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ABSTRACT A technique is described to extend the working frequency-band and increase the radiation gain
and efficiency of an electrically small antenna (ESA). The geometry of the proposed ESA is in the shape of
an ‘‘H ’’ structure. A small gap is included at the symmetry of the H -shape structure to embed an inductive
load that is used to connect the two halves of the H -shaped antenna. With the lumped element inductor,
the bandwidth of the H -shaped antenna is restricted by Chu-lower bound. However, it is demonstrated
by analytical analysis and through 3D full-wave electromagnetic simulations that when the inductive load
is replaced with negative reactance from a negative impedance converter (NIC) the antenna’s bandwidth,
radiation gain and efficiency performance can be significantly improved by ∼40%, 3.6 dBi and 55%,
respectively. This is because NIC acts as an effective interior matching circuit. The resonant frequency of
the antenna structure with the inductive element was used to determine the required inductance variation in
the NIC to realize the required bandwidth and radiation characteristics from the H -shaped antenna.

INDEX TERMS Electrically small antenna (ESA), active interior impedance matching network, broad
bandwidth, negative impedance converter (NIC), high radiation properties.

I. INTRODUCTION
Miniaturization of electronic circuits has led to numer-
ous wireless applications that have conflicting requirements
for their antenna systems [1]–[4]. This has resulted in the
demand for electrically small antennas (ESA) that need
to be effective and operate over substantial bandwidths.
These requirements, however, are conflicting when consid-
ering the design of standard ESAs that are inefficient radi-
ators due to their large reactance and low resistance that
results in poor impedance matching to RF front-end circuitry.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guido Valerio .

The realization of resistive and reactance based matching
networks is a challenging task that presents limitations on the
optimized system’s overall performance [5]–[7].

There is a resurgence of interest in electrically small
antennas because of their use in sensors for 5G and IoT
technologies. The Chu limit [8]–[15] defines the minimum
radiation Q-factor of an electrically small antenna, and hence
its maximum operational bandwidth that is enclosed within
a sphere of a specified radius. The Q-factor approaches this
Chu limit when the antenna efficiently utilizes the available
volume within that radiation sphere. There have been a vari-
ety of approaches to achieve this objective including cleverly
packing resonant antenna elements into this small volume
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using various geometrical configurations [14], fractal curve
antennas [16] and space-filling curve antennas [17], [18].

Matching networks based on Non-Foster (NF) have been
proposed to overcome the Chu limit [13], [19]. This is
achieved by using negative inductance and capacitance in a
NF matching network, which causes the antenna to resonate.

ESA based on metamaterial technology have been shown
to be efficient radiators [20]–[23]. This is achieved by incor-
porating the metamaterial’s negative permittivity and/or per-
meability specifications inside the antenna. Metamaterial
inspired antennas exploit parasitic elements to realize excel-
lent matching characteristics, which overcomes the need for
an external matching circuit. In [21]–[23] the metamaterial
inspired antennas based on Z -shaped structures employ the
lumped reactive components that are used to tune the antenna
to resonate at a specified frequency by varying the magni-
tude of the lumped element without affecting the antenna
dimensions.

This article presents a theoretical investigation on an
H -shaped antenna based on [21]–[23] where an interior
matching network comprising an inductor is incorporated
between the two half portions that constitute the H -shaped
antenna to realize a low Q-ratio value and hence broad band-
width ESA with higher radiation gain and efficiency over its
operating frequency band.

II. H-SHAPED ESA LOADED WITH INDUCTANCE
The ESA’s performance is limited by its physical
size [8]–[10]. The Q-factor for the Chu limit is defined
by [24]–[26]

QChu =
1
2

[
1+ 3 (ka)2

(ka)3
[
1+ (ka)2

]] (1)

where a represents theminimum radius of sphere surrounding
the antenna, and the free-space wave number is defined by
k = 2πc

/
fr , where c is the speed of light in a vacuum and

fr represents the resonant frequency. The exact derivation for
the minimum Q-factor is [24]–[26]

QExact =
1

(ka)3
+

1
ka

(2)

If f+,3dB and f−,3dB represent the frequencies above and
below the resonant frequency where the radiated power
falls to half its maximum value, the 3-dB fractional band-
width (FBW) corresponds to the radiation Q-factor given by
[10–11] FBW 3dB = 1

/
Q3dB. The figure of merit associated

with the bandwidth is expressed as QR = Q3dB
/
QExact . The

maximum FBW based upon the Chu limit can be calculated
from Eqn. (2) as:

FBWChu =
1

QExact
≈ (ka)3 for ka� 1 (3)

Hence, as the electrical size of the antenna is reduced, the
minimumQ-factor in free-space increases substantially, caus-
ing a corresponding decrease in the FBW of the antenna
system. It is well known that the FBW of an antenna is

increased if the losses are increased, but at a cost of the total
radiated power.

FIGURE 1. (a) Top view of the proposed H-shaped antenna loaded with
150 nH inductance, (b) Bottom view showing the feedline located under
the H-shaped structure, (c) isometric view of the antenna,
(d) S11 response, and (e) radiation gain and efficiency performance.

Geometry of the H -shaped antenna is shown in
Figs. 1 (a)-(c). This antenna configuration was chosen in this
investigation as a reference ESA as it has been extensively
studied before and its characteristics of narrow bandwidth
and broad beamwidth are well established. The two halves
constituting the H -shaped structure is loaded with 150 nH
inductance. The magnitude of the inductor was chosen for the
antenna to resonate at an arbitrary frequency of ∼256 MHz,
which can be therefore varied as a function of the employed
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inductance value. The inductor in the simulationwasmodeled
as ideal lossless component. The antenna is constructed from
a lossy copper with conductivity of 5.8× 107 S/m.
The antenna’s reflection-coefficient (S11) and radiation

characteristics using CSTMicrowave Studio for a 50� source
are shown in Figs. 1(d) and (e). The structure’s frequency
bandwidth for S11 ≤ −10 dB is 4.6 MHz, and the struc-
ture resonates at 256.1 MHz. At this frequency, the antenna
exhibits an optimum gain and efficiency of 0.25 dBi and 14%,
respectively. The fractional bandwidth of the antenna is 1.8%.
From Eqn.(3) QExact ≈ 54 and ka = 0.26. Since k = 2πc

/
fr

the minimum radiation sphere for this antenna has a radius
of a = 35 mm. FBW 3dB = 1.32% therefore Q3dB ≈ 75.
Then QR ≈ 1.4, which is less than the Chu-lower bound as
the antenna occupies less space than the enclosing radiation
sphere.

FIGURE 2. Circuit model of the H-antenna with an inductor.

In the simulation, the inductor in the H -shaped antenna
was considered to be a lossy component as is the case in
reality. Application for such an antenna is limited because of
its narrow fractional bandwidth and low radiation gain and
efficiency. The H -shaped antenna shown in Figs. 1 (a)-(c)
can be theoretically represented in terms of S-matrix model,
as depicted in Fig.2. The elements of the matrix (Aant., Bant.,
Cant., and Dant.) represents the antenna block.

FIGURE 3. Circuit model of the H-antenna loaded with the IMC.

The interior matching circuit (IMC) that is proposed here
will replace the inductor L. Fig.3 shows the resultant cir-
cuit model, where Acir ., Bcir ., Ccir ., and Dcir . are the matrix
parameters of the interior matching circuit. To realize a low
reflection-coefficient value the antenna’s input impedance
should be closely matched to the source impedance Zs.
Hence, IMC was designed such that:[

1 Zs
0 1

]
=

[
Acir . Bcir .
Ccir . Dcir .

] [
Aant. Bant.
Cant. Dant.

]
(4)

The ABCD matrix of IMC is then given by:[
Acir . Bcir .
Ccir . Dcir .

]
=

[
1 Zs
0 1

] [
Aant. Bant.
Cant. Dant.

]−1
(5)

FIGURE 4. Circuit model of the H-antenna loaded with an equivalent IMC
load.

CSTMicrowave Studio was used to simulate the antenna’s
performance and obtain the S-parameters at various fre-
quencies of interest to determine the ABCD matrix of IMC
in Fig. 4 using Eqn. (5). In Fig. 4, the IMC is connected to
the H -shaped antenna at its input port and is shorted at its
output port. Hence, the ABCD matrix of this configuration is
given by:[

VIMC_i
IIMC_i

]
=

[
AIMC BIMC
CIMC DIMC

] [
VIMC_o
IIMC_o

]
(6)

Current and voltage at the input port of IMC can be rep-
resented by VIMC_i and IIMC_i, respectively; and IIMC_o
and VIMC_o are current and voltage at its output port.
As VIMC_o = 0, then ZIMC . = BIMC .

/
DIMC .. This relation

has used to transform the circuit model presented in Fig.3 to
the circuit model represented in Fig.4.

FIGURE 5. Results achieved by curve fitting of the inductor values.

III. RESONANT FREQUENCY OF EMBEDDED INDUCTOR
The relationship between the inductance value of the lumped
inductor and resonance frequency that is predicted by CST
Microwave Studio is depicted in Fig. 5. An analytical expres-
sion of this relationship was obtained by curve fitting using

20624 VOLUME 9, 2021



A. A. Althuwayb et al.: Overcoming Inherent Narrow Bandwidth and Low Radiation Properties of ESAs

the minimummean square error approach, which is given by:

L =
a1
f 2
+ a0 (7)

where coefficients a1 = 5.24 × 107 and a0 = −3.68. The
units of the inductance, L, and the frequency, f , are nH and
MHz, respectively.

The magnitude of the frequency dependent inductor L
predicted by Eqn.(7) cannot be realized by a passive lumped
component. Realization of negative reactance is only pos-
sible by using active components. The impedance, ZL , cor-
responding to the frequency dependent inductance L is
represented by:

ZL =
1

jωCe
+ jωLe (8)

whereCe and Le represent the equivalent capacitor and induc-
tor, respectively.

IV. BANDWIDTH EXTENSION OF H-SHAPED ANTENNA
LOADED WITH AN ACTIVE INTERIOR
MATCHING NETWORK
The bandwidth of theH -shaped antenna is restricted by Chu-
lower bound using a lumped element inductor. Previous stud-
ies have shown that bandwidth enhancement can be achieved
with the inclusion of active inductors based on negative per-
mittivity and permeability metamaterials [25].

NIC is necessary to realize the negative capacitor and
inductor values [21]. NIC is a two-port device whose input
impedance Zin is the negative of the load impedance ZL . In the
case of the proposedmetamaterial-inspired ESA it is essential
that NIC be a miniature device to conserve the size of the
antenna. The feasibility of a negative impedance converter
based on CMOS technology is demonstrated in [27]. The
proposedNIC circuit in Fig. 6 is appropriate for an n-substrate
process like CMOS. When port-1 is excited with signal and
port-2 is terminated with a resistance, this circuit exhibits
a current-controlled negative resistance. Conversely, when
port-2 excited by a voltage signal and port-1 is terminated
with a resistance, a voltage-controlled negative resistance
is created. This enables the active pair M1, M2 to avoid
back-gate bias. Any input signal current i1, at port-1 flows
through device M1 (assuming IB to be an ideal current sink)
results its drain current to be IB - i1. The unity-gain current
mirror MM1, MM2 forces an identical current through the
diode-connected transistor M2 to the output port-2. The cur-
rent sink IB causes the output current i2, to equal i1, and hence
the output voltage v2 across terminating resistance RT is
given by:

v2 = −i1RT (9)

If the influences of the channel-length modulation in M1 and
M2 can be ignored, their gate-source voltages are identi-
cal because they are transporting identical currents. Conse-
quently, the voltage at the input port (v1) is determined by:

v1 = v2 = −i1RT (10)

FIGURE 6. Proposed CMOS negative impedance converter circuit.

This is a current-controlled negative resistance of magnitude
RT at the input port.

The generalized expression relating the antenna’s resonant
frequency with its effective inductance (Leff ) and effective
capacitance (Ceff ) is given by:

fr= 1
/
2π
√
Ceff Leff (11)

The rate of change of fr with regards to Leff is defined by:

∂fr
∂Leff

= −fr
/
2Leff (12)

Leff = L + Lo, where L is inductive component and Lo is the
antenna’s inherent inductance. As L0 � L then Leff ∼ L and
Eqn.(12) then simplifies to:

1fr
fr
∼ −1L

/
2L (13)

Eqn.(13) can be used to determine the inductance varia-
tion required by the NIC to realize the required bandwidth
from the H -shaped antenna. This expression indicates that
to realize 15% bandwidth, the change in inductance required
must be ∼25%, which correlates with Fig.5. The proposed
technique is restricted by the inherent inductance variation of
the NIC circuit.

Two different 3D full-wave electromagnetic computa-
tional techniques, i.e., CST-Microwave Studio and HFSS
Designer, were used to validate the proposed antenna’s
reflection-coefficient (S11), radiation gain and efficiency
response when implemented with the NIC circuit. HFSS is
based on Finite Element Method (FEM) while CST is based
upon Finite Integration in Technique (FIT). The results are
shown in Fig.7. The reflection-coefficient, radiation gain and
efficiency prior to using NIC are shown in Fig. 1. It is
discernible that after applying the proposed NIC circuit the
reflection-coefficient and fractional bandwidth improve sub-
stantially. With NIC, S11 becomes better than -25 dB, and
the fractional bandwidth is 40%. The results also show with
NIC there is also great improvement in the gain and radiation
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TABLE 1. Comparison of the Proposed ESA With Other Published Work

efficiency across the antenna’s operating band from 250MHz
to 260 MHz. The average gain predicted by HFSS is 3.9 dBi
and CST is 3.54 dBi, and the average efficiency predicted
by HFSS is 67% and CST is 71%. Although there is dis-
parity between HFSS and CST results however both tools
predict significant approvement in the antenna performance
with NIC. These results reveal the advantage of using NIC
in ESAs.

FIGURE 7. Results from two different 3D full-wave electromagnetic
computational techniques (HFSS and CST) of the H-shaped antenna with
the proposed negative impedance converter (NIC) circuit,
(a) Reflection-coefficient (S11) response, and (b) Radiation gain and
efficiency performance.

V. COMPARISON WITH STATE OF THE ART
The proposedNIC topology based on active interior matching
circuit is compared with previously published works on
ESA in Table 1. For the various antenna geometries, the

performance parameters include matching technique
employed, fractional bandwidth, and the resulting improve-
ment with NIC in terms of bandwidth, radiation gain and
efficiency. It is evident that the proposed H -shaped antenna
with NIC substantially improves the antenna’s fractional
bandwidth, gain and efficiency characteristics.

VI. CONCLUSION
Radiation performance ESA is limited by its physical dimen-
sions. It is shown here using theoretical analysis and numer-
ical modelling that H -shaped ESA can be realized with a
significantly wider fractional bandwidth than is possible oth-
erwise. The theoretical analysis reveals that this is possible
by incorporating a frequency dependent negative reactance
in the antenna structure, which can be only be accomplished
by using an active circuit or negative impedance converter
circuit. An analytical expression is developed to show the
relationship between the required inductance value and the
resonance frequency of the antenna, which enables the deter-
mination of the inductance variation required by the neg-
ative impedance converter to achieve a given bandwidth
from the ESA.
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