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Abstract
This paper deals with global asymptotic behaviour of the dynamics for
N-dimensional competitive Kolmogorov differential systems of equations
dxi
dt = xi f i(x), 1 � i � N, x ∈ R

N
+. A theory based on monotone dynamical

systems was well established by Hirsch (1988 Nonlinearity 1 51–71). One of
his theorems is outstanding and states the existence of a co-dimension 1 com-
pact invariant submanifold Σ that attracts all the nontrivial orbits under certain
assumptions and, in practice, under the condition that the system is totally com-
petitive (all N2 entries of the Jacobian matrix D f are negative).The submanifold
Σ has been called carrying simplex since then and the theorem has been well
accepted with many hundreds of citations. In this paper, we point out that the
requirement of total competition is too restrictive and too strong; we prove the
existence and uniqueness of a carry simplex under the assumption of strong
internal competition only (i.e. N diagonal entries of D f are negative), a much
weaker condition than total competition. Thus, we improve the theorem signif-
icantly by dramatic cost reduction from requiring N2 to N negative entries of
D f . As an example of applications of the main result, the existence and global
attraction (repulsion) of a heteroclinic limit cycle for three-dimensional systems
is discussed and two concrete examples are given to demonstrate the existence
of such heteroclinic cycles.

Keywords: competitive Kolmogorov systems, carrying simplex, existence and
uniqueness, heteroclinic limit cycles, global attraction, global repulsion

Mathematics Subject Classification numbers: 37C70, 34D45, 34C45, 34C12,
34D23, 37C75, 37B25, 92D25.

Recommended by Professor Lorenzo J Diaz.

1361-6544/20/127067+21$33.00 © 2020 IOP Publishing Ltd & London Mathematical Society Printed in the UK 7067

https://doi.org/10.1088/1361-6544/abb03c
https://orcid.org/0000-0001-5429-1120
mailto:z.hou@londonmet.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/abb03c&domain=pdf&date_stamp=2020-11-9


Nonlinearity 33 (2020) 7067 Z Hou

1. Introduction

In this paper, we are concerned with the global dynamical behaviour of the flow ϕt generated
by the N-dimensional Kolmogorov differential system of equations

ẋi = xi f i(x) = Fi(x), x ∈ C, i ∈ IN = {1, 2, . . . , N}, (1)

where C = R
N
+ = {x ∈ R

N : ∀ i ∈ IN , xi � 0} and f ∈ C1(C,RN). System (1) is a typical
mathematical model for the population dynamics of a community of N species, where each xi(t)
represents the population size or density at time t and the function fi(x) denotes the per capita
growth rate of the ith species. For this reason, system (1) is called cooperative if ∂ fi(x)

∂x j
� 0 for

all i, j ∈ IN with i �= j because increase of the jth population boosts the per capita growth rate
of the ith species. Similarly, system (1) is called competitive if ∂ fi(x)

∂x j
� 0 for all i, j ∈ IN with

i �= j as increase of the jth population reduces the per capita growth rate of the ith species.
A competitive system is called totally competitive if ∂ fi(x)

∂x j
< 0 for all i, j ∈ IN . We say that a

competitive system has strong internal competition if ∂ fi(x)
∂xi

< 0 for all i ∈ IN . System (1) is
called dissipative if there is a compact invariant set A ⊂ C that uniformly attracts each compact
set of initial values. A square matrix A is said to be irreducible if there is no permutation matrix
P such that

PTAP =

(
A11 A12

0 A22

)
,

where A11 and A22 are square matrices.
System (1) and its various particular instances, such as the classic Lotka–Volterra systems,

have attracted huge interests from researchers spanning in the last half century. Consequently,
numerous research results for such systems can be found in literature. For example, Hirsch
[7–10] investigated the dynamical behaviour of cooperative and competitive systems (1) in
line with the development of the theory on monotone dynamical systems. The following is one
of his theorems given in [9].

Theorem 1.1. Assume that (1) satisfies the following conditions:

(a) The system is competitive.
(b) The system is dissipative.
(c) The Jacobian matrix D f (x) is irreducible in C.
(d) The origin 0 is a repellor.
(e) At each nonzero equilibrium, every entry of D f is negative.

Then (1) has a compact invariant submanifold Σ ⊂ C homeomorphic to ΔN−1 = {x ∈
C : x1 + · · ·+ xN = 1} by radial projection such that every nontrivial trajectory in C is
asymptotic to one in Σ.

This theorem is outstanding, phenomenal and has a big impact to later on researches on com-
petitive systems due to the important and interesting features of the set Σ: compact, invariant,
unordered (p � q implies p = q for p, q ∈ Σ), homeomorphic to ΔN−1 by radial projection,
and a global attractor of (1) in C\{0}. This theorem proves that the dynamical behaviour of
the system in C is essentially described by that of the system on this co-dimension 1 surface
Σ. Zeeman [42] called Σ the carrying simplex and it has been known as carrying simplex since
then.

There is a wide range of applications of this theorem with many hundreds of citations
in literature. Although a thorough investigation on these citations is not our intention here,
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research publications citing this theorem roughly fall into the following four categories: 1.
Some researchers further investigated the geometry of Σ. For example, Zeeman and Zeeman
[40], Tineo [35], Baigent [1, 2] investigated convexity of Σ; Mierczyński [30–33] studied the
smoothness of Σ. 2. Some researchers based their work on the existence of a carrying simplex.
For example, Zeeman and Zeeman [41], Hou and Baigent [5, 18, 20], and Hou [14] investi-
gated global stability and repulsion of a fixed point; Hou and Baigent [19] studied the existence
and global stability of heteroclinic limit cycles; Zeeman [42], Jiang and Niu [22–24] and Jiang
et al [28] investigated the dynamical behaviour on carrying symplex. 3. Some research projects
were inspired by Hirsch’s theorem although they could not use theorem 1.1 because some of
its conditions were not met. For example, Hou [11–13, 15–17] investigated permanence and
stability without assuming the existence of a carrying simplex; Liang and Jiang [29] studied the
dynamical behaviour of type-K competitive systems; Mierczyński and Schreiber [34] estab-
lished permanence conditions; Tu and Jiang [36] found coexistence conditions for systems
with limited competition; Zeeman [43] picked up a condition for extinction for some species;
Yu et al [39] gave a criterion for global stability of three-dimensional system. 4. The concept
of carrying simplex has been extended to discrete competitive dynamical systems. Research
in this area has been flourishing in the last two decades. Typical examples are [3, 4, 6, 10, 21,
25–27, 37, 38].

We note that users of theorem 1.1 seem scared of the situation when ∂ fi(x)
∂x j

= 0 for some
i �= j and some x ∈ C due to the requirements of (c) and (e). Since total competition implies
the fulfilment of conditions (c) and (e), in practice, almost all users of theorem 1.1 assume total
competition for convenience. We are reluctant to face the reality that the requirement of total
competition is very restrictive and costly. But actually, conditions (c) and (e) are not necessary
for the existence and uniqueness of a carrying simplex.

The aim of this paper is to prove the existence and uniqueness of a carrying simplex under
a much weaker condition than (c) and (e): we only require that system (1) has strong internal
competition on a globally attracting compact positive invariant set rather than total competition
in C. We shall present our main theorem in section 2 and prove it in section 3. In section 4 we
present a result on existence of globally attracting or repelling heteroclinic limit cycles and
two concrete examples for three-dimensional systems as an application of the main theorem.
We then conclude the paper in section 5.

2. Notation and statement of the main result

For C = R
N
+ we let Ċ = {x ∈ C : ∀i ∈ IN , xi > 0} and ∂C = C\Ċ. Then Ċ is the interior of C

and ∂C is the boundary of C. The part of ∂C restricted to the ith coordinate plane and the part
restricted to the positive half xi-axis are denoted by πi and Xi respectively, i.e.

πi = {x ∈ C : xi = 0}, i ∈ IN ,

Xi = {x ∈ C : xi > 0, ∀ j ∈ IN\{i}, x j = 0}, i ∈ IN.

Denote the ith standard unit vector by ei, i.e. the ith component of ei is 1 and others are 0. For
any nonempty subset I ⊂ IN , define

CI = {x ∈ C : ∀ j ∈ IN\I, x j = 0},

ĊI = {x ∈ CI : ∀ i ∈ I, xi > 0}.

For any x, y ∈ CI , by writing x �I y we mean xi � yi for all i ∈ I; we write x <I y if x �I y
but x �= y; and we write x �I y if y − x ∈ ĊI . We may also use y �I x, y >I x and y �I x for
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x �I y, x <I y and x �I y respectively. If I = IN , we simply drop the subscript ‘I’ from these
inequalities. For any a, b ∈ C with a � b, we let [a, b] = {x ∈ C : a � x � b}. Then [a, b] is
a k-dimensional cell if b − a has exactly k positive components. If a, b ∈ CI for some I ⊂ IN

with |I| = k � N such that a �I b, we define (a, b) = {x ∈ CI : a �I x �I b}. Then (a, b) is
an open cell in R

k with closure [a, b]. For each x ∈ C, the positive and negative limit sets under
the flow ϕt, with usual definition, are denoted by ω(x) and α(x) respectively. For convenience,
we define the concept of a carrying simplex as follows.

Definition 2.1. A nonempty compact set Σ ⊂ C\{0} is called a carrying simplex of (1) if
Σ meets the following requirements.

(a) Σ is an invariant submanifold homeomorphic to ΔN−1 by radial projection.
(b) For each x ∈ C\{0}, there is a y ∈ Σ such that limt→+∞(ϕt(x) − ϕt(y)) = 0.

Note that the ‘unordered’ property of Σ is not mentioned in the above definition. We shall
see in remark 2.1(e) below that the unordered property of Σ here is slightly different from that
in Hirsch [9], Zeeman [42] and the literature.

Theorem 2.2. Assume that system (1) satisfies the following conditions:

(a) f(0) � 0.
(b) There exists a vector r � 0 such that

∀ i ∈ IN , ∀ x ∈ C with xi � ri, f i(x) < 0.

(c) f ∈ C1([0, r],RN) and

∀ x ∈ [0, r], ∀ i, j ∈ IN ,
∂ f i(x)
∂xi

< 0 and
∂ f i(x)
∂x j

� 0.

Then (1) has a unique carrying simplex Σ. Moreover, for each p ∈ Σ and every q ∈ [0, r]\{0}
with q < p, we have α(q) ⊂ πi provided qi < pi.

Remark 2.1.

(a) Condition (a) of theorem 2.2 implies that the origin is a repellor, which is the same as
condition (d) of theorem 1.1.

(b) Condition (b) can be interpreted as ‘∞’ is a source so the system is dissipative with a
global attractor A ⊂ [0, r]. This is essentially the same as condition (b) of theorem 1.1.

(c) Condition (c) requires the system to be competitive with strong internal competition on
[0, r], which is much weaker than (a), (c) and (e) together in theorem 1.1.

(d) For each i ∈ IN , conditions (a)–(c) imply that the one-dimensional subsystem ẋi =
xi fi(xiei) has a unique positive equilibrium Qi = qiei ∈ Xi that is globally attracting on
Xi. From the conclusion of theorem 2.2 we see that Σ ∩ Xi = {Qi}.

(e) From the conclusion we see that for each p ∈ Σ, there is a nonempty I ⊂ IN such that
p ∈ ĊI . Then, for each q ∈ [0, r] with q �I p, we have α(q) ⊂ πi for all i ∈ I. As q �I p
and p ∈ ĊI imply that q ∈ CI , we have α(q) ⊂ ∩N

i=1πi = {0}, so α(q) = {0} �⊂ Σ. This
shows that Σ is unordered in a strict sense: for any nonempty I ⊂ IN , any p ∈ ĊI and
any q �I p, we cannot have both p ∈ Σ and q ∈ Σ. However, due to the possibility of
∂ fi(x)
∂x j

= 0 for some i �= j and some x, Σ does allow ordered points on it, i.e. p, q ∈ Σ with
p < q. This is demonstrated by the trivial example below.
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Example Consider the system

ẋi = xigi(xi), i ∈ IN , (2)

where each gi : R+ → R is continuous, gi(u) < 0 for u > qi > 0, gi(qi) = 0, gi ∈ C1([0, qi],R)
and g′

i(u) < 0 for u ∈ [0, qi]. Then (2) satisfies all the conditions of theorem 2.2, so it has a
unique carrying simplex Σ. Note that (2) is a trivial case of (1) when there is no interaction
between distinct component equations of the system. Since qi is the globally attracting equi-
librium of the ith component equation on the positive xi-axis, Σ is the upper boundary surface
of the cell [0, q], i.e.

Σ = {x ∈ [0, q] : xi = qi for some i ∈ IN}.

Clearly, q ∈ Σ and for each p ∈ Σ\{q}, we have p < q. Thus, ordered points are permitted on
Σ.

Corollary 2.3. Under the conditions of theorem 2.2, the following conclusions hold.

(a) For any periodic orbit γ ⊂ Σ, the points on γ are unordered, i.e. if p, q ∈ γ with p � q
then p = q.

(b) For any x ∈ Σ, if there are two points p, q ∈ γ(x) satisfying p < q then α(x) consists of
either a single equilibrium or a periodic orbit.

Proof.

(a) Suppose there are two points p, q ∈ γ satisfying p < q. Then there is at least one i ∈ IN

such that pi < qi. From theorem 2.2 we have α(p) ⊂ πi, so q /∈ α(p), a contradiction to
q ∈ γ = α(p) due to the periodicity of γ. Therefore, γ is unordered.

(b) By x ∈ Σ we have γ(x) ⊂ Σ and α(x) ⊂ Σ. Then, by p < q and the monotone property
of the backward orbit for competitive systems, we have ϕt(p) < ϕt(q) for all t � 0. Then,
for each i ∈ IN , if there is a t � 0 such that (ϕt(p))i < (ϕt(q))i, by theorem 2.2 we have
α(x) = α(p) ⊂ πi; otherwise, we have (ϕt(p))i = (ϕt(q))i for all t � 0. Thus, there is a
proper subset I ⊂ IN such that α(x) ⊂ πi for each i ∈ I and (ϕt(p)) j = (ϕt(q)) j for all
t � 0 and j ∈ IN\I. As p and q are two distinct points on γ(x), there is a T > 0 such
that either ϕT(p) = q or ϕT (q) = p. Hence, since the component (ϕt(p)) j is a T-periodic
function for t � 0 for each j ∈ IN\I, we obtain

α(x) = {y(t) : t ∈ [−T, 0], yi(t) = 0, i ∈ I; y j(t) = (ϕt(p)) j, j ∈ IN\I}

Therefore, α(x) consists of either a single equilibrium or a periodic orbit. �
For any unit vector u � 0, let E = {x ∈ R

N : u · x = 0}. Then E is the hyperplane orthog-
onal to u. Let P : RN → E be the orthogonal projection. Then

∀ x ∈ R
N , P(x) = x − (u · x)u.

Let g = P|Σ, the restriction of P to the carrying simplex Σ.

Corollary 2.4. Under the conditions of theorem 2.2, the flow ϕt on Σ is conjugate, via the
Lipschitz homeomorphism g, to the flow θt of a Lipschitz vector field on a closed set of E for
any given unit vector u � 0, that is,

θt = g ◦ ϕt ◦ g−1; ∀ x ∈ g(Σ) ⊂ E,
d
dt

(θt(x)) = G(θt(x)),
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where G(y) = P ◦ F ◦ g−1(y).

Note that corollary 2.4 is consistent with theorem 2.1′ given in [9]. We leave the proofs of
theorem 2.2 and corollary 2.4 to the next section.

3. Proofs of theorem 2.2 and corollary 2.4

In order to prove theorem 2.2, we first prove a few lemmas as preparation. The first lemma
identifies the compact invariant global attractor of system (1) in C under some of the conditions
of theorem 2.2.

Lemma 3.1. Assume that f ∈ C(C,RN) and there exists r � 0 such that

∀ i ∈ IN , ∀ x ∈ C with xi � ri, f i(x) < 0.

For the flow ϕt generated by system (1) define the set

A = ∩{ϕt([0, r]) : t � 0}. (3)

Then A is nonempty, compact,

A = ∪{γ(x) : x ∈ [0, r] such that γ(x) is bounded}, (4)

and

∀ t ∈ R, ϕt(A) = A. (5)

Proof. Clearly, [0, r] is nonempty compact. From the assumptions we know that [0, r] is
positively invariant and globally attracting in C. So

∀ t � 0, ϕt([0, r]) ⊂ [0, r].

By continuity of ϕt, ϕt([0, r]) is nonempty compact for each t � 0. For any t2 > t1 > 0, since
ϕt2−t1 ([0, r]) ⊂ [0, r], we must have

ϕt2 ([0, r]) = ϕt1 (ϕt2−t1 ([0, r])) ⊂ ϕt1 ([0, r]) ⊂ [0, r].

This shows that {ϕt([0, r])} is a continuous decreasing sequence of nonempty compact sets.
Thus, the set A defined by (3) is a nonempty compact set.

We next show (4). From the assumptions we know that γ−(x) is unbounded for any x ∈ C
with xi > ri for some i ∈ IN . Thus, for each x ∈ [0, r], if γ(x) is bounded then we must have
γ(x) ⊂ [0, r]. As ϕt(γ(x)) = γ(x) for all t ∈ R, we obtain

∀ t � 0, γ(x) = ϕt(γ(x)) ⊂ ϕt([0, r])

so γ(x) ⊂ A. If γ(x) is unbounded then γ(x) �⊂ [0, r], so there is a point y ∈ γ(x)\[0, r] such
that γ(x) = γ+(y) ∪ γ−(y) with γ−(y) ⊂ C\[0, r]. For any p ∈ γ+(y), there is a t � 0 such that
p = ϕt(y). As y /∈ [0, r], by uniqueness of the solution, we have p /∈ ϕt([0, r]) so p /∈ A. This
shows that A ∩ γ(x) = A ∩ γ+(y) = ∅. Therefore, (4) holds.

Finally, the invariance of A, i.e. (5), follows from (4) and the invariance of any bounded
orbit γ(x). �

Our next lemma further describes the monotone nature of negative half orbits in the global
attractor A.
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Lemma 3.2. Assume that the conditions of theorem 2.2 are met. If q ∈ A and p ∈ [0, r]
such that p < q, then, for each i ∈ IN with pi < qi, we have (ϕt(p))i < (ϕt(q))i for all t � 0
and α(p) ⊂ πi.

Proof. Fix i ∈ IN such that pi < qi. If pi = 0, then (ϕt(p))i = 0 < (ϕt(q))i for all t � 0 and
γ−(p) ⊂ πi so α(p) ⊂ πi.

Now suppose 0 < pi < qi. As ϕt(p) and ϕt(q) are solutions of (1) with ϕ0(p) = p and
ϕ0(q) = q respectively, from (1) we have

(ϕt(p))i = pi exp

(∫ t

0
f i(ϕs(p))ds

)
,

(ϕt(q))i = qi exp

(∫ t

0
f i(ϕs(q))ds

)
,

so
(ϕt(q))i

(ϕt(p))i
=

qi

pi
exp

(∫ t

0
[ f i(ϕs(q)) − f i(ϕs(p))] ds

)
. (6)

For fixed t < 0 and each s ∈ [t, 0],

f i(ϕs(q)) − f i(ϕs(p)) =
∫ 1

0

[
d

dθ
f i(ϕs(p) + θ(ϕs(q) − ϕs(p)))

]
dθ

=

N∑
j=1

∫ 1

0

[
∂ f i

∂x j
(ϕs(p) + θ(ϕs(q) − ϕs(p)))

]
dθ[(ϕs(q)) j − (ϕs(p)) j].

Since p < q, by conditions (b) and (c) in theorem 2.2, the dynamics of (1) are monotone for
t � 0 so ϕt(p) < ϕt(q) for all t < 0. Thus, by (c) again,

f i(ϕs(q)) − f i(ϕs(p)) �
∫ 1

0

[
∂ f i

∂xi
(ϕs(p) + θ(ϕs(q) − ϕs(p)))

]
dθ × [(ϕs(q))i − (ϕs(p))i].

Let

mi = −max

{
∂ f i(x)
∂xi

: x ∈ [0, r]

}
.

By (c) we have mi > 0. As γ(q) ⊂ A ⊂ [0, r] and ϕt(p) < ϕt(q) for all t � 0, we also have
γ−(p) ⊂ [0, r]. Then the above inequality can be further simplified as

f i(ϕs(q)) − f i(ϕs(p)) � −mi[(ϕs(q))i − (ϕs(p))i]. (7)

Then, from (6) and (7) we obtain

(ϕt(q))i

(ϕt(p))i
� qi

pi
exp

(
mi

∫ 0

t
[(ϕs(q))i − (ϕs(p))i]ds

)
, t � 0. (8)

As pi < qi and ϕt(p) < ϕt(q) for all t � 0, we have

exp

(
mi

∫ 0

t
[(ϕs(q))i − (ϕs(p))i]ds

)
� 1, t < 0.

7073



Nonlinearity 33 (2020) 7067 Z Hou

It then follows from (8) that

(ϕt(q))i

(ϕt(p))i
� qi

pi
> 1, t < 0.

Thus,

(ϕt(q))i − (ϕt(p))i �
(

qi

pi
− 1

)
(ϕt(p))i > 0, t < 0. (9)

From (8) and (9) we obtain

(ϕt(q))i

(ϕt(p))i
� qi

pi
exp

[
mi

(
qi

pi
− 1

)∫ 0

t
(ϕs(p))i ds

]
, t � 0. (10)

Finally, we are in a position to show by contradiction that

lim
t→−∞

(ϕt(p))i = 0. (11)

Suppose (11) is false. Then there is an η ∈ (0, 1) and a sequence {tn} ⊂ (−∞,−1) with tn+1 <
tn − 1 such that (ϕtn(p))i � η for all n � 1. Let

Mi = max{xi| f i(x)| : x ∈ [0, r]}+ 4 (12)

and define a function g : (−∞, 0] → R+ as follows:

∀ n � 1, ∀ t ∈ [tn −
η

Mi
, tn +

η

Mi
], g(t) = η − Mi|t − tn|,

and g(t) = 0 for t ∈ (−∞, 0]\(∪∞
n=1[tn − η

Mi
, tn +

η
Mi

]). We claim that (ϕt(p))i � g(t) for all
t � 0. Indeed, for t ∈ [tn − η

Mi
, tn +

η
Mi

],

|(ϕt(p))i − (ϕtn(p))i| �
∣∣∣∣
∫ t

tn

(ϕs(p))i f i(ϕs(p))ds

∣∣∣∣ � Mi|t − tn|,

so

(ϕt(p))i � (ϕtn(p))i − Mi|t − tn| � g(t).

As ∫ tn+
η

Mi

tn− η
Mi

g(t) dt =
η2

Mi
> 0,

we have ∫ 0

t
(ϕs(p))i ds �

∫ 0

t
g(s)ds →+∞ (t →−∞).

From (10) we obtain (ϕt (q))i
(ϕt(p))i

→+∞ as t →−∞. In particular, (ϕtn (q))i
(ϕtn (p))i

→+∞ as n →∞. Since

(ϕtn(p))i � η so (ϕtn (q))i
(ϕtn (p))i

� 1
η (ϕtn(q))i, we must have (ϕtn(q))i →+∞ as n →∞, a contradiction

to the boundedness of γ(q). Therefore, we must have (11) and thus α(p) ⊂ πi. �
The next lemma shows that if the corresponding points on two positive half orbits are

ordered pairs for all t � 0 then the two positive half orbits have the same positive limit set.

7074



Nonlinearity 33 (2020) 7067 Z Hou

Lemma 3.3. Assume that the conditions of theorem 2.2 are fulfilled. If for some I ⊂ IN and
x, y ∈ ĊI, we have ϕt(x) � ϕt(y) for all t � 0, then

lim
t→+∞

(ϕt(y) − ϕt(x)) = 0. (13)

Proof. From (1) we see that x, y ∈ ĊI implies ϕt(x),ϕt(y) ∈ ĊI for all t � 0. By (b),
ϕt(x),ϕt(y) ∈ [0, r] for all large enough t. Without loss of generality, we may assume that
ϕt(x),ϕt(y) ∈ [0, r] for all t � 0. If x = y the (13) is obviously true. Suppose x < y. Since
ϕt(x) � ϕt(y) for all t � 0, by uniqueness of the solution to the initial value problem of (1) we
have ϕt(x) < ϕt(y) for all t � 0.

For each fixed t1 > 0 and every i ∈ I, if (ϕt1 (x))i < (ϕt1 (y))i then by the same reasoning as
that used in the proof of lemma 3.2, we have (ϕt(x))i < (ϕt(y))i for all t ∈ [0, t1]. Hence, if
(ϕt1 (x))i = (ϕt1 (y))i, we must have (ϕt(x))i = (ϕt(y))i for all t � t1 so

lim
t→+∞

[(ϕt(x))i − (ϕt(y))i] = 0. (14)

Now we show (14) under the assumption that 0 < (ϕt(x))i < (ϕt(y))i for all t � 0. From (1)
and (6) we have

(ϕt(y))i

(ϕt(x))i
=

yi

xi
exp

(∫ t

0
[ f i(ϕs(y)) − f i(ϕs(x))] ds

)
, t � 0. (15)

From (15) and following the same lines between (6) and (8) in the proof of lemma 3.2 we
obtain

(ϕt(y))i

(ϕt(x))i
� yi

xi
exp

(
−mi

∫ t

0
[(ϕs(y))i − (ϕs(x))i] ds

)
, t � 0. (16)

Suppose (14) is false. Then there is a positive sequence {tn} satisfying 2 < tn + 1 < tn+1 and
a δ ∈ (0, 1) such that

(ϕtn(y))i − (ϕtn (y))i � δ, ∀ n � 1.

For Mi defined by (12) and t ∈ [tn − δ
2Mi

, tn + δ
2Mi

],

|[(ϕt(y))i − (ϕt(x))i] − [(ϕtn(y))i − (ϕtn(x))i]|

=

∣∣∣∣
∫ t

tn

[(ϕs(y))i f i(ϕs(y)) − (ϕs(x))i f i(ϕs(x))] ds

∣∣∣∣
� 2Mi|t − tn|,

so

(ϕt(y))i − (ϕt(x))i � [(ϕtn(y))i − (ϕtn(x))i] − 2Mi|t − tn|
� δ − 2Mi|t − tn|.

Then (ϕt(y))i − (ϕt(x))i � h(t) for t � 0, where

∀ n � 1, ∀ t ∈ [tn −
δ

2Mi
, tn +

δ

2Mi
], h(t) = δ − 2Mi|t − tn|
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and

∀ t ∈ R+\
( ∞⋃

n=1

[tn −
δ

2Mi
, tn +

δ

2Mi
]

)
, h(t) = 0.

As ∫ tn+ δ
2Mi

tn− δ
2Mi

h(t) dt =
δ2

2Mi
> 0,

we have ∫ t

0
[(ϕs(y))i − (ϕs(x))i] ds �

∫ t

0
h(s)ds →+∞ (t →+∞).

This together with (16) implies that

lim
t→+∞

(ϕt(y))i

(ϕt(x))i
= 0.

In particular, we have

lim
n→∞

(ϕtn(y))i

(ϕtn(x))i
= 0.

As (ϕtn(x))i � ri so (ϕtn (y))i
(ϕtn (x))i

� 1
ri

(ϕtn(y))i, we must have limn→∞(ϕtn(y))i = 0. Thus, there is

n1 � 1 such that (ϕtn(y))i � 1
2δ for all n � n1. Since (ϕtn(y))i − (ϕtn(x))i � δ for all n � 1, for

n � n1 we have

(ϕtn(x))i � (ϕtn(y))i − δ <
1
2
δ − δ = −1

2
δ < 0,

a contradiction to ϕt(x) ∈ [0, r]. This contradiction shows the truth of (14). Then (13) follows
from (14) for all i ∈ I. �

To prove theorem 2.2 we need to find a candidate for the required carrying simplex. By
condition (a), the origin is a repellor. Let B(0) be the basin of repulsion of 0 in C. Then
B(0) is open relative to C and invariant. By condition (b), we can view ∞ as a repellor with
C\[0, r] ⊂ B(∞). Thus, we must haveB(0) ⊂ [0, r]. For each x ∈ B(0), γ(x) ⊂ B(0) so γ(x) is
bounded. From lemma 3.1 we have B(0) ⊂ A. Let Σ = A\B(0). Then Σ is nonempty, compact
and invariant. We are now able to show that Σ is the required carrying simplex and to give the
proof of theorem 2.2.

Proof of Theorem 2.2. We know from Σ = A\B(0) that Σ is an invariant submanifold.
Firstly, we show that Σ is homeomorphic to ΔN−1 by radial projection. For each x ∈ ΔN−1,

there is a λ0 = λ0(x) > 0 such that λ0x ∈ A but λx /∈ A for all λ > λ0. For each λ ∈ (0,λ0),
since λx < λ0x, by lemma 3.2 we have limt→−∞ϕt(λx) = 0, so λx ∈ B(0) ⊂ A for all λ ∈
[0,λ0). As B(0) is open but A is closed, we must have λ0x ∈ A\B(0) = Σ. Thus, for each
x ∈ ΔN−1 there is a unique λ0(x) > 0 such that λ0(x)x ∈ Σ. Conversely, for each y ∈ Σ, there
is a unique μ0(y) > 0 such that μ0(y)y ∈ ΔN−1.

Next, we need to show that both λ0(x) and μ0(y) are continuous. Suppose λ0(x) is not con-
tinuous on ΔN−1. Then there exist a sequence {x(n)} ⊂ ΔN−1, a point p ∈ ΔN−1 and a number
λ1 > 0 such that, as n →∞,

x(n) → p, λ0(x(n)) → λ1 �= λ0(p),

so that
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λ0(x(n))x(n) → λ1 p �= λ0(p)p.

Sinceλ0(p)p ∈ Σ andλ0(x(n))x(n) ∈ Σ for all n � 1, by the compactness ofΣwe haveλ1 p ∈ Σ.
As λ1 �= λ0(p), we have either λ1 p < λ0(p)p or λ0(p)p < λ1 p. By lemma 3.2, we have either
λ1 p ∈ B(0) or λ0(p)p ∈ B(0), a contradiction to λ1 p ∈ Σ and λ0(p)p ∈ Σ. This shows the con-
tinuity of λ0(x). The continuity of μ0(y) follows similarly. Therefore, Σ is homeomorphic to
ΔN−1 by radial projection.

Secondly, we prove that for each x ∈ C\{0}, there is a y ∈ Σ such that

lim
t→+∞

[ϕt(x) − ϕt(y)] = 0. (17)

If x ∈ Σ then we take y = x and (17) holds obviously.
Now suppose x ∈ C\A. If we can find a y ∈ Σ such that ϕt(y) � ϕt(x) for all t � 0, then

(17) follows from lemma 3.3. We now show that such a y exists. By (b) there is a T > 0 such
that ϕt(x) ∈ [0, r] for all t � T . Without loss of generality, we suppose x ∈ [0, r]\A so that
ϕt(x) ∈ [0, r]\A for all t � 0. For this x and each fixed t � 0, define the set

S(t, x) = {y ∈ Σ : ϕt(y) � ϕt(x)}.

We need to check that S(t, x) �= ∅. As ϕs(A) = A for all s ∈ R by lemma 3.1 but ϕt(x) ∈
[0, r]\A, there is an η0 ∈ (0, 1) such that η0ϕt(x) ∈ Σ but ηϕt(x) /∈ Σ for η0 < η � 1. As Σ
is invariant, taking y = ϕ−t(η0ϕt(x)) we have y ∈ Σ and

ϕt(y) = η0ϕt(x) < ϕt(x).

Thus, ϕ−t(η0ϕt(x)) ∈ S(t, x) and S(t, x) �= ∅.
For any t2 > t1 � 0, if y ∈ S(t2, x) then ϕt2 (y) < ϕt2 (x). By the monotone property for

competitive systems, we have

ϕt(y) = ϕt−t2 (ϕt2 (y)) < ϕt−t2 (ϕt2 (x)) = ϕt(x)

for all t ∈ [0, t2]. In particular, ϕt1 (y) < ϕt1 (x). Thus, y ∈ S(t1, x). This shows that

∀ t2 > t1 � 0, S(t2, x) ⊂ S(t1, x).

From the definition we see that each S(t, x) is compact. Hence, ∩t�0S(t, x) �= ∅. Then, for each
y ∈ ∩t�0S(t, x) ⊂ Σ and all t � 0, we have ϕt(y) � ϕt(x), so (17) follows from lemma 3.3.

Next, we suppose x ∈ B(0)\{0} and show the existence of y ∈ Σ such that ϕt(x) � ϕt(y)
for all t � 0. For each t � 0, define a set

U(t, x) = {y ∈ Σ : ϕt(x) � ϕt(y)}.

Using the techniques similar to those in the above paragraph we can check that U(t, x) is
nonempty, compact and

∀ t2 > t1 � 0, U(t2, x) ⊂ U(t1, x).

Hence, ∩t�0U(t, x) �= ∅. Now for any y ∈ ∩t�0U(t, x), we have ϕt(x) � ϕt(y) for all t � 0.
Then (17) follows from lemma 3.3. So far we have proved that Σ is a carrying simplex.

Thirdly, we show that Σ is the unique carrying simplex. Suppose (1) has another carrying
simplex Σ1 �= Σ. Then there exist a point p ∈ ΔN−1 and two distinct numbers λ0 > 0 and
λ1 > 0 such that λ0 p ∈ Σ and λ1 p ∈ Σ1. If λ1 < λ0 then λ1 p < λ0 p so λ1 p ∈ B(0) by lemma
3.2. As γ(λ1 p) ⊂ Σ1 and Σ1 is compact, we must have {0} = α(λ1 p) ⊂ Σ1, a contradiction to
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Σ1 being homeomorphic to ΔN−1 by radial projection. If λ1 > λ0 then λ1 p > λ0 p so λ1 p /∈ A
and γ(λ1 p) is unbounded, a contradiction to the boundedness of Σ1 as γ(λ1 p) ⊂ Σ1. These
contradictions show that Σ is the unique carrying simplex of (1).

Finally, for each p ∈ Σ and every q ∈ [0, r]\{0} with q < p, by lemma 3.2, for each i ∈ IN

with qi < pi we have α(q) ⊂ πi. �
Next, to prove corollary 2.4, we define a set S ⊂ R

N to be order convex if any x, y ∈ S with
x < y implies [x, y] ⊂ S. A point z is defined to be in the upper boundary of a set S if there is
a sequence si in S converging to z such that si � z for all i but no sequence xi in S converging
to z such that xi � z for all i.

Proof of Corollary 2.4. We know that Σ = A\B(0), where A defined in lemma 3.1 is
compact invariant. As B(0) ⊂ A is open in the space C and Σ is homeomorphic to ΔN−1

by radial projection, we see that A is equal to the closure of B(0). We now claim that A is
order convex. Indeed, for any p ∈ Σ, there is an I ⊂ IN such that p �I 0. By theorem 2.2,
we have (0, p) ⊂ B(0). Taking closure on both sides, we obtain [0, p] ⊂ A. Then, for any
a, b ∈ A with a < b, there is a λ � 1 such that λb ∈ Σ. so [a, b] ⊂ [0,λb] ⊂ A. Thus, A is order
convex.

Clearly, intΣ = Σ ∩ Ċ is the upper boundary of A. Then, by proposition 2.6 in [9] (its proof
is still valid here), the map g : intΣ→ E defined by the orthogonal projection P restricted to
intΣ is a Lipschitz homeomorphism, g(intΣ) is an open set of E, and g−1 is also Lipschitz. Then
extending the definition of g toΣ naturally, so g−1 : g(Σ) → Σ, g is still a homeomorphism with
both g and g−1 Lipschitz.

For any x ∈ g(Σ), define the flow θt through x by

θt(x) = g ◦ ϕt ◦ g−1(x) = g(ϕt(g−1(x))).

As Σ is invariant under the flow ϕt and g−1(x) ∈ Σ, ϕt(g
−1(x)) ∈ Σ for all t ∈ R. Thus, θt(x) ∈

g(Σ) for all t ∈ R and

θt(x) = ϕt(g−1(x)) − (u · ϕt(g−1(x)))u.

Then

d
dt

(θt(x)) =
d
dt

(ϕt(g−1(x))) −
(

u · d
dt

(ϕt(g−1(x)))

)
u

= F(ϕt(g−1(x))) − (u · F(ϕt(g−1(x))))u

= P ◦ F ◦ ϕt ◦ g−1(x)

= P ◦ F ◦ g−1 ◦ (g ◦ ϕt ◦ g−1(x))

= P ◦ F ◦ g−1(θt(x)).

Thus, the flow θt on g(Σ) ⊂ E is conjugate to the flow ϕt on Σ and it is determined by the
vector field G(y) = P ◦ F ◦ g−1(y). Clearly, G is Lipschitz as P, F and g−1 are Lipschitz. �

4. Heteroclinic limit cycles in three-dimensional systems

In this section, we consider competitive system (1) with N = 3 and present a result on het-
eroclinic limit cycles as an application of theorem 2.2, which is an update of a result based
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on theorem 1.1 with a stronger assumption that (1) is totally competitive [19]. (‘Strongly
competitive’ was used there for the same meaning as totally competitive here.) We assume
that the conditions of theorem 2.2 are satisfied so that (1) has a unique carrying simplex
Σ.

By a heteroclinic cycle we mean a closed curve that is topologically a circle consisting of
fixed points p(i) for i ∈ I3, together with heteroclinic trajectories Ti connecting p(i) to p(i+1)
(here p(4) = p(1)). By a heteroclinic limit cycle Γ we mean a heteroclinic cycle Γ with an
attracting (or repelling) neighbourhood N(Γ) (restricted to Ċ or C) such that ω(x0) = Γ (or
α(x0) = Γ) for all x0 ∈ N(Γ). The main issue we address here is when the heteroclinic cycle
is globally attracting or repelling (in some sense defined below).

Definition 4.1. We say that a heteroclinic cycle Γ0 of (1) is a

• locally attracting (repelling) heteroclinic limit cycle if there is a neighbourhood V ⊂ Ċ
(V ⊂ intΣ) of Γ0 such that ω(x0) = Γ0 (α(x0) = Γ0) for all x0 ∈ V;

• globally attracting (repelling) heteroclinic limit cycle if ω(x0) = Γ0 (α(x0) = Γ0) for
all x0 ∈ Ċ\U (x0 ∈ intΣ\U), where U is a union of a finite number of manifolds of
dimension lower than 3 (2) and the set of fixed points.

The theorem below is an update of theorem 2.3 in [19]. The proof of theorem 2.3 given in
[19] is still valid for theorem 4.2.

Theorem 4.2. In addition to the conditions of theorem 2.2, we assume that the Kolmogorov
system (1) with N = 3 satisfies the following conditions (a) and (b) or (c) as well:

(a) The three axial fixed points Q1, Q2, Q3 are the only fixed points of (1) on ∂Σ and either
the inequalities (18) or (19) hold:

∀ i ∈ I3, f i(Qi+1) < 0 < f i+2(Qi+1), (18)

∀ i ∈ I3, f i(Qi+1) > 0 > f i+2(Qi+1). (19)

(b) There is a unique fixed point p in intΣ that is globally asymptotically stable.
(c) There is a unique fixed point p in intΣ that is hyperbolic with one-dimensional stable

manifold Ws(p) in Ċ and globally repelling on Σ.

Then, under (a) and (b), ∂Σ is a heteroclinic limit cycle globally repelling on Σ: α(x0) =
∂Σ for all x0 ∈ intΣ\{p}; under (a) and (c), ∂Σ is a heteroclinic limit cycle globally attracting
in Ċ: ω(x0) = ∂Σ for all x0 ∈ Ċ\Ws(p).

In the rest of this section, we analyse two concrete systems as examples to demonstrate the
application of theorems 2.2 and 4.2. Without theorem 2.2 it is not possible to deal with the two
systems as theorem 1.1 is not applicable to them due to some zero off-diagonal entries in D f .

For any vector a = (a1, a2, a3) > 0, C has the partition C = C− ∪ Π ∪ C+ by the plane
Π = {x ∈ C : a1x1 + a2x2 + a3x3 = 1} restricted to C, where 0 ∈ C−. A point p ∈ C is said
to be below Π if p ∈ C−, above Π if p ∈ C+, and on Π if p ∈ Π. A nonempty set S ⊂ C is said
to be strictly below Π if S ⊂ C− and strictly above Π if S ⊂ C+.

Example 1. Consider the three-dimensional system

ẋ1 = x1 f1(x) ≡ x1[1 − x1 − (2 − α)x2 − α(2x1 + x2)x2],

ẋ2 = x2 f2(x) ≡ x2[1 − x2 − (2 − α)x3 − α(2x2 + x3)x3], (20)

ẋ3 = x3 f3(x) ≡ x3[1 − x3 − (2 − α)x1 − α(2x3 + x1)x1],
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where α ∈ (0, 2) is a parameter. Take r1 = r2 = r3 = 1.1. Then (20) satisfies the conditions of
theorem 2.2 so it has a unique carrying simplex Σ.

Proposition 4.3. System (20) with α ∈ (0, 2) has a heteroclinic limit cycle ∂Σ globally
repelling on Σ.

Proof. Clearly, (20) has three axial equilibria e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1)
and an interior equilibrium p = ( 1

3 , 1
3 , 1

3 ). Since e1, e2, e3 are the only equilibria on ∂Σ and

f1(e2) = f2(e3) = f3(e1) = −1 < 0,

f3(e2) = f1(e3) = f2(e1) = 1 > 0,

system (20) satisfies condition (a) of theorem 4.2. We shall show that p is globally asymptoti-
cally stable in Ċ so that the conclusion of proposition 4.3 follows from theorem 4.2.

Note that the half-line L = {kp : k > 0} is an invariant manifold satisfying
limt→+∞ϕt(x) = p for all x ∈ L. To show that p is globally attracting in Ċ, we let V(x) = x1x2x3

and W(x) = x1 + x2 + x3. Then

V̇|(20) = V(x)(3 + αW(x))(1 − W(x)) (21)

and
Ẇ|(20) = W(x) − W(x)2 + α(x1x2 + x2x3 + x3x1 − U),

where
U = 2x2

1x2 + x1x2
2 + 2x2

2x3 + x2x2
3 + 2x2

3x1 + x3x2
1.

As

W(x)(x1x2 + x2x3 + x3x1) = 3x1x2x3 + x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + x2
2x3 + x2x2

3,

the expression for Ẇ|(20) can be simplified as

Ẇ|(20) = (1 − W)[W(x) + α(x1x2 + x2x3 + x3x1)] − αg(x1, x2, x3), (22)

where
g(x1, x2, x3) = x2

1x2 + x2
2x3 + x2

3x1 − 3x1x2x3.

Let
πp = {x ∈ R

3
+ : x1 + x2 + x3 = 1}. (23)

For x ∈ πp we have W(x) = 1, so Ẇ|(20) = −αg(x1, x2, x3). If we can show that

∀ x ∈ πp\{e1, e2, e3, p}, g(x1, x2, x3) > 0, (24)

trajectories passing through πp will stay below πp forever. By the definition of Σ we know
that Σ\{e1, e2, e3, p} is strictly below the plane πp. From (21) we know that V̇ |(20) > 0 for
x ∈ intΣ\{p}. Thus, γ+(x) ⊂ intΣ\{p} and V(ϕt(x)) is strictly increasing for x ∈ intΣ\{p}
and t ∈ R. We claim that

∀ x ∈ int Σ\{p}, lim
t→+∞

ϕt(x) = p. (25)

Indeed, if (25) is not true then ω(x0) �= {p} for some x0 ∈ intΣ\{p}. As V(ϕt(x
0)) is strictly

increasing, there is a constant c such that V(ϕt(x
0)) ↑ c as t →+∞. This implies that ω(x0) ⊂
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intΣ and V(ω(x0)) = c. Since ω(x0) �= {p}, ω(x0)\{p} ⊂ intΣ\{p} and intΣ\{p} is strictly
below πp, there is a q ∈ ω(x0)\{p} such that γ(q) ⊂ ω(x0)\{p} so that V̇(ϕt(q)) > 0. But this
contradicts V(ϕt(q)) = V(ω(x0)) = c. Therefore, (25) holds and p is globally attracting in Ċ.
The Jacobian matrix at p is

J(p) =

⎛
⎜⎜⎜⎜⎝
−1

9
(3 + 2α) −1

9
(6 + α) 0

0 −1
9

(3 + 2α) −1
9

(6 + α)

−1
9

(6 + α) 0 −1
9

(3 + 2α)

⎞
⎟⎟⎟⎟⎠

and J(p) has eigenvalues

λ1 = −1 − 1
3
α, λ2,3 = − 5

18
α± i

√
3

18
(α+ 6).

As Reλ j < 0 for all j ∈ I3, p is globally asymptotically stable in the interior of R3
+.

Finally we show (24). Note that x ∈ πp\{e1, e2, e3, p} if and only if x ∈ πp with 1
3 < x1 < 1

or 1
3 < x2 < 1 or 1

3 < x3 < 1. By rotational symmetry of πp and g, if g(x1, x2, x3) > 0 for
x ∈ πp with 1

3 < x2 < 1, then g(x1, x2, x3) > 0 for x ∈ πp with 1
3 < x1 < 1 and

g(x1, x2, x3) > 0 for x ∈ πp with 1
3 < x3 < 1 so that (24) follows. Thus, by letting

G(x1, x2) = g(x1, x2, 1 − x1 − x2), we need only prove that

∀ x2 ∈ (1/3, 1), ∀ x1 ∈ [0, 1 − x2], G(x1, x2) > 0. (26)

From the definition of g we have

G(x1, x2) = x2
1x2 + (1 − x1 − x2)[x2

2 + (1 − x1 − x2)x1 − 3x1x2]

= x3
1 + (6x2 − 2)x2

1 + (3x2
2 − 5x2 + 1)x1 + x2

2 − x3
2,

so
∂G
∂x1

= 3x2
1 + 4(3x2 − 1)x1 + (3x2

2 − 5x2 + 1),

∂2G
∂x2

1

= 6x1 + 4(3x2 − 1).

As ∂2G

∂x2
1

> 0 for x2 > 1
3 and x1 � 0, for each fixed x2 ∈ ( 1

3 , 1), ∂G
∂x1

is strictly increasing for

x1 ∈ [0, 1 − x2]. If x2 ∈ ( 5
6 , 1) then

∂G
∂x1

(x1, x2) � ∂G
∂x1

(1 − x2, x2) = −x2(6x2 − 5) < 0

so G(x1, x2) is strictly decreasing for x1 ∈ [0, 1 − x2], when x2 ∈ [ 5
6 , 1) is fixed, and

G(x1, x2) � G(1 − x2, x2) = (1 − x2)2x2 > 0.

For fixed x2 ∈ ( 1
3 , 5

6 ), we have ∂G
∂x1

(1 − x2, x2) > 0 but

∂G
∂x1

(0, x2) = 3x2
2 − 5x2 + 1 = 3(x2 −

5 −
√

13
6

)(x2 −
5 +

√
13

6
) < 0.
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Thus, ∂G
∂x1

(x1, x2) = 0 at

x∗1 =
1
6

(
√

108(x2 − 1/6)2 + 1 − 4(3x2 − 1)), (27)

so G(x∗1, x2) is the minimum of G(x1, x2) for x1 ∈ [0, 1 − x2]. From (27) we have

(x∗1)2 =
1
9

[63x2
2 − 33x2 + 5 − 2(3x2 − 1)

√
108(x2 − 1/6)2 + 1], (28)

(x∗1)3 =
1
54

[
−36 × 39x3

2 + 27 × 40x2
2 − 288x2 + 28

+ (135x2
2 − 81x2 + 13)

√
108(x2 − 1/6)2 + 1

]
. (29)

Let H(x2) = G(x∗1, x2). Then, substitution of (27)–(29) into H(x2) and simplification gives

H(x2) = 9x3
2 − 3x2

2 +
2
27

− 1
108

[108(x2 − 1/6)2 + 1]
3
2 . (30)

The derivatives of H(x2) are

H′(x2) = 27x2
2 − 6x2 − 3(x2 − 1/6)[108(x2 − 1/6)2 + 1]

1
2 ,

H′′(x2) = 54x2 − 6 − 3[216(x2 − 1/6)2 + 1][108(x2 − 1/6)2 + 1]−
1
2 ,

H′′′(x2) = 54 − 324(x2 − 1/6)[216(x2 − 1/6)2 + 3][108(x2 − 1/6)2 + 1]−
3
2 .

It can be verified that H(4)(x2) < 0, so H′′′(x2) is strictly decreasing. As

H′′′(x2) < H′′′(1/3) = 54 − 54 × 9 × 1
8
= −27

4
< 0,

H′′(x2) is strictly decreasing. Since H′′( 1
3 ) = 3

2 > 0 and H′′( 5
6 ) = − 18

7 < 0, there is an x0
2 ∈

( 1
3 , 5

6 ) such that H′′(x0
2) = 0, H′(x2) is strictly increasing for x2 ∈ ( 1

3 , x0
2) and H′(x2) is strictly

decreasing for x2 ∈ (x0
2, 5

6 ). As H′( 1
3 ) = 0 and H′( 5

6 ) = − 1
4 < 0, there is a ∈ (x0

2, 5
6 ) such that

H′(a) = 0, H(x2) is strictly increasing for x2 ∈ ( 1
3 , a) and H(x2) is strictly decreasing for x2 ∈

(a, 5
6 ). Thus, for x2 ∈ ( 1

3 , 5
6 ),

H(x2) > min{H(1/3), H(5/6)}= min{0, 5/216} = 0.

Hence, (26) holds and (24) follows from (26). �

Example 2. Consider the three-dimensional Lotka–Volterra system

ẋ1 = x1 f1(x) ≡ x1(1 − x1 − αx2),

ẋ2 = x2 f2(x) ≡ x2(1 − x2 − αx3), (31)

ẋ3 = x3 f3(x) ≡ x3(1 − x3 − αx1),

where α > 1 is a parameter.

Proposition 4.4. System (31) with α > 1 has a unique carrying simplex Σ and a unique
interior equilibrium p ∈ intΣ with the following properties.
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(a) If 1 < α < 2, then p is globally asymptotically stable in Ċ and ∂Σ is a heteroclinic limit
cycle globally repelling on Σ: α(x) = ∂Σ for all x ∈ intΣ\{p}.

(b) If α = 2, then Σ = Δ2 = {x ∈ C : x1 + x2 + x3 = 1}, every trajectory in intΣ\{p} is a
simple closed curve, ∂Σ is a heteroclinic cycle, and p is a centre on Σ.

(c) If α > 2, then p is a saddle point with intΣ\{p} = Wu(p) the unstable manifold and
Ws(p) = {kp : k > 0} the stable manifold. Further, ∂Σ is a heteroclinic limit cycle
globally attracting in Ċ: ω(x) = ∂Σ for all x ∈ Ċ\Ws(p).

Proof. Clearly, (31) meets the conditions of theorem 2.2 with r = (1.1, 1.1, 1.1), so it has a
unique carrying simplex Σ. We can check that p = ( 1

1+α
, 1

1+α
, 1

1+α
) is the unique equilibrium

in Ċ and e1, e2, e3 are the only equilibria on ∂Σ. Let

V(x) = x1x2x3, W(x) = x1 + x2 + x3. (32)

Then
V̇|(31) = V(x)[3 − (1 + α)W(x)], (33)

Ẇ|(31) = W(x) − W(x)2 + (2 − α)(x1x2 + x2x3 + x3x1). (34)

Let

πp =

{
x ∈ C : x1 + x2 + x3 =

3
1 + α

}
. (35)

Then, for x ∈ πp,

Ẇ|(31) = (2 − α)

[
x1x2 + x2x3 + x3x1 −

3
(1 + α)2

]
. (36)

We first show that

∀ x ∈ πp\{p}, x1x2 + x2x3 + x3x1 <
3

(1 + α)2
. (37)

Since x1 = 3
1+α − x2 − x3 for x ∈ πp, by letting

G(x2, x3) =

(
3

1 + α
− x2 − x3

)
(x2 + x3) + x2x3,

to show (37) we need only show that

∀ x3 ∈
[

0,
3

1 + α

]
, ∀ x2 ∈

[
0,

3
1 + α

− x3

]
, G(x2, x3) <

3
(1 + α)2

(38)

provided (x2, x3) �= ( 1
1+α

, 1
1+α

). As ∂G
∂x2

= 3
1+α

− 2x2 − x3, we have ∂G
∂x2

= 0 so G(x2, x3) has

maximum at x2 = 1
2 ( 3

1+α − x3). Let h(x3) = G( 1
2 ( 3

1+α − x3), x3). Then h(x3) is simplified as

h(x3) = −3
4

[(
x3 −

1
1 + α

)2

−
(

2
1 + α

)2
]
.

From this we see that, for x3 ∈ [0, 1
1+α

) ∪ ( 1
1+α

, 3
1+α

],

h(x3) < h(1/(1 + α)) =
3

(1 + α)2
.
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As x2 = 1
2 ( 3

1+α − x3) = 1
1+α when x3 = 1

1+α , we have shown that G(x2, x3) < G( 1
1+α , 1

1+α ) =
3

(1+α)2 , so that (38) holds, if (x2, x3) �= ( 1
1+α , 1

1+α ).

(a) When 1 < α < 2, from (36) and (37) we see that Ẇ|(31) < 0 for x ∈ πp\{p}. This shows
that Σ\{p} is strictly below πp. From (33) we have V̇|(31) > 0 for x ∈ intΣ\{p}. Thus,
as γ+(x) ⊂ intΣ\{p}, V(ϕt(x)) is strictly increasing. By the same technique as that used
in the proof of proposition 4.3, we have limt→+∞V(ϕt(x)) = V(p) and limt→+∞ϕt(x) = p.
By the definition of Σ, p is globally attracting in Ċ. The Jacobian matrix

J(p) =

⎛
⎜⎜⎜⎜⎝
− 1

1 + α
− α

1 + α
0

0 − 1
1 + α

− α

1 + α

− α

1 + α
0 − 1

1 + α

⎞
⎟⎟⎟⎟⎠

has eigenvalues

λ1 = −1, λ2,3 = − 2 − α

2(1 + α)
± i

√
3α

2(1 + α)
. (39)

As 1 < α < 2 implies Reλ j < 0 for all j ∈ I3, p is globally asymptotically stable in Ċ.
Since

f1(e2) = f2(e3) = f3(e1) = 1 − α < 0,

f3(e2) = f1(e3) = f2(e1) = 1 > 0,

and e1, e2, e3 are the only equilibria on ∂Σ, by theorem 4.2, ∂Σ is a heteroclinic limit cycle
globally repelling on Σ.

(c) When α > 2, from (39) we see that λ1 < 0 but Reλ2,3 > 0, so p is a saddle point.
Since {kp : k > 0} is a one-dimensional invariant manifold tangent at p to an eigenvector,
(1, 1, 1), of J(p) corresponding to the unique eigenvalue with negative real part, λ1 = −1,
it is equal, by the uniqueness of the stable manifold, to Ws(p).

We next show that Wu(p) = intΣ\{p}. From (36) and (37) we see that Ẇ|(31) > 0 for
x ∈ πp\{p} so that Σ\{p} is strictly above πp. For each x ∈ intΣ\{p}, from (33) we have
V̇|(31) < 0. As intΣ\{p} is invariant, V(ϕt(x)) is a strictly decreasing function for t ∈ R.
As V is bounded and positive on intΣ, both limt→+∞V(ϕt(x)) and limt→−∞V(ϕt(x)) exist.
Hence, there are constants a and b satisfying 0 � a < V(x) < b such that V(y) = a for
all y ∈ ω(x) and V(z) = b for all z ∈ α(x). If α(x) �= {p}, then, as p is the unique interior
equilibrium and α(x) ⊂ intΣ, there is a point z ∈ α(x)\{p} that is not an equilibrium. As
γ(z) ⊂ α(x), we should have V(ϕt(z)) = b for all t ∈ R, which contradicts the fact that
V(ϕt(z)) is strictly decreasing. This contradiction shows that α(x) = {p} and b = V(p),
hence, by the hyperbolicity of p, we must have x ∈ Wu(p). On the other hand, for each
x ∈ Wu(p), its orbit γ(x) is bounded, so, by lemma 3.1, x ∈ A. Suppose to the contrary
that x /∈ Σ. As A = Σ ∪ B(0), we must have x ∈ B(0), so α(x) = {0}, a contradiction.
This shows that Wu(p) ⊂ Σ. It then follows from this and Wu(p) ⊂ Ċ\Ws(p) that Wu(p) ⊂
intΣ\{p}. Hence, Wu(p) = intΣ\{p}.

It then follows that ω(x) ⊂ ∂Σ for all x ∈ Wu(p) so that p repels intΣ\{p} to the
boundary of Σ. By theorem 4.2, ∂Σ is a heteroclinic limit cycle globally attracting in
Ċ.
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(b) When α = 2, from (32)–(36) we see that πp = Δ2 and

∀ x ∈ Δ2, V̇ |(31) = 0, Ẇ|(31) = 0.

Thus,
∀ x ∈ Δ2, ∀ t ∈ R, V(ϕt(x)) = V(x), W(ϕt(x)) = 1.

Equivalently,
∀ x ∈ Δ2, γ(x) ⊂ πp ∩ {y ∈ C : V(y) = V(x)}.

If x ∈ Δ2\{p} with x � 0, then V(x) > 0 and πp ∩ {y ∈ C : V(y) = V(x)} is a simple
closed curve. As p is the only equilibrium in Ċ, there is no equilibrium on this curve.
Hence, we must have γ(x) = πp ∩ {y ∈ C : V(y) = V(x)}. Since all closed trajectories
and nontrivial equilibria are in Σ, we have Σ = Δ2 and all trajectories in intΣ\{p} are
simple closed curves. That ∂Σ is a heteroclinic cycle follows from the same reason as that
in the last few lines of (a) above. �

5. Conclusion

For competitive Kolmogorov system (1), Hirsch’s theorem 1.1 has been widely accepted with
a great impact in the research field of population dynamics and dynamical systems. Its main
virtue is that the dynamics of system in the space C\{0} can be described by the dynamics
on the carrying simplex Σ as a co-dimension one global attractor. But users of the theorem
have to pay the high price of requiring the system to be totally competitive. Fortunately, we
have managed to reduce the cost to minimum and proved our theorem 2.2 for the existence
and uniqueness of a carrying simplex: we only require the system to have strong internal com-
petition for each individual species, a much weaker condition than total competition. This is a
significant improvement to theorem 1.1 and, therefore, to the existing theory for competitive
differential systems.

As an example of potential applications of theorem 2.2, we have updated a result on exis-
tence of heteroclinic limit cycles and their global attraction or repulsion, which was origi-
nally established using theorem 1.1, and provided concrete systems with globally attracting
(repelling) heteroclinic limit cycles. Without theorem 2.2 it is not possible to deal with these
systems by using theorem 1.1 as it is not applicable to these systems due to its strong unmet
conditions.

Similar to the above example, it is expected that many available results based on theorem 1.1
can be updated by using theorem 2.2. Moreover, due to the much weaker conditions of theorem
2.2, a broader class of systems to which theorem 1.1 is not applicable can now be explored by
the application of theorem 2.2. The following two problems are just such instances.

(a) The smoothness problem of the carrying simplex Σ as a surface: Σ in the trivial example
given in section 2 is the upper boundary of [0, r] and the smoothness of f has no impact
on the smoothness of Σ. What is the essential condition for Σ to be C1?

(b) In [24, 42], three-dimensional systems with plane nullclines are classified into 33 equiva-
lent classes when the 3 × 3 matrix A has positive entries only. Are there any new classes
or features induced by reducing some of the positive off-diagonal entries of A to zero?

As the concept, as well as results, on carrying simplex for discrete dynamical systems is
a consequence of inspiration of theorem 1.1 for continuous systems, it is natural to rethink
whether the current available results on carrying simplex for discrete dynamical systems can
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be significantly improved based on the idea of theorem 2.2. The author is delighted to announce
that this can be done and will be published in a separate paper.
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