
Impact of False Positives and False Negatives on
Security Risks in Transactions under Threat?

Doncho Donchev1, Vassil Vassilev2,1, and Demir Tonchev1

1 Sofia University ”St. Kliment Ohridski” - GATE Institute, Sofia, Bulgaria
{doncho.donchev,demir.tonchev}@gate-ai.eu

http://gate-ai.eu/en/home/
2 London Metropolitan University - Cyber Security Research Centre, London, UK

v.vassilev@londonmet.ac.uk

https://www.londonmet.ac.uk/profiles/staff/vassil-vassilev/

Abstract. This paper presents a theoretical model, algorithms, and
quantitative assessment of the impact of false positives and false neg-
atives on the security risks during transaction processing. These two
factors play an important role in the decisions to counteract potential
threats. The assessment of their impact on the risks during transaction
processing is based on analysis of the effect of varying the parameters
of the optimal strategy, modeled as a Partially Observable Markov De-
cision Process. Such an analysis is an important element of any cyber-
security framework, which considers planning of active countermeasures
for mitigating the risks and although developed primarily for control-
ling financial transactions, it is applicable to a wider range of problems
in which the asynchronous events during the execution are caused by
human errors, malfunctioning or external interventions.

Keywords: Transactional Models · Secure process integration and man-
agement · Intrusion detection and information filtering · Security, privacy
and trust in real-time Internet e-Services · Risk assessment · Markov De-
cision Process.

1 Introduction

Contemporary Intrusion Detection Systems (IDS) are widely used in network
management and cybersecurity frameworks for detecting and classifying poten-
tial security threats of unauthorised intrusions [1–3]. The unauthorized intrusions
during transaction processing are particularly dangerous because they can lead
to significant financial losses. Tampering with ATM machines, stealing creden-
tials, diverting transactions and complete hijacking - the adversaries never sleep.
There are a number of security measures which can be used to counteract, but
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the success of their use depends on the precision of the detection and the time.
In both network-based IDS, which use signature information [8], and host-based
IDS, which use behavioral information [9] the data analysis utilizes a variety
of methods for Machine Learning (ML). In more advanced frameworks the IDS
are often complemented with Intrusion Prevention Systems (IPS) [4, 5]. Such
systems typically combine logical analysis of security policies, AI Planning and
data analytics based on ML, leading to hybrid AI architectures[16, 16].

The terms false positives and false negatives in data science and ML denote
errors in the change detection, identification, classification or prediction of data
patterns as a result of the analysis. Similarly, true positives and true negatives
denote correctness. In this paper we will present the results of a quantitative
assessment of the impact of false negatives and false positives on the security
risks, calculated on the base of the optimal strategy for control of the transac-
tions under security threats, modelled as Partially Observable Markov Decision
Processes (POMDP) [18].

2 False Positives and False Negatives in Data Science and
in Cyber Security

In data science the false positives and false negatives measure the quality of
the data analytics in general and the detection in particular [6]. Basic statistic
analysis of the false positives/false negatives in different methods of ML can
be found in abundance in the literature [10]. There is some research on how to
reduce the false negatives in specific methods for ML [11] and the false positive
rates [12], but surprisingly, a little investigation of their impact on the security
risks. In [13] the risks caused by threats are modelled using Markov chain but
the analysis looks for predication of attacks rather than for preventing them
by executing counteractions. Relatively detailed analysis of the security risks
as dependent on the counteractions is given in [14]. By accounting of the prior
classification of the various malicious activities there it would become possible
to analyse their impact in more details, but because of the use of historical data
produced by Monte-Carlo simulation the estimation is less suitable for real-time
analytics.

It is unfortunate that the impact of false negatives and false positives on se-
curity risks has not been researched more extensively because they play crucial
role in the decision making during offline scheduling or real–time planning of
security countermeasures. Part of the reason is the lack of formal models which
would allow to conduct a credible investigation of the risks. Most of the efforts
to mitigate the risks caused by security threats are adopting the best-practice
approach. By using POMDP our model of the transactions under threat dis-
tinguishes between unpredictable, but partially observable security events, and
predictable, but uncontrollable effects of the malicious actions. Using this model
the assessment of the impact is produced by analyzing the dependencies between
the prior probabilities for detecting threats, which is a characteristics of the ML
algorithms applicable to the specific data, and the risks of diverting the transac-
tions from their normal execution under the influence of security threats, which
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can be neutralized by the available countermeasures. This makes our approach
more suitable for real-time analytics.

3 Security Countermeasures and Security Risks in
Transactions under Threat

Our method for risk assessment using POMDP model was introduced in [18],
where we were discussing its use for integration of decision making with stochas-
tic planning in digital banking. In order to make the paper self-contained here
we will provide a brief description of the POMDP model and its use for assessing
the security risks by computing the optimal strategy for decision making.

3.1 Applying security countermeasures during transaction
execution

The decisions to execute diagnostic actions and to apply counteractions is es-
sential part of any cybersecurity framework. In our framework for controlling
the transactions under threats the natural criteria for decision making is the
security risk. The empirical description of the data analytics and ML methods
provides sufficient ground for developing of a formal model of the decision making
process. Due to the presence of asynchronous events, which can be either un-
predictable, but anticipated – like many malicious interventions, or unexpected,
but predictable – such as human or technical errors, we must model the transac-
tion processing under threats as POMDP, rather than Markov Decision Process
(MDP) which assumes full information about all possible actions. Our model
has the following elements:

1. State space S = {safe, danger, deadend} – corresponds to the different
types of situations from the point of view of the risk they pose:
(a) safe Situations along the transactions in absence of any threats;
(b) danger Situations in which the system is under the influence of security threats

but still able to recover and
(c) deadend Situations in which the system experiences severity and crashes com-

pletely under the security threats.

2. Control space C = {noact, respond} – corresponds to the two types of
actions from risk perspective:
(a) noact – no control intervention, the system goes straight to the next situa-

tion according to the recommended action and continues the normal track of
execution of the current transaction, and

(b) respond – counteraction, which brings the system back to a safe situation after
malicious action deviating the transaction from its normal course.

3. Observation space Z = {nothreat, threat, crash} – corresponds to the
different types of events from risk viewpoint:
(a) nothreat – asynchronous event, which is non-threatening and does not require

counteraction;
(b) threat – detection of malicious intervention which requires counteraction, and
(c) crash – losing control of the system without chance for recovery.
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4. Transition kernel q(sn+1|sn, cn+1) – probability of the transition from
situation sn to situation sn+1 under control cn+1, calculated as follows:

– q(safe|safe) = p, p is the probability for absence of threats after transition
from a safe situation;

– q(danger|safe) = 1 − p, 1 − p is the probability for presence of threats after
transition to from safe situation;

– q(safe|danger, respond) = 1 because the counteraction in dangerous situation
eliminates the threat;

– q(deadend|danger, noact) = 1 because the absence of counteraction in danger-
ous situation leads to inevitable crash of the system, and

– q(deadend|deadend) = 1 since there is no way out of the crash.

5. Occurrence kernel t(zn|sn) – probability of the occurrence of event zn in
situation sn, calculated as follows:

– t(nothreat|safe) = p11 – probability of not observing threat occurrence in a
safe state (true negative);

– t(nothreat|danger) = p12 – probability of not observing threat occurence in a
dangerous stage (false negative);

– t(threat|safe) = p21 – probability of observing threat occurrence in a safe
state (false positive);

– t(threat|danger) = p22 – probability of observing threat occurrence in a dan-
gerous state (true positive), and

– t(crash|deadend) = 1 – probability of observing the system crash under threat.

If we denote the matrix with entries pij , i, j = 1, 2 by P its transpose PT is
a stochastic matrix since

p11 + p21 = p12 + p22 = 1.

6. Costs – quantitative measures of the costs of taking actions which can be
interpreted differently, depending on the needs; we are considering it to be
the delay caused by the additional counteractions to neutralize the detected
threats:

(a) Current cost r(c) calculated as follows: r(noact) = 0, r(respond) = −c where
c > 0 is the cost for executing counteraction respond;

(b) Final cost R(s) calculated as follows: R(safe) = R(danger) = 1 if either the
transaction terminates normally or the threat occurs after finalizing it, and
R(deadend) = 0 if the crash occurs during the transaction.

7. Horizon N – length of the transaction, measured by the number of safe
situations along the transaction.

The main difference between an MDP and POMDP is the introduction of
the Observation Space and the Occurrence Kernel. These two components
of the model reflect the non-predictability of the asynchronous events, which
can happen in different situations at arbitrary times during the transactions.
Although they make the POMDP models more complex, as we will show its
complexity can be reduced by statistical methods.
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3.2 Risk assessment based on optimal strategy for transaction
control

The problem for controlling the transactions under threats formulated as POMDP
can be reduced to a problem for a fully observed MDP [18]. In this section we
will sketch the reduction procedure which enables the analysis of the impact of
false negatives and false positives rates on the security risks.

Definition Security decision φ(s) is a function, which on each step of the trans-
action s chooses either noact or respond.

The security decisions may modify the transactions by enforcing respond ac-
tions at some steps. Therefore, they can extend the transaction path. If the
security decisions are wrong it might even happen that the transaction can end
in a deadend situation. To maximize the chances to make the right decisions
we will account all information available at the time of decision making, which
will turn the security decision into a stochastic function of the parameters of the
POMDP model.

Definition Decision policy π = (φ(1), φ(2), ..., φ(N)) is a collection of security
decision functions such that on each step n of the transaction, φ(n) depends only
on the past history till time n, and the prior probabilities of the states at time 0,
that is before the transaction has begun. We assume that the prior probability
of state deadend is 0, since otherwise any policy makes no sense. Therefore, the
sum of the prior probabilities of the other two states is equal to 1, and the prior
distribution of the states at time 0 is determined by the prior probability x of
state safe. So, we are now looking for a decision policy π which maximizes the
total reward

vπ(x) = Eπx (R(stateN )− cK),

where Eπx is the expectation, corresponding to the policy π and the prior prob-
ability x, and K is the number of times when we apply the action respond. In
the above expression R(stateN ) is the final income which we get in the last step
of the transaction.

Definition Value function of the POMDP model is the function

v(x) = max
π

vπ(x)

Definition The policy π such that v(x) = vπ(x) is an optimal policy.

The optimal policy plays a central role in our framework, since it is linked to
the risks. It certainly exists, since there are only a finite number 2N of possible
policies. It is worth noting that 0 < v(x) < 1, since R(x) ≤ 1, c > 0, and
the policy which does not recommend using the action respond at all yields a
positive income, equal to the probability to avoid observing crash during the
transaction. This fact motivates us to define the risk, corresponding to the prior
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probability x as 1 − v(x). This way, we can find both the value function v(x)
(resp. the risk 1− v(x)) and the optimal policy π, following the standard steps
of the dynamic programming algorithm. Let us set

Γ 1(x, y) =
p21x

p21x+ p22y
, Γ 2(x, y) =

p11x

p11x+ p12y
,

and VN (x) = 1. For 0 ≤ n < N we can recursively find the functions

V ′n(x) = −c+ (pp21 + (1− p)p22)Vn+1(Γ 1(p, 1− p))
+ (pp11 + (1− p)p12)Vn+1(Γ 2(p, 1− p)),

V ′′n (x) = (pxp21 + (1− p)xp22)Vn+1(Γ 1(px, (1− p)x))

+ (pxp11 + (1− p)xp12)Vn+1(Γ 2(px, (1− p)x)),

Vn(x) = max(V ′n(x), V ′′n (x)),

and the set An = {x ∈ (0, 1) : Vn(x) = V ′n(x)}. If n = N − 1 we get

V ′N−1(x) = 1− c, V ′′N−1(x) = x,

VN−1(x) = max(1− c, x), AN−1 = (0, 1− c).
We observe that the set AN−1 is a single interval, determined by the threshold
yN−1 = 1− c. The same holds for all n < N − 1. The corresponding thresholds
we denote by yn n = 0, 1, ...N − 1. The remaining iterations until reaching the
beginning of the transaction can be performed recursively, taking the previously
calculated solution as terminal.

After all thresholds have been found, the optimal policy recommends the
following optimal behavior:

1. At the beginning of transaction (n = 0), depending on whether we detect a threat
or not, we calculate the posterior probability x0 of the state safe by the formula

x0 =

{
Γ 1(x, 1− x), if z0 = treath
Γ 2(x, 1− x), if z0 = notreath

.

If x0 is greater than the threshold y0, then we do not apply the corrective action,
x0 remains unchanged, and with probability 1 − x0 we fall into a state deadend.
Otherwise, we use respond after paying the cost c, and the posterior probability
becomes 1 since we certainly know that we are safe;

2. On the next step we start with a prior probability equal to the just found posterior
probability (x0 or 1), multiplied by p, observe again if there is detection of a threat,
calculate the posterior probability x1, compare it with the threshold y1, and so on
till the end of the transaction;

3. Finally, the connection between the value functions in both POMDP and MDP
models is given by the formula

v(x) = (xp21 + (1− x)p22)V0(Γ 1(x, 1− x))

+(xp11 + (1− x)p12)V0(Γ 2(x, 1− x)).

The above equations form the algorithmic foundation for assessment of the se-
curity risks in transaction processing under threats. In the next section we will
use it for analysis of the impact of the false negatives and the false positives on
the security risks.
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4 Measuring False Positives and False Negatives

In security analytics false positives and false negatives characterize the methods
used to detect the threats. False negatives is particularly in the focus of inter-
est in ML literature, because wrong detection, identification, classification or
prediction of the security threats can lead to breaches in security with serious
consequences. On the other hand, false positives affect the performance since
they may lead to unnecessary actions to mitigate risks which are too small or
even do not exist at all.

4.1 Confusion matrix

Popular measure of the precision of detection algorithms ACC is typically given
by the following formula:

ACC =
p11 + p22

p11 + p12 + p21 + p22
=

1

2
(p11 + p22),

where the prior probabilities pij measure the true and false positives and nega-
tives of the algorithms and form a confusion matrix [15]. These measures may
characterize the quality of the algorithms but they do not account the impact of
the false negatives and false positives on the security risks in particular scenar-
ios, such as the execution of transactions under threats. As we will show bellow
the precision of the algorithms should not be a sole factor which determines the
choice of countermeasures.

4.2 The cost of false positives and false negatives

In the POMDP model false negatives and false positives are represented by the
prior probabilities p12 and p21, respectively. They depend only on the method
for detection of the potential threats and, as such, are input parameters for our
analysis. The horizon N depends on the particular transaction and it is another
input parameter for the analysis. The last parameter of the model, which may
have an impact on the risk, is the cost for using mitigating counteractions, c.
At first glance it looks like another input parameter, which needs to be known
in advance, but as we will show here it can be calculated on the base of the
other input parameters by estimating its boundary values using purely analytical
methods, so it is not an input parameter as such.

If we assume that the cost c as a parameter of the model is independent on
the other parameters we can face the following extremes:

– Case 1: c is too small. Then the optimal policy may recommend applying miti-
gating action respond permanently, without taking into consideration any obser-
vations;

– Case 2: c is too large. Then we would not be able to neutralize all threats even if
we know exactly when they occur, i.e., when both the false positives and the false
negatives are equal to 0. This could happen because the total cost of the mitigating
actions may exceed 1, which is the maximum reward we can get for successful end
of the transaction.
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In order to avoid such extremes we will make c dependant on both p-s and N .
Let M be the maximum number when the action respond can be used. Then,

we have Mc < 1 and (M + 1)c > 1 and therefore,

1

M + 1
< c <

1

M
. (1)

On the other hand, the number of potential threats during the transaction
is a random variable which has a binomial distribution with parameters 1 − p
and N − 1. Taking M to be an 1 − α–quantile of this distribution, for α small
enough, we guarantee that we can face Case 2 only with probability less than α.
In view of (1), 1/(M + 1) is a lower bound for c which mitigates the risks more
than M times by executing respond. Thus, Case 1 will not take place either.

The costs can be discounted by introducing a weight for repeating the same
counteractions in subsequent situations, but due to the relatively short horizon
of the transactions this is unnecessary and for the sake of simplicity we will use
fixed costs.

5 Impact of False Positives and False Negatives on
Security Risks

In this section we will provide experimental results about the impact of the
false negatives and false positive rates on the security risks, based on the op-
timal strategy for control of the transactions under threats using the method
of dynamic programming. In the calculations we vary the values of the input
parameters to cover the typical precision of the detection algorithms.

5.1 Dependence of the security risks from the precision of the
detection

The 3D plot of the binomial dependence of the security risks from the rate of
false negatives and false positives is shown on Fig. 1 in the Appendix. In order
to make it representative and sufficiently informative in the calculations we used
several combination of input parameters as follows:

– for the false negatives p12 within the interval 0.0–0.3, i.e. detection precision up to
70%, which is more than adequate as an estimation of the precision of a variety of
methodsm and

– for false positives p21 within the interval 0.0–0.5, i.e. up to 50% miss rate, which
is also adequate.

The 3D plot in Fig. 1 is based on the calculations in Tab. 1. It has a regular
spatial shape with monotonous dynamics without any extremes or inflection
areas. This allows for more convenient analysis of the simultaneous dependence
of the risks on both the false positives and false negatives after reducing it to a
series of projections on a 2D plane for a fixed second rate within the sampling
intervals.

The diagram of the risk dependence on the false negatives under a fixed
rate of the false positives is shown on Fig. 2 in the Appendix. As you can see
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p12 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
p21

0.01 0.26490 0.34798 0.45190 0.52604 0.55737 0.56926 0.57152 0.57156 0.57039
0.05 0.28062 0.36173 0.46836 0.53355 0.55973 0.57060 0.57085 0.57117 0.57161
0.10 0.30599 0.38422 0.48614 0.53993 0.56390 0.57092 0.57045 0.57117 0.57125
0.15 0.32487 0.40617 0.50181 0.55006 0.56778 0.57117 0.57212 0.57029 0.57326
0.20 0.34341 0.42234 0.51571 0.55538 0.57060 0.57094 0.57067 0.57241 0.57045
0.25 0.36716 0.44334 0.52447 0.56019 0.57128 0.57029 0.57241 0.57060 0.57212
0.30 0.38485 0.45882 0.53555 0.56377 0.56953 0.57153 0.57106 0.57031 0.57067
0.35 0.40217 0.47885 0.54599 0.56730 0.57203 0.57239 0.57170 0.57220 0.56991
0.40 0.41912 0.49361 0.55429 0.56922 0.57060 0.57020 0.57052 0.56953 0.56983

Table 1. Risk threshold in function of the false negatives and false positives

the risk for a very low level of false positives p21 increases with the increase of
the false negatives p12 in a linear order. This means that when the detection
captures actual threats the risk depends only on the false negatives detection
rate. On the contrary, the risk for false positives p21 around and more than
50% is practically constant and does not depend on the rate of false negatives
p12. This can be explained by the fact that although the false positives enforce
unnecessary responses to non-existing threats they also neutralize some of the
undetected threats.

The diagram of the risk dependence on the false positives p21 under the fixed
rate of the false negatives p12 is shown on Fig. 3 in the Appendix. The striking
observation from the diagram is, that the risk saturates around 20-25% rate
of false positives practically for all false negatives rates (false negatives rate are
normally within the range 0-50%). This means that the algorithms for detection
which produce more than 25% false positives practically have the same effect
on the risk and the quality of detection does not increase when lowering further
the false negatives rate. From the differentiation of the curves for different fixed
rates of false negatives in the initial rate intervals it is also obvious that the
quality of the algorithms which produce a low rate of false positives before the
saturation (0-25%) depends nearly proportionally on their rate - the fewer false
negatives, the lesser risk.

The results meet further the expectation. The two boundary combinations of
false positives/false negatives - high/high and low/low - determine the maximum
and minimum risky methods. More interesting are the results for a combination
of law false negatives with false positives close to the max. They show that
the high rate of false positives completely neutralizes the low false negatives.
Once more, this confirms the importance of the false positives for the choice of
detection method.

The above analysis shows that the choice of methods for detection needs to
consider not just the minimal false negatives and false positives, but also their
combined rate. Beyond certain rate of false negatives further minimization does
not reduce the risks and beyond certain rate of false positives the risk doesn’t
depend on the false negatives at all. There is no need to look for minimization
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of both false negatives and false positives, since the optimum depends on their
combination and any further minimization of false negatives or false positives
may be too costly without significant effect on the risk reduction.

5.2 Dynamics of the security risks along the transactions

Intuitively, the lower the rates of the false negatives and false positives are the
lower the risks are. But this does not account the moment of executing the
counteractions in response to the threats. Table 2 contains calculations based on
the optimal strategy which helps analyzing this dependence in more details.

N p12=0.05 p12=0.30 p12=0.05 p12=0.15 p12=0.30 cost
p21=0.05 p21=0.30 p21=0.30 p21=0.15 p21=0.05

5 0.189638093 0.271971568 0.271838029 0.272796722 0.22716054 0.417
10 0.361736347 0.571060961 0.57085112 0.550062678 0.458826459 0.292
15 0.580335931 0.747278141 0.747077204 0.735406971 0.677226803 0.292
20 0.631718964 0.851101596 0.847870525 0.824268906 0.768704437 0.225
25 0.669172001 0.911364804 0.903965426 0.879386462 0.834110451 0.183
30 0.70195926 0.946130333 0.937595461 0.916204114 0.882486834 0.155

Table 2. Change of security risks as a function of the remaining steps

We have calculated the change of the risks for several representative combi-
nations of p12 and p21:

1. Low rates for both false negatives and false positives: p12 = 0.05 and p21 = 0.05;
2. Low rate of false negatives but high rate of false positives: p12 = 0.05 and p21 =

0.30;
3. Close average rates of both false positives and false negatives: p12 = 0.15 and

p21 = 0.15;
4. High rate of false negatives but low rate of false positives: p12 = 0.30 and p21 =

0.05, and
5. High rates for both false negatives and false positives: p12 = 0.3 and p21 = 0.3.

Fig. 4 in the Appendix shows the dynamics of the risks along the path of the
transactions for these combinations. All curves are aperiodic, which means that
the earlier you counteract, the lower the risks of crashing the transaction are.

5.3 Dependence of the cost from the moment of counteracting

The parameter c, which measures the costs of executing counteractions for neu-
tralizing the threats, depends on the horizonN and can be calculated analytically
as discussed earlier. Since the interpretation of this parameter can be done in
terms of relative delay of the transaction due to the additional actions which
have to be executed to neutralize the threats, the distribution of its estimation
for discrete values of the horizon N allows to analyze the relative delays. The
diagram of the estimation of the costs for executing counteractions to respond
to security threats in function of the remaining situations before reaching the
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end of the transaction is shown in Fig. 5 in the Appendix. It looks like a step
function because it is based on analytical estimation of the interval of possible
values rather than on the actual values, but it still shows the linear dependence
of the costs - the longer the transaction is, the lower the cost is. This meets pre-
cisely the intuition, since the relative delay caused by the extra time needed to
execute countermeasures in long transactions decreases towards the end, while
the earlier application of countermeasures may require several repetitions.

6 Discussion and Future Development

The estimation of the security risks within the POMDP model is based on the
optimal strategy for control of the transactions which minimizes only the integral
risks, without accounting any specific information about the transactions. At first
glance the experimental results look somewhat trivial, but more importantly,
they essentially validate the theoretical model we are using. We can apply the
same method for investigation of safety problems in other application domains in
which asynchronous events may occur, such as faults, caused by machine failure
or human errors in autonomous devices and production lines.

More detailed estimation of the impact of false negatives/false positives can
be done if we know in which situation along the transaction the different threats
can occur. In such a case the optimal strategy can be tuned according to the
transactions to produce more informed security decisions. For this purpose the
prior probabilities should be functionally dependent on both the false nega-
tives/false positives rates of the detection algorithms and the situations, in which
the malicious activities take place. We are also considering the possibility to use
the risk assessment for analyzing the vulnerability of transaction processing sys-
tems by identifying dangerous situations. This would allow to validate the secu-
rity policies and to optimize them. In a more distant future we are also planning
to explore the potential of reinforcement learning for increasing the precision of
the assessment by additionally analyzing historical data. Since it is difficult to
obtain a real transaction data we are considering using Monte Carlo simulations
or other statistical methods for generating synthetic data.
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Appendix: Plots of the analytical calculations

The diagrams in this Appendix are plotted on the base of the calculations
shown in Tab. 1 and Tab. 2. They have been produced using Python programs
which calculate the optimal strategy using the method of dynamic programming
by varying the input parameters of the value function.

Fig. 1. 3D plot of the risk in function of the false negatives and false positives
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Fig. 2. Risk in function of the false negatives at fixed false positives

Fig. 3. Risk in function of the false positives at fixed false negatives
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Fig. 4. Risk in function of the remaining situations of the transaction

Fig. 5. Estimations of the cost c in function of the horizon N


