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The application of the Support Vector Machine (SVM) classification algorithm to large-
scale datasets is limited due to its use of a large number of support vectors and dependency 
of its performance on its kernel parameter. In this paper, SVM is redefined as a control 
system and Iterative Learning Control (ILC) method is used to optimize SVM’s kernel 
parameter. The ILC technique first defines an error equation and then iteratively updates 
the kernel function and its regularization parameter using the training error and the previous 
state of the system. The closed loop structure of the proposed algorithm increases the 
robustness of the technique to uncertainty and improves its convergence speed. 
Experimental results were generated using nine standard benchmark datasets covering a 
wide range of applications. Experimental results show that the proposed method generates 
superior or very competitive results in term of accuracy than those of classical and state-
of-the-art SVM based techniques while using a significantly smaller number of support 
vectors.

Keywords: Support vector machine, iterative learning control, closed loop structure, 
classification speed.

1.   Introduction 

Support Vector Machine (SVM) is one of the widely used machine learning classification 
algorithms, among other classifiers such as: nearest neighbor (Gou et al., 2019), boosted 
decision trees (Xia et al., 2017), regularized logistic regression (Shen & Gu, 2018), neural 
networks (Georgevici & Terblanche, 2019), and random forests (Tsouros et al., 2018; Han 
et al., 2018). SVM can be used to achieve robust and accurate classification results, even 
from non-linearly separable input data, by mapping the data into a higher-dimensional 
space using kernels (Auria & Moro, 2008; Manning et al., 2009). SVM is a Quadratic 
Programming (QP) problem that is aimed at finding a separating hyperplane to achieve 
maximum margin between classes of data (Famouri et al., 2015; Demyanov et al., 2012). 
SVM was first proposed for binary classification by Vapnik in the early 1990s, however, 
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its extensions can be used for multi category problems (Abdiansah & Wardoyo, 2015). 
Since SVM achieves a unique solution and can learn independently from the 
dimensionality of feature space, it is robust against overfitting and it is superior to other 
classifiers (Auria & Moro, 2008; Abdiansah & Wardoyo, 2015). SVM has been used in 
many applications, including text categorization (Joachims, 1998) and face detection 
(Osuna et al., 1997), where it delivers robust and accurate results. SVM has also been used 
in some control branches, e.g. nonlinear control (Chen et al., 2016) and optimal control 
(Suykens et al., 2001), because of the unique and optimal answer that it generates. Despite 
the advantages and wide range of applications of SVM, it suffers from some limitations 
such as low classification speed, especially when dealing with large scale problems, due to 
the large number of support vectors that SVM uses for classification (Li et al., 2006; Downs 
et al., 2001), dependency of its performance on kernel parameter, kernel selection and its 
regularization parameter. SVM’s test phase time complexity is , 𝑂(1) +4𝑂(𝑛) +2𝑂(𝑛3)
where n is the number of support vectors (Abdiansah & Wardoyo, 2015). This indicates 
that the SVM classification computation cost increases as its number of support vectors 
increases. Various methods have been proposed by the researchers to find optimal kernel 
for SVM and reducing its number of support vectors (Keerthi, 2002; Diosan et al., 2007; 
Chung et al., 2003; Chapelle et al., 2002; LI et al., 2012; Zhang et al., 2006; Diosan et al., 
2007; Imbault & Lebart, 2004; LIU et al., 2005; Xuefeng & Fang, 2002; Liao et al., 2016; 
Xie et al., 2019; Phienthrakul & Kijsirikul, 2008; Rojas & Reyes, 2005; Li et al., 2006), as 
the performance and speed of the algorithm depend on the kernel function and its 
parameters. These techniques can be classified into two main groups called: closed-loop 
and open-loop methods, where they either try to find the optimal kernel function and its 
parameters or dealing with some of the SVM’s problems by modifying the training set or 
its set of support vectors. Closed-loop systems/algorithms have a feedback in their structure 
so that when a control input (input) changes the output of the system/algorithm, the 
resulting output is used for correcting and changing the control input (input) for arriving at 
the desired output. They operate in a self-adjusting mode, while open-loop 
systems/algorithms need a person to manually review and make the adjustments. 
Therefore, a close loop system/algorithm converges faster than open loop systems and is 
more robust to uncertainties and disturbances (Champaigne).

The closed loop-based methods for finding optimal kernel function and its parameters 
mainly use two approaches to achieve this. The group 1 methods first introduce an 
objective function, which is dependent on SVM and kernel parameters, then use different 
gradient descent methods to find optimal parameters for the kernel functions (Keerthi, 
2002; Diosan et al., 2007; Chung et al., 2003; Chapelle et al., 2002; LI et al., 2012; Zhang 
et al., 2006). The group 2 methods try to find the global optimal solution for the kernel and 
its regularization parameters (Diosan et al., 2007; Imbault & Lebart, 2004; LIU et al., 2005; 
Xuefeng & Fang, 2002; Liao et al., 2016; Xie et al., 2019; Phienthrakul & Kijsirikul, 2008; 
Rojas & Reyes, 2005). Since the goal is arriving at a global solution, they use various 
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optimization algorithm including genetic-, dragonfly- and evolutionary-algorithms with 
different fitness functions. In (Li et al., 2006), an iterative trend for reducing the training 
points’ number was introduced. This method significantly reduces the number of support 
vectors, as smaller training sets, results in a smaller number of support vectors. (Yalsavar 
et al., 2019) proposed a method based Sliding Mode Control named SMC-SVM-RBF for 
finding the optimal RBF kernel parameter, which results in higher test accuracy and less 
number of support vectors. The open-loop methods are used to find optimal kernel function 
and its parameters. A model-based procedure was proposed in (Demyanov et al., 2012), 
which uses Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 
formulation to find the optimal value for Radial Basis Function’s (RBF) kernel parameter 
(γ) and it regularization parameter (C), where a distribution for each dataset and an interval 
for each of the RBF kernel parameter, γ, and regularization parameter, C, are chosen. In 
this method, the kernel and its parameter, (C, γ), create a model for the dataset and their 
optimal values are the closest model to the desired model. The class separability concept 
was used in (Wang & Chan, 2002; Yin & Yin, 2016; Wu & Wang, 2006; Liu & Xu, 2013) 
to speed up SVM. These methods have been inspired by the concept that a good kernel 
should maximize the class discriminant in the feature space. The discriminability among 
the classes in a space can be measured by using the class separability. Therefore, each of 
these methods have introduced a specific criterion for measuring the class separability, 
these criterions are based on their kernel parameter, regularization parameter or both. In 
(Tang et al., 2009), similarity is used as a measure to find the optimal kernel and its 
parameter. The similarity in feature space using the kernel function and its parameter, 
where different type of kernels can be chosen, is calculated. An objective function is then 
introduced to maximize the kernel similarity diversity between training patterns by 
changing the value of the RBF kernel parameter. In (Shi et al., 2018) and (Staelin, 2002), 
the kernel and regularization parameters were changed among an interval by different 
procedures. In (Shi et al., 2018), the authors used Mixed Segmented Dichotomy (MSD) 
and Gird Searching (GS) method, while in (Staelin, 2002), the authors used the Design of 
Experiments (DOE) for decreasing the interval or reducing the number of values that they 
should check for having faster convergence and higher accuracy. All of these methods are 
open-loop because they changed the parameters’ value in an interval. Changing the 
parameters’ value will change a special criterion like class separability, the similarity in 
the feature space or other objective functions. When the criterion is calculated by using all 
values, then the values that maximized the criterion will be chosen as the optimal value. 
As can be seen, the effects that a special parameter’s value has on the criterion is not used 
for choosing the next value and improving the functionality of the algorithm. Another 
subset of the open loop-based methods are the methods that uses smaller training set 
resulting in smaller number of support vectors (Xia et al., 2005) and (Geebelen et al., 2012). 
In (Nguyen & Ho, 2005; Downs et al., 2001) and (Osuna & Gerosi, 1998), the set of support 
vectors is modified to speed up the SVM algorithm. In these methods, a subset of the 
original SVM supper vectors is chosen and used for classification. From literature, it can 
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be seen that the procedure for optimizing the kernel function or its parameters is limited to 
gradient descent, evolutionary, genetic and grid search methods and others are just an 
improvement of these kind of methods by considering different objective function or 
changing the parameters’ value in different ways.

The closed-loop algorithms operate in a logical and purposeful way to find the optimal 
solution. The outputs of each iteration will be used to adjust the input, which moved the 
output closer to the desired output. By defining the SVM algorithm as a closed-loop control 
system, it provides capability to control and monitor the transient and steady state behavior 
of the SVM in details. In this paper, SVM is redefined as a control system and the Iterative 
Learning Control (ILC) method is used to optimize SVM’s kernel parameter. The ILC 
algorithm determines the training error in each iteration and use it to update SVM’s kernel 
and its regularization parameter in each iteration. This results in an SVM classifier with 
smaller number of support vectors, which needs lower computation power to classify the 
data. Experimental results on nine standard benchmark datasets show that the proposed 
method gives higher and very competitive results in term of accuracy to those of anchor 
SVM based techniques while using a significantly smaller number of support vectors. The 
rest of this paper is organized as follows. In Section 2, support vector machine from control 
perspective is introduced. Section 3 gives an overview on iterative learning control. The 
proposed Iterative Learning Control based Support Vector Machine Kernel Optimization 
(ILC-SVMKO) method is presented in Section 4. Experimental results are given in Section 
5 and finally paper is concluded in Section 6.

2.   Support Vector Machine from Control perspective 

SVM is a Quadratic Programming (QP) method that is used in a vast variety of applications 
due to its robustness and great classification accuracy. In general, there are two kinds of 
SVM, hard margin and soft margin SVM. Hard margin is used for classifying linear 
datasets, while soft margin SVM is used for nonlinear datasets. When SVM is used for 
classifying nonlinear data the decision boundary is nonlinear and the data are not linearly 
separable. It means that there are some points within the dataset that cross the margin or 
go to the other side of hyper plane, resulting in misclassification. SVM determines model’s 
parameters by solving equation 1:

(1)1 1 1

1

1 ( , )
2

. . 0 , 0 1,

max
i

n n n

i i j i j i j
i i j

n

i i i
i
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 K

where C is regularization parameter that restricts the number of points that can violate 
the margin, is the dual variable that is obtained via Quadratic Programming (QP), the i
points that their is greater than zero are Support Vectors (SV), and is the kernel i 𝐾(𝑥𝑗, 𝑥𝑖)
function that can have different forms such as: Radial Basis Function(RBF) or polynomial 
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kernel function. SVM maps the non-linearly separable data into a higher-dimensional space 
by using kernels to make the data linearly separable. A simple representation of SVM in 
the form of control systems by using interior point methods is shown in Figure 1.

By using other methods for solving SVM’s QP problem, different models will be 
generated. Our work and representation of SVM is just an example for proving the idea 
that SVM can be assumed as a control system and can be assessed by intelligence and 
logical methods of control field. To find the SVM dynamic, equation (1) can be written in 
a matrix form as shown in equation (2). Then by using interior point method for solving 
equation (2) that is a QP problem, the dynamic of SVM arrives, as can be seen in Figure 1.

. (2)

1
2

. . 0 , & 0

max T T

a

T

a e a S a

s t a a C a y



  

where , is a 1*n vector, is a 1*n vector,  1 2[ , , , ]Tna    K [1,1, ,1]Te  K [ , , , ]TC C C C K
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training points.

Then, the Lagrange function of (2) for a fixed value of the barrier parameter μ, can be 
written as shown in equation (3), and and are defined as (4) and (5), 𝐹𝜇(𝑎,𝜆) 𝐽𝜇(𝑎,𝜆)
respectively.
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By solving the linear system of form . where , and r is 𝐽𝜇(𝑎,𝜆)𝑑 =  𝐹𝜇(𝑎,𝜆) 𝑑 = (∆𝑟
𝑎, ∆𝑟

𝜆 )
the iteration number. and are found as follows𝑎𝑟 + 1 𝜆𝑟 + 1
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Fig. 1.  SVM from control field of view. Controller is an iterative learning controller that is explained in section 
4 and 5. Sp and are the desired number of support vectors and labels, respectively, is training error, X is 𝑦𝑑,𝑖  𝑒𝑖

training set and z is shifting operator.

SVM finds optimum set of support vectors aop by iteratively solving the QP problem 
using the interior point method.

By studying SVM from a control point of view, it can be seen that the kernel function, 
its parameters and its regularization parameter are as inputs of SVM algorithm along with 
data, and the support vectors are the system’s output that algorithm finds them by using the 
inputs in the training mode. All the aforementioned parameters are of vital importance in 
SVM, because unwise selection of them will generate poor set of support vectors that 
causes an increase in test error and test time. It can be concluded that by using control 
methods, the inputs to the SVM algorithm can be found in a way that the desired 
performance and high accuracy is achieved. Moreover, both the soft margin and hard 
margin problems are control problems, because they are trying to face with error in 
different ways. In hard margin problems, a zero training error is desired, while in soft 
margin a non-zero but limited amount of error is acceptable and these two trends are done 
by defining some constraints in SVM. In control theory, there are a huge number of 
procedures for managing the error like using integral of absolute error or paying attention 
to the transient behavior of the error, besides its steady state behavior, while in SVM just 
steady state error is considered. Based on the Fig.1, for controlling the SVM system the 
controller can be chosen from a vast variety of control fields like, classical control (Jing & 
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Cheng, 2012), robust control (Ning et al., 2019; Jing 2011), adaptive control, optimal 
control, nonlinear control and intelligent control for approaching the desired performance. 
In this work, iterative learning control (ILC), a branch of intelligence control, is used for 
finding the optimal kernel function. Since ILC is a method that is not model based and has 
a closed-loop procedure that brings robustness, it seems that it is a good choice for 
approaching at specified goals. Because the dynamic and model of datasets are unknown 
and SVM’s system is uncertain and complicate. In the next sections, after a brief 
introduction, ILC as a simple and non-model-based control strategy is used to optimize the 
kernel function and show the effectiveness of control methods.

3.   Iterative Learning Control

Control theory provides many methods to fulfil the needs of control systems. These 
techniques perform well when there is an accurate model for the control system. In the 
absence of the system model, various methods including Iterative Learning Control (ILC) 
methodology, which is a branch of intelligent control, can be used to efficiently control the 
system (Ahn et al., 2007). ILC systems have shown to perform well when the system model 
is uncertain and there is no information about nonlinearity of the system but the system 
deal with a repetitive task (Wang et al., 2009; Moore; Freeman et al., 2015). Figure 2 shows 
the building blocks of an ILC system. The ILC procedure based on the Figure 2 is as 
follows:  At k-th iteration, input signal,  ,  is applied to the system, system generates the 𝑢𝑘
output signal, . The resulting  is stored in a memory. System computes the error signal, 𝑦𝑘 𝑦𝑘

, where , and use it in updating and constructing the new input signal, . 𝑒𝑘 𝑒𝑘 = 𝑦𝑘 ― 𝑦𝑑 𝑢𝑘 + 1
It updates the input signal in a way that the error signal to be reduced iteratively and finally 
converges to zero. Various approaches can be used to update the input signal and improve 
the performance of the control system. In general input signal can be updated using:

 Information from all previous iterations that called “higher-order in iteration”.
 Information from the entire time duration of any previous iteration that called “higher-order in time”.
 Information up to time t-1 on the current iteration that called “current cycle 

feedback”.

Any of these three approaches can be used to update the input signal without any 
limitations. However, for simplicity in this paper the third approach has been used. This 
approach uses error, , and the input signal, ,  to update the input signal, generating 𝑒𝑘 𝑢𝑘

as follows (Gunnarsson & Norrl¨of, 1997):𝑢𝑘 + 1

(7)1

,

( )[ ( ) ]k k k

k d k k

u H z u L z e
e y y

  
 

where  is the filter function,  represents the learning function, z is the shift 𝐻(𝑧) 𝐿(𝑧)
operator, β is the learning gain, k is the iteration number, , and are the tracking 𝑒𝑘 𝑦𝑑,𝑘 𝑦𝑘 
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error, the desired output at iteration k and the system output at k-th iteration, respectively. 
The performance of an ILC system can be determined by having its learning and filter 
function. The filter helps to compensate the mismatches between the learning function and 
the system dynamic. However, if  the error never converges to zero. The learning, 𝐻(𝑧) ≠ 1

, and filter,  , functions of an ILC system can both be non-causal and have the 𝐿(𝑧) 𝐻(𝑧)
following form:

(8)
2 1 2

22 21 00 11 12

2 1 2
22 21 00 11 12

( )

( )

H z z z z z

L z l z l z l l z l z

     

 

      

      

L L

L L

where and (∀ i=0,1,2,… and j=0,1,2,… ) are constant numbers that can be 𝛼𝑖,𝑗 𝑙𝑖,𝑗
positive, negative or zero, and  is the shift operator, that takes a function  to its 𝑧𝛼 𝑖→𝑓𝑖
translation . The application of this concept for the reduction of training error can 𝑖→𝑓𝑖 + 𝛼
lead to satisfactory algorithms.

Fig. 2.  Block diagram of an iterative learning control configuration, where ,  and represent input, output  𝑢𝑘 𝑦𝑘 𝑦𝑑 
and desired output signals in the k-th iteration, respectively (Ahn et al., 2007).

4.   Proposed Algorithm

Figure 3 shows a block diagram of the proposed Iterative Learning Control based Support 
Vector Machine Kernel Optimization (ILC-SVMKO) method. The proposed method uses 
the following initialization parameters, which imperially found to be effective, to find 
optimal kernel function and regularization parameter: initial kernel function, K, is set to be 
a linear kernel function, regularization parameter, C, is set to 10, learning gain, β, is 
considered to be either a polynomial or Radial Basis Function (RBF) kernel, learning 
function, L(z), is considered to be a p-type, d-type or d2-type and the counter r1 is to a 
predefined value for each dataset. The proposed method first divides the input dataset into 
three subsets, train, validation and test subsets. The proposed method first trains the SVM 
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using the training subset of the dataset, generating the Support Vectors (SVs) and their 
numbers (NSVs). The resulting SVs are then used to classify the train-and validation-data 
subsets. Resulting classified train and validation data are then used to calculate Training 
Error (TE) and Validation Error (VE), where the resulting TE is used to update the kernel 
function and its regularization parameter as it follows: It first checks if the value of r1 is 
below the predefined threshold value; If so, it updates the kernel function using equation 
15, 16 or 17, based on the used learning function and the regularization parameter using 
equation 18; the resulting VE is used as a measure to determine the completion of the 
algorithm; it checks the resulting VE; if it is increasing, it adds one to r1 and updates the 
kernel function and its regularization parameter and proceeds with the algorithm until 
arrives at its predefined maximum number of iterations, which is allowed to reduce the VE. 
At this stage, the training stage of the algorithm is completed and the resulting SVs, kernel 
function and its regularization parameter are used to classify the test subset and calculating 
the algorithm’s classification accuracy. The theory behind the proposed algorithm is as 
follows:

The proposed ILC based algorithm uses the training error and the resulting number of 
support vectors information to update the kernel function and the regularization parameter, 
C, in a way that output error converges to zero. As mentioned in Section 2, various methods 
can be used to update the input signal, in this research the third mothed, as was explained 
in equation (8), is used to update the input signal, aiming to decreasing both number of SVs 
and TE. Therefor equation (8) can be rewritten as:

(9)1 ( )[ ( ) ]i i iK H z K L z e  

(10)
,
,

( ) ( )
i

i

i
d d

i d i
y Y
x X
y y

e y x y x NS Sp





   

where is set of predicted labels for misclassified training points in i-th iteration, 𝑌𝑖 
while and  are set of their corresponding training points and desired labels, 𝑋𝑖 𝑌𝑖

𝑑
respectively.  is number of support vectors in i-th iteration, Sp is the desired number of 𝑁𝑆𝑖
support vectors (presented results in this paper generated with Sp = 25),  is the desired 𝑦𝑑(𝑥)
label for data point, x and y(x) is the predicted class for that data point, and its function is 
as follows:

(11)
1

( ) ( , )
im

i ldj i j
j

y x sign y K x x b


 
  

 


Page 9 of 22

http://mc.manuscriptcentral.com/timc

Transactions of the Institute of Measurement and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

M. Yalsavar, P. Karimaghaei, A. Sheikh-Akbari, P. Shukla and P. Setoodeh10

Fig. 3.  Block diagram of the Iterative Learning Control based Support Vector Machine Kernel Optimization 
(ILC-SVMKO) method.

where  is the kernel function in i-th iteration, is the number of support 𝐾𝑖(𝑥, 𝑥𝑗) 𝑚𝑖 
vectors in i-th iteration, are Lagrange coefficients, while and are their 𝛼𝑗 𝑥𝑗  𝑦𝑙𝑑𝑗
corresponding support vectors and desired classes, respectively. As mentioned in 
(Phienthrakul & Kijsirikul, 2008), the function must satisfy Mercer’s condition, the filter 
function, H, the learning gain, β, the learning function, L, and the initial kernel, K0, should 
be chosen in a way to satisfy this condition. Consequently, Radial Basis Function (RBF) 
or polynomial kernels are used to determine learning gain for each input misclassified data, 
creating a linear weighting combination of kernels, where the weights are specified by the 
filter function and the learning function. The filter function is considered as H =1 to have 
the possibility of arriving at zero tracking error, as mentioned in Section 2. Due to the effect 
of learning function on speed of convergence, three types of learning functions, p-type, d-
type and d2-type are considered, and the results are compared with each other in this 
research. The initial kernel acts as a prior knowledge about the structure of the data, so by 
having any information about data the initial kernel can be chosen from a wide variety of 
kernel functions. In this article, it is considered that there is no information about the 
structure of the data set, and the point that starting from complex kernel functions can 
increase the chance of over fitting. As the result, the proposed algorithm starts from the 
simplest kernel function named linear kernel and during training the complexity of kernel 
function increases by using ILC strategy in the way that explained in the rest. The error 
value was set to zero at the first iteration. By considering the learning function as p-type, 
d-type or d2-type based on equation (9), L(z) can be re-written respectively as:
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(12)00( )l z l

(13)1
00 11( )L z l l z  

(14)1 2
00 11 12( )L z l l z l z   

where , and are considered as 1. Substituting equation (12), (13), (14) and 𝑙00 𝑙11 𝑙12  
H(z) = 1 into (9) results in equations as follows, respectively

(15)1i i iK K e  

(16)1 1( )i i i iK K e e   

(17)1 1 2( )i i i i iK K e e e     

where K0 is considered as a linear kernel function and β is considered as a RBF or 
polynomial kernel. kernel types, their equations and parameters which are used to generate 
experimental results are tabulated in Table 1. From equations (15), (16) and (17), it can be 
seen that the resulting kernel is always a linear combination of some kernels.

As proven in (Shawe-Taylor & Cristianini, 2004), a linear combination of kernels is a 
kernel function, which can be used by the SVM algorithm. The regularization parameter, 
C, can then be updated using p-type learning function and Equation (9) can be re-written 
as:

(18)1i i iC C e  

C0 = 10, and β = 0.05 are used as the initial values in this research.

Table 1.  kernel types, their equations and parameters.

Kernel type Kernel equation Kernel parameters
Linear 𝑥𝑇𝑦 + 𝑐 𝑐 = 1

Polynomial (𝑎𝑥𝑇𝑦 + 𝑐)𝑑 𝑎 = 0.1, 𝑐 = 1, 𝑑 = 3
RBF exp ( ― 𝛾‖𝑥 ―  𝑦‖2) 𝛾 = 0.1

5.   Experimental Results

To assess the performance of the proposed Iterative Learning Control based Support Vector 
Machine Kernel Optimization (ILC-SVMKO), experimental results were generated using 
ten datasets from UCI machine learning repository called: Letter Recognition (LR) (letters 
‘A’ and ‘N’ are used for this experiment), Wisconsin Breast Cancer (WBC), Liver Disorder 
(LD), Mnist (numbers ‘2’ and ‘8’ are used for this experiment), Diabetes, Heart Disease, 
Ionosphere, Parkinson, Iris and Sonar datasets. The number of instances and dimension of 
the datasets were used in this experiment are tabulated in Table 2, and these datasets are 
available in (Bren).
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Table 2.  Datasets description.

Dataset #Instances #Dimension

Letter 1536 17

Wbc 683 11

Liver disorder 346 7

MNIST 3850 6

Diabetes
Sonar
Heart 
Ionosphere
Parkinson

804
208
303
351
400

8
60
75

         34
22

Iris 150 4

To generate experimental results, all datasets were first normalized, and the datapoints 
in each dataset were randomly divided into three subsets: train-subset (70%), validation-
subset (10%) and test-subset (20%). 

5.1.   The proposed method vs. anchor SVM method

Experimental results for the proposed ILC-SVMKO and the anchor SVM using nine 
datasets were generated. Table 3 and 4 shows the resulting number of Support Vectors 
(#SVs) and the accuracy of the proposed ILC-SVMKO when using different type of 
learning functions and the anchor SVM for different datasets. From Table 3 and 4, it can 
be seen that the proposed technique generates superior performance to those of anchor 
SVM method in term of accuracy at significantly lower number of SVs when it uses a 
polynomial kernel; while it generates very competitive results in term of accuracy to those 
of anchor SVM method at significantly lower number of SVs when it uses the RBF kernel.

Table 3.  Performance of the proposed ILC-SVMKO method versus anchor SVM method when 
𝛽 is Polynomial kernel.

β Polynomial kernel
# SVs Test accuracy(%)

Datasets SVM ILC-
SVM

SVM ILC-
SVM

#SV reduction(%) #Iteration
(type of L(z))

Wbc 48 43 97.08 97.08 10.41 2(p,d,d2)
liverdisorder 149 110 69.56 72.46 26.17 5(d2)
Letter 52 45 100 100 13.46 29(d2)
Diabetes 323 285 75.97 76.62 11.76 4(p)
Heart 99 92 93.44 93.44 7.07 13(d2)
Ionosphere 85 68 91.54 91.54 20 2(p,d,d2)
Sonar 113 11 95.23 95.23 90.26 7(d2)
Mnist 258 215 97.02 97.53 16.66 2(p,d,d2)
Parkinson 34 3 41.09 74.35 91.17 6(d2)
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Table 4.  Performance of the proposed ILC-SVMKO method versus anchor SVM method when 
𝛽 is RBF kernel.

β RBF kernel
# SVs Test accuracy(%)

Datasets SVM ILC-
SVM

SVM ILC-
SVM

#SV reduction(%) #Iteration
(type of L(z))

Wbc 55 42 98.54 97.08 23.63 2(p,d,d2)
liverdisorder 181 126 71.01 65.21 30.38 2(p,d,d2)
Letter 131 70 100 100 46.56 2(p,d,d2)
Diabetes 346 280 77.92 76.62 19.07 2(p,d.d2)
Heart 120 106 91.80 93.44 11.66 2(p,d,d2)
Ionosphere 177 135 98.59 98.59 23.72 2(p,d,d2)
Sonar 149 112 92.85 92.85 24.83 3(p)
Mnist 314     244 97.79 97.79 22.29 2(p,d,d2)
Parkinson 140 118 82.05 79.48 15.71 3(d,d2)

Figures 4 and 5 shows resulting number of SVs for Ionosphere and Letter datasets per 
iteration using polynomial and RBF kernels for p-type, d-type and d2-type learning 
functions. From these figures, it can be seen that the proposed technique when using d2-
type learning function converges faster than when it uses either p-type or d-type learning 
functions. The achieved optimal value for regularization parameter, C, and learning gain, 
β, for training different datasets using the proposed ILC-SVMKO method are tabulated in 
Table 5.

Table 5.  Resulting regularization parameter, C, and learning gain, β for different datasets using 
the proposed ILC_SVMKO method.

β Polynomial kernel RBF kernel
Datasets Final value of C Final value of  the 

coefficient of β
Final value of C Final value of  the 

coefficient of β
Wbc 11.6 32 11.6 32
liverdisorder 78.2 1368 21.3 226
Letter 110.65 1953 10.75 15
Diabetes 66.05 1121 30.6 412
Heart 127 2340 14.5 90
Ionosphere 13.7 74 14 80
Sonar 34 480 14.65 93
Mnist 42.65 653 42.65 653
Parkinson 54.45 889 18.9 178
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Fig. 4.  Resulting number of SVs for Ionosphere and Letter dataset per iteration using polynomial kernels for p-
type, d-type and d2-type learning functions.
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Fig. 5.  Resulting number of SVs for Ionosphere and Letter dataset per iteration using RBF kernels for p-type, d-
type and d2-type learning function.

5.2.   The proposed method vs. SMC-SVM-RBF method
 In this part the performance of the proposed Iterative Learning Control based Support Vector Machine Kernel 
Optimization (ILC-SVMKO) is compared with SMC-SVM-RBF method (Yalsavar et al., 2019), using seven 
datasets. By this aim, first the optimal value of RBF kernel is found using SMC-SVM-RBF method, then the 
resulted parameter is used in ILC-SVMKO. Based on the results in Table 6 and 7, it can be seen that the proposed 
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method gives either superior or very competitive results in terms of test accuracy and number of support vector 
to SMC-SVM-RBF method.

Table 6.  Performance of the proposed ILC-SVMKO method versus SMC-SVM-RBF method 
when 𝛽 is RBF kernel.

β RBF kernel
# SVs Test accuracy(%)

Datasets SMC-
SVM-
RBF

ILC-
SVM

SMC-
SVM-
RBF

ILC-
SVM

RBF kernel
 parameter (γ)

#Iteration
(type of 

L(z))

Wbc 41 51 99.27 97.08 0.038161057692307696 2(p, d, d2)
liverdisoder 158 22 73.91 100 0.4497829048076992 2(p, d, d2)
Letter 286 113 99.68 99.68 0.19044796894310853 2(p, d, d2)
Heart 217 214 91.80 93.08 0.7599354450040051 2(p, d, d2)
Ionosphere 135 130 95.77 98.59 0.059792421140318186 2(p, d, d2)
Parkinson 58 42 94.87 92.30 0.0006748792225280603 3(p)
Iris 7 6 100 100 0.040178715216006106 2(p, d, d2)

Table 7.  Resulting regularization parameter, C, and learning gain, β for different datasets using 
the proposed ILC_SVMKO method.

β RBF kernel
Datasets Final value of C Final value of  the 

coefficient of β
Wbc 11.3 26
liverdisorder 10.95 19
Letter 10.75 15
Heart 14.95 99
Ionosphere 12.58 57
Parkinson 12.89 58
Iris 10.95 19

6.   Conclusions

Since the main goal of control theory is to bring the behavior of the universe under the 
human’s control, it provides and suggests a huge number of logical and effective methods 
for dealing with different situations and approaching at diverse goals. As the control theory 
provides the ability of monitoring the behavior of systems in details and from different 
aspects, it is very useful to assess the behaivor of SVM from control view. Looking at SVM 
and its problems from control field of view enables us in controlling its behavior from both 
steady state and trasient aspects. Moreover, the SVM algorithm provides lots of beneficial 
information in its training phase that can be used in finding the correct inputs for the 
algorithm as ILC showed this point as a simple control method. The proposed method 
adapted the Iterative Learning Control (ILC) technique to optimize SVM’s kernel 
parameter. The performance of the proposed method was evaluated and compared with 
that of traditional SVM using nine benchmark datasets, and state-of-the-art SMC-SVM-
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RBF method using seven datasets. Experimental results show that the proposed techniques 
achieve higher performance to that of traditional SVM in term of accuracy at significantly 
lower number of SVs when using a polynomial kernel and generates very competitive 
results in term of accuracy to those of traditional SVM, and state-of-the-art SMC-SVM-
RBF method at significantly lower number of SVs when using the RBF kernel. Moreover, 
since ILC is an un-model based, closed-loop strategy, its application does not narrow to 
SVM. By looking at the whole machine learning algorithms from a higher perspective and 
considering them as different systems with their own inputs and outputs, then ILC can play 
its significant rule as a controller for compensating and tuning different parameters in 
different machine learning frame works.  
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