
ar
X

iv
:2

00
6.

04
16

7v
2

 [
cs

.A
I]

 1
9

Ju
l 2

02
0

A Tetrachotomy of Ontology-Mediated Queries with a Covering Axiom

Olga Gerasimovaa, Stanislav Kikotb, Agi Kuruczc, Vladimir Podolskiid,a, Michael Zakharyascheve

aNational Research University Higher School of Economics, Moscow, Russia
bSchool of Computing and Digital Media, London Metropolitan University, U.K.

cDepartment of Informatics, King’s College London, U.K.
dSteklov Mathematical Institute, Moscow, Russia

eDepartment of Computer Science, Birkbeck, University of London, U.K.

Abstract

We are interested in the problem of efficiently determining the data complexity of answering queries mediated by non-

Horn description logic ontologies and constructing their optimal rewritings to standard database queries. In general,

this problem is known to be extremely complex. In this article, we strip it to the bare bones and focus on conjunctive

queries mediated by a simple covering axiom stating that one class is covered by the union of two other classes.

We develop a novel technique to prove that, quite surprisingly, deciding first-order rewritability of even such simple

ontology-mediated queries is PSpace-hard. The main result of this article is a complete and transparent syntactic

AC0/NL/P/coNP tetrachotomy of path queries under the assumption that the covering classes are disjoint. We also

obtain a number of syntactic and semantic sufficient conditions (without the path query assumption) for membership

in AC0, L, NL, and P.

Keywords: Ontology-based data access, description logic, first-order rewritability, data complexity.

1. Introduction

The general research problem we are concerned with in this article can be formulated as follows: for any fixed

ontology-mediated query Q = (T , q) with a description logic ontology T and a conjunctive query q, determine the

computational complexity of answering Q over any given input data instance A and, if possible, reduce the task of

finding certain answers to Q overA to the task of evaluating a conventional database query with optimal complexity

overA.

Answering various types of queries mediated by a description logic (DL) ontology has been known as an important

reasoning problem in knowledge representation since the early 1990s [1]. The proliferation of DLs and their applica-

tions [2, 3], the development of the (DL-underpinned) Web Ontology Language OWL1, and especially the paradigm of

ontology-based data access (OBDA) [4, 5, 6] (proposed in the mid 2000s and recently nicknamed the virtual knowl-

edge graph paradigm (VKG) [7]), have made theory and practice of answering ontology-mediated queries (OMQs)

a hot research area lying at the crossroads of Knowledge Representation and Reasoning, Semantic Technologies and

the Semantic Web, Knowledge Graphs, and Database Theory and Technologies.

In a nutshell, the idea underlying OBDA is as follows. The users of an OBDA system (such as Mastro2 or Ontop3)

may assume that the data they want to query is given in the form of a directed graph whose nodes are labelled with

concepts (unary predicates or classes) and edges with roles (binary predicates or properties)—even though, in reality,

the data can be physically stored in different and possibly heterogeneous data sources—hence the moniker VKG.

The concept and role labels come from an ontology, designed by a domain expert, and should be familiar to the

Email addresses: ogerasimova@hse.ru (Olga Gerasimova), staskikotx@gmail.com (Stanislav Kikot), agi.kurucz@kcl.ac.uk (Agi

Kurucz), podolskii@mi.ras.ru (Vladimir Podolskii), michael@dcs.bbk.ac.uk (Michael Zakharyaschev)
1https://www.w3.org/TR/owl2-overview/
2https://www.obdasystems.com
3https://ontopic.biz

Preprint submitted to Elsevier July 21, 2020

http://arxiv.org/abs/2006.04167v2
https://www.w3.org/TR/owl2-overview/
https://www.obdasystems.com
https://ontopic.biz

intended users, who do not have to know anything about the real data sources. Apart from providing a user-friendly

vocabulary for queries and a high-level conceptual view of the data, an important role of the ontology is to enrich

possibly incomplete data with background knowledge. To illustrate, imagine that we are interested in the life of

‘scientists’ and would like to satisfy our curiosity by querying the data available on the Web (it may come from the

universities’ databases, publishing companies, social networks, etc.). An ontology O about scientists, provided by

an OBDA system, might contain the following ‘axioms’ (given, for readability, both as DL concept inclusions and

first-order sentences):

BritishScientist ⊑ ∃affiliatedWith.UniversityInUK (1)

∀x [BritishScientist(x)→ ∃y (affiliatedWith(x, y) ∧ UniversityInUK(y))]

∃worksOnProject ⊑ Scientist (2)

∀x [∃y worksOnProject(x, y)→ Scientist(x)]

Scientist ⊓ ∃affiliatedWith.UniversityInUK ⊑ BritishScientist (3)

∀x [(Scientist(x) ∧ ∃y (affiliatedWith(x, y) ∧ UniversityInUK(y)))→ BritishScientist(x)]

BritishScientist ⊑ Brexiteer ⊔ Remainer (4)

∀x [BritishScientist(x)→ (Brexiteer(x) ∨ Remainer(x))]

Now, to find, for example, British scientists, we could execute a simple OMQ Q = (O, q) with the query

q(x) = BritishScientist(x)

mediated by the ontology O. The OBDA system is expected to return the members of the concept BritishScientist

that are extracted from the original datasets by ‘mappings’ (database queries connecting the data with the ontology

vocabulary) and also deduced from the data and axioms in O such as (3). It is this latter reasoning task that makes

OMQ answering non-trivial and potentially intractable both in practice and from the complexity-theoretic standpoint.

To ensure theoretical and practical tractability, the OBDA paradigm presupposes that the users’ OMQs are reformu-

lated—or rewritten—by the OBDA system into conventional database queries over the original data sources, which

have proved to be quite efficiently evaluated by the existing database management systems. Whether or not such a

rewriting is possible and into which target query language naturally depends on the OMQ in question. One way to

uniformly guarantee the desired rewritability is to delimit the language for OMQ ontologies and queries. Thus, the DL-

Lite family of description logics [5] and the OWL 2 QL profile4 of OWL 2 were designed to guarantee rewritability of

all OMQs with a DL-Lite ontology and a conjunctive query (CQ) into first-order (FO) queries, that is, essentially SQL

queries [8]. In complexity-theoretic terms, FO-rewritability of an OMQ means that it can be answered in LogTime

uniform AC0, one of the smallest complexity classes. In our example above, (1) and (2) are the only axioms allowed

by OWL 2 QL. Any OMQ with an EL, OWL 2 EL or hornSHIQ ontology is datalog-rewritable [9], and so can be

answered in P—polynomial time in the size of the data [10, 11]. Axioms (1)–(3) are admitted by the EL syntax. On

the other hand, OMQs with an ALC (a notational variant of the multimodal logic Kn [12]) or Schema.org ontology

and a CQ are in general coNP-hard [1], and so regarded as intractable and not suitable for OBDA. For example,

coNP-hard is the OMQ ({(4)}, q1) with the CQ

q1 = ∃w, x, y, z [Brexiteer(w) ∧ hasCoAuthor(w, x) ∧ Remainer(x) ∧

hasCoAuthor(x, y) ∧ Brexiteer(y) ∧ hasCoAuthor(y, z) ∧ Remainer(z)].

For various reasons, many existing ontologies do not comply with the restrictions imposed by the standard languages

for OBDA. Notable examples include the large-scale medical ontology SNOMED CT5, which is mostly but not entirely

in EL, and the oil and gas NPD FactPages6 ontology, which falls outside OWL 2 QL by a whisker. One way to resolve

4https://www.w3.org/TR/owl2-profiles/
5https://bioportal.bioontology.org/ontologies/SNOMEDCT
6https://factpages.npd.no

2

https://www.w3.org/TR/owl2-profiles/
https://bioportal.bioontology.org/ontologies/SNOMEDCT
https://factpages.npd.no

this issue is to compute an approximation of a given ontology within the required ontology language, which is an

interesting and challenging reasoning problem by itself; see, e.g., [13, 14, 15, 16] and references therein.

There is a non-uniform alternative to the uniform approach (which delimits the language for OMQ ontologies and

queries in order to make a general rewriting algorithm possible). One can allow OMQs in an expressive language,

but at the same time provide the OBDA system with an algorithm that is capable of deciding the data complexity of

each given OMQ, and (when it is possible) rewriting it to an equivalent database query of this optimal complexity.

For example, while answering the OMQ ({(4)}, q1) is coNP-complete, one can show that ({(4)}, q2) with the same

ontology and the CQ q2 shown in the picture below is P-complete and datalog-rewritable, ({(4)}, q3) is NL- (non-

deterministic logarithmic space) complete and linear-datalog-rewritable, ({(4)}, q4) is L- (logarithmic space) complete

and symmetric-datalog-rewritable, while ({(4)}, q5) is in AC0 and FO-rewritable:

q1

T

w

F

x

F

y

T

zR R R
q2

T

x

T

y

F

zS R

q3

T

x

T

y

F

zR R
q4

x

T

y

F

zS R
q5

T

x y

F, T

zR R

In the picture, F(u) stands for Brexiteer(u), T (u) stands for Remainer(u), R(u, v) for hasCoAuthor(u, v), S (u, v) for

hasBoss(x, y), and all the variables w, x, y, z are assumed to be existentially quantified. (And yes, there exist British

scientists who are Brexiteers in one aspect of life and Remainers in some other.) As another example, we refer to the

experiments with the NPD FactPages ontology used for testing OBDA in industry [17, 18]. Although the ontology

contains covering axioms of the form A ⊑ B1 ⊔ · · · ⊔ Bn not allowed in OWL 2 QL, one can show that the concrete

queries provided by the industrial end-users do not ‘feel’ those dangerous axioms and are FO-rewritable.

Thus, in an ideal OBDA scenario, we would like the OBDA system to be able to recognise automatically the data

complexity of any given OMQ and, whenever possible, rewrite it to a target query language with optimal complexity.

The problem of determining the non-uniform data complexity and rewritability of OMQs was first systematically

considered by Lutz and Wolter [19] for individual DL ontologies with varying CQs and by Bienvenu et al. [20] for

individual OMQs (see also [21, 22]). In particular, the latter found a connection of OMQs to non-uniform constraint

satisfaction problems (CSPs) with a fixed template [23] and used it to show that deciding FO- and datalog-rewritability

of OMQs with an ontology in any DL between ALC and SHIU and an atomic query is NExpTime-complete.

The Feder-Vardi dichotomy of CSPs [24, 25] implies a P/coNP dichotomy of such OMQs, which is decidable in

NExpTime. For OMQs with an ALCI ontology (that is, ALC with inverse binary relations) and a CQ, deciding

FO-rewritability rises and becomes 2NExpTime-complete; deciding whether such an OMQ is in P for data complexity

is also 2NExpTime-complete [26, 27]. For OMQs with an EL ontology and a CQ, Lutz and Sabellek [28] established

a trichotomy according to which each OMQ is either in AC0 and FO-rewritable, or NL-complete and linear-datalog-

rewritable, or P-complete and datalog-rewritable; deciding membership in this trichotomy is ExpTime-complete.

It should be also noted that, in the context of datalog and deductive databases, a similar problem (called optimi-

sation) has been investigated since the late 1980s. For example, it was shown that boundedness (FO-rewritability)

is undecidable for linear datalog programs with binary IDB (i.e., intensional) predicates [29] and single rule pro-

grams [30, 31], 2ExpTime-complete for monadic programs [32, 33], and PSpace-complete for linear monadic pro-

grams [32]. Considerable efforts have been made to understand linearisability of datalog programs ensuring evaluation

in NL [34, 35, 36, 37, 38], and datalog rewritability of disjunctive datalog programs [39].

To sum up, the general problem of recognising the data complexity of OMQs in standard DLs and the types of their

rewritability turns out to be computationally very hard. Moreover, in spite of numerous attempts, very few practically

useful partial algorithms or easily checkable syntactic conditions have been discovered so far. The natural idea [20]

of using the connection with CSPs and taking advantage of algorithms and techniques developed for checking their

complexity has not succeeded either: as reported in [40], the Polyanna program [41], designed to check tractability of

CSPs, failed to recognise coNP-hardness of the very simple OMQ ({(4)}, q1) above because the reduction to CSPs is

unavoidably exponential and Polyanna simply ran out of memory.

Our contribution. In this paper, we contribute to the non-uniform approach, but we take a different direction. Rather

than considering arbitrary ontologies in an expressive DL and providing a general complexity analysis, we single

3

out and fix one fundamental source of intractability in OMQ answering—the basic covering axiom A ⊑ F ⊔ T with

concept names (unary predicates) A, F, T—and investigate how the interplay between this axiom and the structure of

the Boolean CQs q in the OMQs

Q = (covA, q), with covA = {A ⊑ F ⊔ T } (5)

determines the computational behaviour of Q. As the seemingly trivial OMQs ({(4)}, q1)–({(4)}, q4) above indicate,

this interplay can be pretty subtle even in the case of Boolean path queries. From the practical point of view, covering

(or union) constraints are indispensable to conceptual modelling [42]; for example, in Schema.org they are used to

represent disjunctive property domains and ranges [43]. The first attempt to understand the complexity of answering

OMQs with arbitrary Schema.org ontologies and unions of CQs (UCQs) was made by Hernich et al. [44].

We obtain a series of results on the complexity of answering OMQs of the form (5) and their rewritability. On

the ‘negative’ side, we show that, despite the language of our OMQs is reduced to the bare bones, in the presence of

covering, CQs can encode ∀∃3SAT and the acyclicity problem for succinctly represented graphs. In particular,

– we show that, in general, answering OMQs (5) is Π
p

2
-complete for combined complexity (in the size of q and

the data), that is, harder than answering DL-Lite and EL OMQs (unless NP = Π
p

2
, and so NP = PSpace);

– we prove that the problem of determining FO-rewritability of these OMQs is even harder, namely PSpace-hard in

the size of q, which indicates that a general syntactic classification of CQs q according to the data complexity of

answering Q and the type of its rewritability will be extremely difficult to find. This result is quite surprising in

comparison with the PSpace-hardness proofs for boundedness of linear monadic datalog programs [32] and FO-

rewritability of OMQs with Schema.org ontologies and UCQs [44], where different rules in a datalog program

or different CQs in a UCQ were used to ensure correctness of a Turing machine computation. Here, we use

just a single dag-shaped CQ to encode satisfying evaluations of a Boolean formula and apply a reduction of the

acyclicity problem for the graph succinctly represented by this formula.

These negative results might appear to suggest that even our primitive OMQs are too ‘sophisticated’ for a fine com-

plexity analysis. However, we also obtain substantial and encouraging positive results.

– First, we show a number of general syntactic and semantic partial conditions for various types of rewritability

and data complexity that are applicable to arbitrary CQs. We begin by observing that a CQ without FT -twins

(that is, without both F(x) and T (x), for any x, like the first four CQs depicted above) gives rise to an FO-

rewritable OMQ (i.e., in AC0) if it does not contain occurrences of one of F or T ; otherwise the OMQ is

L-hard and even NL-hard for path CQs. This simple criterion fails for CQs with twins, where the problem of

finding a syntactic characterisation might turn out to be extremely difficult. The OMQs with a CQ containing

a single solitary F (or T) are shown to be datalog-rewritable (and so in P). As far as we are aware, there is no

known semantic or syntactic criterion distinguishing between datalog programs in NL and P, though Lutz and

Sabellek [28] gave a nice semantic criterion for OMQs with an EL ontology. We combine their ideas with the

automata-theoretic technique of Cosmadakis et al. [32] and prove a useful sufficient semantic condition for our

OMQs to be linear-datalog-rewritable (and so in NL).

– We use some of these conditions to obtain the main result of this paper: a complete and transparent syntactic

AC0/NL/P/coNP and rewritability tetrachotomy of the OMQs (5) with a path CQ q that do not contain FT -

twins. The latter restriction is redundant if the ontology is extended with the disjointness axiom F ⊓ T ⊑ ⊥

(making covering axiom (4) a ‘British scientist’s dilemma’). We show that (i) such CQs q without occurrences

of F (or T) and only them give rise to FO-rewritable OMQs Q (in AC0), that (ii) Q is linear-datalog-rewritable

and NL-complete just in case q has a certain periodic structure, and prove that (iii) otherwise Q can simulate

monotone circuit evaluation, and so is P-hard. Finally, (iv) the most surprising and technically difficult part of

our tetrachotomy is the construction showing that path CQs with at least two Fs and at least two T s, and only

them give rise to coNP-hard OMQs.

Structure of the paper. In the next section, we provide the necessary background definitions. In Section 3, we first

prove that answering our OMQs is Π
p

2
-complete for combined complexity, and then obtain a few simple and general

4

results on OMQs in AC0, L, and P. We also introduce a handy semantic construction for certain OMQs, which is

similar to datalog expansion [45] and, in our context, called ‘growing cactuses’. Then, in Section 4, we use cactuses

to show that deciding FO-rewritability of an OMQ is PSpace-hard. Section 5 gives a sufficient semantic condition of

linear-datalog-rewritability in terms of cactuses. Finally, in Section 6, we obtain a complete classification of OMQs

with a path CQ without twins according to their data complexity and rewritability type. Future research and open

problems are discussed in the concluding Section 7.

An extended abstract with some of the results from this article has been presented at the 17th International Con-

ference on Principles of Knowledge Representation and Reasoning.

2. Preliminaries

Using the standard description logic syntax and semantics [3], we consider ontology-mediated queries (OMQs) of

the form Q = (T , q), where T is one of the two ontologies

covA = { A ⊑ F ⊔ T }, cov
⊥
A = { A ⊑ F ⊔ T, F ⊓ T ⊑ ⊥ }

(in which we sometimes set A = ⊤) and q is a Boolean conjunctive query (CQ), i.e., an FO-sentence q = ∃xϕ(x), in

which ϕ is a conjunction of atoms with variables from x. We often think of q as a set of its atoms. In the context of

this paper, CQs may only contain two unary predicates F, T and arbitrary binary predicates. Atoms F(x), T (x) ∈ q

are referred to as FT-twins in q. An ABox (data instance), A, is a finite set of ground atoms with unary or binary

predicates. We denote by ind(A) the set of constants (individuals) in A. An interpretation is a structure of the form

I = (∆I, ·I) with a domain ∆I , ∅ and an interpretation function ·I such that aI ∈ ∆I for any constant a, ⊤I = ∆I,

⊥I = ∅, PI ⊆ ∆I for any unary predicate P, and PI ⊆ ∆I × ∆I for any binary P. The interpretation I is a model

of T if AI ⊆ FI ∪ TI and, for T = cov
⊥
A

, also FI ∩ TI = ∅; it is a model of A if P(a) ∈ A implies aI ∈ PI and

P(a, b) ∈ A implies (aI, bI) ∈ PI. The truth-relation I |= q is defined as usual in FO-logic.

It is often convenient to regard CQs, ABoxes and interpretations as digraphs with labelled edges and partially

labelled nodes (by F, T in CQs and F, T , A in ABoxes and interpretations). Without loss of generality, we assume

that these graphs are connected as undirected graphs. A path CQ is a (simple) directed path each of whose edges is

labelled by a single binary predicate.

The certain answer to an OMQ Q = (T , q) over an ABox A is ‘yes’ if I |= q for all models I of T and A—in

which case we write T ,A |= q—and ‘no’ otherwise.

A minimal model of T and A is obtained from A by adding to each ‘undecided’ A-node (which is labelled by

neither F nor T) exactly one of F or T as label. Clearly, T ,A |= q iff I |= q for every minimal model I of T andA.

So, from now on, ‘model’ means ‘minimal model’. Finally, we note that I |= q iff there is a digraph homomorphism

h : q→ I preserving the labels of nodes and edges.

The following example illustrates the ‘reasoning’ required to answer OMQs, which amounts to a ‘proof by cases’.

Example 1. Consider the OMQ Q = (cov⊤, q) with A = ⊤ and the path CQ q shown in the picture below:

T T F

S R

By analysing the four possible cases for a, b ∈ FI, TI in an arbitrary model I of cov⊤ and the ABox below, one can

readily show that the certain answer to Q over this ABox is ‘yes’.

a

TT

b

T T

F

S

R

S

R

R

S

Indeed, if aI ∈ FI, then q is homomorphically embeddable into the S –R path on the left-hand side of I. Otherwise

aI ∈ TI. If bI ∈ FI, then q is homomorphically embeddable into the S –R path on the right-hand side of I. In the

remaining case bI ∈ TI, there is a homomorphism from q into the S –R path on the top of I.

Such proofs can be given as resolution refutations (derivations of the empty clause) in clausal logic.

5

Example 2. The certain answer to an OMQ Q = (T , q) over an ABox A is ‘yes’ iff the following set SQ of clauses

is unsatisfiable:

SQ =
{

¬A(x) ∨ F(x) ∨ T (x),
∨

P(x)∈q

¬P(x)
}

∪ A.

If T = cov
⊥
A

then SQ also contains the clause ¬F(x) ∨ ¬T (x). In other words, the certain answer to Q overA is ‘yes’

iff there is a resolution refutation for SQ in the classical resolution calculus [46].

Our concern is the combined and data complexity of deciding, for a given OMQ Q = (T , q) and an ABox A,

whether T ,A |= q. In the former case, q andA are regarded as input; in the latter one, q is fixed. It should be clear

that Π
p

2
= coNPNP is an upper bound for the combined complexity of our problem, which amounts to checking that,

for every model I of T and A, there exists a homomorphism q → I, with the latter being NP-complete. For data

complexity, that is, when q is fixed, checking the existence of a homomorphism q → I can be done in P, and so the

whole problem is in coNP.

We are also interested in various types of rewritability of OMQs. An OMQ Q = (T , q) is called FO-rewritable

if there is an FO-sentence Φ such that T ,A |= q iff Φ is true in the structure A. In terms of circuit complexity,

FO-rewritability is equivalent to answering Q in logtime-uniform AC0 [47]. Note that if q contains FT -twins, then

∃x
(

F(x) ∧ T (x)
)

is an FO-rerwriting of Q = (cov
⊥
A
, q) because the certain answer to Q over A is ‘yes’ iff cov

⊥
A

is

inconsistent withA, which can only happen whenA contains an FT -twin.

Recall from, say [8], that a datalog program, Π, is a finite set of rules of the form ∀x (γ0 ← γ1 ∧ · · · ∧ γm), where

each γi is a (constant- and function-free) atom Q(y) with y ⊆ x. (As usual, we omit ∀x.) The atom γ0 is the head of

the rule, and γ1, . . . , γm its body. All of the variables in the head must occur in the body. The predicates in the head

of rules are called IDB predicates, the rest EDB predicates. A datalog query in this paper takes the form (Π,G) with

a 0-ary atom G. The answer to (Π,G) over an ABoxA is ‘yes’ if G is true in the structure Π(A) obtained by closing

A under the rules in Π, in which case we write Π,A |= G. We call (Π,G) a datalog-rewriting of an OMQ Q = (T , q)

in case T ,A |= q iff Π,A |= G, for any ABox A containing only EDB predicates of Π. If Q is datalog-rewritable,

then it can be answered in P for data complexity [48]; if there is a rewriting to a (Π,G) with a linear program Π,

having at most one IDB predicate in the body of each of its rules, then Q can be answered in NL (non-deterministic

logarithmic space). The NL upper bound also holds for datalog queries with a linear-stratified program, which is

defined as follows. A stratified program [8] is a sequence Π = (Π0, . . . ,Πn) of datalog programs, called the strata of

Π, such that each predicate in Π can occur in the head of a rule only in one stratum Πi and can occur in the body of a

rule only in strata Π j with j ≥ i. If, in addition, the body of each rule in Π contains at most one occurrence of a head

predicate from the same stratum, Π is called linear-stratified. Every linear-stratified program can be converted to an

equivalent linear datalog program [38], and so datalog queries with a linear-stratified program can be answered in NL

for data complexity.

3. Initial Observations

In this section, we obtain a number of relatively simple complexity and rewritability results that are applicable to

arbitrary (not necessarily path) CQs q. By writing Q = (T , q) we mean ‘any T ∈ {covA, cov
⊥
A
}’.

3.1. Combined Complexity

Our first result pushes to the limit [44, Theorem 5] according to which answering OMQs with Schema.org on-

tologies is Π
p

2
-complete for combined complexity (the proof of that theorem uses an ontology with an enumeration

definition E = {0, 1} and additional concept names, none of which is available in our case).

Theorem 3. (i) Answering OMQs (T , q) is Π
p

2
-complete for combined complexity.

(ii) Answering OMQs (T , q) with a tree-shaped (or path) CQ q is coNP-complete for combined complexity.

Proof. Deciding whether T ,A |= q can be done by a coNP Turing machine (checking all models I of T andA) with

an NP-oracle (checking the existence of h : q → I); for tree-shaped q, a P-oracle is enough. The lower bound in (ii)

follows from Theorem 21. For (i), we prove it by reduction of Π
p

2
-complete ∀∃3SAT [49].

6

Let ψ(x, y) be a 3CNF with propositional variables x and y and let ϕ = ∀x∃yψ(x, y). We assume that each literal

contains each variable at most once. Denote by qϕ the CQ that, for each clause c = ℓ1 ∨ ℓ2 ∨ ℓ3 in ψ, contains atoms

Rc
i
(zc, uc

i
), i = 1, 2, 3, with uc

i
= y if y ∈ y is in ℓi and uc

i
= xc if x ∈ x is in ℓi; in the latter case, qϕ also contains T (xc)

if ℓi = x and F(xc) if ℓi = ¬x. For example, clauses c1 = x1 ∨¬x2 ∨ y1 and c2 = ¬y1 ∨ x2 ∨ y2 contribute the following

atoms to qϕ:

T

x
c1
1

zc1

F

x
c1
2

y1R
c1
1

R
c1
2

R
c1
3

zc2

y2

T

x
c2
2

R
c2
1

R
c2
3

R
c2
2

For covA, the ABox Aϕ is defined as follows. For x ∈ x, we take individuals a∗x and a◦x and, for y ∈ y, individuals bF
y

and bT
y . Aϕ comprises the atoms A(a∗x), F(a◦x), T (a◦x), for x ∈ x. For each c = ℓ1 ∨ ℓ2 ∨ ℓ3, we define a set Ec of triples

of the above individuals: (e1, e2, e3) ∈ Ec iff (i) ei = a
µ
x for some µ ∈ {∗, ◦} whenever x ∈ x is in ℓi, (ii) ei = bνy for

some ν ∈ {F, T } whenever y ∈ y is in ℓi, and (iii) either ei = a∗x for some i, or ei = bνy for some i and the assignment

y = ν makes ℓi true. Now, for each c and each t = (e1, e2, e3) in Ec, we take a fresh individual dc
t (the centre of the pair

(c, t)), and add three atoms Rc
i
(dc

t , ei), i = 1, 2, 3, toAϕ.

For cov
⊥
A

, we take aF
x and aT

x instead of each a◦x, add the atoms F(aF
x), T (aT

x) instead of F(a◦x), T (a◦x), and replace

item (i) in the definition of Ec with (i)′ ei = a
µ
x for some µ ∈ {∗, F, T } whenever x ∈ x is in ℓi,

R
c1
1 R

c1
2

R
c1
3

R
c1
1

R
c1
2

R
c1
3

R
c1
1

R
c1
2

R
c1
3

a∗x1

A
a◦x1

T,F
a∗x2

A
a◦x2

T,F

d
c1

(a∗x1
,a◦x2

,bF
y1

)
d

c1

(a◦x1
,a◦x2

,bT
y1

)
d

c1

(a◦x1
,a∗x2

,bF
y1

)

bF
y1

bT
y1

The number of atoms inAϕ is polynomial in the size of ϕ.

Lemma 3.1. Suppose a : x→ {F, T } is any assignment and

Aaϕ = Aϕ ∪ {T (a∗x) | a(x) = T } ∪ {F(a∗x) | a(x) = F}.

There exists b : y→ {F, T } such that ψ(a(x), b(y)) is true iffAaϕ |= qϕ.

Proof. (⇒) Suppose b is such that ψ(a(x), b(y)) is true. We need to show that there is a homomorphism h : qϕ → A
a
ϕ.

Case covA: For every clause c = ℓ1∨ ℓ2∨ ℓ3 in ψ and for all i = 1, 2, 3, we define ec
i

as follows. We let (i) ec
i
= a∗x if

x ∈ x is in ℓi and amakes ℓi true, (ii) ec
i
= a◦x if x ∈ x is in ℓi and amakes ℓi false, and (iii) ec

i
= b

b(y)
y if y ∈ y is in ℓi. As

ψ(a(x), b(y)) is true, (ec
1
, ec

2
, ec

3
) is in Ec. Then we define a map h by taking h(zc) to be the centre of

(

c, (ec
1
, ec

2
, ec

3
)
)

and

h(uc
i
) = ec

i
. It follows from the construction that h is well-defined and a homomorphism from qϕ to Aϕ with respect

to the binary atoms. We show that it preserves the unary atoms as well. Indeed, for each c and each x ∈ x occurring

in c, there are two cases: (1) If xc is labelled by T in qϕ, then ℓi = x. So if a makes ℓi true, then ec
i
= a∗x is labelled by

T inAaϕ. And if a makes ℓi false, then ec
i
= a◦x is labelled by both T and F inAaϕ. (2) If xc is labelled by F in qϕ, then

ℓi = ¬x. So if a makes ℓi true, then ec
i
= a∗x is labelled by F inAaϕ. And if a makes ℓi false, then ec

i
= a◦x is labelled by

both T and F inAaϕ.

Case cov
⊥
A

: In the definition of ei
c, we replace (ii) with (ii)′ ec

i
= aT

x if ℓi = x for some x ∈ x and a(x) = F, and

(ii)′′ ec
i
= aF

x if ℓi = ¬x for some x ∈ x and a(x) = T . Again, we claim that h as defined above preserves the unary

atoms. Indeed, for each c and for each x ∈ x occuring in c, there are two cases: (1) If xc is labelled by T in qϕ, then

ℓi = x. So if a makes ℓi true, then ec
i
= a∗x is labelled by T inAaϕ. And if a makes ℓi false, then ec

i
= aT

x is labelled by

7

T inAaϕ. (2) If xc is labelled by F in qϕ, then ℓi = ¬x. So if a makes ℓi true, then ec
i
= a∗x is labelled by F inAaϕ. And

if a makes ℓi false, then ec
i
= aF

x is labelled by F inAaϕ.

(⇐) Suppose that h : qϕ → A
a
ϕ. Then, for any y ∈ y, h(y) = bνy for some ν ∈ {F, T }. We then set b(y) = ν. We

claim that ψ(a(x), b(y)) is true. Indeed, for every clause c = ℓ1 ∨ ℓ2 ∨ ℓ3 in ψ, there is t = (e1, e2, e3) ∈ Ec such that

h maps the ‘contribution’ of c in qϕ onto the ‘star’ with centre dc
t . If t is in Ec because ei = a∗x for some i = 1, 2, 3,

x ∈ x, then the label of a∗x inAaϕ is a(x). As h is a homomorphism, the label of xc in qϕ is also a(x), and so a makes c

true by the definition of qϕ. And if t is in Ec because ei = b
b(y)
y for some i = 1, 2, 3, y ∈ y and b(y) makes ℓi true, then

c is clearly true as well. ❑

Finally, we prove that ϕ is satisfiable iff T ,Aϕ |= qϕ iff I |= qϕ for every model I of T and Aϕ. (⇒) Given I,

define an assignment aI : x→ {F, T } by taking aI(x) = T if a∗x ∈ TI and aI(x) = F if a∗x ∈ FI. Then I = A
aI
ϕ , and so

we are done by Lemma 3.1. The implication (⇐) also follows from Lemma 3.1, as Aaϕ is a model of T and Aϕ, for

every assignment a : x→ {F, T }. ❑

3.2. Data Complexity: AC0 and L

We next focus on the data complexity of (answering) OMQs (T , q). If q does not contain FT -twins, we call it

twinless. By a solitary F (or T) we mean a non-twin F-node (respectively, T -node). We call q a 0-CQ if it does not

have a solitary F or a solitary T . Note that, for any twinless q, (covA, q) and (cov
⊥
A
, q) have the same data complexity.

Theorem 4. (i) If q is a 0-CQ, then (T , q) is in AC0.

(ii) If q is twinless and contains at least one solitary F and at least one solitary T , then (cov⊤, q) and (cov
⊥
⊤, q),

and so (covA, q) and (cov
⊥
A
, q) are L-hard.

Proof. (i) We show that T ,A |= q iff A |= q, and so q is an FO-rewriting of (T , q). (⇒) SupposeA 6|= q and q has

no solitary F (the other case is similar). Let A′ be the result of adding a label F to every undecided A-node in A.

Clearly,A′ is a model of T andA withA′ 6|= q. (⇐) is trivial.

(ii) The proof is by an FO-reduction of the L-complete reachability problem for undirected graphs. Denote by q′

the CQ obtained by gluing together all the T -nodes and by gluing together all the F-nodes in q. Thus, q′ contains a

single T -node, x, and a single F-node, y. Clearly, there is a homomorphism h : q→ q′. Let q′′ = q′ \ {T (x), F(y)}.

Suppose G = (V, E) is a graph with s, t ∈ V . We regard G as a directed graph such that (u, v) ∈ E iff (v, u) ∈ E, for

any u, v ∈ V . Construct an ABoxAG from G in the following way. Replace each edge e = (u, v) ∈ E by a copy q′′e of

q′′ such that, in q′′e , node x is renamed to u, y to v, and all other nodes z to some fresh copy ze. ThenAG comprises all

such q′′e , for e ∈ E, as well as atoms T (s) and F(t). We show that there is a path from s to t in G (s→G t, in symbols)

iff cov⊤,AG |= q iff cov
⊥
⊤,AG |= q.

(⇒) Suppose there is a path s = v0, . . . , vn = t in G with ei = (vi, vi+1) ∈ E, for i < n. Consider an arbitrary model

I of cov⊤ and AG. Since I |= cov⊤, and T (s) and F(t) are in AG, we can find some i < n such that I |= T (vi) and

I |= F(vi+1). As q′′ei
is an isomorphic copy of q′′, we obtain I |= q′′, and so I |= q.

(⇐) Suppose s 6→G t. Then, by the construction, t is not reachable from s in AG (not even via an undirected

path). Define a model I of cov
⊥
⊤ andAG by taking TI to be the set of nodes inAG that are reachable from s (via an

undirected path) and FI its complement. Clearly, no connected component ofAG (as undirected graph) contains both

TI- and FI nodes. Since q is connected and contains at least one T and at least one F, it follows that I 6|= q. ❑

Theorem 4 (ii) is complemented by the following simple sufficient condition. Call a CQ q′(x, y) with two free

variables x and y symmetric if, for any ABoxA and a, b ∈ ind(A), we haveA |= q′(a, b) iffA |= q′(b, a).

Theorem 5. Let Q = (T , q) be any OMQ with

q = ∃x, y (F(x) ∧ q′1(x) ∧ q′(x, y) ∧ q′2(y) ∧ T (y)),

for some CQs q′(x, y), q′
1
(x) and q′

2
(y) that do not contain solitary T and F, and symmetric q′(x, y). Here we assume

that q′
1
(x) and q′

2
(y) are disjoint, and that x and y are their only common variables with q′(x, y). Then Q is in L.

Proof. It is not hard to show that, for any ABoxA, we have T ,A |= q iff there exist v0, v1, . . . , vn ∈ ind(A), for some

n ≥ 1, such that the following conditions hold:

8

(S1) F(v0), A(v1), . . . , A(vn−1), T (vn) ∈ A,

(S2) A |= q′(vi, vi+1), for 0 ≤ i < n,

(S3) A |= q′
1
(vi), for 0 ≤ i < n,

(S4) A |= q′
2
(vi), for 1 ≤ i ≤ n.

Indeed, suppose that there are v0, v1, . . . , vn ∈ ind(A) such that (S1)–(S4) hold. Consider a model I of T and A.

By discrete continuity, there must be i such that both F(vi) and T (vi+1) are true in I. Now, (S2)–(S4) guarantee that

I |= q. Conversely, suppose there are no v0, v1, . . . , vn in ind(A) that satisfy (S1)–(S4). We define inductively sets

Fi for i ≥ 0 and F′
i

for i ≥ 1 by setting F0 = FA, F′
i+1
= {y | A |= q′(x, y) ∧ q′

1
(x) ∧ q′

2
(y) where x ∈ Fi} and

Fi = {y ∈ F′
i+1
| A(y) ∈ A} for i ≥ 1. We define a model I of T andA by extending FA and TA to FI =

⋃∞
i=0 Fi and

TI = TA ∪ AA \
⋃∞

i=1 Fi. We claim that I 6|= q. Indeed, suppose there is a homomorphism h : q→ I. Then there is i0
such that h(x) ∈ Fi0 . Moreover, h(y) must be in the intersection of Fi0+1 and TI. However, due to our assumption, no

node in F′
i0+1

can be in TA, and by construction, no node in F′
i0+1

can be in TI \ TA, which is impossible.

A linear datalog programΠ is symmetric if, for any recursive rule I(x)← J(y)∧ E(z) in Π (except the goal rules),

where E(z) is a shorthand for the conjunction of the EDBs of the rule, its symmetric counterpart J(y) ← I(x) ∧ E(z)

is also in Π. It is known (see, e.g., [50]) that symmetric programs can be evaluated in L for data complexity.

It remains to observe that checking whether there are v0, v1, . . . , vn ∈ ind(A) such that (S1)–(S4) hold can be done

by the following symmetric datalog program, in which B(x) = A(x) ∧ q′
1
(x) ∧ q′

2
(x):

G← q

G← F(x), q′1(x), q′(x, y), P(y)

P(x)← B(x), q′(x, y), q′2(y), T (y)

P(x)← B(x), q′(x, y), P(y), B(y).

where the only recursive rule P(x) ← B(x), q′(x, y), P(y), B(y) is equivalent to its symmetric counterpart due to the

symmetry of q′(x, y). ❑

Example 6. By Theorems 5 and 4 (ii), the OMQ (cov⊤, q) with q shown below is L-complete.
F T

R S S Q Q

Since AC0 $ L, Theorem 4 gives a sufficient and necessary criterion in the presence of the disjointness axiom:

Corollary 7. An OMQ (cov
⊥
A
, q) is in AC0 iff q is a 0-CQ or contains a twin. If q is a twinless 0-CQ, then q is an

FO-rewriting of (cov
⊥
A
, q).

Proof. If q has a twin, then ∃x (F(x) ∧ T (x)) is an FO-rewriting of Q. So suppose q is twinless. By Theorem 4 and

since AC0 $ L, Q is in AC0 iff q is a 0-CQ. Suppose Q is in AC0 and q has no solitary F (the other case is similar).

Then Q is FO-rewritable, and so, by [20, Proposition 5.9], it must have a rewriting in the form of a union (disjunction)

of CQs. Consider any CQ q′ in this rewriting. Let A be an ABox isomorphic to q′ (as a labelled digraph). Then

cov
⊥
A
,A |= q. LetAF result fromA by adding a label F to any A-node that is not labelled by F or T . Then there is a

homomorphism h : q → AF . As q does not have F- and A-nodes, h is also a homomorphism from q to q′. It follows

that q is an FO-rewriting of Q. ❑

The next example shows that the criterion of Corollary 7 does not hold for CQs with twins (see also Example 13).

Example 8. It is not hard to check (directly or using Theorem 12 below that (covA, q) with q shown below has q as its

FO-rewriting, and so is in AC0. Note that q is minimal in the sense that it is not equivalent to any of its proper sub-CQs.

R S

FT T F FT

R R S S

9

3.3. Datalog Rewritability of OMQs with a 1-CQ

In this section, we introduce some technical tools for dealing with 1-CQs. Here, by a 1-CQ we mean any CQ

with exactly one solitary F and at least one solitary T , or exactly one solitary T and at least one solitary F. The tools

are an adaptation of known (disjunctive) datalog techniques to OMQs Q with a 1-CQ. More specifically, we observe

that every such Q can be rewritten to a very simple datalog query—nearly a sirup in the sense of [51]—which can be

regarded as an adaptation of the idea of markability for disjunctive datalog programs from [39]. We also adapt the

datalog expansion technique [52, 32, 45] to characterise those datalog queries semantically.

Throughout this section, we assume that q is a 1-CQ such that F(x) and T (y1), . . . , T (yn) are all of the solitary

occurrences of F and T in q, and let Q = (T , q). For each such Q, we define a monadic datalog programΠQ with goal

G and four rules

G← F(x), q′, P(y1), . . . , P(yn) (6)

P(x)← T (x) (7)

P(x)← A(x), q′, P(y1), . . . , P(yn) (8)

G← F(x), T (x) (9)

where q′ = q \ {F(x), T (y1), . . . , T (yn)} and P is a fresh predicate symbol which never occurs in ABoxes. If T = covA,

rule (9) is omitted.

We also define by induction a class KQ of ABoxes called cactuses for Q. We start by setting KQ = {q}, regarding

q as an ABox, and then recursively apply to KQ the following two rules:

(bud) if T (y) ∈ C ∈ KQ with solitary T (y), then we add to KQ the ABox obtained by replacing T (y) in C with

(q \ {F(x)}) ∪ {A(x)}, in which x is renamed to y and all other variables are given fresh names;

(prune) if C ∈ KQ and T ,C− |= q, where C− = C \ {T (y)} for some solitary T (y) in C, then we add C− to KQ.

It is straightforward to see by structural induction that

T ,C |= q, for every C ∈ KQ. (10)

We call a cactus unpruned if it can be obtained by applications of (bud) only. For C ∈ KQ, we refer to the copies

s of (maximal subsets of) q that comprise C as segments. The skeleton Cs of C is the ditree whose nodes are the

segments s of C and edges (s, s′) mean that s′ was attached to s by budding. The depth of s in C is the number of

edges on the branch from the root of Cs to s. The depth of C is the maximum depth of its segments. A path-cactus is

a cactus whose skeleton has a single branch.

Theorem 9. For every OMQ Q = (T , q) with a 1-CQ q and every ABoxA, the following are equivalent:

(i) T ,A |= q;

(ii) ΠQ,A |= G;

(iii) either T = cov
⊥
A

andA contains an FT-twin, or there exists a homomorphism h : C → A for some unpruned

C ∈ KQ.

Proof. We show (i)⇒ (ii)⇒ (iii)⇒ (i).

(i) ⇒ (ii) If T = cov
⊥
A

andA contains a node labelled by both T and F, then G holds in the closure ΠQ(A) of A

under ΠQ by rule (9). In any other case, we define a model I based onA by labelling each ‘undecided’ A-node a by

TI if P(a) holds in ΠQ(A), and by FI otherwise. As I is a model of T andA, there is a homomorphism h : q → I.

Then h(yi) ∈ TI, and so P
(

h(yi)
)

holds in ΠQ(A), for every i ≤ n (by rule (7) and the definition of I). We claim that

h(x) is an F-node in ΠQ(A), and so G holds in ΠQ(A) by rule (6). Indeed, otherwise by h(x) ∈ FI and the definition

of I, h(x) is an A-node but not a P-node in ΠQ(A), contrary to rule (8).

(ii) ⇒ (iii) Suppose that T = covA or A does not contain a node labelled by both T and F. Then rule (9) is

either not in ΠQ or not used. We define inductively (on the applications of rule (8) in the derivation of G) an unpruned

cactus C ∈ KQ and a homomorphism h : C → A. To begin with, there are objects xa, ya
1
, . . . , ya

n for which rule (6)

was triggered. So xa is an F-node in ΠQ(A), and so it is an F-node in A. Take a function h0 : q → A such that it

10

preserves binary predicates, h0(x) = xa and h0(yi) = ya
i

for i ≤ n. If ya
i

is a T -node inA for every i ≤ n, then h = h0 is

the required homomorphism from q ∈ KQ to A. If ya
i

is not a T -node in A for some i, then ya
i

is a P-node in ΠQ(A)

obtained by rule (8), and so ya
i

is an A-node in A. Also, there are objects xb = ya
i

and yb
1
, . . . , yb

n such that rule (8)

was triggered for xb, yb
1
, . . . , yb

n. Let C be the cactus obtained from q by budding at yi, and extend h0 to a function

h1 : C → A such that it preserves binary predicates and h1(ys
j
) = yb

j
for all T -nodes ys

j
of the new segment s. If yb

j
is

a T -node in A for every j ≤ n, then h = h1 is the required homomorphism from C ∈ KQ to A. Otherwise, we bud C

again and repeat the above argument. As the derivation of G fromA using ΠQ is finite, sooner or later the procedure

stops with a cactus and a homomorphism.

(iii)⇒ (i) IfT = cov
⊥
A

andA contains a node labelled by both T and F thenT ,A |= q obviously holds. Otherwise,

take an arbitrary model I of T andA. We define a model I+ of T and C by ‘pulling back I’ via the homomorphism

h: for every node x in C, x ∈ AI
+

iff h(x) ∈ AI. By (10), there is a homomorphism g : q→ I+. Thus, the composition

of g and h is a q→ I homomorphism, as required. ❑

Corollary 10. Any OMQ Q = (T , q) with a 1-CQ q is datalog-rewritable, and so is in P.

Corollary 10 makes it possible to use the 2ExpTime algorithm of [32] to decide whether ΠQ is bounded, and so Q

is in AC0, and the results of [34, 35, 38] and many other techniques to understand whether ΠQ can be transformed to

a linear program, which would mean that Q is in NL. For OMQs Q whose 1-CQ q is a ditree with its unique solitary

F-node as root, the programΠQ can be reformulated as an EL ontology, and so one can use the AC0/NL/P trichotomy

of [28, 53], which is checkable in ExpTime.

Example 11. To illustrate, consider the 1-CQ q below.
F FT T

R S Q

We have covA,A |= q iff E,A |= ∃x B(x), where E is the EL TBox {F ⊓ Cq ⊑ B, T ⊑ P, A ⊓ Cq ⊑ P} with

Cq = ∃R.(F ⊓ T ⊓ ∃S .∃Q.P).

4. Deciding FO-rewritability of OMQs with a 1-CQ

The following semantic criterion of FO-rewritability is standard; cf. [32] in the datalog setting:

Theorem 12. An OMQ Q = (T , q) with a 1-CQ q is FO-rewritable iff there exists d < ω such that every C ∈ KQ

contains a homomorphic image of some unpruned C− ∈ KQ of depth ≤ d.

Proof. (⇒) By the proof of Corollary 7, Q has an FO-rewriting of the form q1 ∨ · · · ∨ qn, where the qi are CQs

(possibly containing A-nodes). Treating the qi as ABoxes, we obviously have T , qi |= q, and so, by Theorem 9, there

is a homomorphism from some unpruned Ci ∈ KQ to qi. Now let d be the maximum of the depths of the Ci, and take

any C ∈ KQ of depth > d. Then there are homomorphisms Ci → qi → C, for some i, 1 ≤ i ≤ n, as required.

(⇐) Given d < ω, we take all the unpruned cactuses C1, . . . ,Cn of depth ≤ d (up to isomorphism). Now we con-

sider each Ci as a CQ. Then C1∨· · ·∨Cn is an FO-rewriting of Q. Indeed, if T ,A |= q then there are homomorphisms

Ci → C → A, for some C and i, again by Theorem 9. ❑

Example 13. Let sn be a chain of n ≥ 3 arrows labelled by S . Consider the CQ qn shown below, where the omitted

labels on edges are all R. It is not hard to check that qn is minimal (not equivalent to any of its proper sub-CQs).

FT F T FT FT

sn S

S

Let Ck be the cactus obtained by applying (bud) k-times to C0 = q3. Then there is a homomorphism q3 → Ck, for any

k ≥ 2: it uses the S -chain before the T -node to accommodate s3. However, there is no homomorphism from q3 to C1

as s3 is too long. It follows that q3 ∨ C1 is an FO-rewriting of (covA, q3), where we treat C1 as a CQ. It is to be noted

that C1 has an A-node. In general, the UCQ q ∨ C1 ∨ · · · ∨ Cn−2 is an FO-rewriting of (covA, qn).

11

The following result should be compared to [44, Theorem 11] showing PSpace-hardness of FO-rewritability of

UCQs mediated by Schema.org ontologies. In our case, the expressive power of UCQs (used in [44] to polynomially

capture various different aspects of exponentially large structures) is not available, and so we had to develop a brand

new way of capturing all of these aspects by a single CQ.

Theorem 14. It is PSpace-hard to decide whether a given OMQ Q = (covA, q) with a (dag) 1-CQ q (having one

solitary F and two solitary Ts) is FO-rewritable.

The remainder of this section is dedicated to the proof of Theorem 14, which is by reduction of the PSpace-

complete acyclicity problem for succinct digraphs encoded as Boolean formulas [54]; see also [55, Claim 4.4]. We

will use the criterion for FO-rewritability of Theorem 12.

We remind the reader that a Boolean formula with variables x is a ditree ϕ(x) whose vertices are called gates. Leaf

gates are labelled by the variables from x = (x1, . . . , xn), where each variable xi can label several leaves of ϕ(x). Each

non-leaf gate g is either an AND-gate (having 2 children) or a NOT-gate (having 1 child), with the outgoing edge(s)

leading to the input(s) of g. Given an assignment α of F and T to the variables x of ϕ, we compute the value of each

gate in ϕ under α as usual in Boolean logic. We let ϕ[α] denote the truth-value of the root gate. The size |ϕ| of ϕ is the

number of its gates.

A digraph Gψ on 2k nodes from {F, T }k is succintly represented by a Boolean formula ψ(x, y) with |x| = |y| = k

in case (α, β) is an edge in Gψ iff ψ(α, β) = T , for any α, β ∈ {F, T }k. The acyclicity problem for succinct graphs

is to decide, given a succint representation ψ of Gψ, whether Gψ is acyclic or not. Clearly, Gψ is acyclic iff, for any

sequence α1, . . . , αm of more than 2k nodes in Gψ, there is i < m such that (αi, αi+1) is not an edge in Gψ. Our aim is,

given such a formula ψ, to construct a 1-CQ qψ such that |qψ| is polynomial in |ψ| and the following holds:

Lemma 14.1. For every sequence α1, . . . , αm of more than 2k nodes in Gψ, there is i < m with ψ(αi, αi+1) = F iff there

is d < ω such that every C ∈ Kqψ contains a homomorphic image of some unpruned C− ∈ Kqψ of depth ≤ d.

Theorem 14 is an immediate consequence of Theorem 12 and Lemma 14.1.

4.1. General plan

We fix ψ, and let q = qψ and Q = (covA, q). The 1-CQ q will be dag-shaped with one solitary F-node (called

the centre of q), two solitary T -nodes (tF and tT) and one FT -twin. The CQ q− is obtained from q by replacing the

F-label of its centre by A. All leaf segments in unpruned cactuses different from q are of this form. Also, q will be

such that

if h : C → C′ is a homomorphism for some cactuses C,C′ ∈ KQ, then

the only solitary F-node in C is mapped by h to the only solitary F-node in C′. (11)

The (copy of the) centre of q is also called the centre of s, for any segment s occurring in cactuses in KQ. Since our

1-CQs do not contain A-nodes, (11) implies that if h : C → C′ is a homomorphism for some cactuses C,C′ ∈ KQ, then

for every segment s in C, the centre of s should be mapped by h to the centre of some segment s′ in C. So we say that

h maps s into s′ if h maps the centre of s to the centre of s′. Observe that (11) also implies that

if h : C → C′ is a homomorphism for some cactuses C,C′ ∈ KQ, then

h maps the root segment of C into the root segment of C′. (12)

4.2. Encoding path-cactuses and graph-node sequences by FT-sequences

An FT -sequence (of length k ≤ ω) is any element of {F, T }k. Given 1 ≤ i ≤ j ≤ k, we call (αi, αi+1, . . . , α j−1, α j)

a subsequence of (α1, . . . , αk). Since q has two solitary T -nodes (tF and tT), we can regard the skeleton Cs of any

unpruned path-cactus C ∈ KQ as an FT -sequence, according to which T -nodes were budded at each segment. Con-

versely, for every finite FT -sequence δ, there is a uniquely determined unpruned path-cactus C ∈ KQ such that δ = Cs.

Given a (finite or infinite) sequence α = (α1, α2, . . .) of nodes in Gψ (with each of αi being a k-long FT -sequence),

we encode α by an FT -sequence as follows. First, for each i, let α′
i

be obtained from αi by writing each letter

12

twice. Then we encode α by the FT -sequence FTα′
1
FTα′

2
. . . . We call a 4k + 4-long FT -sequence correct if it is a

subsequence of an encoding of some graph-node sequence α.

Given ψ (with 2k variables), it is straightforward to define another Boolean formula ϕψ of size polynomial in |ψ|
and with 4k + 4 variables such that, for every 4k + 4-long FT -sequence δ, we have ϕψ(δ) = T iff either δ is incorrect,

or δ = FTα′FTβ′ for some α, β ∈ {F, T }k with ψ(α, β) = F (that is, (α, β) not being an edge of the graph Gψ).

The co-depth of a segment s in a path-cactus C is the length (number of edges) of the path in Cs starting at s. We

want to ensure the following:

Lemma 14.2. For any unpruned path-cactus C ∈ KQ and segment s of co-depth ≥ 4k + 4 in Cs, the following hold:

(i) There is a homomorphism h : q− → C mapping q− into s iff ϕψ(P4k+4
s,C) = T for the 4k + 4-long FT-sequence

P4k+4
s,C starting at the child of s in Cs.

(ii) If there is a homomorphism h : q− → C mapping q− into some s with node ti budded and t j not budded in s, for

i, j ∈ {F, T }, then h can be chosen so that h(ti) = θ and h(t j) = t j, where θ is the FT-node in s.

4.3. Proof of Lemma 14.1 using Lemma 14.2

(⇐) Suppose there is a sequence α1, . . . , αm of more than 2k nodes in Gψ such that ψ(αi, αi+1) = T for every i < m.

As Gψ has 2k nodes and m > 2k, there is i < m with αm = αi. Let β∞ be the infinite periodic graph-node sequence

obtained by repeating αi, αi+1, . . . , αm, and let δ∞ encode β∞ as above. Given d < ω, let δ be the d + 4k + 5-long

prefix of δ∞. Let Cd be the unpruned path-cactus such that Cs
d
= δ. Then ϕψ(P4k+4

s,Cd
) = F holds for every segment s of

co-depth ≥ 4k + 4 in Cs
d
. As any segment s′ of depth ≤ d in Cs

d
is of co-depth ≥ 4k + 4, by Lemma 14.2 (i), there is no

homomorphism from q− to Cd mapping q− into any segment s′ of Cd of depth ≤ d.

It follows that no unpruned cactus C− of depth ≤ d can be homomorphically mapped to Cd. Indeed, suppose on

the contrary that there is a homomorphism h from C− to Cd. Take some leaf segment s of C−. By (12), s (and so q−)

should be mapped by h into some segment s′ of Cd whose depth is ≤ d in Cs
d
, which is a contradiction.

(⇒) Suppose that, for any sequence α1, . . . , αm of more than 2k nodes in Gψ, there is i < m with ψ(αi, αi+1) = F.

Then any α ∈ {F, T }ℓ for ℓ ≥ (2k + 1) · (2k + 2) must contain a 4k + 4-long subsequence δ such that ϕψ(δ) = T (as

either there is a 4k + 4-long subsequence of δ that is incorrect, or there is one encoding a pair (α, β) of nodes in Gψ

with ψ(α, β) = F). Set d = (2k + 1) · (2k + 2), and consider some cactus C of depth > d. We cut each of its branches at

some depth ≤ d, and show that the resulting cactus C− can be mapped homomorphically into C.

To this end, let B be a path-cactus corresponding to some branch of C such that Bs is longer than d. We cut B at

some depth ≤ d, and show that the resulting cactus C′ can be mapped homomorphically into C. As Bs is longer than

d, the d-long prefix of Bs must contain a 4k + 4-long subsequence δ such that ϕψ(δ) = T . Let sB be the segment in Bs

corresponding to the letter preceding the first letter of δ. Then the depth of sB is < d inBs, its co-depth is ≥ 4k+4, and

δ = P4k+4
sB,B

. Thus, by Lemma 14.2 (i), there is a homomorphism hB : q− → B mapping q− into sB. Let C′ be obtained

from C by cutting B at sB. Let sC′ and sC be the respective segments in C′ and C corresponding to sB. If sC = sB
then, by taking hB on sC′ = q− and the identity map on all other segments, we obtain a C′ → C homomorphism.

So suppose that sC′ , q−, t j is the budded T -node and ti is the unbudded T -node in sC′ . Then ti is budded and t j is

unbudded in sB, and both ti and t j are budded in sC. By Lemma 14.2 (ii), hB can be chosen such that it is a sC′ → C

homomorphism mapping sC′ into sC. So, by taking hB on sC′ and the identity map on all other segments, we again

obtain a C′ → C homomorphism. If C′ still has branches longer than d, we repeat the above process for a long branch

in C′ to obtain a C′′ → C′ homomorphism for some C′′, and so on. Sooner or later, we obtain a cactus C− of depth

≤ d homomorphically mapping into C.

4.4. Query-design

Now we design a 1-CQ q satisfying (11) and Lemma 14.2. Apart from one F-node, two T -nodes and one FT -twin,

it has nodes labelled by unary predicates B, D, E, and Bi j, for some i, j, and edges labelled by binary predicates R and

S . The extra unary labels are just syntactic sugar in the sense that any node a labelled by, say B, can be regarded as a

shorthand for a B-edge (a, a′) to some fresh node a′. To simplify notation, in our pictures we omit the R-labels from

R-arrows. Letters other than upper case italics (lower case italics and bold) are used as pointers to certain nodes, and

do not denote predicates in q.

13

r F

BT tFu TtT FT

B

v

S
S

S

S

Figure 1: Block qbase of the 1-CQ q.

We assemble q from three blocks shown in Figures 1–3 by glueing node u of qvar in Fig. 3 to node u in qbase in

Fig. 1, and node v of qform in Fig. 2 to node v in qbase.

The block qform encodes the formula ϕψ(x1, . . . , xn) for n = 4k + 4 as follows. With each non-leaf gate g in ϕψ we

associate a fresh copy of its gadget in the lower part of Fig. 2. Here, by (D) we mean that the label D is only present

when the gate in question is the root gate of ϕψ. For each i, we let ki denote the number of leaves in the ditree ϕψ with

label xi. Then each branch of ϕψ can be characterised by a pair (i, j) such that the leaf node of the branch is labelled

by the jth copy x
j

i
of the variable xi for some 1 ≤ i ≤ n and 1 ≤ j ≤ ki. When the inputs of some AND-gate g are

gates g1 and g2 then, for each m = 1, 2, if gm is a non-leaf gate, we merge node o of the gm-gadget with node im of the

g-gadget; and if gm is labelled by x
j

i
, we merge node im of the g-gadget with the lower Bi j -node in the upper part of

Fig. 2. We proceed similarly with NOT-gates as well.

v

B11 . . .
Bnkn

B11 Bnkn

gate gadgets of ϕψ

NOT-gate gadget

i

(D)

o

S

S

AND-gate gadget

i1 i2

b

(D)

o

c3

c1 c2
E

E

E E

S S

S S

S S

SS

Figure 2: Block qform of the 1-CQ q.

The third block qvar encodes the input for the variables x1, . . . , xn in ϕψ as follows. First, its root u branches out to

n + 1 branches b1, . . . , bn+1 in Fig. 3:

(a) Branch bn+1 begins with a chain of n + 2 R-edges whose last two nodes are labeled by B. Each of these two

B-nodes has an R-edge to the same node z.

14

(b) Branch bi starts with i − 1 R-edges, then one S -edge, followed by a chain of n − i + 2 R-edges whose last node

is labeled by B. This last B node also has an R-edge leading to the z node in (a), and it also branches out to

further ki branches b1
i , . . . , b

ki

i
, with b

j

i
corresponding to the occurrence x

j

i
of xi among the leaf-labels in ϕψ,

for 1 ≤ j ≤ ki. For each j, let g1
i j
, . . . , g

di j

i j
be the sequence of non-leaf gates from leaf to root on the branch

with leaf x
j

i
. Then b

j

i
starts with two R-edges with the end-node of the second one being labelled by Bi j, and

it continues with a three-step RSR edge-pattern repeated di j times; see the left-hand side of Fig. 3. The first

pattern corresponds to the gate g1
i j

, the second one to g2
i j

etc., so the last pattern corresponds to the root gate of

ϕ. The last node of this last pattern is labelled by D.

(c) For each AND-gate g of the formula ϕψ, we add a fresh node wg labelled by E to qvar. For every RSR-pattern

corresponding to some occurrence gℓ
i j

of g, we add an edge from the end-node of the S -edge of the pattern to

wg (and so occurrences corresponding to the two inputs of the same AND-gate are ‘connected’).

It is not hard to see that |q| is polynomial in |ϕψ|, and so in |ψ|. Property (11) holds because the F-node does have

S -successors, while the FT -node does not.

4.5. Proof of Lemma 14.2

Fix some unpruned path-cactus C ∈ KQ and a segment s of co-depth ≥ 4k+4 in Cs, and let P4k+4
s,C be the 4k+4-long

FT -sequence starting at the child of s in Cs.

(i) (⇐) and (ii): Suppose h : q− → C is a homomorphism mapping q− into s. By (11), the centre of q− should be

mapped by h to the centre of s (which is node r in its base block qbase). Since one of the nodes tF or tT in s is the bud

ti (and so not labelled by T in s), we have h(ti) = θ for the FT -node θ of s. As node u has a common successor with

both tF and tT , and it also has (many) two-step successors (in qvar), we have h(u) = ti. Observe that, for the unbudded

T -node t j in s, we have a choice: h(t j) might be either t j or θ. We obtain (ii) by choosing the former.

Next, we examine the h-image of the descendants of u in qvar. As n = 4k+4, we consider the n-long FT -sequence

P4k+4
s,C as an assignment for the variables x1, . . . , xn in ϕψ. As branch bn+1 in qvar contains two R-consecutive B-nodes

at R-distance n+ 1 from u, h must map these two B-nodes to the two B-nodes in the qbase-block of the segment s′ of C

at the end of P4k+4
s,C . Thus, h(z) must be the common R-successor of these two B-nodes in s′. Therefore, the B-node in

bi, for every i ≤ n, must also be mapped to one of the two B-nodes in the qbase-block of s′. However, which of these

two B-nodes is the image depends on the truth-value of P4k+4
s,C on xi:

(a) If P4k+4
s,C maps xi to F, then the ith application of (bud) in P4k+4

s,C is at some copy of tF that is reachable from r

via an S -step. So the B-node in bi is mapped to the lower B-node v in the qbase-block of s′.

(b) If P4k+4
s,C maps xi to T , then the ith application of (bud) in P4k+4

s,C is at a copy of tT that is reachable from r via an

S -step followed by an R-step only. So the B-node in bi is mapped to the upper B-node in the qbase-block of s′.

It remains to see how h maps the remaining part of qvar into the qform-block of s′. We claim that for every non-leaf

gate g in ϕψ, if gℓ
i j

is an occurrence of g on some branch, then the end-node pℓ
i j

of the RS R-pattern corresponding to

gℓ
i j

in qvar is mapped to the qform-block of s′ in such a way that

(c) h(pℓ
i j

) is the o-node of the gadget for g whenever the value of g under P4k+4
s,C is F;

(d) h(pℓ
i j

) is the (D)-node of the gadget for g whenever the value of g under P4k+4
s,C is T .

We prove this by induction on the tree-structure of ϕψ, going from leaves to root. Consider an occurrence gℓ
i j

of a gate

g. Suppose first that g is a NOT-gate.

Case ℓ = 1. If the value of g under P4k+4
s,C is F, then P4k+4

s,C maps xi to T , and so by (b) the Bi j-node of branch b
j

i
is

mapped by h to the upper Bi j-node in the qform-block of s′. So the first R-edge of the RS R-pattern corresponding

to g1
i j

is mapped to the R-edge connecting the two Bi j-nodes. And then the subsequent S - and R-edges of the

pattern must be mapped to the right-hand side of the g-gadget starting from its i-node. So h(p1
i j

) is its o-node. If

15

b1 b2 bi bn bn+1

u

.

...

...

B

...

...

B

B

z

S

i − 1

n − i

n + 2

Bi1 Bi j Biki

p1
i j

...

pℓ
i j

...
...

wg

E

...

b
j

i

D

Sg1
i j

Sgℓ
i j

Sg
di j

i j

S gℓ
′

i′ j′
if gℓ

i j
and gℓ

′

i′ j′
are the same AND-gate g

.

Figure 3: Block qvar of the 1-CQ q.

16

the value of g under P4k+4
s,C is T , then P4k+4

s,C maps xi to F, and so by (a) the Bi j-node of branch b
j

i
is mapped by h

to the lower Bi j-node in the qform-block of s′. So the whole RS R-pattern corresponding to g1
i j

must be mapped to

the left-hand side of the g-gadget starting from its i-node, and so h(p1
i j

) is its (D)-node (otherwise the mapping

cannot be ‘continued’ when g1
i j

is a non-root gate, and h would not preserve D when g1
i j

is the root-gate).

Case ℓ > 1. Then gℓ−1
i j

is an occurrence of the non-leaf gate g− that is the input of g. So if the value of g under P4k+4
s,C

is F, then the value of g− under P4k+4
s,C is T . By IH, h(pℓ−1

i j
) is the (D)-node of the gadget for g−. Thus, the first

R-edge of the RS R-pattern corresponding to gℓ
i j

is mapped to the R-edge connecting the (D)- and o-nodes of the

g−-gadget. And then the subsequent S - and R-edges of the pattern must be mapped to the right-hand side of the

g-gadget. So h(pℓ
i j

) is its o-node. If the value of g under P4k+4
s,C is T , then the value of g− under P4k+4

s,C is F. Then

by the IH, h(pℓ−1
i j

) is the o-node of the gadget for g−. So the whole RS R-pattern corresponding to gℓ
i j

must be

mapped to the left-hand side of the g-gadget starting from its i-node, and so H(pℓ
i j

) is its (D)-node.

Now suppose g is an AND-gate. There are many cases, depending on the truth-values of g and its inputs g1 and g2

under P4k+4
s,C , and on whether each of the gi is a leaf gate or not. We consider two of them as the other ones are similar.

– Suppose the value of g under P4k+4
s,C is F, ℓ = 1 (and so g1 is a leaf labelled by xi), and P4k+4

s,C maps xi to T .

Suppose g2 is also a leaf gate, and so g2 has value F under P4k+4
s,C . Let g1

i′ j′
be an occurrence of g2. By (b),

the Bi j-node of branch b
j

i
is mapped by h to the upper Bi j-node in the qform-block of s′. So the first R-edge of

the RS R-pattern corresponding to g1
i j

is mapped to the R-edge connecting the two Bi j-nodes. Thus, the S -edge

of the RS R-pattern corresponding to g1
i j

must be mapped to an S -edge starting at the i1-node of the g-gadget.

Similarly, by (a), the Bi′ j′ -node of branch b
j′

i′
is mapped by h to the lower Bi′ j′ -node in the qform-block of s′.

So the S -edge of the RS R-pattern corresponding to g1
i′ j′

must be mapped to an S -edge following an R-edge

starting at the i2-node of the g-gadget. As h preserves E, the end-nodes of these two S -edges in the g-gadget

must coincide, and so it must be node c1. So h(p1
i j

) is the o-node of the g-gadget.

– Suppose the value of g under P4k+4
s,C is T , and both of its inputs are non-leaf gates having value T under P4k+4

s,C .

Suppose gℓ−1
i j

is an occurrence of g1 and gℓ
′

i′ j′
is an occurrence of g2. By IH, h(pℓ−1

i j
) is the (D)-node of the gadget

for g1, and h(pℓ
′

i′ j′
) is the (D)-node of the gadget for g2. Then the S -edges of the RS R-patterns corresponding

to gℓ−1
i j

and gℓ
′

i′ j′
must be mapped, respectively, to S -edges starting at the i1- and i2-nodes of the g-gadget. As h

preserves E, the end-nodes of these two S -edges in the g-gadget must coincide, and so it must be node b. Thus,

h(pℓ
i j

) is the (D)-node of the g-gadget, as required.

This completes the proof of (c) and (d). As h preserves D, it follows that ϕψ(P4k+4
s,C) = T .

(i) (⇒): If ϕψ(P4k+4
s,C) = T , then we define a function h : q− → C by taking h(t) = θ, where the copy of t in s is

budded, and θ is the FT -node in s; h(u) = t for the budded T -node t in s; mapping the descendants of u in qvar to

segments subsequent to s in C following the structure of ϕψ, as described in the (⇐) direction above; and mapping

any other nodes in q− to their own copies in s. It is easy to see that h is a homomorphism mapping q− into s.

5. Linear-Datalog-Rewritability of OMQs with a 1-CQ

We next obtain a sufficient semantic condition of linear-datalog-rewritability of OMQs Q = (T , q) with a 1-CQ

q. The branching number [28] of a rooted tree T is defined as follows. For any node u in T, we define inductively its

branching rank br(u) by taking br(u) = 0 if u is a leaf and, for a non-leaf u,

br(u) =

m + 1, if u has ≥ 2 children of branching rank m;

m, otherwise.
(13)

Then the branching number of T is the branching rank of its root node. (In other words, the branching number of T

is b if the largest full binary tree that is a minor of T is of depth b.) The branching number of a cactus C ∈ KQ is the

branching number of Cs.

17

A cactus C ∈ KQ is called minimal if we cannot apply (prune) to it (that is, if by omitting any of the T -labels from

C, the resulting ABox C− is such that T ,C− 6|= q). Let Kmin
Q

be the set of minimal cactuses in KQ. We say that Kmin
Q

is

boundedly branching if there is some b < ω such that Kmin
Q

contains a cactus with branching number b but no cactus

of greater branching number. Otherwise, we call Kmin
Q

unboundedly branching.

Example 15. Consider Q = (cov⊤, qFT.T) with qFT.T depicted below (the omitted labels on the edges are all R):

F T T

In the next picture, we show a cactus C obtained by applying (bud) twice to qFT.T (with A = ⊤ omitted):

F T

z

T

T T

Clearly, cov⊤,C\ {T (z)} |= qFT.T , and so (prune) would remove T (z) from C. Using this fact, one can show that every

cactus in Kmin
Q

has branching number ≤ 1. On the other hand, if Q = (covA, qFT.T) then Kmin
Q

is unboundedly branching

by Theorems 16 and 20.

Theorem 16. For any OMQ Q = (T , q) with a 1-CQ q, if Kmin
Q

is boundedly branching, then Q is linear-datalog-

rewritable, and so is in NL.

Proof. Similarly to [32], we represent cactus-like ABoxes as terms of a tree alphabet and construct a tree automaton

AQ such that (i) cactuses in Kmin
Q

are accepted by AQ, and (ii) for every ABoxA accepted by AQ, we have T ,A |= q.

Then, using ideas of [28], we show that if Kmin
Q

is boundedly branching, then the automaton AQ can be transformed

into a (monadic) linear-stratified datalog rewriting of Q. As shown in [38], such a rewriting can further be converted

into a linear datalog rewriting (at the expense of increasing the arity of IDB predicates in the program).

We only consider the case T = covA, as the case when T = cov
⊥
A

is similar. Recall from [56] that a tree alphabet

is a finite set Σ of symbols, each of which is associated with a natural number, its arity. A Σ-tree is any ground

term built up inductively, using the symbols of Σ as functions: 0-ary symbols in Σ are Σ-trees and, for any k-ary a

in Σ and Σ-trees C1, . . . ,Ck, the term a(C1, . . . ,Ck) is a Σ-tree. We define a tree alphabet ΣQ as follows. Consider

cactus-like ABoxes that are built from q using (bud) and (prune), with applications of the latter also being allowed

when covA,C
− 6|= q for the resulting ABox C−. The symbols of ΣQ are the segments s of such cactus-like ABoxes,

with the arity of s being the number of its budding nodes, and with the x-node of s being either labelled by F or not.

Then each cactus in KQ can be encoded by some ΣQ-tree; see Fig. 4 for an example. On the other hand, every ΣQ-tree

represents some cactus-like ABox. So, with a slight abuse of terminology, from now on by a ΣQ-tree we mean either

the term or the corresponding ABox.

However, such an ABox C is not necessarily a cactus for two kinds of reasons: either covA,C 6|= q or Cmight have

F-nodes in some ‘wrong’ segments (in every cactus, there is a unique F-node: the x node of its root segment). We are

interested in those ΣQ-trees C for which covA,C |= q. To capture them, we use tree automata [56]. A nondeterministic

finite tree automaton (NTA) over a tree alphabet Σ is a quadruple A = (Q,Q f ,∆,Σ), where

– Q is a finite set of states,

– Q f ⊆ Q is a set of final states, and

– ∆ is a set of transitions of the form q1, . . . , qk ⇒
a q, where k is the arity of a ∈ Σ and q1, . . . , qk, q ∈ Q; for

symbols a of arity 0, we might have initial transitions of the form⇒a q.

A run of A on a Σ-tree C is a labelling function r from the subterms of C to Q satisfying the following condition: for

any subterm C− = a(C1, . . . ,Ck) of C, there is a transition q1, . . . , qk ⇒
a q in ∆ such that r(C1) = q1, . . . , r(Ck) = qk

18

F
x

T
y1

T
y2

1-CQ q

0-ary: (F)

T T

(F)

T

(F)

T

(F)

1-ary: (F)

A T

(F)

A

(F)

T A

(F)

A

2-ary:

symbols of ΣQ

(F)

A A

s1
(

s2, s3(s2)
)

s1

F

A A

s2

T T

s3

T A

s2

T T

Figure 4: An example of a tree alphabet ΣQ, and a cactus as a ΣQ-tree.

and r(C−) = q (in which case we say that the transition is used in r). A Σ-tree C is accepted by A if there is a run of

A on C that labels C with a final state. Let L(A) be the set of all Σ-trees accepted by A. A set L of Σ-trees is called a

regular tree language if L = L(A), for some NTA A over Σ.

Lemma 16.1. LQ = {C | C is a ΣQ-tree with covA,C |= q} is a regular tree language.

Proof. We proceed via a series of steps. Suppose q is a 1-CQ such that F(x) and T (y1), . . . , T (yn) are all of the solitary

occurrences of F and T in q. We want to use Theorem 9 for describing LQ. Recall the datalog program ΠQ given by

(6)–(8) above. We extend the tree alphabet ΣQ to a tree alphabet Σe
Q

as follows. For each symbol s in ΣQ, we label

some (possibly none) of the nodes in segment s by P. We call each resulting ‘segment’ se an extension of s. (Each

symbol in ΣQ might have several extensions, and each of them has the same arity as s.) Let Σe
Q

consist of all possible

extensions of every s in ΣQ. We say that a Σe
Q

-tree Ce is an extension of a ΣQ-tree C if they have isomorphic tree

structures, and each symbol se in Ce is an extension of the corresponding symbol s in C. For example, the closure

ΠQ(C) of any ΣQ-tree C under ΠQ is an extension of C.

For any Σe
Q

-tree Ce, we write Ce |= G, for the goal predicate G of ΠQ, if there is a homomorphism from qe to Ce,

where qe = q \ {T (y1), . . . , T (yn)} ∪ {P(y1), . . . , P(yn)}. We claim that each of the following is a regular tree language:

19

(a) the set of Σe
Q

-trees Ce with Ce
, ΠQ(Ce);

(b) the set of Σe
Q

-trees Ce with Ce |= G;

(c) the set of ΣQ-trees C that have some extension Ce with Ce = ΠQ(Ce) and Ce 6|= G;

(d) the set of ΣQ-trees C with ΠQ,C |= G.

Indeed, to show (a), we need an NTA ‘detecting a pattern’ in the ABox Ce falsifying one of rules (7)–(8) in ΠQ.

Similarly, to show (b), we need an NTA ‘detecting a pattern’ in Ce corresponding to an application of rule (6) in

ΠQ. Now, (c) follows from (a), (b) and the fact that regular tree languages are closed under taking complements,

intersections and linear homomorphisms [56] (as the ‘forgetting’ function substituting s for each se is a linear tree

homomorphism from Σe
Q

-trees to ΣQ-trees, mapping any extension Ce to C.) To show (d), take the complement of (c),

and observe that ΠQ,C |= G iff, for every extension Ce of C, whenever Ce = ΠQ(Ce) then Ce |= G.

Finally, it follows from (d) and Theorem 9 that LQ is a regular tree language. ❑

An NTAA = (Q,Q f ,∆,Σ) is stratified if there is a function st : Q→ ω such that, for any transition q1, . . . , qk ⇒
a q

in ∆,

– st(qi) ≤ st(q), for every i, 1 ≤ i ≤ k, and

– there is at most one i such that 1 ≤ i ≤ k and st(qi) = st(q).

Lemma 16.2. For any NTA A and any b < ω, there is a stratified NTA As such that

{C ∈ L(A) | the braching number of C is ≤ b} ⊆ L(As) ⊆ L(A). (14)

Proof. Suppose A = (Q,Q f ,∆,Σ). We define As = (Qs,Qs
f
,∆s,Σ) as follows. First, set Qs = Q × {0, . . . , b} and

Q f = Q f × {0, . . . , b}. Then, for any transition of the form⇒a q in ∆, we add the transition⇒a (q, 0) to ∆s. For any

transition q1, . . . , qk ⇒
a q in ∆ and any m ≤ b, we add to ∆s all transitions (q1,m1), . . . , (qk,mk)⇒a (q,m) such that

– either m1, . . . ,mk < m and mi = m j = m − 1, for some i , j;

– or mi = m, for some i, and m j < m, for all j , i.

As is stratified as one can set st
(

(q,m)
)

= m, for q ∈ Q, m ≤ b. To show (14), observe that L(As) ⊆ L(A) since from

every run r of As on C we obtain a run of A on C by replacing each transition (q1,m1), . . . , (qk,mk) ⇒a (q,m) used in

r with q1, . . . , qk ⇒
a q. For the other inclusion, given a run r of A on some C with branching number ≤ b, we obtain a

run of As on C by labelling each subterm C− of C with state
(

r(C−), b−
)

, where b− is the branching number of C−. ❑

We can now complete the proof of Theorem 16. Indeed, suppose that every cactus in Kmin
Q

has branching number

≤ b < ω. By Lemmas 16.1 and 16.2, there is a stratified NTA A = (Q,Q f ,∆,ΣQ) such that

{C ∈ LQ | the branching number of C is ≤ b} ⊆ L(A) ⊆ LQ.

Using A, we construct a (monadic) linear-stratified program ΠA with goal predicate GA as follows. For every q ∈ Q,

we introduce a fresh unary predicate Pq. For every final state q ∈ Q f , ΠA contains the rule

GA ← Pq(x). (15)

For every transition q1, . . . , qk ⇒
s q in ∆, where the budding nodes in the k-ary segment s are yi1 , . . . , yik , ΠA contains

Pq(x)← s, Pq1
(yi1), . . . , Pqk

(yik). (16)

As A is stratified, it is easy to see that the programΠA is linear-stratified. We claim that (ΠA,GA) is a datalog-rewriting

of Q, that is, for any ABoxA (without the Pq), we have ΠA,A |= GA iff covA,A |= q.

(⇐) By Theorem 9, there is a homomorphism h : C → A, for some C ∈ KQ. Clearly, we may assume C ∈ Kmin
Q

,

and so C has branching number ≤ b. As covA,C |= q by (10), it follows that C ∈ LQ, and so C ∈ L(A). Let r be

20

an accepting run of A on C. We construct a derivation of GA in ΠA(A) by induction on C as a ΣQ-tree, moving from

leaves to the root. For every segment s in C, if the transition q1, . . . , qk ⇒
s q is used in r then we apply (16) with the

substitution of h(z) for any node z in s. Also, if r(C) = q, for some final state q of A, then we apply (15) with the

substitution h(xs0), where xs0 is the x-node of the root segment s0 in C. It follows that ΠA,A |= GA.

(⇒) By induction on a derivation of GA, we construct a ΣQ-tree B, an accepting run r of A on B, and a homomor-

phism f : B → A. To begin with, there is an object xa for which (15) was triggered for some q ∈ Q f . Then Pq(xa)

was deduced by an application of (16) for some s. If this s is 0-ary, then s is a ΣQ-tree (of depth 0), the function r

labelling s with q is an accepting run on s, and the substitution f0 used in (16) is a homomorphism from s toA. If s is

k-ary, for some k > 0, then there are ya
i1
, . . . , ya

ik
for which (16) was triggered. For each j = 1, . . . , k, consider the rule

Pq j
(x)← s j, P

q
j

1

(yi1), . . . , P
q

j

k j

(yik j
)

by which Pq j
(ya

i j
) was deduced. Take the ABox B built up by glueing the x node of each segment s j to the yi j

node of

s, extend r by labelling each s j with q j, and extend f0 to a B → A homomorphism by taking the substitutions used in

the rules. Now, if every s j is 0-ary, then B is a ΣQ-tree and we are done. Otherwise, repeat the above procedure for the

‘arguments’ of each s j of arity > 0. As the derivation of GA is finite, sooner or later the procedure stops, as required.

As B ∈ L(A) ⊆ LQ, by Theorem 9 there exists a homomorphism h : C → B, for some cactus C ∈ KQ. Then the

composition of h and f is a homomorphism from C toA, and so we covA,A |= q by Theorem 9, as required. ❑

We do not know whether this sufficient condition of linear-datalog-rewritability of OMQs with a 1-CQ is also a

necessary one. As follows from [28, 53], it is the case for ditree 1-CQs with root labelled by F; see Example 11.

6. AC0/NL/P/coNP-Tetrachotomy of OMQs with a Path CQ

In this section, we focus on the OMQs (covA, q) with a twinless path CQ q. So from now on, solitary F-nodes

(T -nodes) in q will simply be called F-nodes (T -nodes). Our aim is to obtain a complete syntactic classification of

these OMQs according to their data complexity and rewritability type.

We begin by dividing twinless path CQs into three disjoint classes: the 0-CQs and the 1-CQs, which have been

defined earlier, and the 2-CQs that contain at least two F-nodes and at least two T -nodes. We split 1-CQs into two

further classes that can be defined by an easily checkable syntactic condition as follows. We denote the first (root)

node in q by s and the last (leaf) node by e. We write x � y to say that there is a path from x to y in q, and x ≺ y

whenever x � y and x , y. If x � y, then [x, y] comprises those atoms in q whose variables are in the interval

{z | x � z � y}; further, (x, y] = [x, y] \ {T (x), F(x)}, [x, y) = [x, y] \ {T (y), F(y)} and (x, y) = [x, y) \ {T (x), F(x)}.

Now let x−l ≺ · · · ≺ x−1 ≺ x0 ≺ x1 ≺ · · · ≺ xr be all the F- or T -nodes in q, with x0 being the only F-node and

l + r ≥ 1. We denote this 1-CQ by qlr . Let ri = (xi−1, xi), where x−l−1 = s and xr+1 = e.

s
qlr

T

x−l

T T

x−1

F

x0

T

x1

T T T

xr e

r−l r0 r1 rr+1

We write ri ❀ r j if there is a homomorphism h : ri → r j with h(xi−1) = x j−1 and h(xi) = x j. We call qlr right-periodic

if l = 0 and ri ❀ r1 for all i = 1, . . . , r. By taking a mirror image of this definition, we obtain the notion of left-

periodic 1-CQ, in which case r = 0 and r−i ❀ r0 for all i = 1, . . . , l. A 1-CQ q is periodic if it is either right- or

left-periodic, and non-periodic otherwise. (Similar notions can be defined for 1-CQs with a single T -node and at least

one F-node.)

Theorem 17 (tetrachotomy). For any Q = (covA, q) with a twinless path CQ q, the following hold:

(1) if q is a 0-CQ, then Q is in AC0;

(2) if q is a periodic 1-CQ, then Q is NL-complete;

(3) if q is a non-periodic 1-CQ, then Q is P-complete;

(4) if q is a 2-CQ, then Q is coNP-complete.

21

Item (1) is shown in Theorem 4 (i). The other two upper bounds follow from Corollary 10 and Theorem 19. The

lower bounds follow from Theorems 18, 20 and 21.

We begin with the following criterion:

Theorem 18. If q is a twinless path 1-CQ, then (covA, q) and (cov
⊥
A
, q) are NL-hard.

Proof. The proof is by an FO-reduction of the NL-complete reachability problem for dags. We assume that there exist

a T -node x and an F-node y in q with x ≺ y (the other case is symmetric) and without any F- or T -nodes between

them. Given a digraph G = (V, E) with nodes s, t ∈ V , we construct an ABox AG as follows. Replace each edge

e = (u, v) ∈ E by a fresh copy qe of q such that node x in qe is renamed to u with T (u) being replaced by A(u), and

node y is renamed to v with F(v) being replaced by A(v). Then AG comprises all such qe, for e ∈ E, as well as T (s)

and F(t). We show that s→G t iff covA,AG |= q.

(⇒) Suppose there is a path s = v0, . . . , vn = t in G with ei = (vi, vi+1) ∈ E, for i < n. Then, for any model I of

covA and AG, there is some i < n such that vi ∈ TI and vi+1 ∈ FI. Thus, the identity map from q to its copy qei is a

q→ I homomorphism, and so I |= q.

(⇐) Suppose s 6→G t. Define a model I of covA andAG by labelling by T the undecided A-nodes in AG that are

reachable from s (via a directed path) and by F the remaining ones. It is easy to see that there is no homomorphism

from q to I. ❑

By Corollary 10, all OMQs Q with a 1-CQ q are datalog-rewritable and lie in P. Our next task is to show that

every such OMQ with a twinless path q is either linear-datalog-rewritable, and so NL-complete, or P-hard.

Theorem 19. If q is a periodic twinless path 1-CQ, then Q = (covA, q) is linear-datalog-rewritable, and so lies in NL.

Proof. It is not hard to either construct an explicit linear datalog-rewriting of Q or show that every cactus in Kmin
Q

has

branching number at most 1 and use Theorem 16. Here, we sketch a proof of the latter.

We only consider q0r. Suppose C ∈ Kmin
Q

. Note first that if, in a segment s of C, some T -node x has been

pruned (that is, its label T removed), then all the T -nodes y with x ≺ y in s (if any) can also be pruned, contrary to

the minimality of C. (To see this, consider any model I of T and C, in which all the A-nodes in the submodel Ix

generated by x are in TI. Let h be a homomorphism from q0r to I. Let C′ result from C by pruning all the T -nodes y

with x ≺ y and let I′ be the restriction of I to C′. Then h is also a homomorphism from q0r to I′.)

Consider any branch s0, . . . , sn of segments in C with the maximal number of nodes between the root of s0 and the

leaf of sn. By this choice, sn−1 cannot have any A-nodes after (w.r.t. ≺) the root of sn. We claim that sn contains all of

its T -nodes. Indeed, suppose at least one of them has been pruned. Then it is readily seen that the root of sn in sn−1

can also be pruned (consider the models I of T and C in which this root is in FI), contrary to the minimality of C.

Now, letA be the subgraph of C comprising the nodes on this branch (with all of their labels). It is not hard to check

that T ,A |= q0r . It follows that all the T -nodes that are not on the branch should have been pruned. ❑

We next show that the OMQs with 1-CQs not covered by Theorem 19 are all P-hard.

Theorem 20. Let q = qlr be a twinless path 1-CQ such that one of the following conditions holds: (i) l, r ≥ 1, or (ii)

l = 0 and q0r is not right-periodic, or (iii) r = 0 and ql0 is not left-periodic. Then (covA, qlr) is P-hard.

Proof. Each of the cases (i)–(iii) is proved by an FO-reduction of the monotone circuit evaluation problem, which is

known to be P-complete. We remind the reader that a monotone Boolean circuit is a directed acyclic graph C whose

vertices are called gates. Gates with in-degree 0 are input gates. Each non-input gate g is either an AND-gate or an

OR-gate, and has in-degree 2 (with the edges coming from the inputs of g). One of the non-input gates is distinguished

as the output gate. Given an assignment α of F and T to the input gates of C, we compute the value of each gate in C

under α as usual in Boolean logic. The output C(α) of C on α is the truth-value of the output gate.

(ii) Let l = [s, x0), let n > 1 be minimal with rn 6❀ r1, s = rn, and let r = (xn, e]. Below we consider the case of

n = 3 only, but it should be clear how to modify the proof for other n. In this case, q0r may look as follows:

s

F

x0

T

x1

T

x2

T

x3 e

l r1 r2 s r

22

We distinguish between two cases: |s| > |r1| and |s| ≤ |r1|. Depending on the case, we use the following two

gadgets for AND-gates; the gadget for OR-gates is the same in both cases:

AND-gate for |s| > |r1|

c

A

A

a′

T

T

a
A

TA

b′

T

T

b

A

l

l

l r1

r1

r1

s

r

r1

r1

s

r

r1sr

for |s| ≤ |r1|

A

c

T

A

b

A

a

l
r1

r1

s r

OR-gate

A

c

T

T

a
A

T

T

b

A

l

r1

r1

s

r

r1

r1

s

r

Given a monotone circuit C and an assignment α, we construct an ABox AC,α as follows. With each non-input

gate g we associate a fresh copy of its gadget. When the inputs of g are gates ga and gb then, for each i = a, b, if gi

is a non-input gate, then we merge node c of the gadget for gi with the i-node in the gadget for g; and if gi is an input

gate, we replace the label A of i and i′ (if available) in the gadget for g with α(gi). Finally, we replace the label A of

node c in the gadget for the output gate with F. We claim that covA,AC,α |= q0r iff C(α) = T .

(⇐) is proved by induction on the number of non-input gates in C. The basis is obvious. For the induction step,

suppose the output gate g in C is an AND-gate with inputs ga and gb, at least one of which is a non-input gate. Let

I be an arbitrary model of covA and AC,α. If both a and b in the gadget for g are in TI, then it is easy to check that

we always have a q0r → I homomorphism, no matter what the labels of a′ and b′ (if available) are. It remains to

consider the case when either a or b is in FI, and so the corresponding gi is not an input gate. Take the subcircuit C−

of C whose output gate is gi. ThenAC− ,α is the sub-ABox ofAC,α with the c-node in the gadget for gi as its topmost

node, and A(c) replaced by F(c). Now, if I− is the restriction of I to AC− ,α (and so c ∈ FI
−

), then by IH there is a

q0r → I
− homomorphism, and so I |= q0r as well. The case when the output gate g in C is an OR-gate is similar.

(⇒) Suppose C(α) = F. To show covA,AC,α 6|= q0r, we define a model I of covA andAC,α inductively by labelling

the A-nodes in the gadget for each non-input gate g of C by FI or TI as follows: node c is labelled by the the truth-

value of g under α, while node i (and node i′ if applicable), for i = a, b, is labelled by the truth-value of gi under α,

where ga and gb are the inputs of g. Suppose, on the contrary, that there is a homomorphism h : q0r → I and consider

possible locations of h(x0) ∈ FI. Suppose first that |s| > |r1| and h(x0) is in some AND-gadget.

Case a, a′ ∈ TI, b, b′, c ∈ FI. If h(x0) = c, then h(x1) = a′ and, since b′ ∈ FI, the node h(x2) is the T -node

just below a′. But then, since |s| > |r1|, the node h(x3) must be strictly between a and the T -node above it, which is

impossible because there are no T -nodes there. We obviously cannot have h(x0) = b′ because b ∈ FI.

Case a, a′, c ∈ FI, b, b′ ∈ TI. If h(x0) = a′, then h(x1) is the central T -node. But then, since |s| > |r1|, the node

h(x2) must be strictly between b′ and the central T -node, which is impossible because there are no T -nodes there.

Case a, a′, b, b′, c ∈ FI is covered by the previous ones.

Suppose next that |s| ≤ |r1| and h(x0) = c is in some AND-gadget. Then h(x2) = b, provided that b ∈ TI

(otherwise such h is impossible), which means that a ∈ FI, and so h(x3) is located in some other gadget. However,

this is impossible because of the following. In every gadget, the ‘edges’ leaving node c are labelled by r1. So if

|s| < |r1| then h(x3) must be strictly between the c node of the gadget and the end-node of an r1-edge, but there are no

T -nodes there. If |s| = |r1| then s ❀ r1, contrary to s 6❀ r1.

Finally, if h(x0) = c is in some OR-gadget, then both a and b of the gadget are in F I , and so h(x3) ∈ FI, which is

a contradiction. (i) is similar to (ii).

(iii) In our reduction, we require four intervals of qlr: l = [s, x−1), r0 = (x−1, x0), s = (x0, xr), r = (xr, e]. Note that

r0 has no T -nodes.

s

T

x−1

F

x0

T

xr e

l r0 s r

23

We use the following gadgets for the gates, where the number of A-nodes in the gadget for a non-output AND-gate

exceeds |qlr |:

output AND-gate

a b

F

l

r0 s

r

output OR-gate

a b

F T

l

r0 r0

l

s r

non-output OR-gate

a b

z

A T

l

r0 r0

l

s r

non-output AND-gate

a b

z
A

A

T

A

T

A

T

A T

l

r0 s

r

l

r0

l s r

l s r

r0

l s r

r0

s r

.

.

.

Given a monotone circuit C and an assignment α, we construct an ABox AC,α as follows. With each non-input

gate g we associate a fresh copy of its gadget. When the inputs of g are gates ga and gb then, for each i = a, b, if gi is a

non-input gate, then we merge the topmost A-node of the gadget for gi with the i-node in the gadget for g; and if gi is

an input gate, we replace the label A of i in the gadget for g with α(gi). We claim that covA,AC,α |= q0r iff C(α) = T .

(⇐) is proved by induction on the number of non-input gates in C. The basis (when C has one non-input gate) is

obvious. For the induction step, suppose the output gate g in C is an OR-gate with inputs ga and gb, at least one of

which is a non-input gate. Let I be an arbitrary model of covA and AC,α. If at least one of a or b in the gadget for g

is in TI, then clearly I |= qlr. It remains to consider the case when a and b are both in FI. Let i be such that gi is a

non-input gate. There are two cases. (i) If node z in the gadget for gi is in FI, consider the subcircuit C− of C whose

output gate is gi. ThenAC− ,α is the sub-ABox ofAC,α with z as its topmost node, and A(z) replaced by F(z). Now, if

I− is the restriction of I toAC−,α (and so z ∈ FI
−

), then by IH there is a qlr → I
− homomorphism, and so I |= qlr as

well. (ii) If z ∈ TI then gi is an AND-gate and, as the topmost A-node in the gadget for gi is in FI, there is an A-node

in the gadget for gi that is in TI while the next A-node above it is in F I . So we have a qlr → I homomorphism.

The case when the output gate of C is an AND-gate is similar.

(⇒) Suppose C(α) = F. To show covA,AC,α 6|= qlr, we define a model I of covA andAC,α by putting the A-nodes

of the gadget for any gate g in C to FI (or TI) if the truth-value of g under α is F (or, respectively, T). Suppose, on

the contrary, that there is a homomorphism h : qlr → I. We track the possible locations of h(x0) ∈ FI:

– If the output gate is an AND-gate, then h(x0) cannot be its F-node, because then h(x−1) = a and h(xr) = b, and

so at least one of them would be in F I , which is a contradiction.

– If the output gate is an OR-gate, then h(x0) cannot be its F-node, because then either h(x−1) = a or h(x−1) = b,

and so h(x−1) would be in F I , a contradiction.

– So suppose h(x0) is an A-node in a gadget for a non-input and non-output gate g. If g is an OR-gate, then either

h(x−1) = a or h(x−1) = b in the gadget for g, and so h(x−1) would be in F I , a contradiction. So suppose g is an

AND-gate, and consider the gadget for g. Then h(x0) cannot be any A-node located above z, because otherwise

h(x−1) would be the previous A-node, and so in FI, a contradiction. Finally, if h(x0) = z then, as the vertical

line comprised of the r0 is longer than qlr and contains no T -nodes, h(x1) ∈ TI must also be in the gadget for

g, and it must be in one of the horizontal s. But this is impossible because r0 is non-empty, and so the distance

between z = h(x0) and h(x1) would be greater than δ(x0, x1).

Thus, we cannot have a homomorphism h : qlr → I. ❑

24

To complete our tetrachotomy, it remains to consider OMQs with 2-CQs.

Theorem 21. If q is a twinless path 2-CQ, then (covA, q) is coNP-hard.

The remainder of this section is dedicated to the proof of this theorem, which is by a polynomial reduction of the

complement of 3SAT: for every 3CNF ψ, we define (via a series of steps) an ABox Aψ whose size is polynomial in

the sizes of q and ψ, and then show that ψ is satisfiable iff covA,Aψ 6|= q.

We begin by introducing two general tools that will be used throughout. The following generalisation of homo-

morphisms will allow us to regard our CQs as if they contained a single binary predicate only. Given a model I of an

ABoxA, we call a map h : q→ I a subhomomorphism if the following conditions hold:

– h(x) ∈ TI, for every T -node x in q, and h(x) ∈ FI, for every F-node x in q;

– for any nodes x, y in q, if R(x, y) is in q for some R, then S
(

h(x), h(y)
)

is inA for some S .

Second, we define some ABoxes that are ‘built up’ from copies of q in a particular way. If x � y, we let δ(x, y)

denote the distance between x and y in q, that is, the number of edges in the path from x to y, and set |q| = δ(s, e).

Given any path CQ q′, we write ≺q′ and �q′ for the ordering of nodes in q′, and δq′ for the distance in q′. We omit

the subscripts when q′ = q. Now let q1, . . . , qn, n ≥ 2, be disjoint copies of q. For any j and node x in q, we let x j

denote the copy of x in q j, and let ι j : q j → q be the identity map. We assume that q contains a T -node ≺-preceding

an F-node (as the other case is symmetric). For each j, 1 ≤ j ≤ n, we pick a T -node t
j and an F-node f

j in q j such

that t
j ≺q j f

j; we call the selected nodes contacts. We replace the T - and F-labels of all the contacts with A, and then

glue f
j together with t

j+1 for every j with 1 ≤ j < n. We call the resulting contacts glue-contacts and the resulting

ABoxH an n-chain (for q). An example of a 3-chain is given in the picture below, where glue-contacts are depicted

by ◦, while contacts that are not glue-contacts by •.

q1 q2

q3

q1

q2

q3

t
1

f
1

t
2

f
2

t
3

f
3

The following general criterion will give us flexibility in designing the ABoxAψ, and it will be used in the proofs

of Lemmas 21.2, 21.3 and 21.5:

Lemma 21.1. SupposeH is an n-chain, for some n ≥ 2 and a twinless path CQ q.

(i) If h : q → ind(H) is a function with s1 ≺q1 h(s) ≺q1 f
1, and I a model of covA andH whose glue-contacts are

all in FI, then h is not a q→ I subhomomorphism.

(ii) If h : q→ ind(H) is a function with t
n ≺qn h(e) ≺qn en, and I a model of covA andH whose glue-contacts are

all in TI, then h is not a q→ I subhomomorphism.

Proof. (i) Suppose on the contrary that h : q → I is a subhomomorphism. We consider the image h(q) of q in I as a

path CQ, so �h(q) and δh(q) are well-defined. Observe that, by our assumption on h,

for every ℓ, 1 ≤ ℓ < n, if x is in qℓ ∩ h(q) then x �qℓ f
ℓ; (17)

for every ℓ, 1 < ℓ ≤ n, if x is in qℓ ∩ h(q) then t
ℓ �qℓ x. (18)

q1 q2

q3

q1

q2

q3

h(q)

t
1

f
1

t
2

f
2

t
3

f
3

25

We define a function g← : ind(H) → ind(H) by taking g←(x) = h
(

ιℓ(x)
)

whenever x is a node in qℓ, where we

consider each glue-contact c = f
i = t

i+1, for 1 ≤ i < n, as a node in qi+1, that is, g←(c) = g←(ti+1) = h
(

ιi+1(ti+1)
)

.

Throughout, we use the following obvious ‘shift’ property of g←: for every ℓ, 1 ≤ ℓ ≤ n,

if y, z are both in the same copy qℓ, y, z , f
ℓ whenever ℓ < n, and y �qℓ z,

then g←(y) �h(q) g←(z) and δqℓ (y, z) = δh(q)

(

g←(y), g←(z)
)

. (19)

As H is finite, there exists a ‘fixpoint’ of g←: a node x in H and a number N > 0 such that gN
←(x) = x. We will

‘shift this fixpoint-cycle to the left.’ More precisely, we claim that

there is a glue-contact c with gN
←(c) = c. (20)

Indeed, let y0 = x, y1 = g←(x), y2 = g2
←(x), . . . , yN−1 = gN−1

← (x). Then gN
←(y j) = y j for every j < N, and so if one of the

y j is a glue-contact, we are done with (20). So suppose otherwise. We cannot have that every y j is in q1, as otherwise,

by (19) and our assumption on h, for every j ≤ N,

δq1 (s1, y j) = δh(q)

(

g←(s1), g←(y j)
)

= δh(q)

(

h(s), y j+1)
)

= δq1

(

h(s), y j+1)
)

< δq1

(

s1, y j+1)
)

(21)

(here + is modulo N). Therefore,

there exists j < N such that y j is in qℓ j , for some ℓ j > 1, (22)

and so, by (18), there is a glue-contact t
ℓ j with t

ℓ j ≺q
ℓ j y j. (When ℓ j = 1, such a glue-contact does not exist.) For

j < N with ℓ j > 1, we set d j = δq
ℓ j

(

t
ℓ j , y j

)

. Let K < N be such that

dK = min{d j | j < N and ℓ j > 1}

(which is well-defined by (22)), and set c = f
ℓK−1 = t

ℓK . By (17), we have y j ≺q
ℓ j f

ℓ j whenever 1 < ℓ j < n. Thus, by

the definition of K and (19), for every j ≤ N, g
j
←(c) belongs to the same copy qℓK+ j as yK+ j, g

j
←(c) �q

ℓK+ j yK+ j, and

dK = δq
ℓK+ j

(

g
j
←(c), yK+ j

)

.

It follows, in particular, that gN
←(c) belongs to the same copy qℓK as yK , and δqℓK

(

gN
←(c), yK

)

= δqℓK (c, yK). Therefore,

gN
←(c) = c, as required in (20).

It remains to show that (20) leads to a contradiction. Indeed, c ∈ FI by our assumption, and so c cannot be in TI

by the minimality of I. On the other hand, we show by induction on j ≥ 1 that g
j
←(c) ∈ TI, and so c = gN

←(c) ∈ TI.

If j = 1 then g←(c) = h
(

ιℓ(tℓ)
)

for some ℓ, and so g←(c) ∈ TI as ιℓ(tℓ) is a T -node in q and h is a subhomomorphism.

If j > 1 then g
j−1
← (c) ∈ TI by the IH, and so g

j−1
← (c) is not a glue-contact and ιℓ

(

g
j−1
← (c)

)

must be a T -node in q for

some ℓ. Thus, g
j
←(c) = h

(

ιℓ
(

g
j−1
← (c)

))

is in TI.

(ii) The proof is similar. Now we define a function g→ : ind(H) → ind(H) by taking again g→(x) = h
(

ιℓ(x)
)

whenever x is a node in qℓ, but now we consider each contact c = f
i = t

i+1 as a node in qi, that is, g→(c) = g→(fi) =

h
(

ιi(fi)
)

. Then, in the proof of (20) for g→, the assumption on h and the ‘shift’ property for g→ (analogous to (19))

imply that there exists j < N such that y j is in qℓ j , for some ℓ j < n, and so we can define the contacts f
ℓ j such that

y j �q
ℓ j f

ℓ j for each j with ℓ j < n (that is, we ‘shift the fixpoint-cycle to the right’). ❑

Given a 3CNF ψ, we now start building the ABox Aψ from copies of the 2-CQ q. We begin with structures that

will be used to encode the truth-values of literals (variables and negations thereof) in the clauses of ψ. We take an

n-chain for q and some n ≥ |q|, and glue together its t
1 and f

n contacts, replacing their respective T - and F-labels

with A. If the contacts are such that ι j+1(t j+1) ≺ ι j(f j) for every j, then the resulting ABoxW is called an n-cogwheel

(throughout we assume that ± is modulo n). For each j, the nodes preceding t
j in q j form its initial cog, while the

nodes succeeding f
j in q j form its final cog. Given two contacts c1 = f

i = t
i+1 and c2 = f

j = t
j+1, we define the

contact-distance between c1 and c2 inW as min
(

|i − j|, n − |i − j|
)

.

26

q1 A

f
n

t
1

A

t
2

f
1

q2

A

t
k

f
k−1

A

f
k

t
k+1

qk

qn

W

.

.

.

.

.

.

Lemma 21.2. SupposeW is an n-cogwheel for some n ≥ |q|. For any model I of covA andW, we have I 6|= q iff the

contacts in I are either all in TI or all in FI.

Proof. (⇒) Suppose the contact f
i−1 = t

i is in TI. Since I 6|= q, the ‘clockwise next’ contact f
i = t

i+1 is also in TI. It

follows by induction that all of the contacts inW are in TI. If the contact f
i−1 = t

i is in FI, then the ‘anti-clockwise

next’ contact f
i−2 = t

i−1 is also in FI, from which it follows by induction that all of the contacts are in FI.

(⇐) Suppose otherwise. Suppose first that there exists a model I of covA andW such that all contacts in I are in

FI and I |= q, and so there is a homomorphism h : q→ I. As n ≥ |q|, we may consider the image h(q) of q in I as a

path CQ, so �h(q) and δh(q) are well-defined. Further, h(q) must intersect with at least two copies of q inW (otherwise

h
(

ι j(t j)
)

= t
j were in FI, for some T -node ι j(t j) in q, contrary to the minimality of I). As ι j+1(t j+1) ≺ ι j(f j) for every

j, there is not enough room for h(q) intersecting only with cogs. So without loss of generality we can assume that the

intersection of h(q) with each of the copies q1, . . . , qk, for some k, 2 ≤ k < n, consists of not just contacts. (In fact, the

intersections with q2, . . . , qk−1 consist of non-cog-nodes only, while with q1 and qk they might or might not contain

cog-nodes.) In particular, h(s) ≺q1 f
1. We also have s1 ≺q1 h(s) (otherwise h

(

ι1(t1)
)

= t
1 were in FI). Now, consider

the sub-ABox H of W consisting of the copies q1, . . . , qk. Then H is a k-chain, and h is a q → ind(H) function

satisfying the assumption of Lemma 21.1 (i). Let I− be the restriction of I toH . Then, by Lemma 21.1 (i), h is not a

q→ I− subhomomorphism, and so it is not a q→ I homomorphism either, which is a contradiction.

The case of I with contacts in TI is similar, where we use Lemma 21.1 (ii). ❑

Next, for each variable p occurring in the 3CNF ψ, we take a fresh pair of cogwheels and make sure that they

always encode the opposite truth-values of the literals p and ¬p. To achieve this, we connect the two cogwheels in

each pair with further two copies of q in a special way.

LetW• andW◦ be two disjoint n-cogwheels for some n > 4|q| + 2, and let q↑, q↓ be two more fresh and disjoint

copies of q. For j =↑, ↓ and a node x in q, we denote by x j the copy of x in q j. We pick two contacts c
↑
• = f

i• = t
i•+1

and c
↓
• = f

j• = t
j•+1 inW• such that they are ‘far’ from each other either way, that is, the contact-distance between

them in W• is > 2|q|. Similarly, we pick two contacts c
↑
◦ = f

i◦ = t
i◦+1 and c

↓
◦ = f

j◦ = t
j◦+1 in W◦ such that the

contact-distance between them in W◦ is > 2|q|. Then we glue together the contact c
↑
• in W• with f

↑

1
, and also the

contact c
↑
◦ inW◦ with f

↑

2
, having the F-labels of f

↑

1
and f

↑

2
replaced with A. Finally, we glue together the contact c

↓
◦

inW◦ with t
↓

1
, and also the contact c

↓
• inW• with t

↓

2
, having the T -labels of t

↓

1
and t

↓

2
replaced with A. The resulting

ABox B is called an n-bike. We call the contacts c
↑
• = f

i• = t
i•+1 = f

↑

1
and c

↑
◦ = f

i◦ = t
i◦+1 = f

↑

2
F-connections and the

contacts c
↓
◦ = f

j◦ = t
j◦+1 = t

↓

1
and c

↓
• = f

j• = t
j•+1 = t

↓

2
T -connections in B.

27

q↑

q↓

qi• A

f
i•−1

t
i•

A

f
i•

t
i•+1

qi•+1

q j•

A

t
j•+1

f
j•

A

f
j•+1

t
j•+2

q j•+1

W•.
.
.

.

.

.

A

t
i◦+1

f
i◦

A

f
i◦+1

t
i◦+2

qi◦+1

A

f
j◦−1

t
j◦

A

t
j◦+1

f
j◦

q j◦

qi◦

q j◦+1

W◦.
.
.

.

.

.

Throughout, for any k, we let tk (fk) denote the kth T -node (F-node) in q. In particular, tlast−1 (flast−1) denotes the

last but one T -node (F-node) in q, and tlast (flast) the last T -node (F-node). We assume that t1 ≺ f1 (as the other case

is symmetric).

We want to achieve that, for any model I of covA and B, we have I 6|= q iff the contacts inW• are all in TI while

the contacts inW◦ are all in FI, or the other way round. Using Lemma 21.2 and the fact that the F-connections are

F-nodes in q↑ while the T -connections are T -nodes in q↓, it is straightforward to see that the implication (⇒) always

holds, for any n-bike B. However, for the (⇐) direction to hold, we need to choose the contacts in the ‘±|q|-size

environments’ of the F- and T -connections in the n-cogwheelsW• andW◦ carefully, in such a way that all possible

locations in B for the image h(q) of a potential homomorphism h : q → I are excluded. Our choices depend on the

particular 2-CQ. For example, consider the 2-CQ

q
T

t1

T

t2

F

f1

F

f2

If we choose t
i•+1 = t

i•+1

1
and f

i•+1 = f
i•+1

1
, and I is such that all contacts inW• are in FI (and all contacts inW◦ are

in TI), then we do have the following h : q→ I homomorphism:

q

T T F F

T T F

f
↑

1
= t

i•+1
1

T

F

f
i•+1
1

. . . W•

T

f
↑

2

q↑

F

qi•+1

h

On the other hand, as shown below, the choices of t
i•+1 = t

i•+1

1
and f

i•+1 = f
i•+1

1
are good for any of the following three

2-CQs:

T

t1

T

t2

F

f1

F

f2

T

t1

F

f1

T

t2

F

f2

T

t1

F

f1

F

f2

T

t2

For each particular 2-CQ q, there might be different ways of choosing the contacts so that all potential homomor-

phisms are excluded. Sometimes the choices are straightforward, some other times not so. In Lemma 21.3 below, we

describe a system of choices that works for every 2-CQ. The different potential locations of a homomorphic image

place different constraints on the possible choices of contacts. Our ‘meta-heuristics’ in finding a solution to such a

constraint system is to keep the contacts ‘as close as possible’ to each other, and so most non-contact T - and F-nodes

must be in the cogs of the cogwheels. This way potential homomorphic images are ‘forced’ to intersect with cogs,

where there are fewer options for them: say, if h maps a node x of q to the initial cog of a copy q j, then we must have

that x � ι j
(

h(x)
)

, otherwise there is not enough room for the whole h(q) in the cog.

28

Lemma 21.3. Suppose B is an n-bike such that the following hold for its F-connections:

– if t2 ≺ f1 and δ(f1, f2) ≥ δ(t1, f1), then t
i•+k = t

i•+k

2
and f

i•+k = f
i•+k

2
, for all k, 1 ≤ k ≤ |q|; otherwise, t

i•+k = t
i•+k

1

and f
i•+k = f

i•+k

1
, for all k, 1 ≤ k ≤ |q|;

– f
i• = f

i•
2

and f
i•−k = f

i•−k

1
, for all k, 0 < k ≤ |q|;

– t
i•−k = t

i•−k

1
and t

i◦−k = t
i◦−k

1
, for all k, k ≤ |q|;

– t
i◦+1 = t

i◦+1

1
and f

i◦+1 = f
i◦+1

1
;

– f
i◦ = f

i◦
2

and f
i◦−k = f

i◦−k

1
, for all k, 0 < k ≤ |q|;

and the following hold for its T -connections:

– t
j◦+1 = t

j◦+1

1
, t

j◦−k = t
j◦−k

1
and f

j◦−k = f
j◦−k

1
, for all k ≤ |q|;

– if t2 ≺ f1 and δ(f1, f2) ≥ δ(t1, f1), then t
j•+k = t

j•+k

2
and f

j•+k = f
j•+k

2
, for all k, 1 ≤ k ≤ |q|; otherwise, t

j•+k = t
j•+k

1

and f
j•+k = f

j•+k

1
, for all k, 1 ≤ k ≤ |q|.

Then, for any model I of covA and B, we have I 6|= q iff the contacts inW• are all in TI while the contacts inW◦

are all in FI, or the other way round.

Note that the contact choices above are well-defined in any n-bike B as, for each of the cogwheels in B, the

contact-distance between its F- and T -connections is > 2|q|.

Proof. The implication (⇒) clearly holds for any n-bike B by the (⇒) direction of Lemma 21.2.

To show (⇐), supposeB is as above, and I is a model of covA and B such that all contacts inW• are in FI and all

contacts inW◦ are in TI or the other way round. The proof is via excluding all possible locations in B for the image

h(q) of a potential subhomomorphism h : q → I. As n > 4|q| > |q|, we may consider the image h(q) of q in I as a

path CQ. By Lemma 21.2, h(q) must intersect with at least one of q↑ and q↓. As the F-connections are of distance

> 2|q| from the T -connections, h(q) cannot intersect with both q↑ and q↓ at the same time. There are several cases,

and we show that all of them lead to a contradiction. First, we deal with the case when h(q) ∩ q↑ , ∅. We track the

location of h(f1). We have the following four cases (1)↑–(4)↑:

(1)↑ h(f1) = c
↑
• = f

↑

1
and h(f2) is in q↑. Then h(f2) = c

↑
◦ = f

↑

2
, and so either h(f1) or h(f2) is in TI.

(2)↑ h(f1) is in qi•+k in W• for some 1 ≤ k ≤ |q|, and h(f2) is also in W•. We cannot have h(q) ∩ q↑ = {c
↑
•} by

Lemma 21.2 forW•. So h(q) must begin in q↑. As c
↑
• = f

↑

1
, we must have c

↑
• �h(q) h(f1) (otherwise there is not

enough room for h(q) in q↑). If c
↑
• ≺h(q) h(f1), then let ℓ be such that h(e) is in qi•+ℓ and t

i•+ℓ ≺qi•+ℓ h(e). Then

h(e) ≺qi•+ℓ ei•+ℓ must hold, as otherwise both h
(

ιi•+ℓ(ti•+ℓ)
)

and h
(

ιi•+ℓ(fi•+ℓ)
)

would be contacts inW•. Therefore,

the sub-ABox H of B consisting of q↑ and qi•+1, . . . , qi•+ℓ is a ℓ + 1-chain and h satisfies the conditions of

Lemma 21.1, both in (i) and (ii), with respect to the restriction I− of I toH . Thus, by Lemma 21.1, h is not a

q→ I− subhomomorphism, and so it is not a q→ I subhomomorphism either.

So suppose that h(f1) = c
↑
• = f

i• = t
i•+1, and so all contacts inW• are in FI. We consider the two cases:

– t2 ≺ f1 and δ(f1, f2) ≥ δ(t1, f1). Then t
i•+1 = t

i•+1

2
and f

i•+1 = f
i•+1

2
, and so h(f1) = t

i•+1

2
.

t
i•+1
2

f
i•+1
2

qi•+1

q↑

h(f1)

f
i•+1
1

. . . W•

We track the location of h(f2). On the one hand,

δh(q)

(

t
i•+1

2
, h(f2)

)

= δh(q)

(

h(f1), h(f2)
)

= δ(f1, f2) < δ(t2, f2) = δqi•+1

(

t
i•+1

2
, f

i•+1

2

)

.

29

On the other,

δh(q)

(

t
i•+1

2
, h(f2)

)

= δh(q)

(

h(f1), h(f2)
)

= δ(f1, f2) ≥ δ(t1, f1) > δ(t2, f1) = δqi•+1

(

t
i•+1

2
, f

i•+1

1

)

.

Therefore, h(f2) is a node between f
i•+1

1
and f

i•+1

2
. But there is no such an F-node in qi•+1.

– Either f1 ≺ t2 or δ(f1, f2) < δ(t1, f1). Then t
i•+k = t

i•+k

1
and f

i•+k = f
i•+k

1
, for all k, 1 ≤ k ≤ |q|, and so

h(f1) = t
i•+1

1
.

t
i•+1
1

f
i•+1
1

f
i•+2
1

f
i•+3
1

qi•+1 qi•+2 qi•+3

q↑

h(f1)
t
i•+2
1

t
i•+3
1

. . . W•

If δ(f1, f2) < δ(t1, f1), then h(f2) is between t
i•+1

1
and f

i•+1

1
, but there is no such an F-node in qi•+1.

So suppose that f1 ≺ t2. Then h(t2) must be in the final cog of qi•+ℓ, for some ℓ with 1 ≤ ℓ ≤ |q| (as all

contacts inW• are in FI, and there are no T -nodes between t
i•+k

1
and f

i•+k

1
for any k). Thus,

δ(f1, t2) = δh(q)

(

h(f1), h(t2)
)

= δh(q)

(

t
i•+1

1
, h(t2)

)

> δqi•+ℓ

(

f
i•+ℓ
1

, h(t2)
)

.

On the other hand, as t1 ≺ f1 ≺ t2, there is no T -node between f
i•+ℓ
1

and t
i•+ℓ
2

, and so

δ(f1, t2) = δqi•+ℓ

(

f
i•+ℓ
1

, ti•+ℓ
2

)

≤ δqi•+ℓ

(

f
i•+ℓ
1

, h(t2)
)

,

which is a contradiction.

(3)↑ h(f1) is in qi•−k in W•, for some k ≤ |q|, and h(f1) , c
↑
•. As f

i• = f
i•
2

, h(f1) cannot be in the final cog of qi•

(otherwise there is no room for h(q) in qi•). As f
i• = f

i•
2

and f
i•−k = f

i•−k

1
, for 1 ≤ k ≤ |q|, h(f1) = f

i•−ℓ
1

must hold

for some ℓ ≤ |q| (otherwise h(q) ⊆ W•, which we cannot have by Lemma 21.2). So h(t1) = t
i•−ℓ = t

i•−ℓ
1

is a

contact inW•. But then either h(f2) (when ℓ = 0) or h(f1) (when ℓ > 0) is also a contact inW•, a contradiction.

qi•

f
i•−3
1

t
i•−2
1

f
i•−2
1

t
i•−1
1

f
i•−1
1

t
i•
1

f
i•
2

...W•

f
i•
1

q↑

(4)↑ h(f1) is in q↑ ∪W◦, and h(f1) , c
↑
•. We must have

c
↑
• = f

↑

1
≺h(q) h(f1), (23)

for otherwise there is not enough room for h(q) in q↑. We first track the location of h(f2). By (23), we have

c
↑
◦ = f

↑

2
≺h(q) h(f2), and so h(f2) cannot be in q↑ (otherwise there is not enough room for h(q) in q↑). As

f
i◦ = f

i◦
2

, h(f2) cannot be in the final cog of qi◦ (otherwise there is not enough room for h(q) in qi◦). Thus,

h(f2) is in qi◦+k for some k with 1 ≤ k ≤ |q|. (24)

Next, we track the location of h(t1). There are three cases:

– h(t1) is inW◦. Then, as the part of q preceding t1 is empty (containing no T - or F-nodes), there exists a

subhomomorphism from q toW◦, contrary to Lemma 21.2 forW◦.

– h(t1) is in q↑. Then t
↑

1
≺q↑ h(t1) by (23). As the part of q preceding t1 is empty, there exists a sub-

homomorphism h′ : q → I such that h′(s) is in q↑, s↑ ≺q↑ h′(s) and h′(q) ⊆ q↑ ∪W◦. Let ℓ ≤ |q| be such

that h′(e) is in qi◦+ℓ and t
i◦+ℓ ≺qi◦+ℓ h′(e). By (24), ℓ ≥ 1. Also, we have h′(e) ≺qi◦+ℓ ei◦+ℓ, as otherwise both

h
(

ιi◦+ℓ(ti◦+ℓ)
)

and h
(

ιi◦+ℓ(fi◦+ℓ)
)

would be contacts inW◦. Therefore, the sub-ABox H of B consisting of

q↑ and qi◦+1, . . . , qi◦+ℓ is a ℓ + 1-chain and h′ satisfies the conditions of Lemma 21.1, both in (i) and (ii),

with respect to the restriction I− of I toH . Thus, by Lemma 21.1, h′ is not a q→ I− subhomomorphism,

and so it is not a q→ I subhomomorphism either.

30

– h(t1) is in W• \ {c
↑
•}. Then h(t1) ≺h(q) c

↑
•. We use this fact and (24) to compute the distance from

c
↑
◦ = t

i◦+1

1
= f

↑

2
to h(f2):

δh(q)

(

c
↑
◦, h(f2)

)

= δh(q)

(

c
↑
•, h(f1)

)

< δh(q)

(

h(t1), h(f1)
)

= δ(t1, f1) = δqi◦+1

(

t
i◦+1

1
, f

i◦+1

1

)

,

and so h(f2) is in qi◦+1 between t
i◦+1

1
and f

i◦+1

1
. But there is no F-node there.

c
↑
• = f

↑

1
c
↑
◦ = f

↑

2

t
i◦+1

1
f

i◦+1

1

q
t1 f1 f2

...W•
. . . W◦

h

Next, we deal with the case when h(q) ∩ q↓ , ∅. (The proof is similar but not totally symmetrical to the q↑ cases

because of our assumption that t1 ≺ f1.) We track the location of h(t1). Four cases (1)↓–(4)↓ are possible:

(1)↓ h(t1) = c
↓
◦ = t

↓

1
and h(t2) is in q↓. Then h(t2) = c

↓
• = t

↓

2
, and so either h(t1) or h(t2) is in FI.

(2)↓ h(t1) is in q j◦+k in W◦ for some 1 ≤ k ≤ |q|, and h(t2) is also in W◦. We cannot have h(q) ∩ q↓ = {c
↓
◦} by

Lemma 21.2 forW◦. So h(q) must begin in q↓. As c
↓
◦ = t

↓

1
, we must have that c

↓
◦ �h(q) h(t1) (otherwise there is

not enough room for h(q) in q↓). Then, as the part of q preceding t1 is empty, there exists a subhomomorphism

from q toW◦, contradicting Lemma 21.2 forW◦.

(3)↓ h(t1) is in q j◦−k inW◦ for some k ≤ |q|, and h(t1) , c
↓
◦. As f

j◦ = f
j◦

1
and t1 ≺ f1, h(t1) cannot be in the final

cog of q j◦ (otherwise there is not enough room for h(q) in q j◦). So h(t1) ≺h(q) c
↓
◦ and h(q) starts inW◦. As we

cannot have h(q)∩ q↓ = {c
↓
◦} by Lemma 21.2 forW◦, h(q) must continue in q↓ (and end either in q↓ or inW•).

As t
j◦−k = t

j◦−k

1
and f

j◦−k = f
j◦−k

1
for k ≤ |q|, h(t1) cannot be a contact inW◦ different from c

↓
◦, otherwise h(f1)

would also be a contact inW◦; h(t1) cannot be in the initial cog of q j•−k for any k ≤ |q|, otherwise there would

not be enough room for h(q) in that cog. Thus, h(t1) = t j◦−m for some m ≤ |q| and T -node t in q with t1 ≺ t ≺ f1,

and so t2 ≺ f1. We track the location of h(f1). If h(f1) is inW◦, then h(f1) cannot be in the final cog of q j◦ , as

h(q) continues in q↓. So m ≥ 1 must hold and

δ(t1, t) = δq j◦−m

(

t
j◦−m

1
, t j◦−m) = δh(q)

(

t
j◦−m

1
, h(t1)

)

= δh(q)

(

t
j◦−m+1

1
, h(f1)

)

.

Thus, h(f1) is an F-node between t
j◦−m+1

1
and f

j◦−m+1

1
. But there is no such F-node, so h(f1) cannot be inW◦.

If h(f1) is in q↓ \ {c
↓
◦}, then we cannot have h(f1) = f

↓

1
, as otherwise we had h(t1) = t

↓

1
= c

↓
◦. As t2 ≺ f1 and

c
↓
• = t

↓

2
, we cannot have f

↓

1
≺q↓ h(f1), otherwise there is not enough room for h(q) in q↓. Therefore, h(f1) ≺q↓ f

↓

1
,

and so h(f1) = c
↓
• must hold. So in any case, h(f1) must be inW•. As f

j•
1
�q j• f

j• , h(f1) cannot be in the final

cog of q j• (otherwise there is not enough room for h(q) in q j•). So h(f1) is in q j•+k for some k with 1 ≤ k ≤ |q|.

We consider the two cases:

– δ(f1, f2) ≥ δ(t1, f1), and so t
j•+k = t

j•+k

2
and f

j•+k = f
j•+k

2
, for all 1 ≤ k ≤ |q|. h(f1) cannot be in the final cog

of any q j•+k (otherwise there is not enough room for h(q) in q j•+k). If h(f1) = f
j•+k

1
for some 1 ≤ k ≤ |q|,

then h(t2) and h(f2) are both contacts inW•. So suppose that h(f1) = t
j•+ℓ
2

is a contact inW• for some

1 ≤ ℓ ≤ |q|. We track the location of h(f2). On the one hand,

δh(q)

(

t
j•+ℓ
2

, h(f2)
)

= δh(q)

(

h(f1), h(f2)
)

= δ(f1, f2) < δ(t2, f2) = δq j•+ℓ

(

t
j•+ℓ
2

, f
j•+ℓ

2

)

.

On the other,

δh(q)

(

t
j•+ℓ
2

, h(f2)
)

= δh(q)

(

h(f1), h(f2)
)

= δ(f1, f2) ≥ δ(t1, f1) > δ(t2, f1) = δq j•+ℓ

(

t
j•+ℓ
2

, f
j•+ℓ

1

)

,

and so h(f2) is a node between f
j•+ℓ

1
and f

j•+ℓ
2

. But there is no such F-node in q j•+ℓ.

31

t
j◦
1

f
j◦

1

c
↓
◦

t
j•+1

2

c
↓
•

f
j•+1

2

q
t1 t2 f1 f2

...W◦
. . . W•

h

f
j•+1

1
q↓

– δ(f1, f2) < δ(t1, f1), and so t
j•+k = t

j•+k

1
and f

j•+k = f
j•+k

1
, for all 1 ≤ k ≤ |q|. h(f1) cannot be in the final

cog of any q j•+k (otherwise there is not enough room for h(q) in q j•+k). So h(f1) = t
j•+ℓ
1

is a contact inW•

for some 1 ≤ ℓ ≤ |q|, and so h(f2) is between t
j•+ℓ
1

and f
j•+ℓ

1
. But there is no such F-node in q j•+ℓ.

t
j◦
1

f
j◦

1

c
↓
◦

t
j•+1

1

c
↓
•

f
j•+1

1

q
t1 t2 f1 f2

...W◦
. . . W•

h

q↓

(4)↓ h(t1) is in q↓ ∪W•, and h(t1) , c
↓
◦. We must have c

↓
◦ = t

↓

1
≺h(q) h(t1) (otherwise there is not enough room for

h(q) in q↓). If h(t1) is in q↓, then c
↓
• = t

↓

2
�q↓ h(t1) follows. We cannot have c

↓
• = t

↓

2
≺q↓ h(t1) (otherwise there is

not enough room for h(q) in q↓), and so h(t1) = c
↓
• must hold. So in any case, h(t1) is inW•. Then, as the part

of q preceding t1 is empty, there exists a subhomomorphism from q toW•, contrary to Lemma 21.2 forW•.

This completes the proof of Lemma 21.3. ❑

Let ψ be a 3CNF with nψ clauses of the form ℓ1∨ℓ2∨ℓ3, where each ℓi is a literal, and let n > (nψ+2) · |q|. For each

propositional variable p in ψ, we take a fresh n-bike Bp having n-cogwheelsW
p
• ,W

p
◦ and satisfying the conditions

in Lemma 21.3. We pick three nodes v1, v2 and v3 in q such that each va is a T -node or an F-node, and v1 ≺ v2 ≺ v3.

Then, for every clause c = (ℓc
1
∨ ℓc

2
∨ ℓc

3
) in ψ, we proceed as follows. We take a fresh copy qc of q, consider the copies

v
c
1
, v

c
2

and v
c
3

of the chosen nodes in qc, and replace their F- or T -labels with A. Then, for a = 1, 2, 3, we glue v
c
a to a

fresh (unused as T - or F-connections) contact

(p1) inW
p
• iff either ℓc

a = p and va is an F-node in q, or ℓc
a = ¬p and va is a T -node in q;

(p2) inW
p
◦ iff either ℓc

a = p and va is an T -node in q, or ℓc
a = ¬p and va is a F-node in q.

We call the chosen contacts in the three n-cogwheels the wheel-contacts for c. For example, if q looks like on the

left-hand side of the picture below and c = (p ∨¬q ∨ r), then we obtain the graph shown on the right-hand side of the

picture with the n-cogwheels depicted as circles:

q
s

T

v1

F

v2

F

v3 e
qc

s

A A A

e
W

p
◦ W

q
◦ Wr

•

We pick the wheel-contacts for different clauses in each n-cogwheel in such a way that their contact-distance from

each other and from the F- and T -connections of the n-cogwheel is > 2|q|. We treat the resulting labelled graph as an

ABox and denote it byAψ. Clearly, the size ofAψ is polynomial in the sizes of q and ψ.

The following lemma is a consequence of the definition ofAψ, and the ‘easy’ (⇒) direction of Lemma 21.3.

Lemma 21.4. If covA,Aψ 6|= q, then ψ is satisfiable.

Proof. Suppose I is a model of covA and Aψ such that I 6|= q. As for each variable in ψ, the n-bike Bp satisfies the

conditions in Lemma 21.3, we have that all contacts in the n-cogwheelW
p
• are in FI and all contacts inW

p
◦ are in

TI or the other way round. As I 6|= q, for every clause c = (ℓc
1
∨ ℓc

2
∨ ℓc

3
) in ψ, there is a ∈ {1, 2, 3} such that either va is

a T -node in q but v
c
a ∈ FI, or va is an F-node in q but v

c
a ∈ TI. Define an assignment a by setting a(ℓc

a) = T for each

clause c in ψ (and arbitrary otherwise). We claim that a is well-defined in the sense that we never set both a(p) = T

32

and a(¬p) = T . Indeed, suppose otherwise. Suppose also that the former is because of ℓc1
a1

in a clause c1 and the latter

because of ℓc2
a2

in a clause c2.

Case 1: va1
is a T -node in q but v

c1
a1
∈ FI. As a(p) = T implies that ℓc1

a1
= p, by (p2) of the construction v

c1
a1

is a

contact in the n-cogwheelW
p
◦ . So all contacts inW

p
◦ are in FI. On the other hand, a(¬p) = T implies that ℓc2

a2
= ¬p.

If va2
is a T -node in q but v

c2
a2
∈ FI, then v

c2
a2

is a contact inW
p
• by (p1), and so all contacts inW

p
• are also in FI, a

contradiction. And if va2
is an F-node in q but v

c2
a2
∈ TI, then v

c2
a2

is a contact inW
p
◦ by (p2), and so all contacts in

W
p
◦ are in TI, a contradiction again.

Case 2: va1
is an F-node in q but v

c1
a1
∈ TI. This case is similar and left to the reader.

Thus, the assignment a is well-defined and makes true at least one literal in every clause in ψ. ❑

It remains to find some conditions on Aψ that would guarantee that the converse of Lemma 21.4 also holds. So

suppose that ψ is satisfiable under an assignment a. We define a model Ia of covA and Aψ as follows: for every

variable p in ψ, if a(p) = T then we put all contacts of the n-cogwheelW
p
• to TIa and all contacts of the n-cogwheel

W
p
◦ to FIa ; if a(p) = F, we put all contacts of W

p
• to FIa and all contacts of W

p
◦ to TIa . We aim to find some

conditions onAψ that would imply Ia 6|= q.

To formulate these conditions, we introduce some new notation for the three wheel-contacts, uniformly for any

given clause c in ψ (that is, depending not on c, but only on a = 1, 2, 3 and q). For each a = 1, 2, 3, we letWa denote

the n-cogwheel the node v
c
a is glued to. The wheel-contact for c inWa was obtained (when forming the n-cogwheel

Wa) by glueing together the F-node f
xa of some copy qxa and the T -node t

xa+1 of some copy qxa+1 (± is modulo n).

qc

v
c
1

v
c
2

v
c
3

W1 W2 W3

qxa−1

qxa

qxa+1 qxa

qxa+1

qxa+2

f
xa

v
c
a

...
. . .

t
xa+1

Wa

For each a = 1, 2, 3, we need to choose the contacts va, f
xa±k and t

xa±k, for k ≤ |q|, in such a way that Ia 6|= q (and

so the converse of Lemma 21.4 holds). There might be different ways of choosing these contacts so that all potential

q → Ia homomorphisms are excluded. Our algorithm below selects contacts that are suitable for ψ and q uniformly,

depending only on the particular 2-CQ q, but not on the satisfying assignment a. While this ‘heuristic’ choice results

in a case-distinction with fewer cases, in each case our task now is a bit harder than in the proof of Lemma 21.3. We

do not have any information about the particular labelings of v
c
1
, v

c
2

and v
c
3

in Ia other than the fact that the cogwheel

attached to each of them represents a truth-value:

for each a = 1, 2, 3, the contacts inWa are either all in TIa or all in FIa . (25)

Throughout, we use the following notation: t✷ denotes the last T -node preceding f1, t✸ denotes the last T -node

preceding f2, and t♯ denotes the last T -node preceding flast. (These all are well-defined, as t1 ≺ f1 by our assumption.)

We callAψ a ψ-gadget if the following conditions hold, for all clauses c in ψ, all k ≤ |q|, and all ℓ with 1 ≤ ℓ ≤ |q|:

– v1 = t1, t
x1+1 = t

x1+1

1
, t

x1−k = t
x1−k
✷ ;

– if tlast ≺ f1 then f
x1−k = f

x1−k

2
, v2 = tlast, t

x2+ℓ = t
x2+ℓ
last−1

, f
x2+ℓ = f

x2+ℓ
1

, t
x2−k = t

x2−k

1
,

f
x2−k =

f
x2−k

1
, if δ(t1, t2) = · · · = δ(tlast−1, tlast) = δ(tlast, f2),

f
x2−k

2
, otherwise;

– if f1 ≺ tlast then f
x1−k = f

x1−k

1
, v2 = f1, t

x2+ℓ = t
x2+ℓ
✷ , f

x2+ℓ = f
x2+ℓ

1
, f

x2−k = f
x2−k

2
, and we consider two cases:

(i) if f1 ≺ t✸ and there exist some T -node t ≺ t✸ and kt ≥ 1 with δ(t✷, f1) = δ(t, t✸) + kt · δ(t✸, f2), then let t⋆

be such a t with the smallest kt, t
x2−(kt⋆−1) = t

x2−(kt⋆−1)

⋆ , and t
x2−k = t

x2−k
✸ for k , kt⋆ − 1;

(ii) otherwise, t
x2−k = t

x2−k
✸ ;

– v3 = flast, t
x3−k = t

x3−k

♯
, f

x3−k = f
x3−k

last
, t

x3+ℓ = t
x3+ℓ

♯
, f

x3+ℓ = f
x3+ℓ

last
.

33

These contact choices are well-defined in any ψ-gadget Aψ as the wheel-contacts for different clauses in each cog-

wheel are such that their contact-distance from each other and the F- and T -connections of the cogwheel is > 2|q|.

Lemma 21.5. IfAψ is a ψ-gadget, then Ia 6|= q.

Proof. The proof is via excluding all possible locations in Aψ for the image h(q) of a potential subhomomorphism

h : q→ Ia. We begin with the following observation: for any clause c in ψ,

there is no subhomomorphism h : q→ Ia such that h(va) = v
c
a for all a = 1, 2, 3. (26)

(In particular, there is no subhomomorphism from q onto qc in Ia.) Indeed, suppose on the contrary that there is such

a subhomomorphism h for some c. Suppose a(ℓc
a) = T for some a. If ℓc

a = p, then either va is an F-node in q but

v
c
a ∈ TIa as it is inW

p
• , or va is a T -node in q but v

c
a ∈ FIa as it is inW

p
◦ , both are impossible when h(va) = v

c
a. The

case of ℓc
a = ¬p is dually symmetric. It follows that a(ℓc

a) , T for any a = 1, 2, 3, contrary to a satisfying ψ.

Because of Lemma 21.3, h(q) must intersect with some copy qc for some clause c. By (26), h(q) must properly

intersect with at least one of the n-cogwheels glued to qc in the sense that h(q) ∩Wa * {ca} for some a = 1, 2, 3. By

Lemma 21.2, we may assume that h(q) *Wa for any a = 1, 2, 3. Also by Lemma 21.2, we may assume that if h(q)

properly intersects withWa, then every node in h(q) ∩Wa is in qxa±k for some k ≤ |q|. As the wheel-contacts for

different clauses in each n-cogwheel are far from each other, there is a unique c with h(q) properly intersecting with

one or two of the n-cogwheelsW1,W2 andW3 glued to qc (it cannot properly intersect with all three). It is not hard

to check that, by (26), all options for such a h(q) are covered by the six cases (1)–(6) below, and we need to show that

none of them is possible.

(1) h(q) starts inW1 and h(v1) ≺h(q) v
c
1
.

qc
v

c
1

v
c
2

v
c
3

W1 W2 W3

h(q)
. . .

As v1 = t1, we have

h(t1) ≺h(q) tc
1 (27)

and h(t1) is inW1. We track the location of h(f1). We consider the two further subcases tlast ≺ f1 and f1 ≺ tlast.

Case tlast ≺ f1. Then v2 = tlast. As there is no F-node between tc
1

and tc
last

in qc, either tc
last
�h(q) h(f1) or h(f1) is

inW1. Suppose first that tc
last
�h(q) h(f1).

qc

qx1−1

qx1

qx1+1 qx2

qx2+1

qx2+2

t
x1−1

last

t
x1
last

f
x1
2

tc
1

tc
last

...
. . .

f c
1

t
x1+1

W1 W2

t1 tlast f1

q

h

qc

As h(tlast) ≺h(q) tc
last

by (27), we have

δ(tlast, f1) = δh(q)

(

h(tlast), h(f1)
)

> δh(q)

(

h(tlast), t
c
last

)

= δh(q)

(

h(t1), tc
1

)

. (28)

On the other hand, we analyse the location of h(t1) inW1. As t
x1+1 = t

x1+1

1
, h(t1) cannot be in the initial cog

of qx1+1 (otherwise there is not enough room for h(q) in qx1+1). As t
x1 = t

x1
✷ = t

x1

last
, f

x1 = f
x1

2
, and there is no

T -node between tlast and f2, we have

δh(q)

(

h(t1), tc
1

)

= δh(q)

(

h(t1), f
x1

2

)

≥ δqx1

(

t
x1

last
, f

x1

2

)

= δ(tlast, f2) > δ(tlast, f1),

34

contrary to (28).

Next, suppose that h(f1) is inW1, and so h(f1) �h(q) tc
1
. As t

x1+1 = t
x1+1

1
, h(f1) cannot be in the initial cog of

qx1+1 (otherwise there is no room for h(q) in qx1+1). As t
x1−k = t

x1−k
✷ = t

x1−k

last
and f

x1−k = f
x1−k

2
for k ≤ |q|, it

follows that either h(f1) = f
x1−m

1
or h(f1) = f

x1−m

2
for some m ≤ |q|. If h(f1) = f

x1−m

1
, then both h(tlast) and h(f2)

are contacts inW1, contradicting (25). And if h(f1) = f
x1−m

2
, then h(tlast) is a T -node between t

x1−m

last
and f

x1−m

2
.

But there is no such T -node.

t
x1−m

last
f

x1−m

2

tlast f1

q

... . . .

h

f
x1−m

1

qx1−m

Case f1 ≺ tlast. As v2 = f1, it follows from (27) that h(f1) ≺h(q) f c
1
= v

c
2
, and so h(f1) �h(q) tc

1
and h(f1) is inW1

(as there is no F-node between tc
1

and f c
1

). As t
x1+1 = t

x1+1

1
, h(f1) cannot be in the initial cog of qx1+1 (otherwise

there is no room for h(q) in qx1+1). As f
x1−k = f

x1−k

1
for k ≤ |q|, h(f1) must be a contact inW1. But then h(t✷) is

a contact inW1 too, as t
x1−k = t

x1−k
✷ for k ≤ |q|, contradicting (25).

(2) h(q) ends inW1.

qc
v

c
1

v
c
2

v
c
3

W1 W2 W3

h(q)

Then v
c
1
�h(q) h(v1), as otherwise there is no room for h(q) in qc. As v1 = t1, we have that tc

1
�h(q) h(t1) and h(t1)

is inW1. As the part of q preceding t1 is empty, there exists a subhomomorphism from q to the restriction of

Ia toW1, contrary to Lemma 21.2.

(3) h(q) starts inW2 and h(v2) �h(q) v
c
2
.

qc
v

c
1

v
c
2

v
c
3

W1 W2 W3

h(q)
. . .

We consider the two further subcases tlast ≺ f1 and f1 ≺ tlast.

Case tlast ≺ f1. Then v2 = tlast, and so h(tlast) �h(q) tc
last

and h(tlast) is inW2. As t
x2+1 = t

x2+1

last−1
, h(tlast) cannot

be in the initial cog of qx2+1 (otherwise there is no room for h(q) in qx2+1). If h(tlast) ≺h(q) v
c
2
= tc

last
, then

h(flast) ≺h(q) v
c
3
= f c

last
. As the part of q following flast is empty, we may assume that h(q) ⊆ W2 ∪ qc, and

so h(e) ≺qc ec. Let k ≤ |q| be such that h(s) is in qx2−k and h(s) ≺qx2−k f
x2−k. Then sx2−k ≺qx2−k h(s) must hold,

as otherwise both h
(

ιx2−k(tx2−k)
)

and h
(

ιx2−k(fx2−k)
)

would be contacts in W2, contradicting (25). Therefore,

the sub-ABox H of Aψ consisting of qx2−k, . . . , qx2 and qc is a k + 2-chain and h satisfies the conditions of

Lemma 21.1, both in (i) and (ii), with respect to the restriction I−a of Ia toH . Thus, by Lemma 21.1, h is not a

q→ I−a subhomomorphism, and so it is not a q→ Ia subhomomorphism either.

So suppose that h(tlast) = v
c
2
= f

x2 . As t
x2 = t

x2

1
, it follows that h(t1) = t

x2

2
, . . . , h(tlast−1) = t

x2

last
and δqx2

(

t
x2

1
, tx2

2

)

=

· · · = δqx2

(

t
x2

last−1
, tx2

last

)

= δqx2

(

t
x2

last
, fx2
)

must hold, which cannot happen with either choice for f
x2 .

qx2

t
x2
1 f

x2

h(tlast)

...W2

t
x2
2

h(t1)

t
x2
last qc

35

Case f1 ≺ tlast. Then v2 = f1, and so h(f1) �h(q) f c
1

and h(f1) is in W2. We track the location of h(f1). As

t
x2+1 = t

x2+1
✷ , h(f1) cannot be in the initial cog of qx2+1 (otherwise there is no room for h(q) in qx2+1). So

h(f1) is in qx2−k for some k ≤ |q|. (29)

We have f
x2−k = f

x2−k

2
for k ≤ |q|. For t

x2−k when k ≤ |q|, we have the two cases (i) and (ii).

(i) We have f1 ≺ t✸ and δ(t✷, f1) = δ(t⋆, t✸) + kt⋆ · δ(t✸, f2) for the T -node t⋆ ≺ t✸ with minimal such kt⋆ . Also,

t
x2−(kt⋆−1) = t

x2−(kt⋆−1)

⋆ , and t
x2−k = t

x2−k
✸ for all k ≤ |q| with k , kt⋆ − 1. Suppose first that h(f1) = v

c
2
. We track

the location of h(t✷). By (29), h(t✷) is in qx2−k for some k ≤ |q|. As

δh(q)

(

h(t✷), vc
2

)

= δh(q)

(

h(t✷), h(f1)
)

= δ(t✷, f1), (30)

either h(t✷) = t
x2−(kt⋆−1)

⋆ = t
x2−(kt⋆−1) is a contact inW2 contradicting (25), or h(t✷) is in qx2−k for some k < kt⋆−1.

In the latter case, h(t✷) cannot be a contact inW2 (as h(f1) is), and it cannot be a non-cog node (as there is no

T -node between t
x2−k
✸ and f

x2−k

2
). So suppose h(t✷) is in the initial cog of qx2−k. Then h(t✷) = tx2−k for some

T -node t ≺ t✸, and δ(t✷, f1) = δ(t, t✸)+ (k+ 1) · δ(t✸, f2) by (30). As k+ 1 < kt⋆ , this contradicts the minimality

of k⋆ with this property.

qx2−(k⋆−1)

t
x2−(k⋆−1)

⋆ f
x2−(k⋆−1)

2

. . .

t
x2−1
✸

t
x2
✸

f
x2−1

2
f

x2
2

h(f1)h(t✷)

qx2−1 qx2

t
x2−(k⋆−1)
✸

...W2

qc

Next, suppose h(f1) ≺h(q) v
c
2
. Then h(f2) ≺h(q) f c

2
, and so h(f2) �h(q) v

c
2
. As t

x2+1 = t
x2+1
✷ , h(f2) cannot be in

the initial cog of qx2+1 (otherwise there is not enough room for h(q) in qx2+1). If h(f2) is a contact inW2, then

either h(t⋆) or h(t✸) is also a contact inW2, contradicting (25). As f
x2−k = f

x2−k

2
for all k ≤ |q|, it follows that

h(f2) = f
x2−ℓ

1
for some ℓ ≤ |q|. We claim that f

x2−ℓ
1

is in the ‘inital’ cog of qx2−ℓ (and so there is not enough room

for h(q) in qx2−ℓ). Indeed, as f1 ≺ t✸, this clearly holds for ℓ , kt⋆ − 1. So let ℓ = kt⋆ − 1 and suppose on the

contrary that t⋆ ≺ f1. Then t⋆ � t✷ (as t✷ is the last T -node preceding f1), and so δ(t⋆, f1) ≥ δ(t✷, f1) > δ(t⋆, t✸)

(as kt⋆ ≥ 1), contradicting f1 ≺ t✸.

(ii) We either have t✸ ≺ f1 or there are no T -node t ≺ t✸ and kt ≥ 1 with δ(t✷, f1) = δ(t, t✸)+ kt · δ(t✸, f2). Also,

t
x2−k = t

x2−k
✸ and f

x2−k = f
x2−k

2
, for all k ≤ |q|.

If t✸ ≺ f1 then we track the location of h(t✸). By (29), h(t✸) is in qx2−k for some k ≤ |q|. But it cannot be in

the initial cog (otherwise there is not enough room for h(q) in qx2−k), it cannot be a contact (otherwise h(f2) is

a contact too, contradicting (25)), and it cannot be between t
x2−k
✸ and f

x2−k

2
(as there is no T -node there).

If f1 ≺ t✸ but there are no T -node t ≺ t✸ and kt ≥ 1 such that δ(t✷, f1) = δ(t, t✸) + kt · δ(t✸, f2), then suppose

first that h(f1) = v
c
2
. We track the location of h(t✷). By (29), h(t✷) is in qx2−k for some k ≤ |q|. It cannot be a

contact by (25), it cannot be in an initial cog by our assumption, and it cannot be between t
x2−k
✸ and f

x2−k

2
(as

there is no T -node there). Finally, suppose that h(f1) ≺h(q) v
c
2
. Then h(f2) ≺h(q) f c

2
, and so h(f2) �h(q) v

c
2
. As

t
x2+1 = t

x2+1
✷ , h(f2) cannot be in the initial cog of qx2+1 (otherwise there is not enough room for h(q) in qx2+1). If

h(f2) is a contact inW2, then h(t✸) is also a contact inW2, contradicting (25). So h(f2) = f
x2−ℓ

1
must hold for

some ℓ ≤ |q|. As f1 ≺ t✸, f
x2−ℓ

1
is in the initial cog of qx2−ℓ, so there is not enough room for h(q) in qx2−ℓ.

(4) h(q) ends inW2 and v
c
2
�h(q) h(v2).

qc
v

c
1

v
c
2

v
c
3

W1 W2 W3

h(q)
. . .

36

We again consider the two further subcases tlast ≺ f1 and f1 ≺ tlast.

Case tlast ≺ f1. Then v2 = tlast, and so tc
last
�h(q) h(tlast) and h(tlast) is inW2. As t

x2

last
≺qx2 f

x2 , h(tlast) cannot be in

the final cog of qx2 (otherwise there is not enough room for h(q) in qx2). As t
x2+ℓ = t

x2+ℓ
last−1

and f
x2+ℓ = f

x2+ℓ
1

for

1 ≤ ℓ ≤ |q|, if h(tlast) = t
x2+k

last−1
is a contact inW2 for some 1 ≤ k ≤ |q|, then h(f1) is in qx2+k preceding f

x2+k

1
. But

there is no such F-node. And if h(tlast) = t
x2+k

last
for some 1 ≤ k ≤ |q|, then both h(tlast−1) and h(f1) are contacts in

W2, contradicting (25).

t
x2+k

last−1
f

x2+k

1

q
tlast f1

... . . .

h

t
x2+k

last

qx2+k

t
x2+k

last−1
f

x2+k

1

tlast−1 tlast f1

q

... . . .

h

t
x2+k

last

qx2+k

Case f1 ≺ tlast. Then v2 = f1, and so f c
1
�h(q) h(f1) and h(f1) is in W2. As f

x2 = f
x2

2
and f

x2+ℓ = f
x2+ℓ

1
for

1 ≤ ℓ ≤ |q|, h(f1) cannot be in the final cog of qx2+ℓ for any ℓ ≤ |q| (otherwise there is not enough room for

h(q) in qx2+ℓ). As t
x2+ℓ = t

x2+ℓ
✷ for 1 ≤ ℓ ≤ |q|, if h(f1) is a contact in W2 different from v

c
2
, then h(t✷) is a

contact inW2 as well, contradicting (25). As there is no F-node between t
x2+ℓ
✷ and f

x2+ℓ
1

for any ℓ, it follows

that h(f1) = v
c
2
. We track the location of h(t△) for the first T -node t△ succeeding f1 in q. As f

x2 = f
x2

2
, h(t△)

cannot be in the final cog of qx2 (otherwise there is not enough room for h(q) in qx2). Further, h(t△) cannot be

a contact inW2 by (25), and so it must be in the final cog of qx2+k for some 1 ≤ k ≤ |q| (as there is no T -node

between t
x2+ℓ
✷ and f

x2+ℓ
1

for any ℓ). But then

δqx2+k (f
x2+k

1
, tx2+k
△) = δ(f1, t△) = δh(q)

(

h(f1), h(t△)
)

> δqx2+k

(

f
x2+k

1
, h(t△)

)

,

and so h(t△) cannot be a T -node in qx2+k.

(5) h(q) starts inW3.

qc
v

c
1

v
c
2

v
c
3

W1 W2 W3

h(q)

Then h(v3) �h(q) v
c
3
, as otherwise there is no room for h(q) in qc. As v3 = flast, we have h(flast) �h(q) f c

last
and

h(flast) is in W3. As t
x3+1 = t

x3+1

♯
and t

x3−k = t
x3−k

♯
for k ≤ |q|, h(flast) cannot be in the initial cog of either

qx3+1 or qx3−k for any k ≤ |q| (otherwise there is not enough room for h(q) in that cog). As f
x3−k = f

x3−k

last
for

k ≤ |q|, if h(flast) is a contact inW3, then h(t♯) is a contact inW3 as well, contradicting (25). So suppose that

h(flast) = f x3−k for some k ≤ |q| and some F-node f with t♯ ≺ f ≺ flast. We track the location of h(t♯). Clearly,

h(t♯) cannot be in the initial cog of qx3−k, as otherwise there is not enough room for h(q) in qx3−k. Thus, h(t♯) is

in qx3−k−1 and

δh(q)

(

h(t♯), f
x3−k−1

last

)

= δh(q)

(

h(flast), f
x3−k

last

)

= δqx3−k

(

f x3−k, f
x3−k

last

)

= δ(f , flast).

Then h(t♯) = f x3−k−1, and so it is not in TIa .

t
x3−k−1

♯

t
x3−k

♯

f
x3−k−1

last

f
x3−k

last

q
t♯ flast

... . . .

h

qx3−k

f x3−k−1 f x3−k

37

(6) h(q) ends inW3 and v
c
3
≺h(q) h(v3).

qc
v

c
1

v
c
2

v
c
3

W1 W2 W3

h(q)
. . .

As v3 = flast, we have that f c
last
≺h(q) h(flast) and h(flast) is inW3. As f

x3 = f
x3

last
and f

x3+ℓ = f
x3+ℓ

last
for 1 ≤ ℓ ≤ |q|,

h(flast) cannot be in the final cog of qx3 or qx3+ℓ for any ℓ (otherwise there is not enough room for h(q) in that

cog). As t
x3+ℓ = t

x3+ℓ

♯
for 1 ≤ ℓ ≤ |q|, h(flast) cannot be a contact inW3, otherwise h(t♯) is also a contact inW3,

contradicting (25). So h(flast) = f x3+k must hold for some 1 ≤ k ≤ |q| and some F-node f with t♯ ≺ f ≺ flast.

We track the location of h(t♯). Let i = c if k = 1, and i = x3 + k − 1 otherwise. Then

δh(q)

(

h(t♯), f i
last

)

= δh(q)

(

h(flast), f
x3+k

last

)

= δqx3+k

(

f x3+k, f
x3+k

last

)

= δ(f , flast).

If k > 1 then h(t♯) = f x3+k−1, and so it is not in TIa . If k = 1 then there are two cases: either v
c
2
≺qc f c or

f c �qc v
c
2
. If v

c
2
≺qc f c then h(t♯) = f c, and so it is not in TIa .

t
x3+k−1

♯

t
x3+k

♯

f
x3+k−1

last

f
x3+k

last

q
t♯ flast

... . . .

h

f x3+k−1 f x3+k v
c
2

t
x3+1

♯

f c
last

f
x3+1

last

t♯ flast

q

... . . .

h

f c f x3+1

So suppose f c
1
�qc f c �qc v

c
2
. Then v2 = f = f1 and f1 ≺ tlast, and so h(t♯) = v

c
2
= f c = f c

1
. as t♯ ≺ f = f1, the

number of F-nodes in qc between h(t♯) = f c
1

and v
c
3
= f c

last
is smaller than the number of F-nodes between t♯

and flast in q. Therefore, as there are no F-nodes between v
c
3

and f
x3+1

1
= h(flast), we must have

h(flast−1) = v
c
3

is a contact inW3. (31)

v
c
2

f c
1

v
c
3

f c
last

f
x3+1

last

qx3+1

t♯ flast−1 flast

q

... . . .

h

f
x3+1

1

On the other hand, as t♯ ≺ f = f1, it follows that there is no T -node in q between f1 and flast, and so flast ≺ tlast.

We track the location of h(tN) for the first T -node tN succeeding flast in q. It cannot be between t
x3+ℓ

♯
and f

x3+ℓ
last

,

for some ℓ, as there is no T -node there for any ℓ. If h(tN) is a contact inW3, then this contradicts (25) and (31).

Finally, if h(tN) is in the final cog of qx3+ℓ, for some 1 ≤ ℓ ≤ |q|, then

δqx3+1

(

f
x3+1

last
, h(tN)

)

< δqx3+1

(

f
x3+1

1
, h(tN)

)

= δqx3+1

(

h(flast), h(tN)
)

= δ(flast, tN) = δqx3+1

(

f
x3+1

last
, tx3+1
N

)

.

But there is no T -node between f
x3+1

last
and t

x3+1
N

.

This completes the proof of Lemma 21.5. ❑

Finally, given a 3CNF ψ, take some ψ-gadget Aψ. By Lemmas 21.4 and 21.5, we have covA,Aψ 6|= q iff ψ is

satisfiable. This completes the proof of Theorem 21.

38

7. Conclusion and Outlook

This article contributes to the growing area of research into the non-uniform complexity of OMQ answering

(which has been given a strong impetus by the recent breakthrough results in non-uniform CSPs). Although there

exist algorithms that are capable of recognising the data complexity and rewritability type of OMQs given in different

DLs (such as EL, ALC or SHIU), monadic datalog or disjunctive datalog, they are of so high complexity that

complete syntactic and practical general classifications of OMQs seem hardly possible.

Here, we take a different, bottom-up route to understanding the data complexity and rewritability of non-Horn

OMQs. Namely, we fix the basic ontology covA with a single axiom saying that class A is covered by the union of

two classes F and T , and consider CQs with unary predicates F, T and arbitrary binary predicates (in fact, one binary

predicate is already extremely challenging). This ‘primitivisation’ pays off as we obtain a number of useful sufficient

and/or necessary conditions for membership in the complexity classes AC0, L, NL, P. The main result of the article is

a remarkably transparent and tractable AC0/NL/P/coNP tetrachotomy (requiring a pretty complex proof) for OMQs

with the ontology cov
⊥
A

(making T and F disjoint) and a path CQ.

These positive results can hopefully be generalised to more expressive non-Horn ontologies in Schema.org and

(fragments of) the description logics DL-Litekrom and DL-Litebool in the DL-Lite family [57], thereby extending the

classical OBDA paradigm to queries mediated by non-Horn ontologies. Note that DL-Litekrom only allows binary

clauses as ontology axioms, and so only total covering⊤ ⊑ F⊔T (that is, ∀x (F(x)∨T (x)). Compared to covA, OMQs

with the ontology cov⊤ are in general less complex (see Example 15), so it would be interesting and challenging to

extend our tetrachotomy in Theorem 17 for path CQs to the case of total covering. Generalising it to OMQs with tree-

shaped CQs is another promising direction. Yet another direction of extending our tetrachotomy is to consider path

CQs with FT -twins. While it is easy to extend the proof of Theorem 18 to show NL-hardness of these, generalising

other results might turn out to be more challenging.

For OMQs with a dag-shaped (let alone arbitrary) CQ, finding complete syntactic classifications could be much

harder: as we show in Theorem 14, deciding FO-rewritability of such OMQs (even with a 1-CQ) turns out to be

PSpace-hard. We are working on pinpointing the exact complexity of classifying arbitrary OMQs with covering

according to their data complexity and rewritability type. In particular, we believe that deciding FO-rewritability is

actually 2ExpTime-complete for OMQs with a 1-CQ, and 2NExpTime-complete for OMQs with arbitrary CQs, which

matches the complexity of deciding boundedness of monadic datalog and, respectively, disjunctive datalog queries.

The novel technique developed in the proof of Theorem 14 paves the way to identifying the exact complexity of

deciding boundedness of monadic single rule (disjunctive) datalog programs, which seems to have been an open

problem since the 1980s. We will address this problem in a forthcoming publication.

Acknowledgements

The work of O. Gerasimova was supported by the Russian Academic Excellence Project 5-100. The work of

V. Podolskii was partially supported by the RFBR grant 18-01-00822. The work of M. Zakharyaschev was supported

by the EPSRC U.K. grant EP/S032282.

References

[1] A. Schaerf, On the complexity of the instance checking problem in concept languages with existential quantification, J. of Intelligent

Information Systems 2 (1993) 265–278.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description Logic Handbook, 2 ed., Cambridge

University Press, Cambridge, UK, 2007.

[3] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge University Press, 2017.

[4] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, Journal on Data Semantics X

(2008) 133–173.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics:

the DL-Lite family, Journal of Automated Reasoning 39 (2007) 385–429.

[6] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev, Ontology-based data access: A survey, in: J. Lang

(Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,

Sweden., ijcai.org, 2018, pp. 5511–5519.

[7] G. Xiao, L. Ding, B. Cogrel, D. Calvanese, Virtual knowledge graphs: An overview of systems and use cases, Data Intell. 1 (2019) 201–223.

39

[8] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.

[9] T. Eiter, M. Ortiz, M. Šimkus, T. Tran, G. Xiao, Query rewriting for Horn-SHIQ plus rules, in: J. Hoffmann, B. Selman (Eds.), Proceedings

of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada, AAAI Press, 2012.

[10] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very expressive description logics, in: L. P. Kaelbling, A. Saffiotti (Eds.),

IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August

5, 2005, Professional Book Center, 2005, pp. 466–471.

[11] R. Rosati, On conjunctive query answering in EL, in: D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, A. Turhan, S. Tessaris

(Eds.), Proceedings of the 2007 International Workshop on Description Logics (DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy,

8-10 June, 2007, volume 250 of CEUR Workshop Proceedings, CEUR-WS.org, 2007.

[12] D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, volume 148 of Studies in

Logic and the Foundations of Mathematics, Elsevier, 2003.

[13] D. Carral, C. Feier, B. C. Grau, P. Hitzler, I. Horrocks, EL-ifying ontologies, in: S. Demri, D. Kapur, C. Weidenbach (Eds.), Automated

Reasoning - 7th International Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July

19-22, 2014. Proceedings, volume 8562 of Lecture Notes in Computer Science, Springer, 2014, pp. 464–479.

[14] Y. Zhou, B. C. Grau, Y. Nenov, M. Kaminski, I. Horrocks, Pagoda: Pay-as-you-go ontology query answering using a datalog reasoner, J.

Artif. Intell. Res. 54 (2015) 309–367.

[15] E. Botoeva, D. Calvanese, V. Santarelli, D. F. Savo, A. Solimando, G. Xiao, Beyond OWL 2 QL in OBDA: rewritings and approximations,

in: D. Schuurmans, M. P. Wellman (Eds.), Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,

Phoenix, Arizona, USA, AAAI Press, 2016, pp. 921–928.

[16] A. Bötcher, C. Lutz, F. Wolter, Ontology approximation in Horn description logics, in: S. Kraus (Ed.), Proceedings of the Twenty-Eighth

International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, ijcai.org, 2019, pp. 1574–1580.

[17] D. Hovland, R. Kontchakov, M. G. Skjæveland, A. Waaler, M. Zakharyaschev, Ontology-based data access to Slegge, in: C. d’Amato,

M. Fernández, V. A. M. Tamma, F. Lécué, P. Cudré-Mauroux, J. F. Sequeda, C. Lange, J. Heflin (Eds.), The Semantic Web - ISWC 2017 -

16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II, volume 10588 of Lecture Notes in

Computer Science, Springer, 2017, pp. 120–129.

[18] E. Kharlamov, D. Hovland, M. G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz, G. Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, M. Giese,

H. Lie, Y. E. Ioannidis, Y. Kotidis, M. Koubarakis, A. Waaler, Ontology based data access in Statoil, J. Web Sem. 44 (2017) 3–36.

[19] C. Lutz, F. Wolter, Non-uniform data complexity of query answering in description logics, in: G. Brewka, T. Eiter, S. A. McIlraith (Eds.),

Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June

10-14, 2012, AAAI Press, 2012.

[20] M. Bienvenu, B. ten Cate, C. Lutz, F. Wolter, Ontology-based data access: A study through disjunctive datalog, CSP, and MMSNP, ACM

Transactions on Database Systems 39 (2014) 33:1–44.

[21] C. Lutz, I. Seylan, F. Wolter, The data complexity of ontology-mediated queries with closed predicates, Log. Methods Comput. Sci. 15

(2019).

[22] A. Hernich, C. Lutz, F. Papacchini, F. Wolter, Dichotomies in ontology-mediated querying with the guarded fragment, ACM Trans. Comput.

Log. 21 (2020) 20:1–20:47.

[23] T. Feder, M. Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group

theory, SIAM J. Comput. 28 (1998) 57–104.

[24] A. A. Bulatov, A dichotomy theorem for nonuniform CSPs, in: C. Umans (Ed.), 58th IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, IEEE Computer Society, 2017, pp. 319–330.

[25] D. Zhuk, A proof of CSP dichotomy conjecture, in: C. Umans (Ed.), 58th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, IEEE Computer Society, 2017, pp. 331–342.

[26] P. Bourhis, C. Lutz, Containment in monadic disjunctive datalog, MMSNP, and expressive description logics, in: C. Baral, J. P. Delgrande,

F. Wolter (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016,

Cape Town, South Africa, April 25-29, 2016, AAAI Press, 2016, pp. 207–216.

[27] C. Feier, A. Kuusisto, C. Lutz, Rewritability in monadic disjunctive datalog, MMSNP, and expressive description logics, Logical Methods

in Computer Science 15 (2019).

[28] C. Lutz, L. Sabellek, Ontology-mediated querying with the description logic EL: trichotomy and linear datalog rewritability, in: C. Sierra

(Ed.), Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August

19-25, 2017, ijcai.org, 2017, pp. 1181–1187.

[29] M. Y. Vardi, Decidability and undecidability results for boundedness of linear recursive queries, in: C. Edmondson-Yurkanan, M. Yannakakis

(Eds.), Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 21-23, 1988,

Austin, Texas, USA, ACM, 1988, pp. 341–351.

[30] J. Marcinkowski, DATALOG sirups uniform boundedness is undecidable, in: Proceedings, 11th Annual IEEE Symposium on Logic in

Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, IEEE Computer Society, 1996, pp. 13–24.

[31] J. Marcinkowski, Achilles, turtle, and undecidable boundedness problems for small DATALOG programs, SIAM J. Comput. 29 (1999)

231–257.

[32] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, M. Y. Vardi, Decidable optimization problems for database logic programs (preliminary

report), in: STOC, 1988, pp. 477–490.

[33] M. Benedikt, B. ten Cate, T. Colcombet, M. Vanden Boom, The complexity of boundedness for guarded logics, in: 30th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, IEEE Computer Society, 2015, pp. 293–304.

[34] J. D. Ullman, A. V. Gelder, Parallel complexity of logical query programs, Algorithmica 3 (1988) 5–42.

[35] R. Ramakrishnan, Y. Sagiv, J. D. Ullman, M. Y. Vardi, Proof-tree transformation theorems and their applications, in: Proceedings of the

eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, ACM, 1989, pp. 172–181.

[36] Y. P. Saraiya, Linearizing nonlinear recursions in polynomial time, in: A. Silberschatz (Ed.), Proceedings of the Eighth ACM SIGACT-

40

SIGMOD-SIGART Symposium on Principles of Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania, USA, ACM Press,

1989, pp. 182–189.

[37] W. Zhang, C. T. Yu, D. Troy, Necessary and sufficient conditions to linearize double recursive programs in logic databases, ACM Trans.

Database Syst. 15 (1990) 459–482.

[38] F. N. Afrati, M. Gergatsoulis, F. Toni, Linearisability on datalog programs, Theor. Comput. Sci. 308 (2003) 199–226.

[39] M. Kaminski, Y. Nenov, B. C. Grau, Datalog rewritability of disjunctive datalog programs and non-Horn ontologies, Artif. Intell. 236 (2016)

90–118.

[40] O. Gerasimova, S. Kikot, M. Zakharyaschev, Checking the data complexity of ontology-mediated queries: A case study with non-uniform

CSPs and Polyanna, in: C. Lutz, U. Sattler, C. Tinelli, A. Turhan, F. Wolter (Eds.), Description Logic, Theory Combination, and All That

- Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday, volume 11560 of Lecture Notes in Computer Science, Springer,

2019, pp. 329–351.

[41] R. Gault, P. Jeavons, Implementing a test for tractability, Constraints 9 (2004) 139–160.

[42] R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, 7th ed., Pearson, 2015.

[43] P. F. Patel-Schneider, Analyzing schema.org, in: P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth,

N. F. Noy, K. Janowicz, C. A. Goble (Eds.), The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,

Italy, October 19-23, 2014. Proceedings, Part I, volume 8796 of Lecture Notes in Computer Science, Springer, 2014, pp. 261–276.

[44] A. Hernich, C. Lutz, A. Ozaki, F. Wolter, Schema.org as a description logic, in: Q. Yang, M. J. Wooldridge (Eds.), Proceedings of the

Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI

Press, 2015, pp. 3048–3054.

[45] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volume II, Computer Science Press, 1989.

[46] C.-L. Chang, R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving, 1st ed., Academic Press, Inc., USA, 1973.

[47] N. Immerman, Descriptive Complexity, Springer, 1999.

[48] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming, ACM Computing Surveys 33 (2001)

374–425.

[49] L. J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1976) 1–22.

[50] L. Egri, B. Larose, P. Tesson, Symmetric datalog and constraint satisfaction problems in logspace, in: Logic in Computer Science, 2007.

LICS 2007. 22nd Annual IEEE Symposium on, IEEE, 2007, pp. 193–202.

[51] S. S. Cosmadakis, P. C. Kanellakis, Parallel evaluation of recursive rule queries, in: A. Silberschatz (Ed.), Proceedings of the Fifth ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems, March 24-26, 1986, Cambridge, Massachusetts, USA, ACM, 1986, pp.

280–293.

[52] J. F. Naughton, Data independent recursion in deductive databases, in: A. Silberschatz (Ed.), Proceedings of the Fifth ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, March 24-26, 1986, Cambridge, Massachusetts, USA, ACM, 1986, pp. 267–279.

[53] C. Lutz, L. Sabellek, A complete classification of the complexity and rewritability of ontology-mediated queries based on the description

logic EL, CoRR abs/1904.12533 (2019). URL: http://arxiv.org/abs/1904.12533 . arXiv:1904.12533.

[54] C. H. Papadimitriou, M. Yannakakis, A note on succinct representations of graphs, Information and Control 71 (1986) 181–185.

[55] S. Arora, B. Barak, Computational Complexity: A Modern Approach, 1st ed., Cambridge University Press, New York, NY, USA, 2009.

[56] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree automata techniques and applications,

Available on: http://www.grappa.univ-lille3.fr/tata , 2007.

[57] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, Journal of Artificial Intelligence Research

(JAIR) 36 (2009) 1–69.

41

http://arxiv.org/abs/1904.12533
http://arxiv.org/abs/1904.12533
http://arxiv.org/abs/1904.12533
http://www.grappa.univ-lille3.fr/tata

	1 Introduction
	2 Preliminaries
	3 Initial Observations
	3.1 Combined Complexity
	3.2 Data Complexity: AC0 and L
	3.3 Datalog Rewritability of OMQs with a 1-CQ

	4 Deciding FO-rewritability of OMQs with a 1-CQ
	4.1 General plan
	4.2 Encoding path-cactuses and graph-node sequences by FT-sequences
	4.3 Proof of Lemma 14.1 using Lemma 14.2
	4.4 Query-design
	4.5 Proof of Lemma 14.2

	5 Linear-Datalog-Rewritability of OMQs with a 1-CQ
	6 AC0/NL/P/coNP-Tetrachotomy of OMQs with a Path CQ
	7 Conclusion and Outlook

