
0

Adaptation of Business Rules in

Business Workflow Systems

This dissertation is submitted for the degree

of

Doctor of Philosophy

By

Kanana Ezekiel

Date: May 2021

School of Computing and Digital Media

London Metropolitan University

166-220 Holloway Road, London, N7 8DB

1

Acknowledgement

This PhD thesis is a result of four years and ten months of hard work carried out at London

Metropolitan university. The results of this research would not have been conceivable

without the help of others.

First and foremost, I would like thank God for everything, thank you Lord Jesus. Second,

my gratitude goes to my supervisors at the university, Professor Karim Ouazzane and Dr

Vassil Vassilev for their excellent supervision of this research. This work has benefitted

from great ideas, useful discussions, guidance and valuable comments on how to advance

my work further. I’m grateful for keeping sure this research stayed on the right course.

Also, I would like to thank my fellow students at London Metropolitan University for

various discussions and exchanges of ideas. Special thanks to Joe and Gill Hayden for their

excellent editing and proofreading of the thesis.

I am also grateful for the funding received from Veritiv Corporation formerly Emerson

Power and Network (Avocent International Ltd) and especially to Lori DeMatteis

(formerly Vice-President at Emerson Power and Network), who approved my funding and

has been supportive of my career.

Last but not least, I would like to thank my parents (Mr and Mrs S J Ezekiel), family and

friends for believing in me, encouraging and supporting me in prayers.

Kanana Ezekiel, Sep 2020

2

Abstract

The term “workflow” is widely recognised in the business community. Workflows are

commonly seen as the top priority for companies wanting to survive the current competitive

markets. A business management system with configurable workflow provides many

benefits including not only a central repository for the way companies do business but also

boosts teams efficiency with structured processes, process automation which means errors

are greatly reduced, less time is needed for training, fewer repetitive tasks and many more.

Despite the many benefits that workflows bring, the complexities of configuring workflows

cause major roadblocks for companies moving towards workflow solutions. The need for

having configurable workflows in dynamic environments have been discussed and well

documented by various authors in research communities. In the existing research, there is

a lack of support on accounting for business rules dependencies within workflows. Without

accounting the logical dependencies, we cannot have an efficient mechanism for business

rules adaptation in real-time. To tackle the configuration problem, this research proposed

a business rule component-based formal model for development of business workflows.

The formal model accounts for logical dependencies between business rules in the form of

AND-OR graphs. The graphs are created through Event, Condition and Action (ECA)

components of business rules. The business rule change propagation is implemented as an

algorithm of graph traversal through the AND-OR graph patterns. A two-levels inference

mechanism is built as a vehicle for controlling the business process execution and

adaptation of the business rules at real time based on propagating changes between business

rules dependencies. The major advantage of our research is the universal, strictly logic-

based event-driven framework for business process modelling and control which allows

automatic adaptation of the business rules governing the business workflows based on

accounting their structural dependencies. The framework is entirely domain-independent

and can be used across industries.

3

Author Related Publications
● Ezekiel K., Vassilev, V., Ouazzane, K. and Patel, Y. (2019), "Adaptive business

rules framework for workflow management", Business Process Management

Journal, Vol. 25 No. 5, pp. 948-971 publisher by Emerald Publishing Limited,

https://doi.org/10.1108/BPMJ-08-2017-0219.

● Kanana Ezekiel, Vassil Vassilev, Karim Ouazzane (2018) "Two-level Architecture

for Rule-based Business Process Management". BUSTECH 2018, The Eighth

International Conference on Business Intelligence and Technology February 18,

2018 to February 22, 2018 - Barcelona, Spain.

https://www.researchgate.net/publication/325115311_Two-

level_Architecture_for_Rule-based_Business_Process_Management

4

Table of Contents
Acknowledgement .. 1

Abstract ... 2

Author Related Publications ... 3

1. Introduction ... 14

1.1 Motivation ... 14

1.2 Research Hypotheses .. 17

1.3 Aim and Objectives... 18

1.4 Research Methodology ... 21

1.4.1 Analytical Method .. 21

1.4.1.1 Business Rules Acquisition ... 21

1.4.1.2 Business Rules Preparation and Classification 22

1.4.2 Constructive Method ... 22

1.4.2.1 Business Rules Model Development ... 22

1.4.2.2 Business Rules Model Optimisation.. 23

1.4.2.3 Productionisation ... 23

1.4.3 Experimental Method.. 23

1.5 Thesis Structure .. 24

2. Literature and Applications Review ... 26

2.1 Existing Research Studies ... 26

2.1.1 Business Rules in Workflows ... 27

2.1.2 Business Rules Formal Models in Workflows.. 31

2.1.3 Change Propagation and Adaptation Algorithms 32

2.1.4 Indexing Mechanisms ... 34

2.2 Vendors Applications and Systems ... 35

2.2.1 IBM BRMS and BPM .. 36

2.2.2 CLIPS ... 36

2.2.3 JESS ... 37

2.2.4 ORACLE BRMS and BPM ... 37

2.2.5 JBOSS DROOLS BRMS and jBPM.. 37

2.2.6 OpenRules .. 38

2.2.7 PRRP & SBVR .. 38

2.3 Summary .. 38

3. Business Rules, Process and Workflows .. 41

5

3.1 Definition of Business Rule and BRMS ... 41

3.2 Definition of Business Process, Workflow and BPMS 42

3.3 Workflow Patterns .. 42

3.3.1 Sequence (Serial) Workflow Patterns .. 43

3.3.2 Parallel Workflow Patterns .. 43

3.4 Business Rules Structure... 43

3.5 Business Rules Ontology .. 44

3.6 Summary ... 48

4. Proposed Business Rules Model ... 50

4.1 Methodological foundation of the framework .. 50

4.2 Two-Levels Architecture .. 52

4.3 Business Rules Classification ... 55

4.4 Business Process Ontology and Formal Specification...................................... 58

4.5 Business Rules Relationships ... 68

4.5.1 Business Rules Formal Description .. 68

4.5.2 Relationships between Business Rules ... 69

4.5.3 Business Rules Dependency Graphs (AND-OR Graphs) 71

4.5.3.1 Direct AND Dependency patterns ... 72

4.5.3.2 Direct OR Dependency patterns .. 75

4.5.3.3 Indirect AND Dependency patterns .. 78

4.5.3.4 Indirect OR Dependency patterns.. 82

4.5.4 Business Rules Dependency Patterns ... 82

4.5.5 Application of AND-OR Graphs .. 84

4.6 Summary ... 86

5. Software Architecture, Metarules and Indexing ... 87

5.1 Software Architecture ... 87

5.2 Metarules... 88

5.3 Indexing of Business Rules ... 91

5.3.1 Index Structure .. 92

5.3.2 Path Dependency Pattern Indexing ... 93

5.4 Summary ... 96

6. Change Propagation and Adaptation Algorithms ... 97

6.1 Business Rules Change Propagation ... 97

6.2 Change Propagation via Dependency Patterns ... 99

6

6.2.1 Path Dependency Propagation .. 99

6.2.2 Direct-Node Dependency Propagation ... 105

6.2.3 Level-Based Dependency Propagation ... 105

6.2.4 Neighbour Dependency Propagation .. 105

6.2.5 Indirect Node Dependency Propagation ... 105

6.3 Algorithm for Business Rules Change Propagation 106

6.4 Business Rules Adaptation in Business Workflows 109

6.4.1 Initiating Business Rule .. 112

6.4.2 Terminating Business Rule ... 112

6.4.3 Sequential Flow Business Rules ... 113

6.4.4 Parallel AND-Split Flow Business Rules ... 113

6.4.5 Parallel OR-Split Flow Business Rules .. 114

6.4.6 Parallel AND-Merge Flow Business Rules .. 115

6.4.7 Parallel OR-Merge Flow Business Rules ... 116

6.5 Algorithm for Business Rules Adaptation in Workflows 117

6.6 Summary ... 122

7. Implementation ... 124

7.1 Drools Overview ... 124

7.2 ECA Model Prototype... 125

7.2.1 Business Rule Classes ... 127

7.2.2 Business Rule Template .. 131

7.2.3 Indexing Path Dependency Patterns ... 132

7.2.4 Change Propagation and Adaptation Algorithms 135

7.2.4.1 Business Rules Change Propagation Algorithm 135

7.2.4.2 Business Rules Adaptation Algorithm .. 136

7.2.5 Business Rules Editor (ECA Model Test Client) 140

7.3 Summary ... 144

8. ECA Model Validation ... 145

8.1 Validation Criteria .. 146

8.2 Data Centre Use cases ... 148

8.2.1 Add Business Rules Components and Propagate Change 149

8.2.2 Update Business Rules Components .. 154

8.2.3 Delete Business Rules Components.. 155

8.2.4 Enable Business Rules to Initiate and Terminate Workflow 156

7

8.2.5 Sequential Flow Patterns... 158

8.2.6 Parallel-OR Merge Flow Patterns ... 160

8.2.7 Parallel-AND Merge Flow Patterns .. 161

8.2.8 Parallel-OR Split Flow Patterns .. 163

8.2.9 Parallel-AND Split Flow Patterns ... 164

8.3 Experiments .. 165

8.3.1 Validation of Dynamic Business Rules and Change propagation 167

8.3.1.1 Adding Business Rules Components & Change Propagation 167

8.3.1.2 Modifying Business Rules Components ... 174

8.3.1.3 Deleting Business Rules & Components .. 177

8.3.2 Validation of Business Rules Adaptation in Workflows 178

8.3.2.1 Enabling Business Rules Components to Initiate & Terminate Workflow

... 178

8.3.2.2 Enabling Sequential Process Flow Patterns .. 181

8.3.2.3 Enabling Parallel-OR Merge Process Flow Patterns 188

8.3.2.4 Enabling Parallel-AND Merge Process Flow Patterns 195

8.3.2.5 Enabling Parallel-OR Split Process Flow Patterns 202

8.3.2.6 Enabling Parallel-AND Split Process Flow Patterns 209

8.4 Summary ... 216

9. Conclusion and Future Research .. 222

9.1 Reflection on Research Questions .. 222

9.2 Reflection on Aim and Objectives .. 224

9.3 Contributions to the Knowledge ... 226

9.4 Limitations and Future Research .. 228

References ... 230

Appendices .. 241

Appendix I – Possible Validation Scenarios ... 241

Appendix II – Business Rules in XYZ Equipment Install Workflow 244

Appendix III – XYZ Business Rules in Drools DRL format...................................... 245

Appendix IV – XYZ Business Rules Insertion via Drools DRL 247

Appendix V – Level-Based Dependency Pattern Index Algorithm............................ 250

Appendix VI – JBoss Drools Setup and Installation .. 252

Appendix VII – JBoss Drools Components .. 255

Appendix VIII – Editing Business Rules via Test Client ... 257

8

List of Tables
Table 3.5. 1 Ontology Concepts Description ...47

Table 3.5. 2 OWL Concepts ..47

Table 5.3. 2 Business rule – rack utilization exceeds by data centre location………….. 94

Table 6.5. 1 Business Rules Dependency Mapping Table...118
Table 7.2. 1 Description of Core ECA Model Classes ..129
Table 8.1. 1 Research Objectives, Challenges, Validation Criteria and Experiments145

Table 8.1. 2 Validation Criteria Description ..147
Table 8.2. 1 Use cases from DC Workflow ...149
Table 8.2. 2 Use case #1 - Business Rule Components (ECA)153

Table 8.2. 3 Use case #1 - Inserted Business Rule (R13) ..154
Table 8.2. 4 Use case #2 - Business Rule Components (ECA)155
Table 8.2. 5 Use case #4 - Business Rule Components (ECA)158

Table 8.2. 6 Use case #5 - Business Rule Components (ECA)159
Table 8.2. 7 Use case #6 - Business Rule Components (ECA)161
Table 8.2. 8 Use case #7 - Business Rule Components (ECA)162

Table 8.2. 9 Use case #8 - Business Rule Components (ECA)164
Table 8.2. 10 Use case #9 - Business Rule Components (ECA)165
Table 8.3. 1 Experiments and Use cases ..167

Table 8.4. 1 Validation Results ..221
Table 9.1. 1 Reflection of Research Questions ..223

Table 9.2. 1 Status of Achieved Objectives ...225

9

Code Snippets

Code Snippet 3.5. 1 Framework development stages ..48
Code Snippet 5.2. 1 Business Rule using DRL Syntax ...88
Code Snippet 5.2. 2 Metarule using DRL Syntax ..89
Code Snippet 5.2. 3 Metarule updating an existing event ...89

Code Snippet 5.2. 4 Index creation using Metarule ...90
Code Snippet 5.3.2. 1 Procedural programming (Java Syntax) ...95
Code Snippet 6.3. 1 Business Rules Change Propagation Algorithm108
Code Snippet 6.5. 1 Transform Business Rules into Processes120
Code Snippet 6.5. 2 Define Business Rule Dependencies as per Table 6.5.1121

Code Snippet 6.5. 3 Workflow Creation using Drools APIs ...122

Code Snippet 7.2.2. 1 ObjectDataCompiler for Rule Template (Java syntax)132
Code Snippet 7.2.3.1 1 Indexing Method for Path Dependency Patterns........................134

Code Snippet 7.2.4. 1 Business Rule Change Propagation Algorithm135

Code Snippet 7.2.4.2. 1 Convert Business Rules into Processes Algorithm137
Code Snippet 7.2.4.2. 2 Build Dependency Graphs Algorithm138

Code Snippet 7.2.4.2. 3 Generate Workflow Algorithm ...140
Code snippet 7.2.5. 1 Demonstrate “Add Rule” Swing Button143

10

List of Figures

Figure 1. 1 Actual process maturity of the organisations ..15

Figure 1. 4 Research Methods ...21

Figure 3.5. 1 Ontology graph using Protégée ..50
Figure 4. 1 Framework development stages ..50
Figure 4.2. 1 Business Process Level...52
Figure 4.2. 2 Business Rules Control Level ..53

Figure 4.2. 3 Business Rules Classification ...53
Figure 4.2. 4 Two-Levels Architecture ..54
Figure 4.3. 1 Initiation Business Rule ..55
Figure 4.3. 2 Event Business Rule ...56

Figure 4.3. 3 Flow Business Rule ..57
Figure 4.3. 4 Termination Business Rule...57

Figure 4. 4 Workflow and Associated Business Rules (Example)58
Figure 4.5.2 1 Event to Event Relationships..69
Figure 4.5.2 2 Event to Condition Relationships ...69

Figure 4.5.2 3 Event to Action Relationships ..70
Figure 4.5.2 4 Condition to Condition Relationships ..70
Figure 4.5.2 5 Condition to Action Relationships ...70

Figure 4.5.2 6 Action to Action Relationships ..70
Figure 4.5.3.1. 1 Strong Direct Event-AND Graph ...72

Figure 4.5.3.1. 2 Strong Direct Condition-AND Graph ..73
Figure 4.5.3.1. 3 Strong Direct Action-AND Graph..74

Figure 4.5.3.2. 1 Weak Direct Event-OR Graph..75
Figure 4.5.3.2. 2 Weak Direct Condition-OR Graph ...76

Figure 4.5.3.2. 3 Weak Direct Action-OR Graph ..77
Figure 4.5.3.3. 1 Strong Indirect Event-AND Graph ...78
Figure 4.5.3.3. 2 Strong Indirect Condition-AND Graph ..80

Figure 4.5.3.3. 3 Strong Indirect Action-AND Graph ...81
Figure 4.5. 4 AND-OR Graph with Dependency Patterns...84
Figure 4.5. 5 Business Rule Dependency Graph Control Processes..................................86

Figure 5. 1 Software Architecture Diagram ...87
Figure 5.3. 1 Graph Dependency Index Structure ...93
Figure 5.3. 2 Path Dependency Indexing Graph ..95
Figure 6.2. 1 Business Rules Path Dependencies ..101

Figure 6.2. 2 Business Rule 6 Inserted ..102
Figure 6.2. 3 Business Rule 3 Deleted ...103
Figure 6.2. 4 Business Rule 3 Updated ..104

Figure 6.4. 1 Request Cancellation Workflow ...110
Figure 6.4. 2 Business Rules modelling Request Cancellation Workflow110
Figure 6.4. 3 Initiate Workflow via Business Rules ..112
Figure 6.4. 4 Terminate Workflow via Business Rules ...113
Figure 6.4. 5 Business Rules modelling Sequential Process Flows113
Figure 6.4. 6 Business Rules modelling Parallel AND-Split Process Flows114
Figure 6.4. 7 Business Rules modelling Parallel OR-Split Process Flows115

11

Figure 6.4. 8 Business Rules modelling AND-Merge Process Flows115

Figure 6.4. 9 Business Rules modelling OR-Merge Process Flows116

Figure 6.5. 1 Business Process Nodes Creation ...117
Figure 6.5. 2 Business Rules Mapping Table to Workflow ...119
Figure 7.1. 1 Business Logic Integration Platform ..124
Figure 7.2. 1 Business Rules Modules Integration within Drools Platform125
Figure 7.2. 2 Key Implementation Steps ...126

Figure 7.2.1. 1 UML Class Diagram showing ECA Model major classes130
Figure 7.2.2. 1 Business Rules Template Structure ...131
Figure 7.2.3. 1 UML Class Diagram for ECAIndexPatternGraph Class133
Figure 7.2.5. 1 ECA Model Test Client ...141
Figure 7.2.5. 2 Business Rule and Components Insertion ...143

Figure 8.2. 1 DC Floor Plan with Equipment Installed ...152

Figure 8.2.2. 1 XYZ Equipment Install Workflow ..152
Figure 8.2.2. 2 XYZ Equipment Install Workflow after Deleting R5156

Figure 8.2.2. 3 Equipment Move Workflow Diagram ...157

Figure 8.2.2. 4 Sequential Workflow ...159
Figure 8.2.2. 5 Parallel-OR Merged Workflow ...160
Figure 8.2.2. 7 Parallel-AND Merge Workflow ..162

Figure 8.2.2. 8 OR Split Workflow..163
Figure 8.2.2. 9 AND Split Workflow ..165

Figure 8.3.1. 1 Adding R1 and Components via ECA Model Test Client169
Figure 8.3.1. 2 Adding R5 Event and Action Components via ECA Test Client170
Figure 8.3.1. 3 Adding R6 Condition and Action Components via ECA Test Client171

Figure 8.3.1. 4 Insert R13’s Condition and Action causing Change Propagation173

Figure 8.3.1. 5 Modify R5 and Components via ECA Model Test Client175
Figure 8.3.1. 6 Modifying R5 Event and Action Components via ECA Test Client176
Figure 8.3.1. 7 Deleting R5 Event and Action Components via ECA Test Client177

Figure 8.3.2. 1 Initiating (R101) and Terminating (R102 & R04) Business Rules179
Figure 8.3.2. 2 Initiating (R101) and Terminating (R102 & R04) via ECA Test Client .180

Figure 8.3.2. 3 R101 causing Start and (R102 & R04) causing End Workflow181
Figure 8.3.2. 4 Business Rules presenting Sequential Relationships182
Figure 8.3.2. 5 R201, R202 and R203 and Relationships in DRL Format183

Figure 8.3.2. 6 Business Rules and Relationships enabling Sequential Process Flows ..183
Figure 8.3.2. 7 Insert R204 and Relationships via ECA Model Test Client184
Figure 8.3.2. 8 Insertion of R204 causing Sequential Process Flows185

Figure 8.3.2. 9 Update R204 and Relationships via ECA Model Test Client186

Figure 8.3.2. 10 Modification of R204 causing Sequential Process Flows186

Figure 8.3.2. 11 Delete R204 and Relationships via ECA Model Test Client187
Figure 8.3.2. 12 Deletion of R204 causing removal of Process P204 and Connections .188
Figure 8.3.2. 13 Business Rules presenting Parallel Merge-OR Relationships189
Figure 8.3.2. 14 R301, R302, R303, R304 and Relationships in DRL Format190
Figure 8.3.2. 15 Rules & Relationships enabling Parallel-OR Merge Process Flows190

Figure 8.3.2. 16 Insert R305 and Relationships via ECA Model Test Client191
Figure 8.3.2. 17 Insertion of R305 causing Parallel-OR Merge Process Flows192
Figure 8.3.2. 18 Update of R303 and Relationships via ECA Model Test Client193

12

Figure 8.3.2. 19 Modification of R303 enabling Parallel-OR Merge Process Flows193

Figure 8.3.2. 20 Deletion of R302 and Relationships via ECA Model Test Client194

Figure 8.3.2. 21 Deletion of R302 causing Sequential Process Flows195
Figure 8.3.2.21. 1 Business Rules presenting Parallel-AND Merge Relationships196
Figure 8.3.2. 22 R301, R302, R303, R304 and Relationships in DLR format197
Figure 8.3.2. 23 Rules & Relationships enabling Parallel-AND Process Flows197
Figure 8.3.2. 24 Insert R305 and Relationships via ECA Model Test Client198

Figure 8.3.2. 25 Insertion of R305 causing Parallel-AND Process Flows199
Figure 8.3.2. 26 Update R303 and Relationships via ECA Model Test Client200
Figure 8.3.2. 27 Modification of R303 causing Parallel-AND Merge Process Flows200
Figure 8.3.2. 28 Delete R302 and Relationships via ECA Model Test Client201
Figure 8.3.2. 29 Deletion of R302 causing Sequential Process Flows202

Figure 8.3.2. 30 Business Rules presenting Parallel-OR Split Relationships203

Figure 8.3.2. 31 R404, R405, R406 and Relationships in DLR format204
Figure 8.3.2. 32 Rules & Relationships enabling Parallel-OR Split Process Flows204

Figure 8.3.2. 33 Insert R407 and Relationships via ECA Model Test Client205

Figure 8.3.2. 34 Insertion of R407 causing Parallel-OR Process Flows..........................206
Figure 8.3.2. 35 Update R405 and Relationships via ECA Model Test Client207
Figure 8.3.2. 36 Updating R404 causing Parallel-OR Split Process Flows207

Figure 8.3.2. 37 Delete R404 and Relationships via ECA Model Test Client208
Figure 8.3.2. 38 Deletion of R404 causing removal of P404 and Connections209

Figure 8.3.2. 39 Business Rules presenting Parallel-OR Split Relationships210
Figure 8.3.2. 40 R501, R502, R503, R504 and Relationships in DRL Format211
Figure 8.3.2. 41 Rules & Relationships enabling Parallel-AND Split Process Flows …211

Figure 8.3.2. 42 Insert R305 and Relationships via ECA Model Test Client212

Figure 8.3.2. 43 Update R503 and Relationships via ECA Model Test Client213
Figure 8.3.2. 44 Modification of R503 causing Parallel-AND Split Process Flows214
Figure 8.3.2. 45 Delete R502 and Relationships via ECA Model Test Client215

Figure 8.3.2. 46 Deletion of R502 causing removal of P502 and connected paths215

13

List of Acronyms

AAL-DL Advanced Adaptation Logic Description Language

AI Artificial Intelligence

BPEL Business Process Execution Language, also known as WS-BPEL or BPEL4WS

BPEL4WS Business Process Execution Language for Web Services

BPM Business Process Modelling

BPMN Business Process Modelling Notation

BRM Business Rules Management

BRMS Business Rules Management Systems

CLIPS C Language Integrated Production System

DC Data Centre

DFD Data Flow Diagrams

DRL Drools Rule Language

EBNF Extended Backus–Naur Form

ECA Event Condition Action - Business Rules components

FR Flow Rule

IR Initiation Rules

JESS Java Expert System Shell

MOF Meta Object Facility

OCL Object Management Group's Object Constraint Language

OWL Web Ontology Language

POJO Plain Old Java Object

PRRP Production Rules Representation

SBVR Semantics of Business Rules

TR Termination Rules

UML Unified Modeling Language

URML UML-Based Rule Modelling Language

VIDRE Vienna Distributed Rules Engine

WS-BPEL Web Services Business Process Execution Language

14

1. Introduction

It is widely recognised that a business management system with configurable workflow

holds the potential to standardize the processes and activities associated with each

transaction. This creates several benefits including not only a central repository for the way

companies do business but also boosts teams efficiency with structured processes, provides

process automation which means that errors are greatly reduced, less time is needed for

training, there are fewer repetitive tasks, custom developments are unnecessary and many

more. Indeed, workflow and business process management systems are widely seen as the

top priority for companies wanting to survive the current competitive markets [35]. Despite

the many benefits, the complexities of configuring workflows cause major roadblocks for

companies moving towards workflow solutions. The need for having configurable

workflows in mobile and dynamic environments have been discussed and well documented

by various authors including Harrison [48], Raza [93] and Ben et al. [71]. This research is

primarily focused on adaptation of business rules to manage and support workflows

including the configuration task. The Chapter is divided into five sections including

research motivation, research hypotheses, aim and objectives, approach taken to reach the

goal of the research (research methodology) and the outline of the thesis.

1.1 Motivation
Businesses rely on processes to function. These are accomplished by using business rules

(policies), which are implemented as components of workflows in computing applications.

Business rules can be applied to software applications or systems; almost all workflows

are based on some sort of rule-based systems. As described in [102], business rules control

the behaviour of business processes and enforce best practices in the workflow domain.

For example, in a data centre workflow application, a business rule may exist to ensure that

before the equipment installation process is executed, rack space utilization is less than

rack space capacity. Therefore, it makes sense to use business rules to manage workflow

processes. The biggest strength behind the use of business rules comes from having

multiple and changing business rules that interact with each other and with processes. In

workflows, an essential element for success is the degree to which the business rules can

15

quickly change and propagate their changes in real time. However, when more business

rules are added, modified, and inter-relations are established, business rules and workflow

require extensive work to maintain their consistency. To date, it is still very difficult to

configure and automate workflows [27]. The workflow modification process requires

expert knowledge and it is time consuming. This is probably one of the reasons why

business process management and workflow systems get a bad rap as an ineffective process

management solution. Workflow systems, vendors and experts typically offer generic

workflow solutions. Workflows are typically defined on an abstract level and customised

by a specific system to fit processes in the local environments [119]. With custom fixed

workflows, the process status and rules are defined in advance. If rules change in later days,

the workflow becomes unusable and requires major work to change them. Dynamic

conceptual models should be incorporated to support the changed workflow processes and

rules. The recent state of sales report by Salesforce [106] shows that sales reps spend 66%

of their working time weekly on non-selling duties. However, with automation and

configurable workflows, certain business rules can be enforced to allow them to

concentrate on their core responsibilities. The whole idea of having workflow systems is

to help implementing repeated tasks consistently, easily, and effectively, problems being

documented and prevented in future by improving the processes. Even though 54% of the

processes are documented, they are unmanaged (Figure 1.1). Based on the observation

below, we can envisage the cause being the complexity of configuring workflows.

Figure 1. 1 Actual process maturity of the organisations

 Source PROCESOWCY.PL's [89].

16

In the survey conducted by PROCESOWCY.PL [89], it turned out that workflows are

implemented but ceased to work after some time. Companies are encountering difficulties

in configuration of the workflows to adapt to changes.

According to report by Mulholland in [72], a well-known company “Triaster Limited”

discovered that by changing just one process that was often run, their client could save over

£300,000 per year. The process in question originally cost £396 for every run and was cut

down to just £173 by making some changes. The process would run 247 times per year in

a single business unit, saving that unit £43,000. Across the whole company, the process

was run roughly 1,812 times per year, making the improvements save a massive £313,476.

Enabling workflows with ability to support changes can result in faster response times, thus

improving workflow change and configuration experience.

Despite many benefits that workflows bring, one of three common challenges that disrupt

clinical workflows is the configuration problem which usually is caused by a disconnect

between workflow design and business processes. This arise due to new processes being

introduced or requirements changes. In articles [54,125], highlighted concerns regarding

risks introduced by workflow disruptions. Beside productivity losses, there is a huge risk

to patients in form of inadequate care. Workflows problems may lead to medical errors,

the third leading cause of death in United States.

Problems mentioned above have inspired the development of a novel approach to automate

workflows using a framework of business rules and business rules relationships. The model

foundation is on the Event-Condition-Action components, which is based on a formal

business rules ontology. The prototype is built on an object-oriented technology using Java

by applying business rule change propagation, business rule adaptation and indexing

algorithms. The outcome of this research is an enhanced and efficient mechanism to allow

workflows to be easily modified.

17

1.2 Research Hypotheses
The key research questions, which present the scientific significance of this investigation

is (1) how to develop an innovative framework based on dynamic business rules to support

and control workflow processes (adaptation of business rules in workflows) and (2) to

investigate and learn about the business rules structure and behaviour patterns for the

creation of business change propagation mechanisms to support change propagation

between related business rules. This study will therefore address the following research

questions:

● Business rules can be considered to control business processes to improve and

allow higher adaptability during design and execution of a workflow. What factors

limit the adaptation of the business rules in workflows?

● How to develop an ontology of the business workflows which makes it possible to

formalize the business rules using templates so that dependencies between the rules

can be described.

● Changes often command other related changes, so the question here is how can we

specify the dependencies between the rules on the base of the ontology model so

that the rules can be adapted to the changing conditions in real-time, making it

possible to propagate the necessary changes? To be more precise, is it possible to

create an efficient algorithm for change propagation, which enables the run-time

adaptation of the business workflows?

● How can we optimise business rules to improve execution performance and provide

runtime modification? How efficiently can the underlying business rules be

retrieved?

● How we can use the business rule dependencies to construct an efficient mechanism

for adapting the rules in the case of changes? How can we enable adaptation of the

business rules in real-time with reasonable complexity?

18

● Can the proposed model structure be able to generalise to new business rules in a

workflow not seen during prototype validation?

1.3 Aim and Objectives
The aim of this research is to construct an efficient mechanism for adapting the business

rules to the changing conditions of the business workflows. This is achieved by first

investigating the problem of managing dynamic business rules in workflow systems.

Second by providing a flexible and adaptable real-time solution to deal with the complexity

of managing changes and propagation. Henceforth improve the efforts required to identify,

modify and maintain business rules in workflows. The desired outcome is to provide

dynamic business rules that can control workflows in real time.

The main objectives are:

1. Study existing research works through literature review in the area of business rules

and workflows. This objective is further divided into the following sub objectives:

a. Information gathering by identifying relevant published research papers,

journals, articles, posters, etc.

b. Reviewing existing approaches and methods for accessing and modifying

business rules reported in the research papers

c. Studying possible approaches and methods of formalizing business rules

d. Providing critical analysis and evaluation of the researched papers to

establish real gaps and limitations to the existing business rules problem.

2. Study business rules and workflow systems and products in the market today. This

objective is also divided into the following sub objectives:

a. Identify and get familiar with relevant workflow business rules systems and

products to understand the trends of what has been done in today’s market.

b. Review existing approaches and methods for modifying business rules

provided by these systems and products

c. Provide critical analysis of the systems and products to establish the real

gaps and limitations to the existing business rules problem.

19

3. Using a suitable methodology to establish and design concepts necessary to support

the management and administration of business rules in workflows

a. Define business rule structure

b. Define business rules concepts

c. Define business process concepts to be supported by business rule concepts

4. Develop a formal model to define business rules concepts and relationships.

a. Define a methodology of a proposed business rules model

b. Define the framework of proposed business rules model for formal business

rules concepts / definitions

c. Define business rules classifications

d. Define business rules relationships formal definitions and dependency

graphs

5. Validate the proposed model by using a prototype to demonstrate the following

capabilities:

a. Provide runtime support for dynamic creation, modification and deletion of

business rule and event, condition, action components, expressing a higher

level of business rules abstraction, usability and adaptability in real-time. It

is intended to address the lack of support for managing dynamic business

rules and components (events, conditions, actions) in the existing

frameworks. As mentioned in [94], a typical business rule is a script buried

in a program code and it is never easy to modify parts or components (event,

condition action) of the rule. However, the dynamic nature of business rule

and the likelihood of competing change requirements means the rules and

components will need to be modified but changes are not known in advance,

which makes it difficult to specify adequate changing components or parts

priori. Hence, business rule and components (event, condition and action)

cannot be static and must constantly evolve to remain relevant.

20

b. Provide support for managing business rules and components relationships

in real time. It is intended to address the lack of support for managing related

and conflicting business rules at components (event, condition, action)

level. In the current business rule management frameworks, relationships

are not based on business rules components (event, condition, action),

instead relationships are formed at the rule level. There is no way of

determining relationships at business rule components level. This means a

change of one component would require the whole business rule to be

modified.

c. Provide support for managing change propagation between business rules

and components.

d. Provide support for managing business rules adaptation to control and

govern a workflow, hence provide support for managing process flows

within a workflow. It is intended to implement the adaptation of business

rules to control business processes in a workflow. The objective is to

provide a mechanism to help to solve the common workflow configuration

problem. Business processes are rigid and difficult to maintain [95].

Rigidity is characterised by not accepting changes at runtime without

programming and recompiling of workflow during reconfiguration process.

The strategy of our solution is to describe processes using business rules

that are afterwards translated into graphs to manage the objects and

dependencies providing flexibility during runtime modification. Business

rules’ flow patterns in a graph provide a means of connecting process

activities together. The business rules’ flow patterns play a big role in

determining how the process will be executed in a workflow, henceforth the

key objectives include the ability to enable the start of a process, disabling

of the end process and execution of intermediate processes.

21

1.4 Research Methodology
The methodology of this research combines several methods, which are needed to address

the objectives specified in section 1.3 in an adequate way. Due to the nature of the proposed

solution, the methodology combines analytical, constructive, and experimental methods.

The analytical method will be applied during the early stage when there is a need to

critically analyse business rules to build a rich set to support the validation step. The

constructive method will be used for modelling, formulating building blocks of the

framework, and constructing the software prototype. The experimental method will be used

to test and validate the model based on the use of cases and scenarios identified. Figure 1.4

presents the methods performed.

Figure 1. 4 Research Methods

1.4.1 Analytical Method

The analytical method details important analysis activities necessary to provide a rich set

of business rules to be used for validation step. These activities include:

1.4.1.1 Business Rules Acquisition

The purpose of having a special business rule acquisition activity is to make the acquisition

process more systematic as to ensure all the business rules are acquired. The business rules

are captured from users to determine the user requirements. Also captured within previous

business rules and process management systems are stored in the repository and are

22

available for further and detailed analysis. Note, the proposed ECA Model itself presents

an important source for business rules.

1.4.1.2 Business Rules Preparation and Classification

This activity ensures business rules are atomic, each rule belongs to one category, and is

formally described using a business rule language. The business rule classification

simplifies the formalisation and ensures higher clarity and consistency of the business rules

and components. For each business rule, an appropriate rule template is defined to capture

rule components (event, condition and action). A business rule template represents a

pattern that tells what part of business rule description belongs to event, condition and

action. Three categories of business rules are collected: initiation rules, execution rules

(process rules and flow rules) and termination rules. These will allow:

● A business rule to trigger a process or activity.

● A business rule to restrict the execution of a process or activity.

● A business rule to execute processes in workflows.

1.4.2 Constructive Method

This provides a constructive platform to achieve our mentioned objectives. To build a

model to cater for dynamic business rules adaptation in workflows. The model will

continually learn and adapt to new business rules as they emerge and change. This includes

the support for advanced algorithms such as business rule indexing, change propagation

and adaptation of rules in workflow. Followed by building a prototype and running a series

of experiments on use cases to provide results. The activities of this method include:

1.4.2.1 Business Rules Model Development

This method is concerned with building an ontology of objects used to construct the

workflows and business rules, which govern them. This means adopting an approach which

relies on an object-oriented modelling paradigm to make it possible to define objects,

classes and relationships between objects in a bottom-up manner. This is suitable for

23

representing business rules complexities in a more structured and controllable manner.

Also advocating the use of AND-OR graphs as a solution for managing changing behaviour

of the workflow. The purpose is to provide graphical representations that help to

understand business rules relationships. The graphical representations of business rules

will be captured in the rule repository. The objective in this activity is to identify business

rules that are complex and to provide them with graphical representations, which will make

them simpler for execution of business rules and their relations in workflows.

1.4.2.2 Business Rules Model Optimisation

This is a valuable activity providing a means for measuring performance. It is concerned

with investigation of which algorithms best fit the needs to build a dynamic and adaptable

business rules in workflow and making use of mixed algorithms including rule change

propagation algorithm, adaptation of rule in workflow algorithm, and use of the graph

patterns and indexing mechanism to provide quick retrieval of business rules and

components. It will also provide a runtime modification capability through use of

Metarules concept (Chapter 5).

1.4.2.3 Productionisation

This activity is responsible for creating the adaptive business rules framework for

workflow management to meet real-world working conditions. The business rules to be

entered through a graphical interface, which translated directly in DRL Drools format. An

incremental algorithm associated with this interface builds the corresponding indexing

graphs, which represent the dependencies between the rules internally for further use.

Seamless, business rules and components are translated and mapped to control process in

the workflow. And finally, the workflow is executed using the built-in engine of Drools.

1.4.3 Experimental Method

This method is concerned with validation of both the proposed model and the identified

algorithms through the prototype based on use cases defined. The experimental approach

is covered in more detail in Chapter 8.

24

1.5 Thesis Structure
To report the findings of the research in detail, the remainder of the thesis is organized as

follows:

● Chapter 2 presents literature review; various research papers have been studied and

analysed in the context of the business rules in the workflow domain. The nature of

the existing researches, state of art tools, products in the market, methodologies and

proposed solutions to problems are studied, and gaps and limitations found are

summarised.

● Chapter 3 provides some definitions of terms used in this research including

Business Rule, BRMS, Workflow, Flow Patterns, etc. It presents the basic structure

and concepts of a business rule then provides insights into business categorisation

based on an ontological approach.

● Chapter 4 forms the core of the thesis providing details about the conceptual model

and framework, describing the ECA model formalisation and business rule

components dependencies using the AND-OR Graphs.

● Based on the conceptual framework, Chapter 5 discusses the ECA Model systems

architecture of the framework, followed by Metarule concepts to support runtime

modification of business rules. Also, the business rule indexing approach to provide

better performances on adding, updating, deleting and executing of business rules

is discussed.

● Chapter 6 adopts comprehensive approaches to provide change propagation and

rule adaptation in workflows based on the well-defined model described in Chapter

4.

● Chapter 7 presents the implementation of prototype, verifying and evaluating the

developed transformation method. The prototype handles the creation, modification

25

and deletion of business rules events, conditions and actions components. Changes

are supported with the implementation of a dynamic object-oriented technique that

accounts for abstraction through definitions of business rules classes (events,

conditions and actions) and rule fact classes as POJO. The classes are then mapped

to Drools template to be translated into Drools DRL for execution by the Drool

runtime rule engine.

● Using the prototype developed, Chapter 8 discusses the validation process of the

ECA Model framework.

● Chapter 9 provides conclusion of the thesis, describing what has been achieved,

recaps on the research contribution and recommendations for the future work.

26

2. Literature and Applications Review

This chapter presents a survey of research studies in areas of business rules and workflows.

It introduces the background knowledge that is vital for understanding what has been

achieved and carried out so far. Most research papers that we came across do not deal

directly with business rule component structures and adaptation but rather deal with rules

in general (at a higher-level) and the actual data associated with business rules. As there

are fewer academic papers dealing directly with the issues being investigated, it is desirable

to also explore the state of art tools (applications, systems and products) that are relevant

to this research. The review was conducted by firstly collecting and studying the literature

materials and existing applications based on research objectives and questions. Keywords

such as Business Process, BPMN, Workflows, Business Rules, Dependencies, Rules

Adaptation, Rules Propagation, Dependency Tree were used to search from conference

papers, journals, articles and products pertinent to the topic of this thesis. The investigation

was carried out to discover how these articles have addressed our research questions. This

followed by evaluating their results to highlight how these have contributed to the work

carried out in this research. The sections in this chapter are broken down into review of

existing research studies, state of art applications and a summary of gaps and limitations

that require further investigation and studies.

2.1 Existing Research Studies
The trend in research studies of business rule-governed workflows is focused primarily on

theories and practices of custom-tailored workflows and much less on exploring business

rules dependencies and the necessity of adapting the business rules to the changing

conditions. This section reviews research studies that are directly focusing on business

rules in workflows, change propagation and business rule adaptation mechanisms

(algorithms) in workflows. In addition, various indexing approaches are also reviewed to

support our indexing implementation. The indexing approach enhances the creation and

execution process of business rules and components.

27

2.1.1 Business Rules in Workflows

A survey was conducted by the authors in [40, 42] to look at business rules methodologies

to support workflow systems and applications automation. Graml et al. [42] stated that “A

problem of today's standard business process automation systems is that they are too rigid

to cope with changing business demands, especially for long running business processes.

A solution to overcome this problem is to combine business process with business rules”.

In that research, the assumption is made that using business rules, business processes can

be made agile at run-time. The derivation rules are defined for decisions in the process

models, constraints are applied by those decisions and process rules are created for logical

dependencies of activities. Their proposed solution focused only on the modelling

standpoint for integration of rules into business processes using a standard language such

as BPEL. While there is a support for workflow activities dependencies, there is no support

for business rules dependencies and change propagation. In Chapter 4, we will show how

business rules dependencies can be defined using the AND-OR graphs. By representing

business rules in the AND-OR graphs, we will show how business rules can be formalized

and make them more expressive; hence makes it easy to incorporate in business processes.

Moreover, Chapter 6 will show how various change propagation dependency patterns will

be defined in this research to provide a systematic runtime modification of related rules

and processes. Also using Metarules (Chapter 5), business rules and components structure

can be easy modified at runtime.

An article written by Rowe et al., in [102] discusses how business rules are significant in

the design of workflows. The paper explains how different classes of workflow systems

can apply the business rules to support their execution. The authors identify two approaches

of using business rules in workflows. The first approach is to embed business rules engine

with process or workflow engine (process centric). Another approach is to include business

rules in an application (data centric). Although there have been tremendous developments

to both approaches there remain many unanswered questions. For example, no explanation

is given to show how business rules dependency and change propagation are achieved. A

great deal of effort is required to manage large set of dynamic business rules with multiple

relations.

28

Flexible approaches towards workflow systems have also been discussed in other research

papers such as [7,16,44,45,62,118]. For example, Casati et al. in [16] acknowledges that

further techniques are needed to design workflows capable of adapting to changes. [16]

presented an approach for a flexible workflow design using rules and patterns. It discusses

a rule-based approach to handle exceptions based on a separate description of workflow

activities. The approach provides a higher degree of flexibility during the design task since

it makes it possible to model exceptional situations. The focus of their work is on specific

rules that deal with exceptions during workflows execution. Still, it remains difficult to

describe and account for the dependencies between the rules. It becomes even more

complicated to deal with multiple changing rules as the rule management remains a tedious

manual task. In fact, this is one of the main reasons why rule-based approaches have not

been a popular choice for managing workflows. In this thesis, the algorithms for semantic

indexing of business rules and change propagations, which account for business rules

dependencies using the AND-OR dependency graph will be introduced. The structuring of

the business rules into AND-OR graphs will provide a greater support for executing

dynamic business rules and propagating changes.

Goh et al. in [41] supports the use of Event Condition Action rules (ECA) in workflows

product development. In their approach, workflow activities are associated with ECA rules

to govern how activities are executed. They recognised that a set of related business rules

have a potential to be invoked and applied to the wide organisation applications. However,

there is no mentioning of how the rule dependency is implemented for the set of related

business rules. The emphasis of their work is rather on high-level integration platforms for

building flexible workflows, rather than business rules, process structures and their

dependencies. Furthermore, the authors discuss the adaptation to workflow change by

changing and inserting new rules. However, they do not explain how the different

workflow patterns are realized. This thesis (section 7.4) considers sequential and parallel

flow patterns of workflows.

29

There have been attempts to model business rules as components in themselves, separate

from the business objects and the application-logic [3, 11]. While the business user is free

to define and modify the rules, there is no formal definitions of business rule components

in the same ontology. Furthermore, there is no definitions for rule classifications and the

business rule components dependencies. Hence, hinders the adaptability of business rules.

In this thesis the conceptual model and framework topic to describe business rules and

components dependencies formalisation is presented in Chapter 4.

Another interesting approach in [36] focuses on the implementation of an event-driven

engine for distributed workflows. To control the distributed workflows, the authors in [36]

maintain an explicit list of events. Their approach addresses the problem of distributed

events in workflow execution by focusing on reactive event-based coordination and

integration but because the inter-relations are not defined explicitly, they still do not offer

much flexibility in controlling the business rule dependencies and change propagation. In

their later publication [116], they focus on formal aspects of event-driven workflow

execution using brokers to determine the proper semantics of all the involved components

of workflows. This provides the description of formalised semantics of higher-level

constructs with regards to event histories. However, the condition and action components

of business rules have not been considered. It is insufficient to assume that only events

change. Business rules changes may result from the condition and action parts as well. The

discussion on business rules components (event, condition, action) formalisation is covered

in Chapter 4 of this research.

The Vienna Distributed Rules Engine (VIDRE [101]) approach provides a definition of

distributed business rules to enable business processes to be accessed via business rules

through exposing them as web services. This approach brings together the rule-based

techniques with the advantages of service-oriented computing to provide access to business

rules as services. A workflow process or activity is implemented as a distributed business

rule. This approach is particularly powerful if several business rules are involved.

Nevertheless, the focus of this work is at a business rule level not business rule component

(event, condition, action) level. Furthermore, the paper does not discuss how changes to

30

distributed business rules are managed and propagated. The implementation of business

rule change propagation is vital to provide consistency and adaptable business rule model

as discussed in Chapter 6 of this report.

Other articles such as [53, 60, 76, 79, 96, 112] present techniques for using object models

to organise and structure business rules around objects. Object modelling techniques help

to define and present the business rules, which can then be easily mapped into workflow

processes. A business rule will typically be described with some properties, for example

unique identifier. The unique identifier allows a quick access to business rules in a

workflow. In [79], the Object Management Group's Object Constraint Language (OCL)

and Meta Object Facility (MOF) standards have been incorporated to include constraints

(rules) on objects and associations. OCL is a formal language used in well-known UML

models [10]. According to [96], OCL allows adaptation of the process model by using

constraints (rules) and prior post conditions. During the assessment of an OCL expression,

two assumptions are made: (1) States of objects in the model cannot change during the

execution. (2) OCL expression must remain true for all instances of that type (collection)

for which the expression is created. The above points form a sort of restriction, as they do

not allow dynamic creation and modification of objects based on the business rules. In [60,

112], a modelling tool that supports UML-Based Rule Modelling Language (URML) is

presented. URML is an extension to UML standard [10], which supports rules in UML

class diagrams. [112] proposed a UML graphical notation for managing rules based on an

Object-Oriented methodology; [112] introduced the technique of governing object

diagrams (UML classes) to describe constraints and dynamic business rules behaviour. The

focus of the above studies is on modelling aspects of business rules. Main issues regarding

business rule dependencies, change propagation and rule adaptation in workflow are not

discussed.

Another notable effort with respect to the concept of business rules and business processes

integration, can be seen in [55]. However, the implementation approach is different from

ours. Using the custom or user defined business rules, the role patterns are implemented in

Prolog programming language. The approach is flexible because the user-defined rules can

31

also be added to present additional requirements. While there is an association of role

patterns and business processes to provide further support for managing process flows, still

there is a need for tight amalgamation between business rules and processes.

2.1.2 Business Rules Formal Models in Workflows

The foundation of vast majority of existing business rules models come from the area of

Artificial Intelligence (AI) and logical programming [80]. When referring to the business

rule model, the primary concern is formalization of business rule components. Business

rule model is a description of a rule at the type level; the actual rule becomes an

instantiation of it. There are two ways business rules can be applied to a workflow [49].

One is to provide an embeddable model such as a separate rule engine where any

application can use or link to the model. An alternative is to include rules into the workflow

model, which means only specific workflow applications can use it. The later approach is

a process-focused model used by Business Process Modelling (BPM) systems as discussed

in [65, 75, 77].

Formalization of business rules is today’s hot topic of many explorations because it makes

possible to manage unpredictable business rules behaviour. Interesting research studies

concerning business rules formalization and models can be seen in [20, 21, 57, 98].

However, to the best of our knowledge none of the existing formalizations provide a

completely formal business rule structure model to simplify the execution of processes in

workflows. Furthermore, a detailed acquirement of business rules at component levels such

as at event property, condition property, action property, qualitative and quantitative

measures of the rule will not be available as expressed in this research. The most prevalent

business rules models in workflow are Business Process Execution Language (BPEL), also

known as WS-BPEL or BPEL4WS. In [4, 51, 88, 126], the authors offer an approach to

describe business processes, together with their business rules in both abstract and

executable ways. Business Process Model and Notation (BPMN) provides a set of graphic

elements for modelling generic business processes [81, 82]. However, in order to define

business rules, this research proposes some patterns of representation to entirely map

32

business rules components (event, condition, action) with processes. The BPMN is an

Object Management Group standard used by developers and business analysts to define

and develop processes. According to the authors of [82], BPMN process has been defined

to enable graphic editing of service-oriented business process models. BPMN depicts

processes as interactions between agents or process roles represented graphically. A more

complete BPEL and BPMN abstract syntax can be found in [84, 87]. Even though BPEL

and BPMN definitions are more detailed, they only include elements relating to process

and data manipulation. Details relating to business rule structures are absent or barely

mentioned. It is important to communicate that BPMN especially is not to be a formal

model for expressing business rules as it only deals with processes abstraction. The support

of valuable features for both models (BPMN and BPEL) creates building blocks to various

components of business rules. Moreover, one of the aims of this research work is to

formulate business rules to control business processes so it is important to incorporate these

well-established process and workflow models. In addition, our proposed model adopts an

approach which relies on an object-oriented modelling paradigm [104]. The object

orientation makes it possible to define objects, classes and relationships between objects in

a bottom-up manner, suitable for representing business rules complexities in a more

structured manner to model workflow components and behaviour. The business rules will

be used not only to initiate and terminate business process but also to manage different

flow patterns (Sequential, Parallel Merged, Parallel Split) as explained later in section 6.4.

Adaptive Object-Models have been created to address the need for change by mapping

information as data rather than code [23, 129]. Object-Model defines the objects, their

states, the events, and the conditions under which an object changes state [129]. Business

rules could be specified in the adaptive object model to provide the support needed to

handle the challenge of business rules modification.

2.1.3 Change Propagation and Adaptation Algorithms

A change of a business rule component can affect other related business rules

(dependencies) and processes in a workflow. Therefore, providing a dynamic change

33

propagation mechanism is inevitable. This will ensure changes to business rules are made

to all related business rule components in a consistent and correct manner. The purpose of

this section is to survey some of the piecemeal business rules algorithms that have been

proposed to address the specific challenges in business rule change propagation and

adaptation.

Existing algorithms can conspicuously differ about propagation and adaptation

mechanisms of business rules, but they all agree that rules design and structure are the key

to rise to this challenge. However, as concluded by several authors such as [5, 22, 68],

business rules are often hard-coded or designed in ad-hoc manner, making updating or

reusing them a very difficult task. Moreover, business rules change propagation and

adaptation become virtually impossible. Many studies, for example [5, 6, 56, 70, 111] have

been more interested in modelling rules adaptation in order to ensure more flexibility and

reusability. [56] defines rules as specifications using a metamodel, which is supported by

visual notations. The algorithm significantly shortens the process of designing adaptation

for user interface environments. Inspired by the AGG tool, the rule adaptation and

transformation approach in [111] is specified using UsiXML language based on graph

grammar. [5] presents a rule-based framework (Tukuchiy) that generates dynamic UIs

while preserving usability criteria. According to [70], several techniques of HCI can be

mapped to adaptation concepts to adjust them to different users and contexts. [6] provides

a taxonomy of adaptation concepts describing adaptation nature and process according to

the user’s profile, its context of use, its tasks and the UI model. Advanced Adaptation Logic

Description Language (AAL-DL) can be applied to UIs described in others MDE

languages. The focus of many of these studies is primarily on the scope of applications and

user interfaces, they fall short in facilitating or offering a run-time flexibility of handling

change propagation and adaptation of business rules and components. Unlike these works,

the business rules are mapped to user interface components, in our algorithm the business

rules are mapped to workflow components. A lot more attention is required to enable both

rule change propagation and adaptation in workflows, see discussion in Chapter 6.

34

In the latest paper published in 2020 by [110], the authors recognise the lack of simple and

accurate rule adaptation algorithms to support different rule modifications. The authors in

that paper present an approach to enhancement rules adaptation over a larger number of

data. They employ a Bayesian multi-armed-bandit algorithm [18] to adapt rules based on

the collected data over time. They suggest a summarization technique, which offers a set

of high-level conceptual features for interpreting the data by finding the semantical

relationships between them. In contrast, our approach proposes a formal model based on

the components (event, condition, action) of business rules to govern workflows. The

business rules dependencies are defined after structuring them into dependency trees,

which are in the form of AND-OR graphs (Chapter 4) corresponding to the mutual

coexistence of the rules. The dependency trees make it easier to understand the relationship

between rules. Ideally, structuring of the business rules into dependency trees would allow

implementing of an efficient indexing algorithm for searching the rules (Chapter 5).

Different patterns of inclusion of the rules in the trees will provide additional information

to control the flow of execution as the business processes progress. In addition, we can use

the trees to analyse the process behaviour in real time.

2.1.4 Indexing Mechanisms

Another important contribution to this research is the indexing of business rules to improve

search and run-time performance. Consequently, it is important to explore the existing

indexing techniques. Indexing techniques for managing business rules have been explored

by various researchers, include [8, 32, 107, 127, 128, 130] to name a few. The authors of

[127] proposed G Index algorithm that uses frequent patterns as index features. Frequent

patterns are known to reduce the index space as well as improve the filtering rate. Despite

the benefits, G Index has some disadvantages. First, there is no support for graphs

implementation where nodes represent rules and edges represent rules relationships.

Second, construction of indexes requires an exhaustive listing of paths, which in turn

causes high space and time overhead. Like in [127], our approach also considers ‘graph’

data structure for indexing business rules (Chapter 5). Unlike in [127], our graph nodes

represent business rules and edges represent their relationships. Business rule components

35

with similar patterns are grouped together and indexes using the graph data structure.

Moreover, the graph structure is created using two layers (logical and physical layers). To

improve the search and execution performance, the logical layer consists of two important

levels (root and dependency patterns). These provide multi-level indexing to allow the

business rules to be quickly accessed. Another approach [8] described a metric-based

indexing on attributed relational graphs for content image retrieval. Graphs are grouped in

hierarchy according to their distances and indexed by M-trees. Queries are processed in a

top-down manner by routing the query along the reference graphs of groups. Triangle

inequality is used for pruning redundant nodes. To manage such a large set of business

rules, they are often grouped along several dimensions as described in [122].

An overview of graph structures, graph indexing techniques and their associated querying

techniques can be found in [107]. In an article by [128], the authors propose a structure-

aware and attribute-aware index to process approximate graph matching in a property

graph. Authors of [130] introduce a graph index (Lindex), which indexes subgraphs

contained in database graphs to improve subgraph-querying. Unfortunately, no indexing

mechanism is enabled to specifically support the business rule components structure and

their dependencies described in this research. Henceforth, there is still a room for

improvement as far as business rules change and adaption in workflow domain is

concerned. Chapter 5 introduces our indexing approach.

2.2 Vendors Applications and Systems
There are several popular Business Rules Management Systems (BRMS) with business

process management and workflow applications on the market today, but it is still very

difficult to configure and automate real-life workflow applications as the study by [19]

revealed. BRMS applications have been explored by various authors such as [11, 13, 17,

26, 29, 50, 61, 70, 123] and others. In a typical case, the BRMSs use a rule engine for

business rules management and Business Process Management (BPM) for process

management, providing APIs for modelling business rules and processes. For this study,

we will take a closer look at the following leading applications or systems:

36

2.2.1 IBM BRMS and BPM

According to the articles in [17, 61, 109], the IBM BRMS has the most inclusive set of

business rules capabilities in the market. IBM Business Process Manager (BPM) includes

IBM’s Operational Decision Manager (ODM) tool which incorporates tools such as Eclipse

to give developers the ability to create and modify business rules. Explored by the authors

in [11], the IBM BRMS WebSphere ILOG JRules, which is now part of ODM provides

flexible tool for modelling business rules. Although IBM BRMS provides an integrated

environment with rich and flexible tools for business rule modelling, there are notable

limitations in relation to managing changes to business rules as explained below:

● There is no easy way of changing rules that affect more than one process or system.

● Multiple changes to business processes will need to be applied even for simplest

business rule changes. This limits the business agility that business rules are

designed to provide

● There is no separation of the different parts of the business rules components i.e.

Event, Condition and Action. This means change made on the “condition” part of

the rule will require invoking the whole rule. Externalizing different parts of the

rule brings flexibility and increases performance as only the part that needs

changing is exposed on the business rule application. Henceforth, different parts of

the rule need to be stored in appropriate structures to facilitate their management,

as it is with the existing structures for data in database systems.

● Rules are executed one by one in a procedural manner. This results in poorer

performance when processed and creates additional work when rule sequences

change or when the actual rule change (edited, modified or deleted).

● Inability to perform logical deduction, hence its inability to manage changes to

multiple business rule hierarchies [47].

2.2.2 CLIPS

CLIPS is specifically designed to facilitate the development of software to model human

knowledge or expertise [37]. CLIPS expert shell provides a platform where expert

knowledge may be categorized as rules. To enhancement its rules management capability,

CLIPS is enabled to perform the inference procedure whereby business rules are

interpreted to produce various actions [74]. This mechanism takes advantage of the

37

embedded pre-existing business rules knowledge as “facts” to produce a recommended

conclusion to a problem through its inference engine. Although CLIPS environment is

interactive for editing business rules, there is no dedicated database. Hence, business rules

are volatile and are removed from the memory as soon its execution is ended. An external

database must be integrated with CLIPS to overcome this fundamental limitation. This

adds to complexity and cost for managing rules. The problem becomes worse when

changes to business rules are introduced.

2.2.3 JESS

As discussed by various authors such as [42,63], JESS is another rule engine originated

from CLIPS and written entirely using Java. According to [64], there is an extension called

Visual JESS, which enhance JESS. Furthermore, [114] proposed an approach to manage

changes to business rule by using JESS language. Their approach is made up of two phases:

first, the business rules are identified for the application is represented in terms of general

syntax; then the rules are converted into Jess syntax, in order to provide flexibility when

dynamic changes are made. Unfortunately, JESS also suffers similar limitations described

above. Pitfalls of JESS for dynamic systems are well documented in [91].

2.2.4 ORACLE BRMS and BPM

According to a survey and analysis study of business process management done by [124],

Oracle BRMS and BPM [85] is probably one of the best products in the market. Oracle

BRMS and BPM [85] product offers many powerful features including rule and process

management, author, web based graphical authoring environment that enables creation of

business rules. With more of interest, Oracle product provides an embeddable business

rules engine to its workflow [86] or process manager system [92, 102]. Oracle workflow

application provides ability to add, remove and change the state of business objects

(including rules) in the working memory. It permits the rules engine to reason and modify

the original business rule information. Like IBM BRMS, Oracle BRMS solution is focused

on the underlying data about the rules which is not the purpose of this research.

2.2.5 JBOSS DROOLS BRMS and jBPM

JBoss Drools BRMS [52] is a well-known and sophisticated open source BRMS and has a

lot of functionalities, which allow users to write and validate business rules that can then

38

be pulled into Java Applications [13]. Drools also offer an open-source workflow engine

(jBPM) written in Java to execute business processes described in BPMN. Unfortunately,

Drools execute processes and rules using a programmatic approach, which makes it more

complicated to understand for non-programmers. Certainly, this brings complexity in terms

of usability and manageability. Furthermore, it suffers with the same problems of only

handling the underlying data about rules, while our proposed approach is looking at the

structure and components of business rules.

2.2.6 OpenRules

The authors in [29] refers to OpenRules as another powerful BRMS for rule-based

application development. It provides a complex environment for editing business rules but

supports the building of user interface to improve its usability. Furthermore, it allows the

use of tools such as MS Excel, Google Docs, and Eclipse IDE to create a complex decision

support system. It is easy to integrate with Java and the main advantage of OpenRules

above the others is the way the rules are modified by using excel tables. Unfortunately,

OpenRules also focus on the underlying data about rules not the structure and components

of business rules to allow easy adaptation.

2.2.7 PRRP & SBVR

Proposals by authors in [28, 83] discussed the PRRP and SBVR on business rule

management; they focus on defining business rules from the business perspective.

However, these proposals do not address the aspect of providing logic implementation

power on business rule structures and adaptability models.

2.3 Summary
Although BRMSs in most cases allow for business rules to be specified separately from

the business processes, which support a two-step approach of business process modelling

and business rules specification, it remains impossible to specify the dependencies between

the rules based on the relationships between workflow objects. This causes multiple

changes to be necessary to adjust already configured workflows and to update existing

business rules even in the case of simple change. The main reason for this situation is the

39

lack of a consistent model of the components of the business rules themselves. Typically,

rules are composed of events, conditions and actions, which are specified separately and

are not related through the objects used to formulate them. This means that change made

on the “condition” parts of a rule will require invoking the whole rule rather than only the

condition component. Externalizing different parts of a rule (components) would bring

flexibility and increase the performance as only that part which needs changing would be

processed explicitly, while the adjustment can be automated.

Business rules without a knowledge base or vocabulary cannot convey information

effectively since no clear definition is given to the business rules components. Most of the

Business Rules Management (BRM) products offer some functionality to build a business

vocabulary, but to the best of my knowledge there are no formal specifications to support

adaptation of business rule structural components in workflow in an efficient manner. The

requirement for having a formal business rules vocabulary has often been hinted at by

various studies. [99] recognizes and explains the need to use a common facts and terms

model. Although the Semantic of Business Vocabulary and Business Rules standard [83]

is set up to specify business rules, its specification is very general, and its focus is towards

a more static unified business rules standard. Additional approaches still need to be

developed when considering the dynamic nature of business rules. A survey done by [120]

also concluded that there are no clear definitions and scientific foundations to even well-

known workflow management systems such as Business Process Management (BPM).

Furthermore, when it comes to rule change propagation, there is no formal specification

that will support rules that can span across multiple processes in workflow applications.

The existing SBRV vocabulary appears to ignore the possible relationships between

different business rule components (Event, Condition, Action). The SBRV limitations

justify the demands for better concepts formalization for business rules. Our research

focuses on formalization of business rule components (objects) that are specifically found

in workflow systems. By adopting a bottom-up approach, business rule objects and

relationships can be determined. This will allow us to configure business processes in

workflows adequately. At the same time, it will permit to represent various domain-specific

40

heuristics, which govern the progress of the workflow in real-time. The advantage of the

bottom-up approach is that the final developed model is likely to have more appropriate

language and terminologies because it would include concepts directly the from business

rules and workflow arena that are relevant [12]. This should increase the content legitimacy

and improved responsiveness to change.

In this research we describe and provide the flexibility of defining business rules on objects,

attributes and associations in the object model by enabling logic programming power

(Prolog-kind) in terms of binding, unification, backtracking etc. over object models. Our

work in this research enables the specification of business rules during modelling to qualify

association with conditions and enables the creation of that association at run-time between

the objects that satisfy the conditions at run-time. Previously, such business rules were not

modelled and were buried deep inside the code. Model developers and model-maintainers

would be oblivious to such rules and the object model may not actually reflect the true state

of the run-time model. This research attempts to address some of these issues by

introducing the model to formalised business rules component structures and

dependencies. Furthermore, change propagation and business rule adaptation in workflows

algorithms are implemented to tackle the propagation and adaptation problem discussed in

this thesis.

41

3. Business Rules, Process and Workflows
This Chapter provides some definitions of various concepts used in this research including

business rule, business process and workflow. These are important concepts and building

blocks. They are defined to support the development of the proposed formal model. Using

the notations from the Extended Backus–Naur Form (EBNF), the definitions of these

concepts are further described in Chapter 4.

3.1 Definition of Business Rule and BRMS
 “A business rule is a directive that is intended to influence or guide business behaviour.

Such directives exist in support of business policy, which is formulated in response to risks,

threats or opportunities” [14]. “A business rule is an atomic piece of reusable business

logic, specified declaratively” [100]. A central principle of business rules officially

advocated by [46] is that: “Business rules are made up of facts, and facts consist of concepts

that can be conveyed and presented as terms. Terms are usually business concepts; facts

present declarations about concepts; rules govern and the facts”.

For example, a business rule might state that only people between the ages of 16-70 may

drive a car. Other examples of business rules include requiring a bank to prohibit a loan if

a customer’s credit rating is low, requiring students to apply for a course if they met

requirements, requiring correct username and password to be supplied when logging in to

a work account, a shop requiring to give a discount when customers purchase over a certain

amount. Business rules can be used to provide predictive analytics, i.e. if the past year sale

is increased by 10% then next year sales will increase at the same rate. So, these definitions

and examples describe a business rule as an instruction that constrains or expresses an

activity on a fact (person, software, service, systems, etc), which will resolve to either true

or false. It generally involves conditions and actions.

A BRMS (Business Rules Management System) is a software system used to define,

deploy, execute, monitor and maintain business rules [39]. Examples of BRMS include

Drools, Oracle BRMS, IBM Operational Decision Manager, SAS Business Rules Manager,

etc.

42

3.2 Definition of Business Process, Workflow and BPMS
 A process is an activity in implementation or execution, for example moving an equipment

from one data centre to another. A Workflow is a sequence of activities (processes, tasks,

steps) that implement a set of data. Workflows can be found across every kind of business

and industry, for example a bank transaction to check user balance can be created as a

workflow [67]. Workflows are concerned with the flow of activities and related data in

business processes based on imposed business rules. Workflow management system is a

software that allows users to setup and monitor a set sequence of activities in the form of a

flow diagram. The flow diagrams (i.e. BPMN) usually help to capture the start to the end

of activities. Business rules are used to define the structure and development of workflow

management systems [132]. Business Process Management System (BPMS) focuses on

defining and refining business processes to make an organisation operate more efficiently.

Processes are documented to capture the current state of end-to-end of organisation

processes. Like workflows, BPM systems are implemented across a variety of different

sectors including healthcare, manufacturing, construction, finance, etc. Both defines the

series of task to produce some outcome, however the workflow is more general term than

business process. Some concepts used are very similar for example both provide support

for process flow patterns (Sequence, Parallel Split, Parallel Merge, etc). However, BPM

systems focus mainly on analysis business processes and not its interactions. A business

process is mostly used to achieve business objectives. A business process system describes

how and when process interact, but not what is exchanged or transformed. Normally, a

workflow implements a single process in more details and flow patterns form a major

building block. Hence, it is vital to examine various process flow patterns. This is to ensure

that possible scenarios can be handled using the business rules model formalism. In the

following section, the commonly workflow patterns are presented.

3.3 Workflow Patterns
In computing, a pattern is a reusable template or solution created to resolve repeated

problems within a given context in a software and application design and development. A

43

workflow (process flow) pattern is a specific form of pattern defined to support

dependencies between activities in workflows. In this research, the relevant process flow

patterns presented in [121] are considered. These patterns capture the elementary execution

facets of the workflow or process level (part of Two-level Architecture presented in Section

4.2). These execution patterns provide the way in which business rules are to be run to

control processes in a workflow, mostly in serial or parallel fashion.

3.3.1 Sequence (Serial) Workflow Patterns

The Sequence pattern is defined as being an ordered series of processes, with one process

starting after a previous process has completed. In the Sequence pattern typically, processes

in the workflow flow from one to the other based on some business rules (Events,

Conditions and Actions) that determine how the workflow flows from one process to the

next, and process can wait for the preceding process to complete.

3.3.2 Parallel Workflow Patterns

The Parallel patterns are generally used when a workflow might have more than one path

that is active at the same time. In the parallel pattern, the workflow splits at some point into

separate paths (parallel split patterns), each of which may contain multiple processes. At

some point, these paths may merge back together again (parallel merge patterns). Based on

some business rules, the workflow can wait for all preceding paths to complete or continue

as soon as the first path reaches the merge point. Business rules determine what should

happen at the split and merge points in the workflow.

3.4 Business Rules Structure
The inclusive structure of a business rule in its simplest form is made up of the following

logical statement “When Event(s) If Condition(s) Then Action(s)”. According to [78,

113], the constructs of the Event-Condition-Action (ECA) rules originated from the area

of active database systems. The ECA rules state that when there is an event, condition is

evaluated and if the condition is fulfilled then perform the action or actions [78].

44

In workflow applications, a business rule specifies that when an event occurs and if there

is a condition set then specify a list of actions to be done. A common observation is that

when there is an event which most likely is associated with a process to be implemented in

the workflow, the "if" normally executes the flow part, where, at a specific point in time, a

condition is to be checked. When a business rule is applied to a fact (role, process, data), it

may cause the business rule to activate again (recursive) or activate other rules, hence

causing a change of other rules (propagation). Setting rule recursive and propagation

options will allow modification of the same rule once more or other rules for the current

set of facts. Business rule change propagation is discussed further in Chapter 7. Business

rule events provide statements that trigger or influence the behaviour of the rule; it may be

to kick-start, update or close a business rule against a process in a workflow.

The Event-Condition-Action (ECA) business rule and its variations i.e. Event-Action (EA)

and Condition-Action (CA) rules provide well-understood formal structures for modelling

active business rules. In the ECA, the distinction between EA and CA business rules

components provides a level of abstraction, thus increasing reusability [33]. The

component structure of ECA rule conceives basic concepts covered in section 3.5. To

specify business rules concepts, business rules are encoded using ECA, CA, EA, ECAA,

etc., formats. The ECA and variations are modelled to provide a modularization of clear

and well-defined business rule concepts within workflows. An important advantage of this

approach is that the business rules components are extended to inform the workflows.

3.5 Business Rules Ontology
One of the aims of this research is to provide a formal structure for a business rule in

workflows. Using Bottom-UP approach, business rule concepts are introduced as part of

our Description Specification Language (DSL) to provide formal structure. Business rules

can easily become very composite. For this reason, it is very advantageous for a business

rule to be decomposed into smaller concepts to allow different parts of the rule to be

discovered. DSL is adopted to describe and present different parts of business rules

knowledge in the workflow domain. According to [59], DSL is known to be helpful for

45

declarative knowledge engineering. Specifically, it makes use of OWL to representing the

meaning of business rules and components. [1] describes OWL as a description Logic

based on ontology language for the Semantic Web. It is designed to present rich and

complex knowledge about things/objects, groups of things/objects, and relations between

things/objects and semantics. Hence, the OWL is well structured and suitable to define and

represent meanings to business rules concepts in the workflow domain. Based on the

foregoing discussion on OWL representation, one can describe the workflow domain in

terms of business rules concepts, properties and relationships between business rules

concepts. Table 3.5.1 briefly describes concepts depicted for derivation of the proposed

model ratification. Table 3.5.2 lists the OWL entities that would be created and utilised in

the implementation of the ECA model.

Concepts Description

Process

Flow

Flow provides an important concept that allows us to manage and control the flow of both

Information and Material, which links processes. The Flow is a superclass of Information

Flow Class and Material class:

⮚Information Flow depicts and expresses shared data between processes by

which a Business Rule is applied or imposed. It is a primary construct for the

proposed model. Information Flow may be connected directly or indirectly to

Material Flow.

⮚Material Flow represents physical resources or goods (input, observed and

output) used and transformed by business processes. Material Flow Class will be

used to express resource dependencies between processes. The consumed

resources (input and observed)

Fact:

Data

Material

Processed information or value of a field on a record. A field can be a field on a database

or form. The data or material has basic properties such as name as well as qualitative

properties qualitative and quantities properties. The quantities refer to amount i.e. “80%”

while qualitative refers measurement i.e. “higher” Usually material/information forms a

link between processes in a workflow.

Process As described in BPMN and BPEL models by authors such as [87, 126] a workflow consists

of one or more processes. The processes represent well-defined business activities or

functions designed to receive some input and produce some output. For example, a process

to manage rack space availability is a well-defined business activity in a data centre. This

process is designed to receive some input about the rack (rack name) and produce the

46

amount of space available or utilized for each rack in a typical data centre. The process will

be represented as object and properties necessary to initiate creation and support for its

execution. The information about processes may include various properties as well as

associated objects such as Flow Objects.

Task

Activity

Tasks are workflow steps, can be performed by an application program or a team of humans

(role/user), or a combination of these.

Event Events provide means for communication within and across Process and Rule levels of the

workflows. The event class represents both synchronous and asynchronous events which

may happen during process execution. Signals or notifications that an incident has occurred

or is going to occur also cause events. The events always have temporal dimension that is

absolutely or relatively to the beginning of the workflow execution. In workflow, the term

“event” is usually generalized; used to express different kind of things. The start of a

process, the end of a process, the change of the state of a process, information, or message

arrival, etc., all could be considered events. However, we restrict the use of events to include

only those types of events that will affect the flow of Process. We categorize Event concept

into three main types, namely Start Event, Observed Event and End Event.

Condition Condition is a logic statement that specifies what must be checked to enable evaluation of

some facts. This evaluation is necessary to fire the rules. For instance, the condition is

specified as “If Rack Space Utilization is greater than the 80% of Rack Capacity”. Condition

may take a form of a check of a value, a database query, result of the execution of a

function/procedure call. Conditional may contain multiple expressions joined by the logical

connectives such as “AND” and “OR”.

Action An Action describes what can be done to other objects with a possible outcome. For

instance, in an action “send email”, “send” is an action and “email” is an object parameter.

Each action may involve one or more parameters and in turn objects and object properties

are created or transformed because of the actions. Furthermore, an execution of one action

may cause one or more further actions to be executed in a kind of a chain reaction. The rules

can prescribe many actions to be executed. Action Class specifies what needs to be

implemented to complete the workflow process or to match the business rules which govern

it.

Role

System

Roles are responsible for implementing activities in a workflow. Relationship between the

people and process are roles. Users can be a member of multiple roles.

Initiators

User-agent

Actor

These are the originators or creators of the workflow. They can also be the users that the

ability to update workflow as well as add workflow users. They can be system/application

users of the workflow

47

Time Predefined period for action to be performed e.g. escalation times. Point based semantic

(temporal logic), qualitative combined quantitative. Interval logic, relationship between

interval duration of the processes. Event based (sequence of event)

Table 3.5 1 Ontology Concepts Description

Table 3.5 2 OWL Concepts

Ontologies help in defining possible data set of business rules entities or categories as well

as representing the relationships between entities depicted in workflow and business rules

domains. Henceforth, Figure 3.5.1 illustrate the ontology hierarchy graph of the business

rules entities outlined in Tables 3.5. 2. The aim is to develop the content of terms depicted

in workflow and business rules domains, ultimately illustrating how the ECA model can

describe knowledge through a vocabulary of interwoven entities.

Figure 3.5. 1 Ontology graph using Protégée

OWL Concept OWL Entities

Classes ECA Rule (Parent class comprises of Event, Condition, Action)

Event, Condition, Action, Process, Task, Flow, Fact/Information/Material, Role, etc.

48

Code Snippet 3.5.1 describes how the ontology hierarchy graph was created using Protégée

Ontology Editor [73]. Protégé system provides both a repository as well as web services

for defining both business rules and workflows ontologies. The basic concepts can be

expanded by updating the script in the Code Snippet 3.5.1. The benefit is a standardized

and configurable way to support the ontologies development maturation of the proposed

model.

Code Snippet 3.5. 1 Framework development stages

3.6 Summary
This Chapter focused on establishing key concepts for the business rules and workflow

adaptation approach. The Chapter starts by providing some definitions of terms and

constructs used in this research including Business Rule, Process and Flow Patterns. The

business rule concept provides the necessary information and structure to guide workflows,

hence forms the underpinning concept of the proposed model. The structure of a business

rule in its simplest form is defined as a logical statement “When Event(s) If Condition(s)

Then Action(s)” (ECA). A significant advantage of this structure is that the ECA

components are expressed to support business rules dependencies and adaptation in

49

workflows. Furthermore, the Chapter defines Business Rules Management Systems,

Workflows and Process Management Systems. Along with ease of implementation, these

systems also include comprehensive testing and deployment functionalities to allow

execution of business rules and processes. The Chapter ends with a section on insights into

how business rules entities are categorised based on a well-known ontological approach

(OWL) and illustrated using the ontology hierarchy graph. The interconnectedness of

entities is easier to perceive in the hierarchical graph.

50

4. Proposed Business Rules Model

A model generally represents how information is formalised. This Chapter presents a

discussion on proposed model formalisation. The formalisation work presented in this

section, initially appeared in our published journal paper [27]. The methodology is

discussed first, to explain the steps needed for design and implementation of the proposed

model.

4.1 Methodological foundation of the framework
A methodology is a comprehensive term used in software engineering to describe methods

or procedures that are to be followed to resolve a problem or deliver a solution [66]. The

methodology of the framework describes our approach for designing and implementing the

proposed business rules model. Moreover, it provides stages necessary to support the

development of the proposed model and its prototype. The prototype presents the

realization of business rules change management and adaptation of rules in a workflow

application. It is important to note that our methodology follows the design science

research approach, which involves artefact analysis, design, development, testing and

validation. The analysis phase surveys and determines existing problems in business rules

management systems and provides design objectives for the proposed model. After the

analysis phase, the proposed model design and prototype development phases will follow.

The validation phase is included to test the proposed model through the prototype and

observation of its implementation in Drools development environment. The key stages are

identified in Figure 4.1 below.

 Figure 4. 1 Framework development stages

51

● Concepts Transformation

This task involves transformation of business rules and business processes

identified in Chapter 3 into unified building blocks (concepts) that glue together

and control the workflow. The building blocks (concepts) are expressed in terms of

classes, objects, object properties and metarules.

● Model Formalization

The model formalization task consists of formal concepts definitions, formal

concepts classification definitions, formal rules relationships definitions and meta-

rules definitions. There after the ECA rule can be translated into the EBNF format

for formal definitions. In addition, identify relationship between rule components

then provide relationship formal definitions to a complete inscription of the model.

● Development of Algorithms

During this task, the algorithms will be developed for processing dependency trees

(rule relationships) to handling of the business rule change propagation problem

and rule adaptation in workflows.

● Development of Prototype

Like most methodologies, the step that involves development of a proof of concept

is important. It permits converting ideas and theories into reality. Hence, this task

is devoted for the implementation of a prototype using Drools, an open source

development environment for business rules and workflows. The prototype

development task extends the tasks performed to include model and prototype

testing.

● Integration of the proposed model into workflow application (Drools)

The goal of the integration task is to provide the architecture for an integration of

our business rules model with real time workflow systems. This is really a

validation step of the proposed model on a workflow.

52

4.2 Two-Levels Architecture
The formal model presented in this research is based on the understanding of existing

business workflows as event-driven and as a constantly evolving process of incremental

development, execution and control. This model operates on two levels, namely Process

Level (Figure 4.2.1) and Business Rule Control Level (Figure 4.2.2). The business rules

are building blocks that control workflows and they are made up of event, condition and

action components, or the famous “When <event> If <condition> Then <action>”

structure, whereas the workflows are made up of business processes (directed structures),

process steps (primitive procedures), process flows (material and information links

between processes), roles, etc. For instance, if some events are observed during execution

of a working process then the corresponding business rules which depend on these events

are invoked and lead to actions which in turn perform the transition to a new step which

may execute other processes or amend the parameters of the current process. The model

uses structuring rules to glue together the processes from start to finish in a workflow

(Figure 4.2.1).

Figure 4.2. 1 Business Process Level

The business rules control level provides a level of abstract “independence” from the

process level (Figure 4.2.2), suggesting that the rules can be changed without affecting the

part of the current workflow which has already been completed. The business rule control

53

level automates complex business processes to perform business logic without writing a

new code.

Figure 4.2. 2 Business Rules Control Level

The business rule control level supports various stages of execution of the workflows:

Initiation, Execution and Termination. Based on the different role they play along the

workflow progression; business rules can be organised in a kind of taxonomic hierarchy

(Figure 4.2.3). In this taxonomy Execution rules are divided into Flow and Process rules,

Flow rules are divided into Sequence, Fork and Join rules and Process rules are divided

into Time-based and Non-Time-based rules. Additional rules known as Data rules (not

covered in this paper) may be considered when some conditions are applicable directly to

the input and output data to maintain the integrity of the flow.

Figure 4.2. 3 Business Rules Classification

54

The Two-Levels Architecture (Figure 4.2.4) is essentially a representation of holistic,

multi-dimensional views of the proposed model components and integration between

process control and business rule control level components in a workflow.

Figure 4.2. 4 Two-Levels Architecture

 (Business Rules and Process Levels; S = Start and E = End)

Process Level considers:

✓ Business Objects (Processes, Flows, Events, Conditions, Actions)

✓ Object Properties (Identification properties, Qualitative description, Quantitative

description)

Rule Level considers:

✓ Business Rules (Initiation, Event or Process, Flow and Termination Rules)

✓ Meta-Rules,

✓ Rules relationships and dependencies

The key difference of this architecture compared with other existing systems is the use of

the business rule control level, which contains business rules, Metarules (Chapter 5) and

business rules relationships to manage the execution of the processes in the process

(workflow) level. In architecturally real environments, we will maintain many processes

or flow rules based on workflow processes and business rules dependencies. Also, it is

important to point out that due to our approach of account for business rule dependencies,

one flow rule could execute multiple processes hence reducing number of business rules to

be triggered by a business rule management system.

55

4.3 Business Rules Classification
Business rule classification (Figure 4.2.3) identifies types of business rules that are defined

in workflows. This research will consider the following fundamental classifications of

business rules in workflows.

Initiation Rules (IR)

The Initiation Rule (IR) formally depicts rules that specifically initiate a process.

Depending on the conditions of the rule, the process can be launched and thus

continue the workflow execution. Some Initiation Rules are driven by events only,

hence known as the Start Event. As an example, Figure 4.3.1 presents the

Equipment Installation workflow of an organization with three processes “Create

Request”, “Send Message” and “Order New Rack”. In the background, the

initiation rule “When receive a request, start message and then start” looks up and

assigns the “Create Request” process whenever the rule is invoked. The rule is

invoked when the request message is received.

Figure 4.3. 1 Initiation Business Rule

 “When receive request message then start process”

56

Event Rules:

The Event Rule class group rules are specifically defined on Processes during the

execution of a workflow. An example of such an event rule is one which requires

the drivers to stop when the road traffic light colour changes to red (Figure 4.3.2).

Figure 4.3. 2 Event Business Rule

 “When light colour changes to red, stop driving”

Flow Rules:

The Flow Rule (FR) class formally depicts rules that specifically define the flow of

workflow processes. All workflows depend on flow rules to progress from one

process to another. In other words, flow rules determine the start process and the

transition through a chain of processes until the workflow ends. Flow rules can

move the workflow along a single chain of processes or split it into multiple

pathways, thus forming an acyclic graph. For instance, a path can be established

between “Create Request” and “Approve Request” processes to connect the two

related processes in a workflow (Figure 4.3.3). Important flow patterns that will be

covered in this research include sequential, parallel split and merge. From this

perspective Flow Rules define the transition pattern and allow the ordering of the

business processes in the workflow dynamically at runtime.

57

Figure 4.3. 3 Flow Business Rule

 “When process completes, then move to the next process.”

Termination Rules (TR)

The Termination Rule (TR) class formally depicts rules that specifically trigger the

end of a workflow. Some Termination Rules are driven by events only, hence

known as the End Event. Figure 4.3.4 presents the Equipment Installation workflow

of an organization with three processes “Create Request”, “Send Message” and

“Order New Rack”. In the background, the TR “When receive closing message then

end” looks up and ends processes whenever the rule is invoked. The rule is invoked

when the request message is received.

Figure 4.3. 4 Termination Business Rule

“When receive closing message then end.”

58

4.4 Business Process Ontology and Formal Specification
This section presents the basic ontology of objects used to construct the workflows and the

rules which govern them. Using an example (Figure 4.4), the ontology is developed in a

bottom-up manner. All examples have been illustrated using DFD diagrams.

Objects

The objects are the building blocks for describing business processes, rules and workflows.

Figure 4. 4 Workflow and Associated Business Rules (Example)

If we consider the workflow in Figure 4.4, we can see that it defines a business rule: “When

you install new equipment (Server), if Rack Space Utilization is greater than the 80% of

Rack Capacity, then send message”.

Analysing the above example, the following concepts are identified:

4 Processes: (Create Request to install new Server, Manage Rack Space

Availability, Send Message and Order New Rack).

2 Roles: Requestor, DC Manager which has not been covered in this paper.

59

Flow: Capturing data/material and information in and out the processes. Rack

Capacity, Rack Utilization, New Equipment and even the Request are examples of

Information and Material flows.

Initiation Rule:

Start Event - Notify new install requests and new equipment has been ordered

(Note: Workflow can be manually or automatically started by initiation or

triggering events).

Execution Rule:

Event - triggers or kick-starts the rule: “When Install new equipment”

Condition - criteria for the rule to execute: “If rack utilization is greater than 80%

of rack capacity”

Action - can be performed within the workflow or externally by the users of the

workflow.

The execution rule is used to check rack space availability. The decision to install

a new server onto a rack depends on the rule. Through the event “When Install new

equipment”, the rule links two processes “Manage Rack Space Availability” and

“Order New Rack”. The event “When Install new equipment” is observed in

relation to process “Create Request to install new server”, then the rule which

depends on this event is invoked and leads to an action which performs the

transition to “Order New Rack” process.

Termination Rule:

End event - Workflow can be manually or automatically ended by termination event

trigger. The workflow termination is always based on the termination rule, invoked

by a suitable termination event AFTER the process is finished, or on a process

execution rule DURING execution in the case of emergency.

Following the terminology of the object models of [9, 21] we refer to Process, Flow

(Material, Information) and Rule (Event, Condition and Action) as first-class objects.

60

Representing them as first-class objects is conceptually and computationally easier because

they may have several function characteristics, which may be added or deleted in the design

stage [32].

Object Properties

Informally speaking, the business rules and workflows can be constructed in terms of

object characteristics. The object properties provide information about the characteristics

of the objects. For example, the object “Process” may have as properties process id, name,

status, and creation date. From the viewpoint of the conceptualization of our ontology,

object properties can be classified onto one of the following types:

Identification properties - examples are process id, name, type, context and scope,

Qualitative description properties - these are categorical or nominal properties, which can

be described only qualitatively – for example, status, deviation, and trend.

Quantitative description properties – these properties can be described using a fixed value,

which can be estimated qualitatively or specified quantitatively- for example, the number

of closed processes in a chemical plant.

 [131] describes object properties as a common approach to specify characteristics or

attributes of a real-world object instance, which in turn helps to understand how to interact

with the object. An object property value may be of different primitive type, including

numeric, non-numeric (strings/text/etc.), Boolean, etc. Properties may have single or

multiple values. By introducing property characterisation for each object, our model can

fulfil the requirements for flexibility and maintainability of the formulation of Business

Rules and the versatility of the Process Workflow. Since the objects are building blocks of

both the process workflows and the business rules which govern them, the object properties

are the main vehicle for analysing the dependencies between the business rules themselves.

They will be the bridge between the process ontology and the algorithm for propagating

the changes in the business rules. The primary role of qualitative and quantitative property

measures is to accurately describe object properties rather than the usual identification and

classification. The more sophisticated are the properties, the more elaborated are the

61

dependencies we can formulate. Some object properties may be used to identify, name and

categorize the objects. Others may be used to quantify and qualify the objects. There are

circumstances where qualitative and quantitative properties are also used for identification

of an object. We can even introduce properties for “potentially active” characterisation of

the objects, like reflexive regularities, directed constraints and associative

interdependencies between the properties of several objects. For instance, Business Rules

may involve an array of object properties with objective estimation based on value

measurement along with highly subjective value judgments based on qualitative

estimations. Finally, using the object properties we can organise them into groups and

hierarchies which enables the use of object-oriented technology. Using Object model

concepts as described by David in [25] and EBNF notation as described in [34], each

concept established in the previous section is presented in a separate class in the following

sections:

Flow Class

Flow Class provides an important concept that allows us to manage and control the flow

of both Information and Material Flows between processes. Hence, Flow Class consists of

Information Flow Class and Material Flow Class.

Information Flow Class

Information Flow depicts and expresses shared data between processes by which a

Business Rule is applied or imposed. It is a primary construct for the proposed model.

Information Flow may be connected directly or indirectly to Material Flow. Information

Flow is a made up of one or more objects. Objects are made up of properties including

object identification, qualitative and quantitative property measures. The following EBNF

Information Flow definition depicts objects and properties:

62

Material Flow Class

Material Flow Class represents physical resources or goods (input, observed and output)

used and transformed by business processes. Material Flow Class will be used to express

resource dependencies between processes. The consumed resources (input and observed)

may produce one or more output resources. In a nutshell, Material Flow Class is made up

of one or more objects consisting of input, observed and output resources. Therefore, we

propose Material Flow Class be identified by three flow types namely “input”, “observed”

and “output”. Like Information Flow in the section above, Material Flow Class will be

made up of three kinds of properties. These are identification property, qualitative and

quantitative property measures. The following EBNF Material Flow definition is a part of

the Workflow level model depicting objects and properties:

63

We have now identified and established Information Flow Class and Material Flow Class.

The Flow Class is a superclass of Information Flow Class and Material Flow Class. The

following EBNF Flow definition depicts Information and Material objects:

Process Class

As described in BPMN and BPEL models, a workflow consists of one or more processes.

A process represents a well-defined business activity or function designed to receive some

input and produce some output. For example, “Manage Rack Space Availability” is a well-

defined business activity in a data centre (Figure 4.4). This process is designed to receive

some input about the rack detail (rack name) and produce amount of space available or

utilized for each rack in a data centre. Generally, Process is designed to emphasise how a

unit of work is done and what is needed to accomplish the work. Hence the following

statements are true:

- Each process is associated with a system or workflow user or role responsible for

its implementation. Note, Process role or user is out of scope for this research.

64

- A process uses Information and Material Flows to implement activities.

Information, unlike material, is not transformed by the process, but rather it is used

as informative to the process. On the other hand, material can be used by the process

to create or produce new materials. In this research we refer to processed input as

observed or parameters. The final converted or transformed input we referred to as

output.

The preliminary Process definition aims at providing contextual information which applies

to Process in a workflow. The information includes properties of the process as well as

associated objects such Flow Objects. The process will be represented as object and

properties necessary to initiate creation and support its execution. The following EBNF

Process definition depicting objects and properties:

Event Class

Event Class provides a concept of communication within and across Process and Rule

levels. The event class represents both synchronous and asynchronous events which may

happen during workflow execution. Additionally, the events always have a temporal

dimension – at what time (absolutely or relatively to the beginning of the workflow

execution). An event signals or notifies that an incident has occurred or is going to occur.

In brief, an event is an occurrence of some sort during the time of a process. An event has

a great control over the behaviour of business processes and actions in workflow; for

65

instance, consider a Business Rule, “When request to install new server, if Rack

Utilization is greater than Rack Capacity then send email to DC Manager”. In this

Business Rule, the event is “When a request to install a new server”. So, the “Check

Available Space” process will not happen until the event “When a request to install a

new server or equipment” becomes true.

The definition of Event Class needs to include not only operations or actual events but also

source and target of the Signal object. Event affects the flow of the Process, usually handled

by a catch and throw mechanism. In workflow, the term “event” is very general, used to

express many things. The start of process, the end of process, the change of state of process,

information or message that arrives, etc., all could be considered events. However, we

restrict the use of events to include only those types of events that will affect the flow of

Process Class. We categorize Event Class into three main types namely Start Event,

Observed Event and End Event. The categories can be triggered by:

- Timer can be set to start, monitor, or end the Process

- Information (Message) and Material flow received from workflow participant

- Conditions become true or false

- Escalations

- Signal warnings, faults or errors interrupting the process

- Cancellations

The following EBNF Event definition depicting objects and properties:

66

Condition Class

Condition is a logic statement that specifies what must be checked to enable a true or false

evaluation of some records. This evaluation is necessary to fire the rules. For instance, in

Figure 4.4, the condition is specified as “If Rack Space Utilization is greater than the

80% of Rack Capacity”. Condition has the following functions:

- Use to define, filter or constrain some aspect of Information and Material

- Manage and control events.

- Determine and guide transition of processes that come after rule execution.

Condition may take a form of an expression, a database query, function or procedure calls.

This research considers only expression conditions. Conditional may contain multiple

expression join by logical connectives such as “AND” and “OR”. The following EBNF

Condition definition depicting objects and properties:

67

Action Class

An Action is defined as what is done to other objects with a possible outcome. For instance,

an action to “send email”, “send” is an action and “email” is an object. Each action may

involve one or more objects; in turn objects and object properties are created or

transformed. Furthermore, an execution of one action may cause in one or more further

actions to occur. A workflow can contain many actions as part of business rule execution.

Action Class specifies what needs to be implemented to complete the workflow process or

rule. The following EBNF Action definition depicts objects and properties:

68

4.5 Business Rules Relationships
According to [15], “No other topic in the BPM arena has suffered from more

misinformation, disinformation and wilful ignorance as the relationship between business

process and business rules. These two disciplines are most often put forward as alternative

approaches rather than complementary aspects of managing the business. Business process

management (BPM) and business decision management (BDM) need to be used together.

Unfortunately, each discipline has historically spoken only to its own concerns with little

interest in how it integrates with the other in fact with little understanding of what the other

is trying to do”. Thus, the principle of functional dependency is adopted to express business

rule components relationships in workflows to align with business processes. The concepts

of business rules are semantically related to the business processes and applicable within

workflow domain. The relationship between business rules and processes can be described

as follows:

● Processes produce and respond to events, which can be fired by one or more rules

● Every rule produces two or more events where it needs to fire

● Processes transform/produce outputs from inputs.

● Rules evaluate whether the output is desired/acceptable or not.

4.5.1 Business Rules Formal Description

Consider a Business Rule set R containing a collection of rule samples controlling a

workflow. A Rule set R has one or more related rules that have been put together to guide

the movement of processes in the workflow. For instance, R may be made up of Initiation

Rule, Flow Rule, Event or Process Rules and Termination Rule. Let every Rule in R be

indexed R={Ri,| i= 1,…, n}. Each Rule definition Ri consists of a collection of Event (Ei),

Condition (Ci) and Action (Ai). We refer to Ei, Ci and Ai as sets of events, conditions and

actions and call them components of Ri. Now, let E be expressed in terms of {Ei,| i= 1,…,

n}. And C be expressed in terms of {Ci,| i= 1,…, n}. Also A be expressed in terms of {Ai,|

i= 1,…, n}. In this research, we will use notation E1i(R1), C1i(R1) and A1i(R1) where E1i ∈

E1, C1i ∈ C1 and A1i ∈ A1 to represent Business Rule basic definition. Note that for

simplicity reasons, if a part of the Business Rule has no importance in a discussion, then it

69

will be omitted. For example, C1i(R1) and A1i(R1) will represent a Business Rule that

contains Conditions and Actions only.

4.5.2 Relationships between Business Rules

The existence of a dependency between two rules expresses that communication occurs

between components (Event, Condition, and Action) of the Business Rule. For example,

one Business Rule action may invoke or trigger conditions of other Business Rules or the

condition of one Business rule may depend on an event of another Business Rule.

Therefore, Business Rules relationships can be described by analysing Business Rule

components relationships. We consider the relationship between two rules to be

represented by the symbol 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → . For example, R1 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → R2 means Rule 1

relates to Rule 2. If one of R1 action activates event for R2, we declare as A1i(R1)

 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2).

The structure of business rules relationships can be analysed and declared in one of the

following six possible ways:

E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2)

Figure 4.5.2 1 Event to Event Relationships

E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2)

Figure 4.5.2 2 Event to Condition Relationships

70

E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2)

Figure 4.5.2 3 Event to Action Relationships

C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2)

Figure 4.5.2 4 Condition to Condition Relationships

C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2)

Figure 4.5.2 5 Condition to Action Relationships

A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2)

Figure 4.5.2 6 Action to Action Relationships

71

These relationships are defined based on Objects and Objects properties involved in

Condition, Event and Action components of the Rules. Moreover, relationship can be

defined in terms of qualitative and quantitative characteristics of the object parameters. We

examined six ways (Figures 4.5.2.1 - 4.5.2.6) of representing rule relationships based on

the partial order relationships. However, it is far simpler and more natural to apply the tree

structure to model and picture relationships between rules. Therefore, the next section

introduces AND-OR dependency graphs and tree.

4.5.3 Business Rules Dependency Graphs (AND-OR Graphs)

The dependency graph is constructed using nodes starting with the root and going down to

its leaves. The nodes will represent Rule components (ECA) and the edges will represent

relationships between components of rules. Navigation through the graph forms the

patterns; each pattern is illustrated in Figures 4.5.3.1.1 to 4.5.3.3.3. Dependency graphs or

tree structures are widely used to describe rules order and priorities; a graph can be made

up of many rules presented in an analytical and visual manner [24]. As the name AND-OR

graph suggests, the relationships will be of two kinds: AND relationships, which group

several rules that can be invoked consecutively, and OR relationships, which group several

rules that can be invoked alternatively. Variations of AND-OR relationships exist,

including Direct AND Dependency, Direct OR Dependency, Indirect AND dependency

and Indirect OR Dependency.

The structuring of the rules into AND-OR graphs would allow the implementation of more

efficient rules’ propagation algorithms. Furthermore, the different patterns of inclusion of

the rules in the trees will be used inside the algorithms to control the flow of execution of

the rules as the business processes progress in real-time. In addition, we can describe

behaviour and flow dependency patterns of rules. For each dependency pattern, we can

provide a visual representation of the rule dependency. It is important to understand that

although trees make it easier to understand the relationship between rules, they will need

to be translated into rule language for workflow interpretation. Hence algorithms will be

defined in addition to rule relationships definitions.

72

4.5.3.1 Direct AND Dependency patterns

Rule’s Event-AND Graph

The Event-AND graph is so named

because the Event component of one

rule (Eli(R1)) forces another rule (R2)

to be invoked. R2 is invoked when R1’s

event components relate to R2’s event and

condition and action components in such a

way that the event of R2 is causally

connected to R1’s event. If R2’s condition

is met, then R2’s action will execute

regardless of R2’s event

Such dependence can be established

using pattern matching of the rule

components during rule acquisition.

The rules can be indexed appropriately,

which would facilitate the real-time

control as well as the offline adaptation

of the rule at a later stage

Figure 4.5.3.1. 1 Strong Direct Event-AND Graph

The above tree represents a direct AND dependency where each node corresponds to the

root node/rule E1i(R1). The following patterns are depicted:

● Direct edge (E1i(R1), E2j(R2)), with E1i → E2j, means that the event of rule R1 must

influence the result of rule R2’s event. This is E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2)

relationship. An event instance of Rule1 E1i(R1) influences the occurrence of event

instance of Rule2 E2j(R2). To analyse this scenario, suppose E1i(R1) = Request

(Rule1) and E2j(R2) = Request (Rule2). Then we can say a dependency exists

between two rules via a related Event object (Request). The result is that the

workflow will evaluate a Rule2 event after Rule1 has executed its event. Hence, a

change, introduced in Rule1’event, may propagate through the dependencies to

Rule 2’components.

● Direct edge (E1i(R1), C2j(R2)), with E1i →C2j, means that the event of rule R1 must

influence the result of rule R2’s condition. This is E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2)

relationship. An object property of an event instance of Rule1 E1i(R1) influences

the occurrence of an object property of condition instance of Rule2 C2j(R2). To

analyse this scenario, suppose E1i(R1) = Threshold (Rack (Rule1)) and C2j(R2) =

Threshold (Rack (Rule2)). Then we can say a dependency exists between two rules

73

via a related object property Threshold (Rack). The result is that the workflow will

evaluate the Rule2 condition after Rule1 has executed its event. Hence, a change,

introduced in Rule1’event, may propagate through the dependencies to Rule

2’components.

● Direct edge (E1i(R1), A2j(R2)), with E1i →A2j, means that the event of rule R1 must

cause change to rule R2’s action. This is E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2) relationship.

An event instance of Rule1 E1i(R1) influences the occurrence of action instance of

Rule2 A2j(R2). To analyse this scenario, suppose E1i(R1) = Request (Rule1) and

A2j(R2) = Request (Rule2). Then we can say a dependency exists between two

rules via a related Event object (Request) and Action object (Request). The result

is that the workflow will evaluate the Rule2 event after Rule1 has executed its event.

Therefore, a change, introduced in the Rule1’event may propagate through the

dependencies to Rule 2’components.

We can also depict the following possible combination of AND patterns:

Rule’s Condition-AND Graph

The Condition-AND graph is so named

because the condition component of one

rule (C1i(R1)) influences another rule (R2)

to be invoked. If condition of R1 is satisfied

and its components relate to R2’s event,

condition and action then R2 is also fired

This type of dependence is similar to the

Event-AND dependence described earlier,

but in this case the subsumption is between

the conditions rather than between the event

components of the rules. It can be the basis

for another indexing scheme, similarly to

Event-AND dependence.

Figure 4.5.3.1. 2 Strong Direct Condition-AND Graph

74

This tree represents a direct AND dependency where each node corresponds to the root

node/rule C1i(R1). The following patterns are depicted:

● Direct edge (C1i(R1), E2j(R2)), with C1i → E2j, means that the condition of rule R1

must influence or trigger rule R2’s event. This is C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2)

relationship.

● Direct edge (C1i(R1), C2j(R2)), with C1i →C2j, means that the condition of rule R1

must influence the result of rule R2’s condition. This is C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 →

C2j(R2) relationship.

● Direct edge (C1i(R1), A2j(R2)), with C1i →A2j, means that the condition of rule R1

must cause change to rule R2’s action. This is C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2)

relationship.

We can also depict the following possible combination of AND patterns:

Action-AND Graph

The Action-AND graph is so named

because the Action component of one

rule (A1i(R1)) causes another rule (R2)

to be invoked consecutively. R2 is

invoked upon execution of R1's action

and R1's action components relate to

R2’s (event and condition and action)

components.

 There are two possible interpretations

of this type of dependence between the

rules – unconditional chaining of the

action components or conditional

chaining of the action components. In

both cases the indexing algorithm will

be identical but depending on the

intended interpretation the runtime

behaviour may be different.
Figure 4.5.3.1. 3 Strong Direct Action-AND Graph

75

This tree represents a direct AND dependency where each node corresponds to a root

node/rule A1i(R1). The following patterns are depicted:

● Direct edge (A1i(R1), E2j(R2)), with A1i → E2j, means that the action of rule R1 must

influence the result of rule R2’s event. This is A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2)

relationship.

● Direct edge (A1i(R1), C2j(R2)), with A1i →C2j, means that the action of rule R1 must

influence the result of rule R2’s condition. This is A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2)

relationship.

We can also depict the following possible combination of the AND pattern:

Consider patterns identified from Figures 4.5.3.1.1- 4.5.3.1.3. Such dependency patterns

only appear when there is a strong relationship between one or more rules. The patterns are

based on an AND join, one node (rule) is directly joined to another node (rule) through

related components (event, condition, action). The relationship may include relation

between objects, quantitative estimation of a property, and qualitative estimation of a

property as well as relation between properties of object components (event, condition, and

action). A combination of nodes (rules) can also be linked through an AND join.

4.5.3.2 Direct OR Dependency patterns

Rule’s Event-OR Graph

The Event-OR graph is so named because

the Event component of one rule (E1i(R1))

may or may not trigger another rule. It may

cause an event of another rule (R2’s event)

to be invoked or cause the condition of

another rule (R2’s condition) to be

checked, regardless of (R2’s event), or may

cause the action of another rule (R2’s

action) to be executed.

 There are different possible intended

interpretations of the Event-OR

dependencies. Our preference is that rules

of this type introduce an alternative flow of

control, thus forming a dynamically

algorithmic structure. Another possible

interpretation could be that such rules

govern the processes asynchronously.

Figure 4.5.3.2. 1 Weak Direct Event-OR Graph

76

This tree represents a direct OR dependency where the following possible combination

patterns are depicted when E1i(R1) is a root node/rule:

● The execution of E1i(R1) may or may not trigger the execution of E2j(R2) depending

on additional events, conditions or actions from the class, or guided by external

events so each of these cases introduces a different degree of “weakness”

● The execution of E1i(R1) may or may not trigger the execution of C2j(R2) depending

on additional events, conditions or actions from the class, or guided by external

events.

● The execution of E1i(R1) may or may not trigger the execution of A2j(R2) depending

on additional events, conditions or actions from the class, or guided by external

events

We can also depict the following possible combination of OR patterns:

Rule’s Condition-OR Graph

The Condition-OR graph is so named

because the condition component of one

rule (C1i(R1)) may cause another rule to

be checked. The event of R2 is invoked

when R1's condition relates to either R2's

event or condition or action components.

As in the previous dependence structure,

there are different possible intended

interpretations. Our choice is that rules

with such a dependence may split the

control flow into concurrent subflows to

control the concurrently executed

business processes, subject to additional

conditions according to the condition

components of the rules.

Figure 4.5.3.2. 2 Weak Direct Condition-OR Graph

77

This tree represents a direct OR dependency where the following possible combination

patterns are depicted when C1i(R1) is a root node/rule:

● The execution of C1i(R1) may or may not trigger the execution of E2j(R2) depending

on additional events, conditions or actions from the class, or guided by external

events so each of these cases introduces a different degree of “weakness”.

● The execution of C1i(R1) may or may not trigger the execution of C2j(R2) depending

on add on events, conditions or actions from the class, or guided by external events

● The execution of C1i(R1) may or may not trigger the execution of A2j(R2) depending

on add on events, conditions or actions from the class, or guided by external events

We can also devise the following possible combination of OR patterns:

Rule’s Action-OR Graph

The Action-OR graph is so named

because the Action component of one

rule (A1i(R1)) may result in triggering

an event of another rule (R2’s event)

or cause the Condition of another rule

(R2’s condition) to be checked or may

cause the action of another rule (R2’s

action) to be executed.

 This type of dependency between

the rules can be interpreted as an

indication for unconditional splitting

of the control flow into concurrent

flows at runtime. Another possible

intended interpretation could be that

such dependence exists between rules

which control process execution

within workflows synchronously.
Figure 4.5.3.2. 3 Weak Direct Action-OR Graph

The above tree represents a direct OR dependency where the following possible

combination patterns are depicted when A1i(R1) is a root node/rule:

78

● The execution of A1i(R1) may or may not trigger the execution of E2j(R2) depending

on additional events, conditions or actions from the class, or guided by external

events so each of these cases introduces a different degree of weakness.

● The execution of A1i(R1) may or may not trigger the execution of C2j(R2) depending

on add on events, conditions or actions from the class, or guided by external events.

● We can also devise the following possible combination of OR patterns:

A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2) ˅ A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2)

Consider patterns identified from Figures 4.5.3.2.1 - 4.5.3.2.3. Such dependency patterns

only appear when there is a weak relationship between one or more rules. These

dependency patterns are based on an OR join, one node (rule) is directly joined to another

node (rule) through related components (event, condition, action). The relationship may

include the relation between objects, quantitative estimation of a property, and qualitative

estimation of a property as well as relation between properties of objects/ components

(event, condition, and action). A combination of nodes (rules) can also be linked through

an OR join.

4.5.3.3 Indirect AND Dependency patterns

Rule’s Indirect Event-AND Graph

The Indirect Event-AND graph is so named

because the Event component of one rule

(E1i(R1)) indirectly causes another rule (R2)

to be invoked. The source rule is linked to

the target rule or rules via other rules. The

event of R2 is subsumed by R1’s event. If

the condition of R2 is met, R2’s action will

execute regardless of R2’s event.

 This type of dependency requires

preliminary analysis of the events which

trigger the rules. It may be particularly

useful if there is a taxonomic classification

of the events, conditions and actions, since

it may introduce useful patterns of control,

specific to the problem domain. For

example, children nodes might be

interpreted as specialization of the parent

nodes, which can be the basis for automatic

indexing of the rules on the basis of the

taxonomic classification of events,

conditions and actions.

Figure 4.5.3.3. 1 Strong Indirect Event-AND Graph

79

The following relationship patterns are depicted:

● Edge (E1i(R1), X); (X, E2j(R2)), with E1i → X; X) 𝐴𝑁𝐷 → E2j, means that the event

of rule R1 is indirectly influencing the result of rule R2’s event through rule X. The

relationship consists of pairs. E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → X and X 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2).

By the transitivity relation property, Di Nola A (1991) E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 →

E2j(R2)

● Edge (E1i(R1), Y); (Y, C2j(R2)), with E1i →Y; Y 𝐴𝑁𝐷 → C2j, means that the event

of rule R1 is indirectly influencing the result of rule R2’s condition through rule Y.

The relationship consists of pairs. E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → Y and Y 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 →

C2j(R2). By the transitivity relation property, Di Nola A (1991) E1i(R1)

 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2).

● Edge (E1i(R1), Z); (Z, A2j(R2)), with E1i →Z; Z 𝐴𝑁𝐷 → A2j, means that the event of

rule R1 is indirectly causing change to rule R2’s action through rule Z. The

relationship consists of pairs E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → Z) and Z 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2).

By transitivity relation property, Di Nola A (1991) E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2).

We can also depict the following possible combination of AND-relationship patterns:

80

Rule’s Indirect Condition-AND Graph

The Indirect Condition-AND graph is so

named because the Condition component

of one rule (C1i(R1)) indirectly causes

another rule (R2) to be checked when the

condition of the related rule is checked.

The source rule is linked to the target rule

indirectly, via other nodes in the graph.

This type of dependency may be

interpreted as a conditional variant of the

indirect Action-AND dependency below.

In both cases the rules actions can be

executed upon a suitable event trigger but

the Condition-AND related rules need an

additional check of the condition which

may not be necessary in the case of Action-

AND dependency.

This interpretation allows bypassing some

of the unnecessary checks to speed up the

control-flow execution. Due to the non-

strictly logical interpretation of such

dependencies, however, the behavior of the

business workflow management system

will be implementation specific.

Figure 4.5.3.3. 2 Strong Indirect Condition-AND Graph

The following patterns are depicted:

● Edge (C1i(R1) X); (X, E2j(R2)), with C1i → X; X 𝐴𝑁𝐷 → E2j means that the

condition of rule R1 is indirectly influencing or triggering rule R2’s event through

rule X. The relationship consists of pairs C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → X and X

 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2). By the transitivity relation property, Di Nola A (1991)

C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2).

● Edge (C1i(R1) Y); (Y, C2j(R2)), with C1i →Y; Y 𝐴𝑁𝐷 → C2j means that the

condition of rule R1 is indirectly influencing the result of rule R2’s condition

through rule Y. The relationship consists of pairs C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → Y and Y

 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2). By the transitivity relation property, Di Nola A (1991)

C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2).

● Edge (C1i(R1), Z); (Z, A2j(R2)), with C1i →Z; Z 𝐴𝑁𝐷 → A2j, means that the

condition of rule R1 is indirectly affecting rule R2’s action through rule Z. The

81

relationship consists of pairs C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → Z and Z 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2).

By transitivity relation property, Di Nola A (1991) C1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → A2j(R2).

● We can also depict the following possible combination of AND-relationship

patterns:

Rule’s Indirect Action-AND Graph

The Indirect Action-AND graph is so named

because the Action component of one rule

(A1i(R1)) indirectly causes another rule (R2) to

be checked. The source rule is linked to the

target rule or rules via other rules. The event of

R2 is invoked when R1’s action relates R2’s

event, condition and action. This causes R1 and

R2 to execute consecutively.

As explained earlier, this type of dependency is

open to interpretation. An alternative to the

intended interpretation introduced earlier

(unconditional action execution) could be given

in terms of actions only. For example, rules

linked using such a dependency may need to

completely skip their actions in the case of

previous execution of the actions of related

rules. Since both alternatives are

implementation specific, they will be tested at

the implementation phase before fixing the

intended interpretation.

Figure 4.5.3.3. 3 Strong Indirect Action-AND Graph

The above tree represents indirect AND dependency where nodes are indirectly connected

to the root node/rule A1i(R1) through rules (X, Y). The following patterns are depicted:

• The execution of A1i(R1) indirectly triggers the execution of E2j(R2) through

additional events, conditions or actions of the X rule. The relationship consists of

pairs A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → X and X 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2). By the transitivity

relation property, Di Nola A (1991) A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → E2j(R2).

82

• The execution of A1i(R1) indirectly triggers the execution of C2j(R2) through

additional events, conditions or actions from Y rule. The relationship consists of

the pairs A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → Y and Y 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2). By the transitivity

relation property, Di Nola A (1991) A1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 → C2j(R2).

• We can also devise the following possible combination of AND-relationship

patterns:

The “Indirect AND Dependency” pattern (Figure 4.5.3.3.1 - 4.5.3.3.3) is such that rule

nodes flow into two or more edges; the edges proceed and merge into a rule node where a

connection or relationship is to be established; hence they are indirectly connected through

intermediate nodes. This dependency pattern is based on indirect AND connections

between nodes or rules on the same path. There must be at least one indirect rule from the

nodes with an AND connection.

4.5.3.4 Indirect OR Dependency patterns

The Indirect OR dependencies between rules can be introduced similarly to the indirect

AND dependencies. They are also open to interpretation and since the intended meaning

largely depends on the implementation, we will leave this for that stage.

4.5.4 Business Rules Dependency Patterns

As seen in the preceding sections, relationships between the rules are defined by directly

linking objects, objects properties and indirectly relating the quantitative and qualitative

measures of their characteristics. Although the relationship patterns are different in terms

of their semantics, they also bear some similarities in terms of the appearance of different

components of the rules in the structures representing their use in real time. For example,

in Figure 4.5.4 we can identify the following patterns of dependency between rules: rules

on the same path (also known as chained rules), rules on the same level (alternative rules),

rules with the same parents (alternative chains), directly related rules and indirectly related

83

rules. The AND-OR Tree (Figure 4.5.4) combines different relationship patterns presented

earlier using dependency graphs. Relationship patterns in the AND-OR Tree can be

classified as follows:

• Neighbour/Precedence dependencies: The relationship between the rules within the

tree link successor and predecessor nodes. Such relationships can be defined within

the same root; parent and child rule nodes are related.

• Level dependencies: Rules at the same level of precedence are related. The

relationship between the rules can be defined within the same level on which they

appear within the tree. But such relationships can form multilevel dependencies as

well. Furthermore, this pattern can form an AND-OR dependency subtree.

• Path dependencies: Rules on the same paths within the tree are related from the top

node to the leaf nodes, forming a transitive pathway.

• Direct node dependencies: Rules without a common root can be related. The

relationship can be defined solely based on individual rule properties in relation

with other rules. Such relationships may result in a non-tree structure of

dependencies and can be inefficient for a large set of rules, since every node’s

relationships is to be checked. However, we can argue that this is still a tractable

relationship since the dependence can be formulated by means of class

dependencies.

• Indirect node dependencies: The dependency is established through intermediate

nodes on the same root node. Such dependencies may exist although their handling

can be complicated.

84

E1i(R1)

AND

R6R6
R5

AND/OR

C2j(R2)

OR

A2j(R2)

Path3

E3k(R3)

C3k(R3)

A3k(R3)

Path3
AND

Path2

R7

Path1

C4l(R4)E4l(R4)

AND/OR

E2j(R2)

AND/OR

Path1

Path2

Direct

Indirect

Root
Node(Rule)

Leve1
Rules

Leve2
Rules

Leve3
Rules

Figure 4.5. 4 AND-OR Graph with Dependency Patterns

4.5.5 Application of AND-OR Graphs

In workflows, each process object captures the function to be carried out; however, the

behaviour of the workflow is controlled by the ECA rules. The proposed model advocates

the use of AND-OR graphs as a solution for managing the changing behaviour of the

85

workflow. To demonstrate how AND-OR graphs (Figures 4.5.3.1.1 to 4.5.3.3.3) can be

used to control processes, an example presented in Figure 4.4 is used. Only an Event-AND

graph is illustrated here.

Now, consider Initiation and Execution Rules presented in Figure 4.4, also summarised

below:

Rule1 (Initiation Rule)

Event: When Notify New Install Request and New Equipment has been ordered

Rule2 (Execution Rule)

 Event: When Install New Equipment

Condition: If rack utilization is greater than 80% and Install Request status = Cancelled

Action: Send Message to Manager; Close Install Request

In this example event Notify Equipment(Rule1) relates to Event: Install Equipment (Rule2)

- E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 → E2j(R2), event Notify Install Request(Rule1) relates to Condition:

Install Request (Rule2) - E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 → C2j(R2) and event Notify Install

Request(Rule1) relates to Action: Install Request (Rule2) - E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 → A2j(R2).

The Event-AND graph is constructed using patterns: E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 → E2j(R2) AND

E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 → C2j(R2) AND E1i(R1) 𝑅𝑒𝑙𝑎𝑡𝑒 → A2j(R2). Rule1’s Event

component relates to Rule2’s Event and Condition and Action (ECA) components via

common properties. Now when Rule1 is invoked the following happens:

=> Rule 2’s Rule2’s Event is ignored

=> Rule 2’s Condition is checked

=> Rule’s Action is executed

=> Process “Manage Rack Space Availability” will be skipped, so the workflow

will flow from “Create Request to install new server” to “Order New Rack” or

“Send Messages” instead of “Create Request to install new server” to “Manage

Rack Space Availability” to “Order New Rack” or “Send Messages”.

Changing the properties of ECA components can influence or affect the flow of processes.

For example, changing components of Rule2 or removing Rule2 may cause the workflow

86

to flow from “Create Request to install new server” process to “Manage Rack Space

Availability” process. By constructing AND-OR graphs, we can identify rule relationships

and control the flow of processes in workflows. Figure 4.5.5 illustrates an AND-OR graph

with various rules linked to processes. Rules on the same graph patterns are connected.

Figure 4.5. 5 Business Rule Dependency Graph Control Processes

4.6 Summary
This Chapter presents the formal theories of the proposed model. One important aspect

being the specification of the Two-Levels Architecture, which is a representation of

business rule control and business process levels. Essentially, the architecture provides an

integration mechanism to allow business rules and Metarules to configure workflows. The

other equally important aspect is the formalization of business rules and components using

the AND-OR graphs. The AND-OR graph is considered as a set of business rule

dependency patterns that have similar behaviour and shapes. The dependencies between

business rules are formulated using the objects and their properties which are parameters

of the business rule structure (Event, Condition, and Action). Since the coupling of rule

components is loose in AND-OR graphs, changes to business rule components can be

carried out separately. This becomes very important when there are many processes and

the business rule changes are frequent. The Chapter concludes with an example to allow

BPM professionals and academics to interpret business rules and apply the proposed model

theories to control and configure workflow.

87

5. Software Architecture, Metarules and Indexing

The sketch of the architecture is presented to outline the main model components and their

principal interactions. Section 5.1 presents the software architecture of a system which can

implement the framework. The Metarule construct is explained in section 5.2 to further

enrich the software architecture. Section 5.3 discusses our business rules indexing approach

using various dependency patterns.

5.1 Software Architecture
In Figure 5.1, the ECA Model Adaptor component is responsible for implementing

business rule formal definitions as discussed in Chapter 4. The business rule designer

(editor) provides an environment to allow the user to enter, delete and update business rule

components. Currently, users are responsible for authoring business rules through the

business rule designer one at a time. Obviously in future, it would be ideal to provide tools

such as decision tables in Drools for mass importing of business rules for production

deployment. The business rule designer and ECA Model Adaptor form the main

components of the system architecture. The adaptation layer through APIs provides an

interface to communicate with external business rules and workflow management systems.

At the time of writing this thesis, the prototype is only linked to JBoss Drools to store (rule

repository) and execute business rules in real time. Furthermore, through APIs, workflow

is executed based on the business rules stored in the rule repository. In JBoss Drools [52],

business rules are stored in the production memory.

Figure 5. 1 Software Architecture Diagram

88

The ECA Model Adaptor module consists of Java files required during business rules and

workflow compilation and execution. In most cases, users will simply include all

dependency files at runtime then connect to Drools rule management system. To allow

flexibility for integration with other business rules and process systems, specific system

APIs will need to be created. The core files are quite compact and only require few

kilobytes for JAR files. The runtime performance may arise when there is a huge amount

of related business rules that require changes. However, the dependency patterns indexing

algorithm (Section 5.3) is written to provide faster business rule access and execution

times. Using the ECA components and dependencies with correct data structures and

indexes, we should be able to determine which bits need optimization.

5.2 Metarules

The metarule concept provides the ability to monitor and change business rules and indexes

at runtime. Creating Metarules is very similar to creating normal business rules in JBoss

Drools [52]. Let us consider Code Snippet 5.2.1 below representing a business rule using

Drools Rule Language (DRL).

Code Snippet 5.2. 1 Business Rule using DRL Syntax

89

A Metarule is applied on the above business rule in such a way that a message is created

to inform the DC Manager about installation of equipment whenever business rule “R3” is

invoked and request type equals to install, as shown in Code Snippet 5.2.2 below.

Code Snippet 5.2. 2 Metarule using DRL Syntax

Using Metarules, it is possible to add, remove or update existing business rule Events,

Conditions and Actions by invoking methods to add, remove and update while passing the

name of the business rule. For example, in Code Snippet 5.2.1 above to update the Event

“Request (Type = ‘install’) to Request (Status = ‘open’)” is achieved through invoking

method update Event on r while passing the new Event as an argument (Code Snippet

5.2.3)

Code Snippet 5.2. 3 Metarule updating an existing event

90

In similar fashion, the business rule indexes can be created and modified. Using Metarules,

Code Snippet 5.2.4 presents index “Index_R1” is created to monitor any business rules in

Node-based dependency pattern called ‘Rack’, and index “Index_R2” is created to monitor

any business rules in a path-based dependency pattern. Notice that two classes,

‘NodeBasedPattern’ and ‘PathBasedPattern’ are called for implementation of relevant

indexes.

Code Snippet 5.2. 4 Index creation using Metarule

As you can see like normal business rules, Metarules are also made up of a name, event,

condition and action components. These can be directly added, deleted and modified using

our business rule designer editor. It is important to understand that both ‘NodeBasedPattern’

and ‘PathBasedPattern’ classes implement an interface that has constructor classes and other

methods i.e. add, remove and modify indexes. For example, NodeBasedPattern indexes are

added by invoking the method (NodeBasedPattern.add) or use a constructor as shown in

Code Snippet 5.2.4. Note, business rules R1 and R2 are referenced in Index_R2. This is

because both are on the same path dependency.

91

5.3 Indexing of Business Rules
This Section provides an answer to research questions regarding the issue of how

efficiently the underlying business rules can be retrieved. In computer programming, an

index is a key that is used to point or order unsorted records for easy access [30, 117]. The

key is typically used to reference records, for example a content page of a book provides

indexes (table of content) to individual Chapters.

Comparable to the data in the database management systems, business rules in rule

management systems are faced with the similar problems of storing and maintaining large

volumes of information. Fields like financing, banking and insurance have a large set of

business rules and processing them is a major task [122]. The execution performance on

business rule applications is influenced by the number of business rules to be searched and

processed. Agreeably, the storage and time complexities of business rule creation and

execution are commonly connected to the number of business rules in rule management

systems. As the number of business rules increase so does the execution time. The worse

situation is when there are multiple relationships between business rules and children

dependencies. What could eventually happen is that a business rule may need to be changed

and propagate its changes to other business rules. The affluence of analytics is important

because as the number of stored business rules increase, it becomes difficult to find and

update business rules.

Indexing business rules is a way to optimize performance of a rule management system by

minimizing the number of accesses required as business rules are searched, inserted,

deleted and updated [58]. Such performance optimization is done by providing quick

pointers (locators) of where the queried business rule components are. In our proposed

model, an index is defined to representing a dependency pattern (Path dependency, Direct-

Node dependency, Level dependency, Neighbour dependency, Indirect node dependency).

All dependency patterns must first be found and then indexes are created for each pattern.

Business rule dependency queries including change propagations are executed using such

indexes. It is worth mentioning here, that for dependency patterns such as Direct-Node and

Neighbour dependency patterns where information to be fetched or updated is situated

92

conveniently, it would be faster or simpler to query using the actual AND-OR graph nodes

containing the business rule components. In this case, the well-known algorithms such as

Depth-First Search and Breadth-Fist Search [108] are incorporated to traverse through the

graphs. To be more precise, there is a level of the AND-OR graph, where querying at

logical layers (Figure 5.3.1) stops being more effective.

Due to time constraints, the following discussion is limited to a method of indexing

business rules using Path dependency patterns. The discussion is divided into two areas.

First, the index data structure is introduced. The index structure is attuned so that using

indexes speeds up the querying process. A structural index aids in evaluation of complex

patterns by avoiding unnecessary retrieval operations. Second, a method for indexing Path

dependency patterns is discussed in more detail.

5.3.1 Index Structure

The underlying index structure is built upon the well know ‘graph’ data structure. Business

rules with similar characteristics or patterns are grouped together and indexes are

constructed from the groups using the graph data structure. The graph structure, which

forms the logical layer consists of two important levels, the root and dependency patterns

levels. Figure 5.3.1 shows how the logical (containing indexes) and physical (containing

actual business rule components) layers are linked. The black coloured nodes represent

indexes, whereas the grey coloured nodes represent the actual business rules. Different

from actual business rule components, the indexes are created using Metarules discussed

in section 5.2.

For illustration, consider a simple set of business rules based on the workflow presented in

Figure 4 in Chapter 4. Business rules are applied to ensure that there is no overload of

equipment in racks and correct types of equipment are installed in racks. Business rules R1,

R2, R3, R4 and R5 are managed and various path dependency patterns are drawn as shown

in Figure 6.1. The root index node provides a link to dependency pattern indexes (Pattern

93

Index 1 and Pattern Index 2). The dependency pattern indexes point to actual matches

for the graph dependency patterns (E(R1) → C(R2); A(R2) → C(R4) and E(R1) → C(R3)).

Note that there is a difference between dependency pattern indexes and root indexes.

Whereas dependency pattern indexes are formed by actual business rule components

relationships, the root index points to dependency pattern indexes. The root index provides

a high-level view of the dependency pattern indexes (Pattern Index 1 and Pattern Index 2

in Figure 5.3.1).

Figure 5.3. 1 Graph Dependency Index Structure

5.3.2 Path Dependency Pattern Indexing

A business rule repository is scanned to find graph dependency patterns that match a given

path pattern. Then for each path that share the same business rule component nodes, a

single node (Pattern Index) representing the path dependency pattern is created. Business

rule component nodes and relationships within a path are linked to the appropriate Pattern

Index. For each path dependency, an identifier is created. The identifier is created by

combining unique keys of relationships that form a path dependency pattern. The root

index is also created to complete the graph structure. An index name and a path dependency

pattern that the index is built for are stored as properties within the root index. When a

94

business rule is added or updated in a dependency path, it is propagated to all its related

business rule nodes. This means iterating over all the graph’s business rule component

nodes and propagating the change. This is a time-consuming exercise, especially if there

are many business rule dependencies. However, by indexing the path, the change is

propagated only to related business rule nodes (components) connected through indexes.

Imagine the following business rule is fired when rack utilization is greater than rack

capacity. The rack capacity threshold limit varies depending on a data centre location. Let

us say, there is one business rule for different locations (Dar es Salaam, London and New

York). There is also an additional business rule (R04) that checks if the data centre location

is not London as shown in Table 5.3.2.

If Datacentre Location equal to Dar

es salaam, then Rack Capacity

threshold equals to 45 units

R01 If Location (Data

Centre) == ‘DAR’

Set Capacity (Rack)

= 45

If Datacentre Location equal to

London, then Rack Capacity

threshold equals to 42 units

R02 If Location (Data

Centre) == ‘LON’

Set Capacity (Rack)

= 42

If Datacentre Location equal to New

York, then Rack Capacity threshold

equals to 41 units

R03 If Location (Data

Centre) == ‘NYC’

Set Capacity (Rack)

= 41

If Datacentre Location not equal to

London, then Rack Capacity

threshold equals to 41 units

R04 If Location (Data

Centre) <>‘LON’

Set Capacity (Rack)

= 47

When equipment install request

triggered, if rack utilization is

greater than the rack space capacity,

then set the Rack is full

R05 When

Request Type

(Equipment) ==

‘Install’

If Utilization (Rack)

>= Capacity (Rack)

Set Space (Rack) ==

‘is full’

 Table 5.3.2: Business rule – rack utilization exceeds by data centre location

The above business rules will generate the following AND-OR Graph. The path patterns

are highlighted in different colours.

95

Figure 5.3. 2 Path Dependency Indexing Graph

The figure 5.3.2 above shows business rules with four Path dependency indexes when a

change is propagated through the AND-OR graph from above. Let's say a data centre

location is set to "NYC", this fact will propagate to business rule R03 and R04 completely

avoiding business rules R01 and R02. With regards to computation complexity, the

procedural programming (Code Snippet 5.3.2.1), would have to evaluate all conditions

until it finds the match branches. The complexity is O(n), where n is the number of if

branches, the program has to check. However, by indexing the graph path, this effectively

translates to a complexity of O(1).

Code Snippet 5.3.2. 1 Procedural programming (Java Syntax)

96

5.4 Summary
This Chapter presented the ECA Model’s system architecture of the framework, followed

by discussion on implementation of the Metarule concept to support runtime modification

of business rules. Moreover, the Chapter discussed the proposed model’s indexing

mechanism. The mechanism contributes to the implementation of an efficient indexing

mechanism for path dependency patterns in an AND-OR graph. The graph data structure

is introduced to hold a complete list of path dependency patterns within the graph. The

index nodes within the graph data structure have a direct access to nodes that form path

dependency patterns. Using a graph data structure to index business rules brings both

advantages and disadvantages. For example, the business rule index can be queried in the

same way actual business rule can be. So, querying indexes are done by using DRL or APIs

that are provided by a specific graph engine. Pattern Indexes point directly to graph

dependency pattern units via relationships created through unique identifiers of the

dependency path. Thus, it is easy to find which business rule component node is part of a

specific dependency pattern. This is very useful when updating indexes and propagating

changes. The obvious disadvantage of the graph data structure is that it requires more

storage space for larger graphs: two levels of the graph need to be considered for each

index.

97

6. Change Propagation and Adaptation Algorithms

This Chapter presents important algorithms to provide a systematic approach for creation

and modification of business rules and dependencies. It introduces two relevant algorithmic

categories (algorithm for Business Rules Change Propagation and algorithm for Business

Rules Adaptation in Workflows) to compute business rules change propagation and

adaptation problems identified in Chapter 2. The algorithms are formulated using business

rules components (ECA - three basic building blocks), dependency patterns of the AND-

OR graphs, Metarules, Pattern Indexes as described in Chapter 4 and 5.

6.1 Business Rules Change Propagation
According to [115], the basic understanding of the term “propagation” in computer science

means an action in which an interactive system adjusts its behaviour based on the change

of information. The concept of propagation is also used in business rule management

systems where the changes can have different granularity - a rule component, a separate

rule and a whole set of related rules; whatever the change is, it can be translated in terms

of the index patterns we created earlier: a change of a node, path or a whole subtree. This

becomes the starting point of the algorithms for propagation and adaptation. One or more

changes can be used to the business rules to update other business rules to new

requirements. However, we cannot simply apply a change to one business rule component,

because a change can overlap to more than one business rules. This may lead to dependency

change impacts between multiple business rules. Some changes are predictable, but others

may occur due to unexpected propagations on other parts of the business rules. Business

rules may dynamically update multiple business rules every time they are processed by the

business rules management systems. When there is a business rule change and that change

needs to be propagated across a volume of related business rules, the constant scanning

through rules can be costly and inefficient in terms of performance in execution of the

business rules in an application. A vital challenge is to find ways of propagating the

changes in an efficient manner. We appreciate that there are number of rule systems that

deal with change propagation, but our method differs from the existing approaches. Our

approach deals with the change propagation at business rule components level using

98

dependency graphs and patterns. Through dependency graphs, the relationships between

rules components are unfolded based on information available at the time of change.

The propagation of the changes must reach the limits of the scope which is determined by

the index tree. A changed business rule component in the graph must be propagated to all

business rule component nodes that directly or indirectly depend on it. This means the

ordering of all nodes relative to the changed node matters. Hence, the initial step in change

propagation is to index the graph to provide some orderings to help with sorting business

rules. The business rule nodes are indexed as described in Chapter 5. Business rule nodes

on the same index pattern to the changed node are potentially related. Each gets examined

to see whether their value really depends on the changed business rule node. The change

gets propagated to the final list of business rule nodes that depend upon the changed node.

Typically, business rules update would take efficient estimation of 𝜃𝑛2, where n is the

number of business rules. For example, in a real industrial workflow scenario with about

200K business rules, the change can take around 30 minutes, which is simply unacceptable

if the process needs to flow as quickly as possible. A change of the business rule

components may not only affect the business rules systems but also cause the workflow to

behave differently to what was initially intended. Henceforth, an approach to speedy

business rules change propagation at design time and runtime is required.

In a workflow, it is important to also consider that the outcome of a change propagation

may result in new paths (flows) being created or extended, paths splits, new business rules

being added, or existing rules deleted (no longer valid), etc. The modification, deletion or

addition of a business rule component to the AND-OR graphs will typically lead to the

creation of new business rule component nodes, deletion of the existing business rule

component nodes, creation of new business rule component nodes relationships and

deletion of existing business rule component nodes relationships. Section 6.2 presents

business rule change propagation based on dependency patterns.

99

6.2 Change Propagation via Dependency Patterns
The change operations in an AND-OR graph can be collapsed into three: an insertion,

deletion and update of business rule components and relationships, whereas the effect of

these changes can be propagated by mapping the operations to operations over the index

tree. The change operations provide the ability to create, destroy or convert business rule

components and relationships in business rule systems or applications. This research

considers the following operation types:

● Insertion of a rule component to an AND-OR graph

● Removal of a rule component from an AND-OR graph

● Modification (Update) of a rule component in an AND-OR graph

When there is a large computational of business rules component dependencies to deal with

in an AND-OR graph, one complexity to consider is how to manage the mentioned change

operations. One of the many reasons for defining dependency patterns in an AND-OR

graph is to help to identify the relationships between business rule components. This allows

us to determine which business rule components must be revised in case of change. All

affected business rule components in a dependency pattern must be easily revised to ensure

correct activation. Once dependency patterns are identified and defined, a change can be

propagated through representation dependency patterns. The following five change

propagation patterns form the basis of our change propagation algorithm. Only the Path

Dependency Propagation pattern (section 6.2.1) is discussed in detail. Other dependency

propagation patterns are briefly explained (section 6.2.2 – 6.2.5), leave the implementation

aspects for future work.

6.2.1 Path Dependency Propagation

This refers to a chain of business rules affected by a change. The possibility to determine

all change propagation paths between business rule components can provide valuable

information, for example, removal of duplicate and inconsistent business rule components

and relations as well as prediction of future business rule components change propagations

to prevent unwanted change in the future. This approach is systematic, rather than based

100

on limited human knowledge of examining few paths. The reason behind business rule

component change propagation in a path dependency pattern is to easily track and

propagate the change in the case where business rule components are connected

sequentially. The advantage of this is the ability to focus only on paths that need changing

as well as handle batch path changes at once.

As we have seen in Chapter 4, construction of AND-OR graph starts with a root business

rule component. All other business rules components are drawn as children of the root

business rule component. An AND-OR graph is made up of one or more paths from the

root business rule component. In an AND-OR graph, the path dependency pattern shows

relationships between business rule components (source business rule component) and

other business rule components (target business rule component) via properties and

functionalities. The target business rule component of the first business rule component

becomes the source business rule component of a second business rule component and so

forth. These business rule components have a relationship between them. If the completion

of the source business rule component (i.e. action) requires the completion of the target

business rule component (i.e. event). The business rules components on the same path

(source/upstream or target/downstream) to component ‘n’ are potentially dependent on

component ‘n’. Each business rule component in the path gets examined to check whether

their value really depends on component n’s properties/functionality or not. Having the

final list of paths that depend upon component ‘n’, the changes get propagated to them,

leaving the component at each path with updated values.

For illustration, consider a simple set of business rules based on the workflow presented in

Figure 4 in Chapter 4. Business rules are applied to ensure that there is no overload of

equipment in racks and correct types of equipment are installed in racks. Business rules R1,

R2, R3, R4 and R5 are managed and various path dependency patterns are built as shown in

Figure 6.2.1 Business rules R2 and R3 are directly dependant on R1. Rule R4 is directly

dependant on R2. Rule R5 is directly dependant on Rule R3. Whereas, Rule R4 is indirectly

dependent on Rules R1. The relationships exist under the conditions that the occurrence of

event property “Rack Space” in rule R1 forces rules R2 and R3 (with equivalent properties)

101

to be invoked. Furthermore, the occurrence of event property “Equipment Category” in R3

forces rule R5 to be invoked. There is also an indirect relationship from rule R1 to rule R4

via rule R2.

Figure 6.2. 1 Business Rules Path Dependencies

Whenever the underlying business rule component nodes change, the approach would be

dynamically accessing the path using indexes and invalidating the next related applicable

business rule component then propagate the changes before firing the business rules again.

The outgoing path containing the chained business rules is checked and updated. The path

always keeps its structure and content being updated, meaning that if a change is applied

to the content or the structure of a path in an AND-OR graph, it automatically gets

propagated to all dependent business rule component nodes that may get affected.

If a new business rule is inserted to the target business rules system, then certain parts of

the currently legal business rule component relationships may become outdated. Figure

6.2.2 shows the changes in the path dependency graph when the business rule R6 is inserted.

All the changes happen in specific paths of the graph, some paths are not affected by the

102

new inserted business rule. Before R6 is inserted, the business rule R5 had no dependencies;

As soon as R6 is inserted, R6 forms a direct dependency on R5 and R3. R6 has an indirect

dependency on rule R1. The rule insertion proceeds in three stages:

(i) By using path indexes, find the affected dependency paths because of the

impact of a new inserted business rule,

(ii) Insert the new business rule (example R6) to the path and

(iii) Define and modify dependencies to the affected paths (example R1, R3; R3,

R6; R5, R6).

While finding the affected paths, the algorithm recursively traverses through the

dependency graph. It checks if the new business rule component (Cx(R6)) intersects with

any next business rule components in the dependency path. It inserts the new business rule

or node then updates the intersecting path by collecting and adding it to the set of affected

paths. The recursion proceeds by exploring the next path. This way, it ends up only

exploring the relevant paths in the dependency graph. The business rule insertion results in

adding a new business rule, adding new paths for the new business rule, and modifying

existing dependencies.

Figure 6.2. 2 Business Rule 6 Inserted

103

If a business rule component from the dependency graph is removed, all dependencies on

the underlying deleted rule component become out-dated in which case the dependant

edges will no longer be required. Figure 6.2.3 shows the changes in the path dependency

graph when the rule R3 is deleted. All the changes happen in a specific path of the

dependency graph, some of the paths are not affected by the removed business rule. After

R3 is deleted, rule R6 is no longer connected to R1. The deletion of a rule also consists of

three stages: (i) Find the affected dependency paths because of the impact of a deleted

business rule, (example R1, R3; R3, R6; R5, R6). (ii) Delete the business rule component

(example R3) from the path and (iii) Define and modify dependencies to the affected paths,

for example R1 → R3; R3 → R6 paths will be removed.

Figure 6.2. 3 Business Rule 3 Deleted

If a business rule component from the dependency graph is updated all dependencies on

the underlying updated business rule component would need to be updated accordingly.

All the changes happen in a specific path of the dependency graph, some of the paths are

not affected by the updated business rule. Figure 6.2.4 shows the changes in the path

dependency graph when the business rule R3 is updated. The update of a business rule

104

component consists of three stages: (i) Find the affected dependency paths because of the

impact of an updated rule component (ii) Update the rule component to the path and (iii)

Define and modify dependencies to the affected paths. When an update happens on a node

n, after the value of the node is updated, the change gets propagated through the graph to

the nodes that depend on n, so that they can revaluate their value based on updated inputs.

Figure 6.2. 4 Business Rule 3 Updated

By simply checking for path dependency patterns, not all the business rules dependencies

are captured, for example, going by path dependency definition, only business rules on the

same paths will be checked. However, if dependent business rules are stored on different

paths, they would be missed by the path dependency algorithm. In this case, the scenario

should observe the non-path dependency patterns, which are described next.

105

6.2.2 Direct-Node Dependency Propagation

Direct-Node dependency propagation or business rule component dependency propagation

means business rules components are directly connected to the source (initiate) business

rule components for change propagation. A business rule component can have multiple

direct connections or dependencies, which means that changes to the initiating business

rule component have a high effect on multiple business rules components linked to it.

Knowing such information can greatly improve business rule change management as it can

provide hints to which business rule components are highly connected and can cause great

impact to multiple business rules components.

6.2.3 Level-Based Dependency Propagation

Level dependency propagation shows a change propagation on business rules components

within the same levels of AND-OR dependency graph linked to the source (initiate)

business rule components. As changes propagate between business rules components on

the same levels, it is vital to know the links in order to manage change propagation and

assess risk associated with component change. As different levels are assessed, it is

important to know the extent of the likelihood and impact as well as the type of link. Exact

representations for connectivity should show all aspects of change propagation in order to

correctly support and manage change on related business rule components.

6.2.4 Neighbour Dependency Propagation

Neighbour dependency propagation shows change propagation between previous business

rule components and succeeding business rules components. A business rule component

has neighbour relationships. In our previous example, business rule R3’s previous business

rule component is R1’s event and the succeeding business rule component is R5’s condition.

The R1’s event activates business rule R3 and R3’s action cause R5’s condition. There is an

event-condition and action-condition dependencies between (R1 and R3) and (R3 and R5)

respectively.

6.2.5 Indirect Node Dependency Propagation

Indirect node dependency propagation occurs when the source (initiate) business rule

component has indirect connectivity with other business rule components causing a change

to be propagated. Displaying indirect connectivity between components and related risk

106

values is a challenging task but crucial for the understanding of change propagation

especially in a highly linked or connected business rules systems. However, due to time

constraints, this research will only focus on indirect business rule components’

relationships along the line of path dependencies. By utilizing dependency propagation

patterns (described above) to confine business rules components, we provide a structured

and formal environment for planning, organising, and managing changes in an orderly

manner. Every change propagated, could be easily seen and analysed. At the time of writing

this thesis, a simple algorithm for change propagation based on dependency patterns is

implemented (Section 6.3). In future, an algorithm could be implemented to check the

change propagation cost of each pattern based on impacted business rule components.

6.3 Algorithm for Business Rules Change Propagation
The five important business rules dependency patterns for change propagation were

discussed in the previous section. This section introduces another important contribution

to this research: the algorithm necessary for the implementation of business rule change

propagation. The algorithm is created to provide a systematic runtime modification

approach for the business rules change propagation challenge. Additionally, it offers the

capability to minimize the performance issues during runtime execution of business rules

change, using indexed propagation patterns described above. The unique feature of our

work is expounding the change propagation challenge at business rule components level.

The goal is to detect and map changes across business rules components in dependency

patterns. The graph dependency patterns (mentioned in previous section), helps to

determine which business rules are impacted by a change in a business rule component. If

any business rule component changes, all connected direct and indirect business rule

components must be revised. Formally the algorithm is defined in Definition 6.3 as

follows:

Definition 6.3

Let each pattern be part of an AND-OR graph G which, consists of ‘R’ nodes representing

business rules and arcs ‘D’ representing dependencies between business rule (nodes).

Therefore G (R, D) is a business rule graph and c(ri) is a business rule node such that c(ri)

107

∈ R; c is a component of a rule, i.e. event, condition and action. The set of c(ri) business

rule changed components are noted as P(c(ri)) such that ∀c(rj) ∈ P(c(ri)), c(ri) is either

path, level-based, direct-node, or neighbours business rule component for the source

business rule component c(rj). The letter ‘P’ stands for Propagation.

● We denote Pp(c(ri)) as a set of all c(ri) business rules path components such that

∀rj ∈ P(c(ri)), c(ri) is a path dependant business rule component for the source

business rule component c(rj).

● We denote Pl(c(ri)) as a set of all c(ri) business rules level components such that

∀rj ∈ P(c(ri)), c(ri) is a level dependant business rule component for the source

business rule component c(rj).

● We denote Pdn(c(ri)) as a set of all c(ri) business rules direct-node components

such that ∀rj ∈ P(c(ri)), c(ri) is a direct-node dependant business rule

component for the source business rule component c(rj).

● We denote Pn(c(ri)) as a set of all c(ri) business rules neighbour components

such that ∀rj ∈ P(c(ri)), c(ri) is a neighbour dependant business rule component

for the source business rule component c(rj).

● We denote Prules(c(ri)) as a set of connected c(ri) business rule components such

that Prules(c(ri)) = Pp(c(ri)) ∪ Pl(c(ri)) ∪ Pdn(c(ri)) ∪ Pn(c(ri)). If c(ri) ∈ R

business rule component changes, then Prules(c(ri)) are all business rule

components, which will have to be revised. The revision may cause a

propagation of business rule component change. Indeed, if one business rule

component changes, the set of path, level, direct-nodes and neighbours business

rules will be revised and the change properly propagated. This will raise the

need to revise another set of path, level, direct-nodes and neighbours’ business

rules of the business rule component that was revised and so on, until there are

no more business rules to change. The following (Code Snippet 6.3.1)

summarises the change propagation algorithm.

108

Code Snippet 6.3. 1 Business Rules Change Propagation Algorithm

//Business Rule Change Propagation Algorithms: component is changed and propagated
//across dependency patterns listed in DependencyPatterns
//Input: business rule component

public void ECAChangePropagation(ECAModel changedECAcomponent, ECAGraph ecaRuleG){

//Declare variables
//Variable to store sorted/indexed dependency pattern so
//it’s easy to propagate the change.
//Note calling IndexingGraphPatterns(ecaRuleG) provide different dependency patterns
//(Path, Level, Direct-Node and Neighbours dependencies

List<ECAModel> DependencyPatternsIndexes = IndexingGraphPatterns(ecaRuleG);
 ECAModel changedRulecomponent = new ECAModel();
 ECAModel changedLinkedRulecomponents = new ECAModel();

//Check if the business rule component existing in the using
//DependencyPatternsIndexes
//loop through graph to identify dependency patterns

 for (int index=0; index < DependencyPatternsIndexes.size();index++){
 changedRulecomponent = changedRulecomponent.children().get(index);

//Using rule component index list (DependencyPatternsIndexes)
//to check if component exist

 if (changedRulecomponent == null) return;
 if (changedRulecomponent == changedECAcomponent) {

 //check if changedRulecomponentIndex has children
 if (changedRulecomponent.hasChildren()) {

 //get the index of the business rule component to be updated
 int changedRulecomponentIndex = changedRulecomponent.getruleIndex();

//Using the changeRulecomponentIndex to propagate the change
//to all dependency business rule components (children)

 //Perform delete and add to propagate the change to children components
changedLinkedRulecomponents.children().remove(changedRulecomponentIndex)
changedLinkedRulecomponents.children().add(changedRulecomponentIndex,
changedECAcomponent);
}

}
 }
}

109

6.4 Business Rules Adaptation in Business Workflows
Rules adaptation in business workflows still deserves further investigation. Existing

solutions do not completely address all problems. Particularly, the configuration of a

business process is not always easy (business processes are rigid and difficult to maintain).

According to [38], it is helpful to use rules to enforce how business process should work.

[38] argues that rules give a flexible way to specify a process’s control flow in a workflow.

However, most business workflows usually offer capabilities for evaluating rules as either

built-in the business process languages or implemented for specific applications.

Therefore, it is entirely achievable to implement simple business rules in the business

process engine, but this means any changes in workflows will require recompilation, full

testing and redeployment. In case of complex ECA business rules, a separate service needs

to be implemented, away from process. It is necessary to consider the complexity and the

frequency of change in situation when business rules support the execution of business

processes. The ability of ECA business rules to support dynamic changes in business rules

allows us, in this case, to modify business process implementation without changing and

redeploying it. To that end, the objective of this section is to describe business processes

with a focus of using a set of connected business rules with the aim of providing flexibility

in workflow configuration. We introduced Figure 6.4.2 to present the business rules

relationships (dependencies) for the request cancellation workflow. Note, Figure 6.4.1

shows the original workflow with embedded business rules (highlighted in yellow). In the

workflow, upon receipt of a cancellation notification from a requestor, the cancellation

reason is checked. The request can be cancelled if the following cancellation reasons are

true: no space for equipment, equipment causing power overload and equipment already

existing in the data centre then the equipment type is defined as a server. When notified

equipment type is a server, Power connections and Network connections are checked; note

that these two processes are done simultaneously. A cancellation request can also be

rejected (R4). When both power and network connections are removed, a request is set to

be closed. Once the request is closed, request cancellation is complete. The typical

workflow and business processes will be documented as follow:

● P1 - Request Notification Cancellation

● P2 - Network Connection Preparation

110

● P3 - Power Connection Preparation

● P4 - Request Approve/Reject

● P6 - Power Connections Removal

● P7- Network Connections Removal

● P5 - Request Complete

Figure 6.4. 1 Request Cancellation Workflow

Figure 6.4. 2 Business Rules modelling Request Cancellation Workflow

111

The design of the workflow is based on business rules components. Figure 6.4.2 presents

business rules’ relationships, which are created to provide functionalities of the request

cancellation workflow. With regards to adaptation of business rules in workflows, several

business rules’ constructs or concepts are formed. For example, the initiating business rule

is responsible for generating the starting process of the workflow. The intermediate

(sequential and parallel flow rules) are responsible for to providing links between

processes. These constructs or concepts are important in presenting the logic and semantics

of business processes in a workflow. It is important the business rules support the following

key workflow concepts:

● Ability to enable a business rule to initiate a process in a workflow

● Ability to enable a business rule to terminate a process in a workflow

● Ability to enable a business rule to generate sequential process flow patterns

● Ability to enable a business rule to generate AND-Parallel Split process flow

patterns

● Ability to enable a business rule to generate OR-Parallel Split process flow

patterns

● Ability to enable a business rule to generate AND-Merge process flow patterns

● Ability to enable a business rule to generate OR-Merge process flow patterns

● Due to time limitation, the exclusive alternatives flow patterns (XOR-split,

XOR-Merge) are not considered in this research.

To build a complete algorithm that controls and manages an instance of a workflow, the

following seven constructs or concepts are important. Each is defined below to show how

it is used in a workflow generation and configuration:

1. Initiating Business Rules

2. Terminating Business Rules

3. Sequential Flow Rules

4. Parallel AND-Split Flow Rules

5. Parallel OR-Split Flow Rules

6. Parallel AND-Merge Flow Rules

7. Parallel OR-Merge Flow Rules

112

6.4.1 Initiating Business Rule

To model how a process is initiated or activated by using business rule components within

a workflow, we simply create an initiating business rule to start a workflow process. This

can be achieved by raising a business rule event component to cause condition and action

components of another business rule component to execute or a business condition causes

another business rules action to be executed. Furthermore, a business rule action

component can invoke an event of another business rule or cause another businesses rule’s

condition to occur. A business rule event component can be raised either explicitly or

implicitly with an event from a workflow environment or other integrated applications e.g.,

an update from a database. Note, an initiation business rule is a starting business rule with

no defined predecessor connection or linked business rule component. In Figure 6.4.2

above business rule R1 is an initiating business rule causing for R2, R3 and R4 to executing

via action-event relationship as illustrated in Figure 6.4.3 below. The action component of

R1 is associated with business rule event component of R2, R3 and R4.

Figure 6.4. 3 Initiate Workflow via Business Rules

6.4.2 Terminating Business Rule

To model how a process is terminated or stopped by using business rule components within

a workflow, we simply create a terminating business rule that ends a process in a workflow.

This can be achieved in similar ways as above, however a terminating business rule has no

defined successor connection or linked business rule component. As an example, for the

113

scenario in Figure 6.4.2, business rule action component from R4 causes R5 event

component to be activated to perform action “request complete” to end the process. Figure

6.4.4 below illustrated how a process termination is linked using business rule components.

Figure 6.4. 4 Terminate Workflow via Business Rules

6.4.3 Sequential Flow Business Rules

A sequential process flow is simply achieved by linking associated business rules. An event

of one business rule is raised when the preceding action of another business rule terminates.

Also, an action of one business rule may cause the condition of another business rule to

perform an action that causes sequential flow. The sequential connection between the

business rule action components is founded on the fact that the business rule event

component resulting from the preceding business rule action component appears as a

triggering of a business rule event component. The workflow forms a chain of business

rules linked via the business rules components. In Figure 6.4.2 above, business rule action

component from R1 causes R3 event to be activated; thereafter R3 action causes R6 event

component to be activated, which describes cancel notification request and power

connections removal processes. Business rules are illustrated in Figure 6.4.5 below.

Figure 6.4. 5 Business Rules modelling Sequential Process Flows

6.4.4 Parallel AND-Split Flow Business Rules

To model parallel AND-Split process flows by using business rules within a workflow, we

simply link the related business rules components. This can be achieved in different ways

114

by splitting the control flow into parallel paths; one is to trigger one or more business rules

event components by an action from another business rule. The key here is that there will

be parallel triggered business rules event components by an action. Another alternative is

to define one or more business rules with the same business rule event component. An

AND (˄) conjunction will be specified to flow processes in parallel. The use of an AND

conjunction operator is explained in [69]. In Figure 6.4.2 above business rule action

component from R1 causes R2, R3 and R4 event to be activated by using parallel AND-

Split flow as illustrated in Figure 6.4.6.

Figure 6.4. 6 Business Rules modelling Parallel AND-Split Process Flows

6.4.5 Parallel OR-Split Flow Business Rules

To demonstrate Parallel OR-Split process flows within a workflow, we simply link the

related business rules components. The technique is comparable to a parallel AND-Split

process flow. As seen above, one way is to trigger one or more business rules event

components by an action from another business rule action component. The key here is

that there will be parallel triggered business rules event components by an action. An

alternative way is to define one or more business rules with the same business rule event

component. Furthermore, an action of one business rule may cause multiple conditions of

another business rule to perform alternative actions that cause a parallel OR-Split flow.

The resulting flow paths are combined by a disjunction operator (˅) based on components

of the business rules. The use of an “Or” disjunction operator is explained in [69]. In Figure

115

6.4.2 above business rule action component from R1 causes R2, R3 and R4 event to be

activated using parallel OR-Spilt as illustrated in Figure 6.4.7 below.

Figure 6.4. 7 Business Rules modelling Parallel OR-Split Process Flows

6.4.6 Parallel AND-Merge Flow Business Rules

To model AND-Merge process flow by using business rules within a workflow, we simply

link the related business rules components. This can be achieved in different ways by

merging the control flow of parallel paths into one; one way is to activate a business rules

event component by multiple business rules action components. The key here is that there

will be parallel business rules action components causing a single event component. An

alternative way is to define several business rules event components to implement with

option condition components to execute a single action. An AND (˄) conjunction will be

specified to merge process flows. In Figure 6.4.2 above business rule action component

from R6 and R7 in parallel causes R5 event to be activated. Business rules for AND-Split

parallel process flows are illustrated in Figure 6.4.8 below.

Figure 6.4. 8 Business Rules modelling AND-Merge Process Flows

116

6.4.7 Parallel OR-Merge Flow Business Rules

To model OR-Merge the process flow by using business rules within a workflow, we

simply link the related business rules components. The technique is comparable to a

parallel AND-Merge process flow. As seen above, this can be achieved in different ways

by merging the control flow of parallel paths into one; one way is to activate a business

rules event component by multiple business rules action components. The key here is that

there will be parallel business rules action components causing a single event component.

An alternative way is to define several business rules event components with option

condition components to execute a single action. The flow paths are combined by a

disjunction operator (˅) based on components of the business rules. In Figure 6.4.2 above

business rule action component from R6 and R7 in parallel causes R5 event to be activated.

Business rules for OR-Merge process flows are illustrated in Figure 6.4.9 below.

Figure 6.4. 9 Business Rules modelling OR-Merge Process Flows

117

6.5 Algorithm for Business Rules Adaptation in Workflows
This section introduces an important algorithm necessary for the implementation of rule

adaptation in business workflows. The algorithm is created to provide a systematic

approach of adaptation of rules to govern a workflow. If any business rule component

changes, all underlying connected business processes are revised. It offers the capability of

allowing users to generate and modify business processes automatically. Three steps are

given to explain the adaptation algorithm:

1. Generating business process from business rules (Figure 6.5.1), note rules are

indexed through dependency patterns. We argue that for each business rule that is

generated, there is a process initiated by an event or activated by an action. So, user-

friendly process names can be defined from such as event/action labels. However,

for simplicity our processes will be labelled with an initial ‘P’ followed by the

business rule number. For instance, process name P1 belongs to business rule R1.

Figure 6.5. 1 Business Process Nodes Creation

2. We use an AND-OR graph to generate dependencies/edges between business rules

components to identify source connected rule components, destination connected

rule components, rule flow constructs and relation operators (Table 6.5.1). Rule

flow constructs and operations (Initiating Rule, Terminating Rule, Sequential Flow

Rule, Parallel AND-Split Flow Rules, Parallel OR-Split Flow Rules, Parallel AND-

118

Merge Flow Rules and Parallel OR-Merge Flow Rules) are important as they let us

understand or determine the process flow transitions or directions. Essentially, the

goal is to detect business rule relationships and type of relationships by using a

graph. Note, the relationships are also indexed. The flow rule constructs are

discussed in more detail in Section 6.4.

Table 6.5. 1 Business Rules Dependency Mapping Table

3. Steps 1 and 2 are merged to generate business processes and their connectivity.

Process transitions or flows are determined through the connected business rule

indexes, predecessors, successors, rule flow constructs and relation operators.

Figure 6.5.2 shows pictorial stages of transforming business rules to a workflow.

Index Rule

Name

Rule

Index

Source

Business

Rule

Destination

Business

Rule

Rule-Flow

Constructs

Relation

Operator

1 R1 1 Null R3 Parallel Split AND

2 R1 1 Null R2 Parallel Split AND

3 R1 1 Null R4 Parallel Split OR

4 R2 2 R1 R7 Sequential

5 R3 3 R1 R6 Sequential

6 R4 4 R1 R5 Parallel Merge OR

7 R5 5 R4 Null Terminating Rule

8 R5 5 R6 Null Terminating Rule

9 R5 5 R7 Null Terminating Rule

10 R6 6 R3 R5 Parallel Merge AND

11 R7 7 R2 R5 Parallel Merge AND

119

Figure 6.5. 2 Business Rules Mapping Table to Workflow

Before defining the adaptation algorithm, it is worth mentioning that the process of

indexing business rule components and dependencies are introduced to optimize

performance and minimize the number of accesses required when business rules are

searched, inserted and updated. Refer to section 5.3 for more information on storage and

performance conscious indexes for the AND-OR graphs. Code Snippets 6.5.1 - 6.5.3 show

the pseudocode of the three phases of business rule workflow adaptation algorithm.

120

Code Snippet 6.5. 1 Transform Business Rules into Processes

//Phase 1: Convert/Transform business rules into processes

Process CreateProcessFromBusinessRules(List<ECAModel> RuleList) {//Input indexed ECA rule list then return Workflow

// Use business rules to define processes for the workflow: start, intermediate and end processes
ArrayList<Process> ProcessList=new ArrayList<Process>();

for (int index = 0; index < RuleList.size(); index++) {

//if a rule's predecessor is null then create start node

 List<ECAModel> ecaRuleList = RuleList;
 if (ecaRuleList.get(index).isRoot()) {
 StartNode pStart = new StartNode();
 pStart.setId(index); //Note index of a rule assigned to be used in the merged phase
 pStart.setName("P" +index);

 //Define process definition based on Action Nodes

Process WF_pStart = new Process(pStart);
WF_pStart.setStartprocess(pStart);
ProcessList.add(WF_pStart);

 }
 //if a rule's predecessor or successor is not null then create intermediate node
 if (ecaRuleList.get(index).hasChildren() && ecaRuleList.get(index).isRoot()== false) {

 ActionNode p1 = new ActionNode();
 p1.setId(index); //Note index of a rule assigned to be used in the merged phase
 p1.setName("P" + index);
 DroolsAction action = new DroolsAction();
 action.setMetaData("Action", new Action() {
 public void execute(ProcessContext context) throws Exception {
 System.out.println("Error define process node");
 });
 p1.setAction(action);

 //Define process definition based on Action Nodes

 Process WF_p = new Process(p1);
 WF_p.setProcess(p1);

ProcessList.add(WF_p);

 }
 //if a rule's successor is null the create end node
 if (ecaRuleList.get(index).hasChildren() == false) {
 EndNode pEnd = new EndNode();
 pEnd.setId(index); //Note index of a rule assigned to be used in the merged phase
 pEnd.setName("P" + index);

 //Define process definition based on Action Nodes
 Process WF_pEnd = new Process(pEnd);
 WF_pEnd.setEndprocess(pEnd);

ProcessList.add(WF_pEnd);

 }

…
return ProcessList;
}

121

Code Snippet 6.5. 2 Define Business Rule Dependencies as per Table 6.5.1

//Phase 2: Define Business Rule relationships (dependencies) as per Table 6.5
//Dependency is based on Object and Properties of one rule are matched using objects and properties of one or more rules

Void BusinessRulesDependency(ECAGraph ecaRuleG) {//It takes in the ECA AND-OR Graph parameter as a skeleton

//Create Rule relationships using the indexed RuleList then build the graph

for (int i = 0; i < RuleList.size();i++) {
String eventList1 = (RuleList.get(i).getevent()).toString();
System.out.println("Check object 1" + eventList1);

 for (int j = i + 1; j < RuleList.size(); j++) {
RuleList.get(j).getcondition(), RuleList.get(j).getaction());

 String eventList2 = (RuleList.get(j).getevent()).toString();
 String condList2 = (RuleList.get(j).getcondition()).toString();
 String actionList2 = (RuleList.get(j).getaction()).toString();
 System.out.println("Check object 2" + eventList2);

/*Event-AND Relationship scenario, note Condition and Action components are not

shown here but they implemented in similar manner. Obtain the list of rules - RuleList. Object and properties

of one rule’s Event relates to event and condition and action of another rule's object and properties. if event

component of one rule matches all: event, condition, action components of the second rule then create
relationships between rules*/

if (eventList1.contains(eventList2) && eventList1.contains(condList2) && eventList1.contains(actionList2)) {

rulelink = CreateRuleRelationships(ecaRuleG, i, j, RuleList);

 }

//Event-OR Relationship. Object and properties of rule 1 Event relates to either event or
condition or action of //another rule's object and properties. if equal then create relationships between rules

 if (eventList1.contains(eventList2)) {
 rulelink = CreateRuleRelationships(ecaRuleG, i, j, RuleList,"E");
 }
 if (eventList1.contains(condList2)) {
 rulelink = CreateRuleRelationships(ecaRuleG, i, j, RuleList,"C");
 }
 if (eventList1.contains(actionList2)) {
 rulelink = CreateRuleRelationships(ecaRuleG, i, j, RuleList, "A");
 }
 }

}
}
//The following method is used by" BusinessRulesDependency " for creation of business rules dependencies source/destination
ECAGraph CreateRuleRelationships(ECAGraph ecaRuleG, int Rulesrc, int Ruledest, List<ECAModel>RuleList, String
ComponentType){

//Define a variable to hold the created business rule relationship graph
ECAGraph ecaRuleRelationshipsGraph;

 //Create relationship between source and destination
 ecaRuleG.ruleRelations.get(Rulesrc).add(RuleList.get(Ruledest).getruleName());
 ecaRuleRelationshipsGraph = ecaRuleG;

//Note: Once the business rules graph is defined, we can easily identify predecessors, successors, rule flow

constructs and //relation operators as discussed in Phase 2 of adaptation ready for Phase 3
 return ecaRuleRelationshipsGraph;
}

122

Code Snippet 6.5. 3 Workflow Creation using Drools APIs

6.6 Summary
This Chapter familiarized a reader with two important algorithms to this research, the

implementation of business rule change propagation and business rules adaptation in

//Phase 3: Creation of business process connections and use of Drool’s APIs to execute the workflow

//Input indexed ECA rule list then return Workflow

RuleFlowProcess CreateWorkflowFromBusinessRules(List<ECAModel> RuleList) {
//Create a template for the ECAWorkflow instance

RuleFlowProcess ruleworkprocess = new RuleFlowProcess();
ruleworkprocess.setId("ECAWorkflow");

//Define RuleProcessList to create process list
 List<ECAModel> RuleProcessList = new ArrayList<ECAModel>();

 //Using CreateProcessFromBusinessRules method to loop through ProcessList
 for (int j = 0; j < ProcessList.size(); j++) {

 //Using CreateRuleRelationships method to loop through connected business rule (source and destination)
 for (int index=0; index< ecaRuleRelationshipsGraph.ruleRelations.size();index++){

 //build workflow based on process and rules
if (j == index) {

 //Use the ProcessRuleList to build relationships between processes from rules
 RuleProcessList.add(new ECAModel(RuleList.get(index)), Rulesrc, Ruledest));

}
}

 }
//Using Drools APIs for workflow
for (int i = 0; i < RuleProcessList.size();i++) {

 if (RuleProcessList.get(i).getfromProcess().equals(Rulesrc) && i == 0) {

new ConnectionImpl(RuleProcessList.get(i).getfromProcess().getStartprocess(),

"DROOLS_DEFAULT", RuleProcessList.get(i).gettoProcess().getProcess(), "DROOLS_DEFAULT");

//Adding nodes to the workflow
ruleworkprocess.addNode(Rulesrc.getStartprocess());

 }
 if (RuleProcessList.get(i).getfromProcess().equals(Rulesrc) && i <> 0 && i <> RuleProcessList.size()) {

new ConnectionImpl(RuleProcessList.get(i).getfromProcess().getProcess(),

"DROOLS_DEFAULT", RuleProcessList.get(i).gettoProcess().getProcess(), "DROOLS_DEFAULT");

//Adding nodes to the workflow
ruleworkprocess.addNode(Rulesrc.getProcess());

 }
 if (RuleProcessList.get(i).gettoProcess().equals(Rulesrc) && i == RuleProcessList.size()) {

new ConnectionImpl(RuleProcessList.get(i).getfromProcess().getProcess(),
"DROOLS_DEFAULT", RuleProcessList.get(i).gettoProcess().getEndprocess(), "DROOLS_DEFAULT");

//Adding nodes to the workflow
ruleworkprocess.addNode(Rulesrc.getEndprocess());

}

}
return ruleworkprocess;
}

123

workflow. The business rules change propagation algorithm is created to provide a

systematic runtime modification of related business rule components (events, conditions,

actions). If any business rule component changes, all underlying connected business rules

components are revised and change is applied. The business rules adaptation in workflows

algorithm provides the implementation of business rules to control processes in workflows.

It offers the capability of allowing users to generate and modify business processes

automatically. The algorithms application produces formal procedures for those who are

concerned with building a framework of business rules to manage workflows. This presents

an important contribution, which offers an innovative analytical and methodological

approach in using business rule components and their relationships to propagate change,

automation and configuration of workflows.

124

7. Implementation

So far, the proposed framework has been discussed theoretically. The previous two

chapters introduced algorithms that have been created to provide and improve important

functionalities of the proposed model. This Chapter covers the implementation aspect of

the proposed model based on a prototype, which was developed using Java on JBoss

Drools. JBoss Drools [52] is an open source business rule management system that

provides a suitable environment for implementation, installation and execution of business

rules and processes [90]. To get a better understanding on how business rules are

implemented using Drools, section 8.1 presents an overview of Drools. Appendix VI

outlines necessary steps for setting up and using Drools. Section 7.2 discusses the prototype

implementation to demonstrate various model components and functionalities introduced

in earlier Chapters. Section 7.3 presents a summary on implementation matters.

 7.1 Drools Overview
The Drools project started back in 2001 and became an operational rule engine with its 2.0

first release. In 2005, it was acquired by JBoss and it became known as JBoss Rules. In

2006, JBoss was acquired by Red Hat. With monetary support from Red Hat, the JBoss

Rules were rewritten and enhanced the Rete implementation with a GUI tool. In 2007, the

“Drools” name was reclaimed and referred to it as "Drools” instead of JBoss Rules. Drools

business rules management system is written in Java [105]. The current stable version is

7.38.0 [24]. The Drools is made up of several components that form a Business Logic

Integration Platform (BLIP) - Figure 7.1.1.

Figure 7.1. 1 Business Logic Integration Platform

 (Source: [105])

125

Drools platform provides a complete solution for knowledge-based application

development and management of business rules and processes. The components of

Drools are briefly explained in

Appendix VII.

7.2 ECA Model Prototype
The ECA Model prototype is written using Java in Eclipse IDE. At the time of writing this

thesis, our prototype supports business rules that feature in a data centre workflow to allow

installation, decommissioning and moving of equipment. For the implementation of our

data centre use cases, the ideal approach is to provide implementation support for the

business rules of ECA Model presented in Chapter 4. Automatically, templates are

generated based on class definitions, which are used to map data obtained through Rule

Designer. Figure 7.2.1 shows the flow of various business rules and components of ECA

Model, to and from Drools Platform.

Figure 7.2. 1 Business Rules Modules Integration within Drools Platform

The following (Figure 7.2.2) are the key implementation steps of the prototype:

1. Implementation of user interface to allow business rules and components to be

processed (inserted, deleted and updated). Converting business rule statements into

business rules components (events, event operators, conditions, condition

operators, actions and action operators). Note, in all major business rules

126

management systems, business rules still are expressed in forms of simple

statements. This step is executed using the GUI.

2. Creation and implementation of business rules components, facts, process and other

related classes. This involves creation of event class, condition class, action classes,

ECA Model class and others. The ECA Model class is a parent class that is made

up of event, condition and action classes. The classes are comprised of objects,

properties, values, operators and methods/functions

3. Implementation of ECA Model class concepts to map rule components to Rule

Template

4. Method of translating Rule Template into Drools DRL

5. Implementation of dependency patterns indexing algorithm to manage business

rules components dependency and change propagation

6. Implementation of Metarules to manage runtime business rules

7. Implementation of business rule change propagation and rule adaptation algorithms

8. Business Rules and Workflow execution using Drools

Figure 7.2. 2 Key Implementation Steps

127

7.2.1 Business Rule Classes

Implementation of the proposed model involves creation of several Java classes. Business

rule components relations are implemented using the rule-inheritance concept. Mauricio in

[105] discussed the idea of having a rule-hierarchy where rules allow inheritance between

them. If a business rule R1 inherits business rule R2, R1’s components inherit R2’s

components. Therefore, in this research the inheritance is implemented using dependencies

between business rules that are formulated using objects and their properties. The

properties are parameters of events, conditions and actions of a business rule. Each business

rule component is implemented as an atomic class and created as a constructor of the Java

Parent Class (ECAModel). In other words, the ECAModel class is made up of Event,

Condition and Action classes. Every ECAModel is a node in the ECAGraph class. The

ECAGraph class consists of lists of ECAModel (nodes), their properties and operations

such as adding, removing and updating business rule components (nodes). In addition, the

ECAGraph class provides the ability to define relationships between business rule

components. The ECAGraph is executed directly in the main Java test class

(ECAWorkflowTest). Table 7.2.1 displays the major classes and Figure 7.2.1.1 displays

the UML class diagram of the major classes to show class information and relationships.

Class Name Description

Event Class An Event class is a blueprint from which business rule event objects are created.

The Event class contains the declarations of the data that will be stored in each event

object instance. Also contains declarations of methods that can be invoked using

event objects. For example, in the Event class, we have variables (eventObject,

eventObjectProperty, eventObjectProperyvalue, etc,.) representing the data.

Constructors and other regular methods have been defined to provide necessary

operations for manipulation of event objects created as instances. Figures 8.3.1

shows the Event class and other related classes. Note, a single instance of Event class

is created in ECAModel Class via the E_Component Class. The design makes it

possible for implementation of an event which is part of the business rule

(ECAModel object). The event can be used in multiple ECAModel class.

Condition Class

Condition class is a blueprint from which business rule condition objects are created.

The Condition class contains the declarations of the data that will be stored in each

128

condition object instance. Also, contains declarations of methods that can be

invoked using condition objects. For example, in the Condition class, we have

variables (conditionObject, conditionObjectProperty, conditionObjectProperyvalue,

etc) representing the data. Constructors and other regular methods have been

defined to provide necessary operations for manipulation of condition objects

created as instances. Figure 8.3.1 shows the Condition class and other related classes.

Note, a single instance of Condition class is created in ECAModel Class via the

C_Component Class. The design makes it possible for implementation of a

condition, which is part of the business rule (ECAModel object). The condition class

can be used in multiple ECAModel class.

Act

(Action) Class

An Act class is a blueprint from which business rule action objects are created. The

Act class contains the declarations of the data that will be stored in each action object

instance. Also contains declarations of methods that can be invoked using action

objects. For example, in the Act class, we have variables (actionObject,

actionObjectProperty, actionObjectProperyvalue, etc,.) representing the data.

Constructors and other regular methods have been defined to provide necessary

operations for manipulation of action objects created as instances. Figure 8.2.1

shows the Act class and other related classes. Note, a single instance of Act class is

created in ECAModel Class via the A_Component Class. The design makes it

possible for implementation of an action which is part of the business rule

(ECAModel object). The action can be used in multiple ECAModel class.

Fact class

(Rack class)

Every business rule component has one or more associated facts against which they

are fired. Facts are the data stored in working memory. An example might be a Rack

fact object with utilization and capacity properties. Using facts, Drools identifies the

matching business rules and performs the associated actions. The fact is instantiated

dynamically using the getFactType method of the Knowledgebase. The getFactType

method uses two parameters; the first one is the package name of the business rule

where the fact was defined and the second one is the fact name. Note, the fact names

are associated with components of a business rule. For example, consider business

rule (R01) in Table 6.1, the value “Location” is a fact which is linked to a condition

class. From Java standpoint, Facts are the POJO classes. To generate facts for

business rule components, we defined POJO class using user defined data i.e. Rack,

Equipment, Request, etc. Like any POJO class, we provide methods to set, get and

others to manipulate fact values during rule execution. It is important to note that

129

when a fact is changed or deleted, it does not change the value available in the

business rule components. However, the change is made directly to a fact object in

memory.

ECAModel class The ECAModel class is a parent class made up of Event, Condition and Action

classes. Every ECAModel object is a node in the ECAGraph class. Figure 8.3.1 shows

the ECAModel’s properties, methods and relationships

ECAGraph class The ECAGraph class as the name suggests is a graph class consists of lists of

ECAModel (nodes), their properties and operations such as adding, removing and

updating business rule components (nodes). In addition, the ECAGraph class

provides the ability to define relationships between business rule components. The

ECAGraph is executed directly in the main Java test class (ECAWorkflowTest.java).

ECAWorkflowT

est class

The ECAWorkflowTest is the main java class containing the main method, which

provides an entry point to the model prototype. The ECAGraph class is instantiated

and executed directly in the main Java test class (ECAWorkflowTest.java).

Table 7.2. 1 Description of Core ECA Model Classes

To enhance the implementation of Fact classes, Java Spring framework implementation

could be used to handle creation and deletion of various facts. The implementation of beans

[103] in Spring is important to the use, allowing us to have Java fact classes that live within

the application context without constantly creating new fact instances every time we need.

Furthermore, the Spring framework can maintain the objects in the main memory

effectively reducing the risk of running out of memory [97]. Spring works in a way that it

finds most inactive or passive objects in the main memory then copies these to the

secondary storage to create space for new objects.

130

Figure 7.2.1. 1 UML Class Diagram showing ECA Model major classes

131

7.2.2 Business Rule Template

Using Drools drools-templates API, rule template is implemented as a way of creating

business rules and components in real time. Business rule component classes (Event,

Condition, Action, etc) are parsed into a rule template which creates a DRL file. Typically,

the structure and actual business rules are de-coupled. This means the same rule template

can be used by different sets of business rules. Figure 7.2.2.1 displays the structure of a

rule template. It contains special keywords to define a business rule name and mark

different parts of the business rule component (@event, @condition and @action).

Figure 7.2.2. 1 Business Rules Template Structure

The Rule template provides necessary mappings from user input (Rule Designer) to a

business rules format acceptable by the DRL. The implementation of the rule template is

straight forward, the variable defined by using the syntax “@...” will be set as placeholders

and substitution is done when value is passed from the main program. The rule template

can contain multiple rule components to generate multiple business rules with different

132

structures. It is also possible to support other data sources, i.e. database SQL result sets and

spreadsheets for multiple business rule import. It is worth to note the following:

⮚ Line 1: Sets the DRL file to Drools “rule template”.

⮚ Line 3 to 6: Sets rulename, event, condition and action to parameters.

⮚ Line 8 to 13: Imports dependencies.

⮚ Line 15: Provides Java syntax i.e. “System.out.println”

⮚ Line 17: Defines name of the template

⮚ Line 19, 21-22, 25: Variables @{rulename}, @{event}, @{condition} and

@{action} are substituted with parameters at runtime.

To apply a business rule from the template is a matter of instantiating Drools

ObjectDataCompiler and passing parameters as shown in Code Snippet 7.2.2.1

static private String applyECARuleTemplate(String ruleName, E_Component event,
C_Component condition, A_Component action) {

 Map<Object, Object> Ruledata = new HashMap<Object, Object>();
 ObjectDataCompiler objectDataCompiler = new ObjectDataCompiler();

 Ruledata.put("rulename", ruleName);
 Ruledata.put("event", event);
 Ruledata.put("condition", condition);
 Ruledata.put("action", action);

 return objectDataCompiler.compile(Arrays.asList(Ruledata),
Thread.currentThread().getContextClassLoader().getResourceAsStream("Rules/rule
-template.drt"));

 }

Code Snippet 7.2.2. 1 ObjectDataCompiler for Rule Template (Java syntax)

7.2.3 Indexing Path Dependency Patterns

As described in Chapter 5, the graph data structure is introduced to hold a complete list of

path dependency pattern indexes within a graph. Instances of PathBasedPattern class

(Figure 7.2.3.1) are created to represent pattern indexes. A pattern index is identified by a

group of nodes that form a graph dependency pattern (path dependency) mapped by such

133

a Pattern Index. Each Pattern Index can map one or more graph dependency patterns. Thus,

the class PathBasedPattern holds information about IndexName, IndexID, PatternName,

IndexPatternID and other methods (add, remove and modify) to support the functionality

and manipulation of indexes. It also holds a root for the graph Root Index graph structure

as discussed in Chapter 5.

Figure 7.2.3. 1 UML Class Diagram for ECAIndexPatternGraph Class

Code Snippet 7.2.3.1 presents a method (IndexingGraphPatterns) that is used to create

indexes for the Path dependency pattern. The method creates an instance of the

PathBasedPattern class described above. To traverse through Path dependency pattern

nodes (indexes), the “printPathAlgorithm” method part of the ECAGraph class uses Depth

First Search Graph Algorithm to display root to leaf path nodes. In addition to other

functionalities such as add, remove and modify supported by the PathBasedPattern class,

134

a Metarule construct (described in Chapter 5) is used to provide runtime modification

indexes. Please refer to Appendix V for the LevelBasedPattern method.

//Creation of indexes for dependency patterns
public List<ECAModel> IndexingGraphPatterns(ECAGraph ecaRuleG){

 //variables declaration
 int UniqueIndex = 0;
 List<ECAModel> DependencyPatterns = new ArrayList<ECAModel>();
 ECAModel rootcomponent = new ECAModel();
 Queue<ECAModel> queue;
 //create pattern index instance

PathBasedPattern<ECAModel> pattenIndeces = new
PathBasedPattern<ECAModel>(UniqueIndex, rootcomponent);

 //loop through graph to identify dependency patterns
 for (int index=0; index < ecaRuleG.ruleRelations.size();index++){
 rootcomponent = ecaRuleG.getNode(index);
 //Check the root rule
 if (rootcomponent == null) return null;
 //Create an empty stack and push the root rule to it
 Stack<ECAModel> nodeStack=new Stack<ECAModel>();
 nodeStack.push(rootcomponent);
 rootcomponent.visited=true;
 //Create a map to store parent pointers of graph nodes

 HashMap<ECAModel,ECAModel> parent =
new HashMap<ECAModel, ECAModel>();

 //Parent of root is NULL
 parent.put(rootcomponent,null);
 //Traverse through Path Dependency Pattern then generate indexes
 while (!nodeStack.isEmpty()) {
 //Pop the top item from stack
 ECAModel current = nodeStack.pop();
 if(current.hasChildren()) {
 //Convert to object array

ECAModel[] temppatterns = new
ECAModel[current.children().size()];

 //ArrayList to Array Conversion to allow generation
 //of indexes for each path

for (int pindex=0; pindex <
current.children().size();pindex++){

 temppatterns[pindex] = current.children().get(pindex);
 for (ECAModel linkedIndex : temppatterns) {

//pattenIndeces contains index for the ECA component
node //and pattern indexes (combining linked ids)
pattenIndeces = new
PathBasedPattern<ECAModel>(pindex,linkedIndex);

 }
 //Create indexes for path dependency

DependencyPatterns.add(new
ECAModel(RuleList.get(pindex).getruleName(),
current, pattenIndeces));

 }
return DependencyPatterns;
}

Code Snippet 7.2.3.1 1 Indexing Method for Path Dependency Patterns

135

7.2.4 Change Propagation and Adaptation Algorithms

This Section is divided into two. The first part presents the implementation aspect of the

business rule component change propagation and the second part presents the

implementation of business rules adaptation in a workflow.

7.2.4.1 Business Rules Change Propagation Algorithm

The “ECAChangePropagation” method (Code Snippet 7.2.4.1) has been implemented to

support the business rule component change propagation algorithm exemplified in section

6.3.

//Business Rule Change Propagation Algorithms: component is changed and
propagated //across dependency patterns listed in DependencyPatterns
//Input: business rule component
public void ECAChangePropagation(ECAModel changedECAcomponent, ECAGraph
ecaRuleG){
//Declare variables
//Variable to store sorted/indexed dependency pattern so
//it’s easy to propagate the change.
//Note calling IndexingGraphPatterns(ecaRuleG) provide different dependency
patterns //(Path, Level, Direct-Node and Neighbours dependencies
 List<ECAModel> DependencyPatternsIndexes =
IndexingGraphPatterns(ecaRuleG);
 ECAModel changedRulecomponent = new ECAModel();
 ECAModel changedLinkedRulecomponents = new ECAModel();

//Check if the business rule component existing in the using
//DependencyPatternsIndexes
//loop through graph to identify dependency patterns

 for (int index=0; index < DependencyPatternsIndexes.size();index++){
 changedRulecomponent = changedRulecomponent.children().get(index);

//Using rule component index list (DependencyPatternsIndexes)
//to check if component exist

 if (changedRulecomponent == null) return;
 if (changedRulecomponent == changedECAcomponent) {

 //check if changedRulecomponentIndex has children
 if (changedRulecomponent.hasChildren()) {

 //get the index of the business rule component to be updated
 int changedRulecomponentIndex = changedRulecomponent.getruleIndex();

//Using the changeRulecomponentIndex to propagate the change
//to all dependency business rule components (children)

 //Perform delete and add to propagate the change to children components
changedLinkedRulecomponents.children().remove(changedRulecomponentIndex)
changedLinkedRulecomponents.children().add(changedRulecomponentIndex,
changedECAcomponent);

}}}}
Code Snippet 7.2.4. 1 Business Rule Change Propagation Algorithm

136

7.2.4.2 Business Rules Adaptation Algorithm

Three methods have been implemented to support the adaptation of business rules in

workflows. The first method, CreateProcessFromBusinessRules (Code Snippet 7.2.4.2.1)

implements the transformation of business rules into processes. The second method,

BusinessRulesDependency (Code Snippet 7.2.4.2.2) implements business rule

relationships (dependencies) as per Table 6.5. Dependency is based on Object and

Properties of one rule being matched using objects and properties of one or more rules. The

third method, CreateWorkflowFromBusinessRules (Code Snippet 7.2.4.2.3) implements

the execution of business process connections using Drool’s APIs.

//Phase 1: Converting and Transforming business rules into processes
//Input indexed ECA rule list then return processes
ArrayList<Process> CreateProcessFromBusinessRules(List<ECAModel> RuleList) {

//Use business rules to define business processes: start,
//intermediate and end processes
ProcessList=new ArrayList<Process>();

for (int index = 0; index < RuleList.size(); index++) {
 //if a rule's predecessor is null then create start node
 List<ECAModel> ecaRuleList = RuleList;
 if (ecaRuleList.get(index).isRoot()) {
 StartNode pStart = new StartNode();
 pStart.setId(index); //Note index of rule assigned used in merged phase
 pStart.setName("P" +index);

 //Define process definition based on Action Nodes
 Process WF_pStart = new Process(pStart);
 WF_pStart.setStartprocess(pStart);
 ProcessList.add(WF_pStart);
 }

 //if a business rule's predecessor or successor

//is not null then create intermediate node
 if (ecaRuleList.get(index).hasChildren()

&& ecaRuleList.get(index).isRoot()== false) {
 ActionNode p1 = new ActionNode();
 //Note index of a rule assigned to be used in the merged phase
 p1.setId(index);
 p1.setName("P" + index);
 DroolsAction action = new DroolsAction();
 action.setMetaData("Action", new Action() {

 public void execute(ProcessContext context) throws Exception {
 System.out.println("Error define process node");
 }
 });
 p1.setAction(action);
 //Define process definition based on Action Nodes

137

 Process WF_p = new Process(p1);
 WF_p.setProcess(p1);
 ProcessList.add(WF_p);

 }
 //if a rule's successor is null the create end node
 if (ecaRuleList.get(index).hasChildren() == false) {
 EndNode pEnd = new EndNode();
 //Note index of a rule assigned to be used in the merged phase

pEnd.setId(index);
 pEnd.setName("P" + index);

 //Define process definition based on Action Nodes
 Process WF_pEnd = new Process(pEnd);
 WF_pEnd.setEndprocess(pEnd);
 ProcessList.add(WF_pEnd);
 }
}
return ProcessList;
}

Code Snippet 7.2.4.2. 1 Convert Business Rules into Processes Algorithm

//Phase 2: Define Business Rule dependency graph as per Table 6.5
//Dependency is based on Object and Properties of one rule are matched using
objects //and properties of one or more rules
//It takes in the ECA AND-OR Graph parameter as a template
ECAGraph BusinessRulesDependency(ECAGraph ecaRuleG) {

//Create relationships using the indexed RuleList then build the graph
 for (int i = 0; i < RuleList.size();i++) {
 String eventList1 = (RuleList.get(i).getevent()).toString();
 System.out.println("Check object 1" + eventList1);
 for (int j = i + 1; j < RuleList.size(); j++) {
 RuleList.get(j).getcondition();
 RuleList.get(j).getaction();

String eventList2 =
(RuleList.get(j).getevent()).toString();
String condList2 =
(RuleList.get(j).getcondition()).toString();
String actionList2 =
(RuleList.get(j).getaction()).toString();

 System.out.println("Check object 2" + eventList2);

/*Event-AND Relationship scenario, note Condition and
Action components are not shown here but they implemented
in similar manner. Obtain the list of rules - RuleList.
Object and properties of one rule’s Event relates to event
and condition and action of another rule's object and
properties. if event component of one rule matches all:

138

event, condition, action components of the second rule
then create relationships between rules*/

if (eventList1.contains(eventList2) &&
eventList1.contains(condList2) &&
eventList1.contains(actionList2)) {

 rulecomponentgrap
= CreateRuleDependecy(ecaRuleG, i, j, RuleList,"E");
}
/*Event-OR Relationship. Object and properties of rule 1
Event relates to either event or condition or action of
another rule's object and properties. if equal then create
relationships between rules*/

 if (eventList1.contains(eventList2)) {

 rulecomponentgrap

= CreateRuleDependecy(ecaRuleG, i, j, RuleList,"E");
 }
 if (eventList1.contains(condList2)) {

 rulecomponentgrap

= CreateRuleDependecy(ecaRuleG, i, j, RuleList,"C");
 }
 if (eventList1.contains(actionList2)) {

 rulecomponentgrap

= CreateRuleDependecy(ecaRuleG, i, j, RuleList, "A");
 }

 }
 }

 return rulecomponentgrap;
 }

//The following method is used by" BusinessRulesDependency " for creation of
//business rules dependencies source/destination
ECAGraph CreateRuleDependecy(ECAGraph ecaRuleG, int Rulesrc, int Ruledest,
List<ECAModel>RuleList, String ComponentType){
 //Define a variable to hold the created business rule relationship graph
 ECAGraph ecaRuleRelationshipsGraph;

 //Create relationship between source and destination
 ecaRuleG.ruleRelations.get(Rulesrc).add(

RuleList.get(Ruledest).getruleName());
 ecaRuleRelationshipsGraph = ecaRuleG;

//Note: Once the business rules graph is defined, we can easily identify
//predecessors, successors, rule flow constructs and relation operators
as //discussed in Phase 2 of adaptation ready for Phase 3

 return ecaRuleRelationshipsGraph;
}

Code Snippet 7.2.4.2. 2 Build Dependency Graphs Algorithm

139

//Phase 3: Creation of business process connections (process dependency graph)
and //use of Drool’s APIs to execute the workflow. Using process list and
business rules //graph generated from Phase 1 and 2
RuleFlowProcess CreateWorkflowFromBusinessRules(List<ECAModel> RuleList) {

//Create a template for the ECAWorkflow instance
RuleFlowProcess ruleworkprocess = new RuleFlowProcess();

 ruleworkprocess.setId("ECAWorkflow");

 //Define RuleProcessList to create process list
 List<Process> ProcessList = new ArrayList<Process>();
 List<ECAModel> RuleProcessList = new ArrayList<ECAModel>();
 //variables to hold rule component nodes
 ProcessList = CreateProcessFromBusinessRules(RuleList);

 //loop through ProcessList
 for (int j = 0; j < ProcessList.size(); j++) {
 rootProcess = new ECAModel();
 //loop through connected business rule graph (source and destination)

 for (int index=0; index
rulecomponentgrap.ruleRelations.size();index++){

 //build workflow based on process and rules graph
 if (j == index) {
 rootProcess = rulecomponentgrap.getNode(index);
 //Check the root rule
 if (rootProcess == null) return null;
 //Create an empty stack and push the root rule to it
 Stack<ECAModel> nodeStack=new Stack<ECAModel>();
 nodeStack.push(rootProcess);
 rootProcess.visited=true;
 //Create a map to store parent pointers of tree nodes
 HashMap<ECAModel,ECAModel> parent

=new HashMap<ECAModel, ECAModel>();
 //Parent of root is NULL
 parent.put(rootProcess,null);
 while (!nodeStack.isEmpty()) {
 //Pop the top item from stack
 ECAModel current = nodeStack.pop();
 //Top to Bottom path
 if (current.hasChildren()) {

//Use the ProcessRuleList to build relationships between
//processes from rules
RuleProcessList.add(new
ECAModel(RuleList.get(index).getruleName(), current,
parent));

 }}}}
}
//Using Drools APIs to build workflow form RuleProcessList which
contains //source and destination processes
for (int i = 0; i < RuleProcessList.size();i++) {

 if (RuleProcessList.get(i).getfromProcess().equals(rootProcess) && i==0)
{

140

newConnectionImpl(
RuleProcessList.get(i).getfromProcess().getStartprocess(),
"DROOLS_DEFAULT",
RuleProcessList.get(i).gettoProcess().getProcess(),
"DROOLS_DEFAULT");

 //Adding nodes to the workflow
ruleworkprocess.addNode((Node) ((ProcessInstance)
rootProcess).getProcess());

 }
 }
 return ruleworkprocess;
}

Code Snippet 7.2.4.2. 3 Generate Workflow Algorithm

7.2.5 Business Rules Editor (ECA Model Test Client)

So far, we have covered the implementation of core ECA Model concepts (Section 7.2.1)

and important algorithms (Section 7.2.3 and 7.2.4). The next section introduces our

implementation of ECA Model Test Client (Figure 7.2.2.1) developed as part of this

research to allow non-technical users to create, delete and update business rule

components, as well as displaying the results of business rules in DRL file, business rule

dependencies and execution of rules to a working workflow.

The ECA Model Test Client is a graphical visual interface or editor for managing business

rules’ input and output. The interface allows users to create, modify and delete business

rules and components and, also provides the ability to test for change propagation and

workflow adaption in the “Display Statistics” section of the editor. Furthermore, it provides

a direct interface to Drools engine to allow users to execute business rules and processes

on the fly.

The ECA Model Test Client incorporates a form for adding, modifying and deleting

components (event, condition and action). The form fields are clearly labelled to allow

users to enter information that pertains to the rule components in their requirements. The

section at the top left below “Enter Rule Name” section is for adding new rule components

(highlighted in yellow) and the section on the right is for modifying and deleting rule

components (highlighted in pink). The checkboxes “Create Rule”, “Modify Rule” and

“Delete Rule” must be checked depending on the on the operation to be performed. The

141

number of button components exit at the bottom of the editor so that a user clicks to trigger

a specific function. For example, the “Add Rule” button adds new business rule component

to Drools rule repository; the “Change Rule” button deletes or modifies business rule

components depending on the selected checkbox option. The “Execute Rules” will fire the

business rules and map business rules to processes for adaptation. The “Display All” button

displays the result in the display areas.

The ECA Model Test Client is developed using the graphics classes through the Java Swing

package. The Java Swing package provides Java Graphics APIs for constructing Graphical

User Interface (GUI) applications. The APIs allow the creation of components such as

window, buttons, checkboxes, text areas, text fields, panels, etc. These components are

used to get input and output

Figure 7.2.5. 1 ECA Model Test Client

142

Code snippet 7.2.5.1 presents the implementation of “Add Rule” button when an action is

performed. Business rule components (event, condition and action) are added to the rule

template.

//The following method implements different actions performed by user using buttons
from the ECA Model Test Client

public void actionPerformed(ActionEvent e) {

 //Define different variables
 ObjectDataCompiler converter = new ObjectDataCompiler();
 Map<Object, Object> Ruledata = new HashMap<Object, Object>();
 final Map<Object, Object> Ruledata2 = new HashMap<Object, Object>();

InputStream template =
Thread.currentThread().getContextClassLoader().getResourceAsStream("Rule
s/rule-template.drt");

 //rule field
 String ruleNameProperty_b = ruleNameTxt.getText();

 //Pass Boolean to check if rule is empty to continue or not
 boolean pass = true;

 //event, condition, action fields setup
 //Adding rule and components to the list entered by user from UI
 RuleList.add(new ECAModel(r1.getRuleName(), event, condition1, act1));
 RuleListUpd.add(new ECAModel(r1.getRuleName(), event, condition1, act1));

 int RuleNodeCount = RuleList.size();

 //Initialize the graph structure
 ECAGraph structuredGraph = new ECAGraph(RuleNodeCount);
 ECAGraph eca_graph = new ECAGraph(RuleListToComponetRuleList(RuleList));

 //When the create button is pressed, we take data from text fields

//and output to an array.
 if(e.getSource() == ECAbutton) {

 if (ruleNameProperty_b.equals("")) {
 System.out.println("Error: Enter Rule data.");
 pass = false;
 }
 //If passed, the program continues
 if (pass == true) {
 //Checking if rule already exists
 if (RuleList.contains(r1.getRuleName())) {

 System.out.println("Error: Rule exists, use another name.");

 }
 else {

 //loop and add data to the HashMap Ruledata
 for(int index = 0; index < RuleList.size();index++) {
 System.out.println("");

143

 Ruledata.put("rulename", RuleList.get(index).getruleName());
 Ruledata.put("event", RuleList.get(index).getevent());
 Ruledata.put("condition", RuleList.get(index).getcondition());
 Ruledata.put("action", RuleList.get(index).getaction());
 Rulelist.add(Ruledata);
 }
 //Remove duplicate record from Rulelist arraylist
 for(int i = 0; i < Rulelist.size(); i++) {
 for(int j = i + 1; j < Rulelist.size(); j++) {
 if(Rulelist.get(i).equals(Rulelist.get(j))){
 Rulelist.remove(j);
 j--;
 }
 }
 }

 //Node based (Object and Property) Dependency Algorithm
 }
 }
 drl = converter.compile(Rulelist, template);

 System.out.println("Displaying Original DRL (Rule Template)... ");
 System.out.println(drl);
 }
 }

Code snippet 7.2.5. 1 Demonstrate “Add Rule” Swing Button

Figure 7.2.5.2 presents a print screen after the user clicked the “Add Rule” button. In

“Display Drools DRL - Rule Template” text area; it shows business rule ‘R1’ and

components added in DRL.

Figure 7.2.5. 2 Business Rule and Components Insertion

144

To avoid repetition, all functionalities of the ECA Model prototype are covered in the

experimentation section (Section 8.3). However, below are steps to add, delete and update

business rules and components are explained in Appendix VII.

7.3 Summary
This Chapter focused on the development aspect of the model’s prototype. It described the

implementation of various Java classes and algorithms for defining model concepts, rule

indexing, change propagation and rule adaptation of business rules in a workflow

environment. The prototype model with the ECA Model Test Client is developed on Drools

environment providing an added value of integration with a rule engine and software

platform for intelligent process automation. With the ECA Model Test Client, users can

create, modify and delete business rules at runtime.

145

8. ECA Model Validation

This chapter discusses the validation process of the ECA Model, reviewing, analysing and

validating issues that this research is attempting to resolve and using use cases to perform

experiments that are based on research objectives as specified in Chapter 1. Experiments

are carried out using the ECA Model prototype introduced in Chapter 7. A summary matrix

table (Table 8.1.1) displays a breakdown of activities, problems, validation criteria and

experiments performed. Table 8.1.1 helps to determine what objectives and experiments

are being undertaken. Unless stated otherwise, business rules components always mean

event, condition and action.

Problems/Challenges

Validation

Criteria

Activities

 Creation,
modification

and deletion

of business
rules &

components

Objective

5(a)

Automatic
generation of

business rules

components
relationships/

dependencies

Objective

5(b)

Change
propagation

during

insertion,
modification

and deletion of

business rule
components

Objective

5(c)

Adaptation of
business rules

in a workflow

environment to
control the

creation and

termination of a
process in

workflow

Objective

5(d)

Adaptation of
business rules

to control the

processes
(Sequential,

AND/OR

Parallel Split,
AND/OR

Merged) in a

workflow.
Objective

(5d)
Complexity of

creation/modification/deleti

on of business rules
structure at component level

due to lack of high-level

abstraction

Adaptation

and

Flexibility

Experiments

(1-3)

Complexity of
creation/modification/deleti

on of business rules and

components by non-
technical users

Usability Experiments
(1-3)

Complexity of generating

and determining business
rules components

relationships

Performance

and Storage

 Experiment

(1-3)

Difficulty in propagating
changes on related business

rules at component level

(slow performance as
applied business rule change

may take longer,

decentralised manner)

Simplicity
Usability

Accuracy

Efficient

 Experiments
(1-3)

Providing support to
automatic control the flow

of processes in a workflow

using business rules and
components

Flexibility
and

Adaptation

 Experiments
(4)

Experiments
(5-9)

Table 8.1. 1 Research Objectives, Challenges, Validation Criteria and Experiments

146

The chapter is divided into four sections. Section 8.1 introduces the validation criteria.

Section 8.2 presents the nine examples/use cases or scenarios for the demonstration of

business rules change management, propagation and adaptation requirements. Section 8.3

describes the actual experiments conducted using the ECA Model prototype. Section 8.4

concludes with a summary.

8.1 Validation Criteria
In terms of testing, validation criteria are defined to introduce metrics for quantifying of

our results. The validation criteria are based on aims and objectives of the research. We

recall that the key research aims, and objectives of the proposed model were introduced in

Chapter 1. The proposed business rule model aims at reconciling the three main concerns

of the business rules change management, which are real time change of business rules and

components, the change propagation, which is the effect of change on related business rules

and the adaptation of business rules management in workflows. The primary validation

objective is to measure both the integrated solution for managing dynamic business rule

components (event, condition, action) and managing the adaptation of business rules to

handle and control specific business process instances of a workflow. As such, it is

beneficial to revisit the objectives (5a-5d) stated in section 1.3, concerning the development

of the proposed model prototype. The following validation checks (Table 8.1.2) are

considered to help with the assessment of these objectives:

Validation Checks/Criteria Description

Ability to add business rules and

components (event, condition,

action) on the fly

This check is intended to assess the impact of creation of business rules

and components at runtime; how the proposed model improves the quality

of abstraction and adaptation of business rules and components when

business requirements change.

Ability to modify business rules

and components (event, condition,

action) on the fly

This check is intended to assess the impact of modification of business

rules and components at runtime, how it improves the quality of

abstraction and adaptation of business rules and components when

business requirements change.

Ability to delete business rules and

components (event, condition,

action) on the fly

This check is intended to assess the impact of deletion of business rules

and components at runtime, how it improves the quality of abstraction and

147

adaptation of business rules and components when business requirements

change.

Check Agility/Flexibility of

business rules components

- Are business rules and components (event, condition, action) configurable

to support real-time modification? Or every time a change occurs, a

developer will be involved to change and recompile the code, less risks for

unnecessary downtime.

- Is the proposed model allowing users to gain insight into which business

rules and components (event, condition, action) are changed and executed?

- Is it configurable (otherwise you'd just code it instead)?

Check change propagation

(Accuracy, Usability and

Simplicity): The interaction in

particularly with chained business

rules

- Is the change being propagated across related rules and components?

- Change propagation is required as part of change management. For typical

rule applications, technical users are not primary requesters of the changes

and Usability and Simplicity is important validation criteria to reduce the

time spent by technical users for change propagation as non-technical users

are able to make the change and, in some cases, minimizes the cost of

change management or maintenance.

Check adaptability of ECA rules

within a workflow: Demonstrating

the feasibility of automating

business processes through use of

business rules

- Can a business rule control the execution of workflow processes?

- Are business rules able to control the initiation of processes?

- Are business rules able to control the termination processes?

- Are business rules able to control the running of sequential processes?

- Are business rules able to control the running of parallel/split and merge

of processes?

Check usability: Usefulness and

ease of use

- How easy for users to change rules and their components

- How easy is it for non-technical people to change rules?

Check design efficiency - Does the ECA Model improve the design process of business rules and

their components? (Business rules abstraction).

Check time efficiency

- Is it performant? Does the model shorten business rules execution time as

a result of using AND OR Graphs and indexing structures (organizing rules

and reducing the number of rules that need to be matched for execution at a

given point and time)?

Check data quality - Correctness of the data after business rule change

Table 8.1. 2 Validation Criteria Description

The validation checks are applied when testing the ECA Model. These checks are essential

to demonstrate that the developed prototype is fit for the intended purpose. Use cases are

148

derived (section 8.2) in order to experimentally test the proposed model against the checks

in Table 8.1.2.

8.2 Data Centre Use cases
The previous section has already explored validation checks, which clearly formulate

criteria to be used to test the proposed model. In addition, this section presents useful use

cases from data centre environment to illustrate how the proposed ECA Model is validated

in a practical way. Due to dynamic nature of the business rules and lack of similar case

studies that focus on business rules components change and propagation, it was decided to

use a predictive validation technique. This technique allows for complex business rules and

process management application scenarios to be used to simulate data needed for the

validation process.

Data centre (Figure 8.2.1) operations are usually complex and constantly changing. Daily

equipment is installed, decommissioned, moved and modified. Workflow applications are

used to manage and track changes in an orderly manner as well as help data centre teams

to optimize operations to get the highest efficiency and productivity. Naturally, the

operations on data are implemented using business rules. Changes applied to the data and

operations of a workflow are controlled by changes made on business rules.

Figure 8.2. 1 DC Floor Plan with Equipment Installed

149

The next part of this section presents the simulated use cases to demonstrate our model’s

three key areas, business rules and components change, business rule change propagation

as well as business rules adaptation in a workflow. The reader is advised that only a subset

of business processes, and rules are selected from various data centre workflow scenarios

for demonstration purposes. There are several scenarios that can be considered, however

due to time constraints, only nine classifications are covered below (Table 8.2.1). Appendix

I includes a list of possible test scenarios that this research could consider for future

experimentation.

Use case No Use case Name

Use case #1 Adding business rules components and propagating the change

Use case #2 Updating business rules components

Use case #3 Deleting business rules and components

Use case #4 Enabling business rules to initiate and terminate business process

Use case #5 To show Sequential flow patterns for workflow adaptation

Use case #6 To show Parallel-OR Merged flow patterns for workflow adaptation

Use case #7 To show Parallel-AND Merged flow patterns for workflow adaptation

Use case #8 To show Parallel-OR Split flow patterns for workflow adaptation

Use case #9 To show Parallel-AND Split flow patterns for workflow adaptation

Table 8.2. 1 Use cases from DC Workflow

8.2.1 Add Business Rules Components and Propagate Change

Use case #1:

Consider a growing company (XYZ Ltd) that realized the need to add new business rules

in its workflows to meet new and changing business requirements to accurately perform its

data centre operations such as installation, decommission and move of equipment. As XYZ

acquires new data centres, new business rules are added to its workflows. This means, XYZ

needs to be able to not only integrate new business rules but also the ability to propagate

the change to existing rules in the workflow. A typical implementation process, the

technical experts/developers are employed to reconfigure the workflow to add new

business rules, costing the company money and time. Generally, when a new data centre is

added, equipment such as cabinets/racks, servers, power distribution units, power panels,

150

generators, circuit breakers, switches, network cards, etc., are installed. A requestor fills

out a request form, which defines relevant information including the preferred location and

other equipment requirements such as type, manufacturer details, power and network

configurations. The form (request) can contain several pieces of equipment to be installed.

The form captures data, processes and business rules to generate a company equipment

installation workflow. When new business rules are added, the reconfiguration process is

often slow and complicated. It takes days to get the workflow code updated to include new

business rules and to ensure that the changes are propagated across related business rules.

Below business processes and rules are recorded for XYZ installation workflow. Appendix

II presents the description for each business rule in more detail. Figure 8.2.2.1 presents the

XYZ data centre equipment installation workflow.

Workflow Name: Equipment Installation

Roles: Requestor, Reviewer/Approver, Data Centre (DC) Manager,

Power and Network Technicians (Tech)

Business Processes:

▪ P1 - Create Request

▪ P2 - Review Request

▪ P3 - Approve Request

▪ P4 - Manage Rack Space

▪ P5 - Manage Data Centre Space

▪ P6 - Order Rack

▪ P7 - Install Equipment

▪ P8 - Provision Power

▪ P9 - Provision Network

▪ P10 - Provision Network Cables

▪ P11 - Completing Power and Network Provisioning

▪ P12 - Close Request

Business Rules (R0 - R12):

▪ When workflow start activity then create new process ‘Create Request - P1’ (R0)

151

▪ When submit request, if requestor is a member of the Platform capacity team then

go to ‘Review’ step (R1) else go to ‘Approve’ step for data centre area manager to

approve and set install request (R2)

▪ When install request, if rack utilization is greater than the rack space capacity, then

count installed equipment and set the Rack is full and set process to manage data

centre space (R3) else install the equipment in the available rack (R4)

▪ When Rack is full, set total no of racks to ‘installed Racks’ in the data centre (R5)

▪ If total number of racks is less data centre rack capacity, then order new rack (create

new Order Rack process) (R6)

▪ If number of equipment power supplies is greater than zero, then set process name

to provision power (R7)

▪ If number of equipment network ports is greater than zero, then set process name

to Provision Network (R8)

▪ If number of equipment power connections is equal to equipment power supplies,

then set process name to Completing Power and Network Provisioning (R9)

▪ If equipment network cable is required then set Process to Provision Network

Cables (R10)

▪ If equipment network connections and cables are configured, then set process name

to Completing Power & Network Provisioning and request status is set to close

(R11)

▪ If request status is set to close, then set process name to close request (R12)

The equipment installation workflow (Figure 8.2.2.1) is broken down to a series of

processes (tasks), some of which may or may not be enforced by business rules. Both the

processes and business rules can be identified reasonably well, i.e. P1 represents the

process “Create Request” and R3 represents the rule “When submit request, if requestor is

a member of the Platform capacity team then go to ‘Review’ step”. Note that dependencies

exist between business rules components, for example existing business rule (R2) action

and new business rules (R3) and (R4) events. The later business rule depends on the former

business rule’s actions to evaluate to true.

152

Figure 8.2.2. 1 XYZ Equipment Install Workflow

Using the proposed model, business rules statements from Use case#1 are formalized into

business rules components. They are formatted in a way that makes it easy to be used as

the bases for implementing them in business rules management systems. They are

expressed in a simple way, so that it is easy to identify what part is an event, a condition or

an action. This is valuable, especially to avoid inconsistent syntax when using ambiguity

English like statements. In Table 8.2.2 we present the business rules components of R0 to

R12. Appendix III presents the DRL file containing business rule R0 to R12 business rules

components generated by the ECA Model. Using the AND-OR graph presented in Chapter

4, various dependency patterns are defined. For example, Business rule R5 is directly

dependent on R3. This relationship exists because an action property “Rack Space” is full

(R3) causes an event in R5 to be invoked. Also, the business rule R6 is directly dependent

on R5. The action of R5 causes the condition of R6 to be checked.

153

Business rules statements No Event Condition Action

When workflow start activity then

create new process ‘Create Request

- P1’

R0 When Activity

(Workflow) ==

‘Start’

 Set Name (Process)

== ‘P1-Create

Request’

When submit request, if requestor is

a member of the Platform capacity

team then go to ‘Review’ step else

go to ‘Approve’ step for data centre

area manager to approve and set

equipment request type to install

R1 When Status

(Request) ==

‘Submit’

If Rolename

(Requestor) ==

‘Platform

Capacity’

Set Name (Process)

== ‘P2-Review’

R2 When Status

(Request) ==

‘Submit’

If Rolename

(Requestor) !=

‘Platform

Capacity’

Set Name (Process)

== ‘P3-Approve’

&& Request Type

(Equipment) ==

‘Install’

When equipment install request

triggered, if rack utilization is

greater than the rack space

capacity, then count installed

equipment and set the Rack is full

and set process to manage data

centre space else install the

equipment in the available rack

R3 When

Request Type

(Equipment)

== ‘Install’

If Utilization

(Rack) >=

Capacity (Rack)

Set Count

(Equipment) ==

‘installed

equipment’ And

Space (Rack) ==

‘isfull’ And Name

(Process) == ‘P5-

Manage DC Space’

R4 When

Request Type

(Equipment)

== ‘Install’

If Utilization

(Rack) < Capacity

(Rack)

Set Name (Process)

== ‘P7-Install

Equipment’

When Rack space is full then set

installed racks equal to rack

capacity

R5 When Space

(Rack) ==

‘isfull’

 Set installedRacks

(Rack) = Capacity

(Rack)

If available racks volume is less

than 10, then order new rack

(create new Order Rack process)

R6 If installedRacks

(Rack) < 10

Set Name (Process)

== ‘P6-Order Rack’

If number of equipment power

supplies is greater than zero, then

set process name to provision power

R7 If PowerSupplies

(Equipment) > 0

Set Name (Process)

== ‘P8-Power

Provision’

If number of equipment network

ports is greater than zero, then set

process name to Provision Network

R8 If network ports

(Equipment) > 0

Set Name (Process)

== ‘P9-Network

Provision’

If number of equipment power

connections is equal to equipment

power supplies, then set process

name to Completing Power and

Network Provisioning

R9 If power

connections

(Equipment)==

‘Power Supplies’

Set Name (Process)

== ‘P10-Complete

Power and Network

Provision’

If equipment network cable is

required, then set process name to

Provision Network Cables

R10 If network cablling

(Equipment)==

‘Yes’

Set Name (Process)

== ‘P11-Network

Cables Provision’

If equipment network connections

and cables are configured, then set

process name to Completing Power

and Network Provisioning and

request status is set to close (R11)

R11 If network and

cablling configured

(Equipment) =

‘Yes’

Set Name (Process)

== ‘P10-Complete

Power and Network

Provision’

If request status is set to close, then

set process name to close request

R12 If Status (Request)

== ‘Close’

Set Name (Process)

== ‘P12-Close

Request’

Table 8.2. 2 Use case #1 - Business Rule Components (ECA)

To ensure all their installation process are executed on time, the company XYZ decided to

insert another business rule (R13) to check for install status of the request and update it to

154

submit state. Table 8.2.3 presents new business rule R13 to be inserted. Additional

dependency patterns are defined after insertion of R13. Whenever new business rules are

added or inserted, our approach would be dynamically accessing the related business rules

through dependency graphs and updating by propagating the change to the applicable rules

and components before firing the rules again using the business rule management system.

Experiment 1 will demonstrate how the change in propagation is affected when R13 is

inserted.

Business rules statements No Event Condition Action

If request status is installed, then set

request status to Submit

R13 If Status (Request)

== ‘Install’

Set Status (Request)

== ‘Submit’

Table 8.2. 3 Use case #1 - Inserted Business Rule (R13)

8.2.2 Update Business Rules Components

Use case #2:

This use case is useful in a scenario where business rules components (event, condition,

action) are to be modified separately without changing the entire business rules. One of the

biggest compromises in data centres is power and capacity, the two costs are the biggest

expenses. The common belief is that the two costs increase together. The more racks (space

capacity), the more power is needed to run them. This means the more capacity, the more

power is needed, which could result in cooling issues. If the data centre has enough cooling

and power, it could easily run out of rack space capacity. Like most data centres, XYZ (the

Company described in Use case #1) faces similar problems. Hence, a decision was made

to modify its existing business rule (R5) in its equipment installation workflow to ensure

that there is enough space and power to run XYZ data centres. However, the business rule

was contained in codes requiring programming experts to make the change. Typically, the

work to identify and change business rules proves to be hard and time-consuming. Only

certain components of the business rules would need to be changed. However, because of

the way the rules were written, the entire rules would need to be changed. Furthermore, the

modification process of change propagation was complicated. The effort and time spent

for such a change was not economical, sometimes causing loss of money due to the

downtime during workflow configuration.

155

The business processes and rules presented in Use case#1 are employed and to demonstrate

how business rules are changed, business rule (R5) is modified (see below). Note, the

changes to R5 impact other business rules so change propagation will need to be

implemented. Here is a summary of the business rules:

Workflow Name: Equipment Installation

Roles: Requestor, Reviewer/Approver, Data Centre (DC) Manager,

Power and Network Technicians (Tech)

Business Rules (Modified and related business rules):

▪ Existing R5: When notify Rack is full then set number of racks installed in

the data centre equals to capacity

▪ Modified R5: When notify Rack is full then set equipment power capacity

equals to zero

▪ Related Business rule (R6): If the total number of installed racks is less data

centre rack capacity then order new rack

▪ Related Business rule (R9): If the number of equipment power connections

is equal to equipment power supplies, then set process name to Completing

Power and Network Provisioning

Table 8.2.4 presents the modified business rule (R5), broken down into components.

Update Business Rule No Event Condition Action

When notify Rack is full then set

equipment power capacity to zero

R5 When

Space (Rack)

== ‘isfull’

 Set powerCapacity

(Equipment)= 0

Table 8.2. 4 Use case #2 - Business Rule Components (ECA)

8.2.3 Delete Business Rules Components

Use case#3:

Use case#3 is useful in a scenario where business rules are to be removed and changes are

propagated to the business rules that are related to the business rule being deleted. Consider

the XYZ company presented in Use case #1 and Use case #2, where business rule R5 is to

156

be removed. As shown in Use case #2, business rules R6 and R9 depend on business rule

R5. If R5 is removed, then business rules R6 and R9 will never get implemented. The

deletion also removes process P6 from the workflow and the process P8 no longer flows to

process P11. Figure 8.2.2.2 presents the updated XYZ data centre equipment installation

workflow.

Figure 8.2.2. 2 XYZ Equipment Install Workflow after Deleting R5

8.2.4 Enable Business Rules to Initiate and Terminate Workflow

Use case #4:

Consider the following example from data centre move workflow (Figure.8.2.2.3). When

moving equipment from one data centre location to another, a requestor fills out a move

form (request) to include equipment to be moved, current and new location, new power

requirements, etc. Business rules exist to ensure power connected equipment is not moved

around. The first business rule (R101) states that when the request type is “move”, then set

157

equipment power connections greater than zero. The second business rule (R102) states

that if equipment power connections are greater than zero then request status is set to

“close”. The third business rule (R103) states that if the equipment power connection is

less than zero then the request status is set to power-provision and finally the fourth

business rule (R104) states that if request status is set to power-provision then request status

is set to close. Table 8.2.5 depicts the breakdown of business rules and their event,

condition and action components.

Workflow Name: Move Equipment

Roles: Requestor, Data Centre (DC) Manager

Business Processes:

▪ P101 - Notify move request

▪ P102 - Provision power for equipment move

▪ P103 - Close Request

Business Rules:

▪ When notified move request then set equipment power connections greater than

zero (R101)

▪ If equipment power connection is greater than zero, then request status is set to

close (R102)

▪ If equipment power connection is less than zero, then request status is set to power-

provision (R103)

▪ If request status is set to power-provision, then request status is set to close (R104)

Figure 8.2.2. 3 Equipment Move Workflow Diagram

158

Existing Business Rules No Event Condition Action

When notified request

type is move then set

equipment power

connections greater than

zero

R101 When Type

(Request) ==

“move”

 Set Power

Connections

(Equipment) > 0

If equipment power

connections are greater

than zero than request

status is set to close

R102 If Power

Connections

(Equipment) >

0

Set Status

(Request) ==

‘close’

If equipment power

connection is less than

zero, then request status

is set to power-provision

R103 If Power

Connections

(Equipment) <

0

Set Status

(Request) ==

‘power-provision’

If request status is set to

power-provision, then

request status is set to

close

R104 If Status

(Request) ==

‘power-

provision’

Set Status

(Request) ==

‘close’

Table 8.2. 5 Use case #4 - Business Rule Components (ECA)

8.2.5 Sequential Flow Patterns

Use case #5:

Consider the following scenario from data centre decommission workflow (Figure.8.2.2.4).

When equipment is decommissioning, the requestor fills out a decommission form. This

form contains all the decommission information including the location and equipment to

be removed. Business rules exist to ensure the validity of the equipment i.e. equipment end

date, location, etc, and a request is checked before equipment can be scheduled for

decommission. The business rules can be summarised as follows: first, if the equipment

end period is reached, then request status is set to approval decommission. Second, when

the notified request status is set to “approve decommission”, then equipment status is set

to “out of date”. Third, if the equipment status is “out of date”, then schedule a day for

physical decommission, which is the current date plus a week. The workflow business

processes and rules are summarised as follows and Figure.8.2.2.4 presents the actual

workflow.

Workflow Name: Decommission Equipment

Roles: Requestor, Approver

Business Processes:

▪ P201 - Initiate equipment decommission request

159

▪ P202 – Approve

▪ P203 - Schedule Decommission

Business Rules:

▪ If equipment end period is less than today’s date, then request status is set to

decommission approved. (R201)

▪ When notified request status is decommission approved then equipment status is

set to out of date (R202)

▪ If equipment status is out of date, then schedule for physical decommission - current

date plus a week (R203)

Figure 8.2.2. 4 Sequential Workflow

Mapping business rules statements into business rules components. Table 8.2.6

presents business rules (Use case #5) map into components and operators

Existing Business Rules No Event Condition Action

If equipment end period

is less than today’s date,

then request status is set

to decommission

approved

R201 If End Period

(Equipment) <

today’s date

Set Status

(Request) ==

‘decom-

approved’

When notified request

status is decommission

approved then equipment

status is set to out of date

R202 When Status

(Request) ==

‘decom-

approved’

 Set Status

(Equipment) ==

‘out-of-date’

If equipment status is out

of date, then schedule for

physical decommission -

current date plus a week

R203 If Status

(Equipment) ==

‘out-of-date’

Set Decom

Schedule Date

(Equipment) ==

Today + 7

Table 8.2. 6 Use case #5 - Business Rule Components (ECA)

160

8.2.6 Parallel-OR Merge Flow Patterns

Use case #6:

Consider the following decommission workflow (Figure.8.2.2.5) where business rules

have been added to ensure equipment is first disconnected by power or network provisioner

before final decommission process is executed.

Workflow Name: Equipment Decommission

Roles: Requestor, Power Tech, Network Tech

Business Processes:

▪ P301 - Initiate equipment decommission request

▪ P302 - Power Decommission

▪ P303 - Network Decommission

▪ P304 - Close Request

Business Rules:

▪ If equipment end period is yes, then send notification for equipment decommission

request (R301)

▪ When notified decommission request if power provisioner is yes then set request

status to decom-approved (R302)

▪ When notified decommission request if network provisioner is yes then set request

status to decom-approved (R303)

▪ If request status is decom-approved, then set request status to close (R304)

Figure 8.2.2. 5 Parallel-OR Merged Workflow

161

Mapping business rules statements into business rules components

Table 8.2.7 presents the business rules presented in Use case #6, mapped into components

(event, condition and action) and operators (==, !=, >=, <, etc.).

Business Rules No Event Condition Action

If equipment end period is

yes, then send notification

for equipment

decommission request

R301 If Endperiod

(Equipment) ==

yes

Set Notification

(Request) =

‘decommission’

When notified

decommission request if

power provisioner is yes

then set request status to

decom-approved

R302 When

Notification

(Request) =

decommission

If

PowerProvisioner

(Equipment) = yes

Set Status

 (Request) ==

‘decom-

approve’

When notified

decommission request if

network provisioner is yes

then set request status to

decom-approved

R303 When

Notification

(Request) =

decommission

If

NetworkProvisioner

(Equipment) = yes

Set Status

 (Request) ==

‘decom-

approve’

If request status is decom-

approved, then set request

status to close

R304 If Status

 (Request) ==

‘decom-approve’

Set Status

 (Request) ==

‘close’

Table 8.2. 7 Use case #6 - Business Rule Components (ECA)

8.2.7 Parallel-AND Merge Flow Patterns

Use case #7:

Consider the following decommission workflow (Figure 8.2.2.7), which is an extension to

the workflow presented in Figure 8.2.2.5. However, in Figure 8.2.2.7 both power and

network provisioner must approve for decommissioning of the equipment.

Workflow Name: Equipment Decommission

Roles: Requestor, Approver, Power Tech, Network Tech

Business Processes:

▪ P301 - Initiate equipment decommission request

▪ P302 - Power Decommission

▪ P303 - Network Decommission

▪ P304 - Close Request

Business Rules:

162

▪ If equipment end period is yes, then send notification for equipment decommission

request (R301)

▪ When notified decommission request if power provisioner is yes then set request

status to decom-approved (R302)

▪ When notified decommission request if network provisioner is yes then set request

status to decom-approved (R303)

▪ If request status is decom-approved, then set request status to close (R304)

Figure 8.2.2. 7 Parallel-AND Merge Workflow

Mapping business rules statements into business rules components

Table 8.2.8 presents the business rules presented in Use case #7, mapped into components

(event, condition and action) and operators (==, !=, >=, <, etc.).

Table 8.2. 8 Use case #7 - Business Rule Components (ECA)

Business Rules No Event Condition Action

If equipment end period is

yes, then send notification

for equipment

decommission request

R30

1

 If Endperiod

(Equipment) == yes

Set Notification

(Request) =

‘decommission

’

When notified

decommission request if

power provisioner is yes

then set request status to

decom-approved

R30

2

When

Notification

(Request) =

decommission

If PowerProvisioner

(Equipment) = yes

Set Status

 (Request) ==

‘decom-

approve’

When notified

decommission request if

network provisioner is yes

then set request status to

decom-approved

R30

3

When

Notification

(Request) =

decommission

If

NetworkProvisioner

(Equipment) = yes

Set Status

 (Request) ==

‘decom-

approve’

If request status is decom-

approved, then set request

status to close

R30

4

 If Status

 (Request) ==

‘decom-approve’

Set Status

 (Request) ==

‘close’

163

8.2.8 Parallel-OR Split Flow Patterns

Use case #8:

Consider the following scenario from data centre equipment SLA workflow (Figure 8.2.2.8

and Table 8.2.9). In a data centre, the Service Level Agreements (SLAs) are designed to

ensure different data centre activities are completed within a specified period to improve

performance by avoiding unnecessary delays in completion of activities. In this use case,

for all critical equipment the SLA demands that all scheduling and installation related tasks

are completed within 2 days of the start date of the activities. In the case of a breach of

SLA, an escalation process is completed. It involves emailing the person who is supposed

to complete the request as well as their manager for further action. An additional business

rule exists to notify the requestor when the equipment is not installed within the agreed

timescale.

Workflow Name: Equipment SLA

Roles: Data Centre Operator, Data Centre Manager

Business Processes:

▪ P404 - Scheduling

▪ P405 - Installation

▪ P406 - Manage SLA

Business Rules:

▪ If Equipment type is critical, then set SLA Request equal to yes (R404)

▪ When notify SLA Request; If request completion date is equal to start date – 2 days

then set completion status to ‘On time’ (R405)

▪ When notify SLA Request; If request completion date is taking more than 2 days

against the start date, then set completion status to ‘Delayed’ (R406)

Figure 8.2.2. 8 OR Split Workflow

164

Business Rules No Event Condition Action

If Equipment type is

critical, then set Request

type equal to SLA

R404 If Type

(Equipment) ==

‘Critical’

Set Type

(Request) =

‘SLA’

When notify SLA Request;

If request completion date

is equal to startdate - 2,

then set completion status

to ‘On time’

R405 When

Type

(Request)

== ‘SLA’

If

Completion Date

(Request) <=

StartDate

(Request) – 2

Days

Set

completionSt

atus

(Request) =

‘On time’

When notify SLA Request;

If request completion date

is taking more than 2 days

against the start date,

then set completion status

to ‘Delayed’

R406 When

Type

(Request)

== ‘SLA’

If

Completion Date

(Request) >

StartDate

(Request) – 2

Days

Set

completionSt

atus

(Request) =

‘Delayed’

Table 8.2. 9 Use case #8 - Business Rule Components (ECA)

8.2.9 Parallel-AND Split Flow Patterns

Use case #9:

Consider the following scenario from a data centre move workflow (Figure.8.2.2.9 and

Table.8.2.10). When moving equipment from one location to the other, both power and

network connections must be disconnected from the equipment. Below is a summary of

the business processes and rules that are managed.

Workflow Name: Equipment Move

Roles: Data Centre Operator, Power Provisioner and Network Provisioner

Business Processes:

▪ P501- Create Move Request

▪ P502 - Power Connections Decommission

▪ P503 - Network Connections Decommission

▪ P504 - Run Network Cable

▪ P505 - Close Request

Business Rules:

▪ If Request type equals to ‘move’ then set equipment connectionflag to yes (R501)

▪ When equipment connectionflag is yes, if connection type equals to ‘Power’ then

set equipment connection to 0 (R502)

▪ When equipment connectionflag is yes, if connection type equals to ‘Network’ then

set equipment cableflag to yes to 0 (R503)

▪ When equipment cableflag is yes then set request status to ‘close’ (R504)

165

Figure 8.2.2. 9 AND Split Workflow

Business Rules No Event Condition Action

If Request type equals to

‘move’ then set equipment

connectionflag to yes

R501 If

Type (Request)

== ‘move’

set Connectionflag

(Equipment) =

‘yes’

When equipment

connectionflag is yes, if

connection type equals to

‘Power’ then set

equipment connection to 0

R502 When

Connection-

flag

(Equipment)

== ‘yes’

If

connectionType

(Equipment) ==

‘Power’

Set

connection

(Equipment) = 0

When equipment

connectionflag is yes, if

connection type equals to

‘Network’ then set

equipment cableflag to yes

to 0

R503 When

Connectionflag

(Equipment)

==’yes’

 If

 Connection-

Type

(Equipment) ==

‘Network’

Set cableflag

(Equipment) =

‘yes’

When equipment cableflag

is yes then set then set

equipment connection to 0

R504 When Set

cableflag

(Equipment) =

‘yes’

 Set connection

(Equipment) == 0

Table 8.2. 10 Use case #9 - Business Rule Components (ECA)

8.3 Experiments
The experiments were carried out using a series of tests derived from use cases (section

8.2), objectives (5a-5d) and the ECA Test Client prototype. The ECA Test Client was

developed on top of the JBoss Drools rule engine to allow creation, deletion, modification

and execution of business rules in real time. Furthermore, Drools provided a suitable

166

environment for the execution of workflow formulated by the executed business rule.

Currently the prototype is a standalone application, which can be deployed on the user’s

desktop. It is worthy to note that these experiments were executed on a 64-bit windows

operating system, equipped with 4GB of RAM and Intel R Core™ i5-4210U CPU @

1.70GHz 2.40GHz. For easy of referencing, Table 8.3.1 lists down experiments along with

a use case used.

Experiment No Experiment Description Use case #

Experiment 1 Adding business rules & components structure at run time and change

propagation

Use case #1

Experiment 2 Modifying business rules and components structures and change propagation Use case #2

Experiment 3 Deleting business rules and components structures and change propagation Use case #3

Experiment 4 Ability to enable a business rule to initiate a process in a workflow Use case #4

Experiment 4 Ability to enable a business rule to terminate a process in a workflow Use case #4

Experiment 5 Ability to enable sequential process flow patterns Use case #5

Experiment 5 A Insertion of business rule components to generate sequential process flow

patterns

Use case #5

Experiment 5 B Modification of an existing business rule (changing source or target process

flows) in the sequential workflow pattern disconnects process flows

Use case #5

Experiment 5 C Deletion of an existing business rule in the sequential workflow pattern

disconnects existing process flows

Use case #5

Experiment 6 Ability to enable Parallel-OR Merge flow patterns Use case #6

Experiment 6 A Insertion of a new business rule in the OR Merged rules flow pattern create a

new process flow connection

Use case #6

Experiment 6 B Modification of an existing business rule (changing source or target process

flows) in the OR Merged rules flow pattern disconnects process flows

Use case #6

Experiment 6 C Deletion of an existing business rule in the OR Merged rules flow pattern

disconnects existing process flows

Use case #6

Experiment 7 Ability to enable Parallel-AND Merged flow patterns Use case #7

Experiment 7 A Insertion of a new business rule in the AND Merged rules flow pattern create

a new process flow connection

Use case #7

Experiment 7 B Modification of an existing business rule (changing source or target process

flows) in the AND Merged rules flow pattern disconnects process flows

Use case #7

Experiment 7 C Deletion of an existing business rule in the AND Merged rules flow pattern

disconnects existing process flows

Use case #7

Experiment 8 Ability to enable Parallel-OR Split flow patterns Use case #8

Experiment 8 A Insertion of a new business rule in the OR Parallel Split workflow pattern

create a new process flow connection

Use case #8

167

Experiment 8 B Modification of an existing business rule (changing source or target process

flows) in the OR Parallel Split workflow pattern disconnects process flows

Use case #8

Experiment 8 C Deletion of an existing business rule in the OR Parallel Split workflow pattern

disconnects existing process flows

Use case #8

Experiment 9 Ability to enable Parallel-AND Split flow patterns Use case #9

Experiment 9 A Insertion of a new business rule in the AND Parallel Split workflow pattern

create a new process flow connection

Use case #9

Experiment 9 B Modification of an existing business rule (changing source or target process

flows) in the AND Parallel Split workflow pattern disconnects process flows

Use case #9

Experiment 9 C Deletion of an existing business rule in the AND Parallel Split workflow pattern

disconnects existing process flows

Use case #9

Table 8.3. 1 Experiments and Use cases

8.3.1 Validation of Dynamic Business Rules and Change propagation

The first set of experiments (1-3) focus on validation of the proposed ECA Model’s ability

to deal with business rules’ flexibility and change propagation problems discussed in

previous chapters.

8.3.1.1 Adding Business Rules Components & Change Propagation

Experiment 1:

This experiment is designed to show the proposed ECA Model’s ability to handle the

complexity of adding business rules and components at run time. Furthermore, the

experiment demonstrates the model’s ability to deal with the difficulty of propagating

changes when new business rules and components are inserted. The process of adding

business rules and components is designed to be flexible and adaptable. The change

propagation process is automatic and seamless to the users, consequently reducing the

efforts required for adding business rules and components into rule repositories, thus

speeding up the response times at rule creation, runtime and improving usability. Allowing

visibility of related business rules and components, removing duplication and promoting

consistency are just some of the advantages of a better business rule management

framework. For the sake of simplicity, the experiment is divided in two areas:

168

● Model’s ability to add business rules and components (event, condition and action)

at run time

● Model’s ability to propagate changes

Ability to add business rule and components (event, condition, action) structure at runtime

The ECA Model as defined in this research makes business rules and components (event,

condition and action) put upon the use of classes explicitly. Business rules are specified

and added depending primarily on the chosen component class specification as described

in chapter 4. The event class, condition class and action class are free parts of the business

rule class. For this reason, the ECA Model classification provides a better background for

creating business rules at components level, therefore helps with the following problems:

- The complexity of dynamic creation of business rules at component level due

to lack of high level of abstraction. The ECA Model creates business rule

abstraction, which makes it easier to design a component class and its

properties. Keeping the components classes separate and being able to easily

specify its properties reduces the complexity of the creation task. Also, it

facilitates a consistent creation of business rule components before deployment.

- Complexity of creation of business rules and components by non-technical

users (Usability). Figure 8.3.1.1 shows one of the business rules (R1) entered

via ECA Model Test Client. The ECA Model Test Client allows for flexibility

in business rule components creation and makes it easy for the end-users to

capture business rules and components separately.

The business rules in Use case #1 were mapped into event, condition, action components

as presented in Table 8.2.1. Using the ECA Model Test Client, they were added into the

ECA Model and the Drools DRL file (Appendix III) was generated. The ECA Model Test

Client allows business rule components to be inserted separately. For ease of use, the ECA

Model Test Client sections are clearly identified and marked for entering components of

business rules including objects, properties, values and other operator i.e. comparison

169

operators. With the very minimal training, anybody can add business rules and

components.

First, we look at the model’s ability to add entire business rules, which consists of three

components (event, condition and action). As an example, R1 from Use case #1 is entered

via the ECA Model Test Client. The data or information for each component of R1 is filled

in appropriately. Drools DRL file is automatically generated, and the contents are displayed

on the DRL Rule Template section of the ECA Model Test Client. The contents of the

executed business rules are displayed under the statistics section, showing the number of

business rules in the rule repository, number of business rules that are being fired, etc.

Figure 8.3.1.1 captures the entire process of adding R1 to ECA Model and mapped the data

into a correct format ready for Drool’s runtime execution.

Figure 8.3.1. 1 Adding R1 and Components via ECA Model Test Client

170

Second, we look at the model’s ability to add separate business rule components i.e. add

event and action, condition and action, event only, action only. As an example, R5 is

entered via ECA Model Test Client but this time only event and action components of the

business rule are added. The data or information for event and action components of R5

are filled in appropriately. Drools DRL file is automatically generated and content of DRL

is also displayed on DRL Rule Template section of the ECA Model Test Client as

previously discussed. Figure 8.3.1.2 captures the process of adding R5’s event and action

components to ECA Model and mapped the data into a correct format ready for Drool’s

runtime execution.

Figure 8.3.1. 2 Adding R5 Event and Action Components via ECA Model Test Client

171

Third, we look at the model’s ability to add separate business rule components condition

and action. As an example, R6 is entered via the ECA Model Test Client but this time only

condition and action components of the business rule are added. The data or information

for condition and action components of R6 are filled in appropriately. The Drools DRL file

is automatically generated and the content of DRL is also displayed on DRL Rule Template

section of the ECA Model Test Client as previously discussed. Figure 8.3.1.3 captures the

process of adding R6’s condition and action components to the ECA Model and maps the

data into a correct format ready for Drool’s runtime execution.

Figure 8.3.1. 3 Adding R6 Condition and Action Components via ECA Model Test Client

Using the proposed model, we can model business rules at components level. Users are

free to enter any part/component of a business rule and any combination can be specified.

The ECA Model satisfies the adaptability and flexibility of adding business rules and

components. Furthermore, with a guided user interface (ECA Model Test Client), a non-

technical user can add any number of business rules which will then be converted into

Drool rule language.

172

Ability to propagate change when new business rules and components are inserted/added

Chapter 6 has shown the change propagation algorithm with associated combination of

dependency graph patterns to allow the ECA Model to manage business rules components

change. The ECA Model expresses the change propagation over business rules

relationships. Utilizing the dependency graphs with propagation algorithms eases the

change propagation complexity where several related business rules and components are

maintained in a business rule repository. Although the proposed model provides a high

level of abstraction by separating the business rules components, the structure of the graph

dependency patterns (Path, Level, Direct-Node and Neighbour dependencies) provides

links between business rules and components with similar behaviour and shapes. At each

stage of the change propagation, the ECA Model concerns itself with the related business

rules components patterns or layers. This means the ECA Model can express change

propagation quickly with ease, while it would have increased complexity, as related

business rules components were not well structured. For this reason, the ECA Model’s

change propagation method provides not only a method of tracking all related business

rules but also updating the affected business rules at component level, thus resolving the

following problems identified in Objective (5c) of this research:

- Difficulty in propagating changes on related business rules component level

- Performance or efforts needed to apply the business rule change; It may take

longer to propagate changes due decentralised business rules and

components

In this experiment, we apply the sample data from Use case #1 to demonstrate how our

change propagation method works, in particularly looking at propagation patterns when

new business rule (R13) and components are added. R13 connects to five business rules

components. Business rules R2 has a direct dependency on R13’s action component. This

leads to indirect relation to R3 and R4 event components, R3’s action component connects

to R5’s event component and R6’s condition component. R13’s change propagation to R2,

R3, R4, R5 and R6 needs to be revised to guarantee the activation of all the rules. Figure

8.3.1.4 displays the process of adding business rules (R13) and components as well as

173

various dependency graphs to show which business rules will be affected by changing R13.

At component level, business rules are linked or connected to each other, i.e. R13’s action

connects to R2’s event. Drools DRL file is automatically updated to include new inserted

business rule and components (Appendix IV). The dependency/change propagation graph

is displayed in the “Display ECA Graph - Rule relationships” section of the ECA Model

Test Client.

Figure 8.3.1. 4 Insert R13’s Condition and Action causing Change Propagation

By using the dependency graphs to define new dependencies and regenerating existing

relations of A(R13), the algorithm provides the ability to insert new business rules at

component level A(R13) and propagate changes by revising all related business rule

components as seen in Figure 8.3.1.11. We also look at the change cost to measure

performance or efforts needed to apply or modify the business rule change. For example,

if business rule R13 is added and business rule R2 is changed in the previous example, so

the effective change effort applicable to business rule R13 concerns the efforts to change

business rules R3, R4, R5 and R6 plus the efforts to change business rule R2. It is important

to estimate the maximum change cost before making any changes. This will help to

174

determine and plan the change in advance hence giving a tangible estimation of the efforts

needed to implement business rule changes. In our model, the cost of changes is based

upon the business rule change dependency patterns in a graph. The arcs in a graph patterns

are used as inputs to access the change. For example, the neighbour dependency’s pattern

will help to determine the effort required to change successors or predecessors of a given

business rule component. The Level dependency pattern allows us to determine the

distance between business rule components.

8.3.1.2 Modifying Business Rules Components

Experiment 2

This experiment is designed to show the usefulness and competence of our ECA Model’s

ability to support the modification of business rules and components at runtime, enabling

business rules and components to be modified by non-technical users (usability). The

changes are propagated to the business rules that are related to the component being

modified. However, the change propagation aspect for business rules modification is not

considered in this section as it was covered in experiment 1. Ideally this experiment intends

to validate the modification process of business rules and components on client workflow

applications resulting in flexibility and visibility of business rules, consequently, reducing

the efforts required to modify business rules and components in rule repositories, thus

speeding up the response times on rule modification and improving usability.

First, we look at the model’s ability to modify entire business rules, which consists of three

components (event, condition and action). As an example, R5 from Use case #2 is entered

via ECA Model Test Client. The data or information for each component of R5 is filled in

appropriately. Drools DRL file is automatically generated and the contents are displayed

on DRL Rule Template section of the ECA Model Test Client. The contents of executed

business rules are displayed under the statistics section, showing the number of business

rules in the rule repository, number of business rules that are being modified and fired, etc.

Figure 8.3.1.5 captures the entire process of modifying R5 to ECA Model and mapped the

data into a correct format, ready for Drool’s runtime execution

175

Figure 8.3.1. 5 Modify R5 and Components via ECA Model Test Client

Second, we look at the model’s ability to modify separate business rule components i.e.

modify event and action, condition and action, event only, action only etc. As an example,

R5 is entered via the ECA Model Test Client but this time only the action component of

the business rule is modified and so the event remains the same. The data or information

for event component of R5 is filled in appropriately. Drools DRL file is automatically

generated and content of DRL is also displayed on DRL Rule Template section of the ECA

Model Test Client as previously discussed. Figure 8.3.1.6 captures the process of updating

R5’s action components to ECA Model and mapped the data into a correct format ready

for runtime execution.

176

Figure 8.3.1. 6 Modifying R5 Event and Action Components via ECA Model Test Client

Using the proposed model, we can modify business rules at components level. Users are

free to modify any whole or part/component of a business rule, any combination can be

specified. The ECA Model satisfies the adaptability and flexibility of modifying business

rules and components. As mentioned before, with a guided user interface (ECA Model Test

Client), a non-technical user can modify any number of business rules.

177

8.3.1.3 Deleting Business Rules & Components

Experiment 3

In this experiment, we use sample data in Use case #3 to show the proposed ECA Model’s

ability to support the deletion of business rules and components at runtime. Obviously

when business rules are delated, all connected business rule components are impacted and

need to be revised. However, the change propagation aspect for business rules deletion is

not considered in this section as it was covered in experiment 1. Ideally this experiment

intends to validate the deletion process of business rules and components on client

workflow applications resulting in flexibility and visibility of business rules. As an

example, R5 from Use case #3 is entered via ECA Model Test Client. The data or

information for each component of R5 is filled in appropriately. Drools DRL file is

automatically generated and the contents are displayed on DRL Rule Template section of

the ECA Model Test Client. The contents of the executed business rules are displayed

under the statistics section, showing the number of business rules in the rule repository,

number of business rules that are being modified and fired, etc. Figure 8.3.1.7 captures the

entire process of removing R5 to ECA Model and mapped the data into a correct format,

ready for Drool’s runtime execution.

Figure 8.3.1. 7 Deleting R5 Event and Action Components via ECA Model Test Client

178

Using the proposed model, we can delete business rules on the fly. The ECA Model

satisfies the adaptability and flexibility of deleting business rules and components. As

mentioned before, with a guided user interface (ECA Model Test Client), a non-technical

user should be able to delete business rules. As soon as the rules are deleted the DRL will

be updated to reflect the change.

Business rules still are expressed in forms of simple statements. This is valuable, especially

to avoid inconsistent syntax. As discussed above in ECA Model, business rules statements

are formalized into business rules components (event, condition and action). They

formatted and expressed in a simple way, easy to identify what part is event, condition or

action for implementing them in the business rules management systems.

8.3.2 Validation of Business Rules Adaptation in Workflows

The next set of experiments focus on validating the adaptation of business rules to control

business processes in a workflow. Businesses must have dependable and flexible

workflows to execute business processes. Reliability and flexibility are crucial issues

because they help the business to become more efficient and effective. Hence, a validation

process is required to not only assess the proposed model’s ability to use business rules to

control business processes but also to ensure that the adaptation process is accurate and

reliable. Experiments 5-9 document validation of the key workflow constructs, which

include initiating and terminating business processes as well as various business process

flow patterns (sequential, parallel, merge, etc) as discussed in previous chapters. We

believe these constructs are key elements for the functioning of a workflow and so it is

important to validate these in our research.

8.3.2.1 Enabling Business Rules Components to Initiate & Terminate
Workflow

Experiment 4

As demonstrated in section 6.4, the ECA Model algorithm provides initiating and

terminating business rules constructs to enable a workflow to start and end. For modelling

179

the dynamic aspect of the workflow, the model provides the ability to modify initiating and

terminating business rule components (event, condition and action) at runtime via the ECA

Model Test Client.

Tests were performed using business rules in Use case #4. The business rule R101 is linked

to succeeding business rules R102 and R103. R101’s action component is connected to

R102 and R103 via their condition components. Notice, R101 is not linked to any

preceding business rules. We also see, business rules R102 and R104 have no succeeding

business rules attached to them; both have preceding business rules. R102 is connected to

R101 via condition-action relationships and R104 is connected to R03 via condition-action

components. So, we can conclude that R101 is an initiating rule and (R102 & R04) are

terminating rules. Figure 9.3.2.1 presents the relationships between business rules.

Figure 8.3.2. 1 Initiating (R101) and Terminating (R102 & R04) Business Rules

180

When business rule R101 and its relationships are generated using the dependency graph

with a mapping table shown earlier in section 6.5, the R101 node is evaluated in which a

corresponding starting business process node will be defined. Likewise, when business

rules R102 and R104 and their relationships are generated, the R102 and R104 nodes are

evaluated in which corresponding business processes and their links are formed. Figure

8.3.2.2 presents the business rules in DRL format. These rules are transformed into the

dependency graph shown in Figure 8.3.2.2. For the users, the adaptation of business rules

to transform “start” and “end” business processes is literally a matter of entering all

business rules via the ECA Model Test Client. In the background, the ECA Model will

proceed to generate business rules’ dependency graphs as soon as the rules are successfully

executed in the rule engine, the business rule-process mapping table is generated via the

adaptation algorithm described in section 6.5. The mapping table is generated to construct

valid start and end processes based on rule relationships.

Figure 8.3.2. 2 Initiating (R101) and Terminating (R102 & R04) via ECA Model Test Client

181

By applying the business rules above, we can enable the workflow’s start and end processes

as shown Figure 8.3.2.3. As you can see, the same start and end processes as in the original

workflow (Figure.8.2.2.3) are presented. However, it is worth noting the names of the

process are currently based on the names of the business rules’ properties. An extension to

this work would be to allow the user to change process names at run time or generate a

template of process names that can be used in the adaptation algorithm.

Figure 8.3.2. 3 R101 causing Start and (R102 & R04) causing End Workflow

If we analyse the dependency graph of our business rules (Figure 8.3.2.2), we notice

something interesting: the root node (R01) enables the “start process” (P101) and the leaf

business rule nodes (R102 and R104) enable the terminating processes (P102 and P04). By

identifying the root and leaf business rules, we can determine and enable the initiating and

terminating processes. The ECA Model implementation offers the ability to auto generate

the initiating and terminating business processes by using defined business rules.

8.3.2.2 Enabling Sequential Process Flow Patterns

Experiment 5

As demonstrated in section 6.4, the ECA Model algorithm provides the Sequential Flow

Rule construct to enable workflow processes to flow sequentially, one at the time. In this

experiment, tests were carried out using business rules in Use case #5. The business rule

182

R201 is linked to a succeeding business rule R202. R201’s action component is connected

to R202 via event component. In this case, R201 preceding business rules are not important

as flow is from P201 and P202. We also see that R202’s succeeding business rule is R203

connected via an action-event component; the preceding business rules of R202 are R201-

connected via event-action relationships. From this scenario, we can conclude that R201,

R202 and R203 form a chain of business rules linked via connected business rules

components. Figure 8.3.2.4 presents the relationships between business rules.

Figure 8.3.2. 4 Business Rules presenting Sequential Relationships

When business rule R201 and its relationships are generated using the dependency graph

with a mapping table shown earlier in section 6.5, the R201 node is evaluated in which a

corresponding business process node will be defined. Likewise, when business rules R202

and R203 and their relationships are generated, the R202 and R203 nodes are evaluated in

which corresponding business processes and their links are formed. Figure 8.3.2.5 presents

the business rules in DRL format. These rules are transformed into the dependency graph

shown in Figure 8.3.2.5. For the users, the adaptation of business rules to enable sequential

flow of business processes is literally a matter of entering all business rules via the ECA

Model Test Client. In the background, the ECA Model will proceed to generate business

rules’ dependency graphs as soon as the rules are successfully executed in the rule engine,

the business rule-process mapping table is generated via the adaptation algorithm described

in section 6.5.

183

Figure 8.3.2. 5 R201, R202 and R203 and Relationships in DRL Format

By applying the business rules above, we can enable sequential flow of business process,

from P201 to P202 and from P202 to P203 as shown Figure 8.3.2.6. As you can see, the

business processes are chained together.

Figure 8.3.2. 6 Business Rules and Relationships enabling Sequential Process Flows

Generated Paths: P201 → P202 → P203

184

If we analyse the dependency graph of our business rules (Figure 8.3.2.5), we notice

something interesting: the intermediate node (R202) is connecting to both R201 and R203

to enable a chain of processes to flow sequentially. So, if we can observe this type of

connectivity, we can determine whether sequential paths are to be generated for the

workflow.

5A) Insertion of business rule components

The proposed adaptation algorithm facilitates the insertion of a new business rules to

support the insertion of business processes in a sequential flow situation. Consider a new

business rule (R204) that is to be added to scenario in Use case#5. R204 is to ensure that

when a request is set to decom-approve, then power connections are disconnected from the

equipment to be removed. This forms a power decommission process (P204) that needs to

be executed before the Approve process (P202). The new business rule R204 is inserted

via the ECA Model Test Client then R204 and its relationships are generated using the

dependency graph and a mapping table shown earlier in section 6.5, the R204 node is

evaluated to which all connected business rule nodes are accessed and updated accordingly.

Then a new process is created: the corresponding business process node and its relationship

are updated accordingly. Figure 8.3.2.7 presents the business rules in DRL format, R204

is the new inserted business rule. Business rules are transformed into the dependency graph.

Figure 8.3.2. 7 Insert R204 and Relationships via ECA Model Test Client

185

By applying the business rules above, we can enable sequential flow to include new

business process, from P201 to P204, from P04 to P202 and from P202 to P203 as shown

Figure 8.3.2.8.

Figure 8.3.2. 8 Insertion of R204 causing Sequential Process Flows

Generated Paths: P201 → P204 → P202 → P203

5B) Modify business rule (changing source or target process flows)

The proposed adaptation algorithm facilitates the modification of existing business rules to

support the modification of business process in a sequential flow situation. Consider the

Use case#5 scenario, whereby the user discovered that the business rule (R204) that has

just been inserted to create a P204 process was wrongly positioned. The workflow was is

supposed to flow from P201 → P202 → P204 → P203 and not P201 → P204 → P202 →

P203. So, they would like to be able to update the business rule R204 so that when

equipment is out of date, the power connections should be disconnected. The new business

rule R204 is modified through the ECA Model Test Client and then its relationships are

updated using the dependency graph and a mapping table shown earlier in section 6.5. The

R204 node is evaluated to which all connected business rule nodes are accessed and

updated accordingly and then the corresponding business process node and its relationship

are updated accordingly. Figure 8.3.2.9 presents the business rules in DRL format, R204

is updated. The transformed business rules and their relationships are shown on the

dependency graph.

186

Figure 8.3.2. 9 Update R204 and Relationships via ECA Model Test Client

After applying the changes to R204, business processes are connected sequentially from

P201 to P202, from P202 to P204 and from P204 to P203 as shown in Figure 8.3.2.10.

Figure 8.3.2. 10 Modification of R204 causing Sequential Process Flows

Generated Path P201 → P202; P202 → P204; P204 → P203

187

5C) Deletion of existing business rules - disconnecting existing process flows

The proposed adaptation algorithm facilitates the deletion of existing business rules to

support the deletion of business processes in a sequential flow situation. Consider the Use

case#5 scenario, whereby the user would like to remove P204 from the workflow, which

will involve deletion of R204. Business rule deletion is straight forward. Removing R204

will remove P204 as well as all connections from source to destination.

The business rule R204 is deleted through the ECA Model Test Client and then its

relationships are updated using the dependency graph and a mapping table shown earlier

in section 6.5. The R204 node is evaluated to which all connected business rule nodes are

removed accordingly and then, the corresponding business process node and its

relationships are updated accordingly. Figure 8.3.2.11 presents the business rules in DRL

format, R204 is deleted. The transformed business rules and their relationships are shown

on the dependency graph.

Figure 8.3.2. 11 Delete R204 and Relationships via ECA Model Test Client

188

After deleting business rule R204, business processes are connected sequentially from

P201 to P202, from P202 to P204 and from P204 to P203 as shown in Figure 8.3.2.12.

Figure 8.3.2. 12 Deletion of R204 causing removal of Process P204 and Connections

Generated Paths: P201 → P202; P202 → P203 after Business Rules (R204) deleted

8.3.2.3 Enabling Parallel-OR Merge Process Flow Patterns

Experiment 6

As demonstrated in Chapter 6.4, the ECA Model algorithm provides the Parallel Merge

Flow Rule construct with an OR disjunction operator to enable workflow processes to form

Parallel-OR Merge flow patterns. In this experiment, tests were carried out using business

rules in Use case #6. The business rule R301 is linked to succeeding business rules R302

and R303. R301’s action component invokes both business rules R302 and R303 but only

one gets to activate R304 using the disjunction “OR”. Business rules R302 and R303 are

connected to R304 via action-condition components. Figure 8.3.2.13 presents the

relationships between business rules.

189

Figure 8.3.2. 13 Business Rules presenting Parallel Merge-OR Relationships

When business rules R301, R302, R303, R304 and their relationships are generated using

the dependency graph with a mapping table shown earlier in section 6.5, the corresponding

business processes and their links are formed. Figure 8.3.2.14 presents the business rules

in DRL format. These business rules are transformed into the dependency graph.

190

Figure 8.3.2. 14 R301, R302, R303, R304 and Relationships in DRL Format

By applying the business rules above, we can enable merged-OR flow patterns of a

workflow. Two Parallel-OR Merge paths are generated, (from P301 to P302 and from P302

to P304 OR from P301 to P303 and from P303 to P304) as shown Figure 8.3.2.15.

Figure 8.3.2. 15 Business Rules & Relationships enabling Parallel-OR Merge Process Flows

Parallel-OR Merge paths 1) P301 → P302 → P304 OR 2) P301 → P303 → P304

191

6A) Insertion of business rule components

The proposed adaptation algorithm facilitates the insertion of new business rules to support

the insertion of business processes in a parallel-or merged flow situation. Let us consider,

a new business rule (R305) that is to be added to the scenario in Use case#6. R305 is to

schedule the equipment for decommission when a request is set to decom-approve and then

the equipment status is removed. This forms a scheduling decommission process (P305)

that needs to be executed before the Request Close process (P304). The new business rule

R305 is inserted via the ECA Model Test Client and then R305 and its relationships are

generated using the dependency graph and a mapping table shown earlier in section 6.5.

The R305 node is evaluated to which all connected business rule nodes are accessed and

updated accordingly. Then the new process is created, corresponding business process

nodes and relationships are updated accordingly. Figure 8.3.2.16 presents the business rules

in DRL format, R305 is the new inserted business rule. The rules are transformed into the

dependency graph.

Figure 8.3.2. 16 Insert R305 and Relationships via ECA Model Test Client

192

By applying the business rules above, we can enable merged-OR flow patterns and insert

a new process in a workflow. Two Parallel-OR Merged paths are generated, (from P301 to

P302, from P302 to P305 and from P305 to P304 OR from P301 to P303, from P303 to

P305 and from P305 to P304) as shown Figure 8.3.2.17.

Figure 8.3.2. 17 Insertion of R305 causing Parallel-OR Merge Process Flows

Parallel-OR Merged paths 1) P301 → P302 → P305→ P304 OR 2) P301 → P303 → P305 → P304

6B) Modify business rule (changing properties of the of the business rule hence process)

The proposed adaptation algorithm facilitates the modification of existing business rules to

support the modification of business process in a parallel-or merged flow situation.

Consider the Use case#6 scenario, whereby business rule (R303) is modified because P303

process is to consider not just network provisioner but also storage provisioner. The

business rule R303 is modified through the ECA Model Test Client and then its

relationships are updated using the dependency graph and a mapping table shown earlier

in section 6.5. The R303 node is evaluated, to which all connected business rule nodes are

accessed and updated accordingly. Then, the corresponding business process node and its

relationships are updated accordingly. Figure 8.3.2.18 presents the business rules in DRL

format. R303 is updated. The transformed business rules and their relationships are shown

on the dependency graph Figure 8.3.2.18

193

Figure 8.3.2. 18 Update of R303 and Relationships via ECA Model Test Client

By applying the business rules above, we can enable Parallel-OR Merged flow patterns

and insert a new process in a workflow. Two parallel merged-or paths are generated, (from

P301 to P302, from P302 to P305 and from P305 to P304 OR from P301 to P303, from

P303 to P305 and from P305 to P304) as shown Figure 8.3.2.19.

Figure 8.3.2. 19 Modification of R303 enabling Parallel-OR Merge Process Flows

Parallel-OR merged paths 1) P301 → P302 → P305→ P304 OR 2) P301 → P303 → P305 → P304

194

6C) Deletion of existing business rules - disconnecting existing process and flows

The proposed adaptation algorithm facilitates the deletion of existing business rules to

support the deletion of business process in a parallel-or merged flow situation. Consider

the Use case#5 scenario, whereby the user would like to remove P302 from the workflow,

which will involve deletion of R302. Business rule deletion is straight forward. Removing

R302 will remove P302 as well as all connections from source to destination. The business

rule R302 is deleted through the ECA Model Test Client and then its relationships are

updated using the dependency graph and a mapping table shown earlier in section 6.5. The

R302 node is evaluated to which all connected business rule nodes are removed

accordingly and then the corresponding business process node and its relationship are

updated accordingly. Figure 8.3.2.20 presents the business rules in DRL format. R302 is

deleted. The transformed business rules and their relationships are shown on the

dependency graph.

Figure 8.3.2. 20 Deletion of R302 and Relationships via ECA Model Test Client

195

After deleting R302, business processes are connected sequentially from P301 to P303,

from P303 to P305 and from P305 to P304 as shown in Figure 8.3.2.21. Notice P302 and

its dependencies have been removed.

Figure 8.3.2. 21 Deletion of R302 causing Sequential Process Flows

Sequential Paths 1) P301 → P303 → P305; P305 → P304 generated after deletion

8.3.2.4 Enabling Parallel-AND Merge Process Flow Patterns

Experiment 7

As demonstrated in section 6.4, the ECA Model algorithm provides the Parallel-OR Merge

Flow Rule construct with an AND conjunction operator to enable workflow processes to

form Parallel-OR Merge flow patterns. In this experiment, tests were carried out using

business rules in Use case #7. The business rule R301 is linked to succeeding business

rules R302 and R303. R301’s action component invokes both business rules R302 and

R303 but only one gets to activate R304 using the conjunction “AND”. Business rules

R302 and R303 are connected to R304 via action-condition components. Figure 8.3.2.21.1

presents the relationships between business rules.

196

Figure 8.3.2.21. 1 Business Rules presenting Parallel-AND Merge Relationships

When business rules R301, R302, R303, R304 and their relationships are generated using

the dependency graph with a mapping table shown earlier in section 6.5, the corresponding

business processes and their links are formed. Figure 8.3.2.22 presents the business rules

in DRL format. These rules are transformed into the dependency graph.

197

Figure 8.3.2. 22 R301, R302, R303, R304 and Relationships in DLR format

By applying the business rules above, we can enable Parallel-AND Merge flow patterns of

a workflow. Two parallel merged-and paths are generated, (from P301 to P302 and from

P302 to P304 AND from P301 to P303 and from P303 to P304) as shown Figure 8.3.2.23.

Figure 8.3.2. 23 Business Rules & Relationships enabling Parallel-AND Process Flows

Parallel-AND paths 1) P301 → P302 → P304 or 2) P301 → P303 → P304

7A) Insertion of business rule components

The proposed adaptation algorithm facilitates the insertion of a new business rules to

support the insertion of business processes in a parallel-or merged flow situation. Let us

consider a new business rule (R305) that is to be added to scenario in Use case #7. R305 is

198

to schedule the equipment for decommission when a request is set to decom-approve then

the equipment status is set to removed. This forms a scheduling decommission process

(P305) that needs to be executed before the Request Close process (P304). The new

business rule R305 is inserted via the ECA Model Test Client then R305 and its

relationships are generated using the dependency graph and a mapping table shown earlier

in section 6.5. The R305 node is evaluated to which all connected business rule nodes are

accessed and updated accordingly. Then the new process is created, corresponding business

process nodes and relationships are updated accordingly. Figure 8.3.2.24 presents the

business rules in DRL format, R305 is the new inserted business rule. The rules are

transformed into the dependency graph.

Figure 8.3.2. 24 Insert R305 and Relationships via ECA Model Test Client

By applying the business rules above, we can enable Parallel-AND Merge flow patterns

and insert a new process in a workflow. Two parallel merged-or paths are generated, (from

P301 to P302, from P302 to P305 and from P305 to P304 AND from P301 to P303, from

P303 to P305 and from P305 to P304) as shown Figure 8.3.2.25.

199

Figure 8.3.2. 25 Insertion of R305 causing Parallel-AND Process Flows

Parallel-AND Merge paths 1) P301 → P302 → P305→ P304 AND 2) P301 → P303 → P305 → P304

7B) Modify business rule (changing properties of the of the business rule hence process)

The proposed adaptation algorithm facilitates the modification of existing business rules to

support the modification of business process in a parallel-or merged flow situation.

Consider the Use case #7 scenario, whereby business rule (R303) is modified because P303

process is to consider not just network provisioner but also storage provisioner. The

business rule R303 is modified through the ECA Model Test Client and then its

relationships are updated using the dependency graph and a mapping table shown earlier

in section 6.5. The R303 node is evaluated to which all connected business rule nodes are

accessed and updated accordingly. Then the corresponding business process node and its

relationship are updated accordingly. Figure 8.3.2.26 presents the business rules in DRL

format. R303 is updated. The transformed business rules and their relationships are shown

on the dependency graph.

200

Figure 8.3.2. 26 Update R303 and Relationships via ECA Model Test Client

By applying the above business rules, we can enable Parallel-AND Merge flow patterns

and modify a process in a workflow. Two parallel merged-or paths are generated, (from

P301 to P302, from P302 to P305 and from P305 to P304 AND from P301 to P303, from

P303 to P305 and from P305 to P304) as shown Figure 8.3.2.27.

Figure 8.3.2. 27 Modification of R303 causing Parallel-AND Merge Process Flows

Parallel-AND Merge paths 1) P301→P302→P305→P304 AND 2) P301→P303→P305 → P304

201

7C) Deletion of existing business rules - disconnecting existing process and flows

The proposed adaptation algorithm facilitates the deletion of existing business rules to

support the deletion of business process in a parallel-and merged flow situation. Consider

the Use case #7 scenario, whereby the user would like to remove P302 from the workflow,

which will involve deletion of R302. Business rule deletion is straight forward. Removing

R302 will remove P302 as well as all connections from source to destination. The business

rule R302 is deleted through the ECA Model Test Client and then its relationships are

updated using the dependency graph and a mapping table shown earlier in section 6.5. The

R302 node is evaluated to which all connected business rule nodes are removed

accordingly. Then the corresponding business process node and its relationship are updated

accordingly. Figure 8.3.2.28 presents the business rules in DRL format. R302 is deleted.

The transformed business rules and dependency graph.

Figure 8.3.2. 28 Delete R302 and Relationships via ECA Model Test Client

202

After deleting R302, business processes are connected sequentially from P301 to P303,

from P303 to P305 and from P305 to P304 as shown in Figure 8.3.2.29. Notice P302 and

its dependencies have been removed.

Figure 8.3.2. 29 Deletion of R302 causing Sequential Process Flows

Sequential Paths P301→P303; P303→P305; P305 → P304

8.3.2.5 Enabling Parallel-OR Split Process Flow Patterns

Experiment 8

As demonstrated in section 6.4, the ECA Model algorithm provides the Parallel Split Flow

Rule construct with an OR disjunction operator to enable business processes to form

parallel split flow patterns. In this experiment, tests were carried out using business rules

in Use case #8. The business rule R404 is linked to succeeding business rules R405 and

R405. R404’s action component invokes both business rules R405 and R406 via action-

event components using the disjunction “OR”. Parallel-OR Split is like Parallel-OR Split.

However, it activates all outgoing business rule components simultaneously. Business

rules R404 activates R405 and R406 simultaneously. Figure 8.3.2.13 presents the

relationships between business rules.

203

Figure 8.3.2. 30 Business Rules presenting Parallel-OR Split Relationships

When business rules R404, R405, R406 and their relationships are generated using the

dependency graph with a mapping table shown earlier in section 6.5, the corresponding

business processes and their links are formed. Figure 8.3.2.31 presents the business rules

in DRL format and dependency graph.

204

Figure 8.3.2. 31 R404, R405, R406 and Relationships in DLR format

By applying the business rules above, we can enable Parallel-OR Split flow patterns of a

workflow. Two parallel split paths are generated, (from P404 to P405 OR from P404 to

P406) as shown Figure 8.3.2.32.

Figure 8.3.2. 32 Business Rules & Relationships enabling Parallel-OR Split Process Flows

Parallel-OR Split paths 1) P404 → P405 or 2) P404 → P406

205

8A) Insertion of business rule components

The adaptation algorithm facilitates the insertion of a new business rules to support the

insertion of business processes in a parallel-or split flow situation. Consider a new business

rule (R407), to be added to scenario in Use case#8. Business rule R407 is to be inserted

between R404 and R406 to process the request completion date to be greater than the

request start date based on the number of days the user specifies. So, R407 states that when

the notified request is set to SLA and if the number of days within equipment SLA

threshold > 2, then the set completion date is to be greater than the request start date. This

forms a ‘determine overdue SLA’ process (P407). The new business rule R407 is inserted

via the ECA Model Test Client then R407 and its relationships are generated using the

dependency graph and a mapping table shown earlier in section 6.5. The new R407 node

is evaluated to which all connected business rule nodes are accessed and updated

accordingly. Then a new process node is created, and corresponding business process

nodes and relationships are updated accordingly. Figure 8.3.2.33 presents the business rules

in DRL format, R407 is the new inserted business rule. Business rules are transformed into

the dependency graph.

Figure 8.3.2. 33 Insert R407 and Relationships via ECA Model Test Client

206

By applying the business rules above, we can enable Parallel-OR flow patterns and insert

a new process in a workflow. Two Parallel-OR Split paths are generated, (from P404 to

P405 OR from P404 to P407 and from P407 to P406) as shown Figure 8.3.2.34.

Figure 8.3.2. 34 Insertion of R407 causing Parallel-OR Process Flows

Parallel-OR Split paths 1) P404 → P405 OR 2) P404 → P407 → P406

8B) Modify business rule (changing properties of the of the business rule hence process)

The proposed adaptation algorithm facilitates the modification of existing business rules to

support the modification of business process in a Parallel-OR Split flow situation. Consider

the Use case #8 scenario, whereby business rule (R405) action component is modified to

set equipment SLA threshold to less than 2 days. The business rule R405 is modified

through the ECA Model Test Client and then its relationships are updated using the

dependency graph and a mapping table shown earlier in section 6.5. The R405 node is

evaluated, to which all connected business rule nodes are accessed and updated

accordingly. Also, the corresponding business process node and its relationship are updated

accordingly. Figure 8.3.2.35 presents the business rules in DRL format, R405 is updated.

The transformed business rules and their relationships are shown on the dependency graph.

207

Figure 8.3.2. 35 Update R405 and Relationships via ECA Model Test Client

By applying the business rules above, we can enable Parallel-OR flow patterns and modify

process in a workflow. Two Parallel-OR Split paths are generated (from P404 to P405 OR

from P404 to P407 and from P407 to P406) as shown Figure 8.3.2.36.

Figure 8.3.2. 36 Updating R404 causing Parallel-OR Split Process Flows

Parallel-OR Split paths 1) P404 → P405 OR 2) P404 → P407 → P406

208

8C) Deletion of existing business rules - disconnecting existing process and flows

The proposed adaptation algorithm facilitates the deletion of existing business rules to

support the deletion of business process in a Parallel-OR Split flow situation. Consider the

Use case #8 scenario, whereby the user would like to remove P404 from the workflow,

which will involve deletion of R404. Business rule deletion is straight forward. Removing

R404 will remove P404 as well as all destination connections. The business rule R404 is

deleted through the ECA Model Test Client then its relationships are updated using the

dependency graph and a mapping table shown earlier in section 6.5. The R404 node is

evaluated to which all connected business rule nodes are removed accordingly. Also, the

corresponding business process node and its relationship are updated accordingly. Figure

8.3.2.20 presents the business rules in DRL format, R404 is deleted. The transformed

business rules and relationships are shown on the dependency graph Figure 8.3.2.37

Figure 8.3.2. 37 Delete R404 and Relationships via ECA Model Test Client

After deleting R404, business process P404 is removed and P405 is no longer connected.

P407 is connected P406 as shown in Figure 8.3.2.38. Notice P404 and its dependencies

have been removed.

209

Figure 8.3.2. 38 Deletion of R404 causing removal of P404 and Connections

Result Paths P405; P407 → P406

8.3.2.6 Enabling Parallel-AND Split Process Flow Patterns

Experiment 9

As demonstrated in section 6.4, the ECA Model algorithm provides the Parallel Split Flow

Rule construct with an AND conjunction operator to enable business processes to form

parallel split flow patterns. In this experiment, tests were carried out using business rules

in Use case #9. The business rule R501 is linked to succeeding business rules R502 and

R503. R501’s action component invokes both business rules R502 and R502 via action-

event components using the conjunction “AND”. Parallel-AND Split is like Parallel-AND

Split. However, it activates all outgoing business rule components simultaneously.

Business rule R501 activates R502 and R503 simultaneously. Figure 8.3.2.39 presents the

relationships between business rule R501 and (R502 and R503, R504).

210

Figure 8.3.2. 39 Business Rules presenting Parallel-OR Split Relationships

When business rules R501, R502, R503, R504 and their relationships are generated using

the dependency graph with a mapping table shown earlier in section 6.5, the corresponding

business processes and their links are formed. Figure 8.3.2.40 presents the business rules

in DRL format and dependency graph.

211

Figure 8.3.2. 40 R501, R502, R503, R504 and Relationships in DRL Format

By applying the business rules above, we can enable parallel-AND Split flow patterns of a

workflow. Two parallel split paths are generated, (from P501 to P502 AND from P501 to

P503 and from P503 to P504) as shown Figure 8.3.2.41.

Figure 8.3.2. 41 Business Rules & Relationships enabling Parallel-AND Split Process Flows

Parallel-AND Split paths 1) P501 → P502 or 2) P501 → P503→ P504

212

9A) Insertion of business rule components

The adaptation algorithm facilitates the insertion of a new business rules to support the

insertion of business processes in a parallel-or split flow situation. Consider a new business

rule (R505) is added to the scenario in Use case #9. Business rule R505 is to be inserted

between R501 and R502 to set connection type on equipment to power for equipment with

power ports (no of power supplies). So, business rule R505 states that, when notified,

connection flag is set to yes and if power ports are greater than zero, then set connection

type on equipment to power. This forms a ‘check power supplies’ process (P505). The new

business rule R505 is inserted via the ECA Model Test Client then R505 and its

relationships are generated using the dependency graph and a mapping table shown earlier

in section 6.5. The new R505 node is evaluated to which all connected business rule nodes

are accessed and updated accordingly. Then a new process node is created, and

corresponding business process nodes and relationships are updated accordingly. Figure

8.3.2.42 presents the business rules in DRL format, R505 is the new inserted business rule.

Business rules are transformed into the dependency graph.

Figure 8.3.2. 42 Insert R305 and Relationships via ECA Model Test Client

213

By applying the business rules above, we can enable Parallel-AND Split flow patterns and

insert a new process in a workflow. Two Parallel-AND Split paths are generated, (from

P501 to P505, from P505 to P502 AND from P501 to P503 and from P503 to P504) as

shown Figure 8.3.2.43: Parallel-AND Split paths 1) P501 → P505 → P502 AND 2) P501

→ P503 → P504

9B) Modify business rule (changing properties of the of the business rule hence process)

The proposed adaptation algorithm facilitates the modification of existing business rules to

support the modification of business process in a Parallel-AND Split flow situation.

Consider the Use case#9 scenario, whereby business rule (R503) event component is

modified by renaming the object Equipment to Rack. The business rule R503 is modified

through the ECA Model Test Client and then its relationships are updated using the

dependency graph and a mapping table shown earlier in section 6.5. The R503 node is

evaluated, to which all connected business rule nodes are accessed and updated

accordingly. Also, the corresponding business process node and its relationships are

updated accordingly. Figure 8.3.2.43 presents the business rules in DRL format, R503 is

updated. The transformed business rules and their relationships are shown on the

dependency graph.

Figure 8.3.2. 43 Update R503 and Relationships via ECA Model Test Client

214

By applying the business rules above, we can enable Parallel-AND flow patterns and

modify a process in a workflow. Two Parallel-AND Split paths are generated (from P501

to P505, P505 to P502, P503 AND P504) as shown Figure 8.3.2.44.

Figure 8.3.2. 44 Modification of R503 causing Parallel-AND Split Process Flows

Parallel-AND Split paths 1) P501 → P505 → P502 AND 2) P504

9C) Deletion of existing business rules - disconnecting existing process and flows

The proposed adaptation algorithm facilitates the deletion of existing business rules to

support the deletion of business process in a Parallel-AND Split flow situation. Consider

the Use case #9 scenario, whereby the user would like to remove P502 from the workflow,

which will involve deletion of R502. Business rule deletion is straight forward. Removing

R502 will remove P502 as well as all source connections. The business rule R502 is deleted

through the ECA Model Test Client and then its relationships are updated using the

dependency graph and a mapping table shown earlier in section 6.5. The R502 node is

evaluated to which all connected business rule nodes are removed accordingly. Also, the

corresponding business process node and its relationship are updated accordingly. Figure

8.3.2.45 presents the business rules in DRL format, R502 is deleted. The transformed

business rules and their relationships are shown on the dependency graph.

215

Figure 8.3.2. 45 Delete R502 and Relationships via ECA Model Test Client

After deleting R502, business process P502 is removed and P502 is no longer connected.

P501 is connected P505 only as shown in Figure 8.3.2.46. Notice P502 and its

dependencies have been removed.

Figure 8.3.2. 46 Deletion of R502 causing removal of P502 and connected paths

216

8.4 Summary
The Chapter contributes to the area of research experimental. It introduced various

scenarios (use cases) from data centre workflows have been presented to validate the

proposed model prototype developed and presented in Chapter 7. The complexity of

changing the structure of business rules and components, difficulty in propagating changes

on related business rule components and workflow configurations are typical challenges

facing workflow users. In this chapter, using research objectives identified in section 1.3,

we have been able to demonstrate not only the ability to manage business rules and changes

at component level but also to allow business rules to be used to govern processes of a

workflow. There is a significant advantage for workflow users when adapting business

rules to manage and control the flow of processes in real time. More general benefits for

rule systems arise from being able to manage changes at business rule component level.

Table 8.4.1 summarizes validation results.

217

Research

objectives

Scenarios Validation

Criteria

Actual Results Results Analysis/Comments

Creation of business

rules & components

- Objective 5(a)

1- Model’s ability to add entire business rules,

which consists of three components (event,

condition and action). As an example, Business

rule R1 from Use case #1 is entered via ECA Model

Test Client.

2- Model’s ability to add separate business rule

components. As an example, Business rule R5

from Use case #1 is entered via ECA Model Test

Client but this time only event and action

components of the business rule are added.

3- Model’s ability to add separate business rule

components. As an example, Business rule R6

from Use case #1 is entered via ECA Model Test

Client but this time only condition and action

components of the business rule are added.

(Ability to

add business

rules&

components

on the fly)

-

Adaptation,

Flexibility,

Usability

1- Business rule R1 and all components are

added to Drools DRL as expected. Figure

9.3.1.1 captures the results of adding R1.

2- Business rule R5 event and action added to

Drools DRL via ECA Model Test Client. Figure

9.3.1.2 captures the results of adding R5’s event

and action components

3- Business rule R6 condition and action

components are added to Drools DRL Figure

9.3.1.3 captures the results of adding R6’s

condition and action components

Using the proposed model, we can model business rules at components level.

Users are free to enter any part/component of a business rule, any combination

can be specified. The ECA Model satisfies the adaptability and flexibility of

adding business rules and components. Furthermore, with a guided user interface

(ECA Model Test Client), a non-technical user can add any number of business

rules, which will then be converted into Drool rule language.

Modification of

business rules &

components -

Objective 5(a)

1- Model’s ability to modify entire business rules,

which consists of three components (event,

condition and action). As an example, Business

rule R5 from Use case #2 is entered via ECA Model

Test Client.

2- Model’s ability to modify separate business rule

components. As an example, Business rule R5

from Use case #2 is entered via ECA Model Test

Client but this time only action component of the

business rule is modified.

(Ability to

modify

business rules

&components

on the fly)

-

Adaptation,

Flexibility,

Usability

1- Business rule R5 with components are

modified in Drools DRL Figure 9.3.1.5 captures

results of modifying R5 and components

2- Business rule R5 action is modified in Drools

DRL. Figure 9.3.1.6 captures results of

updating R5’s action components

Using the proposed model, we can modify business rules at components level.

Users are free to modify any whole or part/component of a business rule, any

combination can be specified. The ECA Model satisfies the adaptability and

flexibility of modifying business rules and components. As mentioned before,

with a guided user interface (ECA Model Test Client), a non-technical user can

modify any number of business rules.

Deletion of business

rules & components

- Objective 5(a)

Model’s ability to delete business rules and

components. As an example, Business rule R5

from Use case #3 is entered via ECA Model Test

Client for deletion.

Ability to

delete

business rules

&components

on the fly

Business rule R5 is removed from Drools DRL

file. Figure 9.3.1.7 captures results of removing

R5 and components

Business rules still are expressed in forms of simple statements. This is valuable,

especially to avoid inconsistent syntax. As discussed above in ECA Model,

business rules statements are formalized into business rules components (event,

condition and action). They formatted and expressed in a simple way, easy to

identify what part is event, condition or action for implementing them in the

business rules management systems.

Automatic

generation of

Applying sample data from Use case #1 to

demonstrate model’s ability to generate business

Check change

propagation

Figure 9.3.1.4 displays the result of adding

business rules (R13) and components as well as

By using the dependency graphs to define new dependencies and regenerating

existing relations of A(R13), the algorithm provides the ability to insert new

218

business rules

components

dependencies -

Objective 5(b)

Change propagation

during insertion,

modification and

deletion of business

rule components -

Objective 5(c)

rules relationships and provide support for change

propagation. In particularly looking at a scenario

when new business rule (R13) and components are

added.

(Accuracy,

Usability and

Simplicity):

The

interaction in

particularly

with chained

business rules

various dependency graphs to show which

business rules will be affected by changing R13.

At component level, business rules are linked or

connected to each other, i.e. R13’s action

connects to R2’s event. The dependency/change

propagation graph is displayed in the “Display

ECA Graph - Rule relationships” section of the

ECA Model Test Client. R13 is linked to five

business rules components. Business rules R2

has a direct dependency on R13’s action

component. This leads to indirect relation to R3

and R4 event components, R3’s action

component connects to R5’s event component

and R6’s condition component. R13’s change

propagation to R2, R3, R4, R5 and R6 needs to

be revised in order to guarantee the activation of

all the rules

business rules at component level A(R13) and propagate changes by revising all

related business rule components as seen in Figure 9.3.1.11. We also look at the

change cost in order to measure performance or efforts needed to apply or

modify the business rule change. For example, if business rule R13 is added and

business rule R2 is changed in the previous example, so the effective change

effort applicable to business rule R13 concerns the efforts to change business

rules R3, R4, R5 and R6 plus the efforts to change business rule R2. It is

important to estimate the maximum change cost before making any changes.

This will help to determine and plan the change in advance hence giving a

tangible estimation of the efforts needed to implement business rule changes. In

our model, the cost of changes is based upon the business rule change

dependency patterns in a graph. The arcs in a graph patterns are used as inputs

to access the change. For example, the neighbour dependency’s pattern will help

to determine the effort required to change successors or predecessors of a give

business rule component. The Level dependency pattern allows to determine the

distance between business rule components.

Adaptation of

business rules in a

workflow to control

creation/termination

processes

- Objective 5(d)

A typical data centre equipment move workflow is

used to demonstrate how business rules can be used

to create initiating and terminating processes.

Consider the following scenario from Use case #4.

When moving equipment from one data centre

location to another, a requestor fills out a move

form (request) to include equipment to be moved,

current and new location, new power requirements,

etc. Business rules exist to ensure power connected

equipment are not moved around. The first

business rule (R101) states that when request type

is move then then set equipment power connections

greater than zero. The second business rule (R102)

states that if equipment power connections is

greater than zero then request status is set to close.

The third business rule (R103) states that if

equipment power connection is less than zero then

request status is set to power-provision and finally

the fourth business rule (R104) states that if request

status is set to power-provision then request status

is set to close

Adaptability

of ECA rules

to control

initiation of

processes

Adaptability

of ECA rules

to control

termination

of processes

When business rule R101, R102, R04 and their

relationships were generated, R101 evaluated to

a corresponding starting business process.

Likewise, R102 and R104 evaluated to

corresponding business processes and their

links are formed. Figure 9.3.2.2 presents the

business rules in DRL format and dependency

graph. Workflow’s start and end processes are

enabled as shown Figure 9.3.2.3. As you can

see, the same start and end processes as in the

original workflow (Figure.9.2.2.3).

If we analyse the dependency graph of our business rules (Figure 9.3.2.2), we

notice something interesting, the root node (R01) enables the “start process”

(P101) and the leaf business rule nodes (R102 and R104) enable the terminating

processes (P102 and P04). By identifying the root and leaf business rules, we

can determine and enable the initiating and terminating processes.

The ECA Model prototype offers the ability to auto generate the initiating and

terminating business processes by using defined business rules. For the users,

the adaptation of business rules to transform “start” and “end” business

processes is literally a matter of entering all business rules via the ECA Model

Test Client.

219

Adaptation of

business rules to

enable sequential

processes in a

workflow. -

Objective (5d)

1- Data centre equipment decommission workflow

from Use case #5 is used to demonstrate how

business rules can be used to enable sequential

process flow patterns. The business processes and

rules (R201, R202 and R203) are summarised in

Figure.9.2.2.4

Insertion of business rule components

(new process and/or new relationships)

2- Consider, a new business rule (R204) that is to

be added to scenario in Use case #5. R204 is to

ensure that when a request is set to decom-approve

then power connections are disconnected from the

equipment to be removed.

Modify business rule

(changing source or target process flows)

3- Consider the Use case #5 scenario, whereby the

user discovered that the business rule (R204) that

has just been inserted to create a P204 process was

wrongly positioned. The workflow was supposed

to flow from P201 → P202 → P204 → P203 and

not P201 → P204 → P202 → P203. So, they would

like to be able to update the business rule R204

Deletion of existing business rules

(disconnecting existing process flows)

4- Consider the Use case #5 scenario, whereby the

user would like to remove P204 from the

workflow, which will involve deletion of R204.

Adaptability

of ECA rules

to control the

running of

sequential

processes

1- By applying the business rules R201, R202

and R203 and their relationships, Processes

P201, P203 and P03 are generated with

sequential process flow from P201 to P202 and

from P202 to P203 as shown Figure 9.3.2.6.

2- By inserting the new business rule (R204),

P204 process is generated with sequential

process flow from P201 to P204, from P04 to

P202 and from P202 to P203 as shown Figure

9.3.2.8

3- After applying the changes to R204, business

processes are connected sequentially from P201

to P202, from P202 to P204 and from P204 to

P203 as shown in Figure 9.3.2.10.

4- After deleting R204, business processes are

connected sequentially from P201 to P202,

from P202 to P204 and from P204 to P203 as

shown in Figure 9.3.2.12.

The ECA Model prototype provides capability to enable sequential process flow

by using defined business rules. For the users, the adaptation of business rules

to enable sequential flow of business processes is literally a matter of entering

all business rules via the ECA Model Test Client.

The ECA Model prototype facilitates the insertion of a new business rules to

support the insertion of business processes in a sequential flow situation.

The ECA Model prototype facilitates the modification of existing business rules

to support the modification of business process in a sequential flow situation

The ECA Model prototype facilitates the deletion of existing business rules to

support the deletion of business processes in a sequential flow situation

Adaptation of

business rules to

enable AND/OR

Merged processes

in a workflow.

- Objective (5d)

1- Consider the following decommission workflow

(Figure.9.2.2.5) where business rules (R301, R302,

R303 and R304) from Use case #6 have been added

to ensure equipment is first disconnected by power

or network provisioner before final decommission

process is executed.

Insertion of business rule components

Adaptability

of ECA rules

to control the

running of

parallel

merge

processes

1- By applying the business rules R301, R302,

R303 and R304, two Parallel-OR Merge paths

are generated, (from P301 to P302 and from

P302 to P304 OR from P301 to P303 and from

P303 to P304) as shown Figure 9.3.2.15.

The ECA Model prototype provides the Parallel Merge Flow Rule construct with

an OR disjunction operator to enable workflow processes to form Parallel-OR

Merge flow patterns.

220

2- Consider, a new business rule (R305) that is to

be added to scenario in Use case#6. R305 is to

schedule the equipment for decommission when a

request is set to decom-approve then the equipment

status is set to removed. This forms a scheduling

decommission process (P305) that needs to be

executed before the Request Close process (P304).

Modify business rule

(changing properties of the of the business rule

hence process)

3- Consider the Use case #6 scenario, whereby

business rule (R303) is modified because P303

process is to consider not just network provisioner

but also storage provisioner.

Deletion of existing business rules

(disconnecting existing process and flows)

4- Consider the Use case #5 scenario, whereby the

user would like to remove P302 from the

workflow, which will involve deletion of R302.

2- By inserting new business rule (R305), two

Parallel-OR Merged paths are generated, (from

P301 to P302, from P302 to P305 and from

P305 to P304 OR from P301 to P303, from

P303 to P305 and from P305 to P304) as shown

Figure 9.3.2.17.

3- By modifying business rules (R303), two

parallel merged-or paths are generated, (from

P301 to P302, from P302 to P305 and from

P305 to P304 OR from P301 to P303, from

P303 to P305 and from P305 to P304) as shown

Figure 9.3.2.19.

4- After deleting R302, business processes are

connected sequentially from P301 to P303,

from P303 to P305 and from P305 to P304 as

shown in Figure 9.3.2.21. Notice P302 and its

dependencies have been removed.

The ECA Model prototype facilitates the insertion of a new business rules to

support the insertion of business processes in a parallel-or merged flow situation.
The R305 node is evaluated to which all connected business rule nodes are

accessed and updated accordingly. Then the new process is created,

corresponding business process nodes and relationships are updated accordingly

The ECA Model prototype facilitates the modification of existing business rules

to support the modification of business process in a parallel-or merged flow

situation. The R303 node is evaluated to which all connected business rule nodes

are accessed and updated accordingly. Then, the corresponding business process

node and its relationship are updated accordingly.

The ECA Model prototype facilitates the deletion of existing business rules to

support the deletion of business process in a parallel-or merged flow situation.

Removing R302, removes P302 as well as all connections from source to

destination

Adaptation of

business rules to

enable AND/OR

Parallel Split

processes in a

workflow.

- Objective (5d)

1- Model’s ability to enable Parallel-AND Split

flow patterns. Consider the following scenario

from data centre move workflow (Figure.9.2.2.10).

When moving equipment from one location to the

other, both power and network connections must

be disconnected to the equipment. Business rules

R501, R502, R503, R504 and their relationships

are maintained

Insertion of business rule components

2- Consider a new business rule (R505) is added to

scenario in Use case #9. Business rule R505 is to

be inserted between R501 and R502 to set

connection type on equipment to power for

equipment with power ports (no of power

supplies). So, business rule R505 states that when

Adaptability

of ECA rules

to control the

running of

parallel split

processes

1- By applying the business rules (R501, R502,

R503, R504 and their relationships), two

parallel split paths are generated, (from P501 to

P502 AND from P501 to P503 and from P503

to P504) as shown Figure 9.3.2.41.

2- By inserting the business rules (R505), two

Parallel-AND Split paths are generated, (from

P501 to P505, from P505 to P502 AND from

P501 to P503 and from P503 to P504) as shown

Figure 9.3.2.43.

The ECA Model prototype provides the Parallel Split Flow Rule construct with

an AND conjunction operator to enable business processes to form parallel split

flow patterns

The ECA Model prototype facilitates the insertion of a new business rules to

support the insertion of business processes in a parallel-or split flow situation.

The new R505 node is evaluated to which all connected business rule nodes are

accessed and updated accordingly. Then new process node is created,

corresponding business process nodes and relationships are updated

accordingly.

221

notified connection flag is set to yes and if power

ports greater than zero then set connection type on

equipment to power.

Modify business rule (changing properties of

business rule hence process)

3- Consider the Use case #9 scenario, whereby

business rule (R503) event component is modified

by renaming the object Equipment to Rack.

Deletion of existing business rules

(disconnecting existing process and flows)

4- Consider the Use case #9 scenario, whereby the

user would like to remove P502 from the

workflow, which will involve deletion of R502

Figure 9.3.2.43: Parallel-AND Split paths 1)

P501 → P505 → P502 AND 2) P501 → P503

→ P504

3- By modifying business rules (R503), two

Parallel-AND Split paths are generated (from

P501 to P505, P505 to P502, P503 AND P504)

as shown Figure 9.3.2.44.

4- After deleting R502, business process P502

is removed and P502 is no longer connected.

P501 is connected P505 only as shown in Figure

9.3.2.46. Notice P502 and its dependencies

have been removed.

The ECA Model prototype facilitates the modification of existing business rules

to support the modification of business process in a Parallel-AND Split flow

situation.

The ECA Model prototype facilitates the deletion of existing business rules to

support the deletion of business process in a Parallel-AND Split flow situation.
Business rule deletion is straight forward. Removing R502 will remove P502 as

well as all source connections.

Table 8.4. 1 Validation Results

222

9. Conclusion and Future Research

This research seeks to advance the development and use of workflows by introducing a two-level

model for business rules to govern processes in workflows, which is based on a strict logical

formalization of the business ontology. Using a set of descriptive primitives with strict logical

semantics, the framework provides the basis for formal definitions of the structure of business

workflows and the policies which control their execution. The approach adopted was to design and

implement the framework by prototyping to provide visible evidence on the feasibility of the

framework. In addition, this research allows the implementation of business rules indexing, change

propagation and rule adaptation approaches to enhance the framework. This Chapter concludes the

thesis with a closing remark on the problem statement (reflecting on research questions and

objectives) as well as looking at the effectiveness of the proposed solution (contributions).

Furthermore, recommendations and future research areas that can improve the business rules

adaptation in workflows are discussed as well.

9.1 Reflection on Research Questions
The main research questions were presented in section 1.4. Next, Table 9.1.1 below provides an

overview of how the research questions were addressed.

Research questions Research comments

What factors limit the adaptation of the business

rules in workflows?

This question was addressed with the research study

conducted in chapter 2. The study concluded with a brief

section describing the gaps and limitation of existing

studies and applications. One of the difficulties being the

lack of a consistent model to manage business rules at

components level. For more information section 2.3.

How to develop an ontology of the business

workflows, which allows to formalize the business

rules using templates so that dependencies between

the rules can be described.

Chapter 3 provides the foundation concepts and structures,

which include Event, Condition, Action, Process, etc.

Chapter 4 provides a conceptual framework of a two-level

model for business rules to govern processes in workflows,

which is based on a strict logical formalization of the

223

business ontology. Furthermore, section 4.4 addresses the

question of managing complex business rule relationships

by introducing the AND-OR graphs.

How can we specify the dependencies between the

rules on the base of the ontology model so that the

rules can be adapted to the changing conditions in

real-time and propagate the necessary changes? In

more precise, is it possible to create an efficient

algorithm for change propagation, which enable the

run-time adaptation of the business workflows?

How efficiently the underlying business rules can be

retrieved?

The dependency graph patterns introduced in Chapter 4 as

well as mixed of algorithms (indexing and change

propagation) covered in Chapters 5 and 6 provide the

technique for computing business rules change

propagation.

How can we optimise business rules to improve

execution performance and provide runtime

modification?

Chapter 5 provides the concept of Metarules to support

runtime modification of business rules at runtime.

How we can use the business rule dependencies to

construct an efficient mechanism for adapting the

rules in the case of changes?

How can we enable adaptation of the business rules

in real-time with reasonable complexity?

Chapter 4 provides the foundation framework of two-level

model for business rules to govern processes in workflows

and Chapter 6 presents the technique/algorithm

implemented to support adaptation of business rules in

workflow.

Can a proposed model structure be able to generalise

to new business rules in a workflow not seen during

prototype validation?

Various implementation techniques have been applied for

the development of the prototype. Specifically, chapter 8

covers the object-oriented implementation of business rule

component classes including business rule template. The

implementation provides generic reusable and adaptable

objects that can be changed.

Table 9.1. 1 Reflection of Research Questions

Overall, the successful development of the prototype proves the research hypothesis. The related

theories of a two-level model for business rules, strict logical formalization of the business rules

ontology using AND-OR dependency graphs, business rule adaptation and change propagation put

forward in the theoretical part are feasible and were validated in Chapter 8. The prototype shows

that the workflows from data centres can be efficiently implemented using the proposed model.

Business workflows such as equipment install, equipment decommissions, equipment move can

be managed through business rules to support the complex change and configuration problems.

224

9.2 Reflection on Aim and Objectives
Overall, the aim and objectives of this research study were met (Table 9.2. 1). The prototype

developed by considering all important knowledge gained from the literature review to the

development of the formal model, the rule indexing, rule adaptation and change propagation

algorithms.

Aim and objectives Status Description

1. Study existing research works through literature review in the area of business

rules and workflows.

a. Information gathering by identifying relevant published research papers,

journals, articles, posters, etc.

b. Reviewing existing approaches and methods for accessing and modifying

business rules reported in the research papers

c. Studying possible approaches and methods of formalizing business rules

d. Providing critical analysis and evaluation of the researched papers to establish

real gaps and limitations to the existing business rules problem.

Met Details can be found in section 2.1 covering

a survey of existing works. Based on

research questions and objectives, we were

able to investigate various research studies

and identify some very real gaps. This

helped to gain an understanding of the

problem, how existing solutions work and

highlight the work to be carried out in this

research.

2. Study business rules and workflow systems and products in the market today

a. Identify and get familiar with relevant workflow business rules systems and

products to understand the trends of what has been done in today’s market.

b. Review existing approaches and methods for modifying business rules

provided by these systems and products

c. Provide critical analysis of the systems and products to establish the real gaps

and limitations to the existing business rules problem.

Met Details can be found in section 2.2 covering

a survey of existing works. Based on

research questions and objectives, we were

able to investigate various state of the art

products and identify real gaps to highlight

the work to be carried out in this research.

3. Using a suitable methodology to establish and design concepts necessary to

support the management and administration of business rules in workflows

a. Define business rule structure

b. Define business rules concepts

c. Define business process concepts to be supported by business rule concepts

Met Details can be found in Chapter 3. This

chapter discusses the definition of a business

rule, basic structure and concepts of

business rules that are the building blocks of

the proposed formal model. The EBNF

definitions of the business rule concepts are

presented to support the development of a

formal model described in Chapter 4.

4. Develop a formal model to define business rules concepts and relationships.

a. Define a methodology of proposed business rules model

b. Define the framework of proposed business rules model for formal business

rules concepts definitions

c. Define business rules classifications

d. Define business rules relationships formal definitions and dependency graphs

Met Details can be found in Chapter 4. The

formal model is developed based on the

understanding of existing business

workflows as event-driven and as a

constantly evolving process of incremental

development, execution and control.

Different business rules classifications are

also discussed. The AND-OR graph is

developed to manage business rules

relationships

5. Validate the proposed model by using prototype to demonstrate the following

capabilities:

Met Exhaustive use cases scenarios allow deep

examination to provide a realism and

richness of the proposed model. Several

225

5a. Provide runtime support for dynamic creation, modification and deletion of

business rule and event, condition, action components

5b. Provide support for managing business rules and components relationships

in real time.

workflow use cases from data centres were

used to validate and shape the prototype to

compare how the research questions played

out in the different contexts. Chapter 8

covers the model validation.

Details on model design to support creation,

modification and deletion of business rules

and components (event, condition, action)

can be found in Chapter 4. Chapter 5 covers

business rule runtime modification using

Metarules and business rules indexing to

provide support for an efficient mechanism

for runtime modification. Implementation

can be found in Chapter 7.

5c. Provide support for managing change propagation between business rules

and components.

Partial

Met

The change propagation approach is

covered in Chapter 6 and the actual

implementation is covered in Chapter 7.

Based on AND-OR graph patterns described

in Chapter 4, five change propagation

patterns (Path, Direct-Node, Level,

Neighbour and Indirect Node) were

identified for propagation algorithm but

only Path and Level Dependency

propagations were implemented due to time

limitation.

5d. Provide support for managing business rules adaptation to control govern a

workflow, hence provide support for managing process flows within a

workflow.

Met The Adaptation algorithm is found in

Chapter 6 and its implementation is covered

in Chapter 7. The algorithm made it

possible for business rules to be used to:

✓ initiate and terminate workflow

processes

✓ execute Sequential flow patterns for

workflow patterns

✓ execute Parallel-OR Merged

workflow patterns

✓ execute Parallel-AND Merged

workflow patterns

✓ execute Parallel-OR Split workflow

patterns

✓ execute Parallel-AND Split workflow

patterns

Table 9.2. 1 Status of Achieved Objectives

226

9.3 Contributions to the Knowledge
This section gives a list of contributions as results of this research. The main contribution of this

research is the formalisation and development of business rules framework to govern workflow.

More precisely, the research contributions can be summarized as follows:

First - A conceptual model for rule adaptation based on incremental propagation of the changes

across the network of inter-related business rules:

The establishment of the business rule model makes it possible for business rule components

structure to be separated from workflow programming scripts. The user can create, modify and

delete any component of a business rule at any time without updating and recompiling the

programming codes. It becomes possible to use business rules and components in real time to

control workflows. This provides support to the volatile and complex BRMSs, making them agile,

dynamic and efficient.

Second - The multi-layered system architecture with clear separation of process ontology, rule

policies and metarules:

The contribution is a loosely coupled framework integrating two-level paradigms for business

rules governed process workflows, which is based on a strict logical formalization of the business

ontology discussed in Chapter 4. The efficiency of workflows’ operations could be largely

improved. Processes creation and configuration which are currently done by technical workflow

experts could be handled automatically by the businesspeople. Therefore, organisations can save

time and the costs, such as the resource costs, would be extremely reduced. Moreover, the

workflow will lead to fewer programming errors due to the programmer not understanding the

requirements and can do much less coding.

Third - The algorithm for semantic indexing of the rules, which accounts for their structure and

results in the AND-OR dependency graph:

The structuring of the business rules into AND-OR graphs provides support for more efficient

implementation of business rules change propagation algorithms. Furthermore, the different

patterns of inclusion of the business rules in the graphs are used inside the indexing algorithm to

control the flow of execution and retrieving of the rules as the business processes progress in real

227

time. This provides a real support for the management of business rules dependencies and change

propagation.

Fourth - Metarules to support runtime modification of business rules:

Developed the Metarules concept to support runtime modification of business rules and indexes.

Metarules are business rules described on behalf of other business rules. The Metarules provide an

important concept to manage existing business rules and their future accessibility or modification.

Fifth - The incremental algorithm for change propagation which uses the AND-OR graph and

results in the actual rule adaptation:

The algorithm has been developed for handling of the business rule change propagation problem.

It is important to understand that although the AND-OR graphs made it easier to realize the

relationship between rules, the actual change propagation is translated through the propagation

algorithm into rule language for workflow interpretation. The business rule adaptation algorithm

facilitates the execution of business rules to govern processes in workflows. Another important

contribution is that we use the business rules components (Event, Condition, Action) model to

automatically detect and execute processes in workflows. We support a comprehensive set of

business rules’ flow patterns for automatic generation of workflow. The flow patterns rules include

initiation rules, termination rules, sequential flow rules, parallel AND-Split flow rules, parallel

OR-Split flow rules, parallel AND-Merge flow rules, parallel OR-Merge flow rules, etc., which

for example allow us to start, stop, create and delete workflow processes.

On a final note, contributions from this research can be used to extend the concepts already

developed as part of business process definition languages such as BPM to support the creation

and design processes of workflows from business rules’ event, condition and action constructs

perspective. The design constructs created by this research extends the current knowledge for

business process modelling.

228

9.4 Limitations and Future Research
Opportunities for further research are many and varied. This section presents known limitations of

this research work, from which recommendations are proposed for future studies.

● Business processes consisting of a sequence of decisions in specific moments of time, like

after completing the process steps. In the future we could extend the use of the approach to

business processes where the changes can happen at any time (within the processes as well

as outside the processes).

● Another possible limitation is the avoidance of parallelism - in the future we could consider

simultaneous events, actions and decisions.

● Several algorithms have been developed in this research to support change propagation,

adaptation of business rules in workflows and indexing of business rules to improve

performance. Further implementation of a series of algorithms for logical analysis of the

business rules could be implemented, leading to other applications of the framework, for

example analysing the logical vulnerability in digital banking.

● We acknowledge that the implementation of fact classes requires future enhancement to

handle the creation and deletion of various facts. Generic classes are required to handle

different types of facts instead of the implementation of specific classes for individual fact

classes. To enhance the implementation of Fact classes, Java Spring framework

implementation could be used to handle creation and deletion of various facts. The

implementation of bean classes [103] in Spring is important to use, allowing us to have

Java fact classes that live within the application context without constantly creating new

fact instances every time we need. Furthermore, the Spring framework can maintain the

objects in main memory effectively reducing the risk of running out of memory [97].

Spring works in a way that it finds most inactive or passive objects in the main memory

and then copies to the secondary storage to create space for new objects.

● In the proposed model, business rules components are constructed from business rules

statements (English statements). They are formatted and expressed in a simple and easy

way to identify what part is an event, a condition or an action and translated directly to the

rule template described in Chapter 7. This is an important step, because it especially helps

to avoid contradictions when using ambiguous English-like statements. Currently, the

process of translating English-like statements to business rule components entered through

229

the ECA Test Client is done manually. A better programmatic approach needs to be

developed for higher reliability and efficiency to support automatic generation of business

rule components from phrases in Natural Language.

● The developed prototype does not consider low level workflow activities, such as sub-

processes and tasks. Typically, a process may consist of several tasks to be performed

before moving to the next processes. They need to be considered to further improve the

use of business rules in workflow.

● The use of business rules and components could be further extended to control actor roles

in workflows. Actor roles do play a fundamental part; a role concept is concerned with

who is responsible for doing a process or activity in a workflow (Chapter 3). With the

current prototype implementation, the creation, deletion and modification of roles are done

through workflow. This creates additional work and reliance on a workflow engine or

process management system. The implementation of workflow users’ roles using business

rules components is also vital. A business rule may spell out which actor role has to be

selected, created, deleted or modified in a workflow. It is not necessary to introduce a

separate business process management system to manage roles. Furthermore, the business

rules will reduce the effort required to manage actor roles in a workflow.

● Currently business rules and components dependencies are represented in a graphical text

format. The graphical visualisations of business rules and components dependencies could

be further improved by integration with visual graphical tools, such as protégé [2]. Such

tools could help to build knowledge-based solutions of business rules and dependencies

that come from different areas as diverse as banking, e-commerce and education, insurance.

Furthermore, a fully-fledged enterprise editor to load multiple business rules and

components will need to be considered.

● Currently, the prototype provides integration with Drools to allow storage and execution

of business rules as well as workflow. The integration with Drools itself is not a limitation

but the use of Drools specific formats is a limitation. Future research can develop an

abstract format and translate the specific formats into it using suitable adapters.

230

References

[1] Allemang Dean, Hendler James, "Semantic Web for the Working Ontologist: Effective

Modeling in RDFS and OWL" 2 Edition ISBN-13: 978-0123859655, (2011).

[2] Al-zebari Adel Ali, et al., ELMS-DPU Ontology Visualization with Protégé VOWL and Web

VOWL, Journal of Advanced Research in Dynamical and Control Systems 11:478-485

Project: e-learning system based on semantic web technologies, (2019).

[3] Anantaram C., "A Framework to specify Declarative Rules on Objects, Attributes and

Associations in the object model", in Journal of Object Technology, vol. 6, pp91-106,

(2007).

[4] Arkin A., et al. “Web Services Business Process Execution Language (WSBPEL)”, Version

2.0, (2005), http://www.oasis-open.org/committees/download.php/12791

[5] Barrera, L. F., Ramos, A. C., Florez Valencia, L., Pavlich-Mariscal, J. A., and Mejia-Molina,

N. A, “Integrating Adaptation and HCI Concepts to Support Usability in User Interfaces-A

Rule-based Approach”. In WEBIST (2) - pp. 82-90, (2014).

[6] Barrera L., Pavlich-Mariscal Jaime A., Carrillo-Ramos Á., Florez-Valencia L., Carrillo A.,

Runa-Kamachiy: Conceptual integration model between HCI and adaptation oriented to

user interface usability, Published (2013), Corpus ID: 20493691.

[7] Belhajjame K., Vargas-Solar, G. and Collet C., "A flexible workflow model for process-

oriented applications," Proceedings of the Second International Conference on Web

Information Systems Engineering, Kyoto, Japan, (2001), pp. 72-80 vol.1, doi:

10.1109/WISE.2001.996468.

[8] Berretti S., Bimbo A. D. and Vicario E., “Efficient matching and indexing of graph models in

content-based retrieval”. In IEEE Trans. on Pattern Analysis and Machine Intelligence, vol

23, (2001).

[9] Booch Grady, “Object-oriented analysis design with applications, design technology, computer

automated design, computer science, computer engineering”, (1994).

[10] Booch Grady, "The Unified Modeling Language User Guide (Addison-Wesley Object

Technology Series)"; Publisher: Addison-Wesley (2005), ISBN-10: 013485215X.

[11] Boyer Jérôme & Mili Hafedh, “Agile Business Rule Development: Process, Architecture, and

JRules Examples”, (2011). Springer Science & Business Media 1 ISBN: 9783642190407.

http://www.oasis-open.org/committees/download.php/12791/

231

[12] Brod M, Tesler L, Christensen T. Qualitative research and content validity, “developing best

practices based on science and experience”. Qual Life Res (2009); 18:1263–78.

[13] Browne, P., JBoss Drools Business Rules, Packt Publishing, (2009), ISBN-10: 1847196063.

[14] Business Rules Group, Organizing Business Plans: The Standard Model for Business Rule

Motivation, v1.0. (2000), Available at www.BusinessRulesGroup.org.

[15] Bruce Silver Associates, BPMN | Integrating Process and Rules; (2009).

[16] Casati et al., “Using Patterns to Design Rules in Workflows.” IEEE Trans. Software Eng.26,

760-785. (2000).

[17] Christian de Sainte Marie, IBM Web Sphere ILOG BRMS, IBM. (2011), [available at

https://www-01.ibm.com/software/integration/business-rule-management/jrules-family/].

[18] Clement B, Roy D, Oudeyer P-Y, Lopes M, “Online optimization of teaching sequences with

multi-armed bandits”. In: 7th international conference on educational data mining, (2014).

[19] Cognizant, The Robot and I: How New Digital Technologies Are Making Smart People and

Businesses Smarter by Automating Rote Work. White Paper [available online at

https://www.cognizant.com/whitepapers/the-robot-and-I-how-new-digital-technologies-

are-making-smart-people-and-businesses-smarter-codex1193.pdf], (2015).

[20] Cubrilo, M., Malekovic. M., Business Rules Modelling by Means of F-logic, UML and

Ontologies (problems and possible solutions), Intelligent Systems at the Service of

Mankind, Volume I, Ubooks, Neusäß, (2004).

[21] Dayal U., Buchmann A.P., McCarthy D.R., Rules are objects too: A knowledge model for an

active, object-oriented database system. In: Dittrich K.R. (eds) Advances in Object-

Oriented Database Systems. OODBS (1988.) Lecture Notes in Computer Science, vol 334.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50345-5_9.

[22] Desruelle, H., Isenberg, S., Botsikas, A., Vergori, P., and Gielen, F., “Accessible user

interface support for multi-device ubiquitous applications: architectural modifiability

considerations” Universal Access in the Information Society, 15(1), 5-19, (2016).

[23] Dragos ̧A. M. and Ralph E. J. Dynamic Object Model and Adaptive Workflow, (1999).

[24] Drools Latest final version: 7.38.0.Final License: Apache License 2.0,

https://www.drools.org/download/download.html.

[25] Embley David W, Understanding object-model concepts; Publication: ACM SIGPLAN

OOPS; (1993) https://doi.org/10.1145/260304.260364.

http://www.businessrulesgroup.org/
https://www-01.ibm.com/software/integration/business-rule-management/jrules-family/
https://www.cognizant.com/whitepapers/the-robot-and-I-how-new-digital-technologies-are-making-smart-people-and-businesses-smarter-codex1193.pdf
https://www.cognizant.com/whitepapers/the-robot-and-I-how-new-digital-technologies-are-making-smart-people-and-businesses-smarter-codex1193.pdf
https://doi.org/10.1007/3-540-50345-5_9
https://www.drools.org/download/download.html
https://doi.org/10.1145/260304.260364

232

[26] Embury S. & Shao J. Analysing the Impact of Adding Integrity Constraints to Information

Systems in Proc. of 15th Int. Conf. on Advanced Information Systems Engineering, LNCS

vol. 2681, pages 175–192, (2003).

[27] Ezekiel K., Vassilev, V., Ouazzane, K. and Patel, Y., "Adaptive business rules framework for

workflow management", Business Process Management Journal, Vol. 25 No. 5, pp. 948-

971 publisher by Emerald Publishing Limited, (2019), https://doi.org/10.1108/BPMJ-08-

2017-0219.

[28] Fair Isaac Corporation, Production Rule Representation, submitted to Business Modelling and

Integration Domain Taskforce, ILOG SA 2007.

[29] Feldman Jacob, “CTO Creating, Testing, and Executing Decision Models with OpenRules”,

(2011).

[30] Fetters Linda K., Handbook of Indexing Techniques: A Guide for Beginning Indexers

Paperback, Publisher: Fetters Info management Co; (2001), ISBN-10: 0929599055.

[31] Forgy C. L., A fast algorithm for the many pattern/many object pattern match problem,

Artificial Intelligence, 17-27. (1982).

[32] Fossum Timothy V., Classes as first-class objects in an environment-passing interpreter:

Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in

Computer Science Education, ITiCSE, Portugal, (2005).

[33] François Bry, Michael Eckert, Paula-Lavinia Pătrânjan, Inna Romanenko, "Realizing

Business Processes with ECA Rules: Benefits, Challenges, Limits"4th International

Workshop, PPSWR (2006), Budva, Montenegro, Print ISBN978-3-540-39586-7.

[34] Frederic P. Miller, Agnes F. Vandome, McBrewster John. Extended Backus-Naur Form,

VDM Publishing, (2010), ISBN: 6130764871, 9786130764876.

[35] Gartner Group, "Delivering IT’s Contribution: CIO Agenda". Stamford, Connecticut,

Gartner, Inc. (2005).

[36] Geppert Andreas, Tombros Dimitrios and Dittrich Klaus R., Defining the semantics of

reactive components in event-driven workflow execution with event histories, Information

Systems Volume 23, Issues 3–4, May–June 1998, Pages 235-252.

[37] Giarratano. J. C, “CLIPS User’s Guide,” (2002), Retrieved from:

www.ghg.ne/clips/download/documentation/usrguide.pdf.

https://doi.org/10.1108/BPMJ-08-2017-0219
https://doi.org/10.1108/BPMJ-08-2017-0219
http://www.ghg.ne/clips/download/documentation/usrguide.pdf

233

[38] Giurca, A., Lukichev, S. and Wagner, G. “Modeling web services with URML”, in

Proceedings of SBPM 2006, 11 June, Budva, Montenegro.

[39] Graham, I., "Business Rules Management and Service Oriented Architecture: A Pattern

Language" 1st Edition, Publisher: Wiley, ISBN-13: 978-0470027219, (2007).

[40] Graml, T., "Business Rules enable agile Business Process Management", Master thesis,

Institute for Informatics, Der Ludwing-Maximilians-University Munchen, (2006).

[41] Goh et al., “ECA rule-based support for workflows”, Artificial Intelligence in Engineering

Volume 15, Issue 1, January 2001, Pages 3-46.

[42] Graml, T., Bracht, R. and Spies, M., “Patterns of Business Rules to Enable Agile Business

Processes”. In: Proceedings of 11th IEEE International Enterprise Distributed Object

Computing Conference (EDOC’07, Oct. 15-19, Annapolis, Maryland, USA), pages 365-

378, (2007).

[43] Grissa-Touzi, A., Ounally, H., Boulila. A, VISUAL JESS: An expandable visual generator of

oriented object expert systems. Engineering and Technology; Pages 108–111, (2005).

[44] Grumbach Lisa and Bergmann Ralph, "SEMAFLEX: A novel approach for implementing

workflow flexibility by deviation based on constraint satisfaction problem solving",

Published in Expert Systems (2019) https://doi.org/10.1111/exsy.12385.

[45] Guenther C. W., Reichert M. and Van der Aalst W. M. P., "Supporting Flexible Processes

with Adaptive Workflow and Case Handling," (2008), IEEE 17th Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises, Rome, (2008), pp. 229-234,

doi: 10.1109/WETICE.2008.15.

[46] Hall J., "Semantics of Business Vocabulary and Business Rules (SBVR) -Model Systems",

(2006).

[47] Haley Paul, Confessions of a production rule vendor, Commercial Intelligence (2013),

[available at http://haleyai.com/wordpress/2013/06/22/confessions-of-a-production-rule-

vendor-part-1].

[48] Harrison Gregory, “Dynamically configurable workflow in a mobile environment”, (2019),

https://patents.google.com/patent/US20160132299.

[49] Heinz Lienhard and Urs-Martin Künzi, "Workflow and Business Rules: A Common

Approach", The Workflow Handbook (2005), published in association with the Workflow

Management Coalition (WfMC). www.wfmc.org/information/handbook05.htm.

https://doi.org/10.1111/exsy.12385
http://haleyai.com/wordpress/2013/06/22/confessions-of-a-production-rule-vendor-part-1
http://haleyai.com/wordpress/2013/06/22/confessions-of-a-production-rule-vendor-part-1
https://patents.google.com/patent/US20160132299
http://www.wfmc.org/information/handbook05.htm

234

[50] Hilwa Al & Hendrick Stephen D., Competitive Analysis Worldwide Business Rules

Management Systems, IDC. (2012) available online at

ftp://public.dhe.ibm.com/software/websphere/odm/2011_BRMS_MarketShare_Report.pdf

[51] Javier Cámara, Carlos Canal, Javier Cubo, Antonio Vallecillo, Formalizing WSBPEL

Business Processes Using Process Algebra, Part of special issue: Proceedings of the 4th

International Workshop on the Foundations of Coordination Languages and Software

Architectures, FOCLASA: (2005).

[52] JBoss Drools http://www.jboss.org/drools/.

[53] Kambur Dalen, Roantree Mark: Storage of Complex Business Rules in Object Databases.

ICEIS (1), 294-299, (2003).

[54] Koch A, Burns J, Catchpole K, et al Associations of workflow disruptions in the operating

room with surgical outcomes: a systematic review and narrative synthesis BMJ Quality &

Safety 29:1033-1045, (2020).

[55] Kumar, A. and R. Liu. “A Rule-Based Framework Using Role Patterns for Business Process

Compliance.” RuleML, 2008.

[56] López-Jaquero, V., Montero, F., and Real, F. “Designing user interface adaptation rules with

T: XML”. Proceedings of the 14th international conference on Intelligent user interfaces -

pp. 383-388, (2009).

[57] Lovrenčić S., Rabuzin K., and Picek R., “Formal Modelling of business rules: what kind of

tool to use?”, Journal of Information and Organizational Sciences, JIOS, vol. 30, no. 2, 1.

[58] Liu Di, Tao Gu and Xue Jiang-Ping., "Rule Engine based on improvement Rete algorithm,"

The 2010 International Conference on Apperceiving Computing and Intelligence Analysis

Proceeding, Chengdu, pp. 346-349, doi:10.1109/ICACIA.2010.5709916, (2010).

[59] Ludwig Ostermayer, Dietmar Seipel, Knowledge Engineering for Business Rules in

PROLOG, Conference: 26th Workshop on Logic Programming, Bonn, Germany,

September 24 - 25, 2012, Volume: Technical Report Nr. IAI-TR-2012-1, ISSN 0944-8535

[60] Lukichev, S., Wagner, G., “UML-Based Rule Modelling with Fujaba” Proceedings of the 4th

International Fujaba, Germany, pp: 31- 35, (2006).

[61] Macdonald Andrew, The value of IBM WebSphere ILOG BRMS, IBM. (2010), [available at

https://www-01.ibm.com/software/integration/business-rule-management/jrules-family/].

ftp://public.dhe.ibm.com/software/websphere/odm/2011_BRMS_MarketShare_Report.pdf
http://www.jboss.org/drools/
https://www-01.ibm.com/software/integration/business-rule-management/jrules-family/

235

[62] Mangan, PJ and Sadiq, S, "A constraint specification approach to building flexible

workflows", Journal of Research and Practice in Information Technology (ERA 2010,

2012, 2015, 2018 Journal(s) Listed), ISSN 1443-458X, Publisher Australian Computer Soc

Inc 2003.

[63] Manning Ernest Friedman-Hill, Jess in Action, Rule Based Systems in Java., (2003).

[64] Manning Ernest Friedman-Hill, Jess the rule engine for the java platform, URL

http://herzberg.ca.sandia.gov/jess/docs/70/ (2006).

[65] Mathias Weske, "Business Process Management: Concepts, Languages, Architectures",

Publisher: Springer (2012), ISBN-10: 3642286151.

[66] Mclver Annabelle and Morgan Carroll, "Programming Methodology", Publisher: Springer-

Verlag New York, ISBN 978-0-387-95349-6, (2003).

[67] Meir Doron (2018), "Workflow: A Practical Guide to the Creative Process" 1st Edition,

Publisher: CRC Press; 1 edition, ISBN-10: 113805853X

[68] Mezhoudi, N., PerezMedina, J. L., and Vanderdonckt, J., “Towards a Conceptual Model for

UIs Context-Aware Adaptation”. Proceedings of the 2nd World Congress, (2015).

[69] Miller. Frederic P., et al., Logical Disjunction: Logic, Mathematics, Logical connective,

Grammar, Grammatical conjunction, Exclusive or, Affirming a disjunct, Bitwise operation,

(2010), Operator, Disjunctive syllogism Paperback, Alpha Script Publishing, ISBN-10:

6130293976.

[70] Miñón, R., Paternò, F., Arrue, M., and Abascal, J., “Integrating adaptation rules for people

with special needs in model-based UI development process”. Universal Access in the

Information Society, 15(1), 153-168, (2015).

[71] Mnaouer Ben Adel et al., “A generic framework for rapid application development of mobile

Web services with dynamic workflow management”, Conference: Services Computing

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04).

[72] Mulholland Ben, BPM Statistics to Help You Increase Efficiency in Your Business

https://www.process.st/bpm-statistics-increase-efficiency/ (2017).

[73] Musen, M.A. The Protégé project: A look back and a look forward. AI Matters. Association

of Computing Machinery Specific Interest Group in Artificial Intelligence, 1(4), June

2015. DOI: 10.1145/2557001.25757003.

http://herzberg.ca.sandia.gov/jess/docs/70/
https://www.process.st/bpm-statistics-increase-efficiency/

236

[74] NASA’s Johnson Space Centre, CLIPS: A tool for building expert systems; (2008).

http://clipsrules.sourceforge.net/.

[75] Nhanle Thanh, Nhan Le Thanh, "An Ontology-based Approach for Business Process

Compliance Checking", Publication: IMCOM '16: Proceedings of the 10th International

Conference on Ubiquitous Information Management and Communication, January 2016

Article No.: 56 Pages 1–6https://doi.org/10.1145/2857546.2857603.

[76] Nicola Jill, Mayfield Mark, Abney Mike; "Streamlined Object Modeling: Patterns, Rules, and

Implementation" Published Sep 21, 2001 by Pearson. ISBN-10: 0-13-066839-7.

[77] Nguyen THH., Le-Thanh N. (2014) An Ontology-Enabled Approach for Modelling Business

Processes. In: Kozielski S., Mrozek D., Kasprowski P., Małysiak-Mrozek B., Kostrzewa

D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications

in Computer and Information Science, vol 424. Springer, Cham.

https://doi.org/10.1007/978-3-319-06932-6_14.

[78] Norman W. Paton (2012) Active Rules in Database Systems, Publisher: Springer; (September

5, 2012), ISBN-13: 978-1461264484.

[79] Ocke Stefan, "A Metamodel-Based OCL-Compiler for UML and MOF", Publication:

Electronic Notes in Theoretical Computer Science (ENTCS), November 2004

https://doi.org/10.1016/j.entcs.2003.09.003.

[80] Oguz Gizil, Proctor Mark, Kuncak Viktor, "Decision Tree Learning for Drools" Scientific

production and competences I&C - School of Computer and Communication Sciences;

IINFCOM LARA - Laboratory for Automated Reasoning and Analysis Work produced at

EPFL, (2008).

[81] OMG final adopted specification, BPMN 1.0, (2006), http://www.omg.org/cgi-

bin/doc?dtc/2006-02-01.

[82] OMG, Documents Associated with Business Process Model and Notation (BPMN), 2011,

http://www.omg.org/spec/BPMN.

[83] OMG, Semantics of Business Vocabulary and Business Rules (SBVR), 2017,

http://www.omg.org/spec/SBVR/1.4/PDF.

[84] OMG Business Process Model and Notation, January 2014, Version:2.0.2

http://www.omg.org/spec/BPMN/2.0.2/.

http://clipsrules.sourceforge.net/
https://doi.org/10.1007/978-3-319-06932-6_14
https://doi.org/10.1016/j.entcs.2003.09.003
http://www.omg.org/cgi-bin/doc?dtc/2006-02-01
http://www.omg.org/cgi-bin/doc?dtc/2006-02-01
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/SBVR/1.4/PDF
http://www.omg.org/spec/BPMN/2.0.2/

237

[85] Oracle BPM, Business Process Management, (2017).

http://www.oracle.com/us/technologies/bpm/overview/index.html

[86] Oracle Workflow User's Guide Release 2.6.3 Part Number B10285-02;

https://docs.oracle.com/cd/B12037_01/workflow.101/b10285/ugov.htm.

[87] Ouyang, Chun, van der Aalst, Wil, Dumas Menjivar, Marlon, & ter Hofstede, "Formal

Semantics and Analysis of Control Flow in WS-BPEL", Science of Computer

Programming, 67(2-3), pp. 162-198; 2007; ISSN:0167-6423.

[88] Poornachandra Sarang, Matjaz Juric, Benny Mathew; Business Process Execution Language

for Web Services: An Architects and Developers Guide to BPEL and BPEL4WS;

Publisher: Packt Publishing; 2Rev Ed Edition (2006), ISBN-10: 1904811817.

[89] PROCESOWCY.PL, Business process maturity in Polish organisations overview, 3rd

Edition, (2016).

[90] Proctor, et al., Drools Expert User Guide (2011).

[91] Rajkumar Thirumalainambi, Pitfalls of JESS for Dynamic Systems (Artificial Intelligence

and Pattern Recognition); Pages 491-494, (2007).

[92] Ramakanth Kotha, Designing Business Rules with Oracle Business Process Management,

(2018).

[93] Raza Abdullah, Dynamic Partitioning and Task Scheduling for Complex Workflow

Healthcare Application in Mobile Edge Cloud Architecture, (2019).

[94] Rabova, I., “Business rules specification and business processes modeling,” Agricultural

Economics-Zemedelska Ekonomika (55:1), 20–24, (2009).

[95] Regev Gil, Bider Ilia, Wegmann. Alain, "Defining Business Process Flexibility with the Help

of Invariants Software Process”: Improvement and Practice (SPIP), V12(1), pp. 65-79

(2007).

[96] Richters Mark, "A Precise Approach to Validating UML Models and OCL Constraints”

Publisher: Logos Verlag Berlin (30 Jan. 2002), ISBN-10: 3897228424.

[97] Rod Johnson et al., "Professional Java Development with the Spring Framework", Publisher:

Wrox, (2005), ISBN-10: 0764574833.

[98] Ronald G. Ross, "Principles of the Business Rule Approach", Published February 15th, 2003

by Addison-Wesley Professional, ISBN0201788934 (ISBN13: 9780201788938).

http://www.oracle.com/us/technologies/bpm/overview/index.html
https://docs.oracle.com/cd/B12037_01/workflow.101/b10285/ugov.htm

238

[99] Ronald G. Ross., Business Rule Concepts: Getting to the Point of Knowledge (4th Edition)

ISBN: 0-941049-14-0; (2013).

[100] Ronald G. Ross and Gladys S. W. Lam., BRSolutions, the BRS Business Rule

Methodology, (2000).

[101] Rosenberg, F., Nagl C. and Dustdar S., "Applying Distributed Business Rules - The VIDRE

Approach," in 2006 IEEE International Conference on Services Computing, Chicago, IL,

2006 pp. 471-478. doi: 10.1109/SCC.2006.22 [Accessed Jan 26, 2018].

[102] Rowe Anthony et al., “The use of Business Rules with Workflow Systems” [available online

at https://www.w3.org/2004/12/rules-ws/paper/105/], (2004).

[103] Rubinger Andrew Lee, Enterprise JavaBeans 3.1, Publisher: O'Reilly Media; 6 Edition,

(2010), ISBN-13: 978-0596158026.

[104] Rumbaugh James R, Blaha Michael R., Lorensen William, Eddy Frederick, Premerlani

William, "Object-Oriented Modeling and Design", Publisher: Pearson; International Ed

Edition (1 Mar. 1991), ISBN-10: 0136300545.

[105] Salatino Mauricio, De Maio Mariano, Aliverti Esteban, Mastering JBoss Drools 6, Packt

Publishing, (2016), ISBN-13: 978-1783288625.

[106] Salesforce, The State of Sales Report - Insights and trends from over 2,900 sales

professionals worldwide, third Edition (2020), https://www.salesforce.com/research/.

[107] Sakr Sherif and Al-Naymat Ghazi, "An Overview of Graph Indexing and Querying

Techniques" Graph Data Management: Techniques and Applications, Published 2012 DOI:

10.4018/978-1-61350-053-8.ch004.

[108] Sedgewick Robert, “Algorithms in Java: Parts 1-4”, Publisher: Addison Wesley, (2002),

ISBN: 0-201-36120-5.

[109] Hendrick Stephen D & Hendrick Kathleen E., “The Business Value of Business Rules

Management Systems” (2012), Sponsored by IBM.

[110] Tabebordbar, A., Beheshti, A., Benatallah, B. et al. Feature-Based and Adaptive Rule

Adaptation in Dynamic Environments. Data Sci. Eng. 5, 207–223 (2020).

https://doi.org/10.1007/s41019-020-00130-4.

[111] Taentzer, G. “AGG: A Tool Environment for Algebraic Graph Transformation”.

Proceedings of the International Workshop on Applications of Graph Transformations with

industrial Relevance. LNCS, vol. 1779. Springer, London, 481-488, (2000).

https://www.w3.org/2004/12/rules-ws/paper/105/
https://www.salesforce.com/research/
https://doi.org/10.1007/s41019-020-00130-4

239

[112] Taentzer Gabriele, "Adding Visual Rules to Object-Oriented Modeling Techniques",

Technical University of Berlin Volume: 1, Pages: 275, Year: (1999).

[113] Tan C.W. and Goh A, “Implementing ECA Rules in an Active Database,” Knowledge-

Based Systems, vol. 12, no. 4, pp. 137-144; (1999).

[114] Thirumaran.M, Ilavarasan.E, Thanigaivel.K and Abarna.S, Business rule management

framework for enterprise web services, (2010).

[115] Thomas J., et al., "Automated epileptiform spike detection via affinity propagation-based

template matching," 39th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), (2017), Seogwipo, pp. 3057-3060.

[116] Tombros Dimitrios, Geppert Andreas and Dittrich Klaus R., Semantics of reactive

components in event-driven workflow execution, Conference: International Conference on

Advanced Information Systems Engineering, (2006).

[117] Tristan Yates, Enhanced Indexing Strategies: Utilizing Futures and Options to Achieve

Higher Performance (Wiley Trading) Hardcover, Publisher: Wiley; 1 Edition, (2008),

ISBN-13: 978-0470259252.

[118] Uhlmann E., Gabriel C., and Raue, N. "An Automation Approach Based on Workflows and

Software Agents for Industrial Product-Service Systems" Procedia CIRP, vol. 30, 2015.

doi:10.1016/j.procir.2015.02.026.

[119] Van der Aalst Wil and Van Hee Kees, "Workflow Management: Models, Methods, and

Systems", Published in Cooperative information. Computer Science, Economics. (2002),

ISBN 0-262-01189-1.

[120] Van der Aalst, W.M.P; ter Hofstede, A.H.M and Weske M., Business Process Management:

A Survey - The First International Conference of Business Process Management; (2003).

[121] Van der Aalst W. M., ter Hofstede A., Kiepuszewski B., and Barros, A. Workflow patterns.

Distributed and Parallel Databases, 14(3):5–51, July 2003.

[122] Veerendra Kumar Rai, ‘Systems Approach to Business Rules’, Tata Research Development

and Design Centre, Proceedings of the 20th System Dynamics Conference, 2002.

[123] Wan M. N. Wan-Kadir, Pericles Loucopoulos: Relating Evolving Business Rules to

Software Design. Software Engineering Research and Practice 2003: 129-134.

240

[124] Waszkowski Robert and Kowalski Arkadiusz, Comparative Analysis of Business Process

Management Frameworks, 2017, ISBN: 978-0-9860419-9-0

https://www.researchgate.net/publication/321826235.

[125] Wiegmann DA, Sundt TM Workflow disruptions and surgical performance: past, present

and future BMJ Quality & Safety 2019;28:260-262.

[126] WS-BPEL (Web Services Business Process Execution Language). In:

ManagementMania.com [online]. Wilmington (DE) 2011-2020, 07/31/2015 [cit.

09/26/2020]. Available at: https://managementmania.com/en/ws-bpel-web-services-

business-process-execution-language.

[127] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: a frequent structure-based

approach. In Proceedings of the 2004 ACM SIGMOD international conference.

[128] Yan X., Han J., Graph Indexing. In: Aggarwal C., Wang H. (eds) Managing and Mining

Graph Data. Advances in Database Systems, vol 40. Springer, Boston, MA. (2010),

https://doi.org/10.1007/978-1-4419-6045-0_5.

[129] Yoder J., Federico B. and Ralph J., Adaptive Object-Models for Implementing Business

Rules, (2001).

[130] Yuan, Dayu and P. Mitra. “Lindex: a lattice-based index for graph databases.” The VLDB

Journal Vol 22, pp 229-252, (2012).

[131] Yuyin Sun, L. Bo, D Fox, Attribute based object identification, Published 2013 IEEE

International Conference on Robotics and Automation, Corpus ID: 8413785, (2013).

[132] Zoet Martijn, Methods and Concepts for Business Rules Management; 2014. ISBN: 978-90-

393-6130-6.

https://www.researchgate.net/publication/321826235
https://managementmania.com/en/ws-bpel-web-services-business-process-execution-language
https://managementmania.com/en/ws-bpel-web-services-business-process-execution-language

241

Appendices

Appendix I – Possible Validation Scenarios
List of possible validation scenarios can be considered for experimentation.

No Scenarios

1 Adding entire business rules & components

2 Adding event component on the fly

3 Adding condition component on the fly

4 Adding action component on the fly

5 Adding event and condition components on the fly

6 Adding event and action component on the fly

7 Adding condition and action component on the fly

8 Modifying entire business rules & components

9 Modifying event component on the fly

10 Modifying condition component on the fly

11 Modifying action component on the fly

12 Modifying event and condition components on the fly

13 Modifying event and action component on the fly

14 Modifying condition and action component on the fly

15 Deleting entire business rules & components

16 Deleting event component on the fly

17 Deleting condition component on the fly

18 Deleting action component on the fly

19 Deleting event and condition components on the fly

20 Deleting event and action component on the fly

21 Deleting condition and action component on the fly

22 Adding entire business rules & components and change propagation

23 Adding event component and change propagation

24 Adding condition component and change propagation

25 Adding action component and change propagation

26 Adding event and condition components and change propagation

27 Adding event and action component and change propagation

28 Adding condition and action component and change propagation

29 Modifying entire business rules & components and change propagation

30 Modifying event component and change propagation

31 Modifying condition component and change propagation

32 Modifying action component and change propagation

33 Modifying event and condition components and change propagation

34 Modifying event and action component and change propagation

35 Modifying condition and action component and change propagation

242

36 Deleting entire business rules & components and change propagation

37 Deleting event component and change propagation

38 Deleting condition component and change propagation

39 Deleting action component and change propagation

40 Deleting event and condition components and change propagation

41 Deleting event and action component and change propagation

42 Deleting condition and action component and change propagation

43 Ability to enable a business rule to initiate a process in a workflow

44 Ability to enable a business rule to terminate a process in a workflow

45 Ability to enable sequential process flow patterns

46 Insertion of business rule components to generate sequential process flow patterns

47 Modification of an existing business rule (changing source or target process flows)

in the sequential workflow pattern disconnects process flows

48 Deletion of an existing business rule in the sequential workflow pattern disconnects

existing process flows

49 Ability to enable Parallel-OR Merge flow patterns

50 Insertion of a new business rule in the OR Merged rules flow pattern create a new

process flow connection

51 Modification of an existing business rule (changing source or target process flows)

in the OR Merged rules flow pattern disconnects process flows

52 Deletion of an existing business rule in the OR Merged rules flow pattern

disconnects existing process flows

53 Ability to enable Parallel-AND Merged flow patterns

54 Insertion of a new business rule in the AND Merged rules flow pattern create a new

process flow connection

55 Modification of an existing business rule (changing source or target process flows)

in the AND Merged rules flow pattern disconnects process flows

56 Deletion of an existing business rule in the AND Merged rules flow pattern

disconnects existing process flows

57 Ability to enable Parallel-OR Split flow patterns

58 Insertion of a new business rule in the OR Parallel Split workflow pattern create a

new process flow connection

60 Modification of an existing business rule (changing source or target process flows)

in the OR Parallel Split workflow pattern disconnects process flows

61 Deletion of an existing business rule in the OR Parallel Split workflow pattern

disconnects existing process flows

62 Ability to enable Parallel-AND Split flow patterns

63 Insertion of a new business rule in the AND Parallel Split workflow pattern create

a new process flow connection

64 Modification of an existing business rule (changing source or target process flows)

in the AND Parallel Split workflow pattern disconnects process flows

243

65 Deletion of an existing business rule in the AND Parallel Split workflow pattern

disconnects existing process flows

66 Inserting index record for new business rules components relationships insertion

or addition

67 Modifying index record for business rules components relationships modification

and deletion

68 Deleting index record for business rules components relationships modification and

deletion

244

Appendix II – Business Rules in XYZ Equipment Install Workflow
Summary of existing and new business rules configured for XYZ’s equipment install workflows:

Business Rule Notes

When submit request, if requestor is a member of
the Platform capacity team then go to ‘Review’
step else go to ‘Approve’ step for data centre area
manager to approve and set install request

This business rule was added to ensure only valid requests are
processed by assigned and approved resources enforcing
security to company data centres.

When install request, if rack utilization is greater
than the rack space capacity, then count installed
equipment and set the Rack is full and set process
to manage data centre space else install the
equipment in the available rack

This business rule was added to ensure racks are not
overloaded and new racks are order when there is enough
space in racks.

When notify Rack is full then count total number of
racks installed in the data centre

This business rule was added to alert data centre managers
number of installed equipment when racks are full.

If the total number of installed racks is less data
centre rack capacity, then order new rack

This business rule was added to alert data centre managers to
order new racks when there is enough space in a rack.

If the number of equipment power supplies is
greater than zero, then set process name to
provision power

This business rule allows the workflow to flow to “Power
Provisioning” process for powered equipment.

If the number of equipment network ports is
greater than zero, then set process name to
Provision Network

This business rule allows the workflow to flow to “Network
Provisioning” process for network equipment.

If the number of equipment power connections is
equal to equipment power supplies, then set
process name to Completing Power and Network
Provisioning

This business rule causes the workflow to flow to “Completing
Power and Network Provisioning” process if equipment is fully
connected i.e. all its power ports have connections.

If equipment network cable is required, then set
process name to Provision Network Cables

This business rule allows the workflow to flow to “Provision
Network Cables” process if cable connection is required on
equipment.

If equipment network connections and cables are
configured, then set process name to Completing
Power and Network Provisioning and request
status is set to close

If equipment is configured for network and cables then this
business rule causes the workflow to flow to “Completing
Power and Network Provisioning” process and set the status of
the request to close.

If request status is set to close, then set process
name to close request

This is a termination rule where workflow flows to close
process if request status is set to close.

245

Appendix III – XYZ Business Rules in Drools DRL format
Drools DRL displaying business rules configured for XYZ’s equipment install workflows:

package org.kanana;
import org.kanana.MessageFact;
import org.kanana.Rack;
import org.kanana.Request;
import org.kanana.RuleName;
import function org.kanana.Utility.help;
dialect "java"

rule "R12"
when
 Request(Status == 'Close')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P12-Close Request')");
end

rule "R11"
when
 Equipment(Network and Cablling Configured == 'Yes')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P10-Complete Power and Network Provision')");
end

rule "R10"
when
 Equipment(NetworkCablling == 'Yes')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P11-Network Cables Provision')");
end

rule "R9"
when
 Equipment(Power Connections == 'PowerSupplies')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P10-CompletePower and Network Provision')");
end

rule "R8"
when
 Equipment(Network Ports > '0')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P9-Network Provision')");
end

rule "R7"
when
 Equipment(Power Supplies > '0')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P8-Power Provision')");
end

rule "R6"
when
 Rack(Volume < '10')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P6-Order Rack')");
end

246

rule "R5"
when
 Rack(Space == 'isfull')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Rack(availableRacks == 'installedRacks - 1')");
end

rule "R4"
when
 Request(Type == 'Install')
 Rack(Utilization < '2000')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P7-Install Equipment')");
end

rule "R3"
when
 Request(Type == 'Install')
 Rack(Utilization >= '2000')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P5-Manage DC Space')");
end

rule "R2"
when
 Request(Status == 'Submit')
 Requestor(Rolename != 'Platform Capacity')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P3-Approve')");
end

rule "R1"
when
 Request(Status == 'Submit')
 Requestor(Rolename == 'Platform Capacity')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P2-Review')");
end

rule "R0"
when
 Workflow(Activity == 'Start')
then
 help(drools,"Drools runtime Info... ");
 System.out.println("Action after rule triggered: " + "Process(Name == 'P1-Create Request')");
End

247

Appendix IV – XYZ Business Rules Insertion via Drools DRL
Drools DRL displaying inserted business rules (R13) configured for XYZ’s equipment install workflows:

package org.kanana;

import org.kanana.MessageFact;

import org.kanana.Rack;

import org.kanana.Request;

import org.kanana.RuleName;

import function org.kanana.Utility.help;

dialect "java"

rule "R13"

when

 Request(Status == 'Install')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Request(Status == 'Submit')");

End

rule "R12"

when

 Request(Status == 'Close')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P12-Close Request')");

end

rule "R11"

when

 Equipment(Network and Cablling Configured == 'Yes')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P10-Complete Power and Network Provision')");

end

rule "R10"

when

 Equipment(NetworkCablling == 'Yes')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P11-Network Cables Provision')");

end

rule "R9"

when

 Equipment(Power Connections == 'PowerSupplies')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P10-CompletePower and Network Provision')");

end

rule "R8"

when

 Equipment(Network Ports > '0')

then

248

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P9-Network Provision')");

end

rule "R7"

when

 Equipment(Power Supplies > '0')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P8-Power Provision')");

end

rule "R6"

when

 Rack(Volume < '10')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P6-Order Rack')");

end

rule "R5"

when

 Rack(Space == 'isfull')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Rack(availableRacks == 'installedRacks - 1')");

end

rule "R4"

when

 Request(Type == 'Install')

 Rack(Utilization < '2000')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P7-Install Equipment')");

end

rule "R3"

when

 Request(Type == 'Install')

 Rack(Utilization >= '2000')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P5-Manage DC Space')");

end

rule "R2"

when

 Request(Status == 'Submit')

 Requestor(Rolename != 'Platform Capacity')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P3-Approve')");

end

rule "R1"

when

 Request(Status == 'Submit')

 Requestor(Rolename == 'Platform Capacity')

249

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P2-Review')");

end

rule "R0"

when

 Workflow(Activity == 'Start')

then

 help(drools,"Drools runtime Info... ");

 System.out.println("Action after rule triggered: " + "Process(Name == 'P1-Create Request')");

End

250

Appendix V – Level-Based Dependency Pattern Index Algorithm
Level Based Dependency Pattern Indexed below:

//Creation of indexes for dependency patterns
public List<ECAModel> IndexingGraphPatterns(ECAGraph ecaRuleG){
//variables declaration
int UniqueIndex =0;
List<ECAModel> DependencyPatterns = new ArrayList<ECAModel>();
ECAModel rootcomponent = new ECAModel();
Queue<ECAModel> queue;
PathBasedPattern<ECAModel> pattenIndeces = new PathBasedPattern<ECAModel>(UniqueIndex, rootcomponent);

//loop through graph to identify dependency patterns
for (int index=0; index < ecaRuleG.ruleRelations.size();index++){
 rootcomponent = ecaRuleG.getNode(index);

 //Check the root rule
 if (rootcomponent == null) return null;

 //Create an empty stack and push the root rule to it
 Stack<ECAModel> nodeStack=new Stack<ECAModel>();
 nodeStack.push(rootcomponent);
 rootcomponent.visited=true;

 //Create a map to store parent pointers of graph nodes
 HashMap<ECAModel,ECAModel> parent=new HashMap<ECAModel, ECAModel>();
 //Parent of root is NULL
 parent.put(rootcomponent,null);

 //Traverse through Path Dependency Pattern then generate indexes
 while (!nodeStack.isEmpty()) {
 //Pop the top item from stack
 ECAModel current = nodeStack.pop();
 if(current.hasChildren()) {

 //Convert to object array
 ECAModel[] temppatterns = new ECAModel[current.children().size()];

 //ArrayList to Array Conversion to allow generation of indexes for each path
 for (int pindex=0; pindex < current.children().size();pindex++){
 temppatterns[pindex] = current.children().get(pindex);

 for (ECAModel linkedIndex : temppatterns) {
 //pattenIndeces contains index for the ECA component node and pattern indexes (combining linked ids)
 pattenIndeces = new PathBasedPattern<ECAModel>(pindex,linkedIndex);

 }
 //Create indexes for path dependency
 DependencyPatterns.add(new ECAModel(RuleList.get(pindex).getruleName(), current, pattenIndeces));
 }
}

//Traverse through Level-Based Dependency pattern then generate indexes
queue = new LinkedList<ECAModel>();
queue.add(rootcomponent);
rootcomponent.visited=true;

while (!queue.isEmpty()){

ECAModel element=queue.remove();
 List<ECAModel> neighbours=element.children();

 //Convert to object array
 ECAModel[] temppatterns = new ECAModel[neighbours.size()];

 for (int lindex = 0; lindex < neighbours.size(); lindex++) {

251

 temppatterns[lindex] = neighbours.get(lindex);

 ECAModel n = neighbours.get(lindex);
 if(n!=null && !n.visited){
 queue.add(n);
 n.visited=true;
 for (ECAModel linkedIndex : temppatterns) {
 //pattenIndeces contains index for the ECA component node and pattern indexes (combining linked ids)
 pattenIndeces = new PathBasedPattern<ECAModel>(lindex,linkedIndex);
 }
 //Create indexes for level-based dependency
 DependencyPatterns.add(new ECAModel(RuleList.get(lindex).getruleName(), n, pattenIndeces)); }}}}
}
return DependencyPatterns;
}

252

Appendix VI – JBoss Drools Setup and Installation
The easiest way to setup Drools is to install Drools Eclipse Plugin. The Eclipse IDE version used in this research is

Eclipse Java EE IDE for Web Developers. To install it, use the following built-in update steps:

1. Start Eclipse

2. Go to Help menu -> Install New Software

3. In the work with or site: input field, enter:

"http://download.jboss.org/drools/release/<VERSION>.Final/org.drools.updatesite/", replace

"<VERSION>" with appropriate version and click the "Add" button

4. Enter name details

5. Check the Drools and jBPM checkbox and next follow the instructions to get it installed.

6. Click next and accept licensing term. Click “Finish”. DROOLS plugin will start installing into eclipse.

7. After the installation eclipse will restart.

Once installation is completed, follow steps below to create a Drool project:

1. Open eclipse

2. Go to File → New → Other (pop up appears)

3. Select Drools project from DROOLS folder.

4. After selection click on next button. A dialog appears

5. Enter a project name and click on next button. A new window appears, select first two options for a

simple rule else uncheck the options.

6. Click on configure workspace settings, a pop up appears

7. Click on “add” button, a window appears

8. Click on create a new DROOLS 7 runtime button.

9. From folder dialog, browse a drive and select a blank folder and click on “Ok”.

10. Click on “OK” button of DROOLS runtime window.

11. Click on “Ok” button of install drools runtime window.

12. Click finish to create a project.

To add rules:

1. Create a package

2. Right click on the package

3. Select new → Other. A dialog appears

4. Select Rule Resource from Drools folder

5. Click next. A dialog appears.

6. Enter Rule Name

7. Click on finish.

253

To add other java class files:

1. Create a package

2. Right click on the package

3. Select new → Class. A dialog appears

4. Select source folder

5. Enter class name and

6. Click finish. Class will be created.

Drools provides APIs to allow provider implementations to be connected to its library of dependency modules that

are required during rule development/compiling, and some are required at runtime. A maven project can be created to

specify the Drools dependencies in POM.xml file. The POM.xml contains information about the project and

configuration details used by maven to build the project. The following is a description of the important libraries that

make up JBoss Drools:

- Knowledge-api: This provides the interfaces and factories (Example: org.drools.KnowledgeBase,

org.drools.builder.KnowledgeBuilder, org.drools.runtime.StatefulKnowledgeSession,

org.drools.runtime.StatelessKnowledgeSession, org.drools.agent.KnowledgeAgent,

org.drools.KnowledgeBaseFactory, org.drools.builder.KnowledgeBuilderFactory, etc,.).

- Drools-core: This is the core engine, runtime component. this is the core engine, runtime component. It

contains both the RETE and LEAPS engines.

- Drools-compiler: This dependency contains the compiler components to take rule source and build

executable rule-bases. This is the main package to load rules and a runtime dependency of an application.

This depends on drools-core.

- RuntimeManager: This manages RuntimeEngines that are built with KieSession and TaskService to provide

an executable environment for processes and user tasks.

- Drools-jsr94: This is an essential layer to the drools-compiler component.

- Drools-decisiontables: This is the decision tables 'compiler' component to support excel and CSV inputs.

For the latest information on dependencies in a release, use POM release details, which can be found on the maven

repository website. It is also possible to rely on maven to configure dependencies using configuration XML (POM)

file instead of setting it programmatically. Below shows the screenshot of how to add knowledge-api (kie – knowledge

is everything) and other dependencies to the pom.xml:

254

POM file – Maven dependencies and configuration

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>ECARulesByGrace.group</groupId>

 <artifactId>AdaptiveECARuleModel</artifactId>

 <version>1.0</version>

 <dependencies>

 <!-- Start dependencies for the other Kie Modules -->

 <dependency>

 <groupId>org.drools</groupId>

 <artifactId>drools-templates</artifactId>

 <version>6.4.0.Final</version>

 </dependency>

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-runtime-manager</artifactId>

 <version>6.4.0.Final</version>

 </dependency>

 <dependency>

 <groupId>org.kie</groupId>

 <artifactId>kie-api</artifactId>

 <version>6.4.0.Final</version>

 </dependency>

 <dependency>

 <groupId>org.kie</groupId>

 <artifactId>kie-internal</artifactId>

 <version>6.4.0.Final</version>

 <scope>compile</scope>

 </dependency>

<dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-persistence-jpa</artifactId>

 <version>6.4.0.Final</version>

 </dependency>

</dependencies>

</project>

255

Appendix VII – JBoss Drools Components

Drools Expert: Rule Engine

Drools began as a specific type of rule engine called a Production Rule System (PRS) and it was based on the Rete

algorithm for pattern matching [51]. Rules are stored in the production memory, while facts are maintained in the

working memory, see Figure 7.1.2. During the execution session, facts are added into the working memory where

they are updated or removed. The Agenda manages the execution order of conflicting rules during execution.

High level view of a rule engine

Figure 7.1.3 shows how Drools rule engine applies the rules to the facts. The facts are the data to be processed while

the fact model tells the engine how to interpret the facts. Rules in the DRL (Drools Rules Language) tell the rule

engine what actions to take when certain conditions are met, and in turn fires specified actions.

The main parts of a rule engine

Rule Script Language

Drools offers four different ways to define rules. The first is to use the native rules language (Drools Rules

Language - DRL), which is very easy to implement for most developers. For example, the following represent the

business rule “when install request if rack utilization is above two thousand then process manage data centre space”.

Drools

Rules Engine

POJO

Fact Model

DRL

Rule Script

Language

Facts Actions

256

The second way to define rules, is to use the template language DSL (see below), which is translated into the native

DRL at real-time.

The third way is to use spreadsheets and a fourth way is to use a Rule Template (see section 7.2). At runtime, the

second to fourth ways will need to be translated into the rule script language, e.g. DRL.

Drools Flow (jBPM)

Drools Flow executes business process or workflow for the Drools platform. A workflow or business process shows

the flow of execution of several processes. Processes are useful in describing activities or tasks status or states. Drools

jBPM allows users to define, execute and monitor their business processes.

Drools Guvnor

Drools Guvnor is a web and network components. It provides user-friendly interfaces to a business rules manager,

which allows managing and changing rules in a multi-user environment.

Drools Fusion

Drools Fusion is responsible for enabling of an event processing for the Drools platform. An event processing concept

is concerned with the processing of multiple events to identify meaningful events.

Drools Planner (OptaPlanner)

Drools Planner is the planning engine written in Java to solve constraint satisfaction problems efficiently. It can

optimize planning in order to execute more rules with less resource.

Drools Eclipse Java Plugin (IDE)

Another important part of Drools is the Eclipse IDE (Integrated Development Environment). Eclipse is an open-

source environment for developing applications for the most popular platforms. It helps with creating and compiling

rules and processes and, also offers creation of facts as POJO classes and has lots of other valuable features. The

Eclipse IDE version used in this research is Eclipse Java EE IDE for Web Developers,

When there is an install request
Rack Utilization >= 200
Then
PS-Manage DC Space

257

Appendix VIII – Editing Business Rules via Test Client
Adding business rule components via the ECA Model Test Client:

Steps to add and execute business rule components via the ECA Model Test Client:

1. Enter Rule Name

2. Select “Create Rule” Option (Checkbox)

3. On the New EVENT form panel, enter event object, property, value and operator

4. On the New CONDITION form panel, enter condition object, property, value and operator

5. On the New ACTION form panel, enter action object, property, value and operator

6. Click “Add Rule” button to add the rule and components

7. Repeat Steps 1-6 for each rule

8. Execute by clicking on “Execute Rules” button

9. Click “Display All” button to show some statistics on business rules and process information

Modifying business rule components via the ECA Model Test Client:

Steps to modify and execute business rule components via the ECA Model Test Client:

1. Enter Rule Name

2. Select “Create Rule” Option (Checkbox)

3. On the New EVENT form panel, enter event object, property, value and operator

4. On the New CONDITION form panel, enter condition object, property, value and operator

5. On the New ACTION form panel, enter action object, property, value and operator

6. Click “Add Rule” button to add the rule and components

7. Repeat Steps 1-6 for each rule

8. Execute by clicking on “Execute Rules” button

9. Click “Display All” button to show some statistics on business rules and process information

Deleting business rule components via the ECA Model Test Client:

Steps to delete and execute business rule components via the ECA Model Test Client:

1. Enter Rule Name

2. Select “Create Rule” Option (Checkbox)

3. On the New EVENT form panel, enter event object, property, value and operator

4. On the New CONDITION form panel, enter condition object, property, value and operator

5. On the New ACTION form panel, enter action object, property, value and operator

6. Click “Add Rule” button to add the rule and components

7. Repeat Steps 1-6 for each rule

8. Execute by clicking on “Execute Rules” button

9. Click “Display All” button to show some statistics on business rules and process information

