
Compact Device Modeling and Simulation with
Qucs/Qucs-S/Xyce Modular Libraries

Mike Brinson
Centre for Communications Technology

London Metropolitan University
UK

Email: mbrin72043@yahoo.co.uk

Felix Salfelder
School of Computing
University of Leeds

UK
Email: felix@salfelder.org

Abstract—The rapid development of new semiconductor ma-
terials and devices has highlighted the need for compact mod-
eling and circuit simulation tools that can be easily adapted
to accommodate emerging technologies. In most instances de-
vice modeling tools employ non-linear behavioural sources and
Verilog-A modules for model prototype construction. This paper
is concerned with the properties and application of modular user-
defined/plugin library toolkit that combines the best features
of behavioural source and Verilog-A modeling practice while
encouraging user extensions. The toolkit has been implemented as
a Qucs/Qucs-S/Xyce modular library that is loadable on demand.
To demonstrate its capabilities and flexibility a series of compact
device models are introduced and their simulated performance
presented and evaluated

Keywords—Circuit simulation, Qucs, Qucs-S, Xyce, compact
device modeling, device and probe toolkits, simulation scripts,
test benches, FOSS.

I. INTRODUCTION

The continuous development of new semiconductor mate-
rials and devices has for some time been a catalyst driving
improvements in compact modelling and circuit simulation.
Increasing numbers, and indeed the diversity of emerging tech-
nology devices, implies that future modelling and simulation
tools must allow users to select only those models applicable
to specific design or simulation tasks. Previous and current
generations of circuit simulators provide at least a minimal set
of component and device models based on SPICE 2 [1] and 3
[2]. These are considered to be an industrial baseline standard
for circuit design. Over time new models have been added or
existing model features extended. The adoption of Verilog-A
as a ”hardware description language” has both simplified and
standardised compact model construction [3]. However, adding
significant numbers of new models to a circuit simulator does
increase the overall size and complexity of the software, which
in turn makes code maintenance more onerous than it need be.
One solution to this trend is to release circuit simulators with
libraries of predefined models that can be loaded by users as
needed. Modern FOSS circuit simulators, for example Qucs
[4] and Qucs-S/Xyce [5][6], implement schematic capture and
post-simulation data processing features as front end and back
software for a simulation engine. Schematic capture adds a
possible compatibility issue, namely that individual device
symbols need to be transferable between different circuit

simulators. Hence, when constructing new compact device
models it is important that their physical properties are defined
in a universal hardware description language with, whenever
possible, standardised drawing symbols. This paper introduces
a toolkit library for constructing and simulating new device
models from linear and non-linear building blocks, where their
properties are defined by netlists and Verilog-A modules plus
a unified set of schematic drawing symbols. The toolkit has
been implemented with the Qucs-S/Xyce package as a user-
defined library. It will also be available as a plugin for the next
generation Qucs modular circuit simulator [7]. To illustrate
the toolkit properties it’s structure, modeling features, and
applications are described. A number of Qucs-S/Xyce compact
device models plus simulation test benches are also included,
and their performance discussed.

II. BACKGROUND TO ”AS TO WHY” MODULAR

The original Qucs project has been struggling to meet the
moving requirements of circuit simulation needs. Early re-
leases of Qucs have provided a well defined interface between
the simulator engine (Qucsator [4]) and the user interface.
Over time the user interface has been extended to drive other
simulators, as well as optimisation tools for specific niche
applications. The code quality has suffered extensively from
those well meaning additions. Today, Qucs is considered an
orphaned project, yet some forks exist that hold up partial
functionality, on platforms that still provide a version of Qt4
[8] that has reached end-of-life several years ago.

The Qucs user interface that features interactive circuit
analysis integrated with a schematic editor has been unique
at the time, and even to date similar approaches are only
available as non-free software. Past developments around this
user interface have made changes to the file formats, and
added support for simulator backends incompatible with the
intended internals. Early additions have found their way into
the main line, later ideas have lead to a dispersal of features,
independent copies of the project (Qucs-S, CanEDA [10]), or
unmaintained patches. Independently, the Gnucsator project
[11] provides an alternative simulator with a different set
of strengths and weaknesses as a drop-in-replacement for
Qucsator.

Aiming at more stability and new features, attempts were
made to refactor Qucs, even before the transition to Qt5
[8] became imminent. The high unorganised complexity of
the code made it very difficult to retain global functionality
while cleaning up locally. Combining the explorative work
towards Qt5 with partially refactored subroutines as well as
fresh non-trivial ideas from the Gnucap project [11] lead to
what is to become the ”modular Qucs” library. As of today, a
small and shrinking neutral library provides only the essential
data structures and infrastructure for an interactive circuit
modelling user interface. Making use of this library, other
features found in traditional Qucs, or especially in Qucs-S,
will be added independently and optionally.

Such additions will include the support for file formats (i. e.
schematics, netlists, component models as well as simulation
results or raw data), the support for component libraries,
including modelling languages as well as drivers for simulation
engines and algorithms. Naturally, the user interface will be
extensible in a similar way, with relevant units provides as
optional extensions. While our approach can be considered a
well informed port to Qt5, it recombines existing ideas to ad-
dress particular issues with the current legacy implementation.
We believe that it is worthwhile to spend extra time on this
end in order to achieve more in the long run.

a) Code quality aspects: Making use of C++ language
features, especially the restriction of visibility of attributes will
make the code more human readable. A test suite with both
unit tests and end-to-end tests and rigorous coverage tracking
will help keeping the library stable. Modularisation requires
strict decoupling of the functionality and highlights the inter-
faces, hence modules encapsulate implementation details yet
expose and document the program structure.

b) Tailoring and Experimentation: Since most parts of
modular Qucs will be distributed as independent modules,
alternative approaches will remain feasible. This includes but
is not limited to data exchange with existing EDA software
and projects. For example, integrating Qucs into an existing
workflow can build a bridge into free software.

c) Versioning and compatibility: Different revisions of
data used in traditional Qucs, and similarly in any other
software involved, may require version specific customisation.
Incompatibilities such as variations of component library ver-
sions or modelling dialects can be addressed through alterna-
tive plugins. Special needs can be satisfied easily and do not
have to be carried along with the main project.

d) Decentralisation and Maintenance: Additional fea-
tures that do not require changes to the main project, can
be explored and shared across users. There is no longer a
requirement for a review process or to wait for developers to
respond. In the past, unfinished contributions have been held
back, while the monolithic code base has moved on in other
directions.

III. OVERVIEW OF THE EMERGING ARCHITECTURE
STRESSING PLUGINS FOR LEGACY QUCS AND XYCE

With legacy Qucs divided into a library and optional plug-
ins, new possibilities will arise in applications based on Qucs.
One of the motivations behind Qucs-S is to run SPICE simu-
lators. Any two SPICE implementations are slightly different,
and hence plugins supporting one will pave the way to add any
other in the long run. In this work, we focus on use cases that
make use of Xyce as a simulation engine. These extensions
will be implemented in turns, either derived from existing
plugins, ported from Qucs-S or implemented from scratch.
The block diagram diagram drawn in Figure 1 outlines how
the modular approach to Qucs will facilitate the integration of
those features. Running Xyce from modular Qucs will initially

device properties

qucs library

parser
parameters

port

node connectivity

plugin interface

plugin loader

data structures

hierarchy

algorithms helpers

containers
traversal

component

Qt5 GUI

Qucsator

Xyce

Gnucapschematic
subcircuit

lib file dat file

Spice model

Qucsator mdl

Symbol gfx schematic editor

Verilog file

device models commands & UI

legacy
component

 diagrams

vcd file

output data

load/save

netlist

simulate

Fig. 1. Modular Qucs, structural view. A slim library provides circuit
modeling essentials and infrastructure for extensions. Replaceable plugins
(in rectangles with rounded corners) add further functionality that may be
application specific and usually involves choices.

require a set of symbols for which the simulator implements
models. On this end, modular Qucs provides a generic base
class for circuit components and a modular objective parser for
various of schematics, netlists and device model file formats.
As of now, this is only implemented for traditional Qucs
schematics, component libraries (”.lib”) and also, structural
Verilog. Particularly, ”.lib” file contents are hidden behind a
component interface, and the interpretation is left to plugins.
To support .lib files, modular Qucs allows for an arbitrary
set of sections within a component symbol (this is sometimes
referred to as ”multi view”). Modular Qucs loads traditional
.lib files, which are very similar in structure to Qucs-S .lib
files.

Next, a plugin for Xyce netlisting will eject the netlist in
a suitable Spice format. Models from the appropriate sections
in the symbols are accessible by the netlister, and need to
be selected according to the target language. This is the
same procedure as in the already existing netlister targetting

Qucsator based simulators. Unlike in traditional Qucs, the
current modular library manages nets and component models
explicitly, reducing the responsibilities of the netlister to
traversing the circuit model and translating the parts.

Running Xyce the way Qucs-S does involves invoking
a child process. Modular Qucs provides an interface for
pluggable simulator drivers. Simulator drivers are designed to
meet the requirements for future applications. For example,
some simulators provide a shared library interface (c.f. kicad–
ngspice), or require persistency to provide interactive ele-
ments. To match the Qucs-S experience, running a subprocess
is a possibility, and a trivially modified Qucsator driver will
run Xyce. Retrieving and processing data from a simulator is
currently under construction. As a stop-gap ”.dat” files can
be used, as they were used in traditional Qucs and Qucs-
S. Modular Qucs does not dictate the data types used or
data path provided by plugins. Native support for Spice raw,
and spreadsheet std formats, as used by Xyce and similar
simulators are intended.

IV. MODULAR USER-DEFINED AND PLUGIN MODEL
LIBRARIES

Conventional circuit simulators embed component type,
connections and attributes within their netlist statements, while
simultaneously allowing access to libraries of device models
and subcircuits. A second approach is to define components
and compact device models within modular user-defined or
plugin libraries. These can be loaded when a circuit simulator
is run and have the important advantage that users need
only select those libraries that are required for a specific
circuit design or device simulation. The proposed modular
library extends the original SPICE capabilities to include linear
components, semiconductor devices, SPICE style subcircuits,
Verilog-A modules, non-linear blocks, and signal probes. A
selection of typical library parts are shown in Fig. 2. With
the exception of simulation control icons, for example Xyce
script, INCLUDE SCRIPT and some other universal symbols
like the earth symbol and schematic node names, all the other
items are part of a user-defined library, where individual items
are held as Qucs-S/Xyce subcircuits. In this context subcircuits
are particularly important in that they isolate a model symbol
from the internal netlist statements and allow parameters to
be passed to a model. Hence, if the Xyce circuit simulator is
changed to an alternative simulation engine the toolkit is likely
to only require minimal adjustments to the library subcircuit
netlists.

V. INTRODUCTION TO QUCS-S/XYCE COMPACT
MODELING BLOCKS

Qucs-S/Xyce user-defined libraries have subcircuits as the
fundamental building block in their modular library structure.
This was chosen because individual subcircuits have a unique
drawing symbol and allow numeric data and algebraic equa-
tions to be passed as parameters. Passing algebraic equations
is particularly important because it allows complex modeling
blocks like EDD [15], e value and e table shown in Figure

Fig. 2. Example Qucs-S/Xyce toolkit symbols: (a) fundamental components
and signal sources, (b) measuring instruments and simulation control icons,
and (c) non-linear components, modeling blocks, and compact device models.

2 to function as universal elements where internal equations
can be modified during the simulation initialisation process.
As a general rule those device symbols with interface nodes
labelled with px or ncxx allow parameters defined by alge-
braic equations or numeric data. The test bench in Figure 3
presents an example that illustrates how algebraic equations
are passed to an EDD. In Figure 3 the lower circuit branch
shows a diode represented by a SPICE diode model called
d−3f52. The upper branch models the same diode with a
single EDD where current i1 is passed as an algebraic equation
in the form of a table controlled by voltage v(p1, p2). During
the initial stages of the simulation process Xyce expands all
subcircuits to form an overall flattened netlist where nodes p1
and p2 are replaced by their names in a Xyce X subcircuit
call statement. The ability to express subroutine parameters
as algebraic equations or named .global_params adds a
further extension to Qucs-S/Xyce simulation capabilities. Illus-
trated in Figure 4 is the diode d−3f52 with diode parameter rs
set to named variable res where res is a .global_param
that is changed by the .step statement in the XYCE script.
Xyce .global_param items are a particularly interesting
innovation in that they can change value during simulation,
acting essentially as named variables rather than numeric
constants. In a similar fashion to res independent voltage
source v−dc1 has named value dcsweep which is changed
by Xyce statement .dc. The two step process produces a set
of simulation data that shows how varying the diode series
resistance rs effects the Id/V d plotted characteristics at high
Id currents.

Fig. 3. Example diode test bench and simulation results: solid line diode
d−3f52 (left side vertical scale) , crosses EDD−1b2 tabular data (right
side vertical scale). The Table statement is truncated on the right side to fit
column width.

VI. BEHAVIOURAL COMPACT DEVICE MODELING

Behavioural compact device modeling based on an extended
version of the SPICE non-linear B independent source and
non-linear capacitance is a central feature of the Xyce compact
device modeling. The Qucs-S/Xyce user-defined library toolkit
adds an extended version of the Qucs EDD to the Xyce mod-
eling repertoire. Figure 5 illustrates an application of Qucs-
S/Xyce compact device behavioural modeling. In this example
a tunnel diode model is constructed from the toolkit EDD and

Fig. 4. A diode test bench illustrating combined non-linear DC simulation and
parameter sweep using Xyce global parameters dcsweep and res respectively.

other components, where Figure 5 (a) illustrates the toolkit
tunnel diode schematic symbol and (b) the Qucs-S subcircuit
schematic and Xyce SPICE statements. The edd−3b1 in and
qn parameters are algebraic equations written in terms of
internal nodes pn. The circuit test bench is drawn in Figure
5 (c) with simulation output data plots for real and imaginary
impedance components ZR(1, 1) and ZI(1, 1). These clearly
demonstrate the power of the new toolkit. Here a combination
of Xyce simulation statements that step .global_param
dcsweep values and undertake S-parameter analysis (Xyce
.lin statement), as part of a small signal a.c. simulation,
determine tunnel diode impedance under differing .d.c bias
conditions. In the dcsweep range 0.1V to 0.3V the tunnel
diode has a negative real component of impedance Z(1, 1). At
values of dcsweep above 0.3V ZR(1, 1) becomes positive.

Fig. 5. A Qucs-S/Xyce tunnel diode behavioural model: (a) schematic
symbol, (b) subcircuit schematic ans SPICE statements and (c) a test bench for
S parameter simulation and extraction of Zr(1, 1) and Zi(1, 1) impedance.

VII. VERILOG-A COMPACT DEVICE MODELING

The Xyce simulator uses the Automatic Device Model
Synthesiser (ADMS) [12] in a second approach to compact
device modeling, allowing the package to compile and run a
range of industrial level and experimental C++ code models.
Xyce comes pre-packaged with an extended version of ADMS,
including routines and detailed instructions for compiling and
linking Verilog-A modules [13]. Both static and dynamic C++
code are supported. There is a strong link between Qucs/Qucs-
S/Xyce behavioural models and their equivalent Verilog-A
modules [16]. One of the most important advantages gained

from combining Qucs/Qucs-S with Xyce is that the resulting
circuit simulator package provides open access to the Compact
Model Coalition (CMC) standardised SPICE models [14],
examples being the diode-CMC, HICUM and MEXTRAM
BJT, and the BSIM6 MOSFET models. The Qucs/Qucs-
S/Xyce user-defined/plugin library toolkit provides a practi-
cal link between Xyce CMC models and the Qucs/Qucs-S
graphical user interface. Shown in Figure 6 is the toolkit
symbol and the Xyce subcircuit SPICE statements for the
CMC HICUML0−npn BJT model. Figure 6 illustrates how
a subcircuit is used to encapsulate SPICE code and pass
subcircuit parameters via SPICE Q and .model statements.
The HICUML0−npn subcircuit code also demonstrate an

Fig. 6. The HICUMLO−npn toolkit symbol and Xyce subcircuit SPICE
statements: the Xyce statements listed by the .INCLUDE SCRIPT form
the body of the HICUML0−npn subcircuit symbol. HICUML0−npn
.model parameters are set to Xyce default values unless reassigned at the
subcircuit symbol level.

efficient way to represent compact device models that are
specified by a large number of numerical parameters. In the
case of HICUML0−npn there are nearly 100 parameters.
Moreover with some other CMC models, like for example
the BSIM6 MOSFET, there are approaching 1000 parameters.
The toolkit CMC model parameters are set to the default
values provided with Xyce, making it a relatively simple
task to modify those parameters who’s values need changing
to support a specific semiconductor technology. The Qucs-
S/Xyce combination provides features for both single and
double parameter sweep simulation. Figure 7 illustrates a d.c.
test bench for generating, and plotting, the output character-
istics of the CMC HICUML0 npn model. In this example
test bench parameters sweep−v and sweep−i are defined by

Xyce .global_params with their values controlled by .dc
(V ce) and .step (Ib) statements respectively.

Fig. 7. A Qucs-S/Xyce test bench for simulating and displaying BJT Ic/V ce
output characteristics with 1µA ≤ Ib ≤ 10µA in 1µA steps.

VIII. ADDING NEW DIAGNOSTIC PROBES

A consistent feature of circuit simulator software is the
inclusion of a probe system for specifying which simulation
output data are to be collected and stored in preparation for
backend data post-processing and visualisation. The Qucs-S
Xyce script uses SPICE .print statements for this pur-
pose, see Figures 4, 6, 5 and 7. Furthermore, the original
SPICE .print statement has been extended by Xyce to allow
algebraic equations enclosed in {...} brackets. Figure 9 gives
an example where the d.c. gain, β = Ic/Ib, is expressed as
the ratio of ammeter currents im(xammeter2 : vprobe) and
im(xammeter1 : vprobe). Data probes are an integral part
of the Qucs/Qucs-S/Xyce user-defined/plug-in toolkit libraries.
This has a distinct advantage because it encourages the devel-
opment of special purpose probes for specific design/simula-
tion tasks. The BJT test bench drawn in Figure 8 illustrates
the use of a behavioural probe who’s function is equivalent to
Verilog-A ddx() [3]. In this example a ten second duration
linear ramp varies the voltage at input node ns from 0.1V to
1.2V. Ammeters 1 and 2 measure the slowly changing Ib and
Ic currents. Similarly, the dybydx probe senses changes in the
BJT currents and outputs the differential gain ratio dIc/dIb.
Figure 9 gives details of the dIc/dIb probe subcircuit. The
dybydx probe input signals are v(y) at node ny and v(x) at
node nx where, from Figure 8, v(y) = Ic and v(x) = Ib.
Hence

dy

dx
=

dy/dt

dx/dt
=
dIc/dt

dIb/dt

=
α

if((γ ≤ 1e− 50), 1e− 50, δ)
(1)

where α = Ic/cdiff , γ =| Ib/cdiff |, δ = (Ib/cdiff)+1e−
50. The if(....) statement and the 1e-50 numerical constant
are included in Equation 1 to minimize the effects of the
discontinuity at γ = 0.0. Over the voltage range 0.3V ≤ 1.2V
the d.c. and differential values of β plotted in Figure 8 were
found to be in good agreement. However, at very low values
of Ib there are apparent differences in the d.c. and differential
β curves. Similarly, at V be ≥ 1.0V the simulated Ib values
suggest the onset of strong injection effects.

Fig. 8. A time domain test bench for determining BJT current gain with
ammeters and a dy/dx behavioural probe. Left scale: Ic (dash line) and Ib
(long dash line). Right scale: current gain β d.c. data (solid line) and dy/dx
data (dot line).

IX. CONCLUSIONS

The fast pace of semiconductor material and device de-
velopments has placed traditional circuit simulators under
considerable pressure to keep in step with user needs. One
approach to providing future circuit simulation tools with both
the required analysis and modelling capabilities is to adopt
a software structure that allows a high degree of flexibility
through user plugins/libraries. The current generation of circuit
simulation and device modeling tools largely employ non-
linear behavioural sources and Verilog-A modules for model
prototype construction. This paper reports the properties and
application of a modular user-defined/plugin library toolkit that
combines the best features of behavioural source and Verilog-
A modeling practice while encouraging user extensions. The
toolkit has been implemented as a Qucs/Qucs-S/Xyce modular
library that is loadable on demand and easily extended to meet
the needs of specific circuit design projects. To demonstrate its
capabilities and flexibility a series of compact device models
are introduced in the text and their simulated performance
presented and evaluated.

Fig. 9. A behavioural modelling ddx() probe constructed with Qucs/Qucs-
S/Xyce nonlinear capacitors and EDD toolkit models: voltages at node
ndxbydt = dx/dt, and node ndybydt = dy/dt; similarly the output voltage
at model pin Pdybydx = dy/dx.

REFERENCES

[1] A.R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, “SPICE
Version 2g User’s Guide”, Department of Electrical Engineering and
Computer Sciences, University of California: Berkeley, CA. 1981.

[2] B. Johnson, T. Quarles, A.R. Newton, D. O. Pederson, A. Sangiovanni-
Vincentelli, “SPICE3 Version 3f User’s Manual”, Department of Elec-
trical Engineering and Computer Sciences, University of California:
Berkeley, CA. 1992.

[3] Accellera, ”Verilog-AMS Language Reference Manual, version 2.2”,
available from: http://www.accellera.org, [Accessed April 2021].

[4] Sourceforge, Qucs project: Quite Universal Circuit Simulator, Available
qucs.sourceforge.net. [accessed April 2021].

[5] V. Kusnetsov and M. Brinson, ”Qucs-S: Qucs with SPICE”. Version
0.0.22, https://ra3xdh.github.io/, 2020. [Accessed April 2021].

[6] Sandia National Laboratories, “Xyce Parallel electronic simulator: ver-
sion 6.8“, 2015, https://xyce.sandia.gov/ [Accessed April 2021].

[7] F. Salfelder and M. Brinson, ”A modular approach to next generation
Qucs”, 1st Asia/South Pacific MOS-AK Workshop, (virtual/online) Feb.
25-26, 2021.

[8] Digia ”Qt a C++ toolkit for cross-platform application development”,
available from: http://www.digia.com. [Accessed April 2021].

[9] Sourceforge, CanEDA project: CanEDA (Circuits and networks EDA),
available from https://sourceforge.net/projects/caneda/. [Accessed April
2021].

[10] F. Salfelder, Gnucsator - ”a Gnucap based simulation kernel for
Qucs”, available from: https://github.com/Qucs/gnucsator/. [Accessed
April 2021].

[11] A. Davis, ”Gnucap - the Gnu Circuit Analysis Package”, available from:
https://www.gnu.org/software/gnucap/. [Accessed April 2021].

[12] L. Lemaitre, W. Grabinski and C. McAndrew, “Compact device model-
ing using Verilog-A and ADMS”, Electron Technology Internet Journal,
Vol. 35, pp. 1-5, 2003.

[13] Sandia National Laboratories,” Xyce/ADMS Users’ Guide”, available
from: https://xyce.sandia.gov/documentation/XyceADMSGuide.html.
[Accessed April 2021].

[14] Si2, ”Compact Model Coalition (CMC) Standard Models”, available
from: https://si2.org/standard-models/. [Accessed April 2021].

[15] S. Jahn and M.E. Brinson, ”Interactive compact device mod-
elling using Qucs equation-defined devices”, International Journal
of Numerical Modelling: Devices and Fields, pp. 335-349, 2008.
DOI:10.1002/jnm.676.

[16] M.E. Brinson and V. Kuznetsov, ”A new approach to compact semi-
conductor device modelling with Qucs Verilog-A module synthesis”,
International Journal of Numerical Modelling: Devices and Fields, pp.
1-19. ISSN 1099-1204, 2016. DOI/10.1002/jnm.2166.

