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Abstract The public cloud environment has attracted massive attackers to
exploit insecure ports and access to data, services and other resources. Tech-
niques, such as Public Key Encryption with Keyword Search (PEKS), could
be deployed in cloud security to avoid accidents. PEKS allows users to search
encrypted documents by a specific keyword without compromising the original
data security. The first PEKS scheme was proposed in 2004, since then, PEKS
has been experienced a great progress. Recently, Kazemian and Ma firstly in-
corporated with Fuzzy Logic technique to PEKS scheme, namely “Public Key
Encryption with Multi-keywords Search using Mamdani System (m-PEMKS)”,
in order to support Fuzzy Keyword (i.e. “latest”, “biggest”) Search. However,
the m-PEMKS scheme has the ability to prevent Off-line Keyword Guessing
Attack (OKGA) but it may suffer Inside Keyword Guessing Attack (IKGA).
This paper will revisit the m-PEMKS scheme and propose a robust m-PEMKS
mechanism. The proposed scheme has the properties of Ciphertext Indistin-
guishability, Trapdoor Indistinguishability and User Authentication which can
prevent OKGA and IKGA. Besides, the proposed scheme supports both Fuzzy
Keyword Search and Multiple Keywords Search and therefore, it is more prac-
tical and could be applied to the general public networks.
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1 Introduction

Uploading data into the cloud servers reduces the local memory and retrenches
the maintenance cost to some extent, but it may present other adverse impacts.
For instance, the adversaries may capture or even counterfeit the user’s cre-
dentials in order to access to the data. Besides, the attackers could capture
the power consumption signals and the electromagnetic emission signals and
then launch side channel attacks (i.e. Correlation Power Analysis [1]) to ex-
ploit the physical leakage. Finally, they are able to perform Template Attack
[2,3] and Deep Learning Analysis [4] to recover the secret assets. The cloud
security threats are increased alongside with the massive use of cloud applica-
tions. Nevertheless, PEKS is one of the most advanced techniques to protect
data security and also provide an efficient way to search encrypted documents
from the cloud servers.

A PEKS mechanism contains three participants: a sender, a receiver and an
online server. More specially, a sender sends an encrypted document appending
with a specific keyword such as “Confidential” to the online server (Searchable
encryption = E(M)||PEKS(Confidential, PKreceiver)). When the receiver
would like to achieve this document, he/she will send a Trapdoor query to the
online server (Trapdoor query = Trapdoor(Confidential, SKreceiver)). Once
the online server receives the Searchable encryption and the Trapdoor query,
it will execute Test algorithm to check whether the keyword “Confidential” in
two ciphertexts is same or not. If so, it will transfer the encrypted document to
the receiver. PEKS mechanism has many advantages. For instance, the online
server is zero knowledge so that it learns nothing related to the keyword and
the encrypted document. Also, if the sender encrypts the same keyword twice
by PEKS algorithm, he/she will obtain the two different ciphertexts.

Boneh et al. [5] proposed the blueprint of PEKS scheme in 2004. A secure
channel, such as SSL, must be built between the online server and the receiver.
However, it might be impossible and consumed huge costs to establish a secure
channel. Afterwards, Byun et al. [6] firstly found that the Boneh et al.’s PEKS
scheme suffered OKGA.

Baek et al. [7] came up with a new PEKS called “Secure Channel Free
Public Key Encryption with Keyword Search (SCF-PEKS)”. It removed the
secure channel from the original PEKS scheme in 2008. However, the server
may not be honest, so it may extract the secret assets. Yau et al. [8] pointed
out that the SCF-PEKS scheme suffered OKGA in the same year. Afterwards,
Tang et al. [9] proposed a PEKS scheme to prevent OKGA, but the encryp-
tion algorithm was computational complexity and cost. Soon later, Rhee et
al. [10] illustrated a “Secure Searchable Public Key Encryption scheme with
a Designated tester (dPEKS) to solve OKGA problem. But Yau et al. [11]
pointed out that the dPEKS scheme still suffered OKGA. Afterwards, Chen
[12] revisited the dPEKS scheme and then defined a secure server-designation
PEKS (SPEKS) model in order to resist both OKGA and IKGA. But the en-
cryption algorithm of SPEKS scheme was complex. Zhang et al. [13] came up
with a new PEKS scheme in 2018 based on lattice assumption in the standard
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model with quantum computers resistance, which was a new era for PEKS
development.

The PEKS schemes above support single keyword search only rather than
multiple keywords search. Baek et al. [7] proposed “Public Key Encryption
with Multi-keywords Search (MPEKS)” in 2008 to solve multiple keywords
search problem. But a secure channel must be required between the server
and the receiver. In 2016, “Secure Channel Free MPEKS (SCF-MPEKS)” was
introduced by Wang et al. [14], which removed the secure channel from the
Baek et al.’s MPEKS scheme. Latterly, Ma and Kazemian [15] found that
the SCF-MPEKS suffered OKGA and then incorporated with the property of
Trapdoor Indistinguishability to SCF-MPEKS (called tSCF-MPEKS) to resist
OKGA. However, the tSCF-MPEKS would suffer IKGA, if the malicious server
published its private key to the general public network.

Many current PEKS schemes could prevent OKGA but they are vulnerable
to IKGA. Hence, Li et al. [16] applied session key establishment to PEKS in
order to prevent IKGA. Noroozi et al. [17] found that Li et al.’s PEKS scheme
still suffered IKGA in 2018. In the same year, Huang and Li [18] defined a
new PEKS model to prevent IKGA. The proposed scheme supported single
keyword search only instead of multiple keywords search and therefore, it
cannot be deployed in practical. In 2020, Ma and Kazemian [19] came up
with a new PEKS scheme, which applied User Authentication Technique to
resist IKGA. Besides, the proposed scheme allowed users to search encrypted
documents by using multiple keywords. However, the proposed scheme would
throw errors, if the keyword for searching was a fuzzy keyword (i.e. “latest”,
“biggest”).

Almost all current PEKS schemes cannot support imprecise keyword search.
To solve it, Fuzzy Rule based systems could be applied to the PEKS schemes.
In 1973, Lotifi Zadeh’s [20] proposed a new fuzzy algorithms to analyse com-
plex systems and decision processes. Afterwards, Ebrahim Mamdani [21] de-
fined a Mamdani fuzzy inference system to control a steam engine and boiler
combination by a set of linguistic fuzzy rules ascertained from experienced hu-
man operators. But Mamdani-style inference is not computationally efficient.
Michio Sugeno [22] then camp up with a new fuzzy inference using a single-
ton as the rule consequent. Nowadays, Fuzzy sets theory has been deployed in
many aspects. Singh et al.[23] found that fuzzy systems could be used in clas-
sification, modelling control problems. Lermontov et al. [24] evaluated water
quality by fuzzy set and Marchini et al. [25] defined a framework for fuzzy in-
dices of environmental conditions. In 2020, Kazemian and Ma [26] proposed a
new PEKS scheme called “Public Key Encryption with Multi-keywords Search
using Mamdani System (m-PEMKS)”. The m-PEMKS scheme utilised Mam-
dani fuzzy inference process, that is fuzzification of the input variables, rule
evaluations, aggregations of the rule outputs and finally defuzzification [27] in
order to solve imprecise keyword search problem.

This paper firstly revisits m-PEMKS scheme proposed by Kazemian and
Ma [26] in 2020 and then defines a robust PEKS scheme called Public Key
Authenticated Encryption with Multi-Keywords Search using Mamdani Sys-
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tem (m-PAEMKS). Compared with m-PEMKS scheme, the proposed scheme
applies User Authentication technique to prevent IKGA. Besides, m-PAEMKS
scheme has the properties of Ciphertext Indistinguishability and Trapdoor In-
distinguishability and is proved to be semantic security under random oracle
models in order to resist OKGA. Last but not least, the proposed scheme also
incorporates with Fuzzy Rule Based Model to support Fuzzy Keyword Search.

2 Preliminaries

2.1 Bilinear pairings [5]

G1 and G2 are two cyclic groups. G1 is an additive cyclic group and G2 is
a multiplicative group, respectively. Also, let P and a prime number g be
the generator and the order of the group G1. A bilinear pairing is a map
e : G1 ×G1 → G2, which has the following properties:
i. Bilinear: e(mA,nB) = e(A,B)mn for all A,B ∈ G1 and x, y ∈ ZP .
ii. Computable: e(A,B) ∈ G2 is computable in a Probabilistic Polynomial-
time (PPT) algorithm, for any A,B ∈ G1.
iii. Non-degenerate: e(A,B) 6= 1.

2.2 The Bilinear Diffie-Hellman (BDH) assumption [28]

Given (g,mP, nP, fP ) for m,n, f ∈ ZP , compute the BDH key e(P, P )mnf .
An algorithm A has an advantage ε to solve BDH assumption in G1, if
Pr[A(g,mP, nP, fP ) = e(P, P )mnf ] ≥ ε. It is known that BDH assumption
holds in G1, if no t time algorithm to solve BDH assumption in G1 with the
advantage at least ε .

2.3 Public Key Encryption with Keyword Search [5]

Boneh et al. [5] formulated a formal definition of PEKS in 2004, which con-
tained four PPT algorithms as follows:
1.KeyGenRec(cp): Input the common parameter cp, produce a public and pri-
vate key pair (pkRec, skRec) of the receiver.
2.PEKS(cp, pkRec,W ): Input the cp and the receiver’s public key pkRec, then
generate a Searchable encryption S=PEKS(pkRec, w) of a keyword w.
3.Trapdoor(cp, skRec, w): Input the cp and the receiver’s private key skRec,
then produce a Trapdoor query Tw= Trapdoor(skRec, w

∗) of a keyword w∗.
4.Test(cp, S, Tw): Input cp, a Searchable encryption S=PEKS(cp,pkRec,w) and
a Trapdoor query Tw = Trapdoor(skRec,w

∗). If w = w∗, output “Yes”. Oth-
erwise, output “No match”.



m-PAEMKS 5

2.4 Fuzzy Rule Based Model [29]

The fuzzy rule based model contains the following four stages:
1. Fuzzification of the input variables: the aim of this stage is to transform
crisp inputs into fuzzy inputs by the membership functions.
2. Rules evaluation: the stage combines the antecedents by using the logic op-
erations (“AND”, “OR”, “NOT” ).
3. Aggregation of the rule outputs: the stage expresses the consequents as a
single fuzzy set.
4. Defuizzification: the defuizzification method, such as Center of Gravity
(COG), is applied to transform the fuzzy outputs into the crisp outputs.

For discrete membership function, the defuzzified value x∗ is defined as

x∗ =

∑n

i=1
xiµ(xi)∑n

i=1
µ(xi)

, where xi represents the sample element, µ(xi) is the mem-

bership function and n is the number of elements in the sample.
For continuous membership function, the defuzzified value x∗ is defined as

x∗ =

∫
xµ(x)dx∫
µ(x)dx

.

3 Revision of Public Key Encryption with Multi-keywords Search
using Mamdani System

Consider a situation: Alice uploads many encrypted financial statements with
different dates into the cloud server. Later on, Bob would like to obtain the
“Latest” financial statements by sending Trapdoor query = Trapdoor(Latest,
SKBob) to the cloud server. Then, the cloud server may witness an issue be-
cause “Latest” is a fuzzy keyword. What does “Latest” mean? One week ago,
few months ago or even one year ago?

Traditional PEKS schemes will report errors, if the keyword for searching is
an imprecise keyword. In 2020, Kazemian and Ma [26] proposed a m-PEMKS
scheme to support fuzzy keyword search. The proposed scheme allowed the user
to search encrypted document by using a fuzzy keyword without compromising
the original data security. However, the server might be honest but curious, it
may release its private key to the public networks and also exploit the keyword
between the Searchable encryption and the Trapdoor query. Therefore, the m-
PEMKS scheme may suffer IKGA. This section will analyse the security of
m-PEMKS scheme.

3.1 The Concrete Construction for m-PEMKS

The m-PEMKS scheme consists of two main sections: one is Searchable En-
cryption and Trapdoor Query part. Another one is Fuzzy Encryption and
Decryption part. To simplicity, the details below are only described the Search-
able Encryption and Trapdoor Query part as this part might be vulnerable to
IKGA.
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The first algorithm in m-PEMKS scheme is KeyGenParam−PEMKS(1ζ).
The main purpose of this algorithm is to achieve the PEMKS common parame-
ter cp = {g, P,G1, G2, e,H,H

∗}. More specially, the details of {g, P,G1, G2, e}
can be found in Section 2.1. Besides, {H,H∗} are two specific hash functions
where H : {0, 1}◦ → G1 and H∗ : G2 → {0, 1}•.

Once the PEMKS common parameter cp is generated. The next steps
are Server’s PEMKS key generation (KeyGenSer−PEMKS(cp)) and Receiver’s
PEMKS key generation (KeyGenRec−PEMKS(cp)).

For KeyGenSer−PEMKS(cp), the server chooses a ∈ ZP uniformly at ran-
dom and then calculates A = aP . Besides, the server randomly selects B ∈ G1.
So, the server’s PEMKS public key is pkSer−PEMKS = (cp,A,B) and the pri-
vate key is skSer−PEMKS = (cp, a). For KeyGenRec−PEMKS(cp), the receiver
selects c ∈ ZP uniformly at random and then calculates C = cP . Therefore,
the receiver’s PEMKS public key is pkRec−PEMKS = (cp, C) and the private
key is skRec = (cp, c).

Next, the sender will generate a Searchable encryption E by the algo-
rithm E = Encryption(pkSer−PEMKS , pkRec−PEMKS ,W ) and then send the
encrypted document appending with the Searchable encryption to the online
server. More details are described below.

For Encryption(pkSer−PEMKS , pkRec−PEMKS ,W ), the sender randomly
selects t ∈ ZP and a keyword-vector W=(w1,w2,...,wn). Then, the sender cal-
culates a Searchable encryption E = (M,N1, N2, ..., Nn) = (tA,H∗(D1), H∗(D2)
, ...,H∗(Dn)), whereD1 = e(H(w1), C)t,D2 = e(H(w2), C)t,...,Dn = e(H(wn),
C)t.

When the receiver would like to retrieve the encrypted document, he/she
will generate a Trapdoor queryR by the algorithmR = Request(pkSer−PEMKS

, skRec−PEMKS ,W ) and then send the Trapdoor query R to the online server.
More details are described below.

For Request(pkSer−PEMKS , skRec−PEMKS ,W
∗), the receiver selects t∗ ∈

ZP uniformly at random and a keyword-vector W ∗=(w∗1 ,w∗2 ,...,w∗m). Then, the
receiver calculates a Trapdoor queryR = (Z, T1, T2, ..., Tm) = (e(A, t∗B), cH(w∗1)
⊕ e(A,B)t

∗+c, cH(w∗2)⊕ e(A,B)t
∗+c, ..., cH(w∗m)⊕ e(A,B)t

∗+c).
Once the online server receives the Searchable encryption E and the Trap-

door request R, it will run Test algorithm (Test(E,R, skSer−PEMKS)) to
check whether the keywords in Searchable encryption and Trapdoor query are
same or not. Note that, the online server is zero knowledge so that it cannot
decrypt the encrypted messages to retrieve the keywords. More details are
described below.

Test(E,R, skSer−PEMKS , skSer−RSA): For i and j are the indexes of key-
word. Let i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m} and j ≤ i.
Firstly, the server computes
Tw1

= T1 ⊕ Z • e(aB,C) = cH(w∗1), ...,
Twj = Tj ⊕ Z • e(aB,C) = cH(w∗j ), ...,
Twm = Tm ⊕ Z • e(aB,C) = cH(w∗m)
The server then checks whether H∗[e(Twj

, Ma )] = Ni. If the equation holds,
the server will assert the keywords both in the Searchable encryption and
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the Trapdoor query are same. Otherwise, the server will reject the receiver’s
request.

3.2 Analysis of m-PEMKS

In general, the online server is zero knowledge so that it cannot achieve any
information related to the plaintext of the keywords. However, due to the
server might being honest but curious, it may release its private key to the
general public networks and also attempt to guess and exploit the keywords
between the Searchable encryption and the Trapdoor query.

More specially, the server firstly calculates Twj
= Tj ⊕ Z • e(aB,C) =

cH(w∗j ). Then, the server could guess a proper keyword w∗i in order to ob-
tain H(w∗i ). After that, the server will execute a bilinear pairing to check
if e(pkRec−PEMKS , H(w∗i )) = e(P, Twj ). The equation holds for w∗i = w∗j
as e(pkRec−PEMKS , H(w∗i )) = e(cP,H(w∗i )) = e(cP,H(w∗j )) = e(P, Twj ). In
shot, the malicious server could achieve the correct keyword by trial and error
as the keyword space is limited. Therefore, the m-PEMKS scheme might be
vulnerable to IKGA.

4 Public Key Authenticated Encryption with Multi-Keywords
Search using Mamdani System

This section defines a robust m-PEMKS scheme called Public Key Authen-
ticated Encryption with Multi-Keywords Search using Mamdani System (m-
PAEMKS) in order to resist Inside Keyword Guessing Attack (IKGA). The
m-PAEMKS scheme incorporates with User Authentication technique so that
the malicious server is not able to find the relation between a keyword in
Searchable encryption and a keyword in Trapdoor query. Therefore, the pro-
posed scheme resists IKGA.

4.1 Formal Definition for m-PAEMKS

The new proposed scheme consists of three parties: a sender, a receiver and
an online server.

The sender is a party to generate a Searchable encryption by PEKS al-
gorithm. The receiver is a party to generate a Trapdoor query by Trapdoor
algorithm. Once the online server receives these encrypted messages, it will
run Test algorithm to check whether these encrypted messages contain the
same keyword(s) or not, and reply to the receiver in the end.

The m-PAEMKS scheme contains eight PPT algorithms in the following:
1. KeyGenParam−PAEMKS(1ζ): Given the parameter 1ζ and then generate a
common parameter cp.
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2. KeyGenParam−RSA(k): Given the parameter k and then generate a global
parameter gp.
3. KeyGenSen−PAEMKS(cp): Given cp and then generate the sender’s public
and private PAEMKS key pair (pkSen−PAEMKS , skSen−PAEMKS).
4. KeyGenRec−PAEMKS(cp): Given cp and then generate the receiver’s public
and private PAEMKS key pair (pkRec−PAEMKS , skRec−PAEMKS).
5. KeyGenSer−RSA(gp): Given gp and then generate the server’s public and
private RSA key pair (pkSer−RSA, skSer−RSA).
6. Encryption(skSen−PAEMKS , pkRec−PAEMKS , pkSer−RSA,W ): A Searchable
encryption E=(E1,E2)=SCF-PAEMKS(skSen−PAEMKS ,pkRec−PAEMKS ,
Wpart1)||RSA(pkSer−RSA,Wpart2) is created, whereW=(Wpart1,Wpart2)=[(w1,
w2,...,wn);wn+1].
7.Request(pkSen−PAEMKS , skRec−PAEMKS , pkSer−RSA,W

∗): A Trapdoor re-
quest R=(R1,R2)=Trapdoor(pkSen−PAEMKS ,skRec−PAEMKS ,Wpart1)||RSA(
pkSer−RSA,Wpart2) is created, where W ∗=(W ∗part1,W ∗part2)=[(w∗1 , w

∗
2 , ..., w

∗
m);

wfuzzy].
8. Test(E,R, pkSen−PAEMKS , pkRec−PAEMKS , skSer−RSA): Test algorithm con-
tains two parts: an Exact Match and a Fuzzy Match.
For Exact Match: Given pkSen−PAEMKS and pkRec−PAEMKS , E1 and R1. If
W ∗part1 ∈ Wpart1, the system will go to Fuzzy Match. Otherwise, the system
will be terminated here.
For Fuzzy Match: Given skSer−RSA, E2 and R2. The server decrypts E2 and
R2 in order to obtain Wpart2 and W ∗part2. Let W ∗part2 and Wpart2 be the conclu-
sion and the condition of the rules in Mamdani system. Then, the encrypted
files are filtered by Mamdani system. Finally, the online server will reply to
the receiver.

4.2 Security Models for m-PAEMKS

The proposed m-PAEMKS scheme has two main cryptographic suites, which
are PEKS and RSA. For PEKS algorithm, the security relies on Ciphertext
Indistinguishability of Chosen Plaintext Attack (IND-CPA) and Trapdoor In-
distinguishability of Chosen Plaintext Attack (Trapdoor-IND-CPA). For RSA,
the security relies on factoring the large number. However, PEKS is used
to protect the confidentiality of the keywords. Therefore, the security of m-
PAEMKS scheme mainly relies on PEKS algorithm. The security models for
m-PAEMKS scheme are described below.

Let A be an attacker whose running time is bounded by T and E be a
challenger. The challenger E establishes the m-PAEMKS system and accepts
the challenges from the attacker A. For IND-CPA Game, it defines that the at-
tacker could not recover any one bit keyword from the Searchable encryptions
while Trapdoor-IND-CPA Game presents that the attacker could not retrieve
any one bit keyword from the Trapdoor queries. More details are illustrated
as follows.
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4.2.1 IND-CPA Game

Setup: E firstly runsKeyGenParam−PAEMKS(1ζ),KeyGenSen−PAEMKS(cp)
and KeyGenRec−PAEMKS(cp) to generate the common parameter cp, the
sender’s public/private PAEMKS keys (pkSen−PAEMKS , skSen−PAEMKS),
the receiver’s public/private PAEMKS keys (pkRec−PAEMKS , skRec−PAEMKS).
Then, A receives cp, pkSen−PAEMKS , pkRec−PAEMKS while skSen−PAEMKS ,
skRec−PAEMKS cannot be sent to A.
Phase 1-1 (Queries): Adaptively, the attacker A can ask the challenger E
for Trapdoor Oracle OT and Ciphertext Oracle OC many times.
Challenge: The attacker A sends a target keyword-vector pair (W0, W1) to
E, where W0 = (w01, w02, ..., w0n) and W1 = (w11, w12, ..., w1n). Note that W0

and W1 cannot be queried in Phase 1-1. Once E receives the target keyword-
vector pair, he/she will execute Encryption algorithm to generate a Searchable
encryption E1 = SCF − PAEMKS(skSen−PAEMKS , pkRec−PAEMKS ,Wλ),
where λ ∈ {0, 1}. Finally, E sends E1 back to A .
Phase 1-2 (Queries): The attacker A can continue to ask E for Trapdoor
Oracle OT and Ciphertext Oracle OC many times as in Phase 1-1, as long as
W 6= W0,W1.
Guess: The attacker A guesses λ∗ ∈ {0, 1} and wins IND-CPA Game , only
if λ∗ = λ.

The advantage of A winning IND-CPA Game is as follows:

AdvIND−CPAm−PAEMKS,A(k) = |Pr[λ∗ = λ]− 1/2| (1)

Therefore, the m-PAEMKS model can be regarded as IND-CPA security only
if the AdvIND−CPAm−PAEMKS,A(k) is negligible.

4.2.2 Trapdoor-IND-CPA Game

Setup: E firstly runsKeyGenParam−PAEMKS(1ζ),KeyGenSen−PAEMKS(cp)
and KeyGenRec−PAEMKS(cp) to generate the common parameter cp, the
sender’s public/private PAEMKS keys(pkSen−PAEMKS , skSen−PAEMKS), the
receiver’s public/private PAEMKS keys (pkRec−PAEMKS , skRec−PAEMKS).
Then, A receives cp, pkSen−PAEMKS , pkRec−PAEMKS while skSen−PAEMKS ,
skRec−PAEMKS cannot be sent to A.
Phase 2-1 (Queries): Adaptively, the attacker A can ask the challenger E
for Trapdoor Oracle OT and Ciphertext Oracle OC many times.
Challenge: A sends a target keyword-vector pair (W ∗0 , W ∗1 ) to E, where
W ∗0 = (w∗01, w

∗
02, ..., w

∗
0m) and W ∗1 = (w∗11, w

∗
12, ..., w

∗
1m). Note that none of W ∗0

or W ∗1 can be asked in Phase 2-1. Once E receives the target keyword-vector
pair, he/she will execute Request algorithm to achieve a Trapdoor request
R1 = Trapdoor(pkSen−PAEMKS , skRec−PAEMKS ,W

∗
λ ), where λ ∈ {0, 1}. Fi-

nally, E sends R1 back to A.



10 Yang Ma, Hassan Kazemian

Phase 2-2 (Queries): The attacker A can continue to ask E for Trapdoor
Oracle OT and Ciphertext Oracle OC many times as in Phase 2-1, as long as
W ∗ 6= W ∗0 ,W

∗
1 .

Guess: The attacker A guesses λ∗ ∈ {0, 1} and wins Trapdoor-IND-CPA
Game , only if λ∗ = λ.

The advantage of A winning Trapdoor-IND-CPA Game is as follows:

AdvTrap−IND−CPAm−PAEMKS,A (k) = |Pr[λ∗ = λ]− 1/2| (2)

Therefore, the m-PAEMKS model can be regarded as Trapdoor-IND-CPA se-
curity only if the AdvTrap−IND−CPAm−PAEMKS,A (k) is negligible.

4.3 The Construction for m-PAEMKS

The m-PAEMKS scheme (Fig.1) consists of two main sections: One is Search-
able Encryption and Trapdoor Query part. Another one is Fuzzy Encryption
and Decryption part. The formal definition of m-PAEMKS scheme is provided
in Section 4.1 and this section will describe a concrete construction of the
m-PAEMKS scheme.

The first algorithm in m-PAEMKS scheme isKeyGenParam−PAEMKS(1ζ).
The main purpose of this algorithm is to achieve the PAEMKS common param-
eter cp = {P, g,G1, G2, e,H}. More specially, the details of {P, g,G1, GT , e}
can be found in Section 2.1. Besides, H is a specific hash function that is
H : {0, 1}◦ → G1.

The second algorithm (KeyGenParam−RSA(K)) is used to generate the
global parameter gp of RSA which will be used for Fuzzy Encryption and Fuzzy
Decryption part. More specially, two prime numbers u and v (where u 6= v)
are selected uniformly at random. Then, the algorithm calculates L = u × v
and φ(L) = (u− 1)× (v − 1).

Once the sender receives the PAEMKS common parameter cp, he/she
will execute KeyGenSen−PAEMKS(cp) to generate the PAEMKS public and
private key pair. More specially, the sender randomly selects a ∈ ZP and then
calculates A = aP . So, the sender’s PAEMKS public key is pkSen−PAEMKS =
A and the PAEMKS private key is skSen−PAEMKS = a.

Similarly, the receiver will execute KeyGenRec−PAEMKS(cp) to generate
the PAEMKS public and private key pair by using the PAEMKS common
parameter cp. More specially, the receiver randomly selects b ∈ ZP and then
calculates B = bP . So, the receiver’s PAEMKS public key is pkRec−PAEMKS =
B and the PAEMKS private key is skRec−PAEMKS = b.

When the server receives the global parameter gp of RSA, it will ran-
domly pick up x ∈ Zq, where gcd(φ(L), x) = 1 and 1 < x < φ(L). Next, the
server computes y by y ≡ x−1(modφ(L)). So, the server’s RSA public key is
pkSer−RSA = (x, L) and the private key is skSer−RSA = (y, L).

All of the preparatory work has been finished until now. Then, the sender
will send a Searchable encryption E to the online server.
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The sender executes Encryption(skSen−PAEMKS , pkRec−PAEMKS ,
pkSer−RSA,W ) to generate Searchable encryption E, whereW = (Wpart1,Wpart2).
The Searchable encryption E is made by E1 and E2 while E1 is created by
using PAEMKS algorithm and E2 is created by using RSA algorithm. There-
fore, for E1 generation, the sender selects t ∈ ZP and a keyword-vector Wpart1

= (w1,w2,...,wn). Then, he/she computes E1 = (M,N1, N2, ..., Nn) = [t ⊕
pkRec−PAEMKS , e(skSen−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS , w1),
pkRec−PAEMKS•t), e(skSen−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS , w2),
pkRec−PAEMKS•t), ..., e(skSen−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS ,
wn), pkRec−PAEMKS • t)]. After that, the sender calculates E2 = Nn+1 =
(wn+1)xmodL, where Wpart2 = wn+1 is a keyword. Finally, the sender sends
the Searchable encryption E = (E1, E2) to the online third party.

When the receiver would like to retrieve the encrypted document, he/she
will generate a Trapdoor queryR byRequest(pkSen−PAEMKS , skRec−PAEMKS ,
pkSer−RSA,W

∗), where W ∗ = (W ∗part1,W
∗
part2). The Trapdoor query R is

made by R1 and R2. For R1, the receiver initially picks up a keyword-vector
W ∗part1=(w∗1 ,w∗2 ,...,wm∗). Then, the receiver calculatesR1 = (Z, T1, T2, ..., Tm) =
[e(skRec−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS , w

∗
1), pkSen−PAEMKS),

e(skRec−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS , w
∗
2), pkSen−PAEMKS),

..., e(skRec−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS , w
∗
m), pkSen−PAEMKS).

After that, the receiver calculates R2 = Tfuzzy = (wfuzzy)xmodL, where
W ∗part2 = wfuzzy is a fuzzy keyword. Finally, the receiver sends the Trapdoor
query R = (R1, R2) to the online third party.

Once the online server receives the Searchable encryption E and the Trap-
door query R, it will execute Test(E,R, pkSen−PAEMKS , pkRec−PAEMKS ,
skSer−RSA) to firstly check whether keywords in Searchable encryption and
Trapdoor query are same or not (This stage is called Exact Match). If the
keywords both in Searchable encryption and Trapdoor query are same, the
system will go to the next stage that is Fuzzy Match. Otherwise, the server
will reject the receiver’s request. More details are described below.

Test(E,R, pkSen−PAEMKS , pkRec−PAEMKS , skSer−RSA): For i ∈ {1, 2, ..., n}
and j ∈ {1, 2, ...,m}, where j ≤ i.
(i) For Exact Match: Firstly, the server calculates M⊕pkRec. Then, the server
checks whether H∗[e(Tj ,

M
a )] = Ni. If so, the system will go to Fuzzy Match.

Otherwise, the system will be terminated here.
(ii) For Fuzzy Match: The server decrypts wn+1 and wfuzzy from {[(wn+1)xmodL]y

modL} and {[(wfuzzy)xmodL]ymodL}. Let wfuzzy and wn+1 be the conclu-
sion and condition of the rules in Mamdani system.
For simplicity, let wfuzzy and wn+1 be the keyword “latest” and a set of
“DATE”. Hence, three rules could be defined below:
R1: IF DATE is oldest, THEN the encrypted file is unnecessary.
R2: IF DATE is newest, THEN the encrypted file is necessary.
R3: IF DATE is either new or old, THEN the encrypted file may be necessary
or unnecessary.



12 Yang Ma, Hassan Kazemian

Fig. 1 The concrete construction of m-PAEMKS

Fig.1 shows the process for the m-PAEMKS scheme. Once the preparatory
work is finished (i.e. PAEMKS common parameter cp generation, RSA global
parameter gp generation), the sender will generate the Searchable encryption E
by the algorithm Encryption(skSen−PAEMKS , pkRec−PAEMKS , pkSer−RSA,W ).
Then, the sender sends a Searchable encryption E = (E1, E2) = [(M,N1, N2

, ..., Nn)||Nn+1] to the online server. When the receiver wishes to retrieve the
encrypted document, he/she will firstly create a Trapdoor query R by the al-
gorithm Request(pkSen−PAEMKS , skRec−PAEMKS , pkSer−RSA,W

∗) and then
send a Trapdoor query R = (R1, R2) = [(Z, T1, T2, ..., Tm)||Tfuzzy] to the on-
line server. Once the server receives the Searchable encryption and the Trap-
door query, it will run Test algorithm to firstly check whether the keywords
both in Searchable encryption (Ni) and Trapdoor query (Tj) are same or not.
If the keywords are same, the server will decrypt Nn+1 and Tfuzzy by RSA
algorithm to obtain two keywords (wn+1 and wfuzzy). Then, let wfuzzy and
wn+1 be the conclusion and the condition of the rules (see in Section 4.3 ) in
Mamdani system. Finally, the server will filter the irrelevant encrypted docu-
ments and send the rest encrypted documents back to the receiver.

4.4 The Correctness for m-PAEMKS

Suppose i and j are the indexes of keywords in Wpart1 and W ∗part1, where i ∈
{1, 2, ..., n} and j ∈ {1, 2, ...,m}. The proposed scheme is completely correct
and the details are described in the following:
For Exact Match:

The server initially calculates M ⊕ pkRec = t⊕ pkRec ⊕ pkRec = t.
Then, the server checks whether T tj = Ni or not.
For i ∈ {1, 2, ..., n},
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T tj=e(skRec−PAEMKS •H(pkSen−PAEMKS , pkRec−PAEMKS , w
∗
j ),

pkSen−PAEMKS)t=e(b •H(pkSen−PAEMKS , pkRec−PAEMKS , w
∗
j ), aP )t

=e(a •H(pkSen−PAEMKS , pkRec−PAEMKS , w
∗
j ), bP )t=e(skSen−PAEMKS

•H(pkSen−PAEMKS , pkRec−PAEMKS , w
∗
j ), pkRec−PAEMKS • t) = Ni

The server confirms T tj = Ni. So, it is concluded that both the Searchable
encryption Ni and the Trapdoor query Tj contains the same keyword.

For Fuzzy Match: this algorithm is correct by Mamdani Fuzzy Inference Sys-
tem’s properties.

5 Security and Performance

5.1 Security Analysis for m-PAEMKS

This section verifies the security of m-PAEMKS scheme by Lemma 1 (Ci-
phertext Indistinguishability) and Lemma 2 (Trapdoor Indistinguisha-
bility)). More specially, Lemma 1 (Ciphertext Indistinguishability) con-
firms that the attacker cannot retrieve any one bit keyword from the Search-
able encryptions while Lemma 2 (Trapdoor Indistinguishability) con-
firms that the attacker cannot recover any one bit keyword from the Trapdoor
queries. To summary, the m-PAEMKS scheme has the properties of Cipher-
text Indistinguishability and Trapdoor Indistinguishability and is proved to
semantic security under the random oracle models in order to resist OKGA.
Besides, the m-PAEMKS scheme incorporates with User Authentication tech-
nique to resist IKGA.

Lemma 1. For any PPT adversary A against the Ciphertext Indistinguisha-
bility of m-PAEMKS scheme, its advantage ADV TA (λ) will be negligible if
BDH assumption holds.

Proof : suppose that there is an adversary A who breaks the ciphertext pri-
vacy of m-PAEMKS scheme with a non-negligible advantage εC .

The procedure for verifying the Ciphertext Indistinguishability of m-PAEMKS
scheme is based on IND-CPA Game. The formal definition of IND-CPA
Game is described in Section 4.2.1. Besides, the security for m-PAEMKS
scheme relies on BDH assumption which is defined in Section 2.2.

The challenger E builds the m-PAEMKS system and accepts the challenges
from the adversary A. Assume that E has (P, g,G1, G2, e, xP, yP, zP ) as an
input of BDH assumption whose running time is bounded by T . E’s target is
to compute a BDH key e(P, P )xyz of xP , yP and zP by A’s IND-CPA.

Setup Simulation
E selects x, y ∈ ZP uniformly at random. E then computes xP and yP as the
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PAEMKS public keys (pkSen−PAEMKS ,pkRec−PAEMKS) of the sender and the
receiver. After that, E returns the common parameter cp = (P, g,G1, G2, e,H)
and sends (cp,pkSen−PAEMKS ,pkRec−PAEMKS) to A.
Phase 1-1 Simulation (Queries)
Note that three assumptions are introduced below for simplicity.
1. The adversary A issues at most qH , qT , qC queries from the Hash Oracle
OH , the Trapdoor Oracle OT and the Ciphertext Oracle OC respectively.
2. The adversary A does not repeat any queries from OH , OT and OC .
3. The adversary A cannot send a query (pkSen−PAEMKS ,w) to OT nor
(pkRec−PAEMKS ,w) toOC before issuing (pkSen−PAEMKS ,pkRec−PAEMKS ,w)
to OH .
E creates the oracles in the following.
For Hash Oracle OH .
When A asks a query for a tuple (pkSen−PAEMKS ,pkRec−PAEMKS ,wi), E will
reply as follows:
i. E picks up a coin θi uniformly at random and then calculates Pr[θi = 0] =
1

h+1 .
ii. E chooses fi ∈ ZP uniformly at random. If θi = 0, Fi = lP + fiP will be
returned by E. If θi = 1, Fi = fiP will be returned by E.
iii. E sends Fi to A and places [(pkSen−PAEMKS , pkRec−PAEMKS , wi), Fi, fi, θi]
into H List. The H List is initially empty.
For Trapdoor Oracle OT :
When A sends a Trapdoor query corresponding to the keyword w to E, the
challenger E will compute Tw = e(fi • pkRec−PAEMKS , pkSen−PAEMKS) =
e(yF1, pkSen−PAEMKS) = e(skRec−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS

, w), pkSen−PAEMKS). Finally, E sends Tw to A.
For Ciphertext Oracle OC :
When A send a Ciphertext query corresponding to the keyword w to E, the
challenger E will select t ∈ ZP uniformly at random and then calculates Nw =
e(f1 • pkSen−PAEMKS , pkRec−PAEMKS • t) = e(xF1, pkRec−PAEMKS • t) =
e(skSen−PAEMKS •H(pkSen−PAEMKS , pkRec−PAEMKS , w), pkRec−PAEMKS •
t). Finally, E sends Nw to A.
Challenge Simulation
At some point, the adversary A uploads a keyword-vector pair (W ∗0 ,W

∗
1 ) to

E, where W ∗0 = (w01, w02, ..., w0n) and W ∗1 = (w11, w12, ..., w1n). Note that
(yP,W ′

∗
0) and (yP,W ′

∗
1) have not been queried to oracle OT and (xP,W ∗0 )

and (xP,W ∗1 ) have not been queried to oracle OC . Then, E creates a Search-
able encryption E1 as follows:
- E chooses i ∈ {1, 2, ..., n} uniformly at random.
- E runs all above algorithms to obtain two tuples (w∗0i, F

∗
0i, f

∗
0i, θ

∗
0i) and

(w∗1i, F
∗
1i, f

∗
1i, θ

∗
1i). If θ0 = θ1 = 1, E will stop the system and throw “Sus-

pension”.
Otherwise, E will create the Searchable encryption below:
- E runs all above algorithms for simulating H function at 2(n−1) times in or-
der to achieve two vectors [(w∗01, F

∗
01, f

∗
01, θ

∗
01), ..., (w∗0i−1, F

∗
0i−1, f

∗
0i−1, θ

∗
0i−1),

(w∗0i+1, F
∗
0i+1, f

∗
0i+1, θ

∗
0i+1), ..., (w∗0n, F

∗
0n, f

∗
0n, θ

∗
0n)] and [(w∗11, F

∗
11, f

∗
11, θ

∗
11), ...,
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(w∗1i−1, F
∗
1i−1, f

∗
1i−1, θ

∗
1i−1), (w∗1i+1, F

∗
1i+1, f

∗
1i+1, θ

∗
1i+1), ..., (w∗1n, F

∗
1n, f

∗
1n, θ

∗
1n)].

If θ∗0j and θ∗1j are equal to 0 for all j = 0, ..., i− 1, i+ 1, ..., n, E will stop the
system and throw “Suspension”. Otherwise, E executes the following steps:
– E selects β ∈ {0, 1}d uniformly at random.

– E selects Jj ∈ {0, 1}d uniformly at random and returns a Searchable encryp-
tion E∗1 = (L∗, N∗1 , N

∗
2 , ..., N

∗
n).

So, E chooses t = z. E then computes E∗1 = (L∗, N∗1 , ..., N
∗
i−1, N

∗
i+1, ..., N

∗
n) =

[z ⊕ yP, e(skSen−PAEMKS •H(pkSen−PAEMKS , pkRec−PAEMKS , w
∗
1),

pkRec−PAEMKS•t), ..., e(skSen−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS ,
w∗i−1), pkRec−PAEMKS•t), e(skSen−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS

, w∗i+1), pkRec−PAEMKS • t), ..., e(skSen−PAEMKS •H(pkSen−PAEMKS ,
pkRec−PAEMKS , w

∗
n), pkRec−PAEMKS • t)]

It is noticed thatNβ = e(skSen−PAEMKS•H(pkSen−PAEMKS , pkRec−PAEMKS ,
w∗β), pkRec−PAEMKS • t) = e(xH(pkSen−PAEMKS , pkRec−PAEMKS , w

∗
β), yP •

z) = e(xfiP, yP • z) = e(fiP, P )xyz.
Phase 1-2 Simulation (Queries)
A can continue to communicate with E for the oracle queries. One restriction
is that A cannot request [(pkSen−PAEMKS ,W ′

∗
0), (pkSen−PAEMKS ,W ′

∗
1)] to

OT and [(pkRec−PAEMKS ,W ∗0 ), (pkRec−PAEMKS ,W ∗1 )] to OC .
Guess
Finally, A shows the guess β∗ ∈ {0, 1}. If β = β∗, “Yes”. Otherwise, “No
match”.

Analysis
Two events are defined below:
Event1 : The system does not be stopped during the Phase 1-1 and the Phase
1-2.
Event2 : The system does not be stopped during the Challenge Simulation.

Claim 1:

Pr[Event1] ≥ (1− 1

h+ 1
)qT+qC (3)

Proof : suppose that A does not request the same keyword twice in OT and OC
queries. So, the probability of the m-PAEMKS system being stopped is 1

h+1 .
Also, A requests at most qT Trapdoor queries and qC Ciphertext queries,
the probability of the m-PAEMKS system being stopped in all is at least
Pr[Event1] = (1− 1

h+1 )qT+qC .

Claim 2:

Pr[Event2] ≥ (
1

h+ 1
) • (

h

h+ 1
)2(n−1) (4)

Proof : if θ0 = θ1 = 1, the m-PAEMKS system will be stopped during the
Challenge Simulation. So, the probability that the system does not be stopped
is 1 − (1 − 1

h+1 )2. Besides, if θ∗0j and θ∗1j are equal to 0 for all j = 0, ..., i −
1, i+ 1, ..., n, the system will be stopped here. Hence, the probability that the
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m-PAEMKS system does not be stopped during the Challenge Simulation is
at least (1− 1

h+1 )2(n−1){1− (1− 1
h+1 )2} ≥ ( 1

h+1 ) • ( h
h+1 )2(n−1).

Suppose Event is an event that the m-PAEMKS system does not be stopped
during the whole game. Therefore, Pr[Event] = Pr[Event1] • Pr[Event2] =
(1− 1

h+1 )qT+qC • ( 1
h+1 ) • ( h

h+1 )2(n−1). If h+ 1 = qT + qC , the Pr[Event] will

reach the maximum value. So, Pr[Event] = 1
e • ( 1

qT+qC
) • ( qT+qC−1

qT+qC
)2(n−1),

which is approximately equal to 1
e(qT+qC) and thus non-negligible.

Overall, the probability that E guesses the correct bit β is as follows:
Pr[β

′
= β] = Pr[β

′
= β ∧ Pr[Event]] + Pr[β

′
= β ∧ Pr[Event]] = Pr[β

′
=

β | Pr[Event]]Pr[Event] + Pr[β
′

= β | Pr[Event]]Pr[Event] = 1
2 • (1 −

Pr[Event])+(εC+ 1
2 )•Pr[Event] = 1

2 +εC •Pr[Event]. If εC is non-negligible,

so is |Pr[β′ = β]− 1
2 |.

In shot, the m-PAEMKS scheme satisfies Ciphertext Indistinguishability. And,
the attacker cannot retrieve any one bit keyword from the Searchable encryp-
tions.

Lemma 2. For any PPT adversary A against the Trapdoor Indistinguishabil-
ity of m-PAEMKS scheme, its advantage ADV TA (λ) will be negligible if BDH
assumption holds.

Proof : suppose that there is an adversary A who breaks the trapdoor privacy
of m-PAEMKS with a non-negligible advantage εT .

The procedure for verifying the Trapdoor Indistinguishability of m-PAEMKS
scheme is based on Trapdoor-IND-CPA Game. The formal definition of
Trapdoor-IND-CPA Game is described in Section 4.2.2. Besides, the se-
curity for m-PAEMKS scheme relies on BDH assumption which is defined in
Section 2.2.

The challenger E builds the m-PAEMKS system and accepts the challenges
from the adversary A. Assume that E has (P, g,G1, G2, e, xP, yP, zP ) as an
input of BDH assumption whose running time is bounded by T . E’s target is to
compute a BDH key e(P, P )xyz of xP , yP and zP by A’s Trapdoor-IND-CPA.

Setup Simulation
E selects x, y ∈ ZP uniformly at random. E then computes xP and yP as the
PAEMKS public keys (pkSen−PAEMKS ,pkRec−PAEMKS) of the sender and the
receiver. After that, E returns the common parameter cp = (P, g,G1, G2, e,H)
and sends (cp,pkSen−PAEMKS ,pkRec−PAEMKS) to A.
Phase 2-1 Simulation (Queries)
E creates the oracles in the same way as the Phase 1-1 Simulation (Queries)
in Lemma 1. So, it is omitted here.
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Challenge Simulation
At some point, the adversary A uploads a keyword-vector pair (W ∗0 ,W

∗
1 ) to

E, where W ∗0 = (w∗01, w
∗
02, ..., w

∗
0m) and W ∗1 = (w∗11, w

∗
12, ..., w

∗
1m). Note that

(yP,W ∗0 ) and (yP,W ∗1 ) have not been queried to oracle OT and (xP,W ′
∗
0) and

(xP,W ′
∗
1) have not been queried to oracle OC . Then, E creates the Challenge

trapdoor R1 = (T1, T2, ..., Tm) as follows:
- If θ0 = θ1 = 1, E will stop the system and throw “Suspension”.
Otherwise, E computes the Challenge trapdoor in the following. For simplic-
ity, let Tβ where β ∈ (1, 2, ...m) be an example:
- Tβ = M • e(xP, yP )fi . If M = e(P, P )xyz, then Tβ = e(P, P )xy(z+fi) =
e(Fi, (xy)P ). If M is a random element of G2, so is Tβ .
- The above calculation will be repeated m− 1 times until E creates an entire
Challenge trapdoor.
Phase 2-2 Simulation (Queries)
A can continue to communicate with E for the oracle queries. One restric-
tion is that A cannot request [(pkSen−PAEMKS ,W ∗0 ), (pkSen−PAEMKS ,W ∗1 )]
to OT and [(pkRec−PAEMKS ,W ′

∗
0)(pkRec−PAEMKS ,W ′

∗
1)] to OC .

Guess
Finally, A shows the guess β∗ ∈ {0, 1}. If β = β∗, “Yes”. Otherwise, “No
match”.

Analysis
Two events are defined below:
Event3 : The system does not be stopped during the Phase 2-1 and the Phase
2-2.
Event4 : The system does not be stopped during the Challenge Simulation.

Claim 3:

Pr[Event3] ≥ (1− 1

h+ 1
)qT+qC (5)

The proof of Claim 3 is the same as the proof of Claim 1, so it is omitted
here.

Claim 4:

Pr[Event4] ≥ (
1

h+ 1
) • (

h

h+ 1
)2(m−1) (6)

Proof : if θ0 = θ1 = 1, the m-PAEMKS system will be stopped during the
Challenge Simulation. So, the probability that the system does not be stopped
is 1 − (1 − 1

h+1 )2. Besides, if θ∗0j and θ∗1j are equal to 0 for all j = 0, ..., i −
1, i+ 1, ...,m, the system will be stopped here. Hence, the probability that the
m-PAEMKS system does not be stopped during the Challenge Simulation is
at least (1− 1

h+1 )2(m−1){1− (1− 1
h+1 )2} ≥ ( 1

h+1 ) • ( h
h+1 )2(m−1).

Suppose Event′ is an event that the m-PAEMKS system does not stopped
during the whole game. Therefore, Pr[Event′] = Pr[Event3] • Pr[Event4] =
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(1− 1
h+1 )qT+qC • ( 1

h+1 ) • ( h
h+1 )2(m−1). If h+ 1 = qT + qC , the Pr[Event] will

reach the maximum value. So, Pr[Event′] = 1
e • ( 1

qT+qC
) • ( qT+qC−1

qT+qC
)2(m−1),

which is approximately equal to 1
e(qT+qC) and thus non-negligible.

Overall, the probability that E guesses the correct bit β is as follows:
Pr[β

′
= β] = Pr[β

′
= β ∧ Pr[Event′]] + Pr[β

′
= β ∧ Pr[Event′]] = Pr[β

′
=

β | Pr[Event′]]Pr[Event′] + Pr[β
′

= β | Pr[Event′]]Pr[Event′] = 1
2 • (1 −

Pr[Event′]) + (εT + 1
2 ) • Pr[Event′] = 1

2 + εT • Pr[Event′]. If εT is non-

negligible, so is |Pr[β′ = β]− 1
2 |.

In shot, the m-PAEMKS scheme satisfies Trapdoor Indistinguishability. And,
the attacker cannot retrieve any one bit keyword from the Trapdoor queries.

5.2 Performance and Efficiency for m-PAEMKS

This section compares the security, efficiency and performance between the
proposed scheme (m-PAEMKS) and its counterpart (m-PEMKS [22]).

Table 1 Comparison of Functionalities between m-PEMKS and m-PAEMKS schemes

Scheme CI Ind TI Ind FKS OKGA IKGA

m-PEMKS Satisfied Satisfied Supported Not Suffered Suffered
m-PAEMKS Satisfied Satisfied Supported Not Suffered Not Suffered

CT Ind, Trap Ind, FKS, OKGA and IKGA are the abbreviation of Ciphertext
Indistinguishability, Trapdoor Indistinguishability, Fuzzy Keyword Search, Off-
line Keyword Guessing Attack and Inside Keyword Guessing Attack respec-
tively. As it can be seen in Table 1, both of them could resist OKGA due to
the properties of CI Ind and TI Ind. Apart from that, they all support Fuzzy
Keyword Search. However, the proposed scheme is able to prevent IKGA while
its counterpart suffers IKGA.

Table 2 Comparison of Computation Efficiency between m-PEMKS and m-PAEMKS
schemes

Scheme PEKS (E1) Trapdoor (R1) Test

m-PEMKS E+(E+2H+P)*N E+P+(2E+H+P)*M (2E+H+2P)*M
m-PAEMKS (2E+H+P)*N (E+H+P)*M E*M

The symbols E, H and P stand for a modular exponentiation, a collision re-
sistant hash function and a bilinear pairing respectively. Besides, M and N
denotes the number of keywords in PEKS ciphertext (E1) and Trapdoor query
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(R1). Table 2 shows the similar efficiency in PEKS and Trapdoor algorithms
between these two PEKS schemes. But the propose scheme has better compu-
tation efficiency in Test algorithm than its counterpart.

Table 3 Comparison of Communication Efficiency between m-PEMKS and m-PAEMKS
schemes

Scheme |PEKS PK| |E1| |R1|

m-PEMKS 2|G1| |G1|+n*N |G2|+(|G1|+|G2|)*M
m-PAEMKS |G1| |G1|+|G2|*N |G2|*M

The symbols of |G1| and |G2| stand for the length of element in group |G1|
and |G2|. Besides, n devotes the length of security parameter while M and
N are the number of keywords in PEKS ciphertext (E1) and Trapdoor query
(R1) respectively. The proposed scheme has better communication efficiency
in PEKS public key generation (|PEKS PK|) and Trapdoor generation (|R1|)
than its counterpart.

The m-PAEMKS scheme was implemented by JAVA with the JPBC li-
brary [30] and the jFuzzyLogic library [31,32].

The m-PAEMKS scheme applies the Single Input Single Output (SISO)
Mamdani Fuzzy Inference System instead of Two or More Input Single Out
(T/MISO) Mamdani Fuzzy Inference System. The reason is due to the differ-
ence between Artificial Intelligence (AI) and Cryptography. For AI, it always
uses the plaintext as the input to explore the relation between the different
sets. For Cryptography, it uses the ciphertext to protect data security. In gen-
eral, the more plaintext are explored to the public networks, the more likely
the cryptographic system might be vulnerable to some attacks, such as Chosen
Plaintext Attack (CPA), Dictionary Attack.

Consider a situation: the UL company’s accountant uploads the encrypted
UL financial reports with the specific keywords (i.e. E(M)||PAEMKS(UL)
||PAEMKS(Financial)||PAEMKS(Feb2021)) into the cloud server. When
the UL upper manager would like to achieve the “latest” UL financial reports,
he/she will send a Trapdoor query (Trapdoor(UL)||Trapdoor(Financial)||
Trapdoor(Latest)) to the online server. Once the online server receives these
encrypted messages, it will run Test algorithm to filter irrelevant documents
and finally reply to UL upper manager. Fig. 2 and Fig. 3 show the membership
functions and assessed value for each input of this situation, respectively.
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Fig. 2 Membership functions for an example of searching “latest” financial reports

Fig. 2 shows the membership function. It fuzzifies the input variable “DATE”
by “old”, “acceptable” and “new”.

Fig. 3 Assessed values for an example of searching “latest” financial reports

According to the Fig. 3, the Center Of Gravity (COG) method is applied
to the m-PAEMKS scheme to defuzzify the output variable “access”. More
specially, three UL financial reports are found via “Exact Match” from the
online server. By the SISO Mamdani Fuzzy Inference System in m-PAEMKS
scheme, the first report partially belongs to “old” and “acceptable” report,
the second one belongs to “acceptable” UL financial report and the third one
completely belongs to the “latest” UL financial report. Finally, the online
server will return the second and the third reports to the UL upper manager.

6 Conclusion

The paper firstly revisited Kazemian and Ma’s m-PEMKS scheme [22] and
then pointed out that the m-PEMKS scheme may suffer the Inside Keyword
Guessing Attack, if the server is malicious. The paper then defined a robust
m-PEMKS called Public Key Authenticated Encryption with Multi-Keywords
Search using Mamdani System (m-PAEMKS). The m-PAEMKS scheme in-
corporates with User Authentication technique so that it is able to prevent
Inside Keyword Guessing Attack. Besides, the proposed scheme has the prop-
erties of Ciphertext Indistinguishability and Trapdoor Indistinguishability and
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is proved to be semantic security under the random oracle model. Hence, the
proposed scheme is able to resist OKGA. Furthermore, Mamdani Fuzzy In-
ference System is applied to the proposed scheme, which can support users
to search the encrypted documents by both multiple keywords and a fuzzy
keyword without compromising the original data security.
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