connected. The inputs are pushed forward by using the dot product of the 

input with the weights between the input layer and the hidden layer. We are using 

an MLP in this research. Please see Fig. 1 in section “ML Models Implementa-

tion”. Disadvantage of MLP is that the number of total parameters can grow high 

(exponentially) for each layer. It also disregards spatial information (taking flat-

tened vectors as inputs). 

 Decision Tree transforms the data into a tree representation. Each internal node 

represents an attribute, and each leaf node represents a class label. Decision Tree 

algorithms can solve both regression and classification problems. The advantages 

of this method are less effort for data preparation needed, outputs easy to read and 

interpret, it can be used without scaling the data. The downsides are more memory 

and time required, and high sensitivity to small changes (causing large changes in 

the tree structure). 

Bayesian Networks provide a robust and mathematically coherent framework 

for problem analysis. They are probabilistic graphical model comprised of nodes 

and directed edges and can combine different sources of weak evidence producing 

strong hypotheses. Different types of reasoning, diagnostic, predictive and inter-

causal can be performed. Bayesian Networks are easier for humans to understand 

than Neural Networks. The drawbacks are inability to depict variables which are 

correlated (undirected graphical models, i.e., Markov Random Field are more suit-

able for that task) and high resources requirements. [14] relates them to the Naïve 

Bayes estimator approach.  
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3. Problem description 

The first step for the hacker is to analyse and inspect the potential target. This is 

done by packet sniffing, email, malware, and social engineering. Next, they 

choose the best method to invade the network. It means that they encode and pre-

pare the most efficient tools for exploiting the vulnerability. They break security 

and plant the malware. As soon as the system is breached, they continue to exploit 

the sensitive data for intended benefits. In our approach the detection, recognition, 

and classification of threats are all done through packet dissection. Here are some 

of the types of packets that are interesting from threat intelligence perspective:   

 

• TCP RST packet is sent when remote side signifies not recognized con-

nection on which the previous TCP packet was sent. The reason could be the port 

not being open or connection being closed. It forces a reset on the connection. The 

host does not wait for response and instantly terminates the connection. It is more 

aggressive way to stop the connection.  

• TCP FIN is sent when there is a need for acknowledgement as the con-

nection is about to close. The host will not accept any more packets.  

• TCP SYN as the name suggests signifies exchange of synchronization 

packets by the two communicating sides. It is in fact the first packet sent from 

each side in the beginning of the connection. 

 

If malware on a computer can spread through the LAN it will certainly try to in-

itiate connections with other computers. Hence, we can expect other machines to 

receive SYN flags from the first computer. In the case when these are end user 

systems, it signifies an anomaly. Otherwise, first computer would try not to con-

nect to other computers (if there is explicit business need). If we can check the 

number of SYN packets on the second computer, we could validate these packets 

for each IP versus a threshold. We can also scan the open ports on the first com-

puter which are connected to the corresponding ports on the second computer. 

when there is a surge in SYN packets. If first machine receives a lot of RST pack-

ets, the target computer most likely denied initiating connections. We can deduct 

from the computer receiving too many RST flags, that likely the first machine is 

attempting to scan the neighboring system with SYN packets. Numerous SYN 

packets received indicate that the source is affected, and a lot of RST packets re-

ceived means that recipient is infected. 

 

Classification learning approach identifies a set of categories where new exam-

ple fits, based on data training set with examples which membership is estab-

lished. Signature based approach determines a unique identifier of a known threat 

allowing it to be recognized after training. Signatures are used for threat detection. 

Because of the variety of insider threats most works do not attempt to explicitly 

model the threat behaviour. Alternatively, Deep Neural Networks (DNNs) and 
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Recurrent Neural Networks (RNNs) which are trained to identify characteristics of 

the users can be used for learning behaviour models. Such a research is not con-

cerned with packet dissection per se, although it uses ML. 

 

In our research we are leaving out the security policies and active protection to 

other parts of the security framework, looking only for fast and reliable methods 

for intrusion detection. Because of this we are focused on automated packet dis-

section to reduce any analyst involvement in the security analytics. 

 

 

4. Methodology 

To address the problem stated above we are using 4 different ML methods 

(Neural Network, Support Vector Machine, Logistic Regression and Linear Re-

gression). In the following section we introduce the dataset used for experimenta-

tion and then describe implementation of 4 ML models focusing on Multi-Layer 

Perceptron Neural Network. 

4.1 Data and exploratory analysis 

The data for our research come from Netresec (public packet capture reposito-

ry, https://www.netresec.com/? page=PcapFiles) [15]. The format of the files is 

PCAP and CSV and their size varies from 6MB to 318MB. We used 7 CSV files 

and 10 PCAP files which include Ursnif and Trickbot infected traffic. Each record 

has numerical data, describing the packet numbers, the time and length of the 

packets. Categorical variables are the source and destination IP addresses, protocol 

used and packet info. The distribution of the packets across different protocols in 

the data file is as follows: 

TABLE I 

DISTRIBUTION OF PACKETS 

 

TCP 14565 HTTP           26 

TLSV1 1346 BROWSER        21 

NBNS 371 SSLV3          15 

DNS 201 NTP             2 

LLMNR 65 SSDP            1 

IGMPV3 61 MDNS            1 

TLSV1.2 54 DHCP            1 

 

The number of unique values for IP source addresses was 47 distinct IPs in an 

average PCAP file. The number of unique values for IP destination addresses was 

51 distinct IPs in a sample PCAP file. If we apply filters to the dataset, selecting 

protocol as HTTP and IP address as 10.9.25.101, for example, we get the follow-

ing: 
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TABLE II 

PACKETS FROM PROTOCOL HTTP AND IP ADDRESS 10.9.25.101 

 
 

The data are transformed into a tabular style of labelled axes to be used in Pan-

das data frame, which utilizes a two-dimensional, size-mutable, potentially heter-

ogeneous tabular data format. 

 

4.2 ML Models Implementation 

Logistic Regression and Linear Regression use functional dependence between 

the variables. Despite the similarities the two methods have quite distinctive use. 

In linear regression the dependent variable is continuous (e.g., height, weight, 

time), while in logistic regression it is categorical (e.g., dog/cat/horse, dead/alive, 

types of packets). In our research the basic output is four types of packets - RST, 

SYN, FIN and general. In a different configuration the four types can be interpret-

ed as suspicious, malware download (two types), and general.  

 

The other two methods - NN and SVM - use supervised ML. NN is parametric, 

using hyper parameters tuning in the training, whilst SVM is nonparametric, using 

linear vector for separating the classes. The main benefits of using SVM are - they 

are less likely to be trapped in local minima and can easily see “the bigger pic-

ture”, they cannot be overfitted with small number of samples or long training. A 

selection of kernels gives flexibility and adaptability to various types of problems. 

SVMs can handle nonlinear cases with the help of RBF (Radial Basis Function) 

kernel, in fact with a specific kernel they can tackle any problem. They handle 

non-prepared, non-labelled and unstructured data particularly well, scaling to deal 

with more complex data. Multi-Layer Perceptron NN is sequential with three lay-
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ers, where each layer has precisely one input and one output tensor. The output of 

one layer is the input of the next layer similarly to neuron connections in the or-

ganic brain. Our NN model has a signal receiving input layer, a hidden layer mak-

ing the calculations and a predicting output layer as shown in Fig. 1. 

We will go into more detail regarding MLP NN now, discussing the model ar-

chitecture: 

 

  
Fig. 1 NN Model Layers 

 

For activation function we are using ReLU (Rectified Linear Unit), the most 

popular function in convolutional NNs and deep learning. Both the function and 

its derivative are monotonic. As we are performing a classification, for output lay-

er we are using Softmax activation function because the more often used sigmoid 

function can handle only two classes. Softmax, on the other hand, calculates dis-

tribution of multiclass probability over target classes. 

We specify the input shape in the first layer using argument input_dim=5. The 

layer is dense, it implements operation output = activation (dot (input, kernel) + 

bias). The kernel is the layer’s weight matrix and bias is not applicable in the case 

of this work (a vector created by the layer, see [16]). The parameters of the input 

layer are output dimension and number of hidden units. The 7 input nodes take the 

data fed into the NN and pass it to the hidden nodes. 

The input of the hidden layer is also an array of size 7 and the layer has 4 out-

puts. The output layer uses Softmax as activation function and has an input dimen-



8  

sion of 4, and 1 output with 4 results (identified packets). The model is configured 

with stochastic gradient descent (SGD) as an optimizer, which updates parameters 

for each training example and label. Adam is another popular optimizer, which is 

faster than SGD, but the latter has a better convergence with longer training time 

and momentum, which helps accelerating gradient vectors.  

 

We use sparse categorical cross entropy as the loss function to optimize the pa-

rameter values. It calculates cross entropy loss between labels and predictions. 

Categorical means having more than two classes (as opposed to binary) and sparse 

implies using an integer ranging from 0 to quantity of classes minus 1. True labels 

format is the only distinction between sparse categorical cross entropy and cate-

gorical cross entropy. In multiclass classification problem like here each data entry 

belongs to a single class. [17] 

 

The implementation relies on four Python libraries for ML. TensorFlow is an 

end-to-end open-source system which includes a thorough, adaptable environment 

of tools, libraries, and community resources. Keras is an open-source NN library 

running on top of TensorFlow, intended for rapid experimentation in deep NNs. 

For reading in PCAP files into Pandas data frame we use a network protocol ana-

lyzer called TShark. SKLearn package is an open-source library featuring classifi-

cation, regression, and clustering algorithms.  The goal is to identify an attack vec-

tor before the intrusion happens. The models can not only detect healthy and 

unhealthy packets in the network traffic but possibly also search for other patterns 

like remote access session duration, backdoors listening ports, unauthorized com-

munication channels, exploit kits. Based on the data given, it has a potential to de-

tect uploads, tunnelling, and injections. DOS attacks can be discovered by abnor-

mal increase in NON 2xx/3xx codes, namely 5xx errors. 404 errors signifying 

directory brute-forcing, and 401 errors for bypassing the authorization. 

Malicious websites and encrypted communication channels can be found by 

recognizing the SSL certificates server’s names. All of these can be detected by 

means of packet/frame dissection. More specific algorithms of this kind are a 

work in progress, which depends only on the type of data provided for analysis. 

Next part of this paper is concerned with the performance of the 4 models. 

 

5. Modelling results and evaluation 

In this section we are going to assess the precision and speed of a NN, SVM, 

Linear Regression and Logistic Regression using sample packet capture files. We 

are also going to discuss Class Weighting as a way of handling imbalanced da-

tasets in Deep Learning. This part of the paper also includes a description of hy-

perparameters tuning experiments and evaluation of impact of input variables 

number on predictions. 
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5.1 Performance of different models. (PCAP 1)  

The first model is a NN implemented in Tensorflow/Keras. For a PCAP file of 

size 6,221,590 bytes the accuracy on training data is 88% and the accuracy on test 

data is 88% as well. 

 
Number of total regular packets: 15608 
Number of total ACK packets: 4774 
Number of total SYN packets: 511 
 
Number of predicted regular packets: 4163 
Number of predicted ACK packets: 1936 
Number of predicted SYN packets: 169 
 
Number of regular packets in test set: 4722 
Number of ACK packets in test set: 1387 
Number of SYN packets in test set: 159 

 

Fig. 2 NN Model Accuracy Over Epochs, Fig. 3 NN Model Loss Over Epoch 

 

As we can see, the prediction for ACK packets is off by 549. The time to train 

the model is 02 minutes 16 seconds for 200 epochs. Adding some Gaussian Noise 

as a layer with same input and output shapes, between the input and hidden layer, 

reduces accuracy only as far as the model is not overfitted. The standard noise de-

viation is set to 0.1 and mean is zero. 

 

 

An alternative to NN is SVM. Here is a report on the performance of this solu-

tion:  

TABLE III 

SVM CLASSIFICATION REPORT (Y_TEST, Y_PRED) 
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In the above table the criteria are as follows: 

Precision is classifier’s capacity to not categorize an instance positive whilst it 

is in fact negative. It is a ratio of true positives to sum of true and false positives as 

a percentage of correct positives. 

Recall is classifier’s capability to identify positives. It is a ratio of true positives 

to sum of true positives and false negatives as a percentage of correctly classified 

true positives. 

F1- score has value between 0 (worst) and 1 (best). It is used for classifier 

models comparison as a weighted harmonic mean of precision and recall.  

Support is the sum of actual instances of class. Imbalanced values in training 

set suggest flaw in the classifier’s scores and can be resolved by class weighting 

and oversampling. Our data set is class weighted.  

Here is a summary of packets detected by SVM: 

 

Number of predicted regular packets: 4470 
Number of predicted ACK packets: 1641 
Number of predicted SYN packets: 158 
Number of predicted FIN packets: 0 
 
Number of regular packets in test set: 4729 
Number of ACK packets in test set: 1376 
Number of SYN packets in test set: 164 
Number of predicted FIN packets: 0 
 

As we can see, SVM delivers prediction accuracy better than NN. In fact, its 
accuracy is at 92% and the model executes in 28 seconds. This is a major increase 
in performance and efficiency over the NN. This model is also very resilient to 
noise tolerance, since introducing noise to dataset does not seem to have any effect 
on accuracy. 

     The third model is Logistic Regression. Originally, it was built with PySpark 
Python API. However, since there were numerous problems with the implementa-
tion due to data leakages, we changed it to Sklearn. This Python module integrates 
typical ML algorithms with scientific Python packages (numpy, scipy, matplotlib). 
Here are the results for Logistic Regression: 

 
Number of predicted regular packets: 4020 
Number of predicted ACK packets: 1739 
Number of predicted SYN packets: 510 
Number of predicted FIN packets: 0 
 
Number of regular packets in test set: 4699 
Number of ACK packets in test set: 1413 
Number of SYN packets in test set: 157 
Number of FIN packets in test set: 0 
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Although this model is extremely fast (it executes in 5 seconds), the results are 
not impressive as the accuracy is 78%. Introducing noise does not have much ef-
fect either.  

 
Finally, we can evaluate Linear regression. The execution time is only a few 

seconds, but the predictions are inaccurate. Probability estimations are only for 
classification and not for regression (i.e., numeric prediction). 

5.2 Class Weighting 

The data in our experiments is imbalanced as we have only a small number of 

RST, SYN and FIN packets in the dataset. We need the classifier to weight the 

available samples of these packets more than regular ones. To do that, we pass 

weights to underrepresented classes allowing the model to recognize and predict 

them more easily. In this case the percentage of regular packets is 74.7% and per-

centage of ACK packets is 22.8% of total. The weight of ACK packets class is 

calculated as percentage of regular divided by percentage of ACK and is 32.7. 

SYN packets are only 2.45% of all packets. Their weight is percentage of regular 

packets divided by percentage of SYN. The ratio for SYN is 305.4. These values 

are automatically calculated based on numbers of packets in the dataset and en-

tered into a dictionary which is then fed into the model during fitting by 

class_weights parameter. 

5.3 Impact of Input Variables Number on Prediction 

Some of the inputs may not make a significant contribution to the prediction. In 

this section we compare the results with reduced inputs for each model. The fol-

lowing table gives the baseline (with all inputs): 

 

TABLE IV 

PACKET STATISTICS (BASELINE) 

 

We start by removing source and destination IP addresses from the input set. 

That leaves 'No', 'Protocol' and 'Length' as predictors. These are results from that 

reduced dataset: 
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TABLE V 
PACKET STATISTICS (REDUCED INPUT 1) 

 

Next, we will remove 'Protocol' and 'Length' inputs, leaving 'No', 'Source' 
and 'Destination' IP.  

TABLE VI 

PACKET STATISTICS (REDUCED INPUT 2) 

 
This shows that the protocol and the length of packet are crucial for predictions. 

Source and destination IP addresses do not seem to have much influence on the 
accuracy, as can be suspected from the type of data they represent, namely ordinal 
categorical variables. Numerical variables are packet numbers (discrete), time and 
length (continuous). The length of the packet has a considerate impact on predic-
tions as well as the protocol used (nominal categorical data). Interestingly, Linear 
Regression algorithm seems to perform better with just ordinal variables. We need 
to emphasize that the accuracy of the model is based on the strength of relation-
ship between independent variables and dependent variables (type of packet in this 
case), since the independent variable affects the dependent variable. 
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 5.4 Hyperparameters Tuning. (PCAP 2) 

 5.4.1 Neural Network Parameters  

The method we are using for finding optimal parameters is Hand Tuning (Trial 
and Error). Let us begin with the number of epochs in training the NN. For 50 
epochs and batch size set to 16 the test set accuracy is only 30% so we need to in-
crease the number of epochs to 100. This results in 42% accuracy. Increasing 
epochs to 250 gives 89% accuracy. Increasing batch size to 128 speeds the train-
ing. The optimization algorithm we used is Adam (adaptive moment estimation). 
It is a substitute for stochastic gradient descent for training deep learning models. 
LazyAdam is an upgraded version of Adam designed to be more efficient at han-
dling sparse updates. However, using LazyAdam optimization does not affect the 
results. Stochastic Gradient Descent (SGD) is a simple optimization algorithm 
using a fixed learning rate for parameters in the training phase. SGD is not suita-
ble for this research either, as it results in drastic accuracy drop. AdaGrad algo-
rithm gives similar results with a main difference in using adaptive gradients. 
With AdaGrad accuracy drops to 48%. Another alternative for Adam optimizer is 
RmsProp which uses the magnitude to normalize gradients. This helps with bal-
ancing the momentum, reducing it for large gradients and expanding for small 
gradients and the accuracy increases to 75%. As we can see Adam optimizer 
works best for our purposes. There are 4 arguments of the algorithm:  

 
• learning-rate, beta1, beta2 and epsilon. The optimal value for learning-

rate is 0.01. Large values (0.1) speed up the learning rate while small values 
(1.0E-5) slow it down.  

• beta1 is the initial exponential decay, usually 0.9. 
• beta2 is the subsequent exponential decay, normally 0.999.  
• epsilon is a threshold to prevent division by zero (typically set to 1e-08). 

With epsilon set to 1 we have 86% accuracy. 
 
Originally, we used ReLU as the activation function for input and hidden lay-

ers. Experimenting with new Swish function does not improve accuracy. Swish is 
a smooth, non-monotonic function matching and outperforming ReLU in deep 
networks, developed by Google. It is unbounded above and bounded below. Both 
sigmoid and Tanh functions yield worse results.  

The number of neurons for input layer and hidden layer was initially 7. During 
the experiments we have increased them to 12 and added a second hidden layer. 
This configuration gives 88% accuracy. 

5.4.2 SVM Parameters 

A linear kernel is not suitable for our nonlinear problem. RBF (Radial Basis 

Function) kernel gives us an accuracy of 94%. Polynomial and sigmoid kernels 

have result at around 35% and 20% respectively. In RBF the class boundaries dis-

solve when they get away from support vectors. Gamma parameter defines the 

speed of this dissolving. Large number decreases the support vector influence. 

With gamma set to 10 we have 74% accuracy, setting it to 1000 gives 86% preci-
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sion, the best value is 30000 with 94% correctness. C parameter is concerned 

with the importance of misclassified points - higher value mean focusing more on 

correct classification. This parameter does not have any influence on the accuracy 

of our SVM. 

5.4.3 Logistic and Linear Regression Parameters 

We have tried different methods of oversampling - SMOTE, ADASYN and 

Near-Miss algorithm. With SMOTE the accuracy of Logistic Regression and Lin-

ear Regression is at 70%. The minority class is oversampled by synthetically gen-

erating additional samples. This makes a major difference in evaluation of meth-

ods. We also adopt the MinMaxScaler on the dataset, constraining the range of 

values. There is also a parameter C. which when set to 1 gives an increase in accu-

racy to 80%. With lower value of C, the regularization strength is improved (un-

derfitting data gives simpler model). With higher value of C the regularization is 

lower (overfitting data leads to more complex model). Further increase in C value 

does not affect the performance. 

 

6. Containerization and Incremental learning 

For containerization we used Docker. Our application uses 5 containers: Air-
flow to create model and process tasks, PostgreSQL for storing metadata, Kafka 
for data streaming, Zookeeper for managing sessions and topics and MLflow for 
showing model statistics, comparison, and support of incremental learning. DAGs 
(Directed Acyclic Graphs) are managed by AirFlow and contain all tasks to be ex-
ecuted in the form of a workflow, accounting their relationships and dependencies. 
The containers are orchestrated through Docker Compose using two commands: 
build and up. The build command executes a YAML file which specifies the 
workflow, while up executes the constructed workflow. In our experiments on a 
laptop, it takes 16 minutes and 27 minutes for the execution of the two commands, 
respectively. Once the Docker commands are finished, we can use the Airflow in-
terface within the browser to monitor and control the workflow. Airflow allows to 
schedule and manage tasks such as training initial model, streaming data through 
Kafka’s topic and updating the model [20]. Firstly, we pre-process data, create and 
fit the initial ML model using TensorFlow/Keras. Then we simulate streaming da-
ta from the sensors and feed that to Kafka. Every 5 minutes we extract this data 
for updating the ML model (NN), evaluate its performance against other models 
and choose the best one. If this model outperforms older models it is set as a cur-
rent model and saved. Finally, MLflow shows the statistics of the models. As the 
initial model is used for preliminary training, it executes only once. Streaming and 
updating happens over 5 minutes intervals. MLflow platform shows the number of 
samples used, the loss and accuracy of the current and the updated model, the 
number of epochs ran by each and the batch size used. It also gives the duration of 
the model and status of either replacing the current one or being archived. After 
running about 20 updates through Directed Acyclic Graphs (DAGs), the accuracy 
of the NN model increased to 88% thanks to incremental learning and class 
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weighting. Fig. 4 shows the graphical output of the AirFlow dashboard which con-
trols the execution.  

Fig. 4 Containerization of the Analytics Engines 
 

Incremental learning is a methodology for ML which relies on new examples as 
they appear and model adaptation. It is particularly suitable for real-time industrial 
applications. In our research we have implemented it by updating and replacing 
the model automatically, based on evaluation of its performance for analyzing 
streamlined data. This has been done by a strict discipline of control of the param-
eters and full containerization of the software. The main advantage is its profi-
ciency in using the memory, CPU, and storage and it serves as a preparation for 
deploying the analytics to the cloud. 
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7. Conclusion and Future Work 

In this research we are using supervised learning based on classified data since 

unsupervised learning works only with unstructured data without labelling to as-

certain patterns and although it is not constrained by human understanding it usu-

ally yields worse results. Although our method has been tested only on packet cap-

tures, it has the potential for examining live data traffic. The training and testing 

sets are currently extracted from the same PCAP files, but thanks to the use of 

TShark network packet analyser we are also able to capture data from a live net-

work. We experimented with four different methods which have different power 

for prediction and analysis of new data. Multiple linear regression has numerous 

explanatory variables (manipulated by the researcher, representing inputs) associ-

ated with scalar responses (dependent variables representing the output). Logistic 

Regression can be employed to structure the probability of suspicious packets in 

the data stream. SVM algorithm has a capacity to uncover intricate nonlinear rela-

tions between dependent and independent variables helping with anomaly detec-

tion in data. Incremental learning using NN has a big potential as there was a sig-

nificant increase in performance after just 20 runs of the model update DAG (up to 

88%). Class weighting also contributed to this increase in accuracy.  

There are several filters worth investigating: session statistics (amount of down-

loaded and uploaded data), session duration, HTTP traffic parameters, TCP ports, 

etc. They could be used to identify unauthorized access, suspicious traffic, brute 

force, and DOS attacks. We can additionally analyze SSH, SSL, FTP and DNS da-

ta to detect suspicious domains and unauthorized servers. 

We currently stream the data through Kafka, but we are considering also lighter 

protocols, such as MQTT and other streaming tools, such as NiFi which might be 

more suitable for different types of live data. Our plans are finally to deploy the 

containerized analytics engines to the Kubernetes, so that we can analyze live data 

stream directly on the private cloud as a security service.  
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