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Abstract 

With a further exploration of modern cryptography, people realize that Public Key 

Infrastructure (PKI) is not perfect but has its limitations. One of the limitations is that 

PKI completely depends on the Certification Authority (CA) to obtain a digital 

certificate, but this online trusted third party might be compromised by the cyber 

attacks. Therefore, Shamir proposed a definition of Identity Based Encryption (IBE) 

which only relies on user’s identity to generate the public key instead of CA. Although 

the blueprint of IBE was presented in 1984, the first secure and reliable IBE system has 

been introduced until 2001. Meanwhile, some applications of IBE, such as Public Key 

Encryption with Keyword Search (PEKS), have been came up with since then. 

PEKS is one of the most technologically advanced crypto-systems to address 

searchable encryption. It enables individuals to search encrypted documents appending 

with a keyword without deriving any information. The first PEKS scheme was 

formalized by BDOP in 2004, but a secure channel must be established in order to 

transfer the Trapdoor query to the third party. Comparing with the original PEKS 

scheme, the later PEKS approaches remove secure channels and become much secure 

and efficient as time goes by. However, no matter what happened, Multiple Keywords 

Search and Keyword Guessing Attack are still two main research interests for the 

consideration. This PhD research aims to propose a few PEKS schemes in order to solve 

both Single and Multiple Keyword(s) Search issues and resist Off-line Keyword 

Guessing Attack (OKGA) and/or Inside Keyword Guessing Attack (IKGA). The focus 

of this research is listed on the three following parts: 

Many current Public Key Encryption with Multiple Keywords Search (MPEKS) 

schemes suffers OKGA. Therefore, this research firstly defines a formal MPEKS 

scheme to solve OKGA, which is called “Trapdoor-indistinguishable Secure Channel 



Free Public Key Encryption with Multi-keywords Search (tSCF-MPEKS)”. More 

specially, the new scheme allows users to search both Single and Multiple Keyword(s) 

and also has the characters of Ciphertext Indistinguishability and Trapdoor 

Indistinguishability so that it proves to be semantic secure under Random Oracle 

Models by Bilinear Diffie-Hellman (BDH) and 1-Bilinear Diffie-Hellman Inversion(1-

BDHI) assumptions for preventing OKGA. Besides, the efficiency and performance of 

tSCF-MPEKS is presented from both the theoretical analysis and the practical analysis. 

IKGA in MPEKS schemes is still an intractable problem up to now. But, this phd 

research solves IKGA by applying User Authentication technique. More specially, the 

second proposed PEKS scheme, namely “Robust Secure Channel Free Public Key 

Encryption with Multi-keywords Search (rSCF-MPEKS)”, not only addresses both the 

Single and Multiple Keyword(s) Search problems but also satisfies Ciphertext 

Indistinguishability and Trapdoor Indistinguishability properties and incorporates with 

User Authentication, therefore, it proves to be semantic secure under Random Oracle 

Models by BDH assumption for resisting IKGA. Besides, OKGA is also resisted in the 

proposed scheme. In addition, the performance of rSCF-MPEKS is also analyzed by the 

theoretical analysis and the computer simulation. 

Thirdly, almost all current PEKS and MPEKS schemes cannot deal with imprecise 

keywords, such as “latest”, “newest”, etc. The research incorporates with Fuzzy Logic 

(Artificial Intelligence) technique to PEKS and then proposes a formal statement of 

“Public Key Encryption with Multi-keywords Search using Mamdani System (m-

PEMKS)”. Its concrete construction, correctness and security verification are then 

proposed in the following section of the thesis. The new approach solves Fuzzy 

Keyword Search problem and proves to be semantic secure under Random Oracle 

Models by BDH and 1-BDHI assumptions so that it could resist OKGA. Besides, the 



performance of m-PEMKS is presented by the theoretical analysis and the computer 

simulation. 
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Glossary 

1. Cryptography: The study of encryption principles and procedures. 

2. Cryptanalysis: The study of cipher-breaking without knowing key. 

3. Cryptology: A field which contains both cryptanalysis and cryptography. 

4. Cryptographic algorithm: An algorithm that makes data unreadable or vice versa. 

5. Plaintext: The original information or data. 

6. Ciphertext: The enciphered information or data. 

7. Encryption: Transfer the plaintext into the ciphertext.   

8. Decryption: Transfer the ciphertext into the plaintext. 

9. Secret key: The input of cryptographic algorithm, which is only known between the 

sender and the receiver. 

10. Public key and Private key: A pair key used in asymmetric key cipher. The sender 

applies the public key for encryption while the receiver applies the private key for 

decryption.  

11. Symmetric key cipher: The cryptographic algorithm applies the same secret key 

for encryption and decryption. 

12. Asymmetric key cipher: The cryptographic algorithm applies the different keys for 

encryption and decryption. 

13. Challenger: The challenger is able to establish the crypto-system and also encrypts 

the message. 

14. Adversary: The attacker who tries to break the crypto-system. 

15. Hash function: The mathematical algorithm maps information into a fixed size. 

16. Oracle: It’s an abstract machine which is able to reply after each query.   

17. Semantic Secure: The adversary cannot drive one bit plaintext even though he/she 

intercepts the whole ciphertext. 





Abbreviations 

1. CBC: Cipher Block Chaining  

2. CFB: Cipher Feedback 

3. OFB: Output Feedback 

4. PEKS: Public Key Encryption with Keyword Search 

5. SC: Secure Channel 

6. SCF-PEKS: Secure Channel Free Public Key Encryption with Keyword Search 

7. SPA: Simple Power Analysis 

8. CPA: Correlation Power Analysis  

9. DPA: Differential Power Analysis  

10. DL: Deep Learning  

11. IND: Indistinguishability 

12. CPA: Chosen Plaintext Attack 

13. CCA: Chosen Ciphertext Attack 

14. CPA2: Adaptive Chosen Ciphertext Attack 

15. CI: Ciphertext Indistinguishability 

16. TI: Trapdoor Indistinguishability 

17. BDH assumption: The Bilinear Diffie-Hellman (BDH) assumption  

18. 1-BDHI assumption: The 1-Bilinear Diffie-Hellman Inversion (1-BDHI) 

assumption 

19. KGA: Keyword Guessing Attack 

20. OKGA: Off-line Keyword Guessing Attack 

21. IKGA: Inside Keyword Guessing Attack  

22. PPT: Probabilistic Polynomial Time 

23. FCL: Fuzzy Control Language 





1. Introduction 

Chapter one starts with the motivation of the PhD research and then introduces the 

aims and the objectives of this research. After that, the evaluations of the proposed 

schemes are described and the contributions of this research are also presented in the 

following part. Finally, the overview of the thesis is introduced in the end of this chapter. 

1.1 Motivation 

With the rapid development of the Internet, more and more individuals or 

companies store and manage the amount of sensitive information into the online trusted 

third parties (i.e. cloud storage) for reducing local storages, decreasing overheads and 

supplying backups, etc. Although it carries out plenty of benefits, it should not be 

overlooked that uploading information into the networked servers may lead in some 

adverse effects. More specifically, unfriendly hackers are able to launch port scanning in 

order to search the backdoors of the system. Then, they bypass the firewall and invade 

the victim’s host without user authentication for stealing sensitive information (i.e. 

personal information, bank card details, etc.) and finally break the victim’s operating 

system. Besides, many crackers may intercept the data packets transmitting on the 

public network and then recover these packets in order to achieve the information. In 

addition, attackers may exploit the physical leakage to disclose secrets during the 

processing of a cryptographic operation by the side channel analysis. For instance, 

attackers intercept the electromagnetic emission traces and power consumption traces 

so that they could apply Simple Power Analysis (SPA), Differential Power Analysis 

(DPA), Correlation Power Analysis (CPA) or even Deep Learning (DL) to derive the 

secret key. Hacktivism is immoral and carries out great loss in many aspects, such as 
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time and money, etc. To keep the confidentiality, integrity and availability (CIA) of 

sensitive information from both inside and outside attackers, cryptographic techniques 

must be applied during the whole data transmission. There is no doubt that Public Key 

Encryption with Keyword Search (PEKS) is a significant approach in cryptographic 

techniques to provide a secure data transmission. Although PEKS schemes takes 

substantial advantages, it should not be overlooked that they carry about some negative 

effects. For instance, PEKS schemes may vulnerable to Off-line Keyword Guessing 

Attack (OKGA) and/or Inside Keyword Guessing Attack (IKGA) and some of them are 

only able to support Single Keyword Search instead of Multiple Keywords Search so 

that these schemes may not be applied to the general public networks. Therefore, the 

PhD thesis pays more attention to PEKS research and then proposes few strengthen 

PEKS schemes to reverse these problems. 

1.2 Aims and Objectives 

This research has three aims. These include (1) come up with three PEKS 

schemes to solve both Single and Multiple Keyword(s) Search problem, (2) verify the 

security of the proposed schemes in order to resist OKGA and/or IKGA, and (3) 

propose a powerful PEKS system incorporating with Artificial Intelligence (Fuzzy 

Logic) to address Fuzzy Keyword Search problem. 

The objectives are listed in the following. 

i. Propose the first PEKS scheme to support both Single and Multiple 

Keyword(s) Search and also resist OKGA. 

ii. Propose the second PEKS statement, which incorporates with User 

Authentication technique to resist IKGA. Apart from that, the proposed has the 
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ability to resist OKGA. In addition, this scheme also allows users to search 

encrypted documents by Single or Multiple Keyword(s). 

iii. Propose the third PEKS scheme by applying Mamdani Fuzzy Inference 

System so that it solves Fuzzy Keyword Search problem. Besides, the proposed 

scheme also resists OKGA. 

1.3 Evaluation 

Based on the previous part, the evaluation of the proposed PEKS schemes 

contains three main steps. The first step is to ensure the correctness of the proposed 

schemes. Even one bit error is not accepted in the proposed PEKS systems. The second 

step is about security verification. The proposed schemes are proved to be semantic 

secure under Random Oracle Models which means the adversary cannot break any one 

bit of ciphertext. The third step of evaluation is to analyze the performance and the 

efficiency of the proposed schemes by the theoretical analysis (Mathematical 

computation) and the computer simulation (JAVA). 

1.4 Contribution of the Research to the Knowledge 

Many current Public Key Encryption with Multiple Keywords Search (MPEKS) 

schemes suffers OKGA. Therefore, the research firstly defines a MPEKS scheme, 

namely “Trapdoor-indistinguishable Secure Channel Free Public Key Encryption with 

Multi-keywords Search (tSCF-MPEKS)”, to resist OKGA. More specially, the proposed 

MPEKS scheme contains the properties of Ciphertext Indistinguishability and Trapdoor 

Indistinguishability and is proved to be semantic secure under Random Oracle Models 

so that it is able to resist OKGA. Besides, the proposed scheme allows users to exploit 
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encrypted messages by multiple keywords instead of single keyword only, therefore, 

tSCF-MPEKS is much more practical and could be applied in the general public 

networks. 

Secondly, IKGA in MPEKS schemes is still an intractable problem up to now. The 

research then defines the strengthen MPEKS scheme called “Robust Secure Channel 

Free Public Key Encryption with Multi-keywords Search (rSCF-MPEKS)” to reverse 

IKGA. Some times, the third party is honest-but-curious and therefore, it may exploit 

the secret key during data transmission. Therefore, the proposed scheme incorporates 

with User Authentication techniques and also satisfies Ciphertext Indistinguishability 

and Trapdoor Indistinguishability properties so that it is able to prevent IKGA. Besides, 

the proposed scheme could also prevent OKGA. In addition, similar to the tSCF-

MPEKS scheme, the rSCF-MPEKS also has the ability to address both Single and 

Multiple Keyword(s) Search issues. 

Last but not least, almost all current PEKS and MPEKS schemes cannot deal with 

imprecise keywords, such as “latest”, “newest”, etc. Therefore, the research also 

formalizes the third MPEKS statement, namely “Public Key Encryption with Multi-

keywords Search using Mamdani System (m-PEMKS)”, which is able to solve Fuzzy 

Keyword Search issue. In shot, the proposed scheme applies artificial intelligence 

(Mamdani Fuzzy Inference System in Fuzzy Logic) technique to solve Fuzzy Keyword 

Search problem. Besides, Ciphertext Indistinguishability and Trapdoor 

Indistinguishability properties are also providing in m-PEMKS scheme so that it 

perfectly stands up to OKGA.   
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1.5 The Outline of the Thesis 

This PhD thesis includes seven chapters starting with the Introduction part. This 

chapter introduces the motivation, aims and objectives, and the contributions of the PhD 

research.  

Chapter two briefly introduces the background and the development of crypto-

systems from the ancient time to the modern time. Then, it revisits the current 

researches on Public Key Encryption with Keyword Search (PEKS) and also analyzes 

the advantages and disadvantages of these schemes. 

Chapter three provides the preliminaries and the methodology of PEKS. These 

include bilinear pairing, BDH and 1-BDHI assumptions and so on, which will be used 

to establish the construction of the proposed PEKS schemes and also provide the 

security of the proposed schemes. 

Chapter four comes up with the tSCF-MPEKS scheme. The proposed system 

addresses both Single and Multiple Keyword(s) Search issues and resists OKGA. The 

correctness, security verification and performance and efficiency of the proposed 

approach are also provided in this chapter. 

Chapter five indicates that nearly all of previous PEKS approaches are vulnerable 

to IKGA and then proposes rSCF-MPEKS scheme, which incorporates with User 

Authentication technique to resist IKGA. Besides, the proposed system also solves 

Single and Multiple Keyword(s) Search issues and resists OKGA. In addition, the 

correctness, security verification and performance and efficiency of the proposed 

approach are also provided in this chapter. 

Chapter six introduces the third proposed PEKS scheme. The new system called 

m-PEMKS incorporates with the advantages of Mamdani Fuzzy Inference System 

(Fuzzy logic) so that it is able to address Fuzzy Keyword Search issue (i.e. “latest”, 
5



“biggest”, etc.). Apart from that, the proposed scheme has the properties of Ciphertext 

Indistinguishability and Trapdoor Indistinguishability and therefore, it is able to prevent 

OKGA as well. The correctness, security verification and performance and efficiency of 

the proposed approach are also provided in this chapter. 

Chapter seven is the final chapter which will conclude the whole PhD thesis. 
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2. Background and Literature Review 

2.1 Introduction 

The chapter briefly introduces the history and development of cryptography from 

the ancient time, the medieval time until the modern time. In the modern time, 

cryptography witnesses a huge development. More specially, the cryptographic 

algorithms become much more secure and advanced than before. There is no doubt that 

Public Key Encryption with Keyword Search (PEKS) is one of the typical 

cryptographic techniques that is able to secure data transmission. Thus, the rest of the 

chapter will review the current PEKS researches. 

2.2 The History and Development of Cryptography 

What is cryptography? It is a method used to protect electronic message security 

by changing the message into unreadable characters. Cryptography plays a pivotal role 

in information security and starts at a couple of thousand years ago. 

The first known use of cryptography was found in the chamber from Khnumhotep 

II’s tomb in Egypt around 1900 BC. It is the hieroglyphic symbols engraved into the 

wall of the tomb. Around 500 to 600 BC, Hebrew encrypted the message by using few 

simple mono-alphabetic substitution ciphers such as Atbash cipher. Later, “Scytale 

Transposition Cipher (Figure 1)” was applied by ancient Greeks for hiding the 

information. For instance, the soldier in Spartan military firstly prepared a tape 

wrapping on a stick so that he/she could depict the information on this wood tape. After 

that, a courier sent out the tape into the allied forces. Once received the tape, the allies 

found a stick which had the same diameter as the original one and wrapped the tape 

around the stick again for recovering the original message. Interestingly, this 
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transposition cipher is an efficient and advanced way to protect information security in 

the remote antiquity mainly because the secret will be unreadable, if the tape is 

unwound. 

 

FIGURE  1. SCYTALE TRANSPOSITION CIPHER (WIKIPEDIA, 2019) 

In the medieval time, the classical encryption techniques rose blowout. These 

ciphers follow two rules: one is called substitution which means the characters in the 

plaintext are replaced by alternative letters, numbers or even symbols. Another rule is 

called transposition which is shifting the positions of the plaintext by a regular 

procedure so that the message will be hided. Caesar Shift cipher is a typical substitution 

cipher whose characters in plaintext are changed by 3rd letters on (Figure 2). However, 

this cipher is vulnerable to exhaustive search that is a trial and error method to 

enumerate every possible combination until breaking the cipher. Mono-alphabetic 

cipher is then provided to solve the disadvantages of the Caesar Shift cipher. More 

specially, it maps the plaintext into one of the several possible cipher-texts by the fixed 

substitutions and vice versa. Although the Mono-alphabetic cipher possesses many 

keys, it should not be overlooked that frequency analysis may compromise it. Besides, 

Rail Fence cipher and Row Transposition cipher are two representative transposition 

ciphers. 
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FIGURE  2. CAESAR SHIFT CIPHER    

In the end of the Second World War, Arthur Scherbius designed the Enigma 

Machine and therefore, cryptography witnesses a huge quantum jump. The Enigma 

Machine (Figure 3) is an electro-mechanical rotor cipher machine with mechanical and 

electrical subsystems. The Enigma Machine is comprised of several parts such as a 

keyboard, etc. For encryption or decryption, the user only needs to press keys on the 

keyboard and records the lighting letters as the plaintext or the ciphertext. The 

substitution keys will be automatically changed after each letter pressing. 

 

FIGURE  3. ENIGMA MACHINE (WIKIPEDIA, 2019)  

Let Enigma Machine be having three rotors. It is able to generate 17576 

substitution keys so that brute-force search seems unrealistic. Nothing is impossible. 

Marian Rejewski found that the cycles will be appeared twice in the beginning of the 

ciphertext and then broke the Enigma Machine via the cycles. Later on, Alan Turing 

DB FECA

DB FECA

ę ę ę

ę ę ę
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designed a Bletchley Park Bombe (Figure 4) to speed up the calculations required in 

order to break the codes. 

FIGURE  4. BLETCHLEY PARK BOMBE (WIKIPEDIA, 2019) 

With the development of cryptanalysis, individuals are not discontented with 

encrypting the data by simple methods such as Enigma Machine. Plenty of experts 

embark on designing the safe, simple and efficient cryptographic algorithms to ensure 

the confidentiality of data. 

Symmetric and asymmetric ciphers have been proposed during the modern time in 

order to strengthen the information security. Symmetric cipher (Figure 5) allows the 

sender and the receiver using the same single key to encrypt the message. A perfect 

symmetric cipher satisfies two rules: the first rule is that the security of symmetric 

cipher relies on a strong and complex encryption algorithm. The second one is that the 

secret key is not able to be captured by anyone except the sender and the receiver. In 

1949, Claude Shannon proposed the blueprint of SP network to make the symmetric 

ciphers as complicated as possible.  
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FIGURE  5. SYMMETRIC CIPHER MODEL 

IBM designed Data Encryption Standard (DES) in the year of 1977, which is the 

most typical block cipher in the world. DES relies on a Feistel network with 16 rounds 

encryption to encrypt 8 bytes data by 7 bytes key. Therefore, the ciphertext becomes 

much sophisticated because DES shows the strong avalanche so that one bit error may 

affect half output result. Nowadays, it is possible to break DES by brute force attack and 

therefore, Triple DES and CBC DES are designed to solve the weaknesses appearing in 

single DES. 

Comparing with the Feistel structure, Advanced Encryption Standard (AES) uses 

iterative for operations. The outline of AES is comprised of four steps, which is 

described in Figure 6. It should be clear that the last round of AES contains three steps 

without mix columns. 
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FIGURE  6. ONE INTERNAL ROUND OF AES 

However, people is not satisfied the symmetric key ciphers mainly because the 

shared key will be compromised for a long time use. Social engineering is an easy and 

efficient way to compromise the shared key. In addition, shared key management is also 

a thorny problem. Therefore, a new cipher called asymmetric key cryptography is 

proposed to reverse the intractable problems that the single key cryptography witnesses. 

Asymmetric key cryptography is the complements rather than replacing the single key 

cryptography. Compared with the single key cipher, the enormous difference in 

asymmetric cipher (Figure 7) is that it has two keys. Public key is applied for encryption 

and private key is applied for decryption. 
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FIGURE 7. ASYMMETRIC CIPHER MODEL 

For public key ciphers, theirs contributions are used in three different applications. 

The first application is for encryption and decryption to protect data confidentiality. The 

second one is digital signatures to provide individual, entity and message 

authentications. The last application is key exchange, which is fairly used in session 

keys. Almost all public key ciphers rely on a Trapdoor one-way function and theirs 

security depend on the difficulty of factoring large numbers or computing discrete 

logarithms. More specially, Rivest, Shamir and Adleman from MIT were proposed RSA 

in 1977, which is an advanced cipher to resist many attacks, such as brute-force key 

search and mathematical attacks, etc. But, RSA suffers Chosen Ciphertext Attack (CCA) 

as adversaries are able to select any ciphertext to derive the characters of RSA and then 

recover parts of plaintext via cryptanalysis, side channel analysis and a lot more besides. 

Diffie and Hellman came up with the first public key approach in 1976, namely 

Diffie-Hellman Key Exchange Primitive. The proposed scheme provides a practical way 

for key exchange to the general public. Its security is based on the difficulty of 

computing discrete logarithms, but it is compromising to Man-in-the-Middle Attack. 

Thus, key authentication should be considered between both ends. ElGamal cipher is 

another typical public key cryptographic algorithm which has the similar technique as 

Diffie-Hellman Key Exchange Primitive. The security of ElGamal cipher also relies on 
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the difficulty of computing discrete logarithms. Recently, Elliptic Curve Cryptography 

(ECC) takes more consideration than other public key ciphers mainly because it  

provides same security but requires short key sizes (Table 1).  

TABLE 1. SAME SECURITY WITH DIFFERENT KEY SIZES 

 

With time goes by, individuals are dissatisfied with the security of cryptographic 

algorithms only relying on the hard mathematic problems. They focus on analyzing the 

characters of quantum. Therefore, quantum cryptography is then invented by the 

experts. More specially, quantum cryptography is a technique to exploit the properties 

of quantum for designing unbreakable ciphers. There is no doubt that quantum 

cryptography is completely different with the classical cryptography and the modern 

cryptography, whose security is based on physics instead of mathematics. Interestingly, 

quantum cryptography cannot be broken mainly because it seems impossible to assess 

the quantum states in any existing system. Hence, quantum cryptography is regarded as 

a secure system because of the quantum properties. So far, there are some quantum key 

distribution protocols (i.e. BB84, E91, etc.) could be used in the general public and the 

adversaries are not able to capture the quantum states during data transmission. 

According to the length of input, the cipher is separated into two parties. The first 

one is stream cipher (such as RC4) which encrypts only one bit of input at a time with a 

bit pseudorandom key stream in order to obtain one bit ciphertext stream. On the 

contrary, another party is called block cipher, which applies the deterministic algorithm 
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and a secret key to encrypt the blocks of input. For instance, DES is a typical block 

cipher that could encrypt 8 bytes blocks of message as an input. Apart from that, the 

block chain ciphers and stream chain ciphers are designed with time goes on. 

Cipher Block Chaining (CBC) (Figure 8) cipher is one of the typical block chain 

ciphers which mainly applies in bulk data encryption and authentication. However, it 

has its limitations. For instance, a block relies on all ciphertext blocks before it, 

therefore, one bit error in the block may bring about negative influences to all following 

ciphertext blocks. 

FIGURE 8. CIPHER BLOCK CHAINING CIPHER (CRYPTOWIKI, 2019) 

Compared with CBC, Cipher Feedback (CFB) cipher and Output Feedback (OFB) 

cipher are two typical stream ciphers whose input of the message is regarded as a stream 

of bits. For CFB (Figure 9), it is able to apply in stream data encryption and 

authentication. However, it also has its limitations, such as errors. Once the error is 

generated, it may propagate for several blocks. In terms of OFB (Figure 10), it could 

apply in stream encryption on the noisy channels so that the error does not propagate 

during the whole encryption. But, it requires the sender and the receiver remaining in 

synchronism. 
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                                        FIGURE 9. CIPHER FEEDBACK CIPHER (STALLINGS, 2017) 

        FIGURE 10. OUTPUT FEEDBACK CIPHER (STALLINGS, 2017) 
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The above section briefly introduces some typical cryptographic algorithms in the 

world over a few thousand years. However, there are other algorithms which are also 

important and useful, but they are omitted here. For instance, MACAlgo3 and CRT-RSA 

are the most powerful ciphers embedding in smart card for transaction. 

2.3 Literature Review on PEKS  

Alongside with the development of modern cryptography, a new cryptography 

called Identity-based Encryption (IBE) (Shamir, 1984) has been initially proposed by 

Shamir in 1984. However, the first secure IBE scheme has been introduced until 2001. 

Comparing with Public Key Infrastructure (PKI), IBE is independent of the online 

trusted third parties and is able to work independently. Provable security and efficiency 

(Boneh and Boyen, 2004; Waters, 2005; Gentry, 2006), key escrow (Boneh and 

Franklin, 2001; Paterson et al., 2003; Goyal, 2007) and anonymous problem (Boyen and 

Waters, 2006; Brandt and Sandholm, 2005; Clarkson et al., 2008) are the current main 

research topics of IBE and some applications based on IBE has also been introduced 

recently, such as Public Key Encryption with Keyword Search (PEKS). 

PEKS plays a pivotal role in cryptography to secure data transmission between 

two different networks. It offers a secure and efficient method for users to search 

encrypted messages from the online third parties by a specific keyword. In the year of 

2004, Boneh et al. formalized the first PEKS scheme (Boneh et al., 2004), which 

satisfies Indistinguishability under Chosen Plaintext Attack (IND-CPA) secure. 

Although the first PEKS scheme has IND-CPA secure, it should not be overlooked that 

it carries out some functional issues. For instance, it is only utilised to encrypt the 

keyword described in the file. If the user wishes to encrypt the whole message, he/she 

has to apply the traditional Public Key Encryption (PKE) algorithms to encrypt it. Later, 
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Abdalla et al. camp up with a new encryption (E) (Abdalla et al., 2005) which is based 

on the original PEKS scheme. The new approach defines the consistency. For instance, 

the hash functions in PEKS schemes should be assumed as collision resistance. 

Otherwise, the PEKS scheme is not perfect consistency and then may suffer Off-line 

Keyword Guessing Attack (OKGA). 

Both PEKS and PKE schemes require the secure channels between the receiver 

and the online third party to transmit the Trapdoor. However, it consumes huge human 

and material resources to build a secure channel and therefore, these PEKS schemes 

cannot be applied in the general public. In the year of 2008, Baek et al. presented a new 

method, namely “Secure Channel Free Public Key Encryption with Keyword Search 

(SCF-PEKS)” (Baek et al., 2008). It deletes the secure channel and becomes a cost-

saving system comparing with BDOP’s PEKS. Sometimes, the server is honest-but-

curious so that it may exploit some details related to the keyword. Besides, the Trapdoor 

is transferred to the online third party via the general public network so that it can be 

intercepted by anyone and therefore, the outside attackers are able to explore the private 

interests and keyword from the Trapdoor. Hence, SCF-PEKS scheme seems to be 

subjected to OKGA. More specially, Byun et al. discovered, for the first time, that 

PEKS is vulnerable to OKGA in 2006 (Byun et al., 2006). They pointed out that the 

user always picked up the proverbial keyword (low entropy) so that the keyword for 

searching is in a narrow space. Consequently, the adversary has the abilities to guess the 

keyword. Later, Jeong et al. presented an open problem that is establishing provably 

secure and coherent PEKS approach against KGA is impossible (Jeong et al., 2009). 

Meanwhile, Yau et al. proposed that some PEKS schemes (i.e. SCF-PEKS) are also 

vulnerable to OKGA and those approaches are compromised by inside attackers (Yau et 

al., 2008). This is because that outside adversaries could capture the Trapdoor from the 
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public network and then derive the keyword by OKGA. Afterwards, Tang et al. 

presented a new method to prevent Off-line KGA (Tang and Chen, 2010). However, the 

encryption algorithm of the proposed scheme is much complex. Soon later, Rhee et al. 

formalized a new SCF-PEKS scheme which firstly incorporates with the advantage of 

Trapdoor Indistinguishability (Rhee et al., 2010) to solve OKGA. In 2013, Zhao et al. 

introduced a new SCF-PEKS scheme satisfying Trapdoor Indistinguishability (Zhao et 

al., 2013). Comparing with Rhee et al’s model, it is much more efficient. From then on, 

people concentrate on constructing much secure PEKS and SCF-PEKS schemes to 

resist OKGA (Yau et al., 2008; Hu and Liu, 2011; Chen, 2014; Sun et al., 2017; Mao et 

al., 2018; Noroozi and Eslami, 2019; Huang and Li, 2018).  

The security of substantial PEKS and SCF-PEKS schemes relies on the 

difficulties of bilinear mapping with CDH, DDH, BDH and 1-BDHI assumptions. In 

1994, Shor effectively solved the discrete logarithm problem by quantum computing 

and pointed out that quantum computers (Shor, 1994) could compromise the security of 

these PKI systems. After that, lattice-based cryptographic systems have undertaken a 

rapid development. Ajtai firstly provided a way to proof the difficulty of lattice 

problems (Ajtai, 1996). Later on, many schemes and applications with lattices have 

been proposed since then. These include ID-based Encryption systems (Gentry et al’, 

2008; Agrawal et al., 2010), hash functions (Ajtai, 1996; Micciancio, 2002), fully 

homomorphic encryption systems (Gentry, 2009; Gentry, 2010), PEKS (Gu et al., 2013; 

Hou et al., 2013) schemes and a lot more besides. In 2018, Zhang et al. proposes a new 

PEKS approach from lattice assumption in the base model with quantum computer 

resistance (Zhang et al., 2018), which is the mile stone in the post-quantum 

cryptographic communication era. 
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The PEKS schemes above only concentrate on “precise” keyword retrieve rather 

than solving format error (“etc” and “etc.”) and/or spell inconsistent (“common” and 

“comon”). In the year of 2010, Li et al. presented the definition of “Fuzzy Keyword 

Search” (Li et al., 2010) to PEKS scheme for supporting formation error and/or spell 

inconsistent. However, Li et al.’s scheme is significant but suffers Off-line KGA. Later 

on, Xu et al. presented a new mechanism with Fuzzy Keyword Search in 2013, which is 

able to prevent Off-line KGA (Xu et al., 2013). 

Many PEKS mechanisms are specialized in solving single keyword search 

problem rather than multiple keywords search issue. Golle et al. firstly came up with a 

PEKS model with conjunctive keyword search (Golle et al., 2004) in order to solve 

multiple keywords search. Soon later, Boneh et al. revisited the Golle et al’s model and 

then strengthened the PEKS model to stand by “conjunctive”, “subset” and range 

requests on the keywords (Boneh et al., 2007). In the meantime, Baek et al. defined 

“Public Key Encryption with Multi-keywords Search (MPEKS)” to address multiple 

keywords retrieve issue (Baek et al., 2008). However, a secure channel has to be 

considered to transmit Trapdoor in MPEKS scheme, which is similar as PEKS and PKE 

approaches. In 2009, Camenisch et al.’s proposed PEKS with oblivious keyword search 

(Camenisch et al., 2009) which enables the individual to achieve the Trapdoor from the 

secret key holder so that it blinds the key extraction and strengthens keyword privacy to 

against adversaries. Later, Cao et al. proposed PEKS with ranked multiple keywords 

retrieve on encrypted cloud data and set rules for privacy requirements (Cao et al., 

2014). In 2016, Wang et al. designed a new SCF-MPEKS approach removing the secure 

channel (Wang et al., 2016). But SCF-MPEKS might be subjected to OKGA, if the 

infected server or receiver releases his/her secret key to the network. However, the 

majority of PEKS schemes may suffer IKGA, if the inside adversary executes one extra 
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bilinear pairing operation. Therefore, Huang and Li came up with an efficient PEKS 

approach with User Authentication in 2018 that is able to resist IKGA but the scheme 

only aims for solving single keyword search problem (Huang and Li, 2018). 

Apart from that, some representative PEKS schemes are also introduced as time 

goes by. For instance, PEKS with Delegated Search was formalized by Ibraimi et al., 

which is applied on detecting encrypted malicious code (Ibraimi et al., 2011). In 2014, 

Dual-Server PEKS was formalized by Chen et al. that is able to resist inherent 

insecurity (Chen et al., 2014). In the meaning time, He et al. came with up an approach 

in mobile social networks (He et al., 2016). It allows individuals to share contents and 

subscribes services. 

This PhD thesis formalizes “Trapdoor-indistinguishable Secure Channel Free 

Public Key Encryption with Multi-keywords Search (tSCF-MPEKS)” and “Robust 

Secure Channel Free Public Key Encryption with Multi-keywords search (rSCF-

MPEKS)” systems and subsequently proposes the concrete constructions of these 

models. The proposed schemes are able to solve both Single and Multiple Keyword(s) 

Search problems. Besides, the security models of tSCF-MPEKS and rSCF-MPEKS are 

also presented in the thesis. The proposed schemes are proved to be semantic secure in 

the security models under BDH and 1-BDHI assumptions so that both of them are able 

to resist OKGA. In addition, rSCF-MPEKS scheme applies User Authentication 

technique and therefore, IKGA has been avoided in this scheme. Last but not least, the 

thesis finally proposed a scheme called “Public Key Encryption with Multi-keywords 

Search using Mamdani System (m-PEMKS)”, which incorporates with the advantages of 

Mamdani System (Fuzzy Logic) to solve Fuzzy Keyword (i.e. “latest”) Search problem. 

It also should be noted that m-PEMKS has the ability to resist OKGA as well.  
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More specially, Table 2 below compares security and functionality between the 

typical MPEKS schemes (MPEKS, Baek et al., 2008; SCF-MPEKS, Wang et al., 2016) 

and three proposed schemes (tSCF-MPEKS, rSCF-MPEKS, m-PEMKS). 

TABLE 2. A COMPARISON BETWEEN TYPICAL MPEKS SCHEMES AND THREE 

PROPOSED SCHEMES 

According to the Table 2, the typical MPEKS (Baek et al., 2008) and SCF-

MPEKS (Wang et al., 2016) schemes are vulnerable to Off-line KGA, but the proposed 

PEKS schemes, called tSCF-MPEKS, rSCF-MPEKS and m-PEMKS, satisfy Trapdoor 

Indistinguishability and Ciphertext Indistinguishability properties to resist Off-line 

KGA. Besides, rSCF-MPEKS incorporating with User Authentication technique is 

much strengthen and therefore, it could prevent Inside KGA. Apart from that, m-

PEMKS scheme which applies Mamdani Fuzzy Inference System (Fuzzy Logic, 

Artificial Intellgence) has the powerful functionality to support Fuzzy Keyword Search, 

such as “latest”, “fastest”, etc. 

2.4 Literature Review on Fuzzy Logic 

In PEKS system, the user may search encrypted document by using imprecise 

keyword, such as “latest”, “biggest” etc. Due to PEKS ciphertext that contains fuzzy 

keyword leading to searching errors, therefore, Mamdani’s Fuzzy Inference method is 

able to be perfectly utilized in solving fuzzy keyword search problem. In 1973, Lotifi 

Zadeh came up with new fuzzy algorithms (Zadeh, 1973) to analyse complex systems 

and decision processes. Later, Ebrahim Mamdani revisited Lotifi’s approach and then 
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proposed an inference system to control a steam engine and boiler combination based 

on linguistic rules from human knowledge (Mamdani, 1975). However, Mamdani-style 

inference is not computationally efficient, Michio Sugeno proposed a new fuzzy 

inference (Sugeno, 1985) using a single spike (a singleton) as the rule consequent. 

Recently, Fuzzy sets theory has been applied successfully in many areas. Singh et al. 

pointed out fuzzy systems could applied to classification, modelling control problems 

(Sing et al., 2006). Lermontov et al. analysed water quality using fuzzy set (Lermontov 

et al., 2009). Meanwhile, Marchini et al. proposed a framework for fuzzy indices of 

environmental conditions (Marchini et al., 2009). 
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3. Preliminary for the PEKS Research 

3.1 Introduction 

This chapter describes the preliminaries for the PEKS research, such as Number 

Theory (i.e. Bilinear pairing) and Game Theory , etc. 

3.2 Number Theory 

3.2.1 Bilinear Pairings  (Boneh and Boyen, 2004) 

Suppose  is an additive cyclic group and  is a multiplicative cyclic group. 

Let  be a random generator of  and a prime number  be the order of . Suppose  

and  are the components of . A bilinear pairing is considered to be a map 

, which has the characters below: 

i. Bilinearity:  for all  and all . 

ii. Computability:  for any . 

iii. Non-degenerate: If  is a generator of  then  is a generator of . 

3.2.2 The Bilinear Diffie-Hellman (BDH) assumption (Boneh and Boyen, 2004) 

Let , ,  and  be the inputs (where ) and then calculate 

.  is an advantage of the algorithm  that could solve BDH 

assumption in the group , if . Therefore, it is 

known that if no Probabilistic Polynomial Time (PPT) algorithm takes at least  

advantage in addressing BDH assumption in the group , BDH assumption will be 

held in . 

G1 GT

P G1 g G1 α

β ZP

e : G1 × G1 → GT

e(αX, βY ) = e(X, Y )αβ X, Y ∈ G1 x, y ∈ ZP

e(X, Y ) ∈ GT X, Y ∈ G1

P G1 e(P, P) GT

P αP βP γP α, β, γ ∈ ZP

e(P, P)αβγ ∈ GT ξ A

G1 Pr[A(P, αP, βP, γP) = e(P, P)αβγ] ≥ ξ

ξ

G1

G1
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3.2.3 The 1-Bilinear Diffie-Hellman Inversion (1-BDHI) assumption (Boneh and 

Boyen, 2004) 

Let  and  be the inputs (where ) and then compute .  is an 

advantage of the algorithm  that could solve 1-BDHI assumption in the group , if 

. Therefore, it is known that if no PPT algorithm takes at 

least  advantage in addressing 1-BDHI assumption in the group , 1-BDHI 

assumption will be held in . 

3.3 Public Key Encryption with Keyword Search (PEKS) 

Let sender, server and receiver be three parties in PEKS scheme. The sender is a 

party who runs PEKS algorithm to create a Searchable ciphertext. Besides, the receiver 

is a party who executes Trapdoor algorithm to create a Trapdoor query. Once the server 

receives the encrypted messages from the sender and the receiver, he/she will run Test 

algorithm to estimate whether two ciphertexts contain the same keyword or not. 

In 2004, BDOP proposed the first PEKS approach in order to address keyword 

search issue (Boneh et al., 2004). The PEKS scheme has five algorithms as follows: 

1. : Import , a common parameter  is then created. 

2. : Import , a public and a private keys  of 

the receiver are then created.  

3. : Import the receiver’s public key  and a keyword , a 

Searchable ciphertext  is then generated by the sender. 

4. : Import the receiver’s private key  and a keyword 

, a Trapdoor query  is then generated by the receiver. 

P αP α ∈ ZP e(P, P) 1
α ξ

A G1

Pr[A(P, αP) = e(P, P) 1
α ] ≥ ξ

ξ G1

G1

KeyGenParam(1n) 1n cp

KeyGenReceiver(cp) cp (pkRec, skRec)

PEKS(pkRec, w) pkRec w

S = PEKS(pkRec, w)

Trapdoor (skRec, w*) skRec

w* Tw* = Trapdoor (skRec, w*)
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5. : Import the receiver’s public key , a Searchable 

encryption  and a Trapdoor query . 

Then, the server will test whether . If so, output “yes” and “no” otherwise. 

3.4 Secure Channel Free Public Key Encryption with Multiple 

Keywords Search (SCF-MPEKS) 

PEKS scheme has its limitations. It not only requires a secure channel to deliver 

Trapdoor query to the server, but also cannot search multiple keywords. So, Wang et al. 

proposed SCF-MPEKS scheme (Wang et al., 2016) to solve these problems, which 

contains six polynomial time algorithms as follows: 

1. : Import  to obtain a common parameter . 

2. : Import  to obtain a public and private keys  

of the server.  

3. : Import  to obtain a public and a private keys 

 of the receiver.  

4. : Import the server’s public key  and  

the receiver’s public key  in order to obtain a Searchable ciphertext 

 of multi-keywords . 

5. : Import the receiver’s private key  in order to 

produce a Trapdoor query  of a keyword . 

6. : Import the server’s private key , a Searchable 

e n c r y p t i o n  a n d a Tr a p d o o r q u e r y

. Then, if  includes , export “yes” and “no” otherwise. 

Test (pkRec, S, Tw*) pkRec

S = PEKS(pkRec, w) Tw* = Trapdoor (skRec, w*)

w = w*

KeyGenParam(1n) 1n cp

KeyGenServer(cp) cp (pkSer, skSer)

KeyGenReceiver(cp) cp

(pkRec, skRec)

SCF − MPEKS(pkSer, pkRec, W ) pkSer

pkRec

S = SCF − MPEKS(pkSer, pkRec, W ) W = (w1, w2, . . . , wη)

Trapdoor (skRec, w) skRec

Tw = Trapdoor (skRec, w) w

Test (skSer, S, Tw) skSer

S = SCF − MPEKS(pkSer, pkRec, W )

Tw = Trapdoor (skRec, w) W w
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3.5 Security Verification Models 

Goldwasser and Micali proposed the semantic security in the year of 1984. The 

semantic security (Goldwasser and Micali, 1984) is the prototype for provable security. 

That is an attacker cannot obtain any one bit plaintext even though he/she intercepts the 

whole ciphertext. Therefore, semantic secure is used for versifying the security of PEKS 

schemes.  

Consider  is an adversary who may break the crypto-system. While,  is a 

challenger who sets up the system and accepts the challenge from the adversary . 

3.5.1 Indistinguishable Choose Plaintext Attack (IND-CPA) Game 

1. Setup: The challenger  establishes the PEKS system  and the attacker  

obtains the public key of the system . 

2. Challenge: The attacker  sends a plaintext pair  to the challenger 

. Then,  chooses  uniformly at random and also encrypts one of the 

above plaintext. Finally,  sends the ciphertext  to . 

3. Guess:  guesses  and wins IND-CPA Game, if . 

For any Probabilistic Polynomial Time (PPT) adversary  against the IND-CPA 

Game, its advantage  is negligible. 

3.5.2 Indistinguishable Choose Ciphertext Attack (IND-CCA) Game 

However, IND-CPA has its limitation. For instance, it is vulnerable to the 

deterministic cryptography algorithms, such as RSA, Rabin, etc. On the contrary, IND-

CPA is able to resist passive attacks (i.e. Monitor) in the probabilistic cryptography 

algorithms (i.e. ElGamal, etc.) but cannot prevent active attacks (i.e. Fault injection) in 

these algorithms. Therefore, Naor and Yung came up with the concept of Chosen 

A E

A

E ξ A

ξ

A (M0, M1)

E E b ∈ {0,1}

E Cb A

A b* ∈ {0,1} b* = b

A

AdvIND−CPA
ξ,A (k)

27



Ciphertext Attack (CCA) (Naor and Yung, 1990) in 1990. It allows the attacker  

querying Oracle many times before the Challenge step.  

1. Setup: The challenger  establishes the PEKS system  and the attacker  

obtains the public key of the system . 

2. Training: The attacker  uploads the encrypted message  to  as many 

times as possible.  decrypts the ciphertext  and then sends the corresponding 

plaintext  back to . 

3. Challenge: The attacker  sends a plaintext pair  to the challenger 

. Then,  chooses  uniformly at random and also encrypts one of the 

above plaintext. Finally,  sends the ciphertext  to . 

4. Guess:  guesses  and wins IND-CCA Game, if . 

For any Probabilistic Polynomial Time (PPT) adversary  against the IND-CCA 

Game, its advantage  is negligible. 

3.5.3 Indistinguishable Adaptive Choose Ciphertext Attack (IND-CCA2) Game 

In 1991, Rackoff and Simon proposed the concept of Adaptive Choose 

Ciphertext Attack (CCA2) (Rackoff and Simon, 1991), which enables the adversary  

to query Oracle many times after the Challenge step. 

1. Setup: The challenger  builds the PEKS system  and the attacker  obtains 

the public key of the system . 

2. Training: The attacker  sends the encrypted message  to  as many times 

as possible.  decrypts the ciphertext  and then sends the corresponding plaintext 

 back to . 
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3. Challenge: The attacker  sends a plaintext pair  to the challenger 

. Then,  chooses  uniformly at random and also encrypts one of the 

above plaintext. Finally,  sends the ciphertext  to . 

4. Training: The attacker  sends the encrypted message  ( ) to  as 

many times as possible.  decrypts the ciphertext  and then sends the 

corresponding plaintext  back to . 

5. Guess:  guesses  and wins IND-CCA2 Game, if . 

For any Probabilistic Polynomial Time (PPT) adversary  against the IND-CCA2 

Game, its advantage  is negligible. 

3.6 The Procedure of PEKS Verification 

Suppose system 2 is completely secure which has BDH and 1-BDHI assumptions 

and system 1 is a designed PEKS system. Consider the Challenger establishes the 

system 2 and the adversary  challenges the system 2. Meanwhile, the adversary  

could also be regarded as a challenger who establishes the system 1. Therefore,  is 

able to accept the challenges from the adversary  and sends the responses back to . 

In order to break the system 2,  is able to train  and then applies ’s results to the 

system 2. However, due to system 2 being a secure system,  cannot break the system 2 

and consequently,  could not break the system 1. Thus, the designed PEKS system is 

proved to be a secure system (Figure 11). 
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FIGURE 11. THE PROCEDURE OF PEKS VERIFICATION 

3.7 Fuzzy Logic 

3.7.1 Fuzzy Rule Based Model 

The fuzzy rule based model (Figure 12) is based on Mamdani Fuzzy Inference 

System and consists four steps as follows: 

1. Fuzzification of the input variables: The aim of this step is transforming crisp 

inputs into fuzzy inputs by the membership functions. Although there are substantial 

curves can be used in fuzzification process, Gaussian, triangular and trapezoidal 

membership functions are the most widely used in it. 

2. Rules evaluation: The fuzzified inputs are applied to the antecedents of the 

fuzzy rules and then apply fuzzy logic operations (AND, OR, NOT) to these rule 

antecedents. 

3. Aggregation of the rule outputs: The membership functions of all rule 

consequents previously clipped or scaled are combined into a single fuzzy set. 

4. Defuizzification: Some defuzzification methods, such as Center of Gravity 

(COG), Mean Max, etc., can be utilized to transformed fuzzy outputs into crisp 

outputs. 
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FIGURE 12. FUZZY RULE BASED MODEL 

3.7.2 The Process of Mamdani-Type Fuzzy Inference System 

The Mamdani-Type Fuzzy Inference System contains five stages (Wang et al., 

2015) in the following: 

1. Fuzzify the input variables (crisp data) 

2. Apply fuzzy operator 

3. Apply implication method  

4. Apply aggregation method 

5. Defuzzification 
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4. Trapdoor-indistinguishable Secure Channel Free 
Public Key Encryption with Multi-keywords Search 

4.1 Introduction 

According to the section 1.4, it is known that many current Public Key Encryption 

with Multiple Keywords Search (MPEKS) schemes suffer Off-line Keyword Guessing 

Attack (OKGA). Therefore, this chapter gives a formal definition of MPEKS scheme, 

which incorporates with Trapdoor Indistinguishability so that it has the ability to resist 

OKGA. More specially, it firstly defines a new PEKS scheme namely “Trapdoor-

indistinguishable Secure Channel Free Public Key Encryption with Multi-keywords 

Search (tSCF-MPEKS)” and the security verification models as well. After that, a 

concrete construction of tSCF-MPEKS is proposed following by the correctness 

analysis, security verification and efficiency and performance analysis. 

4.2 The Outline of tSCF-MPEKS 

In 2008, Baek et al. defined PEKS scheme with multiple keywords search  to 

address multi-keywords search problem (Baek et al., 2008). However, a secure channel 

between the receiver and the online third party is required to transmit the Trapdoor 

request. There is no doubt that establishing a secure channel consumes huge human and 

material resources, which seems impossible in reality. Later on, a Secure Channel Free 

PEKS with Multiple Keywords Search approach (Wang et al., 2016) was introduced by 

Wang et al. in 2016. Although the new method removes the secure channel, it might 

suffer OKGA, if the server’s or receiver’s private key is compromised and released to 

the public networks. The PhD thesis defines a new PEKS scheme (Figure 13) called 

“Trapdoor-indistinguishable Secure Channel Free Public Key Encryption with Multi-
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keywords Search (tSCF-MPEKS)” and it incorporates with Trapdoor indistinguishability 

to deal with both Single and Multiple Keyword(s) Search issues and OKGA. The tSCF-

MPEKS contains six following algorithms:   

1. : Import , a common parameter  is then created. 

2. : Import , a public and a private keys  of the 

server are then created.  

3. : Import , a public and a private keys  of 

the receiver are then created.  

4. : Import the server’s public key  and  

the receiver’s public key , a Searchable ciphertext 

 is then generated by the sender, where . 

5. : Import the server’s public key  and the 

receiver’s private key , a Trapdoor query  is then 

generated by the receiver. 

6. : Import the server’s private key , a Searchable 

encryption  and a Trapdoor query 

. The server checks whether the  includes . If so, export 

“yes”. Otherwise, export “no”. 

KeyGenParam(1n) 1n cp

KeyGenServer(cp) cp (pkSer, skSer)

KeyGenReceiver(cp) cp (pkRec, skRec)

SCF − MPEKS(pkSer, pkRec, W ) pkSer

pkRec S = SCF − MPEKS(pkSer,

pkRec, W ) W = (w1, w2, . . . , wη)

Trapdoor (pkSer, skRec, w) pkSer

skRec Tw = Trapdoor (pkSer, skRec, w)

Test (skSer, S, Tw) skSer

S = SCF − MPEKS(pkSer, pkRec, W ) Tw =

Trapdoor (pkSer, skRec, w) W w
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FIGURE 13. THE OUTLINE OF TSCF-MPEKS 

4.3 The Security Models of tSCF-MPEKS 

As discussed in (Baek et al.; Wang et al.), tSCF-MPEKS is IND-CPA and 

Trapdoor-IND-CPA. 

The definition of IND-CPA security means that the untrusted server may not 

determine which Searchable ciphertext has which encrypted keyword, if the Trapdoor 

query that contains the given keyword has not been obtained by the server (Game1). 

Besides, if the server’s private key has not been obtained by the untrusted receiver, he/

she could not estimate whether the SCF-MPEKS ciphertext and the Trapdoor request 

contain the same keyword or not, even though all Trapdoors for any keyword are 

intercepted (Game2). 
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The definition of Trapdoor-IND-CPA security means that an outside adversary 

cannot observe any difference between Trapdoors for any two distinct keywords 

(Game3).  

Therefore, the tSCF-MPEKS’s IND-CPA security and Trapdoor-IND-CPA 

security are formalized as follows: Suppose  is an adversary and  is a challenger. 

Game1: Let  suppose to be an untrusted server. 

Stage1 (Setup): ,  and  

are called by  in order to generate a common parameter , the key pairs  

and  of the server and the receiver. Then,  sends , ,  and  

 to . 

Stage2（Trapdoor queries): Adaptably,  is able to return any Trapdoor query 

 for any keyword  to . 

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r 

  is sent from  to . It is known that  

and  cannot be requested in Stage2 (Game1). Once  obtains the pair, the 

 algorithm will be called by  for creating a Searchable ciphertext 

, where . Finally,  will be sent back 

from  to . 

Stage4 (Trapdoor queries):  can continue return any Trapdoor query  for any 

keyword  to  as in Stage2 (Game1), only if . 

Stage5 (Guess):  guesses  and wins Game1, if .  

A E

A

KeyGenParam(1n) KeyGenServer(cp) KeyGenReceiver(cp)

E cp (pkSer, skSer)

(pkRec, skRec) E cp pkSer skSer

pkRec A

E

Tw w A

[W0 = (w01, . . . . , w0η), W1 = (w11, . . . . , w1η)] A E W0

W1 E

SCF − MPEKS E

C = SCF − MPEKS(pkSer, pkRec, Wξ) ξ ∈ {0,1} C

E A

E Tw

w A w ∉ W0, W1

A ξ* ∈ {0,1} ξ* = ξ
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Game2:  Let  suppose to be an untrusted receiver. 

Stage1 (Setup): ,  and  

are called by  in order to generate a common parameter , the key pairs  

and  of the server and the receiver. Then,  sends , ,  and  

  to . 

Stage2 (Chal lenge s imulat ion): A target keyword-vector pai r 

  is sent from  to . It is known that  

and  are not able to be requested during Test algorithm on which . Once  

obtains the pair, the  algorithm will be called by  for creating a 

Searchable ciphertext , where . Finally, 

 will be sent back from  to . 

Stage3 (Guess):  guesses  and wins Game2, if .  

’s advantage to win Game1 and Game2 is listed below: 

 

So, the tSCF-MPEKS system is considered to be IND-CPA secure as long as the 

 is trivial. 

Game3: Let  suppose to be an outside attacker. 

Stage1 (Setup): ,  and  

are called by  in order to generate a common parameter , the key pairs  

and  of the server and the receiver. Then,  sends , ,  to  and 

keeps ,  from . 

A

KeyGenParam(1n) KeyGenServer(cp) KeyGenReceiver(cp)

E cp (pkSer, skSer)

(pkRec, skRec) E cp pkRec skRec

pkSer A

[W0 = (w01, . . . . , w0η), W1 = (w11, . . . . , w1η)] A E Tw0i

Tw1i
i = 1,...,η E

SCF − MPEKS E

C = SCF − MPEKS(pkSer, pkRec, Wξ) ξ ∈ {0,1}

C E A

A ξ* ∈ {0,1} ξ* = ξ

A

AdvIND−CPA
tSCF−MPEKS,Ai

(k) = |Pr[ξ* = ξ ] − 1/2 | . (i = 1,2)

AdvIND−CPA
tSCF−MPEKS,Ai

(k)

A

KeyGenParam(1n) KeyGenServer(cp) KeyGenReceiver(cp)

E cp (pkSer, skSer)

(pkRec, skRec) E cp pkSer skRec A

skSer skRec A
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Stage2（Trapdoor queries): Adaptably,  is able to return any Trapdoor query 

 for any keyword  to . 

Stage3 (Challenge simulation): A target keyword pair  is sent from  to 

. It is known that  and  cannot be requested in Stage2 (Game3). Once  obtains 

the keyword pair, the  algorithm will be called by  for creating a Trapdoor 

query , where . Finally,  will be sent back 

from  to . 

Stage4 (Trapdoor queries):  can continue return any Trapdoor query  for any 

keyword  to  as in Stage2 (Game3), only if . 

Stage5 (Guess):  guesses  and wins Game3, if .  

’s advantage to win Game3 is listed below: 

 

So, the tSCF-MPEKS system is considered to be Trapdoor-IND-CPA secure as 

long as the  is trivial. 

4.4 The Concrete Construction of tSCF-MPEKS 

1. : Suppose  is an additive cyclic group and  is a 

multiplicative cyclic group. Let  be a random generator of  and a prime number 

 be the order of . A bilinear pairing is considered to be a map 

. Suppose  and  are two 

particular hash functions. Therefore, a common parameter 

 can be achieved by the  algorithm.     

E

Tw w A

(w0, w1) A

E w0 w1 E

Trapdoor E

Tw = Trapdoor (pkSer, skRec, wξ) ξ ∈ {0,1} Tw

E A

E Tw

w A w ≠ w0, w1

A ξ* ∈ {0,1} ξ* = ξ

A

AdvTrap−IND−CPA
tSCF−MPEKS,A3

(k) = |Pr[ξ* = ξ ] − 1/2 | .

AdvTrap−IND−CPA
tSCF−MPEKS,A3

(k)

KeyGenParam(k) G1 GT

P G1

g ≥ 2k G1

e : G1 × G1 → GT H : {0,1}⋆ → G1 H* : GT → {0,1}*

cp = {g, P, G1, GT ,

e, H, H*} KeyGenParam(k)
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2. : The server selects  uniformly at random and 

subsequently calculates . In addition, the server also randomly selects . 

So,  and  are the server’s public and private keys. 

3. : The receiver selects  uniformly at random and 

subsequently calculates . So,  and  are the 

receiver's public and private keys. 

4. : The sender selects  uniformly at 

random and , and then calculates a Searchable ciphertext 

, where 

,  ,..., . 

5. : The receiver selects  uniformly at 

random and subsequently calculates , where  

and .    

6. : For , the online server firstly computes 

. Af ter tha t , the server tes t s whether 

 or not. If so, output “yes”; otherwise, output “no”. 

4.5 The Correctness of tSCF-MPEKS 

Suppose  and  are keyword-vector and keyword respectively in 

 and  algorithms. This PEKS approach is considered to be 

corrected as long as  includes . The correctness verification is listed below.  

KeyGenServer(cp) m ∈ ZP

M = mP K ∈ G1

pkSer = (cp, M, K ) skSer = (cp, m)

KeyGenReceiver(cp) n ∈ ZP

N = nP pkRec = (cp, N ) skRec = (cp, n)

SCF − MPEKS(pkSer, pkRec, W ) t ∈ ZP

W = (w1, w2, . . . wη)

C = (X, Y1, Y2, . . . , Yη) = (tM, H*(V1), H*(V2), . . . , H*(Vη)) V1 = e(H(w1),

N )t V2 = e(H(w2), N )t Vη = e(H(wη), N )t

Trapdoor (pkSer, skRec, w*) t* ∈ ZP

Tw = (T1, T2) T1 = nH(w*) ⊕ e(M, K )t*+n

T2 = e(M, t*K )

Test (C, Tw, skSer) i ∈ {1,2,...,η}

T = T1 ⊕ T2 ∙ e(mK, N ) = nH(w*)

H*[e(T,
X
m

)] = Yi

W w*

SCF − MPEKS Trapdoor

W w*
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Note that  stands for Multiplication and  stands for Exclusive Or.  

According to Bilinear pairing, note also that  and 

. 

Therefore, for ,  

Firstly,   

   

      

                     

      

      

      

Secondly,   

   

              

              

              

Therefore, the algorithm is completely correct. 

4.6 The Security Analysis of tSCF-MPEKS 

The tSCF-MPEKS approach possesses the characters of Ciphertext 

Indistinguishability and Trapdoor Indistinguishability against Chosen Plaintext Attack 

(CPA) whose security relies on BDH and 1-BDHI assumptions (Boneh and Boyen, 

2004). 

∙ ⊕

e(M, K ) = e(K, M )

e(M, K )t*+n = e(t*M, nK ) = e(n M, t*K )

i ∈ {1,2,...,η}

T = T1 ⊕ T2 ∙ e(mK, N )

= nH(w*) ⊕ e(M, K )t*+n ⊕ e(M, t*K ) ∙ e(mK, nP)

= nH(w*) ⊕ e(M, K )t*+n ⊕ e(M, t*K ) ∙ e(K, mP)n

= nH(w*) ⊕ e(M, K )t*+n ⊕ e(M, K )t* ∙ e(M, K )n

= nH(w*) ⊕ e(M, K )t*+n ⊕ e(M, K )t*+n

= nH(w*)

H*[e(T,
X
m

)] = H*[e(nH(w*),
tM
m

)]

= H*[e(nH(w*), tP)]

= H*[e(H(w*), N )t]

= Yi
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The proposed approach above could be regarded as IND-CPA secure in Game1 

under the random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is 

completely difficult. 

Game1: Let  suppose to be an untrusted server. 

Consider that the challenger  is able to achieve the input 

 of BDH assumption (Boneh and Boyen, 2004).  sets up the computation 

of a BDH key  of ,  and  using ’s IND-CPA as a goal. Apart from 

that,  queries at most  and  times hash function requests.  

Stage1 (Setup) 

  chooses  in the beginning. Then,  chooses  uniformly at 

random and also computes . In addition,  randomly selects . Finally, 

the following parameters are returned by , which are the common parameter 

, the server’s public/private keys  and , and 

the receiver’s public key . Besides, two specific hash functions  and  are 

selected by  in the following: 

-  is able to request a keyword  to  function at any time. After that,  

traverses a tuple  from  that is initially empty.  If the tuple exists,  

will reply  to . Otherwise, the challenger  executes the operations below: 

i. The challenger  randomly selects a coin  and then computes 

.  

ii. The challenger  randomly chooses . If ,  will be 

computed by . Similarly,  will be computed by  once . 

iii.  receives  from . Meanwhile,  adds  into . 

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*

E N = αP E m ∈ ZP

M = mP E K ∈ G1

E

(g, P, G1, GT , e, H, H*) (cp, M, K ) (cp, m)

(cp, N ) H H*

E

A wi H E

(wi, μi, νi, εi) H_ List E

H(wi) = μi A E

E εi

Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = βP + νiP

E μi = νiP E εi = 1

A μi E E (wi, μi, νi, εi) H_ List
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-  is able to request  to  function at any time. Later on,  traverses a tuple 

 from . If the tuple exists,  will return  to . Otherwise,  

randomly selects  and replies  to . Finally,  adds  into 

. 

Stage2（Trapdoor queries)  

If  queries a Trapdoor request with a specific keyword ,  will do the 

operations below: 

- The challenger  recalls the above algorithms in order to simulate  function for 

generating a tuple . If ,  will output “Suspension” and also terminate 

the system. Otherwise, he/she executes the following step. 

- The challenger  randomly chooses  and sequently calculates 

 and . So, . 

Stage3 (Challenge simulation) 

The adversary  sends a keyword-vector pair 

 to . Once  achieves the pair, he/she will conduct the following 

steps: 

- The challenger  chooses  uniformly at random. 

- The challenger  recalls the above algorithms in order to simulate  function for 

obtaining two tuples  and . If  and  are equal to , 

 will output “Suspension” and also terminate the system. Otherwise,  executes the 

following step. 

i. The challenger  recalls the above algorithms again to simulate  function at 

 times so that  is able to create two tuples’ vectors 

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi)

H*_ List

A wi E

E H

(wi, μi, νi, εi) εi = 0 E

E t* ∈ ZP

T1 = νiN ⊕ e(M, K )t*+α = νiαP ⊕ e(M, K )t*+α = αμi ⊕ e(M, K )t*+α = αH(wi) ⊕

e(M, K )t*+α T2 = e(M, t*K ) Tw = (T1, T2)

A [W0 = (w01, . . . . , w0n),

W1 = (w11, . . . . , w1n)] E E

E i ∈ {1,2,...,η}
E H

(w*0i, μ*0i, ν*0i, ε*0i) (w*1i, μ*1i, ν*1i, ε*1i) ε*0i ε*1i 1

E E

E H

2(η − 1) E {(w*01, μ*01, ν*01, ε*01), . . . ,

41



  a n d 

. If  for all ,  will export 

“Suspension” and consequently terminate the system. Otherwise,  executes the steps 

below:  

— The challenger  randomly selects . 

— The challenger  randomly selects  for generating a target 

 e n c r y p t i o n  

. 

So,  

. 

Note that,  

 

Note also that  

Stage4 (Trapdoor queries) 

 can continue return any Trapdoor query  for any keyword  to  as in 

Stage2 (Game1), only if . 

Stage5 (Guess) 

 outputs  as the guess. Then,  chooses  from  function and 

returns the guessed BDH key . 

(w*0i−1, μ*0i−1, ν*0i−1, ε*0i−1), (w*0i+1, μ*0i+1, ν*0i+1, ε*0i+1), . . . , (w*0η, μ*0η, ν*0η, ε*0η)}

{(w*11, μ*11, ν*11, ε*11), . . . , (w*1i−1, μ*1i−1, ν*1i−1, ε*1i−1), (w*1i+1, μ*1i+1, ν*1i+1, ε*1i+1), . . . ,

(w*1η, μ*1η, ν*1η, ε*1η)} ε*0j = ε*1 j = 0 j = 0,...,i − 1,i + 1,...,η E

E

E δ ∈ {0,1}

E Yi ∈ {0,1}∙

SCF − MPEKS C* = (X*, Y*1 , Y*2 , . . . , Y*η ) = (γM, H*[B1],

H*[B2], . . . , H*[Bη])

C* = (X*, Y*1 , . . . , Y*i−1, Y*i+1, . . . , Y*η ) = (γM, H*[e(H(wδ1
), N )γ], . . . , H*[e(H(wδi−1

),

N )γ], H*[e(H(wδi+1), N )γ], . . . , H*[e(H(wδη), N )γ])

Bi = e(H(wδi), N )γ = e(βP + νδiP, αP)γ = e(βP, αP)γ ∙ e(νδiP, αP)γ = e(P, P)αβγ

∙ e(γP, αP)νδi

e(νδiP, αP)γ = e(νδiP, N )γ = e(H(wδi), N )γ

E Twi wi A

wi ∉ W0, W1

A δ* ∈ {0,1} E d H*

dδ*i

e(γP, αP)
νδ*i
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Analysis of Game1 

Stage1-5 describes the procedure and operations of the challenger . It remains to 

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game1. To do so, 

the first thing is to analyze that the challenger  does not stop during the simulation. 

Therefore, three events are formalized below:  

Event1: The challenger  does not stop during Stage2（Trapdoor queries) and 

Stage4 (Trapdoor queries). 

Event2: The challenger  does not stop during Stage3 (Challenge simulation). 

Event3: The adversary  is not able to request either  or 

. 

Claim 1:  

Proof: Consider that  cannot request the same keyword twice in Stage2 and 

Stage4. So,  is the probability causing  for suspension. From the previous 

definition,  queries at most  ( ) Trapdoor requests so that the probability that the 

system which does not be terminated by  in all Trapdoor queries is at least 

. 

Claim 2:  

Proof: If , the system will be terminated by  during Stage3. So, 

 is the probability that  does not suspend it. In addition, if 

 for all , the system will be terminated by . 

Overall, the probability that the system which does not be terminated by  during 

Stage3 is at least . 

E

E

E

E

A H*(e(H(w*0i), N )γ)

H*(e(H(w*1i), N )γ)

Pr[Event1] ≥
1
e

A
1

h + 1 E

A h h > 0

E

(1 − 1
h + 1 )h ≥ 1

e

Pr[Event 2] ≥ ( 1
h + 1 ) ∙ ( h

h + 1 )2(η−1)

ε0 = ε1 = 1 E

1 − (1 − 1
h + 1 )2 E

ε*0j = ε*1 j = 0 j = 0,...,i − 1,i + 1,...,η E

E

(1 − 1
h + 1 )2(η−1){1 − (1 − 1

h + 1 )2} ≥ ( 1
h + 1 ) ∙ ( h

h + 1 )2(η−1)

43



Claim 3:  

Proof: As discussed in (Baek et al., 2008), let  ( ) be an 

event that the adversary  can correctly guess the keyword of the left part of a “hybrid” 

 encryption formed with , coordinates from  followed by  

coordinates from .                                    

So, 

. 

Overall, due to  queries either  or  being 

at least , the probability that  querying  is at least . Therefore, 

the success probability  achieved by  is , which is negligible. 

The proposed scheme above could be regarded as IND-CPA secure in Game2 

under the random oracle model, if the 1-BDHI assumption (Boneh and Boyen, 2004) is 

completely difficult. 

Game2:  Let  suppose to be an untrusted receiver. 

Consider that the challenger  is able to achieve the input  of 

1-BDHI assumption (Boneh and Boyen, 2004).  sets up the computation of a 1-BDHI 

key  of  using ’s IND-CPA as a goal. Apart from that,  queries at most  

and  times hash function requests.   

Stage1 (Setup) 

 selects  and  in the beginning. Then,  randomly chooses 

 and also computes . After that, the following parameters are returned by 

, which are the common parameter , the server’s public key 

Pr[Event3] ≥ 2ξ

Hybr idr r ∈ {1,2,...,η}
A

SCF − MPEKS r wδ (η − r)

w1−δ

Pr[Event3] = 2Ση
j=1(Pr[Hybr idr] − Pr[Hybr idr−1]) = 2(Pr[Hybr idr]−

Pr[Hybr id0]) = 2ξ

A H*(e(H(w*0i), N )γ) H*(e(H(w*1i), N )γ)

2ξ A H*(e(H(w*ji ), N )γ) ξ

ξ* E ( h
h + 1 )2(η−1) ∙ ξ

e(h + 1)h*

A

E (g, P, G1, GT , e, αP)

E

e(P, P) 1
α αP A A h

h*

E M = αP K ∈ G1 E

n ∈ ZP N = nP

E (g, P, G1, GT , e, H, H*)
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, and the receiver’s public/private keys  and . Besides, two 

specific hash functions  and  are selected by  in the following: 

—  is able to request a keyword  to  function at any time. Later on,  

traverses a tuple  from . If the tuple exists,  will return  to . 

Otherwise,  randomly chooses  and computes . After that,  returns  

to . 

—  is able to request  to  function at any time. Later on,  traverses a tuple 

 from . If the tuple exists,  will return  to . Otherwise,  randomly 

selects  and replies  to the adversary . Finally,  adds  into 

. 

Stage2 (Challenge simulation) 

 sends a keyword-vector pair  to , where 

 and . Once the challenger  

achieves the pair, he/she will do the following steps: 

— The challenger  randomly selects  and .  

— The challenger  recalls the  algorithm for generating           

the Searchable ciphertext 

.  

So,  

 

It is known that . 

(cp, M, K ) (cp, N ) (cp, n)

H H* E

A wi H E

(wi, μi, vi) H_ List E μi A

E νi ∈ ZP μi = νiP E μi

A

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi)

H*_ List

A [(W*0i, μ*0i, ν*0i, ε*0i), (W*1i, μ*1i, ν*1i, ε*1i)] E

W*0 = (w01, w02, . . . , w0η) W*1 = (w11, w12, . . . , w1η) E

E Yi ∈ {0,1}∙ δ ∈ {0,1}

E SCF − MPEKS

C* = (X*, Y*1 , Y*2 , . . . , Y*η ) = (ψ αP, H*[B1], H*[B2]

, . . . , H*[Bη])

C* = (X*, Y*1 , Y*2 , . . . , Y*η ) = (ψ αP, H*(e(H(wδ1
), N )ψ ), H*(e(H(wδ2

), N )ψ ),

. . . , H*(e(H(wδη), N )ψ ))

Bi = e(H(wδ*i
), N )ψ ) = e(νiP, nP)ψ = e(P, P)ψ⋅νin
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Stage3 (Guess) 

The adversary  exports  as the guess. Later on,  returns the guessed 

1-BDHI key . 

Analysis of Game2 

Stage1-3 describes the procedure and operations of the challenger . It remains to 

show that 1-BDHI assumption (Boneh and Boyen, 2004) is satisfied in Game2. To do 

so, the first thing is to analyze that the challenger  does not stop during the simulation. 

Therefore, two events are formalized below:  

Event4: The challenger  does not stop during Stage2 (Challenge simulation). 

Event5: The adversary  does not request either  or 

. 

Claim 4:  

Proof: There is no limitation to illustrate that the system will be terminated by the 

challenger  during Stage2. Thus, it is clear that . 

  
Claim 5:  

Proof: If  happens, it will show that the bit  pointing out 

whether the Searchable encryption contains  or  separates of ’s view. Hence, the 

probability that the adversary ’s exporting  which satisfies  is at most .  

By the concept of Bayes’s rule, 

. 

A δ* ∈ {0,1} E

ψ = 1
α ⋅ νin

E

E

E

A H*(e(H(w*0i), N )ψ )

H*(e(H(w*1i), N )ψ )

Pr[Event4] = 1

E Pr[Event4] = 1

Pr[¬Event5] ≥ 2ξ

Event5 j ∈ {0,1}

w0i w1i A

A j* j = j* 1
2

Pr[ j = j*] = Pr[ j = j* |Event5]Pr[Event5] + Pr[ j = j* |Event5]Pr[¬Event5]

≤ Pr[ j = j* |Event5]Pr[Even5] + Pr[¬Event5] = 1
2 ∙ Pr[Event5] + Pr[¬Event5] =

1
2 + 1

2 ∙ Pr[¬Event5]
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By definition, it should be known that . And then, 

. Thus, . 

Overall, due to  requests either  or  being 

at least , the probability that the adversary requesting  is at least 

. However, according to the previous definition that  requests at most  hash 

function queries,  is the probability that the challenger  chooses the correct solution. 

Overall, the success probability  achieved by  is , which is negligible. 

The proposed scheme above could be regarded as Trapdoor-IND-CPA secure in 

Game3 under the random oracle model, if the BDH assumption (Boneh and Boyen, 

2004) is completely difficult. 

Game3: Let  suppose to be an untrusted outside attacker. 

Consider that the challenger  is able to achieve the input 

 of BDH assumption (Boneh and Boyen, 2004).  sets up the computation 

of a BDH key  of ,  and  using ’s IND-CPA as a goal. Apart from 

that,  queries at most  and  times hash function requests.  

Stage1 (Setup) 

 selects ,  and  in the beginning. Then, the following 

parameters are returned by , which are the common parameter , 

the server’s public key , and the receiver’s public key . Apart from 

that, two specific hash functions  and  are randomly selected by . 

|Pr[ j = j*] − 1
2 | ≥ ξ

ξ ≤ Pr[ j = j*] − 1
2 ≤ 1

2 ∙ Pr[¬Event5] Pr[¬Event5] ≥ 2ξ

A H*(e(H(w*0i), N )ψ ) H*(e(H(w*1i), N )ψ )

2ξ A H*(e(H(w*ji ), N )ψ )

ξ A h*

1
h* E

ξ* E ξ
h*

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*

E M = αP K = βP N = γP

E (g, P, G1, GTe, H, H*)

(cp, M, K ) (cp, N )

H H* E
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Stage2（Trapdoor queries)  

If  queries a Trapdoor request with a specific keyword ,  will randomly pick 

up  and subsequently compute  and  

. So, . After that,  sends  back to the adversary  

Stage3 (Challenge simulation) 

 uploads a keyword pair  to . Once the challenger  receives the 

keyword pair, he/she will do the following steps: 

— The challenger  randomly selects .  

— The challenger  recalls the  algorithm for generating                

  a n d 

.  

Stage4 (Trapdoor queries) 

 can continue return any Trapdoor query  for any keyword  to  as in 

Stage2 (Game3), only if . 

Stage5 (Guess) 

 outputs  as the guess. If ,  outputs “yes” and “no” 

otherwise.  

Analysis of Game3 

According to  is an untrusted outside adversary, he/she is not able to observe any 

difference between two Trapdoor queries even if these queries contain the same 

keyword. This is because  randomly picks up  and  changes in every 

calculation so that  changes in every calculation. Consider 

two Trapdoor queries contain the same keyword, but the calculation results are different 

A wi E

t* ∈ ZP T1 = γH(wi) ⊕ e(βP, αP)t*+γ T2 = e(t*βP

, αP) Tw = (T1, T2) E Tw A

A (w*0 , w*1 ) E E

E δ ∈ {0,1}

E Trapdoor

T1 = γH(wδ*) ⊕ e(βP, αP)t*+γ = γH(wδ*) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*

T2 = e(t*βP, αP)

E Twi wi A

wi ≠ w0, w1

A δ* ∈ {0,1} δ = δ* E

A

E t* ∈ ZP t*

T1 = nH(wi) ⊕ e(M, K )t*+n
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mainly because of the value . Hence, the core portion of Trapdoor-IND-CPA secure 

in the proposed scheme is the confidentiality of . 

Consider that if  has , he/she could estimate whether two Trapdoor 

queries have the same keyword or not. More specially,  computes one extra XOR as 

follows: . So,  is able to know 

that  and  are equal, only if .  

By Stage3 in Game3, it shows that , which 

meets BDH assumption (Boneh and Boyen, 2004). Therefore,  is not able to computes 

 so that he/she cannot calculate  either. 

4.7 The Efficiency and Performance of tSCF-MPEKS 

This part describes the security comparison between the proposed approach 

(tSCF-MPEKS) and another two PEKS approaches [MPEKS (Baek et al., 2008) and 

SCF-MPEKS (Wang et al., 2016)]. Besides, the performance and efficiency of these 

three PEKS schemes are also presented in the following. 

TABLE 3. A COMPARISON OF THE SECURITY ASSUMPTION AND PROPERTIES 

CT Ind, Trap Ind, SC and OKGA are the abbreviation of Ciphertext 

Indistinguishability, Trapdoor Indistinguishability, Secure Channel and Off-line 

Keyword Guessing Attack respectively. 

The proposed approach does not rely on the secure channel to transmit Trapdoor. 

In addition, it has the characters of CT Ind and Trap Ind so that it prevents OKGA. To 

t*

e(M, K )t*+n

A e(M, K )t*+n

A

T1 = nH(wi) ⊕ e(M, K )t*+n ⊕ e(M, K )t*+n = nH(wi) A

Tw0
= nH(w0) Tw1

= nH(w1) w0 = w1

e(M, K )t*+n = e(P, P)αβγ ∙ e(P, P)αβt*

A

e(M, K )t*+n T1 = nH(wi) ⊕ e(M, K )t*+n
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conclude, comparing with MPEKS and SCF-MPEKS methods, the proposed approach 

has better efficiency and performance. 

The proposed approach is programmed by applying type A pairing in JPBC 

Library (Angelo and Vincenzo, 2011) and the platform details are presented in Table 4. 

TABLE 4. THE SIMULATION PLATFORM FOR tSCF-MPEKS 

The performance and efficiency of proposed approach is also presented by the 

theoretical analysis and 1000 times computer simulations. So, Table 5 illustrates the 

comparison of computation efficiency between MPEKS, SCF-MPEKS and proposed 

schemes and the time cost of proposed approach is listed in Table 6. 

TABLE 5. A COMPARISON OF THE COMPUTATION EFFICIENCY 

According to Table 5, the symbols ,  and  are the abbreviation of a modular 

exponentiation, a collision resistant hash function and a bilinear pairing respectively. 

Due to MPEKS and SCF-MPEKS suffering OKGA, the proposed approach has better 

performance than its counterparts. 

E H P
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TABLE 6. PERFORMANCE BASED ON 1000 TIMES COMPUTER SIMULATION (n=3) 

4.8 The Key Code of tSCF-MPEKS 

This part shows the key codes of the proposed scheme from parameters 

initialisation, Server’s and Receiver’s key pairs generations, Searchable ciphertext 

(SCF-MPEKS) generation, Trapdoor request and Test algorithm. 

The proposed approach is programmed by applying type A pairing in JPBC 

Library (Angelo and Vincenzo, 2011). Besides, the pairing parameters initialization is 

described in Figure 14. 

FIGURE 14. THE PARAMETERS INITIALIZATION IN TSCF-MPEKS 
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The server’s key pair generation and receiver’s key pair generation are described 

in Figure 15 and Figure 16. 

FIGURE 15. SERVER’S KEY PAIR GENERATION IN TSCF-MPEKS 
 

FIGURE 16. RECEIVER’S KEY PAIR GENERATION IN TSCF-MPEKS 

The following figure (Figure 17) describes the Searchable ciphertext (SCF-

MPEKS) generation. In order to simplify the code, let the number of keywords be three.  
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FIGURE 17. SEARCHABLE CIPHERTEST GENERATION IN TSCF-MPEKS 

Figure 18 illustrates the Trapdoor request generation by using server’s public key 

, receiver’s private key  and a keyword . 

 

pkSer skRec w*
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FIGURE 18. TRAPDOOR REQUEST GENERATION IN TSCF-MPEKS 

The final figure (Figure 19) shows Test algorithm, which describes the keywords 

comparison between the Searchable ciphertext and the Trapdoor request. 
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FIGURE 19. TEST ALGORITHM IN TSCF-MPEKS 
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5. Robust Secure Channel Free Public Key Encryption 
with Multi-keywords Search 

5.1 Introduction 

According to the section 1.4, it is known that almost all current Public Key 

Encryption with Multiple Keywords Search (MPEKS) schemes suffers Inside Keyword 

Guessing Attack (IKGA). Therefore, this chapter gives a formal definition of MPEKS 

scheme, which incorporates with Trapdoor Indistinguishability and User Authentication  

technique so that it has the ability to resist both IKGA and OKGA. More specially, it 

firstly defines a new PEKS scheme namely “Robust Secure Channel Free Public Key 

Encryption with Multi-keywords Search (rSCF-MPEKS)” and the security verification 

models. In addition, a concrete construction of rSCF-MPEKS is proposed following by 

the correctness analysis, security verification and efficiency and performance analysis. 

5.2 The Outline of rSCF-MPEKS 

Huang and Li pointed out that all current PEKS schemes suffer IKGA in 2018 and 

then proposed a PEKS scheme, namely “Public Key Authenticated Encryption with 

Keyword Search (PAEKS)”, to resist IKGA (Huang and Li, 2018). Although PAEKS is 

able to address IKGA, it aims for solving Single Keyword Search only instead of 

Multiple Keywords Search and therefore, it may not be applied to the general public 

network. However, this PhD thesis defines a new PEKS scheme (Figure 20) called 

“Robust Secure Channel Free Public Key Encryption with Multi-keywords Search 

(rSCF-MPEKS)” which not only deals with both IKGA and OKGA but also solves both 

Single and Multiple Keyword(s) Search issues. The proposed PEKS scheme contains 

six PPT algorithms as follows:   

56



1. : Import , a common parameter  is then created. 

2. : Import , a public and a private keys  of the 

sender are then created.  

3. : Import , a public and a private keys  of 

the receiver are then created. 

4. : Import the receiver’s public key  and 

the sender’s private key , a Searchable ciphertext  

 is then generated by the sender, where . 

5. : Import the sender’s public key  and the 

receiver’s private key , a Trapdoor query  is then 

created by the receiver. 

6. : Import the sender’s public key , the receiver’s 

public key , a Searchable ciphertext  and a 

Trapdoor query . The server then estimates whether 

the  includes . If so, output “yes” and “no”, otherwise. 

FIGURE 20. THE OUTLINE OF RSCF-MPEKS 

KeyGenParam(1n) 1n cp

KeyGenSender(cp) cp (pkSen, skSen)

KeyGenReceiver(cp) cp (pkRec, skRec)

SCF − MPEKS(pkRec, skSen, W ) pkRec

skSen S = SCF − MPEKS(pkRec,

skSen, W ) W = (w1, w2, . . . , wη)

Trapdoor (pkSen, skRec, w) pkSen

skRec Tw = Trapdoor (pkSen, skRec, w)

Test (pkSen, pkRec, S, Tw) pkSen

pkRec S = SCF − MPEKS(pkRec, skSen, W )

Tw = Trapdoor (pkSen, skRec, w*)

W w
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5.3 The Security Models of rSCF-MPEKS 

As discussed in tSCF-MPEKS (Ma and Kazemian, 2018) and PAEKS (Huang and 

Li, 2018), the proposed scheme is Indistinguishability under Chosen Plaintext 

Attack (IND-CPA) and Trapdoor-IND-CPA. The IND-CPA (Game4) and Trapdoor-

IND-CPA (Game5) for rSCF-MPEKS are formalized below. Suppose  is an adversary 

and  is a challenger. 

Game4: Ciphertext Indistinguishability 

S t a g e 1 ( S e t u p ) : ,  a n d 

 are called by  in order to generate a common parameter , the 

key pairs  and  of the sender and the receiver. Then,  sends 

,  and  to  while keeps  and  from . 

Stage2（Queries): Adaptably,  is able to return any Trapdoor query  and 

Ciphertext query  for any keyword  to . 

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r 

  is sent from  to . It is known that  

and  cannot be requested in Stage2 (Game4). Once the challenger  achieves the 

pair, the  algorithm will be called by the challenger  for generating a 

Searchable ciphertext , where . 

Finally,  will be sent back to . 

Stage4 (Queries):  can continue return any Trapdoor query  and Ciphertext 

query  many times for any keyword  to  as in Stage2 (Game4), only if 

. 

Stage5 (Guess):  guesses  and wins Game4, if .  

A

E

KeyGenParam(1n) KeyGenSender(cp)

KeyGenReceiver(cp) E cp

(pkSen, skSen) (pkRec, skRec) E

cp pkSen pkRec A skSen skRec A

E OT

OC w A

[W0 = (w01, . . . . , w0η), W1 = (w11, . . . . , w1η)] A E W0

W1 E

SCF − MPEKS E

S = SCF − MPEKS(skSen, pkRec, Wξ) ξ ∈ {0,1}

S A

E OT

OC w A

W ≠ W0, W1

A ξ* ∈ {0,1} ξ* = ξ
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’s advantage to win Game4 is listed as follows: 

 

Hence, the rSCF-MPEKS system is considered to be IND-CPA secure as long as 

the  is negligible. 

Game5:  Trapdoor Indistinguishability 

S t a g e 1 ( S e t u p ) : ,  a n d 

 are called by  in order to generate a common parameter , the 

key pairs  and  of the sender and the receiver. Then,  sends 

,  and  to  while keeps  and  from . 

Stage2（Queries): Adaptably,  is able to return any Trapdoor query  and 

Ciphertext query  for any keyword  to . 

Stage3 (Challenge simulation): A target keyword pair  is sent from  to 

. It is known that  and  cannot be requested in Stage2 (Game5). Once  obtains 

the keyword pair, the  algorithm will be called by the challenger  in order 

to generate a Trapdoor query , where . 

Finally,  will be sent back to . 

Stage4（Queries):  can continue return any Trapdoor query  and Ciphertext 

query  many times for any keyword  to  as in Stage2 (Game5), only if 

. 

Stage5 (Guess):  guesses  and wins Game5, if . 

A

AdvIND−CPA
rSCF−MPEKS,A4

(k) = |Pr[ξ* = ξ ] − 1/2 | .

AdvIND−CPA
rSCF−MPEKS,A4

(k)

KeyGenParam(1n) KeyGenSender(cp)

KeyGenReceiver(cp) E cp

(pkSen, skSen) (pkRec, skRec) E

cp pkSen pkRec A skSen skRec A

E OT

OC w A

(w0, w1) A

E w0 w1 E

Trapdoor E

Tw = Trapdoor (skRec, pkSen, wξ) ξ ∈ {0,1}

Tw A

E OT

OC w A

w ≠ w0, w1

A ξ* ∈ {0,1} ξ* = ξ
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’s advantage to win Game5 is listed as follows: 

 

Therefore, the rSCF-MPEKS system is considered to be Trapdoor-IND-CPA 

secure as long as the  is negligible. 

5.4 The Concrete Construction of rSCF-MPEKS 

1. : Suppose  is an additive cyclic group and  is a 

multiplicative cyclic group. Let  be a random generator of  and a prime number 

 be the order of . A bilinear pairing is considered to be a map 

. Suppose  is a particular hash function. Therefore, 

a common parameter  can be achieved by the 

 algorithm. 

2. : The sender selects  uniformly at random and then 

calculates . So, the  and  are the server’s public and 

private keys. 

3. : The receiver selects  uniformly at random and 

then calculates . So,  and  are the receiver’s public and 

private keys. 

4. : The sender selects  uniformly at 

random and . Then, he/she calculates a Searchable ciphertext 

. 

A

AdvIND−CPA
rSCF−MPEKS,A5

(k) = |Pr[ξ* = ξ ] − 1/2 | .

AdvIND−CPA
rSCF−MPEKS,A5

(k)

KeyGenParam(k) G1 GT

P G1

g ≥ 2k G1

e : G1 × G1 → GT H : {0,1}⋆ → G1

cp = {g, P, G1, GT , e, H}

KeyGenParam(k)

KeyGenSender(cp) m ∈ ZP

M = mP pkSen = M skSen = m

KeyGenReceiver(cp) n ∈ ZP

N = nP pkRec = N skRec = n

SCF − MPEKS(pkRec, skSen, W ) t ∈ ZP

W = (w1, w2, . . . , wη)

C = (X, Y1, Y2, . . . , Yη) = [t ⊕ pkRec, e(skSen ∙ H(pkSen, pkRec, w1), pkRec ∙ t),

e(skSen ∙ H(pkSen, pkRec, w2), pkRec ∙ t), . . . , e(skSen ∙ H(pkSen, pkRec, wη), pkRec ∙ t)]
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5. : The receiver computes 

. 

6. : For , the online server firstly 

computes  and then checks whether  or not. 

5.5 The Correctness of rSCF-MPEKS 

Suppose  and  are keyword-vector and keyword in  and 

 algorithms. The rSCF-MPEKS approach is considered to be corrected as 

long as  includes . The correctness verification is in the following: 

Note that  stands for Multiplication and  stands for Exclusive Or.  

The server initially computes . And then, it 

will check whether  or not.  

For , 

    

                

           

           

           

Therefore, the algorithm is completely correct. 

5.6 The Security Analysis of rSCF-MPEKS 

The rSCF-MPEKS approach possesses the characters of Ciphertext 

Indistinguishability and Trapdoor Indistinguishability against Chosen Plaintext Attack 

(CPA) whose security relies on the BDH assumption (Boneh and Boyen, 2004). 

Trapdoor (pkSen, skRec, w) Tw = e(skRec ∙

H(pkSen, pkRec, w), pkSen)

Test (pkSen, pkRec, C, Tw) i ∈ {1,2,...,η}

t = X ⊕ pkRec T t
w = Yi

W w* SCF − MPEKS

Trapdoor

W w*

∙ ⊕

X ⊕ pkRec = t ⊕ pkRec ⊕ pkRec = t

T t
w = Yi

i ∈ {1,2,...,η}
T t

w = e(skRec ∙ H(pkSen, pkRec, w*), pkSen)t

= e(n ∙ H(pkSen, pkRec, w*), mP)t

= e(m ∙ H(pkSen, pkRec, w*), nP)t

= e(skSen ∙ H(pkSen, pkRec, w*), pkRec ∙ t)

= Yi
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The proposed approach above is Ciphertext Indistinguishability in Game4 under 

the random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is 

completely difficult. 

Game4: Ciphertext Indistinguishability of rSCF-MPEKS 

Consider that the challenger  is able to achieve the input 

 of BDH assumption (Boneh and Boyen, 2004).  sets up the computation 

of a BDH key  of ,  and  using ’s IND-CPA as a goal. 

Stage1 (Setup) 

 randomly selects  and subsequently returns  and  as the public 

keys  of the sender and the receiver. After that,  generates the common 

parameter  and transmits  to . 

Stage2（Queries): 

For simplicity, three assumptions are proposed in the following: 

1.  requests at most , ,  to the Hash function query , the Trapdoor 

query  and the Ciphertext query  respectively. 

2.  does not repeat any query. 

3.  is not able to request a query  to  nor  to  before 

requesting  to . 

The queries are simulated by  below. 

For Hash function query . 

When  issues a query for a tuple . To respond,  

i.  randomly selects a coin  and then computes .  

ii.  randomly chooses . If ,  will be computed by . 

Similarly,  will be computed by  once . 

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

E α, β ∈ ZP αP βP

(pkSen, pkRec) E

cp = (g, P, G1, GT , e, H ) (cp, pkSen, pkRec) A

A RH RT RC QH

QT QC

A

A (pkSen, w) QT (pkRec, w) QC

(pkSen, pkRec, w) QH

E

QH

A (pkSen, pkRec, wi)

E εi Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = βP + νiP E

μi = νiP E εi = 1
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iii. The adversary  obtains  from the challenger . In addition,  uploads 

 into , which is initially empty. 

For Trapdoor query :    

If  queries a Trapdoor request with a specific keyword ,  will calculate 

, where 

 is a correct Trapdoor under the sender’s public key and the receiver’s private key. 

After that,  returns  to .  

For Ciphertext query : 

If  queries a Ciphertext request with a specific keyword ,  will randomly 

selects  and calculates 

, where  is a correct Ciphertext under the 

sender’s private key and the receiver’s public key. After that,  returns  to . 

Stage3 (Challenge simulation) 

 sends a keyword-vector pair  to 

. According to Stage2（Queries), it should be known that  and  

cannot be required by  and similarly,  and  cannot be required by 

. Then,  returns a Searchable ciphertext  as follows: 

- The challenger  chooses  uniformly at random. 

- The challenger  recalls the above algorithms in order to obtain two tuples 

 and . If ,   will output “Suspension” and 

also terminate the system. Otherwise, the challenger  does the following step: 

-  recalls the above algorithms in order to simulate  function at  

t i m e s f o r o b t a i n i n g t w o t u p l e s ’ v e c t o r s 

 a n d 

A μi E E

[(pkSen, pkRec, wi), μi, νi, εi] H_ List

QT

A w E

Tw = e(νi ∙ pkRec, pkSen) = e(βμi, pkSen) = e(skRec ∙ H(pkSen, pkRec, w), pkSen)

Tw

E Tw A

QC

A w E

t ∈ ZP Yw = e(νi ∙ pkSen, pkRec ∙ t) = e(αμi, pkRec ∙ t) =

e(skSen ∙ H(pkSen, pkRec, w), pkRec ∙ t) Yw

E Yw A

A [W0 = (w01, . . . . , w0η), W1 = (w11, . . . . , w1η)]

E (βP, w*0 ) (βP, w*1 )

QT (αP, W*0 ) (αP, W*1 )

QC E C

E i ∈ {1,2,...,η}
E

(w*0i, μ*0i, ν*0i, ε*0i) (w*1i, μ*1i, ν*1i, ε*1i) ε0i = ε1i = 1 E

E

E H 2(η − 1)

{(w*01, μ*01, ν*01, ε*01), . . . , (w*0i−1, μ*0i−1, ν*0i−1, ε*0i−1), (w*0i+1, μ*0i+1, ν*0i+1, ε*0i+1), . . . ,

(w*0η, μ*0η, ν*0η, ε*0η)} {(w*11, μ*11, ν*11, ε*11), . . . , (w*1i−1, μ*1i−1, ν*1i−1, ε*1i−1),
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. I f  f o r a l l 

,  will export “Suspension” and consequently terminate the 

system. Otherwise, the challenger  executes the operations below:  

— The challenger  randomly picks up . 

— The challenger  randomly picks up  for generating a target 

 encryption . So,  selects .        

T h e n , c a l c u l a t e s 

. 

Note that  

. 

Stage4（Queries): 

 can continue return any queries for any keyword  to  as in                    

Stage2 (Game4), only if  is not able to request  to  and 

 to . 

Stage5 (Guess) 

 outputs  as the guess. If ,  outputs “yes” and “no” 

otherwise. 

(w*1i+1, μ*1i+1, ν*1i+1, ε*1i+1), . . . , (w*1η, μ*1η, ν*1η, ε*1η)} ε*0j = ε*1j = 0

j = 0,...,i − 1,i + 1,...,η E

E

E δ ∈ {0,1}

E Yi ∈ {0,1}∙

SCF − MPEKS C* = (X*, Y*1 , Y*2 , . . . , Y*η ) E t = γ

E C* = (X*, Y*1 , . . . , Y*i−1, Y*i+1, . . . , Y*η ) = [γ ⊕ βP,

e(skSen ∙ H(pkSen, pkRec, w*1 ), pkRec ∙ γ) , . . . , e(skSen ∙ H(pkSen, pkRec, w*i−1),

pkRec ∙ γ), e(skSen ∙ H(pkSen, pkRec, w*i+1), pkRec ∙ γ), . . . ,

e(skSen ∙ H(pkSen, pkRec, w*η ), pkRec ∙ γ)]

Yδ = e(skSen ∙ H(pkSen, pkRec, w*δ ), pkRec ∙ γ) = e(αH(pkSen, pkRec, w*δ ),

βP ∙ γ) = e(ανiP, βP ∙ γ) = e(νiP, P)αβγ

E w A

A [(pkSen, w*0 ), (pkSen, w*1 )] QT

[(pkRec, W*0 ), (pkRec, W*1 )] QC

A δ* ∈ {0,1} δ* = δ E
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Analysis of Game4: 

Stage1-5 describes the procedure and operations of the challenger . It remains to 

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game4. To do so, 

the first thing is to analyze that the challenger  does not stop during the simulation. 

Therefore, two events are formalized below: 

Event6: The challenger  does not stop during Stage2（Queries) and Stage4 

(Queries). 

Event7: The challenger  does not stop during Stage3 (Challenge simulation). 

Claim 6:  

Proof: Consider that  is not able to request the same keyword twice in  and 

. So,  is the probability causing  for suspension. From the previous definition, 

 requests at most  Trapdoor queries and  Ciphertext queries so that the system 

which does not be terminated by  in all queries is at least . 

Claim 7:  

Proof: If , the system will be terminated by  during Stage3 

(Challenge simulation). So, the  is the probability that  does not 

suspend. Apart from that, if  for all , the system 

will be terminated by  again. Overall, the probability that the challenger  who does 

not terminate the system during Stage3 is at least 

. 

Let  be an event that  does not terminate in the whole game.        

T h e r e f o r e , i t i s k n o w n t h a t 

E

E

E

E

Pr[Event 6] ≥ (1 − 1
h + 1 )RT +RC

A QT

QC
1

h + 1 E

A RT RC

E (1 − 1
h + 1 )RT +RC

Pr[Event 7] ≥ ( 1
h + 1 ) ∙ ( h

h + 1 )2(η−1)

ε0 = ε1 = 1 E

1 − (1 − 1
h + 1 )2 E

ε*0j = ε*1j = 0 j = 0,...,i − 1,i + 1,...,η

E E

(1 − 1
h + 1 )2(η−1){1 − (1 − 1

h + 1 )2}

≥ ( 1
h + 1 ) ∙ ( h

h + 1 )2(η−1)

Event E

Pr[Event] = Pr[Event 6] ∙ Pr[Event 7] =
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.  will obtain the maximum value, if 

. 

So, , which is around equal to 

 and therefore non-negligible. 

Overall, the probability that the bit  correctly guessing by  is listed below: 

  

. 

If  is non-negligible, so is . 

Therefore, rSCF-MPEKS scheme based on BDH assumption (Boneh and Boyen, 

2004) satisfies Ciphertext Indistinguishability. 

The proposed scheme above is Trapdoor Indistinguishability in Game5 under the 

random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is completely 

difficult. 

Game5: Trapdoor Indistinguishability of rSCF-MPEKS 

Consider that the challenger  is able to achieve the input 

 of BDH assumption (Boneh and Boyen, 2004).  sets up the computation 

of a BDH key  of ,  and  using  ’s Trapdoor-IND-CPA as a goal. 

(1 − 1
h + 1 )RT +RC ∙ ( 1

h + 1 ) ∙ ( h
h + 1 )2(η−1) Pr[Event]

h + 1 = RT + RC

Pr[Event] = 1
e ∙ ( 1

RT + RC
) ∙ (

RT + RC − 1
RT + RC

)2(η−1)

1
e(RT + RC )

δ A

Pr[δ′� = δ ] = Pr[δ′� = δ ∧ Pr[Event]] + Pr[δ′ � = δ ∧ Pr[Event]] = Pr[δ′� = δ ∣

Pr[Event]]Pr[Event] + Pr[δ′ � = δ ∣ Pr[Event]]Pr[Event] = 1
2 ∙ (1 − Pr[Event])+

(ϵC + 1
2 ) ∙ Pr[Event] = 1

2 + ϵC ∙ Pr[Event]

ϵC |Pr[δ′� = δ ] − 1
2 |

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A
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Stage1 (Setup) 

 randomly selects  and subsequently returns  and  as the public 

keys  of the sender and the receiver. After that,  generates the common 

parameter  and transmits  to . 

Stage2（Queries)  

1.  requests at most , ,  to the Hash function query , the Trapdoor 

query  and the Ciphertext query  respectively. 

2.  does not repeat any query. 

3.  is not able to request a query  to  nor  to  before 

requesting  to . 

The queries are simulated by  in the following. 

For Trapdoor query  and Ciphertext query , ’s responses are the same as in 

the proof of Ciphertext Indistinguishability of rSCF-MPEKS scheme. 

For Hash function query . 

When  issues a query for a tuple . To respond,  

i.  randomly selects a coin  and then computes .  

ii.  randomly chooses . If ,  will be computed by . 

Similarly,  will be computed by  once . 

iii.  achieves  from . In addition,  uploads  into 

, which is initially empty. 

Stage3 (Challenge simulation) 

 uploads the keyword pair  to . According to Stage2（Queries), it 

should be known that  and  cannot be required by  and similarly, 

E α, β ∈ ZP αP βP

(pkSen, pkRec) E

cp = (g, P, G1, GT , e, H ) (cp, pkSen, pkRec) A

A RH RT RC QH

QT QC

A

A (pkSen, w) QT (pkRec, w) QC

(pkSen, pkRec, w) QH

E

QT QC E

QH

A (pkSen, pkRec, wi)

E εi Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = γP + νiP E

μi = νiP E εi = 1

A μi E E [(pkSen, pkRec, wi), μi, νi, εi]

H_ List

A (w*0 , w*1 ) E

(βP, w*0 ) (βP, w*1 ) QT
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 and  cannot be required by . Then,  returns a challenge 

Trapdoor  as follows: 

- If ,  will output “Suspension” and also terminate the system. 

Otherwise,  calculates the Trapdoor in the following: 

- . Let  be an element in . Therefore, 

 once .  

Stage4 (Queries) 

 can continue return any queries for any keyword  to  as in                      

Stage2 (Game5), only if  is not able to request  to  and 

 to . 

Stage5 (Guess) 

 outputs  as the guess. If ,  outputs “yes” and “no” 

otherwise. 

Analysis of Game5 

Stage1-5 describes the procedure and operations of the challenger . It remains to 

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game5. To do so, 

the first thing is to analyze that the challenger  does not stop during the simulation. 

Therefore, two events are formalized below: 

Event8: The challenger  does not stop during Stage2（Queries) and Stage4 

(Queries). 

Event9: The challenger  does not stop during Stage3 (Challenge simulation). 

(αP, W*0 ) (αP, W*1 ) QC E

Tw

ε0 = ε1 = 1 E

E

Tδ = Z ∙ e(αP, βP)νi Z GT Tδ =

e(P, P)αβ(γ+νi) = e(μi, (αβ )P) Z = e(P, P)αβγ

E w A

A [(pkSen, w*0 ), (pkSen, w*1 )] QT

[(pkRec, W*0 ), (pkRec, W*1 )] QC

A δ* ∈ {0,1} δ* = δ E

E

E

E

E
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Claim 8:  

The proof of Claim 8 is same as the proof of Claim 6, so it is omitted here. 

Claim 9:  

Proof: If , the system will be terminated by  during Stage3 

(Challenge simulation). So, the probability that the system does not be terminated by  

in Stage3 is . 

Let  be an event that  does not terminate in the whole game. Therefore, it 

is known that  

 

 will reach the maximum value if . 

So, , 

which is around equal to  and therefore non-negligible. 

Overall, the probability that the bit  correctly guessing by  is listed below: 

. 

If  is non-negligible, so is . 

Therefore, rSCF-MPEKS scheme based on BDH assumption (Boneh and Boyen, 

2004) satisfies Trapdoor Indistinguishability. 

Pr[Event8] ≥ (1 − 1
h + 1 )RT +RC

Pr[Event 9] ≥ 1 − (1 − 1
h + 1 )2

ε0 = ε1 = 1 E

E

1 − (1 − 1
h + 1 )2

Event′� E

Pr[Event′ �] = Pr[Event8] ∙ Pr[Event 9] = (1 − 1
h + 1 )RT +RC ∙ (1 − (1 − 1

h + 1 )2)

Pr[Event′ �] 1
h + 1 = 1 −

RT + RC
RT + RC + 2

Pr[Event′ �] = (
RT + RC

RT + RC + 2 )(RT +RC )/2 ∙ 2
RT + RC + 2

2
(RT + RC )e

δ A

Pr[δ′ � = δ ] = Pr[δ′� = δ ∧ Pr[Event′ �]] + Pr[δ′� = δ ∧ Pr[Event′�]] = Pr[δ′� = δ ∣

Pr[Event′�]]Pr[Event′�] + Pr[δ′ � = δ ∣ Pr[Event′�]]Pr[Event′ �] = 1
2 ∙ (1 − Pr[Event′�])+

(ϵT + 1
2 ) ∙ Pr[Event′�] = 1

2 + ϵT ∙ Pr[Event′�]

ϵT |Pr[δ′� = δ ] − 1
2 |
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5.7 The Efficiency and Performance of rSCF-MPEKS 

This part describes the security comparison between the proposed PEKS scheme 

(rSCF-MPEKS) and the other several approaches [PEKS (Boneh et al., 2004); SCF-

PEKS (Beak et al., 2008); dPEKS (Rhee et al., 2010); PAEKS (Huang and Li, 2018); 

MPEKS (Beak et al., 2008); SCF-MPEKS (Wang et al., 2016); tSCF-MPEKS (Ma and 

Hassan, 2018)]. Besides, the performance and efficiency of these PEKS approaches are 

presented in the following part. Table 7 below shows the functionalities in different 

PEKS mechanisms. 

TABLE 7. A COMPARISON OF THE FUNCTIONALITIES 

CT Ind, Trap Ind, MS and IKGA are the abbreviation of Ciphertext 

Indistinguishability, Trapdoor Indistinguishability, Multi-keywords Search and Inside 

Keyword Guessing Attack respectively. As seen from Table 7, the proposed scheme is 

much secure compared with the others. More specially, all of them except the proposed 

scheme and PAEKS are vulnerable to IKGA. Although PAEKS scheme prevents IKGA, 

it only aims for solving Single Keyword Search problem instead of supporting Multiple 

Keywords Search so that it may not be applied to the general public. To conclude, the 

proposed scheme is more secure and has better performance than its counterparts. 
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Table 8 below provides a comparison of computation efficiency between the 

proposed approach (rSCF-MPEKS) and the others. 

TABLE 8. A COMPARISON OF THE COMPUTATION EFFICIENCY 

According to Table 8, the symbols ,  and  are the abbreviation of a modular 

exponentiation, a collision resistant hash function and a bilinear pairing respectively. 

The PAEKS and proposed schemes which resist IKGA have the similar efficiency in 

PEKS algorithm. But the proposed scheme has better computation efficiency in Test 

algorithm than PAEKS scheme mainly because it only executes one XOR operation and 

one modular exponentiation in Test stage. 

Table 9 shows the communication efficiency between the proposed scheme and 

its counterparts. 

TABLE 9. A COMPARISON OF THE COMMUNICATION EFFICIENCY 

E H P
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According to Table 9, the symbols of , and  devote the length of 

element in group ,  and . Besides,  denotes the length of security parameters. It 

is clear that the proposed approach has better communication efficiency than some of its 

counterparts. For instance, comparing with dPEKS and tSCF-MPEKS schemes, the 

proposed scheme is efficient in  and . 

Table 10 below illustrates the simulation platform of rSCF-MPEKS scheme. Note 

that the proposed scheme is programmed by JAVA and JPBC Library (Angelo and 

Vincenzo, 2011). 

TABLE 10. THE SIMULATION PLATFORM FOR rSCF-MPEKS 

Figure 21 below compares , , ,  and  

generation algorithms between the tSCF-MPEKS and the proposed approaches by 1000 

times computer simulation. Every 100 times computer simulation is called one round. 

In  generation algorithm, the proposed approach is slightly efficient than the 

tSCF-MPEKS system. In  generation algorithm, these two schemes are 

similar. However, the proposed scheme witnesses a high efficiency in , 

 and  generation algorithms comparing with the tSCF-MPEKS scheme. 

 

|G1 | |GT | |ZP |

G1 GT ZP n

|PK | |Tw |

KeyGenS KeyGenR PEKS Trapdoor Test

KeyGenS

KeyGenR

PEKS

Trapdoor Test
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FIGURE 21. A COMPARISON BETWEEN TSCF-MPEKS AND RSCF-MPEKS 

5.8 The Key Code of rSCF-MPEKS 

This part shows the key codes of the proposed scheme from parameters 

initialisation, Sender’s and Receiver’s key pairs generations, Searchable ciphertext 

(PEKS) generation, Trapdoor request and Test algorithm. 

The proposed approach is programmed by JAVA using type A pairing in JPBC 

Library (Angelo and Vincenzo, 2011) and the pairing parameters initialization is 

described in Figure 22. 
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FIGURE 22. THE PARAMETERS INITIALIZATION IN RSCF-MPEKS 

The sender’s key pair generation and receiver’s key pair generation are described 

in Figure 23 and Figure 24. 

FIGURE 23. SENDER’S KEY PAIR GENERATION IN RSCF-MPEKS 

FIGURE 24. RECEIVER’S KEY PAIR GENERATION IN RSCF-MPEKS 
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The following Figure 25 describes the Searchable ciphertext (SCF-MPEKS) 

generation. In order to simplify the code, let the number of keywords be three. 

FIGURE 25. SEARCHABLE CIPHERTEXT (SCF-MPEKS) GENERATION IN RSCF-MPEKS 

Figure 26 illustrates the Trapdoor request generation by using sender’s public key 

, receiver’s private key  and a keyword . 

 

pkSen skRec w
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FIGURE 26. TRAPDOOR REQUEST GENERATION IN RSCF-MPEKS 

The final figure (Figure 27) is Test algorithm, which describes the keywords 

comparison between the Searchable ciphertext and the Trapdoor request.  

FIGURE 27. TEST ALGORITHM IN RSCF-MPEKS 
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6. Public Key Encryption with Multi-keywords Search 
using Mamdani System 

6.1 Introduction 

According to the section 1.4, it is known that almost all current PEKS and 

MPEKS schemes cannot deal with imprecise keywords, such as “latest”, “newest”, etc. 

Therefore, this chapter gives a formal definition of MPEKS scheme, which incorporates 

with Mamdani Fuzzy Inference System to solve Fuzzy Keyword Search problem. 

Besides, the proposed scheme is able to resist Off-line Keyword Guessing Attack 

(OKGA). More specially, this chapter firstly defines a new PEKS approach namely 

“Public Key Encryption with Multi-keywords Search using Mamdani System (m-

PEMKS)” and the security verification models. Then, a concrete construction of m-

PEMKS is proposed following by the correctness analysis, security verification and 

efficiency and performance analysis. 

6.2 The Outline of m-PEMKS 

Consider a situation: a bank manager would like to search the “latest” financial 

report. But, what is the “latest”? A week ago? A month ago? A year ago? Therefore, 

almost all current PEKS systems are not able to solve imprecise keyword search. This 

thesis provides a way that incorporates with Fuzzy Logic method into Searchable 

Cryptography to solve Fuzzy Keyword Search issue, called “Public Key Encryption 

with Multi-keywords Search using Mamdani System (m-PEMKS)". The m-PEMKS 

contains eight polynomial time algorithms as follows: 

1. : Import , a common parameter  is then created. 

2. : Import , a global parameter  is then created. 

KeyGenParam−PEKS(1n) 1n cp

KeyGenParam−RSA(k) k gp
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3. : Import , a public and a private PEKS keys 

 of the server are then created. 

4. : Import , a public and private RSA keys

 of the server are then created.  

5. : Import , a public and private PEKS keys

 of the receiver are then created. 

6. : Import the server’s 

PEKS public key , the receiver’s PEKS public key , the server’s 

RSA public key  and a keyword-vector 

. An encryption is subsequently produced in the following: 

. 

7. : Import the server’s PEKS 

public key , the receiver’s PEKS private key , the server’s RSA 

p u b l i c k e y  a n d a k e y w o r d - v e c t o r 

. A request is subsequently created in the following: 

. 

8.  : The algorithm contains two steps, which 

are called Searchable Match and Fuzzy Match.  

- For Searchable Match, input the server’s PEKS private key , the 

Searchable ciphertext   and 

KeyGenSer−PEKS(cp) cp

(pkSer−PEKS, skSer−PEKS)

KeyGenSer−RSA(k) gp

(pkSer−RSA, skSer−RSA)

KeyGenRec−PEKS(cp) cp

(pkRec−PEKS, skRec−PEKS)

Encr ypt ion(pkSer−PEKS, pkRec−PEKS, pkSer−RSA, W )

pkSer−PEKS pkRec−PEKS

pkSer−RSA W = (Wpart−1; Wpart−2) =

[(w1, w2, . . . , wη−1); wη]

E = (E1,E 2) = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wpart−1) | | RSA(pkSer−RSA,

Wpart−2)

Request (pkSer−PEKS, skRec−PEKS, pkSer−RSA, W*)

pkSer−PEKS skRec−PEKS

pkSer−RSA W* = (W*part−1; W*part−2) =

[(w*1 , w*2 , . . . , w*ι−1); w*ι ]

R = (R1,R2) = Trapdoor (pkSer−PEKS, skRec−PEKS, W*part−1) | |RSA(pkSer−RSA,

W*part−2)

Test (E, R, skSer−MPEKS, skSer−RSA)

skSer−PEKS

E1 = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wpart−1)
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t h e T r a p d o o r q u e r y . I f 

, mark it as the Fuzzy Match input. Then, the server repeats 

Searchable Match until traversing all the encrypted messages stored in its database. 

- If the server has the marked input(s), it will run Fuzzy Match search. Otherwise, 

the system will be terminated by the server. 

- For Fuzzy Match, input the server’s RSA private key , the RSA 

e n c r y p t i o n  a n d t h e R S A r e q u e s t 

. Then, the server firstly decrypts  and  to 

obtain  and . Let  and  be the condition and the 

conclusion of the rules in Mamdani system. After running Mamdani system, the 

server sends a response to the receiver.  

6.3 The Security Models of m-PEMKS 

The security of m-PEMKS system relies on two parts. The first one is IND-CPA 

and Trapdoor-IND-CPA applying in Exact keywords search. Another one is the 

difficulty of factoring large integers, which is used in Fuzzy keyword search. 

Due to the properties of Mamdani system, the input for Mamdani system must be 

plaintext. However, it is no meaningful to verify the security on the Fuzzy Keyword 

Search part. More specially, suppose the fuzzy keyword is “highest”. Even though the 

cracker knows that the fuzzy keyword is “highest”, he/she could not know more details 

(such as “highest building”, “highest person”, “highest temperature”, etc.). 

This part only focuses on the security of Exact Keywords Search in m-PEMKS 

system and the proposed security models are listed below: 

R1 = Trapdoor (pkSer−PEKS, skRec−PEKS, W*part−1)

W*part−1 ⊆ Wpart−1

skSer−RSA

E 2 = RSA(pkSer−RSA, Wpart−2)

R2 = RSA(pkSer−RSA, W*part−2) E 2 R2

Wpart−2 W*part−2 Wpart−2 W*part−2
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As discussed in (Baek et al., 2008; Wang et al., 2016; Ma and Kazemian, 2018), 

m-PEMKS is IND-CPA and Trapdoor-IND-CPA. 

The definition of IND-CPA security means that the untrusted server may not 

determine which Searchable ciphertext has which encrypted keyword, if the Trapdoor 

query that contains the given keyword has not been obtained by the server (Game6). 

Besides, if the server’s private key has not been obtained by the untrusted receiver, he/

she could not estimate whether the SCF-MPEKS ciphertext ( ) and the Trapdoor 

request ( ) contain the same keyword or not, even though all Trapdoors for any 

keyword are intercepted (Game7). 

The definition of Trapdoor-IND-CPA security means that an outside adversary 

cannot observe any difference between Trapdoors for any two distinct keywords 

(Game8).  

Therefore, the IND-CPA and Trapdoor-IND-CPA for m-PEMKS are formalized 

as follows:  Suppose  is an adversary and  is a challenger. 

Game6: Let  suppose to be an untrusted server. 

S t a g e 1 ( S e t u p ) : ,  a n d 

 are called by  in order to generate a common parameter , the 

key pairs  and  of the server and the 

receiver. Then,  sends , ,  and  to .  

Stage2（Trapdoor queries): Adaptively,  is able to return any Trapdoor query 

 for any keyword-vector . 

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r 

  is sent from  to . It is known that  

E1

R1

A E

A

KeyGenParam−PEKS(1n) KeyGenSer−PEKS(cp)

KeyGenRec−PEKS(cp) E cp

(pkSer−PEKS, skSer−PEKS) (pkRec−PEKS, skRec−PEKS)

E cp pkSer−PEKS skSer−PEKS pkRec−PEKS A

E

T*W W* = (w*1 , . . . . , w*ι )

[W0 = (w01, . . . . , w0η), W1 = (w11, . . . . , w1η)] A E W0
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and  cannot be requested in Stage2 (Game6). Once  obtains the keyword-vector 

pair, the  algorithm will be called by  for generating a Searchable 

ciphertext , where . 

Finally,  will be sent back to . 

Stage4 (Trapdoor queries):  can continue return any Trapdoor query  for 

any keyword-vector  to  as in Stage2 (Game6), only if . 

Stage5 (Guess):  guesses  and wins Game6, if .  

Game7: Let  suppose to be an untrusted receiver. 

S t a g e 1 ( S e t u p ) : ,  a n d 

 are called by  in order to generate a common parameter , the 

key pairs  and  of the server and the 

receiver. Then,  sends , ,  and  to . 

Stage2 (Chal lenge s imulat ion): A target keyword-vector pai r 

  is sent from  to . It is known that  

and  are not able to be requested during Test algorithm, on which . Once 

the challenger  obtains the pair, the  algorithm will be called by  for 

generating a Searchable ciphertext , 

where . Finally,  will be sent back to . 

Stage3 (Guess):  guesses  and wins Game7, if .  

W1 E

SCF − MPEKS E

C = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wξ) ξ ∈ {0,1}

C A

E T*W

W* A W* ≠ W*0 , W*1

A ξ* ∈ {0,1} ξ* = ξ

A

KeyGenParam−PEKS(1n) KeyGenSer−PEKS(cp)

KeyGenRec−PEKS(cp) E cp

(pkSer−PEKS, skSer−PEKS) (pkRec−PEKS, skRec−PEKS)

E cp pkRec−PEKS skRec−PEKS pkSer−PEKS A

[W0 = (w01, . . . . , w0η), W1 = (w11, . . . . , w1η)] A E Tw0i

Tw1i
i = 1,...,ι

E SCF − MPEKS E

C = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wξ)

ξ ∈ {0,1} C A

A ξ* ∈ {0,1} ξ* = ξ
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’s advantage to win Game6 and Game7 is listed below: 

 

So, the m-PEMKS model is considered to be IND-CPA secure as long as 

 is trivial. 

Game8: Let  suppose to be an outside attacker. 

S t a g e 1 ( S e t u p ) : ,  a n d 

 are called by  in order to generate a common parameter , the 

key pairs  and  of the server and the 

receiver. Then,  sends , ,  to  and keeps  , 

 from . 

Stage2（Trapdoor queries): Adaptively,  is able to return any Trapdoor query 

 for any keyword-vector  to .  

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r 

  is sent from  to . It is known that  

and  cannot be requested in Stage2 (Game8). Once  obtains the keyword-vector 

pair, the  algorithm will be called by the challenger for generating a 

Trapdoor query , where . 

Finally,  will be sent back to . 

Stage4 (Trapdoor queries):  can continue return any Trapdoor query  for 

any keyword-vector  to  as in Stage2 (Game8), only if . 

Stage5 (Guess):  guesses  and wins Game8, if . 

A

AdvIND−CPA
m−PEMKS,Ai

(k) = |Pr[ξ* = ξ ] − 1/2 | . (i = 6,7)

AdvIND−CPA
m−PEMKS,Ai

(k)

A

KeyGenParam−PEKS(1n) KeyGenSer−PEKS(cp)

KeyGenRec−PEKS(cp) E cp

(pkSer−PEKS, skSer−PEKS) (pkRec−PEKS, skRec−PEKS)

E cp pkSer−PEKS pkRec−PEKS A skSer−PEKS

skRec−PEKS A

E

T*W W* = (w*1 , . . . . , w*ι ) A

[W*0 = (w*01, . . . . , w*0ι), W*1 = (w*11, . . . . , w*1ι)] A E W*0

W*1 E

Trapdoor E

TW = Trapdoor (pkSer−PEKS, skRec−PEKS, W*ξ ) ξ ∈ {0,1}

TW A

E T*W

W* A W* ≠ W*0 , W*1

A ξ* ∈ {0,1} ξ* = ξ
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’s advantage to win Game8 is listed below: 

 

Therefore, the m-PEMKS model is considered to be Trapdoor-IND-CPA secure 

as long as   is trivial. 

6.4 The Fuzzy Inference System of m-PEMKS 

Almost all current PEKS schemes will report errors, if the keyword for searching 

is blur. On the contrary, m-PEMKS scheme incorporates with the fuzzy logic technique 

to solve fuzzy keyword search problem. To simplicity, let’s take an example about 

searching “latest” financial reports. So, Figure 28 illustrates the fuzzy inference system 

structure of this example that is used in m-PEMKS scheme.  

FIGURE 28. THE STRUCTURE OF FUZZY INFERENCE SYSTEM 

Note that the fuzzy system in m-PEMKS scheme is implemented by JAVA using 

jFuzzyLogic (Cingolani et al., 2012) package. From Figure 28, it can be seen that the 

inputs and outputs for the fuzzy system are the crisp values and the membership 

functions for both fuzzification and defuzzification are defined for every linguistic term 

using TERM statement that is followed by a function definition. Functions are defined 

as piece-wise linear functions using a series of points  . 

According to Section 6.2, the bank manger would like to search the “latest” financial 

A

AdvTrap−IND−CPA
m−PEMKS,A8

(k) = |Pr[ξ* = ξ ] − 1/2 | .

AdvTrap−IND−CPA
m−PEMKS,A8

(k)

(A0, B0), (A1, B1), . . . , (Am, Bm)
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statements so that the fuzzification could apply trapezoidal and triangular membership 

functions, for instance, TERM defines the 

trapezoidal membership function. Apart from that, the defuzzification method applies 

Center of Gravity (COG) and each rule used in this fuzzy inference system is defined by 

“IF condition THEN conclusion”. More details can be found in Figure 38. 

Also note that the PhD thesis is mainly on cryptography area and the design of 

fuzzy inference system (such as why defuzzification method uses COG? Why use 

trapezoidal membership functions? etc.) is not the key point. The purpose of m-PEMKS 

scheme is to show that the searchable cryptography (PEKS) could connect and apply 

with fuzzy logic to solve the fuzzy keyword search. 

6.5 The Concrete Construction of m-PEMKS  

1. : Suppose  is an additive cyclic group and  is a 

multiplicative cyclic group. Let  be a random generator of  and a prime number 

 be the order of . A bilinear pairing is considered to be a map 

. Suppose  and  are two 

particular hash functions. Therefore, a common parameter 

 can be achieved by the  algorithm. 

2. : Randomly select prime numbers ,  where . 

Then, calculate  and . 

3. : The server selects  uniformly at random and 

then calculates . In addition, the server also randomly selects . So, 

 and  are 

the server’s public and private PEKS keys. 

Date := {(1,0), (4,1), (6,1), (9,0)}

KeyGenParam−PEKS(1n) G1 GT

P G1

g ≥ 2k G1

e : G1 × G1 → GT H : {0,1}⋆ → G1 H* : GT → {0,1}*

cp = {g, P, G1, GT , e,

H, H*} KeyGenParam−PEKS(1n)

KeyGenParam−RSA(k) ℙ 𝕍 ℙ ≠ 𝕍

ℤ = ℙ × 𝕍 ϕ(ℤ) = (ℙ − 1) × (𝕍 − 1)

KeyGenSer−PEKS(cp) m ∈ ZP

M = mP K ∈ G1

pkSer−PEKS = (pkSer−PEKS1, pkSer−PEKS2) = (cp, M, N ) skSer−PEKS = (cp, m)
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4. : The server randomly se lec ts , where 

. Next, the server calculates  by . 

 and  are the server’s public and private RSA keys.   

5. : The receiver selects  uniformly at random and 

then calculates . So,  and  are the 

receiver’s public and private PEKS keys.   

6. : The sender randomly 

picks up ,  and then calculates 

a n e n c r y p t i o n 

 w h e r e , 

. 

7. : The receiver randomly 

selects ,  and then calculates 

. 

8. : For and , 

where . 

i. For Searchable Match: 

   Firstly, the server computes  

    ,  

                

                 

KeyGenSer−RSA(k) f ∈ ZI

gcd(ϕ(ℤ), f ) = 1,1 < f < ϕ(ℤ) l l ≡ f −1(modϕ(ℤ))

pkSer−RSA = ( f, ℤ) skSer−RSA = (l, ℤ)

KeyGenRec−PEKS(cp) n ∈ ZP

N = nP pkRec−PEKS = (cp, N ) skRec−PEKS = (cp, n)

Encr ypt ion(pkSer−PEKS, pkRec−PEKS, pkSer−RSA, W )

t ∈ ZP W = (Wpart−1; Wpart−2) = [(w1, w2, . . . , wη−1); wη]

E = (E1, E2) = [(X, Y1, Y2, . . . Yη−1); Yη] = [(tM, H*(V1), H*(V2),

. . . , H*(Vη−1)); (wη) f mod ℤ], V1 = e(H(w1), N )t V2 = e(H(w2), N )t,

. . . , Vη−1 = e(H(wη−1), N )t

Request (pkSer−PEKS, skRec−PEKS, pkSer−RSA, W*)

t* ∈ ZP W* = (W*part−1; W*part−2) = [(w*1 , w*2 , . . . , w*ι−1); wι]

R = (R1, R2) = [(Q, T1, T2, . . . , Tι−1), Tι] = [(e(M, t*K ), nH(w*1 ) ⊕ e(M, K )t*+n,

nH(w*2 ) ⊕ e(M, K )t*+n, . . . , nH(w*ι−1) ⊕ e(M, K )t*+n); (w*ι ) f mod ℤ]

Test (E, R, skSer−MPEKS, skSer−RSA) i ∈ {1,2,...,η} j ∈ {1,2,...,ι}

j ≤ i

Tw1
= T1 ⊕ Q ∙ e(mK, N ) = nH(w*1 )

Tw2
= T2 ⊕ Q ∙ e(mK, N ) = nH(w*2 ), . . . ,

Twj = Tj ⊕ Q ∙ e(mK, N ) = nH(w*j ), . . . ,
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            . 

Then, the server tests whether  or not. If “yes”, mark it as the 

Fuzzy Match input. Next, the server repeats Searchable Match until traversing all the 

encrypted messages stored in its database. 

ii. If the server obtains the marked input(s), it will run Fuzzy Match search. 

Otherwise, the system will be terminated by the server. 

iii. For Fuzzy Match (More details are in section 6.4): the server firstly decrypts 

 and  as  and  respectively. Let 

 and  be the condition and the conclusion of the rules in Mamdani Fuzzy Inference 

System. After running Mamdani Fuzzy Inference System, the server replies to the 

receiver in the following. 

Without loss of generality, suppose “ ” stands for a set of DATE while “ ” is 

the keyword “latest” . Therefore, three rules can be defined as follows: 

Rule1: IF DATE is oldest, THEN the encrypted file is unnecessary.  

Rule2: IF DATE is newest, THEN the encrypted file is necessary.  

Rule3: IF DATE is either new or old, THEN the encrypted file may necessary or 

may unnecessary. 

Twι−1
= Tι−1 ⊕ Q ∙ e(mK, N ) = nH(w*ι−1)

H*[e(Twj,
X
m

)] = Yi

wη w*ι {[(wη) f mod ℤ]lmod ℤ} {[(w*ι ) f mod ℤ]lmod ℤ}

wη w*ι

wη w*ι
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FIGURE 29. THE STRUCTURE OF M-PEMKS 

6.6 The Correctness of m-PEMKS  

i. For Searchable Match: 

For  and , the correctness of the proposed 

approach is easily verified as follows:  

Note that  stands for Multiplication and  stands for Exclusive Or.  

According to Bilinear pairing, note also that  and 

. 

Therefore, firstly, 

         

                  

              

i ∈ {1,2,...,η − 1} j ∈ {1,2,...,ι − 1}

∙ ⊕

e(M, K ) = e(K, M )

e(M, K )t*+n = e(t*M, nK ) = e(n M, t*K )

Twj = Tj ⊕ Q ∙ e(mK, N ) = nH(w*j )

= nH(w*j ) ⊕ e(M, K )t*+n ⊕ e(M, t*K ) ∙ e(mK, N )

= nH(w*j ) ⊕ e(M, K )t*+n ⊕ e(M, t*K ) ∙ e(M, nK )
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Secondly,                

      

                 

                 

ii. For Fuzzy Match: 

This algorithm is still correct due to the properties of Mamdani system. 

6.7 The Security Analysis of m-PEMKS 

The m-PEMKS approach possesses the characters of Ciphertext 

Indistinguishability and Trapdoor Indistinguishability against Chosen Plaintext Attack 

(CPA) whose security relies on BDH and 1-BDHI assumptions (Boneh and Boyen, 

2004). 

The proposed approach above could be regarded as IND-CPA secure in Game6 

under the random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is 

completely difficult. 

Game6: Let  suppose to be an untrusted server. 

Consider that the challenger  is able to achieve the input 

 of BDH assumption (Boneh and Boyen, 2004).  sets up the computation 

of a BDH key  of ,  and  using ’s IND-CPA as a goal. Apart from 

that,  requests at most  and  times hash function requests.  

= nH(w*j ) ⊕ e(M, K )t*+n ⊕ e(M, K )t*+n

= nH(w*j )

H*[e(Twj,
X
m

)] = H*[e(nH(w*j ),
tM
m

)]

= H*[e(nH(w*j ),
ntP

n
)]

= H*[e(H(w*j ), N )t]

= Yi

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*
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Stage1 (Setup) 

  chooses  in the beginning. Then,  chooses  uniformly at 

random and also computes . In addition,  randomly selects . Finally, 

the following parameters are returned by , which are the common parameter 

, the server’s public/private PEKS key pair  and 

, and the receiver’s public PEKS key . Apart from that, two particular 

hash functions  and  are selected by  in the following: 

-  is able to request a keyword  to  function at any time. After that,  

traverses a tuple  from  that is initially empty. If the tuple exists,  

will return  to . Otherwise, the challenger  executes the details below:   

i. The challenger  randomly selects a coin  and then computes 

.  

ii. The challenge  randomly chooses . If ,  will be 

computed by . Similarly,  will be computed by  once . 

iii.  receives  from . Meanwhile,  adds  into . 

-  is able to request  to  function at any time. Later on,  traverses a tuple  

 from . If the tuple exists,  will return  to . Otherwise,  randomly 

selects  and replies  to . Finally,  adds  into . 

Stage2（Trapdoor queries)  

If  queries a Trapdoor request with a specific keyword-vector 

,  will do the operations below: 

- The challenger  recalls the above algorithms in order to simulate  function for 

generating a tuple . If ,  will output “Suspension” and also 

terminate the system. Otherwise, the challenger  executes the following steps. 

-  randomly chooses   and calculates .  

E N = αP E m ∈ ZP

M = mP E K ∈ G1

E

(g, P, G1, GT , e, H, H*) (cp, M, K )

(cp, m) (cp, N )

H H* E

A wi H E

(wi, μi, νi, εi) H_ List E

H(wi) = μi A E

E εi

Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = βP + νiP

E μi = νiP E εi = 1

A μi E E (wi, μi, νi, εi) H_ List

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi) H*_ List

A Wi = (w1, w2

, . . . wι) E

E H

(wi, μi, νi, εi) εi = 0 E

E

E t* ∈ ZP Z = e(M, t*K )
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-  t h e n c o m p u t e s 

 

. So, . 

Stage3 (Challenge simulation) 

The challenger  sends a keyword-vector pair 

 to . Once the challenger  obtains the keyword-vector pair, he/

she will do the following steps: 

-  chooses  uniformly at random. 

-  recalls the above algorithms in order to simulate  function for obtaining two 

tuples  and . If  and  are equal to ,  will output 

“Suspension” and also terminate the system. Otherwise, the challenger  does the 

following operations: 

i.  recalls above algorithms again in order to simulate  function at  

t i m e s f o r s e a r c h i n g t w o t u p l e s ’ v e c t o r s 

 a n d 

. If   for all , the challenger  

will export “Suspension” and terminate the system. Otherwise, the challenger  does 

the following operations:   

— The challenger  randomly picks up . 

— The challenger  randomly picks up  and then generates a target 

 ciphertext 

.  

E T1 = ν1N ⊕ e(M, K )t*+α = ν1αP ⊕ e(M, K )t*+α

= xμ1 ⊕ e(M, K )t*+α = αH(w1) ⊕ e(M, K )t*+α, T2 = αH(w2) ⊕ e(M, K )t*+α

, . . . , Tι = αH(wι) ⊕ e(M, K )t*+α TW = (Q, T1, T2, . . . , Tι)

A [W0 = (w01, . . . . , w0η),

W1 = (w11, . . . . , w1η)] E E

E i ∈ {1,2,...,η}
E H

(w*0i, μ*0i, ν*0i, ε*0i) (w*1i, μ*1i, ν*1i, ε*1i) ε*0i ε*1i 1 E

E

E H 2(η − 1)

{(w*01, μ*01, ν*01, ε*01), . . . ,

(w*0i−1, μ*0i−1, ν*0i−1, ε*0i−1), (w*0i+1, μ*0i+1, ν*0i+1, ε*0i+1) , . . . , (w*0η, μ*0η, ν*0η, ε*0η)}

{(w*11, μ*11, ν*11, ε*11), . . . , (w*1i−1, μ*1i−1, ν*1i−1, ε*1i−1), (w*1i+1, μ*1i+1, ν*1i+1, ε*1i+1), . . . ,

(w*1η, μ*1η, ν*1η, ε*1η)} ε*0j = ε*1j = 0 j = 0,...,i − 1,i + 1,...,η E

E

E δ ∈ {0,1}

E Yi ∈ {0,1}∙

SCF − MPEKS C* = (X*, Y*1 , Y*2 , . . . , Y*η ) = (γM, H*[B1], H*[B2], . . . ,

H*[Bη])
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So,  

. 

Note that  

. 

Note also that  

Stage4 (Trapdoor queries) 

 can continue return any Trapdoor query  for any keyword-vector  to  as 

in Stage2 (Game6), only if . 

Stage5 (Guess) 

 outputs as the guess. Then,  chooses  from  function and 

replies the guessed BDH key  . 

Analysis of Game6 

Stage1-5 describes the procedure and operations of the challenger . It remains to 

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game6. To do so, 

the first thing is to analyze that the challenger  does not stop during the simulation. 

Therefore, three events are formalized below:  

Event10: The challenger  does not stop during Stage2（Trapdoor queries) and 

Stage4 (Trapdoor queries). 

Event11: The challenger  does not stop during Stage3 (Challenge simulation). 

C* = (X*, Y*1 , . . . , Y*i−1, Y*i+1, . . . , Y*η ) = (γM, H*[e(H(wδ1
), N )γ], . . . ,

H*[e(H(wδi−1
), N )γ], H*[e(H(wδi+1), N )γ], . . . , H*[e(H(wδη), N )γ])

Bi = e(H(wδi), N )γ = e(βP + νδiP, αP)γ = e(βP, αP)γ ∙ e(νδiP, αP)γ =

e(P, P)αβγ ∙ e(γP, αP)νδi

e(νδiP, αP)γ = e(νδiP, N )γ = e(H(wδi), N )γ

E T*W W* A

W* ≠ W*0 , W*1

A δ* ∈ {0,1} E s H*

sδ*i

e(γP, αP)
νδ*i

E

E

E

E
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Event12: The adversary  is not able to request either  or 

. 

Claim 10:  

Proof: Consider that  cannot request the same keyword twice in Stage2 and 

Stage4. So,  is the probability causing  for suspension. From the previous 

definition,  queries at most  Trapdoor requests and the keyword-vector in Trapdoor 

has  elements so that the probability that the system which does not be terminated by  

in all Trapdoor queries is at least . 

Claim 11:  

Proof: If , the system will be terminated by  during Stage3 

(Challenge simulation). So, the  is the probability that  does not 

suspend. In addition, if  for all , the system will be 

terminated by . Overall, the probability that the system which does not be terminated 

by  during Stage3 is at least

. 

Claim 12:  

Proof: As discussed in (Baek et al., 2008), let  for  be an 

event that the adversary  can correctly guess the keyword of the left part of a “hybrid” 

 encryption formed with , coordinates from  followed by  

coordinates from . So, 

. 

A H*(e(H(w*0i), N )γ)

H*(e(H(w*1i), N )γ)

Pr[Event10] ≥
1
eι

A

1
h + 1 E

A h

ι E

[(1 − 1
h + 1 )h]ι ≥ 1

eι

Pr[Event11] ≥ ( 1
h + 1 ) ∙ ( h

h + 1 )2(η−1)

ε0 = ε1 = 1 E

1 − (1 − 1
h + 1 )2 E

ε*0j = ε*1j = 0 j = 0,...,i − 1,i + 1,...,η

E

E (1 − 1
h + 1 )2(η−1){1 − (1 − 1

h + 1 )2} ≥ ( 1
h + 1 ) ∙

( h
h + 1 )2(η−1)

Pr[Event12] ≥ 2ξ

Hybr idr r ∈ {1,2,...,η}
A

SCF − MPEKS r wβ (η − r)

w1−β Pr[Event12] = 2Ση
j=1(Pr[Hybr idr] − Pr[Hybr idr−1])

=2(Pr[Hybr idr] − Pr[Hybr id0]) = 2ξ
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Overall, due to  queries either  or  being 

at least , the probability that  querying  is at least . Therefore, 

the success probability  achieved by  is , which is 

negligible. 

The proposed scheme above could be regarded as IND-CPA secure in Game7 

under the random oracle model, if the 1-BDHI assumption (Boneh and Boyen, 2004) is 

completely difficult. 

Game7: Let  suppose to be an untrusted receiver. 

Consider that  is able to achieve the input  of 1-BDHI 

assumption (Boneh and Boyen, 2004).  sets up the computation of a 1-BDHI key 

 of  using ’s IND-CPA as a goal. Apart from that,  requests at most  

and  times hash function requests.  

Stage1 (Setup) 

 selects  and  in the beginning. Then,  randomly chooses 

 and also computes . After that, the following parameters are returned by 

, which are the common parameter , the server’s public PEKS 

key , and the receiver’s public/private PEKS key pair  and . 

Apart from that, two specific hash functions  and  are selected by  in the 

following: 

—  is able to request a keyword  to  function at any time. Later on,  

traverses a tuple  from . If the tuple exists,  will return  to . 

Otherwise,  randomly chooses  and computes . After that,  responds 

 to . 

A H*(e(H(w*0i), N )γ) H*(e(H(w*1i), N )γ)

2ξ A H*(e(H(w*ji ), N )γ) ξ

ξ* E ( h
h + 1 )2(η−1) ∙ ξ

eι(h + 1)h*

A

E (g, P, G1, GT , e, αP)

E

e(P, P) 1
α αP A A h

h*

E M = αP K ∈ G1 E

n ∈ ZP N = nP

E (g, P, G1, GT , e, H, H*)

(cp, M, K ) (cp, N ) (cp, n)

H H* E

A wi H E

(wi, μi, vi) H_ List E μi A

E νi ∈ ZP μi = νiP E

μi A
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—  is able to request  to  function at any time. Later on,  traverses a tuple  

 from . If the tuple exists,  will return  to . Otherwise,  randomly 

selects  and replies  to . Finally,  adds  into . 

Stage2 (Challenge simulation) 

 uploads a keyword-vector pair [ , ] to , 

where  and . Once the challenger  

obtains the pair, he/she will do the following steps: 

— The challenger  randomly picks up  and .  

— The challenger  recalls the  algorithm for generating the 

Searchable ciphertext 

.  

So,  

. 

It is known that . 

Stage3 (Guess) 

The adversary  exports  as the guess. Then,  returns the guessed 1-

BDHI key . 

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi) H*_ List

A (W*0i, F*0i, f *0i, θ*0i) (W*1i, F*1i, f *1i, θ*1i) E

W*0 = (w01, w02, . . . , w0η) W*1 = (w11, w12, . . . , w1η) E

E Yi ∈ {0,1}∙ δ ∈ {0,1}

E SCF − MPEKS

C* = (X*, Y*1 , Y*2 , . . . , Y*η ) = (ψ αP, H*[B1], H*[B2], . . . ,

H*[Bη])

C* = (X*, Y*1 , Y*2 , . . . , Y*η ) = (ψ αP, H*(e(H(wδ1
), N )ψ ), H*(e(H(wδ2

), N )ψ ),

. . . , H*(e(H(wδη), N )ψ ))

Bi = e(H(wδ*i
), N )ψ ) = e(νiP, nP)ψ = e(P, P)ψ⋅νin

A δ* ∈ {0,1} E

ψ = 1
α ⋅ νin
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Analysis of Game7 

Stage1-3 describes the procedure and operations of the challenger . It remains to 

show that 1-BDHI assumption (Boneh and Boyen, 2004) is satisfied in Game7. To do 

so, the first thing is to analyze that the challenger  does not stop during the simulation. 

Therefore, two events are formalized below:  

Event13: The challenger  does not stop during Stage2 (Challenge simulation). 

Event14: The adversary  is not able to request either  or 

. 

Claim 13:  

Proof: There is no limitation to illustrate that the system will be terminated by the 

challenger  during Stage2. Thus, it is clear that . 

Claim 14:  

Proof: If  happens, it will show that the bit  pointing out 

whether the Searchable encryption contains  or  separates of ’s view. Hence, the 

probability that the adversary ’s exporting  which satisfies  is at most .  

By the concept of Bayes’s rule, 

. 

By definition, it should be known that . Then, 

. Thus, . 

E

E

E

A H*(e(H(w*0i), N )ψ )

H*(e(H(w*1i), N )ψ )

Pr[Event13] = 1

E Pr[Event13] = 1

Pr[¬Event14] ≥ 2ξ

Event14 j ∈ {0,1}

w0i w1i A

A j* j = j* 1
2

Pr[ j = j*] = Pr[ j = j* |Event14]Pr[Event14] + Pr[ j = j* |Event14]

Pr[¬Event14] ≤ Pr[ j = j* |Event14]Pr[Even14] + Pr[¬Event14] =

1
2 ∙ Pr[Event14] + Pr[¬Event14] = 1

2 + 1
2 ∙ Pr[¬Event14]

|Pr[ j = j*] − 1
2 | ≥ ξ

ξ ≤ Pr[ j = j*] − 1
2 ≤ 1

2 ∙ Pr[¬Event14] Pr[¬Event14] ≥ 2ξ
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Overall, due to  requests either  or  being 

at least , the probability that  requests  is at least . However, 

according to the previous definition that  requests at most  hash function queries,  

is the probability that the challenger  chooses the correct solution. Overall, the success 

probability  achieved by  is , which is negligible. 

The proposed scheme above could be regarded as Trapdoor-IND-CPA secure in 

Game8 under the random oracle model, if the BDH assumption (Boneh and Boyen, 

2004) is completely difficult. 

Game8: Let  suppose to be an untrusted outside attacker. 

Consider that the challenger  is able to achieve the input 

 of BDH assumption (Boneh and Boyen, 2004).  sets up the computation 

of a BDH key  of ,  and  using ’s IND-CPA as a goal. Apart from 

that,  requests at most  and  hash function queries.   

Stage1 (Setup) 

 selects ,  and  in the beginning. Then, the following 

parameters are returned by , which are the common parameter 

, the server’s public PEKS key , and the receiver’s public PEKS key 

. In addition, two specific hash functions  and  are randomly selected by .  

Stage2（Trapdoor queries)  

If  queries a Trapdoor request with a specific keyword-vector 

,  will randomly choose  and subsequently calculate 

. After that,  also computes  in the following:

A H*(e(H(w*0i), N )ψ ) H*(e(H(w*1i), N )ψ )

2ξ A H*(e(H(w*ji ), N )ψ ) ξ

A h* 1
h*

E

ξ* E ξ
h*

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*

E M = αP K = βP N = γP

E (g, P, G1, GT , e,

H, H*) (cp, M, K )

(cp, N ) H H* E

A

Wi = (w1, w2, . . . wι) E t* ∈ ZP

Q = e(t*βP, αP) E T1, T2, . . . , Tι
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. So, . After that,  returns  to .  

Stage3 (Challenge simulation) 

 uploads a keyword-vector pair  and  to , 

where  and . Once  obtains the pair, 

he/she will do the following steps: 

— The challenger  randomly chooses .  

—The challenger  recalls the  algorithm for searching the Challenge 

Trapdoor . 

So,  

  

 

 . 

Stage4 (Trapdoor queries) 

 can continue return any Trapdoor query  for any keyword-vector  to  as 

in Stage2 (Game8), only if . 

Stage5 (Guess) 

 exports  as the guess. If ,  outputs “yes” and “no” 

otherwise.  

T1 = γH(w1) ⊕ e(βP, αP)t*+γ, T2 = γH(w2) ⊕ e(βP, αP)t*+γ, …, Tι = γH(wι) ⊕

e(βP, αP)t*+γ TW = (Q, T1, T2, . . . , Tι) E TW A

A (W*0i, μ*0i, ν*0i, ε*0i) (W*1i, μ*1i, ν*1i, ε*1i) E

W*0 = (w01, w02, . . . , w0ι) W*1 = (w11, w12, . . . , w1ι) E

E δ* ∈ {0,1}

E Trapdoor

T*W = (Q*, T*1 , T*2 , . . . , T*ι ) = (e(t*βP, αP), B1, B2, . . . , Bι)

T1 = γH(wδ*1
) ⊕ e(βP, αP)t*+γ = γH(wδ*1

) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*,

T2 = γH(wδ*2
) ⊕ e(βP, αP)t*+γ = γH(wδ*2

) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*, . . . ,

Tι = γH(wδ*ι ) ⊕ e(βP, αP)t*+γ = γH(wδ*ι ) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*

E T*W W* A

W* ≠ W*0 , W*1

A δ* ∈ {0,1} δ = δ* E
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Analysis of Game8 

According to  is an untrusted outside attacker, he/she is not able to observe any 

difference between two Trapdoor queries even if these two queries contain the same 

keyword. This is because  selects  uniformly at random and  changes in 

every calculation so that  changes in every calculation. 

Consider two Trapdoor queries contain the same keyword, but the calculation results are 

different mainly because of the value . Hence, the core part of Trapdoor-IND-CPA 

secure in the proposed scheme is the confidentiality of  . 

Consider that if  has , he/she could estimate whether two Trapdoor 

queries have the same keyword or not. More specially,  computes one extra XOR as 

follows: .  So,  is able to know 

that  and  are equal，only if . 

By Stage3 in Game8, it shows that , which 

meets BDH assumption. Therefore,  is not able to computes  so that he/

she cannot calculate  either. 

6.8 The Efficiency and Performance of m-PEMKS 

This scheme is implemented by JAVA requiring two libraries: JPBC (Angelo and 

Vincenzo, 2011) and jFuzzyLogic (Cingolani et al., 2012). The flow chart is described 

in Figure 30. More specially, sender, receiver and server are implemented by JAVA 

socket programming. The specific keywords are encrypted by PEKS (JPBC) while the 

fuzzy keyword is encrypted by RSA (java.security). All encrypted messages are kept in 

server’s file system and the file indexes are stored in Mysql database. Mamdani Fuzzy 

Inference system is implemented by JAVA Fuzzy Control Language (jFuzzyLogic). 

A

E t* ∈ ZP t*

Ti = nH(wi) ⊕ e(M, K )t*+n

t*

e(M, K )t*+n

A e(M, K )t*+n

A

Ti = nH(wi) ⊕ e(M, K )t*+n ⊕ e(M, K )t*+n = nH(wi) A

Tw0i
= nH(w0i) Tw1i

= nH(w1i) w0 = w1

e(M, K )t*+n = e(P, P)αβγ ∙ e(P, P)αβt*

A e(M, K )t*+n

Ti = nH(wi) ⊕ e(M, K )t*+n
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FIGURE 30. FLOW CHART OF M-PEMKS 
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Table 11 below illustrates the simulation platform of m-PEMKS scheme. Note 

that the proposed scheme is programmed by JAVA and JPBC Library (Angelo and 

Vincenzo, 2011) . 

TABLE 11. THE SIMULATION PLATFORM FOR m-PEMKS 

6.9 The Key Code of m-PEMKS 

The m-PEMKS scheme is programmed by JAVA using JPBC Library (Angelo and 

Vincenzo, 2011). The pairing parameters are generated by Type A curve. Figure 31 

shows all java files used in this proposed scheme.   
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FIGURE 31. JAVA FILES FOR M-PEMKS 

6.9.1 For senders’ site  

Many senders (employees) wish to send the emails appending with keywords to 

the receiver (manager). The emails and keywords should be encrypted before sending to 

the third party. With out loss generality, let the sender’s number be three and the 

keyword’s number be three. So, the computer simulation can be found as follows: three 

senders encrypt the same keywords (“barclays”, “finance”, a number stands for the date) 
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to the online third party as shown in Figure 32, Figure 33 and Figure 34 respectively. 

Note that due to the property of Ciphertext Indistinguishability (CI), the encryption 

results are different even though the keywords are same. 

FIGURE 32. ENCRYPTION RESULT OF SENDER1 IN M-PEMKS 
 

FIGURE 33. ENCRYPTION RESULT OF SENDER2 IN M-PEMKS 
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FIGURE 34. ENCRYPTION RESULT OF SENDER3 IN M-PEMKS 

6.9.2 For receiver’s site 

Later on, if the receiver (manager) wishes to obtain the “latest” emails, he/she 

should send a Trapdoor request to the third party. The keywords in Trapdoor request 

should be encrypted by Trapdoor and RSA algorithms (See in Figure 35). For instance, 

if the manager wishes to obtain “Barclays Bank latest financial statements”, he/she will 

only send the Trapdoor request with three keywords (“barclays”, “finance”, “latest”). 

FIGURE 35. REQUEST RESULT OF RECEIVER IN M-PEMKS 

6.9.3 For server’s site 

After receiving Searchable ciphertext and Trapdoor request, the server will call 

Test algorithm to estimate whether they have the same keywords or not. However, due 

to the server storing millions of encrypted documents, if the receiver wishes to obtains a 

specific file, it will impossible for the server to decrypt all of the encrypted documents 

and then compare the keywords both in Searchable ciphertext and Trapdoor request 
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before making a response. In this scheme, the server does not execute decryption 

operation but only compares the hash values of the results (ciphertext) between PEKS 

ciphertext and Trapdoor (Figure 36). If matched, the server will run Fuzzy Match 

algorithm and then reply to the receiver. 

     
               FIGURE 36. PEKS CIPHERTEXT AND TRAPDOOR REQUEST COMPARISON IN M-PEMKS 
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In addition, the online third party keeps the encrypted messages in its file system 

and stores the file indexes in the Mysql database (See in Figure 37) 

FIGURE 37. THE FILE INDEXES STORING IN MYSQL DATABASE OF M-PEMKS SYSTEM 

Mamdani Fuzzy Inference System is the key tool in Fuzzy Match, which could be 

regarded as a router to filter irrelative documents. The example of Mamdani Fuzzy 

Inference System using Fuzzy Control Language (FCL) which calculates the assessed 

value by DATE is implemented by jFuzzyLogic. Figure 38 points out that the 

trapezoidal and triangular membership functions are applied for fuzzification in m-

PEMKS system while the defuzzification is defined by triangular membership function 

only and the Center of Gravity (COG) is selected as defuzzification method. 

Meanwhile, Figure 39 illustrates the corresponding JAVA code to execute FCL code. In 

addition, Figure 40 describes the membership functions of Inputs and Outputs for this 

example. 
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FIGURE 38. FCL CODE IN M-PEMKS 

 

FIGURE 39. JAVA API TO EXECUTE FCL CODE IN M-PEMKS 
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FIGURE 40. MEMBERSHIP FUNCTIONS OF INPUTS AND OUTPUTS FOR M-PEMKS SYSTEM 

It is apparent that the proposed scheme applies the Single Input Single Output 

(SISO) Mamdani Fuzzy Inference System. The reason is due to the properties of 

Artificial Intelligence and Cryptography. Artificial Intelligence explores and analyzes 

the data for discovering the relationships between the different data sets. On the 

contrary, the purpose of cryptography is hiding information as much as possible. In 

addition, the input value of Mamdani system is plaintext. Therefore, if m-PEMKS 

applies Two or More Input Single Out (T/MISO) Mamdani Fuzzy Inference System, 

sufficient information will be exposed to the general public network so that crackers 

may break the ciphertext to some extent. However, SISO Mamdani system has less 

accuracy than T/MISO Mamdani system. In order to reverse low accuracy problem, the 

proposed system will firstly execute Searchable Match and then execute Fuzzy Match. 

More specially, the server will select the encrypted emails containing “barclays” and 

“finance” keywords by Exact Match. Then, the server will decrypt the keyword of 

“DATE” (in PEKS ciphertext) and the keyword “latest” (in Trapdoor). Note that 

“DATE” and “latest” are the condition and the conclusion of the rules in Mamdani 

System respectively. Finally, the server will execute Fuzzy Match to distill the most 

related documents via the assessed values by SISO Mamdani Fuzzy Inference System 

and reply to the receiver in the end. 
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In Figure 41, it is obvious that Mamdani system will calculate an assessed value 

for each input. More specifically, the third keyword of sender1 is “2” and the assessed 

value is 9.26. According to Figure 38, the value “2” contains two portions, which partly 

belongs to “old” and “acceptable”. However, the value “2” takes more percentage in 

“old” part than “acceptable” part. Therefore, the trapezium of “old” in Figure 39 is 

bigger than the trapezium of “acceptable”. Similarly, the third keyword of sender2 is 

“5” and the assessed value is 15.00, which belongs to “acceptable” part. In terms of the 

sender3, the third keyword is “10” and the assessed value is 25.00, which fully belongs 

to “new” part. 

FIGURE 41. THE ASSESSED VALUES OF THREE DIFFERENT DATE INPUT IN M-PEMKS 
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6.10 The Comparison between Three Proposed Schemes 

Table 12 provides the comparison of security and functionality between three 

proposed MPEKS schemes. 

TABLE 12. A COMPARISON BETWEEN THREE PROPOSED SCHEMES 

It can be seen that all of these three proposed schemes do not rely on a secure 

channel to transmit the trapdoor queries. Apart from that, all of these three proposed 

schemes satisfy the properties of Ciphertext Indistinguishability and Trapdoor 

Indistinguishability so that they have an ability to resist Off-line Keyword Guessing 

Attack. However, rSCF-MPEKS scheme incorporates with User Authentication 

technique and therefore, it could prevent Inside Keyword Guessing Attack. Last but not 

least, m-PEMKS scheme applies Fuzzy Logic technique, which is able to solve the 

fuzzy and imprecise keyword search, such as “latest”, etc. 

To conclude, these three proposed schemes are much secure and strengthen and 

have powerful functionalities comparing with theirs counterparts. 
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7. Conclusion 

Public Key Encryption with Keyword Search (PEKS) is one of the most powerful 

crypto-systems to solve Single Keyword Search problem. Compared with the 

traditional Public Key Infrastructure (PKI), PEKS based on Identity Based Encryption 

(IBE) is independent of an online trusted third party (such as Certificate Authority) to 

authorize the public key. 

Although PEKS carries out a lot of merits, it should not be overlooked that PEKS 

has its weaknesses. Firstly, the original PEKS schemes require secure channels between 

the sever and the receiver to transmit Trapdoor queries. However, building secure 

channel consumes huge human and material resources and seems impossible in some 

cases. Secondly, many PEKS schemes are able to solve Single Keyword Search problem 

but do not support Multiple Keywords Search and therefore, these PEKS approaches 

may not be applied to the general public networks. Last but not least, due to the online 

third party and/or the receiver in PEKS system may honest but curious, he/she may 

release the private key to the public networks so that the PEKS schemes could suffer 

Off-line Keyword Guessing Attack (OKGA). Although the later PEKS systems 

incorporate with Trapdoor indistinguishability to resist OKGA, their security still need 

to improve. For instance, almost all current PEKS schemes are vulnerable to Inside 

Keyword Guessing Attack (IKGA), etc. 

This PhD thesis concentrates on proposing three secure and efficient PEKS 

schemes to solve both Single and Multiple Keyword(s) Search problems, and also resist 

OKGA and/or IKGA. 

Many current Public Key Encryption with Multiple Keywords Search (MPEKS) 

schemes suffers OKGA. Therefore, the thesis firstly defines a MPEKS scheme 
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incorporating with Trapdoor indistinguishability to resist OKGA, which is called 

“Trapdoor-indistinguishable Secure Channel Free Public Key Encryption with Multi-

keywords Search (tSCF-MPEKS)”. More specially, the proposed scheme is proved to be 

semantic secure under the Random Oracles Models with BDH and 1-BDHI assumptions 

so that it is able to resist OKGA. Besides, it has the ability to address both Single and 

Multiple Keyword(s) Search problems. Comparing with its counterparts, the efficiency 

and performance of tSCF-MPEKS scheme are affordable by the mathematical 

calculation and the computer simulation. 

Secondly, IKGA in MPEKS schemes is still an intractable problem up to now. The 

research then defines the strengthen and powerful MPEKS scheme called “Robust 

Secure Channel Free Public Key Encryption with Multi-keywords Search (rSCF-

MPEKS)” to prevent IKGA. More specially, the rSCF-MPEKS system has the 

characters of Ciphertext Indistinguishability and Trapdoor Indistinguishability and also 

incorporates with User Authentication technique so that it is not only able to resist 

OKGA but also prevents IKGA. In addition, rSCF-MPEKS scheme has the ability to 

solve both Single and Multiple Keyword(s) Search problems. Comparing with some 

typical MPEKS schemes (such as MPEKS and SCF-MPEKS, etc.), the rSCF-MPEKS 

approach is much more secure and also has high efficiency and better performance as 

well.  

Last but not least, almost all current PEKS and MPEKS schemes cannot deal with 

imprecise keywords, such as “latest”, “newest”, etc. For instance, if the keyword is 

fuzzy (i.e. “latest, biggest”), these current PEKS/MPEKS schemes will be terminated 

and report errors. Therefore, the research formalizes the third MPEKS statement, 

namely “Public Key Encryption with Multi-keywords Search using Mamdani System 

(m-PEMKS)”, to address Fuzzy Keyword Search problem. More specially, the proposed 
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MPEKS scheme applies Mamdani Fuzzy Inference System (Fuzzy Logic) in Artificial 

Intelligence to solve Fuzzy Keyword Search problem. The m-PEMKS scheme is 

verified to be semantic secure under the Random Oracles Models with BDH and 1-

BDHI assumptions and therefore, it is also able to resists OKGA.  

Furthermore, the performance and efficiency of the proposed schemes are 

analyzed by the theoretical analysis based on mathematical calculations and the 

practical analysis based on programming with JAVA, JPBC Library and jFuzzylogic 

Library. For practical analysis, the proposed approaches are called by 1000 times 

computer simulations and every 100 times computer simulations is considered to be 

one round. To conclude, these proposed schemes consume less computing time and 

resources and have better performance and functionalities comparing with theirs 

counterparts. 
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