
Abstract— In this research we compare different methods to examine network packets

using supervised learning to predict possible intrusions. Although there have been many at-

tempts to use Machine Learning for automated packet analysis, our application simplifies

the process by taking any packet data source for analysis in a container ready for deploying

on a private or public cloud without the need to pre-process the packet data. The packet is

dissected extracting numerical data, describing the packet numbers, the time and length of

the packets. Categorical variables are the source and destination IP addresses, protocol used

and packet info/flag. The use of filters allows ability to recognize any type of packet (e.g.,

SYN, ACK, FIN, RST). Four machine learning models, i.e., Neural Networks, Support

Vector Machines, Logistic Regression and Linear Regression, are applied respectively to

calculate the probability of suspicious packets. Subsequently, the outcomes are compared.

During the testing against trojan malware, the models can detect the suspicious packets sent

to a bogus website and attempts at downloading malware by means of packet payload anal-

ysis.

Keywords— Threat Intelligence, Intrusion Detection, Packet Dissection, Machine

Learning, Containerization.

1. Introduction

VERY activity on the Internet involves communication using packets. Every

website viewed and every email sent is a series of packets. Each of them car-

ries information such as the sender's IP address, intended destination IP address

and is delivered using a specific protocol. Malware can hide its activity at operat-

ing system level (rootkits) but it usually leaves a trace on the network activity,

whether it is encrypted or not. Inspecting PCAP files (packet captures) for possi-

ble intrusions is an everyday activity for security analysts. The contemporary in-

trusion detection systems (IDS) are unable to address the complexity and the

adaptability of cyber threats. Adaptive methods of machine learning (ML) give

better detection rates. They also lower false positives and save costs of processing

and communicating. In this article we will examine some popular methods for ML

from the point of view of their potential use for intrusion detection. Since our

main goal is to use them in the cybersecurity framework we are currently develop-

ing [1] we are using applications which are containerized using Docker containers.

IDS typically use two approaches for detection of an intruder – behavior-based or

signature based. Behavior detection applies a profile of normal activity and com-

Viktor Sowinski-Mydlarz1, Jun Li2, Karim Ouazzane1, Vassil Vassilev1

1 London Metropolitan University Cyber Security Research Centre,

Tower Building, 166-220 Holloway Road, London N7 8DB
2 Cranfield University Centre for Computational Engineering Sciences,

College Road, Cranfield, MK43 0AL
1{w.sowinskimydlarz, k.ouazzane, v.vassilev}@londonmet.ac.uk;

2 Jun.Li@cranfield.ac.uk

Threat Intelligence Using

Machine Learning Packet Dissection

E

2

pares new traffic to the profile. Signature-based detection is easy to apply, a set of

signatures must be created though. ML has several applications in cyber security

for intrusion detection. It can improve the malware detection by signature. It also

provides better analysis of the attack vectors and intrusions. Another benefit of its

use is the automation of daily activities performed by security analysts, which

saves time and effort for more important work.

There are two general types of algorithms for learning from data: Unsupervised

and Supervised ML. While unsupervised algorithms are used mainly for detection

and classification, supervised algorithms can also apply experience from past to

predict forthcoming events and trends [2]. In our research we are comparing four

methods:

• Regression is used to extrapolate the trends using examples of existing

data [2].

• Logistic Regression is applied to shape the probability of existing class or

event. It has proven to be successful for packet classification since it recognizes

the types of packets [3].

• Artificial Neural Networks (NN), which are inspired by biological neural

networks in animal and human brains can identify hidden patterns and correla-

tions. They have been particularly important mechanism for deep learning with

more complex models of recognition and classification [3,4].

• Support Vector Machine (SVM) is a supervised learning model with ad-

ditional processes for analysis of classification and regression data [5,6].

The organization of the paper is as follows. Section 2 reviews the existing work

in the field. In Section 3 we state the problem. We introduce the data analyzed by

our models and examine model’s structure and implementation in section 4. The

results of the analysis and the evaluation of the models are given in Section 5. In

Section 6 we describe the incremental learning method and the containerization of

the application. Section 7 concludes the paper and gives a brief description of the

future work.

2. Related work

In [6] SVMs and NNs are compared from the point of view of their potential for

enhancing threat intelligence and for data preparation. The research proves that

SVMs surpass neural networks in training time and detection accuracy. The reduc-

tion of generalization errors is another benefit of SVMs. Autoclass is a classifier

that can learn clusters from training data by Naïve Bayes algorithm with attributes

of uncategorized instances. Autoclass method is used in [7]. In [8] a supervised

Naïve Bayesian method is used to classify packets with manual input for the esti-

mator. An advantage of the method is the high accuracy thanks to adapting the al-

gorithm to the set of features. Some disadvantages are the processing cost and the

3

speed of the algorithm.

A method for recognizing the application relying on examining only the first

five TCP packets is proposed in [9]. It analyses the packets only at the negotiating

stage, omitting the control packets. An SVM method called Enhanced SVM low-

ering the false positives rate in unsupervised learning is presented in [10]. In [11]

an approach to deal with the shortcomings of the current hand-tuned heuristics

packet classification is proposed, but it uses deep learning to build the decision

tree and rule-based packet classifier. An AI-SIEM system able to disseminate true

alerts and false alerts based on deep learning techniques is proposed by [12].

Several works compare different methods and/or provide a summary of a meth-

od. [13] introduces more systematic approach for assessing the performance of

classification algorithms. It compares Multilayer Perceptrons (MLP), Decision

Trees and Bayesian Networks.

Multilayer Perceptron (MLP) is a type of feed forward neural network. It con-

sists of three types of layers - the input layer, output layer and hidden layer which

are fully connected. The inputs are pushed forward by using the dot product of the

input with the weights between the input layer and the hidden layer. We are using

an MLP in this research. Please see Fig. 1 in section “ML Models Implementa-

tion”. Disadvantage of MLP is that the number of total parameters can grow high

(exponentially) for each layer. It also disregards spatial information (taking flat-

tened vectors as inputs).

 Decision Tree transforms the data into a tree representation. Each internal node

represents an attribute, and each leaf node represents a class label. Decision Tree

algorithms can solve both regression and classification problems. The advantages

of this method are less effort for data preparation needed, outputs easy to read and

interpret, it can be used without scaling the data. The downsides are more memory

and time required, and high sensitivity to small changes (causing large changes in

the tree structure).

Bayesian Networks provide a robust and mathematically coherent framework

for problem analysis. They are probabilistic graphical model comprised of nodes

and directed edges and can combine different sources of weak evidence producing

strong hypotheses. Different types of reasoning, diagnostic, predictive and inter-

causal can be performed. Bayesian Networks are easier for humans to understand

than Neural Networks. The drawbacks are inability to depict variables which are

correlated (undirected graphical models, i.e., Markov Random Field are more suit-

able for that task) and high resources requirements. [14] relates them to the Naïve

Bayes estimator approach.

4

3. Problem description

The first step for the hacker is to analyse and inspect the potential target. This is

done by packet sniffing, email, malware, and social engineering. Next, they

choose the best method to invade the network. It means that they encode and pre-

pare the most efficient tools for exploiting the vulnerability. They break security

and plant the malware. As soon as the system is breached, they continue to exploit

the sensitive data for intended benefits. In our approach the detection, recognition,

and classification of threats are all done through packet dissection. Here are some

of the types of packets that are interesting from threat intelligence perspective:

• TCP RST packet is sent when remote side signifies not recognized con-

nection on which the previous TCP packet was sent. The reason could be the port

not being open or connection being closed. It forces a reset on the connection. The

host does not wait for response and instantly terminates the connection. It is more

aggressive way to stop the connection.

• TCP FIN is sent when there is a need for acknowledgement as the con-

nection is about to close. The host will not accept any more packets.

• TCP SYN as the name suggests signifies exchange of synchronization

packets by the two communicating sides. It is in fact the first packet sent from

each side in the beginning of the connection.

If malware on a computer can spread through the LAN it will certainly try to in-

itiate connections with other computers. Hence, we can expect other machines to

receive SYN flags from the first computer. In the case when these are end user

systems, it signifies an anomaly. Otherwise, first computer would try not to con-

nect to other computers (if there is explicit business need). If we can check the

number of SYN packets on the second computer, we could validate these packets

for each IP versus a threshold. We can also scan the open ports on the first com-

puter which are connected to the corresponding ports on the second computer.

when there is a surge in SYN packets. If first machine receives a lot of RST pack-

ets, the target computer most likely denied initiating connections. We can deduct

from the computer receiving too many RST flags, that likely the first machine is

attempting to scan the neighboring system with SYN packets. Numerous SYN

packets received indicate that the source is affected, and a lot of RST packets re-

ceived means that recipient is infected.

Classification learning approach identifies a set of categories where new exam-

ple fits, based on data training set with examples which membership is estab-

lished. Signature based approach determines a unique identifier of a known threat

allowing it to be recognized after training. Signatures are used for threat detection.

Because of the variety of insider threats most works do not attempt to explicitly

model the threat behaviour. Alternatively, Deep Neural Networks (DNNs) and

5

Recurrent Neural Networks (RNNs) which are trained to identify characteristics of

the users can be used for learning behaviour models. Such a research is not con-

cerned with packet dissection per se, although it uses ML.

In our research we are leaving out the security policies and active protection to

other parts of the security framework, looking only for fast and reliable methods

for intrusion detection. Because of this we are focused on automated packet dis-

section to reduce any analyst involvement in the security analytics.

4. Methodology

To address the problem stated above we are using 4 different ML methods

(Neural Network, Support Vector Machine, Logistic Regression and Linear Re-

gression). In the following section we introduce the dataset used for experimenta-

tion and then describe implementation of 4 ML models focusing on Multi-Layer

Perceptron Neural Network.

4.1 Data and exploratory analysis

The data for our research come from Netresec (public packet capture reposito-

ry, https://www.netresec.com/? page=PcapFiles) [15]. The format of the files is

PCAP and CSV and their size varies from 6MB to 318MB. We used 7 CSV files

and 10 PCAP files which include Ursnif and Trickbot infected traffic. Each record

has numerical data, describing the packet numbers, the time and length of the

packets. Categorical variables are the source and destination IP addresses, protocol

used and packet info. The distribution of the packets across different protocols in

the data file is as follows:

TABLE I

DISTRIBUTION OF PACKETS

TCP 14565 HTTP 26

TLSV1 1346 BROWSER 21

NBNS 371 SSLV3 15

DNS 201 NTP 2

LLMNR 65 SSDP 1

IGMPV3 61 MDNS 1

TLSV1.2 54 DHCP 1

The number of unique values for IP source addresses was 47 distinct IPs in an

average PCAP file. The number of unique values for IP destination addresses was

51 distinct IPs in a sample PCAP file. If we apply filters to the dataset, selecting

protocol as HTTP and IP address as 10.9.25.101, for example, we get the follow-

ing:

6

TABLE II

PACKETS FROM PROTOCOL HTTP AND IP ADDRESS 10.9.25.101

The data are transformed into a tabular style of labelled axes to be used in Pan-

das data frame, which utilizes a two-dimensional, size-mutable, potentially heter-

ogeneous tabular data format.

4.2 ML Models Implementation

Logistic Regression and Linear Regression use functional dependence between

the variables. Despite the similarities the two methods have quite distinctive use.

In linear regression the dependent variable is continuous (e.g., height, weight,

time), while in logistic regression it is categorical (e.g., dog/cat/horse, dead/alive,

types of packets). In our research the basic output is four types of packets - RST,

SYN, FIN and general. In a different configuration the four types can be interpret-

ed as suspicious, malware download (two types), and general.

The other two methods - NN and SVM - use supervised ML. NN is parametric,

using hyper parameters tuning in the training, whilst SVM is nonparametric, using

linear vector for separating the classes. The main benefits of using SVM are - they

are less likely to be trapped in local minima and can easily see “the bigger pic-

ture”, they cannot be overfitted with small number of samples or long training. A

selection of kernels gives flexibility and adaptability to various types of problems.

SVMs can handle nonlinear cases with the help of RBF (Radial Basis Function)

kernel, in fact with a specific kernel they can tackle any problem. They handle

non-prepared, non-labelled and unstructured data particularly well, scaling to deal

with more complex data. Multi-Layer Perceptron NN is sequential with three lay-

7

ers, where each layer has precisely one input and one output tensor. The output of

one layer is the input of the next layer similarly to neuron connections in the or-

ganic brain. Our NN model has a signal receiving input layer, a hidden layer mak-

ing the calculations and a predicting output layer as shown in Fig. 1.

We will go into more detail regarding MLP NN now, discussing the model ar-

chitecture:

Fig. 1 NN Model Layers

For activation function we are using ReLU (Rectified Linear Unit), the most

popular function in convolutional NNs and deep learning. Both the function and

its derivative are monotonic. As we are performing a classification, for output lay-

er we are using Softmax activation function because the more often used sigmoid

function can handle only two classes. Softmax, on the other hand, calculates dis-

tribution of multiclass probability over target classes.

We specify the input shape in the first layer using argument input_dim=5. The

layer is dense, it implements operation output = activation (dot (input, kernel) +

bias). The kernel is the layer’s weight matrix and bias is not applicable in the case

of this work (a vector created by the layer, see [16]). The parameters of the input

layer are output dimension and number of hidden units. The 7 input nodes take the

data fed into the NN and pass it to the hidden nodes.

The input of the hidden layer is also an array of size 7 and the layer has 4 out-

puts. The output layer uses Softmax as activation function and has an input dimen-

8

sion of 4, and 1 output with 4 results (identified packets). The model is configured

with stochastic gradient descent (SGD) as an optimizer, which updates parameters

for each training example and label. Adam is another popular optimizer, which is

faster than SGD, but the latter has a better convergence with longer training time

and momentum, which helps accelerating gradient vectors.

We use sparse categorical cross entropy as the loss function to optimize the pa-

rameter values. It calculates cross entropy loss between labels and predictions.

Categorical means having more than two classes (as opposed to binary) and sparse

implies using an integer ranging from 0 to quantity of classes minus 1. True labels

format is the only distinction between sparse categorical cross entropy and cate-

gorical cross entropy. In multiclass classification problem like here each data entry

belongs to a single class. [17]

The implementation relies on four Python libraries for ML. TensorFlow is an

end-to-end open-source system which includes a thorough, adaptable environment

of tools, libraries, and community resources. Keras is an open-source NN library

running on top of TensorFlow, intended for rapid experimentation in deep NNs.

For reading in PCAP files into Pandas data frame we use a network protocol ana-

lyzer called TShark. SKLearn package is an open-source library featuring classifi-

cation, regression, and clustering algorithms. The goal is to identify an attack vec-

tor before the intrusion happens. The models can not only detect healthy and

unhealthy packets in the network traffic but possibly also search for other patterns

like remote access session duration, backdoors listening ports, unauthorized com-

munication channels, exploit kits. Based on the data given, it has a potential to de-

tect uploads, tunnelling, and injections. DOS attacks can be discovered by abnor-

mal increase in NON 2xx/3xx codes, namely 5xx errors. 404 errors signifying

directory brute-forcing, and 401 errors for bypassing the authorization.

Malicious websites and encrypted communication channels can be found by

recognizing the SSL certificates server’s names. All of these can be detected by

means of packet/frame dissection. More specific algorithms of this kind are a

work in progress, which depends only on the type of data provided for analysis.

Next part of this paper is concerned with the performance of the 4 models.

5. Modelling results and evaluation

In this section we are going to assess the precision and speed of a NN, SVM,

Linear Regression and Logistic Regression using sample packet capture files. We

are also going to discuss Class Weighting as a way of handling imbalanced da-

tasets in Deep Learning. This part of the paper also includes a description of hy-

perparameters tuning experiments and evaluation of impact of input variables

number on predictions.

9

5.1 Performance of different models. (PCAP 1)

The first model is a NN implemented in Tensorflow/Keras. For a PCAP file of

size 6,221,590 bytes the accuracy on training data is 88% and the accuracy on test

data is 88% as well.

Number of total regular packets: 15608
Number of total ACK packets: 4774
Number of total SYN packets: 511

Number of predicted regular packets: 4163
Number of predicted ACK packets: 1936
Number of predicted SYN packets: 169

Number of regular packets in test set: 4722
Number of ACK packets in test set: 1387
Number of SYN packets in test set: 159

Fig. 2 NN Model Accuracy Over Epochs, Fig. 3 NN Model Loss Over Epoch

As we can see, the prediction for ACK packets is off by 549. The time to train

the model is 02 minutes 16 seconds for 200 epochs. Adding some Gaussian Noise

as a layer with same input and output shapes, between the input and hidden layer,

reduces accuracy only as far as the model is not overfitted. The standard noise de-

viation is set to 0.1 and mean is zero.

An alternative to NN is SVM. Here is a report on the performance of this solu-

tion:

TABLE III

SVM CLASSIFICATION REPORT (Y_TEST, Y_PRED)

10

In the above table the criteria are as follows:

Precision is classifier’s capacity to not categorize an instance positive whilst it

is in fact negative. It is a ratio of true positives to sum of true and false positives as

a percentage of correct positives.

Recall is classifier’s capability to identify positives. It is a ratio of true positives

to sum of true positives and false negatives as a percentage of correctly classified

true positives.

F1- score has value between 0 (worst) and 1 (best). It is used for classifier

models comparison as a weighted harmonic mean of precision and recall.

Support is the sum of actual instances of class. Imbalanced values in training

set suggest flaw in the classifier’s scores and can be resolved by class weighting

and oversampling. Our data set is class weighted.

Here is a summary of packets detected by SVM:

Number of predicted regular packets: 4470
Number of predicted ACK packets: 1641
Number of predicted SYN packets: 158
Number of predicted FIN packets: 0

Number of regular packets in test set: 4729
Number of ACK packets in test set: 1376
Number of SYN packets in test set: 164
Number of predicted FIN packets: 0

As we can see, SVM delivers prediction accuracy better than NN. In fact, its
accuracy is at 92% and the model executes in 28 seconds. This is a major increase
in performance and efficiency over the NN. This model is also very resilient to
noise tolerance, since introducing noise to dataset does not seem to have any effect
on accuracy.

 The third model is Logistic Regression. Originally, it was built with PySpark
Python API. However, since there were numerous problems with the implementa-
tion due to data leakages, we changed it to Sklearn. This Python module integrates
typical ML algorithms with scientific Python packages (numpy, scipy, matplotlib).
Here are the results for Logistic Regression:

Number of predicted regular packets: 4020
Number of predicted ACK packets: 1739
Number of predicted SYN packets: 510
Number of predicted FIN packets: 0

Number of regular packets in test set: 4699
Number of ACK packets in test set: 1413
Number of SYN packets in test set: 157
Number of FIN packets in test set: 0

11

Although this model is extremely fast (it executes in 5 seconds), the results are
not impressive as the accuracy is 78%. Introducing noise does not have much ef-
fect either.

Finally, we can evaluate Linear regression. The execution time is only a few

seconds, but the predictions are inaccurate. Probability estimations are only for
classification and not for regression (i.e., numeric prediction).

5.2 Class Weighting

The data in our experiments is imbalanced as we have only a small number of

RST, SYN and FIN packets in the dataset. We need the classifier to weight the

available samples of these packets more than regular ones. To do that, we pass

weights to underrepresented classes allowing the model to recognize and predict

them more easily. In this case the percentage of regular packets is 74.7% and per-

centage of ACK packets is 22.8% of total. The weight of ACK packets class is

calculated as percentage of regular divided by percentage of ACK and is 32.7.

SYN packets are only 2.45% of all packets. Their weight is percentage of regular

packets divided by percentage of SYN. The ratio for SYN is 305.4. These values

are automatically calculated based on numbers of packets in the dataset and en-

tered into a dictionary which is then fed into the model during fitting by

class_weights parameter.

5.3 Impact of Input Variables Number on Prediction

Some of the inputs may not make a significant contribution to the prediction. In

this section we compare the results with reduced inputs for each model. The fol-

lowing table gives the baseline (with all inputs):

TABLE IV

PACKET STATISTICS (BASELINE)

We start by removing source and destination IP addresses from the input set.

That leaves 'No', 'Protocol' and 'Length' as predictors. These are results from that

reduced dataset:

12

TABLE V
PACKET STATISTICS (REDUCED INPUT 1)

Next, we will remove 'Protocol' and 'Length' inputs, leaving 'No', 'Source'
and 'Destination' IP.

TABLE VI

PACKET STATISTICS (REDUCED INPUT 2)

This shows that the protocol and the length of packet are crucial for predictions.

Source and destination IP addresses do not seem to have much influence on the
accuracy, as can be suspected from the type of data they represent, namely ordinal
categorical variables. Numerical variables are packet numbers (discrete), time and
length (continuous). The length of the packet has a considerate impact on predic-
tions as well as the protocol used (nominal categorical data). Interestingly, Linear
Regression algorithm seems to perform better with just ordinal variables. We need
to emphasize that the accuracy of the model is based on the strength of relation-
ship between independent variables and dependent variables (type of packet in this
case), since the independent variable affects the dependent variable.

13

 5.4 Hyperparameters Tuning. (PCAP 2)

 5.4.1 Neural Network Parameters

The method we are using for finding optimal parameters is Hand Tuning (Trial
and Error). Let us begin with the number of epochs in training the NN. For 50
epochs and batch size set to 16 the test set accuracy is only 30% so we need to in-
crease the number of epochs to 100. This results in 42% accuracy. Increasing
epochs to 250 gives 89% accuracy. Increasing batch size to 128 speeds the train-
ing. The optimization algorithm we used is Adam (adaptive moment estimation).
It is a substitute for stochastic gradient descent for training deep learning models.
LazyAdam is an upgraded version of Adam designed to be more efficient at han-
dling sparse updates. However, using LazyAdam optimization does not affect the
results. Stochastic Gradient Descent (SGD) is a simple optimization algorithm
using a fixed learning rate for parameters in the training phase. SGD is not suita-
ble for this research either, as it results in drastic accuracy drop. AdaGrad algo-
rithm gives similar results with a main difference in using adaptive gradients.
With AdaGrad accuracy drops to 48%. Another alternative for Adam optimizer is
RmsProp which uses the magnitude to normalize gradients. This helps with bal-
ancing the momentum, reducing it for large gradients and expanding for small
gradients and the accuracy increases to 75%. As we can see Adam optimizer
works best for our purposes. There are 4 arguments of the algorithm:

• learning-rate, beta1, beta2 and epsilon. The optimal value for learning-

rate is 0.01. Large values (0.1) speed up the learning rate while small values
(1.0E-5) slow it down.

• beta1 is the initial exponential decay, usually 0.9.
• beta2 is the subsequent exponential decay, normally 0.999.
• epsilon is a threshold to prevent division by zero (typically set to 1e-08).

With epsilon set to 1 we have 86% accuracy.

Originally, we used ReLU as the activation function for input and hidden lay-

ers. Experimenting with new Swish function does not improve accuracy. Swish is
a smooth, non-monotonic function matching and outperforming ReLU in deep
networks, developed by Google. It is unbounded above and bounded below. Both
sigmoid and Tanh functions yield worse results.

The number of neurons for input layer and hidden layer was initially 7. During
the experiments we have increased them to 12 and added a second hidden layer.
This configuration gives 88% accuracy.

5.4.2 SVM Parameters

A linear kernel is not suitable for our nonlinear problem. RBF (Radial Basis

Function) kernel gives us an accuracy of 94%. Polynomial and sigmoid kernels

have result at around 35% and 20% respectively. In RBF the class boundaries dis-

solve when they get away from support vectors. Gamma parameter defines the

speed of this dissolving. Large number decreases the support vector influence.

With gamma set to 10 we have 74% accuracy, setting it to 1000 gives 86% preci-

14

sion, the best value is 30000 with 94% correctness. C parameter is concerned

with the importance of misclassified points - higher value mean focusing more on

correct classification. This parameter does not have any influence on the accuracy

of our SVM.

5.4.3 Logistic and Linear Regression Parameters

We have tried different methods of oversampling - SMOTE, ADASYN and

Near-Miss algorithm. With SMOTE the accuracy of Logistic Regression and Lin-

ear Regression is at 70%. The minority class is oversampled by synthetically gen-

erating additional samples. This makes a major difference in evaluation of meth-

ods. We also adopt the MinMaxScaler on the dataset, constraining the range of

values. There is also a parameter C. which when set to 1 gives an increase in accu-

racy to 80%. With lower value of C, the regularization strength is improved (un-

derfitting data gives simpler model). With higher value of C the regularization is

lower (overfitting data leads to more complex model). Further increase in C value

does not affect the performance.

6. Containerization and Incremental learning

For containerization we used Docker. Our application uses 5 containers: Air-
flow to create model and process tasks, PostgreSQL for storing metadata, Kafka
for data streaming, Zookeeper for managing sessions and topics and MLflow for
showing model statistics, comparison, and support of incremental learning. DAGs
(Directed Acyclic Graphs) are managed by AirFlow and contain all tasks to be ex-
ecuted in the form of a workflow, accounting their relationships and dependencies.
The containers are orchestrated through Docker Compose using two commands:
build and up. The build command executes a YAML file which specifies the
workflow, while up executes the constructed workflow. In our experiments on a
laptop, it takes 16 minutes and 27 minutes for the execution of the two commands,
respectively. Once the Docker commands are finished, we can use the Airflow in-
terface within the browser to monitor and control the workflow. Airflow allows to
schedule and manage tasks such as training initial model, streaming data through
Kafka’s topic and updating the model [20]. Firstly, we pre-process data, create and
fit the initial ML model using TensorFlow/Keras. Then we simulate streaming da-
ta from the sensors and feed that to Kafka. Every 5 minutes we extract this data
for updating the ML model (NN), evaluate its performance against other models
and choose the best one. If this model outperforms older models it is set as a cur-
rent model and saved. Finally, MLflow shows the statistics of the models. As the
initial model is used for preliminary training, it executes only once. Streaming and
updating happens over 5 minutes intervals. MLflow platform shows the number of
samples used, the loss and accuracy of the current and the updated model, the
number of epochs ran by each and the batch size used. It also gives the duration of
the model and status of either replacing the current one or being archived. After
running about 20 updates through Directed Acyclic Graphs (DAGs), the accuracy
of the NN model increased to 88% thanks to incremental learning and class

15

weighting. Fig. 4 shows the graphical output of the AirFlow dashboard which con-
trols the execution.

Fig. 4 Containerization of the Analytics Engines

Incremental learning is a methodology for ML which relies on new examples as
they appear and model adaptation. It is particularly suitable for real-time industrial
applications. In our research we have implemented it by updating and replacing
the model automatically, based on evaluation of its performance for analyzing
streamlined data. This has been done by a strict discipline of control of the param-
eters and full containerization of the software. The main advantage is its profi-
ciency in using the memory, CPU, and storage and it serves as a preparation for
deploying the analytics to the cloud.

16

7. Conclusion and Future Work

In this research we are using supervised learning based on classified data since

unsupervised learning works only with unstructured data without labelling to as-

certain patterns and although it is not constrained by human understanding it usu-

ally yields worse results. Although our method has been tested only on packet cap-

tures, it has the potential for examining live data traffic. The training and testing

sets are currently extracted from the same PCAP files, but thanks to the use of

TShark network packet analyser we are also able to capture data from a live net-

work. We experimented with four different methods which have different power

for prediction and analysis of new data. Multiple linear regression has numerous

explanatory variables (manipulated by the researcher, representing inputs) associ-

ated with scalar responses (dependent variables representing the output). Logistic

Regression can be employed to structure the probability of suspicious packets in

the data stream. SVM algorithm has a capacity to uncover intricate nonlinear rela-

tions between dependent and independent variables helping with anomaly detec-

tion in data. Incremental learning using NN has a big potential as there was a sig-

nificant increase in performance after just 20 runs of the model update DAG (up to

88%). Class weighting also contributed to this increase in accuracy.

There are several filters worth investigating: session statistics (amount of down-

loaded and uploaded data), session duration, HTTP traffic parameters, TCP ports,

etc. They could be used to identify unauthorized access, suspicious traffic, brute

force, and DOS attacks. We can additionally analyze SSH, SSL, FTP and DNS da-

ta to detect suspicious domains and unauthorized servers.

We currently stream the data through Kafka, but we are considering also lighter

protocols, such as MQTT and other streaming tools, such as NiFi which might be

more suitable for different types of live data. Our plans are finally to deploy the

containerized analytics engines to the Kubernetes, so that we can analyze live data

stream directly on the private cloud as a security service.

Acknowledgment

This research has been funded by Lloyds Banking Group, but the opinions and

conclusions are entirely of the authors and do not reflect the official policy of the

bank.

17

References

[1] V. Vassilev, V. Sowinski-Mydlarz, P. Gasiorowski et al. (2020), Intelligence Graphs for

Threat Intelligence and Security Policy Validation of Cyber Systems, In: P. Bansal, M. Tu-

shir, V. Balas and R. Srivastava (eds.), Advances in Intelligent Systems and Computing, Vol.

1164, Springer, pp. 125-140; ISSN 9789811549915

[2] Boutaba, R., Salahuddin, M.A., Limam, N. et al. (2018). “A comprehensive survey on ma-

chine learning for networking: evolution, applications and research opportunities.” J. of In-

ternet Services and Applications, Springer. [online at: https://jisajournal.springeropen.com/

articles/10.1186/s13174-018-0087-2 [Accessed 07 Jun. 2020].

[3] Ray, Sunil (2015). “7 Regression Techniques you should know!”. Analytics Vidhya. [online

at: https://www.analyticsvidhya.com/; [Accessed 07 Jun. 2020].

[4] Seif, George (2020). “Selecting the best Machine Learning algorithm for your regression

problem”. [online at: https://towardsdatascience. com/selecting-the-best-machine-learning-

algorithm-for-your-regression-problem-20c330bad4ef; Accessed 07 Jun. 2020].

[5] Asiri, Sidath (2018) “Machine Learning Classifiers”. Towards Data Science [online] Availa-

ble at: https://towardsdatascience.com/ [Accessed 08 Jun. 2020].

[6] Mukkamala, S., Sung, A. H. (2002) “Intrusion Detection: Support Vector Machines and Neu-

ral Networks”, IEEE Xplore. DOI: 10.1109/IJCNN.2002.1007774[online at:

https://www.researchgate.net/profile/Andrew_Sung/publication/3950039_Intrusion_detection

_using_neural_networks_and_support_vector_machines.pdf; Accessed 16 Jun. 2020].

[7] Zander, S., Nguyen, T., Armitage, G. (2005) “Automated Traffic Classification and Applica-

tion Identification using Machine Learning”, Proc. IEEE Conf. on Local Computer Networks

(LCN’05) [online at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.6875&

rep=rep1&type=pdf; Accessed 16 Jun. 2020].

[8] Moore, A. W., Zuev, D. (2005) “Internet traffic classification using bayesian analysis tech-

niques”. Proc, ACM SIGMETRICS, Vol. 33, pp, 50–60 [online] Available at: https://www.cl.

cam.ac.uk/~awm22 /publications/ moore2005internet.pdf [Accessed 16 Jun. 2020].

[9] Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A. (2006) “Traffic classification on the fly”.

ACM SIGCOMM, Vol. 36(2), pp. 23-26 [online at: https://www.researchgate.net/publication/

220195236_ Traffic_classification_on_the_fly; Accessed 16 Jun. 2020].

[10] Shon, T., Moon, J. (2007) “A hybrid machine learning approach to network anomaly detec-

tion”, Information Sciences, Vol, 177, Issue 18, pp. 3799-3821. [online at:

https://www.sciencedirect. com/science/article/pii/S002002550700164; Accessed 09 Jun.

2020].

[11] Tuor, A., Kaplan, S., Hutchinson, B. et al. (2017) “Deep Learning for Unsupervised Insider

Threat Detection in Structured Cybersecurity Data Streams”. Western Washington Univ. Pa-

cific Northwest National Laboratory. [online] Available at: https://www.aaai.org/AAAIW17/

paper/download/15126/14668 [Accessed 09 Jun. 2020].

[12] Liang, E., Zhu H., Jin, X. et al. (2019). “Neural Packet Classification”. UC Berkeley, Johns

Hopkins University [online] Available at: https://arxiv.org/pdf/1902.10319.pdf [Accessed 08

Jun. 2020].

[13] Lee, J., Kim J., Kim, I. et al. (2019) “Cyber Threat Detection Based on Artificial Neural

Networks Using Event Profiles”. IEEE Access, vol. 7, pp. 165607-165626 [online at:

https://ieeexplore.ieee.org/abstract/ document/8896978 [Accessed 09 Jun. 2020].

[14] Soysal, M., Schmidt, E. G. (2010) “Machine learning algorithms for accurate flow-based

network traffic classification”. Performance Evaluation, Vol. 67, Issue 6, pp. ages 451-467

[online at: https://www.sciencedirect.com/science/article/pii/; Accessed 14 Jun. 2020].

[15] https://www.netresec.com/?page=PcapFiles

[16] Liu, Y. (2012) “A Survey of Machine Learning Based Packet Classification”, The Inst.

Comp., Information and Cognitive Systems Univ. of British Columbia [online at:

18

http://blogs.ubc.ca/ computersecurity/files/2012/04/A-Survey-of-Machine-Learning-Based-

Packet-Classification-Yu-Liu.pdf; Accessed 14 Jun. 2020].

[17] Varghese, S. P., Joseph, J. (2014) “Automated Packet Classification and Layer Identifica-

tion of Network Packets a Review”, IOSR J. of Comp. Eng. [online at:

https://pdfs.semanticscholar. org/3d17/; Accessed 14 Jun. 2020].

[18] TensorFlow Core v2.2.0 (2020). [online at: https://www.tensorflow.org /api_docs

/python/tf/keras/layers/Dense; Accessed 09 Jun. 2020]

[19] Brownlee, J. (2017) “How to Use the Keras Functional API for Deep Learning”, Machine

Learning Mastery [online at: https:// machinelearningmastery.com/keras-functional-api-deep-

learning/. Accessed 09 Jun. 2020].

[20] Fruhwirt, P., Schrittwieser, S., Weippl, E. R. (2012). “Using machine learning techniques

for traffic classification and preliminary surveying of an attacker’s profile”, SBA Research,

St. Polten University, Viena. [online at: https://publications.sba-

research.org/publications/using %20machine%20learning_paper.pdf; Accessed 09 Jun.

2020].

[21] Kraus, M. (2019) “Keeping your ML model in shape with Kafka, Airflow and MLFlow”.

Medium [online at: https://medium.com/vantageai/keeping-your-ml-model-in-shape-with-

kafka-airflow-and-mlflow-143d20024ba6; Accessed 17 Dec. 2020]

