
Risk Assessment in Transactions under Threat
as Partially Observable Markov Decision Process

Vassil Vassilev, Doncho Donchev and Demir Tonchev

Abstract This paper presents a theoretical model and algorithms for calculating the security
risks for planning active counteractions in transaction processing under security threats. It is
a part of an integrated cybersecurity framework, which combines AI-based planning of active
counteractions with Machine Learning for the detection of security threats during transaction
processing. The risk assessment is based on the optimal strategy for decision making which
minimizes the security risks in controlled transactions modeled as Partially Observable Markov
Decision Process (POMDP). By statistical reduction, thismodel is converted into aMarkovDecision
Process (MDP) with full information so that the algorithm for calculating the risks can use the
standard dynamic programming. Although developed primarily for applications in fintech industry,
this framework can be adapted to a wide range of business process workflows that incorporate
both synchronous operations and asynchronous events caused by human errors, technical faults, or
external interventions.

1 Introduction
Cybersecurity becomes critical for successful digital transformation of the businesses in many areas
of human activity - fintech industry, e-commerce, business process management, healthcare, public
services, etc. Over the last three years we have been working on a hybrid AI-based framework which
combines the power of logical analysis of security policies, from one side, with machine learning for
data analytics, on the other. Such a framework must secure the transaction processing by accounting
for both the threat intelligence, obtained in advance from security experts, and the security risks
assessed in real time. Our approach to planning is rooted in the traditional AI planning introduced
by McCarthy in the situation calculus, but follows different approach from both conceptual and
theoretical point of view, which allows to avoid some of the problems encountered in the original
deterministic planning such as the qualification and frame problems. Instead of combining the
information from the real world with the planning heuristics in a single representational language,
like in the original situation calculus, we have adopted multi-level problem formalization which
separates the domain ontology from the security policies and adds two more levels: analytical level
of decision making for selecting appropriate actions and applying potential counteractions to the
security threats, and implementation level for executing ML algorithms for security analytics to
detect potential security threats at the different steps of the transactions [8]. For the first three levels
of the framework we have adopted the standard languages of the Semantic Web - OWL, SWRL and
RDF, which have direct logical interpretation [7], while the implementation level utilizes a variety
of ML algorithms for detection [9]. In this article we will present an approach for assessment of the
security risks at each step of the transactions in the presence of security threats, which is necessary
for planning of suitable counteractions during execution of the transactions and progressing towards
completion of the transaction.
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The paper is organised as follows. First we will briefly review the research in risk assessment
from cybersecurity perspective and will set the problem in the context of a hybrid AI-based
cybersecurity framework which accounts both the security policies and the threat intelligence to
execute active counteractions against the threats detected during transaction execution. After this
preliminaries wewill introduce the POMDPmodel, will preform statistical reduction toMDPmodel
and will describe the algorithms for risk assessment, based on the optimal strategy for controlling
the transaction under threats. We will illustrate the use of the algorithm by analyzing the decision
threshold, which guides the choice of counteraction along the transaction based on the optimal
strategy. After brief information about the current state of implementation of the framework we
will finish with a discussion and our plans about the future research in this direction.

2 Brief review of the relevant research
The advances in heuristic planning for intelligent control of the transactions and the need to
account stochastic factors which interfere with the execution of the transactions, such as errors,
faults and intrusions, focused the attention on continuous planning and re-planning. Unfortunately,
the heuristic planning faces the need to account the security risks which does not fit within the
deterministic models used as a base for the planning algorithms. An adequate formalization of
the stochastic planning problem requires working with POMDP model which is significantly more
complex than the two popular deterministic models - the classical state-space search and the MDP
[1]. An excellent overview of the different models and algorithms for non-deterministic planning
from AI perspective is provided in [2]. Despite some recent adoptions of POMDP for the purpose
of risk assessment [3, 5, 4, 6], the adoption of POMDP remains valuable for mostly offline analytics
due to the need to the need to solve multi-step optimization problem of large complexity.

The major contribution of our research is in the integration of the purely deterministic method
for controlling the transactions under threat with the stochastic method for decision making using
the risk assessment as a heuristic function, which is based on the original POMDP model but
reduced to a tractable MDP problem. This reduction makes possible to use more efficient recurrent
algorithms for optimization, based on the standard dynamic programming methodology which for
realistic transaction lengths can be executed in real time.

3 Controlling Transactions and Decision Making
Contemporary transaction processing requires planning and controlling the execution of a sequence
of operations to reach the goal state, namely the commit point of the transaction. In our security
framework [8] each step of the transaction is modeled as a separate situation. Along the multi-
step transition from situation to situation the transactions face multiple challenges due to the
unpredictability of the factors which may influence the process - security threats which may
require neutralization, safety threats which may need mitigation or logical non-determinism for
choosing alternative options. In accordance with our theoretical framework we are considering
both synchronous activities (in our framework they are called actions) and asynchronous activities
(it events). While the actions change the situations in a deterministic way, the event are the main
stochastic factors since they may or may not trigger actions, and also can happen at any time.
This way the analytical level can be modelled naturally as a directed AND-OR graph. Choosing
suitable operation based on risk assessment when the transactions execute under security threats
would allow to implement control algorithms with guaranteed chances for successful commit of
the transaction.

As an illustration, Fig. 1 presents one such graph which models a typical transaction for
reading the emails in the presence of potential security threats on analytical level. The graph
nodes represent situations and are painted in white, green or red; the solid arrows represent the
deterministic transitions from situation to situation, while the events and threats are associated with
the situations in a non-deterministic way and painted in blue and black, respectively. Some of the
actions are normal actions which progress the transaction towards its commit situation, which can
be prescribed using suitable heuristics, while other actions are outside of the control since they are
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Fig. 1 Threat in the Email

triggered by asynchronous events or caused by security threats. The situations, events and threats
can be described qualitatively and quantitatively using various items, colored in yellow.

This graph can be created entirely automatically using the domain ontology and the security
policies of the framework. However, on order to implement the control strategy, we need to deal
with the non-determinism. The graph contains multiple decision points which cannot be resolved
without additional information and this is where we need to make informed decision choice of an
action to be executed.

4 Transactions under Threat as POMDP
Before we specify the model we will make some assumptions which can be lifted at a later stage:

1. We will omit the descriptions, which use concepts of the type Item and will consider only
Situation, Action and Event taxonomies.

2. There will be no distinction between situations, free of any threats, between situations, which
are result of malicious actions and between transient situations. So the model will con-
sider only the top classes of the taxonomy – SafeSituation, DangerousSituation and
TransientSituation.

3. There will be no distinction between different malicious actions and between different counter-
actions — we will consider only the top roles in the action taxonomies MaliciousAction and
CounterAction.

4. We assume that the counteractions always bring the system back to a safe situation in a single
step. This also means that all transient situations are safe.

5. Only events relevant to the threats will be considered (class Threat). The non-threatening
events will be addressed by the security policies on logical level.

The above assumptions makes possible to apply a reduction of the original POMDP problem
with partial information to anMDP problemwith full information and to use the recurrent algorithm
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of dynamic programming for solving it. This way, we can have a quantitative evaluation of the risk
in each situation incrementally.

Due to the presence of asynchronous events, which can be either unpredictable, but anticipated
– like many malicious interventions, or unexpected, but predictable – such as human or technical
errors, wemust model the thransactions under threat as POMDP, rather than asMDPwhich requires
full information. Our model has the following elements:

1. State space ( = {B0 5 4, 30=64A , 34034=3 } – corresponds to the different top-level types
of situations from risk viewpoint

a. B0 5 4 Situations along the normal transactions in absence of any threats
b. 30=64A Situations in which the system is under the influence of security threats but is still

able to recover
c. 34034=3 Situations in which the system experiences severity and crashes completely under

the security threats

2. Control space � = {=>02C, A4B?>=3 } – corresponds to the different top-level types of
counteractions for risk mitigation

a. =>02C – no control intervention, the system goes straight to the next situation according to
the planned action in order to continue its normal track of execution of the current transaction

b. A4B?>=3 – counteraction, which brings the system back to a safe situation after malicious
action

3. Observation space / = {=>CℎA40C, CℎA40C, 2A0Bℎ} – corresponds to the different top-level
types of events from security viewpoint

a. =>CℎA40C – asynchronous event, which is non-threatening and does not require counterac-
tion

b. CℎA40C – detection of malicious intervention which requires counteraction
c. 2A0Bℎ – losing control of the system without chance for recovery

4. Transition kernel @ (B=+1 |B= , 2=+1) – probability of the transition from situation B= to situation
B=+1 under control 2=+1, calculated as follows

• @ (B0 5 4 |B0 5 4) = ?, ? is the probability for absence of threats after transition from a safe
situation

• @ (30=64A |B0 5 4) = 1 − ?, 1 − ? is the probability for presence of threats after transition
from a safe situation

• @ (B0 5 4 |30=64A , A4B?>=3) = 1 because the counteraction in a dangerous situation
eliminates the threat

• @ (34034=3 |30=64A , =>02C) = 1 because the absence of counteraction in dangerous
situation leads to an inevitable deadend of the system

• @ (34034=3 |34034=3) = 1 since there is no way out of the deadend

5. Occurrence kernel C (I= |B=) – probability of occurrence of event I= in state B=, calculated as
follows

• C (=>CℎA40C |B0 5 4) = ?11 – probability of not observing threat in a safe state
• C (=>CℎA40C |30=64A ) = ?12 – probability of not observing threat in a dangerous stage

(false negative)
• C (CℎA40C |B0 5 4) = ?21 – probability of observing threat in a safe state (false positive)
• C (CℎA40C |30=64A ) = ?22 – probability of observing threat in a dangerous state
• C (2A0Bℎ |34034=3) = 1 – probability of observing the system crash under threat

Let’s denote the matrix with entries ?8 9 , 8, 9 = 1, 2 by %. Its transpose %) is a stochastic matrix
since

?11 + ?21 = ?12 + ?22 = 1.
6. Rewards – quantitative measures of the costs of the actions taken as follows
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a. Current reward A (2) calculated as follows: A (=>02C) = 0, A (A4B?>=3) = −2 where 2 > 0
is the cost for using A4B?>=3

b. Final reward ' (B) calculated as follows: ' (B0 5 4) = ' (30=64A ) = 1 if either the
transaction terminates normally or the threat occurs after finalizing it, and' (34034=3) = 0
if the crash occurs during the transaction.

7. Horizon # – length of the transaction, calculated as the number of safe situations in it.

5 Optimal Strategy for counteracting and its cost
The solution of the risk assessment task can be obtained as a byproduct of the calculation of the
optimal strategy for control of the transactions.

Definition Security decision q (B) is a function which on each step of the transaction B chooses
either =>02C or A4B?>=3.

The security decisions may modify the original transactions by enforcing A4B?>=3 actions in
some of the situations. Therefore, they can extend the transaction path. If the security decisions
are wrong it might be even possible to end the transaction in a 34034=3 situation. In order to
maximize the chances to make the right decisions we will account all information available at the
time of decision making, which will turn the security decision into a stochastic function of the
parameters of the POMDP model.

Definition Decision policy c = (q (1) , q (2) , ..., q (# )) is a collection of security decision
functions such that on each step = of the transaction, q (=) depends only on the past history till
time =, and the prior probabilities of the states at time 0, that is before the transaction has begun.

We assume that the prior probability of state 34034=3 is 0, since otherwise any policy makes
no sense. Therefore, the sum of the prior probabilities of the other two states is equal to 1,
and the prior distribution of the states at time 0 is determined by the prior probability G of
state B0 5 4. So, we are now looking for a decision policy c which maximizes the total reward
E c (G) = � c

G (' (BC0C4# ) −2 ) , where � c
G is the expectation, corresponding to the policy c and

the prior probability G, and  is the number of times when we apply the action A4B?>=3. In the
above expression ' (BC0C4# ) is the final income which we get in the last step of the transaction.

Definition Value function of the POMDP model is the function

E (G) = max
c
E c (G)

Definition The policy c such that E (G) = E c (G) is an optimal policy.

The optimal policy c of the POMDP maximizes the chances to avoid a crash during the
transaction, taking into account the total price of counteractions. It solves the following optimization
problem:

E c (G) = � c
G (' (B# ) − 2 ) , (1)

where G the prior probability of the state B0 5 4 in the moment = = 0, B# is the final state of the
controlled process, and  is the total number of times when the counteraction has been used. Here,
� c
G is the mathematical expectation corresponding to c and G.

To calculate the optimal strategy we will follow the standard procedure for reducing the POMDP
model with partially observable states to a MDP model with fully observable states which would
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allow to apply the standard algorithm of dynamic programming [7]. The reduction can be done by
following the steps bellow:

1. Constructing sufficient statistics for the POMDP model by solving the filtration equations
2. Building a model with fully observable states using the sufficient statistics from step one
3. Solving Bellman’s equation for the MDP model built in step two making use of the dynamic

programming algorithm

This gives us the optimal strategy in both POMDP and MDP models. Based on it we can now
estimate the risks.

Definition: The risk corresponding to the prior probability G of the state B0 5 4 of the POMDP
model is equal to 1 − E (G) , where

E (G) = sup
c

E c (G) , (2)

is the value function of the model.

So the risk in each state can be assessed if the optimal strategy is known. In the general case
this is a difficult problem, but fortunately, for the special case of our POMDP there is an elegant
solution based on statistical reduction of the POMDP model to deterministic MDP model.

Let 5= (resp. 6=), = = 0, 1,..., # − 1, be 3x1-vectors with elements equal to the prior (resp.
posterior) probabilities of the states B0 5 4, 30=64A and 34034=3 during the transaction. We
assume that 5= (1) and 6= (1) correspond to state B0 5 4, 5= (2) and 6= (2) – to state 30=64A , and
5= (3) and 6= (3) – to state 34034=3.

We can think of these vectors as points in the two-dimensional simplex in R3 (Fig. 2). In order
to exclude the trivial case of a system’s breakdown before any transaction has begun, we assume
that 50 (3) = 0. Thus, we have 50 (1) = G, 50 (2) = 1− G, where G is the same as in formulas (1) and
(2). The other vectors 5= and 6= satisfy the following relations:

• Since the state 34034=3 is absorbing, 6= (3) = 0 or 1. If 6= (3) = 1, then 5< (3) = 6< (3) = 1
for all < > =.

• Making use of the Bayes formula, the coordinates of the vector 6= can be calculated as follows:

6= (1) =
5= (1) ?21

5= (1) ?21 + 5= (2) ?22
:= Γ1 ( 5= (1) , 5= (2)) , (3)

6= (2) =
5= (2) ?22

5= (1) ?21 + 5= (2) ?22
, 6= (3) = 0, (4)

if I= = CℎA40C;

6= (1) =
5= (1) ?11

5= (1) ?11 + 5= (2) ?12
:= Γ2 ( 5= (1) , 5= (2)) , (5)

6= (2) =
5= (2) ?12

5= (1) ?11 + 5= (2) ?12
, 6= (3) = 0, (6)

if I= = =>CℎA40C;
6= (1) = 0, 6= (2) = 0, 6= (3) = 1, (7)

if I= = 2A0Bℎ.

On the other hand, if 6= (3) = 0 then the coordinates of 5=+1 are

5=+1 (1) = ?6= (1) , 5=+1 (2) = (1 − ?)6= (1) , 5=+1 (3) = 6= (2) , (8)
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whenever 2= = =>02C;

5=+1 (1) = ?, 5=+1 (2) = 1 − ?, 5=+1 (3) = 0, (9)
if 2= = A4B?>=3 where Γ1 (G, 1 − G) and Γ2 (G, 1 − G) are the posterior probabilities to remain
safe after detecting absent or present threats, respectively.

Fig. 2 Situation Simplex

The last equations show that if we consider the
vectors 6= , = = 0, 1,..., # − 1, as points in the
two-dimensional simplex, they are located either in
the vertex of the simplex, corresponding to state
34034=3, or on the edge, connecting the vertices
corresponding to states 30=64A and B0 5 4. On the
other hand, the location of the points on this edge is
entirely determined by a single coordinate, say that
which is equal to the posterior probability of the state
B0 5 4. This observation plays an important role for
reducing the POMDP model to a MDP model with
fully observable states.

According to the general theory of POMDP (see
[1]), sufficient statistics allow to reduce the initial

POMDP problem to a fully observable MDP problem on the base of posterior probabilities 6= , = =
0, 1, ...# − 1.

We consider the following fully observableMDPmodel. Its state space is the set ( = (0, 1)∪{∗},
where ∗ is an isolated point.

Definition: The controlled process in the model with complete information is defined as

G= =

{
∗, if 6= (3) = 1
6= (1) , if 6= (3) = 0

, = = 0, 1, ...# − 1.

Let us note, that in view of (3), (5), and the total probability formula, the initial distribution of G0
is the following:

G0 =

{
Γ1 (G, 1 − G) with probability ?21G + ?22 (1 − G)
Γ2 (G, 1 − G) with probability ?11G + ?12 (1 − G)

.

The fact that %) is a stochastic matrix implies that the distribution of G0 is a proper probability
distribution. The same holds for all distributions that appear in the definition of the transition kernel
C ( {H } |G, 2) of the model with fully observable states. The filtration equations (3)–(9), and the total
probability formula motivate us to define it as follows:

C ( {H } |G, 2) =

?G?21 + (1 − ?)G?22, H = Γ1 (?G, (1 − ?)G)
?G?11 + (1 − ?)G?12, H = Γ2 (?G, (1 − ?)G)
1 − G, H = ∗

provided that 2 = =>02C ,

C ( {H } |G, 2) =
{
??21 + (1 − ?) ?22, H = Γ1 (?, 1 − ?)
??11 + (1 − ?) ?12, H = Γ2 (?, 1 − ?)

,

provided that 2 = A4B?>=3,
C (∗ |∗, ·) = 1.

In all other cases we set C ( {H } |G, ·) = 0. The final reward is
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' (G) = 1, G ∈ (0, 1) , ' (∗) = 0.

The other elements of the model — state space �, running reward A and horizon # remain
unchanged after the reduction.

Consider the functions

+= (G) = max
c
� c
G (Σ#−1

:== A (2:+1) + ' (G# )) , = = 0, 1, ...# − 1. (10)

They satisfy the Bellman’s equation

+= (G) = max(+ =>02C
= (G) , + A4B?>=3

= (G)) , (11)

and the final condition
+# (G) = ' (G) . (12)

In (11), + =>02C
= (G) and + A4B?>=3

= (G) are one-step ahead estimates of both actions =>02C and
A4B?>=3:

+ =>02C
= (G) = (?G?21 + (1 − ?)G?22)+=+1 (Γ1 (?G, (1 − ?)G))

+ (?G?11 + (1 − ?)G?12)+=+1 (Γ2 (?G, (1 − ?)G)) ,

+
A4B?>=3
= (G) = −2 + (??21 + (1 − ?) ?22)+=+1 (Γ1 (?, 1 − ?))

+ (??11 + (1 − ?) ?12)+=+1 (Γ2 (?, 1 − ?)) .

Let us note that since after action A4B?>=3 the system instantly falls into a B0 5 4 state (G = 1),
the right-hand side of the last formula does not depend on G, but still depends on =.
The optimal strategy i=+1 at any moment of time = = 0, 1, ..., # − 1 is the following:

i=+1 (G) =
{
=>02C, if += (G) = + =>02C

= (G)
A4B?>=3, if += (G) = + =>02C

= (G) .

These equations can be solved backwards, starting with the state of successful completion of
the transaction. For example, for = = # − 1 we get:

+#−1 (G) = max(1 − 2, G) ,

i# (G) =
{
=>02C, if G ≥ 1 − 2 (above the threshold)
A4B?>=3, if G < 1 − 2 (bellow the threshold)

The remaining iterations until reaching the beginning of the transaction can be performed recur-
sively, taking the previously calculated solution as terminal.

Finally, the connection between the value functions in both models is given by the formula

E (G) = (G?21 + (1 − G) ?22)+0 (Γ1 (G, 1 − G))
+(G?11 + (1 − G) ?12)+0 (Γ2 (G, 1 − G)) .

6 Analysis of the results
In this section we will analyse the results of applying the optimal strategy to the problem for risk
assessment. The model parameters used in the calculations are as follows:

• ?11 = 0.9 is the probability for not detecting attack in a safe situation C (=>CℎA40C |B0 5 4)
• ?22 = 0.9 is the probability for detecting an attack in a dangerous situation C (CℎA40C |30=64A )
• ? = 0.9 is the probability of not having an attack after transition from a safe situation
@ (B0 5 4 |B0 5 4)
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• A (A4B?>=3) = −0.1 is the cost of responding to a threat
• # ∈ {1..50} is the horizon of the transaction.

Remaining Probability 0.25 0.5 0.75 1.0
steps Threshold
1 0.9 0.1 0.1 0.0552 0.0018064
2 0.87134 0.12866 0.127227 0.083137768 0.030414629
3 0.842985516 0.157014484 0.15416376 0.110777719 0.058717893
5 0.787180101 0.212819899 0.207178904 0.165176837 0.114422501
7 0.732558117 0.267441883 0.259069789 0.218422348 0.168945816
10 0.652789319 0.347210681 0.334850147 0.296180972 0.248570520
15 0.550343126 0.449656874 0.43217403 0.39604552 0.350831653
20 0.404677698 0.595322302 0.570556187 0.53804018 0.496233951
30 0.181781435 0.809352173 0.782307637 0.755319458 0.718727575
50 4.04E-05 0.98990967 0.979799118 0.969688567 0.959630849

Table 1 Risk thresholds of the optimal strategy for different prior probabilities of having threat

Tab. 1 presents the optimal policy threshold for making decision to counteract which can be
done by comparing it to the posterior probability to remain safe at different steps of the transaction.
The risk has been calculated for four different prior probabilities. Their choice reflects the most
typical cases of potential distribution of the threats as follows:

• 1.0: No threats are expected in the beginning of the transaction. This is the case when we are
operating clean computer, browser or ATM machine.

• 0.25: Low probability to start a transaction in a safe state. This is the case when it is very likely
for threats to occur immediately after starting the transaction (for example infected computer,
spyware in the browser or tampered ATM machine).

• 0.50: Equal probabilities for presence and absence of attacks at the beginning of the transaction.
This is a case of maximum uncertainty about the threats, i.e., we have a weak threat intelligence.

• 0.75: More likely to start in a safe state at the beginning but possible intrusion at a later step.
This is statistically safe prediction when using clean computer, browser or ATM machine.

Fig. 3 Decision Threshold

The first column of the ta-
ble contains the number of re-
maining steps till completion of
the transaction, while the sec-
ond - the threshold of the op-
timal strategy. Fig. 3 illustrates
the evolution of the threshold in
function of the remaining steps
of the transaction. It shows that
it is higher when there are fewer
remaining steps of the trans-
action, because counteracting
towards the end of the trans-
actions is more efficient due
to lower costs. The remaining
columns of the table contain the
estimations of the risk for fixed
priory probabilities. They show
that when increasing the prior
probability the risks decrease,
whichmatches the intuition and
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is confirmed for other fixed values of the probability parameter as well. At the same time, the re-
sults also show that the risks increase with the length of transactions, which also matches the
intuition. These results give enough evidence that estimating the risks on the base of the optimal
strategy can be an adequate heuristic to compare alternative paths through the graph for planning
countermeasures.

7 Conclusion and future plans
Our hybrid cybersecurity framework employs a number of enabling technologies. The risk as-
sessment component presented here adds to it decision making heuristics for choosing an optimal
counteraction to neutralize the security threats and commit the transaction despite the threats.

The method of assessing the security risks based on POMDP model presented here can be used
for further analysis of the risk-related problems. Particularly interesting would be to investigate the
impact of false negatives ?12 and false positives ?21 of the data analytics engines on the security
risks and the possibility to accountmore information about the transactions for further tunning of the
control strategy. We are also planning to add reinforcement learning capabilities to the framework
for further tuning of the model and improving the algorithms for assessment.

Although developed primarily for applications in fintech industry, this framework can be adapted
to a wide range of business process workflows - production line fault management, critical infras-
tructure protection, public safety management, autonomous agent control, etc.
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