
Secure Channel Free Public Key Encryption with

Multiple Keywords Search

A DISSERTATION

SUBMITTED TO THE SCHOOL OF COMPUTING AND DIGITAL

MEDIA

AND THE COMMITTEE ON RESEARCH DEGREES

OF LONDON METROPOLITAN UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

YANG MA

April 2020

Copyright

 Copyright by Yang Ma 2020

 All Rights Reserved

©

Abstract

With a further exploration of modern cryptography, people realize that Public Key

Infrastructure (PKI) is not perfect but has its limitations. One of the limitations is that

PKI completely depends on the Certification Authority (CA) to obtain a digital

certificate, but this online trusted third party might be compromised by the cyber

attacks. Therefore, Shamir proposed a definition of Identity Based Encryption (IBE)

which only relies on user’s identity to generate the public key instead of CA. Although

the blueprint of IBE was presented in 1984, the first secure and reliable IBE system has

been introduced until 2001. Meanwhile, some applications of IBE, such as Public Key

Encryption with Keyword Search (PEKS), have been came up with since then.

PEKS is one of the most technologically advanced crypto-systems to address

searchable encryption. It enables individuals to search encrypted documents appending

with a keyword without deriving any information. The first PEKS scheme was

formalized by BDOP in 2004, but a secure channel must be established in order to

transfer the Trapdoor query to the third party. Comparing with the original PEKS

scheme, the later PEKS approaches remove secure channels and become much secure

and efficient as time goes by. However, no matter what happened, Multiple Keywords

Search and Keyword Guessing Attack are still two main research interests for the

consideration. This PhD research aims to propose a few PEKS schemes in order to solve

both Single and Multiple Keyword(s) Search issues and resist Off-line Keyword

Guessing Attack (OKGA) and/or Inside Keyword Guessing Attack (IKGA). The focus

of this research is listed on the three following parts:

Many current Public Key Encryption with Multiple Keywords Search (MPEKS)

schemes suffers OKGA. Therefore, this research firstly defines a formal MPEKS

scheme to solve OKGA, which is called “Trapdoor-indistinguishable Secure Channel

Free Public Key Encryption with Multi-keywords Search (tSCF-MPEKS)”. More

specially, the new scheme allows users to search both Single and Multiple Keyword(s)

and also has the characters of Ciphertext Indistinguishability and Trapdoor

Indistinguishability so that it proves to be semantic secure under Random Oracle

Models by Bilinear Diffie-Hellman (BDH) and 1-Bilinear Diffie-Hellman Inversion(1-

BDHI) assumptions for preventing OKGA. Besides, the efficiency and performance of

tSCF-MPEKS is presented from both the theoretical analysis and the practical analysis.

IKGA in MPEKS schemes is still an intractable problem up to now. But, this phd

research solves IKGA by applying User Authentication technique. More specially, the

second proposed PEKS scheme, namely “Robust Secure Channel Free Public Key

Encryption with Multi-keywords Search (rSCF-MPEKS)”, not only addresses both the

Single and Multiple Keyword(s) Search problems but also satisfies Ciphertext

Indistinguishability and Trapdoor Indistinguishability properties and incorporates with

User Authentication, therefore, it proves to be semantic secure under Random Oracle

Models by BDH assumption for resisting IKGA. Besides, OKGA is also resisted in the

proposed scheme. In addition, the performance of rSCF-MPEKS is also analyzed by the

theoretical analysis and the computer simulation.

Thirdly, almost all current PEKS and MPEKS schemes cannot deal with imprecise

keywords, such as “latest”, “newest”, etc. The research incorporates with Fuzzy Logic

(Artificial Intelligence) technique to PEKS and then proposes a formal statement of

“Public Key Encryption with Multi-keywords Search using Mamdani System (m-

PEMKS)”. Its concrete construction, correctness and security verification are then

proposed in the following section of the thesis. The new approach solves Fuzzy

Keyword Search problem and proves to be semantic secure under Random Oracle

Models by BDH and 1-BDHI assumptions so that it could resist OKGA. Besides, the

performance of m-PEMKS is presented by the theoretical analysis and the computer

simulation.

Acknowledgments

Firstly, I would like to thank you my supervisors (Prof Hassan Kazemian, Dr

Jianming Cai) to support my PhD study during the last four years.

PhD is a tough job. You may suffer substantial difficulties when you pursue the

PhD. So do I. Prof Hassan Kazemian is a great supervisor, who not only teaches me

how to conduct research but also cheers me up when I witness some obstacles. During

the study, Prof Hassan invited me to take part in some seminars and conferences to

broaden my horizon and enrich my knowledge, etc.

In the first year of PhD, I have done a lot of literature reviews and think out some

ideals of my PEKS systems. Based on the first year study and research, I define few

PEKS systems and also propose the concrete constructions of these systems, verify the

correctness and security of these PEKS approaches, and finally analyze the efficiency

and the performance of the proposed schemes by the theoretical analysis and the

computer simulation. In the final year of PhD, I published two papers on 11th

International Conference On Security Of Information and Networks (SIN’2018) and

21st International Conference on Engineering Applications of Neural Networks (EANN

2020) and also prepare the PhD thesis.

As a full time student, I could not afford the tuition fee and the living fee during

my PhD study. Therefore, I would like to thank you my parents to support my study in

the end.

Tables of Contents

1. Introduction 1 ..

1.1 Motivation 1 ..

1.2 Aims and Objectives 2 ..

1.3 Evaluation 3 ..

1.4 Contribution of the Research to the Knowledge 3 ..

1.5 The Outline of the Thesis 5 ...

2. Background and Literature Review 7 ..

2.1 Introduction 7 ..

2.2 The History and Development of Cryptography 7

2.3 Literature Review on PEKS 17 ..

2.4 Literature Review on Fuzzy Logic 22 ...

3. Preliminary for the PEKS Research 24 ..

3.1 Introduction 24 ...

3.2 Number Theory 24 ...

3.3 Public Key Encryption with Keyword Search (PEKS) 25

3.4 Secure Channel Free Public Key Encryption with Multiple Keywords

Search (SCF-MPEKS) 26 ...

3.5 Security Verification Models 27 ..

3.6 The Procedure of PEKS Verification 29 ..

3.7 Fuzzy Logic 30 ..

4. Trapdoor-indistinguishable Secure Channel Free Public Key

Encryption with Multi-keywords Search 32 ..

4.1 Introduction 32 ...

4.2 The Outline of tSCF-MPEKS 32 ...

4.3 The Security Models of tSCF-MPEKS 34 ...

4.4 The Concrete Construction of tSCF-MPEKS 37 ...

4.5 The Correctness of tSCF-MPEKS 38 ..

4.6 The Security Analysis of tSCF-MPEKS 39 ...

4.7 The Efficiency and Performance of tSCF-MPEKS 49

4.8 The Key Code of tSCF-MPEKS 51 ...

5. Robust Secure Channel Free Public Key Encryption with Multi-

keywords Search 56 ...

5.1 Introduction 56 ...

5.2 The Outline of rSCF-MPEKS 56 ...

5.3 The Security Models of rSCF-MPEKS 58 ..

5.4 The Concrete Construction of rSCF-MPEKS 60 ...

5.5 The Correctness of rSCF-MPEKS 61 ..

5.6 The Security Analysis of rSCF-MPEKS 61 ...

5.7 The Efficiency and Performance of rSCF-MPEKS 70

5.8 The Key Code of rSCF-MPEKS 73 ...

6. Public Key Encryption with Multi-keywords Search using Mamdani

System 77 ...

6.1 Introduction 77 ...

6.2 The Outline of m-PEMKS 77 ..

6.3 The Security Models of m-PEMKS 79 ..

6.4 The Fuzzy Inference System of m-PEMKS 83 ...

6.5 The Concrete Construction of m-PEMKS 84 ..

6.6 The Correctness of m-PEMKS 87 ...

6.7 The Security Analysis of m-PEMKS 88 ..

6.8 The Efficiency and Performance of m-PEMKS 98

6.9 The Key Code of m-PEMKS 100 ...

6.10 The Comparison between Three Proposed Schemes 109

7. Conclusion 110 ..

References 113 ..

Appendix 122..

List of Figures

Figure 1. SCYTALE TRANSPOSITION CIPHER (WIKIPEDIA, 2019) 8

Figure 2. CAESAR SHIFT CIPHER 9 ...

Figure 3. ENIGMA MACHINE (WIKIPEDIA, 2019) 9 ..

Figure 4. BLETCHLEY PARK BOMBE (WIKIPEDIA, 2019) 10

Figure 5. SYMMETRIC CIPHER MODEL 11 ...

Figure 6. ONE INTERNAL ROUND OF AES 12 ...

Figure 7. ASYMMETRIC CIPHER MODEL 13 ..

Figure 8. CIPHER BLOCK CHAINING CIPHER (CRYPTOWIKI, 2019) 15

Figure 9. CIPHER FEEDBACK CIPHER (STALLINGS, 2017) 16

Figure 10. OUTPUT FEEDBACK CIPHER (STALLINGS, 2017) 16

Figure 11. THE PROCEDURE OF PEKS VERIFICATION 30

Figure 12. FUZZY RULE BASED MODEL 31 ...

Figure 13. THE OUTLINE OF tSCF-MPEKS 34 ..

Figure 14. THE PARAMETERS INITIALIZATION IN tSCF-MPEKS 51

Figure 15. SERVER’S KEY PAIR GENERATION IN tSCF-MPEKS 52

Figure 16. RECEIVER’S KEY PAIR GENERATION IN tSCF-MPEKS 52

Figure 17. SEARCHABLE CIPHERTEST GENERATION IN tSCF-MPEKS 53

Figure 18. TRAPDOOR REQUEST GENERATION IN tSCF-MPEKS 54

Figure 19. TEST ALGORITHM IN tSCF-MPEKS 55 ...

Figure 20. THE OUTLINE OF rSCF-MPEKS 57 ..

Figure 21. A COMPARISON BETWEEN tSCF-MPEKS AND rSCF-MPEKS 73

Figure 22. THE PARAMETERS INITIALIZATION IN rSCF-MPEKS 74

Figure 23. SENDER’S KEY PAIR GENERATION IN rSCF-MPEKS 74

Figure 24. RECEIVER’S KEY PAIR GENERATION IN rSCF-MPEKS 74

Figure 25. SEARCHABLE CIPHERTEXT (SCF-MPEKS) GENERATION IN rSCF-

MPEKS 75 ..

Figure 26. TRAPDOOR REQUEST GENERATION IN rSCF-MPEKS 76

Figure 27. TEST ALGORITHM in rSCF-MPEKS 76 ..

Figure 28. THE STRUCTURE OF FUZZY INFERENCE SYSTEM 83

Figure 29. THE STRUCTURE OF m-PEMKS 87 ...

Figure 30. FLOW CHART OF m-PEMKS 99 ..

Figure 31. JAVA FILES FOR m-PEMKS 101 ...

Figure 32. ENCRYPTION RESULT OF SENDER1 IN m-PEMKS 102

Figure 33. ENCRYPTION RESULT OF SENDER2 IN m-PEMKS 102

Figure 34. ENCRYPTION RESULT OF SENDER3 IN m-PEMKS 103

Figure 35. REQUEST RESULT OF RECEIVER IN m-PEMKS 103

Figure 36. PEKS CIPHERTEXT AND TRAPDOOR REQUEST COMPARISON IN

m-PEMKS 104 ...

Figure 37. THE FILE INDEXES STORING IN MYSQL DATABASE OF m-

PEMKS SYSTEM 105 ...

Figure 38. FCL CODE IN m-PEMKS 106 ..

Figure 39. JAVA API TO EXECUTE FCL CODE IN m-PEMKS 106

Figure 40. MEMBERSHIP FUNCTIONS OF INPUTS AND OUTPUTS FOR m-

PEMKS SYSTEM 107 ...

Figure 41. THE ASSESSED VALUES OF THREE DIFFERENT DATE INPUT IN

m-PEMKS 108...

List of Tables

TABLE 1. SAME SECURITY WITH DIFFERENT KEY SIZES 14

TABLE 2. A COMPARISON BETWEEN TYPICAL MPEKS SCHEMES AND

THREE PROPOSED SCHEMES 22 ..

TABLE 3. A COMPARISON OF THE SECURITY ASSUMPTION AND

PROPERTIES 49 ...

TABLE 4. THE SIMULATION PLATFORM FOR tSCF-MPEKS 50

TABLE 5. A COMPARISON OF THE COMPUTATION EFFICIENCY 50

TABLE 6. PERFORMANCE BASED ON 1000 TIMES COMPUTER

SIMULATION (n=3) 51 ...

TABLE 7. A COMPARISON OF THE FUNCTIONALITIES 70

TABLE 8. A COMPARISON OF THE COMPUTATION EFFICIENCY 71

TABLE 9. A COMPARISON OF THE COMMUNICATION EFFICIENCY 71

TABLE 10. THE SIMULATION PLATFORM FOR rSCF-MPEKS 72

TABLE 11. THE SIMULATION PLATFORM FOR m-PEMKS 100

TABLE 12. A COMPARISON BETWEEN THREE PROPOSED SCHEMES 109.....

Glossary

1. Cryptography: The study of encryption principles and procedures.

2. Cryptanalysis: The study of cipher-breaking without knowing key.

3. Cryptology: A field which contains both cryptanalysis and cryptography.

4. Cryptographic algorithm: An algorithm that makes data unreadable or vice versa.

5. Plaintext: The original information or data.

6. Ciphertext: The enciphered information or data.

7. Encryption: Transfer the plaintext into the ciphertext.

8. Decryption: Transfer the ciphertext into the plaintext.

9. Secret key: The input of cryptographic algorithm, which is only known between the

sender and the receiver.

10. Public key and Private key: A pair key used in asymmetric key cipher. The sender

applies the public key for encryption while the receiver applies the private key for

decryption.

11. Symmetric key cipher: The cryptographic algorithm applies the same secret key

for encryption and decryption.

12. Asymmetric key cipher: The cryptographic algorithm applies the different keys for

encryption and decryption.

13. Challenger: The challenger is able to establish the crypto-system and also encrypts

the message.

14. Adversary: The attacker who tries to break the crypto-system.

15. Hash function: The mathematical algorithm maps information into a fixed size.

16. Oracle: It’s an abstract machine which is able to reply after each query.

17. Semantic Secure: The adversary cannot drive one bit plaintext even though he/she

intercepts the whole ciphertext.

Abbreviations

1. CBC: Cipher Block Chaining

2. CFB: Cipher Feedback

3. OFB: Output Feedback

4. PEKS: Public Key Encryption with Keyword Search

5. SC: Secure Channel

6. SCF-PEKS: Secure Channel Free Public Key Encryption with Keyword Search

7. SPA: Simple Power Analysis

8. CPA: Correlation Power Analysis

9. DPA: Differential Power Analysis

10. DL: Deep Learning

11. IND: Indistinguishability

12. CPA: Chosen Plaintext Attack

13. CCA: Chosen Ciphertext Attack

14. CPA2: Adaptive Chosen Ciphertext Attack

15. CI: Ciphertext Indistinguishability

16. TI: Trapdoor Indistinguishability

17. BDH assumption: The Bilinear Diffie-Hellman (BDH) assumption

18. 1-BDHI assumption: The 1-Bilinear Diffie-Hellman Inversion (1-BDHI)

assumption

19. KGA: Keyword Guessing Attack

20. OKGA: Off-line Keyword Guessing Attack

21. IKGA: Inside Keyword Guessing Attack

22. PPT: Probabilistic Polynomial Time

23. FCL: Fuzzy Control Language

1. Introduction

Chapter one starts with the motivation of the PhD research and then introduces the

aims and the objectives of this research. After that, the evaluations of the proposed

schemes are described and the contributions of this research are also presented in the

following part. Finally, the overview of the thesis is introduced in the end of this chapter.

1.1 Motivation

With the rapid development of the Internet, more and more individuals or

companies store and manage the amount of sensitive information into the online trusted

third parties (i.e. cloud storage) for reducing local storages, decreasing overheads and

supplying backups, etc. Although it carries out plenty of benefits, it should not be

overlooked that uploading information into the networked servers may lead in some

adverse effects. More specifically, unfriendly hackers are able to launch port scanning in

order to search the backdoors of the system. Then, they bypass the firewall and invade

the victim’s host without user authentication for stealing sensitive information (i.e.

personal information, bank card details, etc.) and finally break the victim’s operating

system. Besides, many crackers may intercept the data packets transmitting on the

public network and then recover these packets in order to achieve the information. In

addition, attackers may exploit the physical leakage to disclose secrets during the

processing of a cryptographic operation by the side channel analysis. For instance,

attackers intercept the electromagnetic emission traces and power consumption traces

so that they could apply Simple Power Analysis (SPA), Differential Power Analysis

(DPA), Correlation Power Analysis (CPA) or even Deep Learning (DL) to derive the

secret key. Hacktivism is immoral and carries out great loss in many aspects, such as

1

time and money, etc. To keep the confidentiality, integrity and availability (CIA) of

sensitive information from both inside and outside attackers, cryptographic techniques

must be applied during the whole data transmission. There is no doubt that Public Key

Encryption with Keyword Search (PEKS) is a significant approach in cryptographic

techniques to provide a secure data transmission. Although PEKS schemes takes

substantial advantages, it should not be overlooked that they carry about some negative

effects. For instance, PEKS schemes may vulnerable to Off-line Keyword Guessing

Attack (OKGA) and/or Inside Keyword Guessing Attack (IKGA) and some of them are

only able to support Single Keyword Search instead of Multiple Keywords Search so

that these schemes may not be applied to the general public networks. Therefore, the

PhD thesis pays more attention to PEKS research and then proposes few strengthen

PEKS schemes to reverse these problems.

1.2 Aims and Objectives

This research has three aims. These include (1) come up with three PEKS

schemes to solve both Single and Multiple Keyword(s) Search problem, (2) verify the

security of the proposed schemes in order to resist OKGA and/or IKGA, and (3)

propose a powerful PEKS system incorporating with Artificial Intelligence (Fuzzy

Logic) to address Fuzzy Keyword Search problem.

The objectives are listed in the following.

i. Propose the first PEKS scheme to support both Single and Multiple

Keyword(s) Search and also resist OKGA.

ii. Propose the second PEKS statement, which incorporates with User

Authentication technique to resist IKGA. Apart from that, the proposed has the

2

ability to resist OKGA. In addition, this scheme also allows users to search

encrypted documents by Single or Multiple Keyword(s).

iii. Propose the third PEKS scheme by applying Mamdani Fuzzy Inference

System so that it solves Fuzzy Keyword Search problem. Besides, the proposed

scheme also resists OKGA.

1.3 Evaluation

Based on the previous part, the evaluation of the proposed PEKS schemes

contains three main steps. The first step is to ensure the correctness of the proposed

schemes. Even one bit error is not accepted in the proposed PEKS systems. The second

step is about security verification. The proposed schemes are proved to be semantic

secure under Random Oracle Models which means the adversary cannot break any one

bit of ciphertext. The third step of evaluation is to analyze the performance and the

efficiency of the proposed schemes by the theoretical analysis (Mathematical

computation) and the computer simulation (JAVA).

1.4 Contribution of the Research to the Knowledge

Many current Public Key Encryption with Multiple Keywords Search (MPEKS)

schemes suffers OKGA. Therefore, the research firstly defines a MPEKS scheme,

namely “Trapdoor-indistinguishable Secure Channel Free Public Key Encryption with

Multi-keywords Search (tSCF-MPEKS)”, to resist OKGA. More specially, the proposed

MPEKS scheme contains the properties of Ciphertext Indistinguishability and Trapdoor

Indistinguishability and is proved to be semantic secure under Random Oracle Models

so that it is able to resist OKGA. Besides, the proposed scheme allows users to exploit

3

encrypted messages by multiple keywords instead of single keyword only, therefore,

tSCF-MPEKS is much more practical and could be applied in the general public

networks.

Secondly, IKGA in MPEKS schemes is still an intractable problem up to now. The

research then defines the strengthen MPEKS scheme called “Robust Secure Channel

Free Public Key Encryption with Multi-keywords Search (rSCF-MPEKS)” to reverse

IKGA. Some times, the third party is honest-but-curious and therefore, it may exploit

the secret key during data transmission. Therefore, the proposed scheme incorporates

with User Authentication techniques and also satisfies Ciphertext Indistinguishability

and Trapdoor Indistinguishability properties so that it is able to prevent IKGA. Besides,

the proposed scheme could also prevent OKGA. In addition, similar to the tSCF-

MPEKS scheme, the rSCF-MPEKS also has the ability to address both Single and

Multiple Keyword(s) Search issues.

Last but not least, almost all current PEKS and MPEKS schemes cannot deal with

imprecise keywords, such as “latest”, “newest”, etc. Therefore, the research also

formalizes the third MPEKS statement, namely “Public Key Encryption with Multi-

keywords Search using Mamdani System (m-PEMKS)”, which is able to solve Fuzzy

Keyword Search issue. In shot, the proposed scheme applies artificial intelligence

(Mamdani Fuzzy Inference System in Fuzzy Logic) technique to solve Fuzzy Keyword

Search problem. Besides, Ciphertext Indistinguishability and Trapdoor

Indistinguishability properties are also providing in m-PEMKS scheme so that it

perfectly stands up to OKGA.

4

1.5 The Outline of the Thesis

This PhD thesis includes seven chapters starting with the Introduction part. This

chapter introduces the motivation, aims and objectives, and the contributions of the PhD

research.

Chapter two briefly introduces the background and the development of crypto-

systems from the ancient time to the modern time. Then, it revisits the current

researches on Public Key Encryption with Keyword Search (PEKS) and also analyzes

the advantages and disadvantages of these schemes.

Chapter three provides the preliminaries and the methodology of PEKS. These

include bilinear pairing, BDH and 1-BDHI assumptions and so on, which will be used

to establish the construction of the proposed PEKS schemes and also provide the

security of the proposed schemes.

Chapter four comes up with the tSCF-MPEKS scheme. The proposed system

addresses both Single and Multiple Keyword(s) Search issues and resists OKGA. The

correctness, security verification and performance and efficiency of the proposed

approach are also provided in this chapter.

Chapter five indicates that nearly all of previous PEKS approaches are vulnerable

to IKGA and then proposes rSCF-MPEKS scheme, which incorporates with User

Authentication technique to resist IKGA. Besides, the proposed system also solves

Single and Multiple Keyword(s) Search issues and resists OKGA. In addition, the

correctness, security verification and performance and efficiency of the proposed

approach are also provided in this chapter.

Chapter six introduces the third proposed PEKS scheme. The new system called

m-PEMKS incorporates with the advantages of Mamdani Fuzzy Inference System

(Fuzzy logic) so that it is able to address Fuzzy Keyword Search issue (i.e. “latest”,
5

“biggest”, etc.). Apart from that, the proposed scheme has the properties of Ciphertext

Indistinguishability and Trapdoor Indistinguishability and therefore, it is able to prevent

OKGA as well. The correctness, security verification and performance and efficiency of

the proposed approach are also provided in this chapter.

Chapter seven is the final chapter which will conclude the whole PhD thesis.

6

2. Background and Literature Review

2.1 Introduction

The chapter briefly introduces the history and development of cryptography from

the ancient time, the medieval time until the modern time. In the modern time,

cryptography witnesses a huge development. More specially, the cryptographic

algorithms become much more secure and advanced than before. There is no doubt that

Public Key Encryption with Keyword Search (PEKS) is one of the typical

cryptographic techniques that is able to secure data transmission. Thus, the rest of the

chapter will review the current PEKS researches.

2.2 The History and Development of Cryptography

What is cryptography? It is a method used to protect electronic message security

by changing the message into unreadable characters. Cryptography plays a pivotal role

in information security and starts at a couple of thousand years ago.

The first known use of cryptography was found in the chamber from Khnumhotep

II’s tomb in Egypt around 1900 BC. It is the hieroglyphic symbols engraved into the

wall of the tomb. Around 500 to 600 BC, Hebrew encrypted the message by using few

simple mono-alphabetic substitution ciphers such as Atbash cipher. Later, “Scytale

Transposition Cipher (Figure 1)” was applied by ancient Greeks for hiding the

information. For instance, the soldier in Spartan military firstly prepared a tape

wrapping on a stick so that he/she could depict the information on this wood tape. After

that, a courier sent out the tape into the allied forces. Once received the tape, the allies

found a stick which had the same diameter as the original one and wrapped the tape

around the stick again for recovering the original message. Interestingly, this

7

transposition cipher is an efficient and advanced way to protect information security in

the remote antiquity mainly because the secret will be unreadable, if the tape is

unwound.

FIGURE 1. SCYTALE TRANSPOSITION CIPHER (WIKIPEDIA, 2019)

In the medieval time, the classical encryption techniques rose blowout. These

ciphers follow two rules: one is called substitution which means the characters in the

plaintext are replaced by alternative letters, numbers or even symbols. Another rule is

called transposition which is shifting the positions of the plaintext by a regular

procedure so that the message will be hided. Caesar Shift cipher is a typical substitution

cipher whose characters in plaintext are changed by 3rd letters on (Figure 2). However,

this cipher is vulnerable to exhaustive search that is a trial and error method to

enumerate every possible combination until breaking the cipher. Mono-alphabetic

cipher is then provided to solve the disadvantages of the Caesar Shift cipher. More

specially, it maps the plaintext into one of the several possible cipher-texts by the fixed

substitutions and vice versa. Although the Mono-alphabetic cipher possesses many

keys, it should not be overlooked that frequency analysis may compromise it. Besides,

Rail Fence cipher and Row Transposition cipher are two representative transposition

ciphers.

8

FIGURE 2. CAESAR SHIFT CIPHER

In the end of the Second World War, Arthur Scherbius designed the Enigma

Machine and therefore, cryptography witnesses a huge quantum jump. The Enigma

Machine (Figure 3) is an electro-mechanical rotor cipher machine with mechanical and

electrical subsystems. The Enigma Machine is comprised of several parts such as a

keyboard, etc. For encryption or decryption, the user only needs to press keys on the

keyboard and records the lighting letters as the plaintext or the ciphertext. The

substitution keys will be automatically changed after each letter pressing.

FIGURE 3. ENIGMA MACHINE (WIKIPEDIA, 2019)

Let Enigma Machine be having three rotors. It is able to generate 17576

substitution keys so that brute-force search seems unrealistic. Nothing is impossible.

Marian Rejewski found that the cycles will be appeared twice in the beginning of the

ciphertext and then broke the Enigma Machine via the cycles. Later on, Alan Turing

DB FECA

DB FECA

ę ę ę

ę ę ę

9

designed a Bletchley Park Bombe (Figure 4) to speed up the calculations required in

order to break the codes.

FIGURE 4. BLETCHLEY PARK BOMBE (WIKIPEDIA, 2019)

With the development of cryptanalysis, individuals are not discontented with

encrypting the data by simple methods such as Enigma Machine. Plenty of experts

embark on designing the safe, simple and efficient cryptographic algorithms to ensure

the confidentiality of data.

Symmetric and asymmetric ciphers have been proposed during the modern time in

order to strengthen the information security. Symmetric cipher (Figure 5) allows the

sender and the receiver using the same single key to encrypt the message. A perfect

symmetric cipher satisfies two rules: the first rule is that the security of symmetric

cipher relies on a strong and complex encryption algorithm. The second one is that the

secret key is not able to be captured by anyone except the sender and the receiver. In

1949, Claude Shannon proposed the blueprint of SP network to make the symmetric

ciphers as complicated as possible.

10

FIGURE 5. SYMMETRIC CIPHER MODEL

IBM designed Data Encryption Standard (DES) in the year of 1977, which is the

most typical block cipher in the world. DES relies on a Feistel network with 16 rounds

encryption to encrypt 8 bytes data by 7 bytes key. Therefore, the ciphertext becomes

much sophisticated because DES shows the strong avalanche so that one bit error may

affect half output result. Nowadays, it is possible to break DES by brute force attack and

therefore, Triple DES and CBC DES are designed to solve the weaknesses appearing in

single DES.

Comparing with the Feistel structure, Advanced Encryption Standard (AES) uses

iterative for operations. The outline of AES is comprised of four steps, which is

described in Figure 6. It should be clear that the last round of AES contains three steps

without mix columns.

11

FIGURE 6. ONE INTERNAL ROUND OF AES

However, people is not satisfied the symmetric key ciphers mainly because the

shared key will be compromised for a long time use. Social engineering is an easy and

efficient way to compromise the shared key. In addition, shared key management is also

a thorny problem. Therefore, a new cipher called asymmetric key cryptography is

proposed to reverse the intractable problems that the single key cryptography witnesses.

Asymmetric key cryptography is the complements rather than replacing the single key

cryptography. Compared with the single key cipher, the enormous difference in

asymmetric cipher (Figure 7) is that it has two keys. Public key is applied for encryption

and private key is applied for decryption.

12

FIGURE 7. ASYMMETRIC CIPHER MODEL

For public key ciphers, theirs contributions are used in three different applications.

The first application is for encryption and decryption to protect data confidentiality. The

second one is digital signatures to provide individual, entity and message

authentications. The last application is key exchange, which is fairly used in session

keys. Almost all public key ciphers rely on a Trapdoor one-way function and theirs

security depend on the difficulty of factoring large numbers or computing discrete

logarithms. More specially, Rivest, Shamir and Adleman from MIT were proposed RSA

in 1977, which is an advanced cipher to resist many attacks, such as brute-force key

search and mathematical attacks, etc. But, RSA suffers Chosen Ciphertext Attack (CCA)

as adversaries are able to select any ciphertext to derive the characters of RSA and then

recover parts of plaintext via cryptanalysis, side channel analysis and a lot more besides.

Diffie and Hellman came up with the first public key approach in 1976, namely

Diffie-Hellman Key Exchange Primitive. The proposed scheme provides a practical way

for key exchange to the general public. Its security is based on the difficulty of

computing discrete logarithms, but it is compromising to Man-in-the-Middle Attack.

Thus, key authentication should be considered between both ends. ElGamal cipher is

another typical public key cryptographic algorithm which has the similar technique as

Diffie-Hellman Key Exchange Primitive. The security of ElGamal cipher also relies on

13

the difficulty of computing discrete logarithms. Recently, Elliptic Curve Cryptography

(ECC) takes more consideration than other public key ciphers mainly because it

provides same security but requires short key sizes (Table 1).

TABLE 1. SAME SECURITY WITH DIFFERENT KEY SIZES

With time goes by, individuals are dissatisfied with the security of cryptographic

algorithms only relying on the hard mathematic problems. They focus on analyzing the

characters of quantum. Therefore, quantum cryptography is then invented by the

experts. More specially, quantum cryptography is a technique to exploit the properties

of quantum for designing unbreakable ciphers. There is no doubt that quantum

cryptography is completely different with the classical cryptography and the modern

cryptography, whose security is based on physics instead of mathematics. Interestingly,

quantum cryptography cannot be broken mainly because it seems impossible to assess

the quantum states in any existing system. Hence, quantum cryptography is regarded as

a secure system because of the quantum properties. So far, there are some quantum key

distribution protocols (i.e. BB84, E91, etc.) could be used in the general public and the

adversaries are not able to capture the quantum states during data transmission.

According to the length of input, the cipher is separated into two parties. The first

one is stream cipher (such as RC4) which encrypts only one bit of input at a time with a

bit pseudorandom key stream in order to obtain one bit ciphertext stream. On the

contrary, another party is called block cipher, which applies the deterministic algorithm

14

and a secret key to encrypt the blocks of input. For instance, DES is a typical block

cipher that could encrypt 8 bytes blocks of message as an input. Apart from that, the

block chain ciphers and stream chain ciphers are designed with time goes on.

Cipher Block Chaining (CBC) (Figure 8) cipher is one of the typical block chain

ciphers which mainly applies in bulk data encryption and authentication. However, it

has its limitations. For instance, a block relies on all ciphertext blocks before it,

therefore, one bit error in the block may bring about negative influences to all following

ciphertext blocks.

FIGURE 8. CIPHER BLOCK CHAINING CIPHER (CRYPTOWIKI, 2019)

Compared with CBC, Cipher Feedback (CFB) cipher and Output Feedback (OFB)

cipher are two typical stream ciphers whose input of the message is regarded as a stream

of bits. For CFB (Figure 9), it is able to apply in stream data encryption and

authentication. However, it also has its limitations, such as errors. Once the error is

generated, it may propagate for several blocks. In terms of OFB (Figure 10), it could

apply in stream encryption on the noisy channels so that the error does not propagate

during the whole encryption. But, it requires the sender and the receiver remaining in

synchronism.

15

 FIGURE 9. CIPHER FEEDBACK CIPHER (STALLINGS, 2017)

 FIGURE 10. OUTPUT FEEDBACK CIPHER (STALLINGS, 2017)

16

The above section briefly introduces some typical cryptographic algorithms in the

world over a few thousand years. However, there are other algorithms which are also

important and useful, but they are omitted here. For instance, MACAlgo3 and CRT-RSA

are the most powerful ciphers embedding in smart card for transaction.

2.3 Literature Review on PEKS

Alongside with the development of modern cryptography, a new cryptography

called Identity-based Encryption (IBE) (Shamir, 1984) has been initially proposed by

Shamir in 1984. However, the first secure IBE scheme has been introduced until 2001.

Comparing with Public Key Infrastructure (PKI), IBE is independent of the online

trusted third parties and is able to work independently. Provable security and efficiency

(Boneh and Boyen, 2004; Waters, 2005; Gentry, 2006), key escrow (Boneh and

Franklin, 2001; Paterson et al., 2003; Goyal, 2007) and anonymous problem (Boyen and

Waters, 2006; Brandt and Sandholm, 2005; Clarkson et al., 2008) are the current main

research topics of IBE and some applications based on IBE has also been introduced

recently, such as Public Key Encryption with Keyword Search (PEKS).

PEKS plays a pivotal role in cryptography to secure data transmission between

two different networks. It offers a secure and efficient method for users to search

encrypted messages from the online third parties by a specific keyword. In the year of

2004, Boneh et al. formalized the first PEKS scheme (Boneh et al., 2004), which

satisfies Indistinguishability under Chosen Plaintext Attack (IND-CPA) secure.

Although the first PEKS scheme has IND-CPA secure, it should not be overlooked that

it carries out some functional issues. For instance, it is only utilised to encrypt the

keyword described in the file. If the user wishes to encrypt the whole message, he/she

has to apply the traditional Public Key Encryption (PKE) algorithms to encrypt it. Later,

17

Abdalla et al. camp up with a new encryption (E) (Abdalla et al., 2005) which is based

on the original PEKS scheme. The new approach defines the consistency. For instance,

the hash functions in PEKS schemes should be assumed as collision resistance.

Otherwise, the PEKS scheme is not perfect consistency and then may suffer Off-line

Keyword Guessing Attack (OKGA).

Both PEKS and PKE schemes require the secure channels between the receiver

and the online third party to transmit the Trapdoor. However, it consumes huge human

and material resources to build a secure channel and therefore, these PEKS schemes

cannot be applied in the general public. In the year of 2008, Baek et al. presented a new

method, namely “Secure Channel Free Public Key Encryption with Keyword Search

(SCF-PEKS)” (Baek et al., 2008). It deletes the secure channel and becomes a cost-

saving system comparing with BDOP’s PEKS. Sometimes, the server is honest-but-

curious so that it may exploit some details related to the keyword. Besides, the Trapdoor

is transferred to the online third party via the general public network so that it can be

intercepted by anyone and therefore, the outside attackers are able to explore the private

interests and keyword from the Trapdoor. Hence, SCF-PEKS scheme seems to be

subjected to OKGA. More specially, Byun et al. discovered, for the first time, that

PEKS is vulnerable to OKGA in 2006 (Byun et al., 2006). They pointed out that the

user always picked up the proverbial keyword (low entropy) so that the keyword for

searching is in a narrow space. Consequently, the adversary has the abilities to guess the

keyword. Later, Jeong et al. presented an open problem that is establishing provably

secure and coherent PEKS approach against KGA is impossible (Jeong et al., 2009).

Meanwhile, Yau et al. proposed that some PEKS schemes (i.e. SCF-PEKS) are also

vulnerable to OKGA and those approaches are compromised by inside attackers (Yau et

al., 2008). This is because that outside adversaries could capture the Trapdoor from the

18

public network and then derive the keyword by OKGA. Afterwards, Tang et al.

presented a new method to prevent Off-line KGA (Tang and Chen, 2010). However, the

encryption algorithm of the proposed scheme is much complex. Soon later, Rhee et al.

formalized a new SCF-PEKS scheme which firstly incorporates with the advantage of

Trapdoor Indistinguishability (Rhee et al., 2010) to solve OKGA. In 2013, Zhao et al.

introduced a new SCF-PEKS scheme satisfying Trapdoor Indistinguishability (Zhao et

al., 2013). Comparing with Rhee et al’s model, it is much more efficient. From then on,

people concentrate on constructing much secure PEKS and SCF-PEKS schemes to

resist OKGA (Yau et al., 2008; Hu and Liu, 2011; Chen, 2014; Sun et al., 2017; Mao et

al., 2018; Noroozi and Eslami, 2019; Huang and Li, 2018).

The security of substantial PEKS and SCF-PEKS schemes relies on the

difficulties of bilinear mapping with CDH, DDH, BDH and 1-BDHI assumptions. In

1994, Shor effectively solved the discrete logarithm problem by quantum computing

and pointed out that quantum computers (Shor, 1994) could compromise the security of

these PKI systems. After that, lattice-based cryptographic systems have undertaken a

rapid development. Ajtai firstly provided a way to proof the difficulty of lattice

problems (Ajtai, 1996). Later on, many schemes and applications with lattices have

been proposed since then. These include ID-based Encryption systems (Gentry et al’,

2008; Agrawal et al., 2010), hash functions (Ajtai, 1996; Micciancio, 2002), fully

homomorphic encryption systems (Gentry, 2009; Gentry, 2010), PEKS (Gu et al., 2013;

Hou et al., 2013) schemes and a lot more besides. In 2018, Zhang et al. proposes a new

PEKS approach from lattice assumption in the base model with quantum computer

resistance (Zhang et al., 2018), which is the mile stone in the post-quantum

cryptographic communication era.

19

The PEKS schemes above only concentrate on “precise” keyword retrieve rather

than solving format error (“etc” and “etc.”) and/or spell inconsistent (“common” and

“comon”). In the year of 2010, Li et al. presented the definition of “Fuzzy Keyword

Search” (Li et al., 2010) to PEKS scheme for supporting formation error and/or spell

inconsistent. However, Li et al.’s scheme is significant but suffers Off-line KGA. Later

on, Xu et al. presented a new mechanism with Fuzzy Keyword Search in 2013, which is

able to prevent Off-line KGA (Xu et al., 2013).

Many PEKS mechanisms are specialized in solving single keyword search

problem rather than multiple keywords search issue. Golle et al. firstly came up with a

PEKS model with conjunctive keyword search (Golle et al., 2004) in order to solve

multiple keywords search. Soon later, Boneh et al. revisited the Golle et al’s model and

then strengthened the PEKS model to stand by “conjunctive”, “subset” and range

requests on the keywords (Boneh et al., 2007). In the meantime, Baek et al. defined

“Public Key Encryption with Multi-keywords Search (MPEKS)” to address multiple

keywords retrieve issue (Baek et al., 2008). However, a secure channel has to be

considered to transmit Trapdoor in MPEKS scheme, which is similar as PEKS and PKE

approaches. In 2009, Camenisch et al.’s proposed PEKS with oblivious keyword search

(Camenisch et al., 2009) which enables the individual to achieve the Trapdoor from the

secret key holder so that it blinds the key extraction and strengthens keyword privacy to

against adversaries. Later, Cao et al. proposed PEKS with ranked multiple keywords

retrieve on encrypted cloud data and set rules for privacy requirements (Cao et al.,

2014). In 2016, Wang et al. designed a new SCF-MPEKS approach removing the secure

channel (Wang et al., 2016). But SCF-MPEKS might be subjected to OKGA, if the

infected server or receiver releases his/her secret key to the network. However, the

majority of PEKS schemes may suffer IKGA, if the inside adversary executes one extra

20

bilinear pairing operation. Therefore, Huang and Li came up with an efficient PEKS

approach with User Authentication in 2018 that is able to resist IKGA but the scheme

only aims for solving single keyword search problem (Huang and Li, 2018).

Apart from that, some representative PEKS schemes are also introduced as time

goes by. For instance, PEKS with Delegated Search was formalized by Ibraimi et al.,

which is applied on detecting encrypted malicious code (Ibraimi et al., 2011). In 2014,

Dual-Server PEKS was formalized by Chen et al. that is able to resist inherent

insecurity (Chen et al., 2014). In the meaning time, He et al. came with up an approach

in mobile social networks (He et al., 2016). It allows individuals to share contents and

subscribes services.

This PhD thesis formalizes “Trapdoor-indistinguishable Secure Channel Free

Public Key Encryption with Multi-keywords Search (tSCF-MPEKS)” and “Robust

Secure Channel Free Public Key Encryption with Multi-keywords search (rSCF-

MPEKS)” systems and subsequently proposes the concrete constructions of these

models. The proposed schemes are able to solve both Single and Multiple Keyword(s)

Search problems. Besides, the security models of tSCF-MPEKS and rSCF-MPEKS are

also presented in the thesis. The proposed schemes are proved to be semantic secure in

the security models under BDH and 1-BDHI assumptions so that both of them are able

to resist OKGA. In addition, rSCF-MPEKS scheme applies User Authentication

technique and therefore, IKGA has been avoided in this scheme. Last but not least, the

thesis finally proposed a scheme called “Public Key Encryption with Multi-keywords

Search using Mamdani System (m-PEMKS)”, which incorporates with the advantages of

Mamdani System (Fuzzy Logic) to solve Fuzzy Keyword (i.e. “latest”) Search problem.

It also should be noted that m-PEMKS has the ability to resist OKGA as well.

21

More specially, Table 2 below compares security and functionality between the

typical MPEKS schemes (MPEKS, Baek et al., 2008; SCF-MPEKS, Wang et al., 2016)

and three proposed schemes (tSCF-MPEKS, rSCF-MPEKS, m-PEMKS).

TABLE 2. A COMPARISON BETWEEN TYPICAL MPEKS SCHEMES AND THREE

PROPOSED SCHEMES

According to the Table 2, the typical MPEKS (Baek et al., 2008) and SCF-

MPEKS (Wang et al., 2016) schemes are vulnerable to Off-line KGA, but the proposed

PEKS schemes, called tSCF-MPEKS, rSCF-MPEKS and m-PEMKS, satisfy Trapdoor

Indistinguishability and Ciphertext Indistinguishability properties to resist Off-line

KGA. Besides, rSCF-MPEKS incorporating with User Authentication technique is

much strengthen and therefore, it could prevent Inside KGA. Apart from that, m-

PEMKS scheme which applies Mamdani Fuzzy Inference System (Fuzzy Logic,

Artificial Intellgence) has the powerful functionality to support Fuzzy Keyword Search,

such as “latest”, “fastest”, etc.

2.4 Literature Review on Fuzzy Logic

In PEKS system, the user may search encrypted document by using imprecise

keyword, such as “latest”, “biggest” etc. Due to PEKS ciphertext that contains fuzzy

keyword leading to searching errors, therefore, Mamdani’s Fuzzy Inference method is

able to be perfectly utilized in solving fuzzy keyword search problem. In 1973, Lotifi

Zadeh came up with new fuzzy algorithms (Zadeh, 1973) to analyse complex systems

and decision processes. Later, Ebrahim Mamdani revisited Lotifi’s approach and then
22

proposed an inference system to control a steam engine and boiler combination based

on linguistic rules from human knowledge (Mamdani, 1975). However, Mamdani-style

inference is not computationally efficient, Michio Sugeno proposed a new fuzzy

inference (Sugeno, 1985) using a single spike (a singleton) as the rule consequent.

Recently, Fuzzy sets theory has been applied successfully in many areas. Singh et al.

pointed out fuzzy systems could applied to classification, modelling control problems

(Sing et al., 2006). Lermontov et al. analysed water quality using fuzzy set (Lermontov

et al., 2009). Meanwhile, Marchini et al. proposed a framework for fuzzy indices of

environmental conditions (Marchini et al., 2009).

23

3. Preliminary for the PEKS Research

3.1 Introduction

This chapter describes the preliminaries for the PEKS research, such as Number

Theory (i.e. Bilinear pairing) and Game Theory , etc.

3.2 Number Theory

3.2.1 Bilinear Pairings (Boneh and Boyen, 2004)

Suppose is an additive cyclic group and is a multiplicative cyclic group.

Let be a random generator of and a prime number be the order of . Suppose

and are the components of . A bilinear pairing is considered to be a map

, which has the characters below:

i. Bilinearity: for all and all .

ii. Computability: for any .

iii. Non-degenerate: If is a generator of then is a generator of .

3.2.2 The Bilinear Diffie-Hellman (BDH) assumption (Boneh and Boyen, 2004)

Let , , and be the inputs (where) and then calculate

. is an advantage of the algorithm that could solve BDH

assumption in the group , if . Therefore, it is

known that if no Probabilistic Polynomial Time (PPT) algorithm takes at least

advantage in addressing BDH assumption in the group , BDH assumption will be

held in .

G1 GT

P G1 g G1 α

β ZP

e : G1 × G1 → GT

e(αX, βY) = e(X, Y)αβ X, Y ∈ G1 x, y ∈ ZP

e(X, Y) ∈ GT X, Y ∈ G1

P G1 e(P, P) GT

P αP βP γP α, β, γ ∈ ZP

e(P, P)αβγ ∈ GT ξ A

G1 Pr[A(P, αP, βP, γP) = e(P, P)αβγ] ≥ ξ

ξ

G1

G1

24

3.2.3 The 1-Bilinear Diffie-Hellman Inversion (1-BDHI) assumption (Boneh and

Boyen, 2004)

Let and be the inputs (where) and then compute . is an

advantage of the algorithm that could solve 1-BDHI assumption in the group , if

. Therefore, it is known that if no PPT algorithm takes at

least advantage in addressing 1-BDHI assumption in the group , 1-BDHI

assumption will be held in .

3.3 Public Key Encryption with Keyword Search (PEKS)

Let sender, server and receiver be three parties in PEKS scheme. The sender is a

party who runs PEKS algorithm to create a Searchable ciphertext. Besides, the receiver

is a party who executes Trapdoor algorithm to create a Trapdoor query. Once the server

receives the encrypted messages from the sender and the receiver, he/she will run Test

algorithm to estimate whether two ciphertexts contain the same keyword or not.

In 2004, BDOP proposed the first PEKS approach in order to address keyword

search issue (Boneh et al., 2004). The PEKS scheme has five algorithms as follows:

1. : Import , a common parameter is then created.

2. : Import , a public and a private keys of

the receiver are then created.

3. : Import the receiver’s public key and a keyword , a

Searchable ciphertext is then generated by the sender.

4. : Import the receiver’s private key and a keyword

, a Trapdoor query is then generated by the receiver.

P αP α ∈ ZP e(P, P) 1
α ξ

A G1

Pr[A(P, αP) = e(P, P) 1
α] ≥ ξ

ξ G1

G1

KeyGenParam(1n) 1n cp

KeyGenReceiver(cp) cp (pkRec, skRec)

PEKS(pkRec, w) pkRec w

S = PEKS(pkRec, w)

Trapdoor (skRec, w*) skRec

w* Tw* = Trapdoor (skRec, w*)

25

5. : Import the receiver’s public key , a Searchable

encryption and a Trapdoor query .

Then, the server will test whether . If so, output “yes” and “no” otherwise.

3.4 Secure Channel Free Public Key Encryption with Multiple

Keywords Search (SCF-MPEKS)

PEKS scheme has its limitations. It not only requires a secure channel to deliver

Trapdoor query to the server, but also cannot search multiple keywords. So, Wang et al.

proposed SCF-MPEKS scheme (Wang et al., 2016) to solve these problems, which

contains six polynomial time algorithms as follows:

1. : Import to obtain a common parameter .

2. : Import to obtain a public and private keys

of the server.

3. : Import to obtain a public and a private keys

 of the receiver.

4. : Import the server’s public key and

the receiver’s public key in order to obtain a Searchable ciphertext

 of multi-keywords .

5. : Import the receiver’s private key in order to

produce a Trapdoor query of a keyword .

6. : Import the server’s private key , a Searchable

e n c r y p t i o n a n d a Tr a p d o o r q u e r y

. Then, if includes , export “yes” and “no” otherwise.

Test (pkRec, S, Tw*) pkRec

S = PEKS(pkRec, w) Tw* = Trapdoor (skRec, w*)

w = w*

KeyGenParam(1n) 1n cp

KeyGenServer(cp) cp (pkSer, skSer)

KeyGenReceiver(cp) cp

(pkRec, skRec)

SCF − MPEKS(pkSer, pkRec, W) pkSer

pkRec

S = SCF − MPEKS(pkSer, pkRec, W) W = (w1, w2, . . . , wη)

Trapdoor (skRec, w) skRec

Tw = Trapdoor (skRec, w) w

Test (skSer, S, Tw) skSer

S = SCF − MPEKS(pkSer, pkRec, W)

Tw = Trapdoor (skRec, w) W w

26

3.5 Security Verification Models

Goldwasser and Micali proposed the semantic security in the year of 1984. The

semantic security (Goldwasser and Micali, 1984) is the prototype for provable security.

That is an attacker cannot obtain any one bit plaintext even though he/she intercepts the

whole ciphertext. Therefore, semantic secure is used for versifying the security of PEKS

schemes.

Consider is an adversary who may break the crypto-system. While, is a

challenger who sets up the system and accepts the challenge from the adversary .

3.5.1 Indistinguishable Choose Plaintext Attack (IND-CPA) Game

1. Setup: The challenger establishes the PEKS system and the attacker

obtains the public key of the system .

2. Challenge: The attacker sends a plaintext pair to the challenger

. Then, chooses uniformly at random and also encrypts one of the

above plaintext. Finally, sends the ciphertext to .

3. Guess: guesses and wins IND-CPA Game, if .

For any Probabilistic Polynomial Time (PPT) adversary against the IND-CPA

Game, its advantage is negligible.

3.5.2 Indistinguishable Choose Ciphertext Attack (IND-CCA) Game

However, IND-CPA has its limitation. For instance, it is vulnerable to the

deterministic cryptography algorithms, such as RSA, Rabin, etc. On the contrary, IND-

CPA is able to resist passive attacks (i.e. Monitor) in the probabilistic cryptography

algorithms (i.e. ElGamal, etc.) but cannot prevent active attacks (i.e. Fault injection) in

these algorithms. Therefore, Naor and Yung came up with the concept of Chosen

A E

A

E ξ A

ξ

A (M0, M1)

E E b ∈ {0,1}

E Cb A

A b* ∈ {0,1} b* = b

A

AdvIND−CPA
ξ,A (k)

27

Ciphertext Attack (CCA) (Naor and Yung, 1990) in 1990. It allows the attacker

querying Oracle many times before the Challenge step.

1. Setup: The challenger establishes the PEKS system and the attacker

obtains the public key of the system .

2. Training: The attacker uploads the encrypted message to as many

times as possible. decrypts the ciphertext and then sends the corresponding

plaintext back to .

3. Challenge: The attacker sends a plaintext pair to the challenger

. Then, chooses uniformly at random and also encrypts one of the

above plaintext. Finally, sends the ciphertext to .

4. Guess: guesses and wins IND-CCA Game, if .

For any Probabilistic Polynomial Time (PPT) adversary against the IND-CCA

Game, its advantage is negligible.

3.5.3 Indistinguishable Adaptive Choose Ciphertext Attack (IND-CCA2) Game

In 1991, Rackoff and Simon proposed the concept of Adaptive Choose

Ciphertext Attack (CCA2) (Rackoff and Simon, 1991), which enables the adversary

to query Oracle many times after the Challenge step.

1. Setup: The challenger builds the PEKS system and the attacker obtains

the public key of the system .

2. Training: The attacker sends the encrypted message to as many times

as possible. decrypts the ciphertext and then sends the corresponding plaintext

 back to .

A

E ξ A

ξ

A C E

E C

M A

A (M0, M1)

E E b ∈ {0,1}

E Cb A

A b* ∈ {0,1} b* = b

A

AdvIND−CCA
ξ,A (k)

A

E ξ A

ξ

A C E

E C

M A

28

3. Challenge: The attacker sends a plaintext pair to the challenger

. Then, chooses uniformly at random and also encrypts one of the

above plaintext. Finally, sends the ciphertext to .

4. Training: The attacker sends the encrypted message () to as

many times as possible. decrypts the ciphertext and then sends the

corresponding plaintext back to .

5. Guess: guesses and wins IND-CCA2 Game, if .

For any Probabilistic Polynomial Time (PPT) adversary against the IND-CCA2

Game, its advantage is negligible.

3.6 The Procedure of PEKS Verification

Suppose system 2 is completely secure which has BDH and 1-BDHI assumptions

and system 1 is a designed PEKS system. Consider the Challenger establishes the

system 2 and the adversary challenges the system 2. Meanwhile, the adversary

could also be regarded as a challenger who establishes the system 1. Therefore, is

able to accept the challenges from the adversary and sends the responses back to .

In order to break the system 2, is able to train and then applies ’s results to the

system 2. However, due to system 2 being a secure system, cannot break the system 2

and consequently, could not break the system 1. Thus, the designed PEKS system is

proved to be a secure system (Figure 11).

A (M0, M1)

E E b ∈ {0,1}

E Cb A

A C C ≠ Cb E

E C

M A

A b* ∈ {0,1} b* = b

A

AdvIND−CCA2
ξ,A (k)

E E

E

A A

E A A

E

A

29

FIGURE 11. THE PROCEDURE OF PEKS VERIFICATION

3.7 Fuzzy Logic

3.7.1 Fuzzy Rule Based Model

The fuzzy rule based model (Figure 12) is based on Mamdani Fuzzy Inference

System and consists four steps as follows:

1. Fuzzification of the input variables: The aim of this step is transforming crisp

inputs into fuzzy inputs by the membership functions. Although there are substantial

curves can be used in fuzzification process, Gaussian, triangular and trapezoidal

membership functions are the most widely used in it.

2. Rules evaluation: The fuzzified inputs are applied to the antecedents of the

fuzzy rules and then apply fuzzy logic operations (AND, OR, NOT) to these rule

antecedents.

3. Aggregation of the rule outputs: The membership functions of all rule

consequents previously clipped or scaled are combined into a single fuzzy set.

4. Defuizzification: Some defuzzification methods, such as Center of Gravity

(COG), Mean Max, etc., can be utilized to transformed fuzzy outputs into crisp

outputs.
30

FIGURE 12. FUZZY RULE BASED MODEL

3.7.2 The Process of Mamdani-Type Fuzzy Inference System

The Mamdani-Type Fuzzy Inference System contains five stages (Wang et al.,

2015) in the following:

1. Fuzzify the input variables (crisp data)

2. Apply fuzzy operator

3. Apply implication method

4. Apply aggregation method

5. Defuzzification

31

4. Trapdoor-indistinguishable Secure Channel Free
Public Key Encryption with Multi-keywords Search

4.1 Introduction

According to the section 1.4, it is known that many current Public Key Encryption

with Multiple Keywords Search (MPEKS) schemes suffer Off-line Keyword Guessing

Attack (OKGA). Therefore, this chapter gives a formal definition of MPEKS scheme,

which incorporates with Trapdoor Indistinguishability so that it has the ability to resist

OKGA. More specially, it firstly defines a new PEKS scheme namely “Trapdoor-

indistinguishable Secure Channel Free Public Key Encryption with Multi-keywords

Search (tSCF-MPEKS)” and the security verification models as well. After that, a

concrete construction of tSCF-MPEKS is proposed following by the correctness

analysis, security verification and efficiency and performance analysis.

4.2 The Outline of tSCF-MPEKS

In 2008, Baek et al. defined PEKS scheme with multiple keywords search to

address multi-keywords search problem (Baek et al., 2008). However, a secure channel

between the receiver and the online third party is required to transmit the Trapdoor

request. There is no doubt that establishing a secure channel consumes huge human and

material resources, which seems impossible in reality. Later on, a Secure Channel Free

PEKS with Multiple Keywords Search approach (Wang et al., 2016) was introduced by

Wang et al. in 2016. Although the new method removes the secure channel, it might

suffer OKGA, if the server’s or receiver’s private key is compromised and released to

the public networks. The PhD thesis defines a new PEKS scheme (Figure 13) called

“Trapdoor-indistinguishable Secure Channel Free Public Key Encryption with Multi-

32

keywords Search (tSCF-MPEKS)” and it incorporates with Trapdoor indistinguishability

to deal with both Single and Multiple Keyword(s) Search issues and OKGA. The tSCF-

MPEKS contains six following algorithms:

1. : Import , a common parameter is then created.

2. : Import , a public and a private keys of the

server are then created.

3. : Import , a public and a private keys of

the receiver are then created.

4. : Import the server’s public key and

the receiver’s public key , a Searchable ciphertext

 is then generated by the sender, where .

5. : Import the server’s public key and the

receiver’s private key , a Trapdoor query is then

generated by the receiver.

6. : Import the server’s private key , a Searchable

encryption and a Trapdoor query

. The server checks whether the includes . If so, export

“yes”. Otherwise, export “no”.

KeyGenParam(1n) 1n cp

KeyGenServer(cp) cp (pkSer, skSer)

KeyGenReceiver(cp) cp (pkRec, skRec)

SCF − MPEKS(pkSer, pkRec, W) pkSer

pkRec S = SCF − MPEKS(pkSer,

pkRec, W) W = (w1, w2, . . . , wη)

Trapdoor (pkSer, skRec, w) pkSer

skRec Tw = Trapdoor (pkSer, skRec, w)

Test (skSer, S, Tw) skSer

S = SCF − MPEKS(pkSer, pkRec, W) Tw =

Trapdoor (pkSer, skRec, w) W w

33

FIGURE 13. THE OUTLINE OF TSCF-MPEKS

4.3 The Security Models of tSCF-MPEKS

As discussed in (Baek et al.; Wang et al.), tSCF-MPEKS is IND-CPA and

Trapdoor-IND-CPA.

The definition of IND-CPA security means that the untrusted server may not

determine which Searchable ciphertext has which encrypted keyword, if the Trapdoor

query that contains the given keyword has not been obtained by the server (Game1).

Besides, if the server’s private key has not been obtained by the untrusted receiver, he/

she could not estimate whether the SCF-MPEKS ciphertext and the Trapdoor request

contain the same keyword or not, even though all Trapdoors for any keyword are

intercepted (Game2).

34

The definition of Trapdoor-IND-CPA security means that an outside adversary

cannot observe any difference between Trapdoors for any two distinct keywords

(Game3).

Therefore, the tSCF-MPEKS’s IND-CPA security and Trapdoor-IND-CPA

security are formalized as follows: Suppose is an adversary and is a challenger.

Game1: Let suppose to be an untrusted server.

Stage1 (Setup): , and

are called by in order to generate a common parameter , the key pairs

and of the server and the receiver. Then, sends , , and

 to .

Stage2（Trapdoor queries): Adaptably, is able to return any Trapdoor query

 for any keyword to .

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r

 is sent from to . It is known that

and cannot be requested in Stage2 (Game1). Once obtains the pair, the

 algorithm will be called by for creating a Searchable ciphertext

, where . Finally, will be sent back

from to .

Stage4 (Trapdoor queries): can continue return any Trapdoor query for any

keyword to as in Stage2 (Game1), only if .

Stage5 (Guess): guesses and wins Game1, if .

A E

A

KeyGenParam(1n) KeyGenServer(cp) KeyGenReceiver(cp)

E cp (pkSer, skSer)

(pkRec, skRec) E cp pkSer skSer

pkRec A

E

Tw w A

[W0 = (w01, , w0η), W1 = (w11, , w1η)] A E W0

W1 E

SCF − MPEKS E

C = SCF − MPEKS(pkSer, pkRec, Wξ) ξ ∈ {0,1} C

E A

E Tw

w A w ∉ W0, W1

A ξ* ∈ {0,1} ξ* = ξ

35

Game2: Let suppose to be an untrusted receiver.

Stage1 (Setup): , and

are called by in order to generate a common parameter , the key pairs

and of the server and the receiver. Then, sends , , and

 to .

Stage2 (Chal lenge s imulat ion): A target keyword-vector pai r

 is sent from to . It is known that

and are not able to be requested during Test algorithm on which . Once

obtains the pair, the algorithm will be called by for creating a

Searchable ciphertext , where . Finally,

 will be sent back from to .

Stage3 (Guess): guesses and wins Game2, if .

’s advantage to win Game1 and Game2 is listed below:

So, the tSCF-MPEKS system is considered to be IND-CPA secure as long as the

 is trivial.

Game3: Let suppose to be an outside attacker.

Stage1 (Setup): , and

are called by in order to generate a common parameter , the key pairs

and of the server and the receiver. Then, sends , , to and

keeps , from .

A

KeyGenParam(1n) KeyGenServer(cp) KeyGenReceiver(cp)

E cp (pkSer, skSer)

(pkRec, skRec) E cp pkRec skRec

pkSer A

[W0 = (w01, , w0η), W1 = (w11, , w1η)] A E Tw0i

Tw1i
i = 1,...,η E

SCF − MPEKS E

C = SCF − MPEKS(pkSer, pkRec, Wξ) ξ ∈ {0,1}

C E A

A ξ* ∈ {0,1} ξ* = ξ

A

AdvIND−CPA
tSCF−MPEKS,Ai

(k) = |Pr[ξ* = ξ] − 1/2 | . (i = 1,2)

AdvIND−CPA
tSCF−MPEKS,Ai

(k)

A

KeyGenParam(1n) KeyGenServer(cp) KeyGenReceiver(cp)

E cp (pkSer, skSer)

(pkRec, skRec) E cp pkSer skRec A

skSer skRec A

36

Stage2（Trapdoor queries): Adaptably, is able to return any Trapdoor query

 for any keyword to .

Stage3 (Challenge simulation): A target keyword pair is sent from to

. It is known that and cannot be requested in Stage2 (Game3). Once obtains

the keyword pair, the algorithm will be called by for creating a Trapdoor

query , where . Finally, will be sent back

from to .

Stage4 (Trapdoor queries): can continue return any Trapdoor query for any

keyword to as in Stage2 (Game3), only if .

Stage5 (Guess): guesses and wins Game3, if .

’s advantage to win Game3 is listed below:

So, the tSCF-MPEKS system is considered to be Trapdoor-IND-CPA secure as

long as the is trivial.

4.4 The Concrete Construction of tSCF-MPEKS

1. : Suppose is an additive cyclic group and is a

multiplicative cyclic group. Let be a random generator of and a prime number

 be the order of . A bilinear pairing is considered to be a map

. Suppose and are two

particular hash functions. Therefore, a common parameter

 can be achieved by the algorithm.

E

Tw w A

(w0, w1) A

E w0 w1 E

Trapdoor E

Tw = Trapdoor (pkSer, skRec, wξ) ξ ∈ {0,1} Tw

E A

E Tw

w A w ≠ w0, w1

A ξ* ∈ {0,1} ξ* = ξ

A

AdvTrap−IND−CPA
tSCF−MPEKS,A3

(k) = |Pr[ξ* = ξ] − 1/2 | .

AdvTrap−IND−CPA
tSCF−MPEKS,A3

(k)

KeyGenParam(k) G1 GT

P G1

g ≥ 2k G1

e : G1 × G1 → GT H : {0,1}⋆ → G1 H* : GT → {0,1}*

cp = {g, P, G1, GT ,

e, H, H*} KeyGenParam(k)

37

2. : The server selects uniformly at random and

subsequently calculates . In addition, the server also randomly selects .

So, and are the server’s public and private keys.

3. : The receiver selects uniformly at random and

subsequently calculates . So, and are the

receiver's public and private keys.

4. : The sender selects uniformly at

random and , and then calculates a Searchable ciphertext

, where

, ,..., .

5. : The receiver selects uniformly at

random and subsequently calculates , where

and .

6. : For , the online server firstly computes

. Af ter tha t , the server tes t s whether

 or not. If so, output “yes”; otherwise, output “no”.

4.5 The Correctness of tSCF-MPEKS

Suppose and are keyword-vector and keyword respectively in

 and algorithms. This PEKS approach is considered to be

corrected as long as includes . The correctness verification is listed below.

KeyGenServer(cp) m ∈ ZP

M = mP K ∈ G1

pkSer = (cp, M, K) skSer = (cp, m)

KeyGenReceiver(cp) n ∈ ZP

N = nP pkRec = (cp, N) skRec = (cp, n)

SCF − MPEKS(pkSer, pkRec, W) t ∈ ZP

W = (w1, w2, . . . wη)

C = (X, Y1, Y2, . . . , Yη) = (tM, H*(V1), H*(V2), . . . , H*(Vη)) V1 = e(H(w1),

N)t V2 = e(H(w2), N)t Vη = e(H(wη), N)t

Trapdoor (pkSer, skRec, w*) t* ∈ ZP

Tw = (T1, T2) T1 = nH(w*) ⊕ e(M, K)t*+n

T2 = e(M, t*K)

Test (C, Tw, skSer) i ∈ {1,2,...,η}

T = T1 ⊕ T2 ∙ e(mK, N) = nH(w*)

H*[e(T,
X
m

)] = Yi

W w*

SCF − MPEKS Trapdoor

W w*

38

Note that stands for Multiplication and stands for Exclusive Or.

According to Bilinear pairing, note also that and

.

Therefore, for ,

Firstly,

Secondly,

Therefore, the algorithm is completely correct.

4.6 The Security Analysis of tSCF-MPEKS

The tSCF-MPEKS approach possesses the characters of Ciphertext

Indistinguishability and Trapdoor Indistinguishability against Chosen Plaintext Attack

(CPA) whose security relies on BDH and 1-BDHI assumptions (Boneh and Boyen,

2004).

∙ ⊕

e(M, K) = e(K, M)

e(M, K)t*+n = e(t*M, nK) = e(n M, t*K)

i ∈ {1,2,...,η}

T = T1 ⊕ T2 ∙ e(mK, N)

= nH(w*) ⊕ e(M, K)t*+n ⊕ e(M, t*K) ∙ e(mK, nP)

= nH(w*) ⊕ e(M, K)t*+n ⊕ e(M, t*K) ∙ e(K, mP)n

= nH(w*) ⊕ e(M, K)t*+n ⊕ e(M, K)t* ∙ e(M, K)n

= nH(w*) ⊕ e(M, K)t*+n ⊕ e(M, K)t*+n

= nH(w*)

H*[e(T,
X
m

)] = H*[e(nH(w*),
tM
m

)]

= H*[e(nH(w*), tP)]

= H*[e(H(w*), N)t]

= Yi

39

The proposed approach above could be regarded as IND-CPA secure in Game1

under the random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is

completely difficult.

Game1: Let suppose to be an untrusted server.

Consider that the challenger is able to achieve the input

 of BDH assumption (Boneh and Boyen, 2004). sets up the computation

of a BDH key of , and using ’s IND-CPA as a goal. Apart from

that, queries at most and times hash function requests.

Stage1 (Setup)

 chooses in the beginning. Then, chooses uniformly at

random and also computes . In addition, randomly selects . Finally,

the following parameters are returned by , which are the common parameter

, the server’s public/private keys and , and

the receiver’s public key . Besides, two specific hash functions and are

selected by in the following:

- is able to request a keyword to function at any time. After that,

traverses a tuple from that is initially empty. If the tuple exists,

will reply to . Otherwise, the challenger executes the operations below:

i. The challenger randomly selects a coin and then computes

.

ii. The challenger randomly chooses . If , will be

computed by . Similarly, will be computed by once .

iii. receives from . Meanwhile, adds into .

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*

E N = αP E m ∈ ZP

M = mP E K ∈ G1

E

(g, P, G1, GT , e, H, H*) (cp, M, K) (cp, m)

(cp, N) H H*

E

A wi H E

(wi, μi, νi, εi) H_ List E

H(wi) = μi A E

E εi

Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = βP + νiP

E μi = νiP E εi = 1

A μi E E (wi, μi, νi, εi) H_ List

40

- is able to request to function at any time. Later on, traverses a tuple

 from . If the tuple exists, will return to . Otherwise,

randomly selects and replies to . Finally, adds into

.

Stage2（Trapdoor queries)

If queries a Trapdoor request with a specific keyword , will do the

operations below:

- The challenger recalls the above algorithms in order to simulate function for

generating a tuple . If , will output “Suspension” and also terminate

the system. Otherwise, he/she executes the following step.

- The challenger randomly chooses and sequently calculates

 and . So, .

Stage3 (Challenge simulation)

The adversary sends a keyword-vector pair

 to . Once achieves the pair, he/she will conduct the following

steps:

- The challenger chooses uniformly at random.

- The challenger recalls the above algorithms in order to simulate function for

obtaining two tuples and . If and are equal to ,

 will output “Suspension” and also terminate the system. Otherwise, executes the

following step.

i. The challenger recalls the above algorithms again to simulate function at

 times so that is able to create two tuples’ vectors

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi)

H*_ List

A wi E

E H

(wi, μi, νi, εi) εi = 0 E

E t* ∈ ZP

T1 = νiN ⊕ e(M, K)t*+α = νiαP ⊕ e(M, K)t*+α = αμi ⊕ e(M, K)t*+α = αH(wi) ⊕

e(M, K)t*+α T2 = e(M, t*K) Tw = (T1, T2)

A [W0 = (w01, , w0n),

W1 = (w11, , w1n)] E E

E i ∈ {1,2,...,η}
E H

(w*0i, μ*0i, ν*0i, ε*0i) (w*1i, μ*1i, ν*1i, ε*1i) ε*0i ε*1i 1

E E

E H

2(η − 1) E {(w*01, μ*01, ν*01, ε*01), . . . ,

41

 a n d

. If for all , will export

“Suspension” and consequently terminate the system. Otherwise, executes the steps

below:

— The challenger randomly selects .

— The challenger randomly selects for generating a target

 e n c r y p t i o n

.

So,

.

Note that,

Note also that

Stage4 (Trapdoor queries)

 can continue return any Trapdoor query for any keyword to as in

Stage2 (Game1), only if .

Stage5 (Guess)

 outputs as the guess. Then, chooses from function and

returns the guessed BDH key .

(w*0i−1, μ*0i−1, ν*0i−1, ε*0i−1), (w*0i+1, μ*0i+1, ν*0i+1, ε*0i+1), . . . , (w*0η, μ*0η, ν*0η, ε*0η)}

{(w*11, μ*11, ν*11, ε*11), . . . , (w*1i−1, μ*1i−1, ν*1i−1, ε*1i−1), (w*1i+1, μ*1i+1, ν*1i+1, ε*1i+1), . . . ,

(w*1η, μ*1η, ν*1η, ε*1η)} ε*0j = ε*1 j = 0 j = 0,...,i − 1,i + 1,...,η E

E

E δ ∈ {0,1}

E Yi ∈ {0,1}∙

SCF − MPEKS C* = (X*, Y*1 , Y*2 , . . . , Y*η) = (γM, H*[B1],

H*[B2], . . . , H*[Bη])

C* = (X*, Y*1 , . . . , Y*i−1, Y*i+1, . . . , Y*η) = (γM, H*[e(H(wδ1
), N)γ], . . . , H*[e(H(wδi−1

),

N)γ], H*[e(H(wδi+1), N)γ], . . . , H*[e(H(wδη), N)γ])

Bi = e(H(wδi), N)γ = e(βP + νδiP, αP)γ = e(βP, αP)γ ∙ e(νδiP, αP)γ = e(P, P)αβγ

∙ e(γP, αP)νδi

e(νδiP, αP)γ = e(νδiP, N)γ = e(H(wδi), N)γ

E Twi wi A

wi ∉ W0, W1

A δ* ∈ {0,1} E d H*

dδ*i

e(γP, αP)
νδ*i

42

Analysis of Game1

Stage1-5 describes the procedure and operations of the challenger . It remains to

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game1. To do so,

the first thing is to analyze that the challenger does not stop during the simulation.

Therefore, three events are formalized below:

Event1: The challenger does not stop during Stage2（Trapdoor queries) and

Stage4 (Trapdoor queries).

Event2: The challenger does not stop during Stage3 (Challenge simulation).

Event3: The adversary is not able to request either or

.

Claim 1:

Proof: Consider that cannot request the same keyword twice in Stage2 and

Stage4. So, is the probability causing for suspension. From the previous

definition, queries at most () Trapdoor requests so that the probability that the

system which does not be terminated by in all Trapdoor queries is at least

.

Claim 2:

Proof: If , the system will be terminated by during Stage3. So,

 is the probability that does not suspend it. In addition, if

 for all , the system will be terminated by .

Overall, the probability that the system which does not be terminated by during

Stage3 is at least .

E

E

E

E

A H*(e(H(w*0i), N)γ)

H*(e(H(w*1i), N)γ)

Pr[Event1] ≥
1
e

A
1

h + 1 E

A h h > 0

E

(1 − 1
h + 1)h ≥ 1

e

Pr[Event 2] ≥ (1
h + 1) ∙ (h

h + 1)2(η−1)

ε0 = ε1 = 1 E

1 − (1 − 1
h + 1)2 E

ε*0j = ε*1 j = 0 j = 0,...,i − 1,i + 1,...,η E

E

(1 − 1
h + 1)2(η−1){1 − (1 − 1

h + 1)2} ≥ (1
h + 1) ∙ (h

h + 1)2(η−1)

43

Claim 3:

Proof: As discussed in (Baek et al., 2008), let () be an

event that the adversary can correctly guess the keyword of the left part of a “hybrid”

 encryption formed with , coordinates from followed by

coordinates from .

So,

.

Overall, due to queries either or being

at least , the probability that querying is at least . Therefore,

the success probability achieved by is , which is negligible.

The proposed scheme above could be regarded as IND-CPA secure in Game2

under the random oracle model, if the 1-BDHI assumption (Boneh and Boyen, 2004) is

completely difficult.

Game2: Let suppose to be an untrusted receiver.

Consider that the challenger is able to achieve the input of

1-BDHI assumption (Boneh and Boyen, 2004). sets up the computation of a 1-BDHI

key of using ’s IND-CPA as a goal. Apart from that, queries at most

and times hash function requests.

Stage1 (Setup)

 selects and in the beginning. Then, randomly chooses

 and also computes . After that, the following parameters are returned by

, which are the common parameter , the server’s public key

Pr[Event3] ≥ 2ξ

Hybr idr r ∈ {1,2,...,η}
A

SCF − MPEKS r wδ (η − r)

w1−δ

Pr[Event3] = 2Ση
j=1(Pr[Hybr idr] − Pr[Hybr idr−1]) = 2(Pr[Hybr idr]−

Pr[Hybr id0]) = 2ξ

A H*(e(H(w*0i), N)γ) H*(e(H(w*1i), N)γ)

2ξ A H*(e(H(w*ji), N)γ) ξ

ξ* E (h
h + 1)2(η−1) ∙ ξ

e(h + 1)h*

A

E (g, P, G1, GT , e, αP)

E

e(P, P) 1
α αP A A h

h*

E M = αP K ∈ G1 E

n ∈ ZP N = nP

E (g, P, G1, GT , e, H, H*)

44

, and the receiver’s public/private keys and . Besides, two

specific hash functions and are selected by in the following:

— is able to request a keyword to function at any time. Later on,

traverses a tuple from . If the tuple exists, will return to .

Otherwise, randomly chooses and computes . After that, returns

to .

— is able to request to function at any time. Later on, traverses a tuple

 from . If the tuple exists, will return to . Otherwise, randomly

selects and replies to the adversary . Finally, adds into

.

Stage2 (Challenge simulation)

 sends a keyword-vector pair to , where

 and . Once the challenger

achieves the pair, he/she will do the following steps:

— The challenger randomly selects and .

— The challenger recalls the algorithm for generating

the Searchable ciphertext

.

So,

It is known that .

(cp, M, K) (cp, N) (cp, n)

H H* E

A wi H E

(wi, μi, vi) H_ List E μi A

E νi ∈ ZP μi = νiP E μi

A

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi)

H*_ List

A [(W*0i, μ*0i, ν*0i, ε*0i), (W*1i, μ*1i, ν*1i, ε*1i)] E

W*0 = (w01, w02, . . . , w0η) W*1 = (w11, w12, . . . , w1η) E

E Yi ∈ {0,1}∙ δ ∈ {0,1}

E SCF − MPEKS

C* = (X*, Y*1 , Y*2 , . . . , Y*η) = (ψ αP, H*[B1], H*[B2]

, . . . , H*[Bη])

C* = (X*, Y*1 , Y*2 , . . . , Y*η) = (ψ αP, H*(e(H(wδ1
), N)ψ), H*(e(H(wδ2

), N)ψ),

. . . , H*(e(H(wδη), N)ψ))

Bi = e(H(wδ*i
), N)ψ) = e(νiP, nP)ψ = e(P, P)ψ⋅νin

45

Stage3 (Guess)

The adversary exports as the guess. Later on, returns the guessed

1-BDHI key .

Analysis of Game2

Stage1-3 describes the procedure and operations of the challenger . It remains to

show that 1-BDHI assumption (Boneh and Boyen, 2004) is satisfied in Game2. To do

so, the first thing is to analyze that the challenger does not stop during the simulation.

Therefore, two events are formalized below:

Event4: The challenger does not stop during Stage2 (Challenge simulation).

Event5: The adversary does not request either or

.

Claim 4:

Proof: There is no limitation to illustrate that the system will be terminated by the

challenger during Stage2. Thus, it is clear that .

Claim 5:

Proof: If happens, it will show that the bit pointing out

whether the Searchable encryption contains or separates of ’s view. Hence, the

probability that the adversary ’s exporting which satisfies is at most .

By the concept of Bayes’s rule,

.

A δ* ∈ {0,1} E

ψ = 1
α ⋅ νin

E

E

E

A H*(e(H(w*0i), N)ψ)

H*(e(H(w*1i), N)ψ)

Pr[Event4] = 1

E Pr[Event4] = 1

Pr[¬Event5] ≥ 2ξ

Event5 j ∈ {0,1}

w0i w1i A

A j* j = j* 1
2

Pr[j = j*] = Pr[j = j* |Event5]Pr[Event5] + Pr[j = j* |Event5]Pr[¬Event5]

≤ Pr[j = j* |Event5]Pr[Even5] + Pr[¬Event5] = 1
2 ∙ Pr[Event5] + Pr[¬Event5] =

1
2 + 1

2 ∙ Pr[¬Event5]

46

By definition, it should be known that . And then,

. Thus, .

Overall, due to requests either or being

at least , the probability that the adversary requesting is at least

. However, according to the previous definition that requests at most hash

function queries, is the probability that the challenger chooses the correct solution.

Overall, the success probability achieved by is , which is negligible.

The proposed scheme above could be regarded as Trapdoor-IND-CPA secure in

Game3 under the random oracle model, if the BDH assumption (Boneh and Boyen,

2004) is completely difficult.

Game3: Let suppose to be an untrusted outside attacker.

Consider that the challenger is able to achieve the input

 of BDH assumption (Boneh and Boyen, 2004). sets up the computation

of a BDH key of , and using ’s IND-CPA as a goal. Apart from

that, queries at most and times hash function requests.

Stage1 (Setup)

 selects , and in the beginning. Then, the following

parameters are returned by , which are the common parameter ,

the server’s public key , and the receiver’s public key . Apart from

that, two specific hash functions and are randomly selected by .

|Pr[j = j*] − 1
2 | ≥ ξ

ξ ≤ Pr[j = j*] − 1
2 ≤ 1

2 ∙ Pr[¬Event5] Pr[¬Event5] ≥ 2ξ

A H*(e(H(w*0i), N)ψ) H*(e(H(w*1i), N)ψ)

2ξ A H*(e(H(w*ji), N)ψ)

ξ A h*

1
h* E

ξ* E ξ
h*

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*

E M = αP K = βP N = γP

E (g, P, G1, GTe, H, H*)

(cp, M, K) (cp, N)

H H* E

47

Stage2（Trapdoor queries)

If queries a Trapdoor request with a specific keyword , will randomly pick

up and subsequently compute and

. So, . After that, sends back to the adversary

Stage3 (Challenge simulation)

 uploads a keyword pair to . Once the challenger receives the

keyword pair, he/she will do the following steps:

— The challenger randomly selects .

— The challenger recalls the algorithm for generating

 a n d

.

Stage4 (Trapdoor queries)

 can continue return any Trapdoor query for any keyword to as in

Stage2 (Game3), only if .

Stage5 (Guess)

 outputs as the guess. If , outputs “yes” and “no”

otherwise.

Analysis of Game3

According to is an untrusted outside adversary, he/she is not able to observe any

difference between two Trapdoor queries even if these queries contain the same

keyword. This is because randomly picks up and changes in every

calculation so that changes in every calculation. Consider

two Trapdoor queries contain the same keyword, but the calculation results are different

A wi E

t* ∈ ZP T1 = γH(wi) ⊕ e(βP, αP)t*+γ T2 = e(t*βP

, αP) Tw = (T1, T2) E Tw A

A (w*0 , w*1) E E

E δ ∈ {0,1}

E Trapdoor

T1 = γH(wδ*) ⊕ e(βP, αP)t*+γ = γH(wδ*) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*

T2 = e(t*βP, αP)

E Twi wi A

wi ≠ w0, w1

A δ* ∈ {0,1} δ = δ* E

A

E t* ∈ ZP t*

T1 = nH(wi) ⊕ e(M, K)t*+n

48

mainly because of the value . Hence, the core portion of Trapdoor-IND-CPA secure

in the proposed scheme is the confidentiality of .

Consider that if has , he/she could estimate whether two Trapdoor

queries have the same keyword or not. More specially, computes one extra XOR as

follows: . So, is able to know

that and are equal, only if .

By Stage3 in Game3, it shows that , which

meets BDH assumption (Boneh and Boyen, 2004). Therefore, is not able to computes

 so that he/she cannot calculate either.

4.7 The Efficiency and Performance of tSCF-MPEKS

This part describes the security comparison between the proposed approach

(tSCF-MPEKS) and another two PEKS approaches [MPEKS (Baek et al., 2008) and

SCF-MPEKS (Wang et al., 2016)]. Besides, the performance and efficiency of these

three PEKS schemes are also presented in the following.

TABLE 3. A COMPARISON OF THE SECURITY ASSUMPTION AND PROPERTIES

CT Ind, Trap Ind, SC and OKGA are the abbreviation of Ciphertext

Indistinguishability, Trapdoor Indistinguishability, Secure Channel and Off-line

Keyword Guessing Attack respectively.

The proposed approach does not rely on the secure channel to transmit Trapdoor.

In addition, it has the characters of CT Ind and Trap Ind so that it prevents OKGA. To

t*

e(M, K)t*+n

A e(M, K)t*+n

A

T1 = nH(wi) ⊕ e(M, K)t*+n ⊕ e(M, K)t*+n = nH(wi) A

Tw0
= nH(w0) Tw1

= nH(w1) w0 = w1

e(M, K)t*+n = e(P, P)αβγ ∙ e(P, P)αβt*

A

e(M, K)t*+n T1 = nH(wi) ⊕ e(M, K)t*+n

49

conclude, comparing with MPEKS and SCF-MPEKS methods, the proposed approach

has better efficiency and performance.

The proposed approach is programmed by applying type A pairing in JPBC

Library (Angelo and Vincenzo, 2011) and the platform details are presented in Table 4.

TABLE 4. THE SIMULATION PLATFORM FOR tSCF-MPEKS

The performance and efficiency of proposed approach is also presented by the

theoretical analysis and 1000 times computer simulations. So, Table 5 illustrates the

comparison of computation efficiency between MPEKS, SCF-MPEKS and proposed

schemes and the time cost of proposed approach is listed in Table 6.

TABLE 5. A COMPARISON OF THE COMPUTATION EFFICIENCY

According to Table 5, the symbols , and are the abbreviation of a modular

exponentiation, a collision resistant hash function and a bilinear pairing respectively.

Due to MPEKS and SCF-MPEKS suffering OKGA, the proposed approach has better

performance than its counterparts.

E H P

50

TABLE 6. PERFORMANCE BASED ON 1000 TIMES COMPUTER SIMULATION (n=3)

4.8 The Key Code of tSCF-MPEKS

This part shows the key codes of the proposed scheme from parameters

initialisation, Server’s and Receiver’s key pairs generations, Searchable ciphertext

(SCF-MPEKS) generation, Trapdoor request and Test algorithm.

The proposed approach is programmed by applying type A pairing in JPBC

Library (Angelo and Vincenzo, 2011). Besides, the pairing parameters initialization is

described in Figure 14.

FIGURE 14. THE PARAMETERS INITIALIZATION IN TSCF-MPEKS

51

The server’s key pair generation and receiver’s key pair generation are described

in Figure 15 and Figure 16.

FIGURE 15. SERVER’S KEY PAIR GENERATION IN TSCF-MPEKS

FIGURE 16. RECEIVER’S KEY PAIR GENERATION IN TSCF-MPEKS

The following figure (Figure 17) describes the Searchable ciphertext (SCF-

MPEKS) generation. In order to simplify the code, let the number of keywords be three.

52

FIGURE 17. SEARCHABLE CIPHERTEST GENERATION IN TSCF-MPEKS

Figure 18 illustrates the Trapdoor request generation by using server’s public key

, receiver’s private key and a keyword .

pkSer skRec w*

53

FIGURE 18. TRAPDOOR REQUEST GENERATION IN TSCF-MPEKS

The final figure (Figure 19) shows Test algorithm, which describes the keywords

comparison between the Searchable ciphertext and the Trapdoor request.

54

FIGURE 19. TEST ALGORITHM IN TSCF-MPEKS

55

5. Robust Secure Channel Free Public Key Encryption
with Multi-keywords Search

5.1 Introduction

According to the section 1.4, it is known that almost all current Public Key

Encryption with Multiple Keywords Search (MPEKS) schemes suffers Inside Keyword

Guessing Attack (IKGA). Therefore, this chapter gives a formal definition of MPEKS

scheme, which incorporates with Trapdoor Indistinguishability and User Authentication

technique so that it has the ability to resist both IKGA and OKGA. More specially, it

firstly defines a new PEKS scheme namely “Robust Secure Channel Free Public Key

Encryption with Multi-keywords Search (rSCF-MPEKS)” and the security verification

models. In addition, a concrete construction of rSCF-MPEKS is proposed following by

the correctness analysis, security verification and efficiency and performance analysis.

5.2 The Outline of rSCF-MPEKS

Huang and Li pointed out that all current PEKS schemes suffer IKGA in 2018 and

then proposed a PEKS scheme, namely “Public Key Authenticated Encryption with

Keyword Search (PAEKS)”, to resist IKGA (Huang and Li, 2018). Although PAEKS is

able to address IKGA, it aims for solving Single Keyword Search only instead of

Multiple Keywords Search and therefore, it may not be applied to the general public

network. However, this PhD thesis defines a new PEKS scheme (Figure 20) called

“Robust Secure Channel Free Public Key Encryption with Multi-keywords Search

(rSCF-MPEKS)” which not only deals with both IKGA and OKGA but also solves both

Single and Multiple Keyword(s) Search issues. The proposed PEKS scheme contains

six PPT algorithms as follows:

56

1. : Import , a common parameter is then created.

2. : Import , a public and a private keys of the

sender are then created.

3. : Import , a public and a private keys of

the receiver are then created.

4. : Import the receiver’s public key and

the sender’s private key , a Searchable ciphertext

 is then generated by the sender, where .

5. : Import the sender’s public key and the

receiver’s private key , a Trapdoor query is then

created by the receiver.

6. : Import the sender’s public key , the receiver’s

public key , a Searchable ciphertext and a

Trapdoor query . The server then estimates whether

the includes . If so, output “yes” and “no”, otherwise.

FIGURE 20. THE OUTLINE OF RSCF-MPEKS

KeyGenParam(1n) 1n cp

KeyGenSender(cp) cp (pkSen, skSen)

KeyGenReceiver(cp) cp (pkRec, skRec)

SCF − MPEKS(pkRec, skSen, W) pkRec

skSen S = SCF − MPEKS(pkRec,

skSen, W) W = (w1, w2, . . . , wη)

Trapdoor (pkSen, skRec, w) pkSen

skRec Tw = Trapdoor (pkSen, skRec, w)

Test (pkSen, pkRec, S, Tw) pkSen

pkRec S = SCF − MPEKS(pkRec, skSen, W)

Tw = Trapdoor (pkSen, skRec, w*)

W w

57

5.3 The Security Models of rSCF-MPEKS

As discussed in tSCF-MPEKS (Ma and Kazemian, 2018) and PAEKS (Huang and

Li, 2018), the proposed scheme is Indistinguishability under Chosen Plaintext

Attack (IND-CPA) and Trapdoor-IND-CPA. The IND-CPA (Game4) and Trapdoor-

IND-CPA (Game5) for rSCF-MPEKS are formalized below. Suppose is an adversary

and is a challenger.

Game4: Ciphertext Indistinguishability

S t a g e 1 (S e t u p) : , a n d

 are called by in order to generate a common parameter , the

key pairs and of the sender and the receiver. Then, sends

, and to while keeps and from .

Stage2（Queries): Adaptably, is able to return any Trapdoor query and

Ciphertext query for any keyword to .

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r

 is sent from to . It is known that

and cannot be requested in Stage2 (Game4). Once the challenger achieves the

pair, the algorithm will be called by the challenger for generating a

Searchable ciphertext , where .

Finally, will be sent back to .

Stage4 (Queries): can continue return any Trapdoor query and Ciphertext

query many times for any keyword to as in Stage2 (Game4), only if

.

Stage5 (Guess): guesses and wins Game4, if .

A

E

KeyGenParam(1n) KeyGenSender(cp)

KeyGenReceiver(cp) E cp

(pkSen, skSen) (pkRec, skRec) E

cp pkSen pkRec A skSen skRec A

E OT

OC w A

[W0 = (w01, , w0η), W1 = (w11, , w1η)] A E W0

W1 E

SCF − MPEKS E

S = SCF − MPEKS(skSen, pkRec, Wξ) ξ ∈ {0,1}

S A

E OT

OC w A

W ≠ W0, W1

A ξ* ∈ {0,1} ξ* = ξ

58

’s advantage to win Game4 is listed as follows:

Hence, the rSCF-MPEKS system is considered to be IND-CPA secure as long as

the is negligible.

Game5: Trapdoor Indistinguishability

S t a g e 1 (S e t u p) : , a n d

 are called by in order to generate a common parameter , the

key pairs and of the sender and the receiver. Then, sends

, and to while keeps and from .

Stage2（Queries): Adaptably, is able to return any Trapdoor query and

Ciphertext query for any keyword to .

Stage3 (Challenge simulation): A target keyword pair is sent from to

. It is known that and cannot be requested in Stage2 (Game5). Once obtains

the keyword pair, the algorithm will be called by the challenger in order

to generate a Trapdoor query , where .

Finally, will be sent back to .

Stage4（Queries): can continue return any Trapdoor query and Ciphertext

query many times for any keyword to as in Stage2 (Game5), only if

.

Stage5 (Guess): guesses and wins Game5, if .

A

AdvIND−CPA
rSCF−MPEKS,A4

(k) = |Pr[ξ* = ξ] − 1/2 | .

AdvIND−CPA
rSCF−MPEKS,A4

(k)

KeyGenParam(1n) KeyGenSender(cp)

KeyGenReceiver(cp) E cp

(pkSen, skSen) (pkRec, skRec) E

cp pkSen pkRec A skSen skRec A

E OT

OC w A

(w0, w1) A

E w0 w1 E

Trapdoor E

Tw = Trapdoor (skRec, pkSen, wξ) ξ ∈ {0,1}

Tw A

E OT

OC w A

w ≠ w0, w1

A ξ* ∈ {0,1} ξ* = ξ

59

’s advantage to win Game5 is listed as follows:

Therefore, the rSCF-MPEKS system is considered to be Trapdoor-IND-CPA

secure as long as the is negligible.

5.4 The Concrete Construction of rSCF-MPEKS

1. : Suppose is an additive cyclic group and is a

multiplicative cyclic group. Let be a random generator of and a prime number

 be the order of . A bilinear pairing is considered to be a map

. Suppose is a particular hash function. Therefore,

a common parameter can be achieved by the

 algorithm.

2. : The sender selects uniformly at random and then

calculates . So, the and are the server’s public and

private keys.

3. : The receiver selects uniformly at random and

then calculates . So, and are the receiver’s public and

private keys.

4. : The sender selects uniformly at

random and . Then, he/she calculates a Searchable ciphertext

.

A

AdvIND−CPA
rSCF−MPEKS,A5

(k) = |Pr[ξ* = ξ] − 1/2 | .

AdvIND−CPA
rSCF−MPEKS,A5

(k)

KeyGenParam(k) G1 GT

P G1

g ≥ 2k G1

e : G1 × G1 → GT H : {0,1}⋆ → G1

cp = {g, P, G1, GT , e, H}

KeyGenParam(k)

KeyGenSender(cp) m ∈ ZP

M = mP pkSen = M skSen = m

KeyGenReceiver(cp) n ∈ ZP

N = nP pkRec = N skRec = n

SCF − MPEKS(pkRec, skSen, W) t ∈ ZP

W = (w1, w2, . . . , wη)

C = (X, Y1, Y2, . . . , Yη) = [t ⊕ pkRec, e(skSen ∙ H(pkSen, pkRec, w1), pkRec ∙ t),

e(skSen ∙ H(pkSen, pkRec, w2), pkRec ∙ t), . . . , e(skSen ∙ H(pkSen, pkRec, wη), pkRec ∙ t)]

60

5. : The receiver computes

.

6. : For , the online server firstly

computes and then checks whether or not.

5.5 The Correctness of rSCF-MPEKS

Suppose and are keyword-vector and keyword in and

 algorithms. The rSCF-MPEKS approach is considered to be corrected as

long as includes . The correctness verification is in the following:

Note that stands for Multiplication and stands for Exclusive Or.

The server initially computes . And then, it

will check whether or not.

For ,

Therefore, the algorithm is completely correct.

5.6 The Security Analysis of rSCF-MPEKS

The rSCF-MPEKS approach possesses the characters of Ciphertext

Indistinguishability and Trapdoor Indistinguishability against Chosen Plaintext Attack

(CPA) whose security relies on the BDH assumption (Boneh and Boyen, 2004).

Trapdoor (pkSen, skRec, w) Tw = e(skRec ∙

H(pkSen, pkRec, w), pkSen)

Test (pkSen, pkRec, C, Tw) i ∈ {1,2,...,η}

t = X ⊕ pkRec T t
w = Yi

W w* SCF − MPEKS

Trapdoor

W w*

∙ ⊕

X ⊕ pkRec = t ⊕ pkRec ⊕ pkRec = t

T t
w = Yi

i ∈ {1,2,...,η}
T t

w = e(skRec ∙ H(pkSen, pkRec, w*), pkSen)t

= e(n ∙ H(pkSen, pkRec, w*), mP)t

= e(m ∙ H(pkSen, pkRec, w*), nP)t

= e(skSen ∙ H(pkSen, pkRec, w*), pkRec ∙ t)

= Yi

61

The proposed approach above is Ciphertext Indistinguishability in Game4 under

the random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is

completely difficult.

Game4: Ciphertext Indistinguishability of rSCF-MPEKS

Consider that the challenger is able to achieve the input

 of BDH assumption (Boneh and Boyen, 2004). sets up the computation

of a BDH key of , and using ’s IND-CPA as a goal.

Stage1 (Setup)

 randomly selects and subsequently returns and as the public

keys of the sender and the receiver. After that, generates the common

parameter and transmits to .

Stage2（Queries):

For simplicity, three assumptions are proposed in the following:

1. requests at most , , to the Hash function query , the Trapdoor

query and the Ciphertext query respectively.

2. does not repeat any query.

3. is not able to request a query to nor to before

requesting to .

The queries are simulated by below.

For Hash function query .

When issues a query for a tuple . To respond,

i. randomly selects a coin and then computes .

ii. randomly chooses . If , will be computed by .

Similarly, will be computed by once .

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

E α, β ∈ ZP αP βP

(pkSen, pkRec) E

cp = (g, P, G1, GT , e, H) (cp, pkSen, pkRec) A

A RH RT RC QH

QT QC

A

A (pkSen, w) QT (pkRec, w) QC

(pkSen, pkRec, w) QH

E

QH

A (pkSen, pkRec, wi)

E εi Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = βP + νiP E

μi = νiP E εi = 1
62

iii. The adversary obtains from the challenger . In addition, uploads

 into , which is initially empty.

For Trapdoor query :

If queries a Trapdoor request with a specific keyword , will calculate

, where

 is a correct Trapdoor under the sender’s public key and the receiver’s private key.

After that, returns to .

For Ciphertext query :

If queries a Ciphertext request with a specific keyword , will randomly

selects and calculates

, where is a correct Ciphertext under the

sender’s private key and the receiver’s public key. After that, returns to .

Stage3 (Challenge simulation)

 sends a keyword-vector pair to

. According to Stage2（Queries), it should be known that and

cannot be required by and similarly, and cannot be required by

. Then, returns a Searchable ciphertext as follows:

- The challenger chooses uniformly at random.

- The challenger recalls the above algorithms in order to obtain two tuples

 and . If , will output “Suspension” and

also terminate the system. Otherwise, the challenger does the following step:

- recalls the above algorithms in order to simulate function at

t i m e s f o r o b t a i n i n g t w o t u p l e s ’ v e c t o r s

 a n d

A μi E E

[(pkSen, pkRec, wi), μi, νi, εi] H_ List

QT

A w E

Tw = e(νi ∙ pkRec, pkSen) = e(βμi, pkSen) = e(skRec ∙ H(pkSen, pkRec, w), pkSen)

Tw

E Tw A

QC

A w E

t ∈ ZP Yw = e(νi ∙ pkSen, pkRec ∙ t) = e(αμi, pkRec ∙ t) =

e(skSen ∙ H(pkSen, pkRec, w), pkRec ∙ t) Yw

E Yw A

A [W0 = (w01, , w0η), W1 = (w11, , w1η)]

E (βP, w*0) (βP, w*1)

QT (αP, W*0) (αP, W*1)

QC E C

E i ∈ {1,2,...,η}
E

(w*0i, μ*0i, ν*0i, ε*0i) (w*1i, μ*1i, ν*1i, ε*1i) ε0i = ε1i = 1 E

E

E H 2(η − 1)

{(w*01, μ*01, ν*01, ε*01), . . . , (w*0i−1, μ*0i−1, ν*0i−1, ε*0i−1), (w*0i+1, μ*0i+1, ν*0i+1, ε*0i+1), . . . ,

(w*0η, μ*0η, ν*0η, ε*0η)} {(w*11, μ*11, ν*11, ε*11), . . . , (w*1i−1, μ*1i−1, ν*1i−1, ε*1i−1),
63

. I f f o r a l l

, will export “Suspension” and consequently terminate the

system. Otherwise, the challenger executes the operations below:

— The challenger randomly picks up .

— The challenger randomly picks up for generating a target

 encryption . So, selects .

T h e n , c a l c u l a t e s

.

Note that

.

Stage4（Queries):

 can continue return any queries for any keyword to as in

Stage2 (Game4), only if is not able to request to and

 to .

Stage5 (Guess)

 outputs as the guess. If , outputs “yes” and “no”

otherwise.

(w*1i+1, μ*1i+1, ν*1i+1, ε*1i+1), . . . , (w*1η, μ*1η, ν*1η, ε*1η)} ε*0j = ε*1j = 0

j = 0,...,i − 1,i + 1,...,η E

E

E δ ∈ {0,1}

E Yi ∈ {0,1}∙

SCF − MPEKS C* = (X*, Y*1 , Y*2 , . . . , Y*η) E t = γ

E C* = (X*, Y*1 , . . . , Y*i−1, Y*i+1, . . . , Y*η) = [γ ⊕ βP,

e(skSen ∙ H(pkSen, pkRec, w*1), pkRec ∙ γ) , . . . , e(skSen ∙ H(pkSen, pkRec, w*i−1),

pkRec ∙ γ), e(skSen ∙ H(pkSen, pkRec, w*i+1), pkRec ∙ γ), . . . ,

e(skSen ∙ H(pkSen, pkRec, w*η), pkRec ∙ γ)]

Yδ = e(skSen ∙ H(pkSen, pkRec, w*δ), pkRec ∙ γ) = e(αH(pkSen, pkRec, w*δ),

βP ∙ γ) = e(ανiP, βP ∙ γ) = e(νiP, P)αβγ

E w A

A [(pkSen, w*0), (pkSen, w*1)] QT

[(pkRec, W*0), (pkRec, W*1)] QC

A δ* ∈ {0,1} δ* = δ E

64

Analysis of Game4:

Stage1-5 describes the procedure and operations of the challenger . It remains to

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game4. To do so,

the first thing is to analyze that the challenger does not stop during the simulation.

Therefore, two events are formalized below:

Event6: The challenger does not stop during Stage2（Queries) and Stage4

(Queries).

Event7: The challenger does not stop during Stage3 (Challenge simulation).

Claim 6:

Proof: Consider that is not able to request the same keyword twice in and

. So, is the probability causing for suspension. From the previous definition,

 requests at most Trapdoor queries and Ciphertext queries so that the system

which does not be terminated by in all queries is at least .

Claim 7:

Proof: If , the system will be terminated by during Stage3

(Challenge simulation). So, the is the probability that does not

suspend. Apart from that, if for all , the system

will be terminated by again. Overall, the probability that the challenger who does

not terminate the system during Stage3 is at least

.

Let be an event that does not terminate in the whole game.

T h e r e f o r e , i t i s k n o w n t h a t

E

E

E

E

Pr[Event 6] ≥ (1 − 1
h + 1)RT +RC

A QT

QC
1

h + 1 E

A RT RC

E (1 − 1
h + 1)RT +RC

Pr[Event 7] ≥ (1
h + 1) ∙ (h

h + 1)2(η−1)

ε0 = ε1 = 1 E

1 − (1 − 1
h + 1)2 E

ε*0j = ε*1j = 0 j = 0,...,i − 1,i + 1,...,η

E E

(1 − 1
h + 1)2(η−1){1 − (1 − 1

h + 1)2}

≥ (1
h + 1) ∙ (h

h + 1)2(η−1)

Event E

Pr[Event] = Pr[Event 6] ∙ Pr[Event 7] =

65

. will obtain the maximum value, if

.

So, , which is around equal to

 and therefore non-negligible.

Overall, the probability that the bit correctly guessing by is listed below:

.

If is non-negligible, so is .

Therefore, rSCF-MPEKS scheme based on BDH assumption (Boneh and Boyen,

2004) satisfies Ciphertext Indistinguishability.

The proposed scheme above is Trapdoor Indistinguishability in Game5 under the

random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is completely

difficult.

Game5: Trapdoor Indistinguishability of rSCF-MPEKS

Consider that the challenger is able to achieve the input

 of BDH assumption (Boneh and Boyen, 2004). sets up the computation

of a BDH key of , and using ’s Trapdoor-IND-CPA as a goal.

(1 − 1
h + 1)RT +RC ∙ (1

h + 1) ∙ (h
h + 1)2(η−1) Pr[Event]

h + 1 = RT + RC

Pr[Event] = 1
e ∙ (1

RT + RC
) ∙ (

RT + RC − 1
RT + RC

)2(η−1)

1
e(RT + RC)

δ A

Pr[δ′� = δ] = Pr[δ′� = δ ∧ Pr[Event]] + Pr[δ′ � = δ ∧ Pr[Event]] = Pr[δ′� = δ ∣

Pr[Event]]Pr[Event] + Pr[δ′ � = δ ∣ Pr[Event]]Pr[Event] = 1
2 ∙ (1 − Pr[Event])+

(ϵC + 1
2) ∙ Pr[Event] = 1

2 + ϵC ∙ Pr[Event]

ϵC |Pr[δ′� = δ] − 1
2 |

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

66

Stage1 (Setup)

 randomly selects and subsequently returns and as the public

keys of the sender and the receiver. After that, generates the common

parameter and transmits to .

Stage2（Queries)

1. requests at most , , to the Hash function query , the Trapdoor

query and the Ciphertext query respectively.

2. does not repeat any query.

3. is not able to request a query to nor to before

requesting to .

The queries are simulated by in the following.

For Trapdoor query and Ciphertext query , ’s responses are the same as in

the proof of Ciphertext Indistinguishability of rSCF-MPEKS scheme.

For Hash function query .

When issues a query for a tuple . To respond,

i. randomly selects a coin and then computes .

ii. randomly chooses . If , will be computed by .

Similarly, will be computed by once .

iii. achieves from . In addition, uploads into

, which is initially empty.

Stage3 (Challenge simulation)

 uploads the keyword pair to . According to Stage2（Queries), it

should be known that and cannot be required by and similarly,

E α, β ∈ ZP αP βP

(pkSen, pkRec) E

cp = (g, P, G1, GT , e, H) (cp, pkSen, pkRec) A

A RH RT RC QH

QT QC

A

A (pkSen, w) QT (pkRec, w) QC

(pkSen, pkRec, w) QH

E

QT QC E

QH

A (pkSen, pkRec, wi)

E εi Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = γP + νiP E

μi = νiP E εi = 1

A μi E E [(pkSen, pkRec, wi), μi, νi, εi]

H_ List

A (w*0 , w*1) E

(βP, w*0) (βP, w*1) QT

67

 and cannot be required by . Then, returns a challenge

Trapdoor as follows:

- If , will output “Suspension” and also terminate the system.

Otherwise, calculates the Trapdoor in the following:

- . Let be an element in . Therefore,

 once .

Stage4 (Queries)

 can continue return any queries for any keyword to as in

Stage2 (Game5), only if is not able to request to and

 to .

Stage5 (Guess)

 outputs as the guess. If , outputs “yes” and “no”

otherwise.

Analysis of Game5

Stage1-5 describes the procedure and operations of the challenger . It remains to

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game5. To do so,

the first thing is to analyze that the challenger does not stop during the simulation.

Therefore, two events are formalized below:

Event8: The challenger does not stop during Stage2（Queries) and Stage4

(Queries).

Event9: The challenger does not stop during Stage3 (Challenge simulation).

(αP, W*0) (αP, W*1) QC E

Tw

ε0 = ε1 = 1 E

E

Tδ = Z ∙ e(αP, βP)νi Z GT Tδ =

e(P, P)αβ(γ+νi) = e(μi, (αβ)P) Z = e(P, P)αβγ

E w A

A [(pkSen, w*0), (pkSen, w*1)] QT

[(pkRec, W*0), (pkRec, W*1)] QC

A δ* ∈ {0,1} δ* = δ E

E

E

E

E

68

Claim 8:

The proof of Claim 8 is same as the proof of Claim 6, so it is omitted here.

Claim 9:

Proof: If , the system will be terminated by during Stage3

(Challenge simulation). So, the probability that the system does not be terminated by

in Stage3 is .

Let be an event that does not terminate in the whole game. Therefore, it

is known that

 will reach the maximum value if .

So, ,

which is around equal to and therefore non-negligible.

Overall, the probability that the bit correctly guessing by is listed below:

.

If is non-negligible, so is .

Therefore, rSCF-MPEKS scheme based on BDH assumption (Boneh and Boyen,

2004) satisfies Trapdoor Indistinguishability.

Pr[Event8] ≥ (1 − 1
h + 1)RT +RC

Pr[Event 9] ≥ 1 − (1 − 1
h + 1)2

ε0 = ε1 = 1 E

E

1 − (1 − 1
h + 1)2

Event′� E

Pr[Event′ �] = Pr[Event8] ∙ Pr[Event 9] = (1 − 1
h + 1)RT +RC ∙ (1 − (1 − 1

h + 1)2)

Pr[Event′ �] 1
h + 1 = 1 −

RT + RC
RT + RC + 2

Pr[Event′ �] = (
RT + RC

RT + RC + 2)(RT +RC)/2 ∙ 2
RT + RC + 2

2
(RT + RC)e

δ A

Pr[δ′ � = δ] = Pr[δ′� = δ ∧ Pr[Event′ �]] + Pr[δ′� = δ ∧ Pr[Event′�]] = Pr[δ′� = δ ∣

Pr[Event′�]]Pr[Event′�] + Pr[δ′ � = δ ∣ Pr[Event′�]]Pr[Event′ �] = 1
2 ∙ (1 − Pr[Event′�])+

(ϵT + 1
2) ∙ Pr[Event′�] = 1

2 + ϵT ∙ Pr[Event′�]

ϵT |Pr[δ′� = δ] − 1
2 |

69

5.7 The Efficiency and Performance of rSCF-MPEKS

This part describes the security comparison between the proposed PEKS scheme

(rSCF-MPEKS) and the other several approaches [PEKS (Boneh et al., 2004); SCF-

PEKS (Beak et al., 2008); dPEKS (Rhee et al., 2010); PAEKS (Huang and Li, 2018);

MPEKS (Beak et al., 2008); SCF-MPEKS (Wang et al., 2016); tSCF-MPEKS (Ma and

Hassan, 2018)]. Besides, the performance and efficiency of these PEKS approaches are

presented in the following part. Table 7 below shows the functionalities in different

PEKS mechanisms.

TABLE 7. A COMPARISON OF THE FUNCTIONALITIES

CT Ind, Trap Ind, MS and IKGA are the abbreviation of Ciphertext

Indistinguishability, Trapdoor Indistinguishability, Multi-keywords Search and Inside

Keyword Guessing Attack respectively. As seen from Table 7, the proposed scheme is

much secure compared with the others. More specially, all of them except the proposed

scheme and PAEKS are vulnerable to IKGA. Although PAEKS scheme prevents IKGA,

it only aims for solving Single Keyword Search problem instead of supporting Multiple

Keywords Search so that it may not be applied to the general public. To conclude, the

proposed scheme is more secure and has better performance than its counterparts.

70

Table 8 below provides a comparison of computation efficiency between the

proposed approach (rSCF-MPEKS) and the others.

TABLE 8. A COMPARISON OF THE COMPUTATION EFFICIENCY

According to Table 8, the symbols , and are the abbreviation of a modular

exponentiation, a collision resistant hash function and a bilinear pairing respectively.

The PAEKS and proposed schemes which resist IKGA have the similar efficiency in

PEKS algorithm. But the proposed scheme has better computation efficiency in Test

algorithm than PAEKS scheme mainly because it only executes one XOR operation and

one modular exponentiation in Test stage.

Table 9 shows the communication efficiency between the proposed scheme and

its counterparts.

TABLE 9. A COMPARISON OF THE COMMUNICATION EFFICIENCY

E H P

71

According to Table 9, the symbols of , and devote the length of

element in group , and . Besides, denotes the length of security parameters. It

is clear that the proposed approach has better communication efficiency than some of its

counterparts. For instance, comparing with dPEKS and tSCF-MPEKS schemes, the

proposed scheme is efficient in and .

Table 10 below illustrates the simulation platform of rSCF-MPEKS scheme. Note

that the proposed scheme is programmed by JAVA and JPBC Library (Angelo and

Vincenzo, 2011).

TABLE 10. THE SIMULATION PLATFORM FOR rSCF-MPEKS

Figure 21 below compares , , , and

generation algorithms between the tSCF-MPEKS and the proposed approaches by 1000

times computer simulation. Every 100 times computer simulation is called one round.

In generation algorithm, the proposed approach is slightly efficient than the

tSCF-MPEKS system. In generation algorithm, these two schemes are

similar. However, the proposed scheme witnesses a high efficiency in ,

 and generation algorithms comparing with the tSCF-MPEKS scheme.

|G1 | |GT | |ZP |

G1 GT ZP n

|PK | |Tw |

KeyGenS KeyGenR PEKS Trapdoor Test

KeyGenS

KeyGenR

PEKS

Trapdoor Test

72

FIGURE 21. A COMPARISON BETWEEN TSCF-MPEKS AND RSCF-MPEKS

5.8 The Key Code of rSCF-MPEKS

This part shows the key codes of the proposed scheme from parameters

initialisation, Sender’s and Receiver’s key pairs generations, Searchable ciphertext

(PEKS) generation, Trapdoor request and Test algorithm.

The proposed approach is programmed by JAVA using type A pairing in JPBC

Library (Angelo and Vincenzo, 2011) and the pairing parameters initialization is

described in Figure 22.

73

FIGURE 22. THE PARAMETERS INITIALIZATION IN RSCF-MPEKS

The sender’s key pair generation and receiver’s key pair generation are described

in Figure 23 and Figure 24.

FIGURE 23. SENDER’S KEY PAIR GENERATION IN RSCF-MPEKS

FIGURE 24. RECEIVER’S KEY PAIR GENERATION IN RSCF-MPEKS

74

The following Figure 25 describes the Searchable ciphertext (SCF-MPEKS)

generation. In order to simplify the code, let the number of keywords be three.

FIGURE 25. SEARCHABLE CIPHERTEXT (SCF-MPEKS) GENERATION IN RSCF-MPEKS

Figure 26 illustrates the Trapdoor request generation by using sender’s public key

, receiver’s private key and a keyword .

pkSen skRec w

75

FIGURE 26. TRAPDOOR REQUEST GENERATION IN RSCF-MPEKS

The final figure (Figure 27) is Test algorithm, which describes the keywords

comparison between the Searchable ciphertext and the Trapdoor request.

FIGURE 27. TEST ALGORITHM IN RSCF-MPEKS

76

6. Public Key Encryption with Multi-keywords Search
using Mamdani System

6.1 Introduction

According to the section 1.4, it is known that almost all current PEKS and

MPEKS schemes cannot deal with imprecise keywords, such as “latest”, “newest”, etc.

Therefore, this chapter gives a formal definition of MPEKS scheme, which incorporates

with Mamdani Fuzzy Inference System to solve Fuzzy Keyword Search problem.

Besides, the proposed scheme is able to resist Off-line Keyword Guessing Attack

(OKGA). More specially, this chapter firstly defines a new PEKS approach namely

“Public Key Encryption with Multi-keywords Search using Mamdani System (m-

PEMKS)” and the security verification models. Then, a concrete construction of m-

PEMKS is proposed following by the correctness analysis, security verification and

efficiency and performance analysis.

6.2 The Outline of m-PEMKS

Consider a situation: a bank manager would like to search the “latest” financial

report. But, what is the “latest”? A week ago? A month ago? A year ago? Therefore,

almost all current PEKS systems are not able to solve imprecise keyword search. This

thesis provides a way that incorporates with Fuzzy Logic method into Searchable

Cryptography to solve Fuzzy Keyword Search issue, called “Public Key Encryption

with Multi-keywords Search using Mamdani System (m-PEMKS)". The m-PEMKS

contains eight polynomial time algorithms as follows:

1. : Import , a common parameter is then created.

2. : Import , a global parameter is then created.

KeyGenParam−PEKS(1n) 1n cp

KeyGenParam−RSA(k) k gp

77

3. : Import , a public and a private PEKS keys

 of the server are then created.

4. : Import , a public and private RSA keys

 of the server are then created.

5. : Import , a public and private PEKS keys

 of the receiver are then created.

6. : Import the server’s

PEKS public key , the receiver’s PEKS public key , the server’s

RSA public key and a keyword-vector

. An encryption is subsequently produced in the following:

.

7. : Import the server’s PEKS

public key , the receiver’s PEKS private key , the server’s RSA

p u b l i c k e y a n d a k e y w o r d - v e c t o r

. A request is subsequently created in the following:

.

8. : The algorithm contains two steps, which

are called Searchable Match and Fuzzy Match.

- For Searchable Match, input the server’s PEKS private key , the

Searchable ciphertext and

KeyGenSer−PEKS(cp) cp

(pkSer−PEKS, skSer−PEKS)

KeyGenSer−RSA(k) gp

(pkSer−RSA, skSer−RSA)

KeyGenRec−PEKS(cp) cp

(pkRec−PEKS, skRec−PEKS)

Encr ypt ion(pkSer−PEKS, pkRec−PEKS, pkSer−RSA, W)

pkSer−PEKS pkRec−PEKS

pkSer−RSA W = (Wpart−1; Wpart−2) =

[(w1, w2, . . . , wη−1); wη]

E = (E1,E 2) = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wpart−1) | | RSA(pkSer−RSA,

Wpart−2)

Request (pkSer−PEKS, skRec−PEKS, pkSer−RSA, W*)

pkSer−PEKS skRec−PEKS

pkSer−RSA W* = (W*part−1; W*part−2) =

[(w*1 , w*2 , . . . , w*ι−1); w*ι]

R = (R1,R2) = Trapdoor (pkSer−PEKS, skRec−PEKS, W*part−1) | |RSA(pkSer−RSA,

W*part−2)

Test (E, R, skSer−MPEKS, skSer−RSA)

skSer−PEKS

E1 = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wpart−1)

78

t h e T r a p d o o r q u e r y . I f

, mark it as the Fuzzy Match input. Then, the server repeats

Searchable Match until traversing all the encrypted messages stored in its database.

- If the server has the marked input(s), it will run Fuzzy Match search. Otherwise,

the system will be terminated by the server.

- For Fuzzy Match, input the server’s RSA private key , the RSA

e n c r y p t i o n a n d t h e R S A r e q u e s t

. Then, the server firstly decrypts and to

obtain and . Let and be the condition and the

conclusion of the rules in Mamdani system. After running Mamdani system, the

server sends a response to the receiver.

6.3 The Security Models of m-PEMKS

The security of m-PEMKS system relies on two parts. The first one is IND-CPA

and Trapdoor-IND-CPA applying in Exact keywords search. Another one is the

difficulty of factoring large integers, which is used in Fuzzy keyword search.

Due to the properties of Mamdani system, the input for Mamdani system must be

plaintext. However, it is no meaningful to verify the security on the Fuzzy Keyword

Search part. More specially, suppose the fuzzy keyword is “highest”. Even though the

cracker knows that the fuzzy keyword is “highest”, he/she could not know more details

(such as “highest building”, “highest person”, “highest temperature”, etc.).

This part only focuses on the security of Exact Keywords Search in m-PEMKS

system and the proposed security models are listed below:

R1 = Trapdoor (pkSer−PEKS, skRec−PEKS, W*part−1)

W*part−1 ⊆ Wpart−1

skSer−RSA

E 2 = RSA(pkSer−RSA, Wpart−2)

R2 = RSA(pkSer−RSA, W*part−2) E 2 R2

Wpart−2 W*part−2 Wpart−2 W*part−2

79

As discussed in (Baek et al., 2008; Wang et al., 2016; Ma and Kazemian, 2018),

m-PEMKS is IND-CPA and Trapdoor-IND-CPA.

The definition of IND-CPA security means that the untrusted server may not

determine which Searchable ciphertext has which encrypted keyword, if the Trapdoor

query that contains the given keyword has not been obtained by the server (Game6).

Besides, if the server’s private key has not been obtained by the untrusted receiver, he/

she could not estimate whether the SCF-MPEKS ciphertext () and the Trapdoor

request () contain the same keyword or not, even though all Trapdoors for any

keyword are intercepted (Game7).

The definition of Trapdoor-IND-CPA security means that an outside adversary

cannot observe any difference between Trapdoors for any two distinct keywords

(Game8).

Therefore, the IND-CPA and Trapdoor-IND-CPA for m-PEMKS are formalized

as follows: Suppose is an adversary and is a challenger.

Game6: Let suppose to be an untrusted server.

S t a g e 1 (S e t u p) : , a n d

 are called by in order to generate a common parameter , the

key pairs and of the server and the

receiver. Then, sends , , and to .

Stage2（Trapdoor queries): Adaptively, is able to return any Trapdoor query

 for any keyword-vector .

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r

 is sent from to . It is known that

E1

R1

A E

A

KeyGenParam−PEKS(1n) KeyGenSer−PEKS(cp)

KeyGenRec−PEKS(cp) E cp

(pkSer−PEKS, skSer−PEKS) (pkRec−PEKS, skRec−PEKS)

E cp pkSer−PEKS skSer−PEKS pkRec−PEKS A

E

T*W W* = (w*1 , , w*ι)

[W0 = (w01, , w0η), W1 = (w11, , w1η)] A E W0

80

and cannot be requested in Stage2 (Game6). Once obtains the keyword-vector

pair, the algorithm will be called by for generating a Searchable

ciphertext , where .

Finally, will be sent back to .

Stage4 (Trapdoor queries): can continue return any Trapdoor query for

any keyword-vector to as in Stage2 (Game6), only if .

Stage5 (Guess): guesses and wins Game6, if .

Game7: Let suppose to be an untrusted receiver.

S t a g e 1 (S e t u p) : , a n d

 are called by in order to generate a common parameter , the

key pairs and of the server and the

receiver. Then, sends , , and to .

Stage2 (Chal lenge s imulat ion): A target keyword-vector pai r

 is sent from to . It is known that

and are not able to be requested during Test algorithm, on which . Once

the challenger obtains the pair, the algorithm will be called by for

generating a Searchable ciphertext ,

where . Finally, will be sent back to .

Stage3 (Guess): guesses and wins Game7, if .

W1 E

SCF − MPEKS E

C = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wξ) ξ ∈ {0,1}

C A

E T*W

W* A W* ≠ W*0 , W*1

A ξ* ∈ {0,1} ξ* = ξ

A

KeyGenParam−PEKS(1n) KeyGenSer−PEKS(cp)

KeyGenRec−PEKS(cp) E cp

(pkSer−PEKS, skSer−PEKS) (pkRec−PEKS, skRec−PEKS)

E cp pkRec−PEKS skRec−PEKS pkSer−PEKS A

[W0 = (w01, , w0η), W1 = (w11, , w1η)] A E Tw0i

Tw1i
i = 1,...,ι

E SCF − MPEKS E

C = SCF − MPEKS(pkSer−PEKS, pkRec−PEKS, Wξ)

ξ ∈ {0,1} C A

A ξ* ∈ {0,1} ξ* = ξ

81

’s advantage to win Game6 and Game7 is listed below:

So, the m-PEMKS model is considered to be IND-CPA secure as long as

 is trivial.

Game8: Let suppose to be an outside attacker.

S t a g e 1 (S e t u p) : , a n d

 are called by in order to generate a common parameter , the

key pairs and of the server and the

receiver. Then, sends , , to and keeps ,

 from .

Stage2（Trapdoor queries): Adaptively, is able to return any Trapdoor query

 for any keyword-vector to .

Stage3 (Chal lenge s imulat ion): A target keyword-vector pai r

 is sent from to . It is known that

and cannot be requested in Stage2 (Game8). Once obtains the keyword-vector

pair, the algorithm will be called by the challenger for generating a

Trapdoor query , where .

Finally, will be sent back to .

Stage4 (Trapdoor queries): can continue return any Trapdoor query for

any keyword-vector to as in Stage2 (Game8), only if .

Stage5 (Guess): guesses and wins Game8, if .

A

AdvIND−CPA
m−PEMKS,Ai

(k) = |Pr[ξ* = ξ] − 1/2 | . (i = 6,7)

AdvIND−CPA
m−PEMKS,Ai

(k)

A

KeyGenParam−PEKS(1n) KeyGenSer−PEKS(cp)

KeyGenRec−PEKS(cp) E cp

(pkSer−PEKS, skSer−PEKS) (pkRec−PEKS, skRec−PEKS)

E cp pkSer−PEKS pkRec−PEKS A skSer−PEKS

skRec−PEKS A

E

T*W W* = (w*1 , , w*ι) A

[W*0 = (w*01, , w*0ι), W*1 = (w*11, , w*1ι)] A E W*0

W*1 E

Trapdoor E

TW = Trapdoor (pkSer−PEKS, skRec−PEKS, W*ξ) ξ ∈ {0,1}

TW A

E T*W

W* A W* ≠ W*0 , W*1

A ξ* ∈ {0,1} ξ* = ξ

82

’s advantage to win Game8 is listed below:

Therefore, the m-PEMKS model is considered to be Trapdoor-IND-CPA secure

as long as is trivial.

6.4 The Fuzzy Inference System of m-PEMKS

Almost all current PEKS schemes will report errors, if the keyword for searching

is blur. On the contrary, m-PEMKS scheme incorporates with the fuzzy logic technique

to solve fuzzy keyword search problem. To simplicity, let’s take an example about

searching “latest” financial reports. So, Figure 28 illustrates the fuzzy inference system

structure of this example that is used in m-PEMKS scheme.

FIGURE 28. THE STRUCTURE OF FUZZY INFERENCE SYSTEM

Note that the fuzzy system in m-PEMKS scheme is implemented by JAVA using

jFuzzyLogic (Cingolani et al., 2012) package. From Figure 28, it can be seen that the

inputs and outputs for the fuzzy system are the crisp values and the membership

functions for both fuzzification and defuzzification are defined for every linguistic term

using TERM statement that is followed by a function definition. Functions are defined

as piece-wise linear functions using a series of points .

According to Section 6.2, the bank manger would like to search the “latest” financial

A

AdvTrap−IND−CPA
m−PEMKS,A8

(k) = |Pr[ξ* = ξ] − 1/2 | .

AdvTrap−IND−CPA
m−PEMKS,A8

(k)

(A0, B0), (A1, B1), . . . , (Am, Bm)

83

statements so that the fuzzification could apply trapezoidal and triangular membership

functions, for instance, TERM defines the

trapezoidal membership function. Apart from that, the defuzzification method applies

Center of Gravity (COG) and each rule used in this fuzzy inference system is defined by

“IF condition THEN conclusion”. More details can be found in Figure 38.

Also note that the PhD thesis is mainly on cryptography area and the design of

fuzzy inference system (such as why defuzzification method uses COG? Why use

trapezoidal membership functions? etc.) is not the key point. The purpose of m-PEMKS

scheme is to show that the searchable cryptography (PEKS) could connect and apply

with fuzzy logic to solve the fuzzy keyword search.

6.5 The Concrete Construction of m-PEMKS

1. : Suppose is an additive cyclic group and is a

multiplicative cyclic group. Let be a random generator of and a prime number

 be the order of . A bilinear pairing is considered to be a map

. Suppose and are two

particular hash functions. Therefore, a common parameter

 can be achieved by the algorithm.

2. : Randomly select prime numbers , where .

Then, calculate and .

3. : The server selects uniformly at random and

then calculates . In addition, the server also randomly selects . So,

 and are

the server’s public and private PEKS keys.

Date := {(1,0), (4,1), (6,1), (9,0)}

KeyGenParam−PEKS(1n) G1 GT

P G1

g ≥ 2k G1

e : G1 × G1 → GT H : {0,1}⋆ → G1 H* : GT → {0,1}*

cp = {g, P, G1, GT , e,

H, H*} KeyGenParam−PEKS(1n)

KeyGenParam−RSA(k) ℙ 𝕍 ℙ ≠ 𝕍

ℤ = ℙ × 𝕍 ϕ(ℤ) = (ℙ − 1) × (𝕍 − 1)

KeyGenSer−PEKS(cp) m ∈ ZP

M = mP K ∈ G1

pkSer−PEKS = (pkSer−PEKS1, pkSer−PEKS2) = (cp, M, N) skSer−PEKS = (cp, m)

84

4. : The server randomly se lec ts , where

. Next, the server calculates by .

 and are the server’s public and private RSA keys.

5. : The receiver selects uniformly at random and

then calculates . So, and are the

receiver’s public and private PEKS keys.

6. : The sender randomly

picks up , and then calculates

a n e n c r y p t i o n

 w h e r e ,

.

7. : The receiver randomly

selects , and then calculates

.

8. : For and ,

where .

i. For Searchable Match:

 Firstly, the server computes

 ,

KeyGenSer−RSA(k) f ∈ ZI

gcd(ϕ(ℤ), f) = 1,1 < f < ϕ(ℤ) l l ≡ f −1(modϕ(ℤ))

pkSer−RSA = (f, ℤ) skSer−RSA = (l, ℤ)

KeyGenRec−PEKS(cp) n ∈ ZP

N = nP pkRec−PEKS = (cp, N) skRec−PEKS = (cp, n)

Encr ypt ion(pkSer−PEKS, pkRec−PEKS, pkSer−RSA, W)

t ∈ ZP W = (Wpart−1; Wpart−2) = [(w1, w2, . . . , wη−1); wη]

E = (E1, E2) = [(X, Y1, Y2, . . . Yη−1); Yη] = [(tM, H*(V1), H*(V2),

. . . , H*(Vη−1)); (wη) f mod ℤ], V1 = e(H(w1), N)t V2 = e(H(w2), N)t,

. . . , Vη−1 = e(H(wη−1), N)t

Request (pkSer−PEKS, skRec−PEKS, pkSer−RSA, W*)

t* ∈ ZP W* = (W*part−1; W*part−2) = [(w*1 , w*2 , . . . , w*ι−1); wι]

R = (R1, R2) = [(Q, T1, T2, . . . , Tι−1), Tι] = [(e(M, t*K), nH(w*1) ⊕ e(M, K)t*+n,

nH(w*2) ⊕ e(M, K)t*+n, . . . , nH(w*ι−1) ⊕ e(M, K)t*+n); (w*ι) f mod ℤ]

Test (E, R, skSer−MPEKS, skSer−RSA) i ∈ {1,2,...,η} j ∈ {1,2,...,ι}

j ≤ i

Tw1
= T1 ⊕ Q ∙ e(mK, N) = nH(w*1)

Tw2
= T2 ⊕ Q ∙ e(mK, N) = nH(w*2), . . . ,

Twj = Tj ⊕ Q ∙ e(mK, N) = nH(w*j), . . . ,

85

 .

Then, the server tests whether or not. If “yes”, mark it as the

Fuzzy Match input. Next, the server repeats Searchable Match until traversing all the

encrypted messages stored in its database.

ii. If the server obtains the marked input(s), it will run Fuzzy Match search.

Otherwise, the system will be terminated by the server.

iii. For Fuzzy Match (More details are in section 6.4): the server firstly decrypts

 and as and respectively. Let

 and be the condition and the conclusion of the rules in Mamdani Fuzzy Inference

System. After running Mamdani Fuzzy Inference System, the server replies to the

receiver in the following.

Without loss of generality, suppose “ ” stands for a set of DATE while “ ” is

the keyword “latest” . Therefore, three rules can be defined as follows:

Rule1: IF DATE is oldest, THEN the encrypted file is unnecessary.

Rule2: IF DATE is newest, THEN the encrypted file is necessary.

Rule3: IF DATE is either new or old, THEN the encrypted file may necessary or

may unnecessary.

Twι−1
= Tι−1 ⊕ Q ∙ e(mK, N) = nH(w*ι−1)

H*[e(Twj,
X
m

)] = Yi

wη w*ι {[(wη) f mod ℤ]lmod ℤ} {[(w*ι) f mod ℤ]lmod ℤ}

wη w*ι

wη w*ι

86

FIGURE 29. THE STRUCTURE OF M-PEMKS

6.6 The Correctness of m-PEMKS

i. For Searchable Match:

For and , the correctness of the proposed

approach is easily verified as follows:

Note that stands for Multiplication and stands for Exclusive Or.

According to Bilinear pairing, note also that and

.

Therefore, firstly,

i ∈ {1,2,...,η − 1} j ∈ {1,2,...,ι − 1}

∙ ⊕

e(M, K) = e(K, M)

e(M, K)t*+n = e(t*M, nK) = e(n M, t*K)

Twj = Tj ⊕ Q ∙ e(mK, N) = nH(w*j)

= nH(w*j) ⊕ e(M, K)t*+n ⊕ e(M, t*K) ∙ e(mK, N)

= nH(w*j) ⊕ e(M, K)t*+n ⊕ e(M, t*K) ∙ e(M, nK)

87

Secondly,

ii. For Fuzzy Match:

This algorithm is still correct due to the properties of Mamdani system.

6.7 The Security Analysis of m-PEMKS

The m-PEMKS approach possesses the characters of Ciphertext

Indistinguishability and Trapdoor Indistinguishability against Chosen Plaintext Attack

(CPA) whose security relies on BDH and 1-BDHI assumptions (Boneh and Boyen,

2004).

The proposed approach above could be regarded as IND-CPA secure in Game6

under the random oracle model, if the BDH assumption (Boneh and Boyen, 2004) is

completely difficult.

Game6: Let suppose to be an untrusted server.

Consider that the challenger is able to achieve the input

 of BDH assumption (Boneh and Boyen, 2004). sets up the computation

of a BDH key of , and using ’s IND-CPA as a goal. Apart from

that, requests at most and times hash function requests.

= nH(w*j) ⊕ e(M, K)t*+n ⊕ e(M, K)t*+n

= nH(w*j)

H*[e(Twj,
X
m

)] = H*[e(nH(w*j),
tM
m

)]

= H*[e(nH(w*j),
ntP

n
)]

= H*[e(H(w*j), N)t]

= Yi

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*

88

Stage1 (Setup)

 chooses in the beginning. Then, chooses uniformly at

random and also computes . In addition, randomly selects . Finally,

the following parameters are returned by , which are the common parameter

, the server’s public/private PEKS key pair and

, and the receiver’s public PEKS key . Apart from that, two particular

hash functions and are selected by in the following:

- is able to request a keyword to function at any time. After that,

traverses a tuple from that is initially empty. If the tuple exists,

will return to . Otherwise, the challenger executes the details below:

i. The challenger randomly selects a coin and then computes

.

ii. The challenge randomly chooses . If , will be

computed by . Similarly, will be computed by once .

iii. receives from . Meanwhile, adds into .

- is able to request to function at any time. Later on, traverses a tuple

 from . If the tuple exists, will return to . Otherwise, randomly

selects and replies to . Finally, adds into .

Stage2（Trapdoor queries)

If queries a Trapdoor request with a specific keyword-vector

, will do the operations below:

- The challenger recalls the above algorithms in order to simulate function for

generating a tuple . If , will output “Suspension” and also

terminate the system. Otherwise, the challenger executes the following steps.

- randomly chooses and calculates .

E N = αP E m ∈ ZP

M = mP E K ∈ G1

E

(g, P, G1, GT , e, H, H*) (cp, M, K)

(cp, m) (cp, N)

H H* E

A wi H E

(wi, μi, νi, εi) H_ List E

H(wi) = μi A E

E εi

Pr[εi = 0] = 1
h + 1

E νi ∈ ZP εi = 0 μi = βP + νiP

E μi = νiP E εi = 1

A μi E E (wi, μi, νi, εi) H_ List

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi) H*_ List

A Wi = (w1, w2

, . . . wι) E

E H

(wi, μi, νi, εi) εi = 0 E

E

E t* ∈ ZP Z = e(M, t*K)
89

- t h e n c o m p u t e s

. So, .

Stage3 (Challenge simulation)

The challenger sends a keyword-vector pair

 to . Once the challenger obtains the keyword-vector pair, he/

she will do the following steps:

- chooses uniformly at random.

- recalls the above algorithms in order to simulate function for obtaining two

tuples and . If and are equal to , will output

“Suspension” and also terminate the system. Otherwise, the challenger does the

following operations:

i. recalls above algorithms again in order to simulate function at

t i m e s f o r s e a r c h i n g t w o t u p l e s ’ v e c t o r s

 a n d

. If for all , the challenger

will export “Suspension” and terminate the system. Otherwise, the challenger does

the following operations:

— The challenger randomly picks up .

— The challenger randomly picks up and then generates a target

 ciphertext

.

E T1 = ν1N ⊕ e(M, K)t*+α = ν1αP ⊕ e(M, K)t*+α

= xμ1 ⊕ e(M, K)t*+α = αH(w1) ⊕ e(M, K)t*+α, T2 = αH(w2) ⊕ e(M, K)t*+α

, . . . , Tι = αH(wι) ⊕ e(M, K)t*+α TW = (Q, T1, T2, . . . , Tι)

A [W0 = (w01, , w0η),

W1 = (w11, , w1η)] E E

E i ∈ {1,2,...,η}
E H

(w*0i, μ*0i, ν*0i, ε*0i) (w*1i, μ*1i, ν*1i, ε*1i) ε*0i ε*1i 1 E

E

E H 2(η − 1)

{(w*01, μ*01, ν*01, ε*01), . . . ,

(w*0i−1, μ*0i−1, ν*0i−1, ε*0i−1), (w*0i+1, μ*0i+1, ν*0i+1, ε*0i+1) , . . . , (w*0η, μ*0η, ν*0η, ε*0η)}

{(w*11, μ*11, ν*11, ε*11), . . . , (w*1i−1, μ*1i−1, ν*1i−1, ε*1i−1), (w*1i+1, μ*1i+1, ν*1i+1, ε*1i+1), . . . ,

(w*1η, μ*1η, ν*1η, ε*1η)} ε*0j = ε*1j = 0 j = 0,...,i − 1,i + 1,...,η E

E

E δ ∈ {0,1}

E Yi ∈ {0,1}∙

SCF − MPEKS C* = (X*, Y*1 , Y*2 , . . . , Y*η) = (γM, H*[B1], H*[B2], . . . ,

H*[Bη])

90

So,

.

Note that

.

Note also that

Stage4 (Trapdoor queries)

 can continue return any Trapdoor query for any keyword-vector to as

in Stage2 (Game6), only if .

Stage5 (Guess)

 outputs as the guess. Then, chooses from function and

replies the guessed BDH key .

Analysis of Game6

Stage1-5 describes the procedure and operations of the challenger . It remains to

show that BDH assumption (Boneh and Boyen, 2004) is satisfied in Game6. To do so,

the first thing is to analyze that the challenger does not stop during the simulation.

Therefore, three events are formalized below:

Event10: The challenger does not stop during Stage2（Trapdoor queries) and

Stage4 (Trapdoor queries).

Event11: The challenger does not stop during Stage3 (Challenge simulation).

C* = (X*, Y*1 , . . . , Y*i−1, Y*i+1, . . . , Y*η) = (γM, H*[e(H(wδ1
), N)γ], . . . ,

H*[e(H(wδi−1
), N)γ], H*[e(H(wδi+1), N)γ], . . . , H*[e(H(wδη), N)γ])

Bi = e(H(wδi), N)γ = e(βP + νδiP, αP)γ = e(βP, αP)γ ∙ e(νδiP, αP)γ =

e(P, P)αβγ ∙ e(γP, αP)νδi

e(νδiP, αP)γ = e(νδiP, N)γ = e(H(wδi), N)γ

E T*W W* A

W* ≠ W*0 , W*1

A δ* ∈ {0,1} E s H*

sδ*i

e(γP, αP)
νδ*i

E

E

E

E

91

Event12: The adversary is not able to request either or

.

Claim 10:

Proof: Consider that cannot request the same keyword twice in Stage2 and

Stage4. So, is the probability causing for suspension. From the previous

definition, queries at most Trapdoor requests and the keyword-vector in Trapdoor

has elements so that the probability that the system which does not be terminated by

in all Trapdoor queries is at least .

Claim 11:

Proof: If , the system will be terminated by during Stage3

(Challenge simulation). So, the is the probability that does not

suspend. In addition, if for all , the system will be

terminated by . Overall, the probability that the system which does not be terminated

by during Stage3 is at least

.

Claim 12:

Proof: As discussed in (Baek et al., 2008), let for be an

event that the adversary can correctly guess the keyword of the left part of a “hybrid”

 encryption formed with , coordinates from followed by

coordinates from . So,

.

A H*(e(H(w*0i), N)γ)

H*(e(H(w*1i), N)γ)

Pr[Event10] ≥
1
eι

A

1
h + 1 E

A h

ι E

[(1 − 1
h + 1)h]ι ≥ 1

eι

Pr[Event11] ≥ (1
h + 1) ∙ (h

h + 1)2(η−1)

ε0 = ε1 = 1 E

1 − (1 − 1
h + 1)2 E

ε*0j = ε*1j = 0 j = 0,...,i − 1,i + 1,...,η

E

E (1 − 1
h + 1)2(η−1){1 − (1 − 1

h + 1)2} ≥ (1
h + 1) ∙

(h
h + 1)2(η−1)

Pr[Event12] ≥ 2ξ

Hybr idr r ∈ {1,2,...,η}
A

SCF − MPEKS r wβ (η − r)

w1−β Pr[Event12] = 2Ση
j=1(Pr[Hybr idr] − Pr[Hybr idr−1])

=2(Pr[Hybr idr] − Pr[Hybr id0]) = 2ξ

92

Overall, due to queries either or being

at least , the probability that querying is at least . Therefore,

the success probability achieved by is , which is

negligible.

The proposed scheme above could be regarded as IND-CPA secure in Game7

under the random oracle model, if the 1-BDHI assumption (Boneh and Boyen, 2004) is

completely difficult.

Game7: Let suppose to be an untrusted receiver.

Consider that is able to achieve the input of 1-BDHI

assumption (Boneh and Boyen, 2004). sets up the computation of a 1-BDHI key

 of using ’s IND-CPA as a goal. Apart from that, requests at most

and times hash function requests.

Stage1 (Setup)

 selects and in the beginning. Then, randomly chooses

 and also computes . After that, the following parameters are returned by

, which are the common parameter , the server’s public PEKS

key , and the receiver’s public/private PEKS key pair and .

Apart from that, two specific hash functions and are selected by in the

following:

— is able to request a keyword to function at any time. Later on,

traverses a tuple from . If the tuple exists, will return to .

Otherwise, randomly chooses and computes . After that, responds

 to .

A H*(e(H(w*0i), N)γ) H*(e(H(w*1i), N)γ)

2ξ A H*(e(H(w*ji), N)γ) ξ

ξ* E (h
h + 1)2(η−1) ∙ ξ

eι(h + 1)h*

A

E (g, P, G1, GT , e, αP)

E

e(P, P) 1
α αP A A h

h*

E M = αP K ∈ G1 E

n ∈ ZP N = nP

E (g, P, G1, GT , e, H, H*)

(cp, M, K) (cp, N) (cp, n)

H H* E

A wi H E

(wi, μi, vi) H_ List E μi A

E νi ∈ ZP μi = νiP E

μi A
93

— is able to request to function at any time. Later on, traverses a tuple

 from . If the tuple exists, will return to . Otherwise, randomly

selects and replies to . Finally, adds into .

Stage2 (Challenge simulation)

 uploads a keyword-vector pair [,] to ,

where and . Once the challenger

obtains the pair, he/she will do the following steps:

— The challenger randomly picks up and .

— The challenger recalls the algorithm for generating the

Searchable ciphertext

.

So,

.

It is known that .

Stage3 (Guess)

The adversary exports as the guess. Then, returns the guessed 1-

BDHI key .

A Vi H* E

(Vi, Yi) H*_ List E Yi A E

Yi ∈ {0,1}∙ Yi A E (Vi, Yi) H*_ List

A (W*0i, F*0i, f *0i, θ*0i) (W*1i, F*1i, f *1i, θ*1i) E

W*0 = (w01, w02, . . . , w0η) W*1 = (w11, w12, . . . , w1η) E

E Yi ∈ {0,1}∙ δ ∈ {0,1}

E SCF − MPEKS

C* = (X*, Y*1 , Y*2 , . . . , Y*η) = (ψ αP, H*[B1], H*[B2], . . . ,

H*[Bη])

C* = (X*, Y*1 , Y*2 , . . . , Y*η) = (ψ αP, H*(e(H(wδ1
), N)ψ), H*(e(H(wδ2

), N)ψ),

. . . , H*(e(H(wδη), N)ψ))

Bi = e(H(wδ*i
), N)ψ) = e(νiP, nP)ψ = e(P, P)ψ⋅νin

A δ* ∈ {0,1} E

ψ = 1
α ⋅ νin

94

Analysis of Game7

Stage1-3 describes the procedure and operations of the challenger . It remains to

show that 1-BDHI assumption (Boneh and Boyen, 2004) is satisfied in Game7. To do

so, the first thing is to analyze that the challenger does not stop during the simulation.

Therefore, two events are formalized below:

Event13: The challenger does not stop during Stage2 (Challenge simulation).

Event14: The adversary is not able to request either or

.

Claim 13:

Proof: There is no limitation to illustrate that the system will be terminated by the

challenger during Stage2. Thus, it is clear that .

Claim 14:

Proof: If happens, it will show that the bit pointing out

whether the Searchable encryption contains or separates of ’s view. Hence, the

probability that the adversary ’s exporting which satisfies is at most .

By the concept of Bayes’s rule,

.

By definition, it should be known that . Then,

. Thus, .

E

E

E

A H*(e(H(w*0i), N)ψ)

H*(e(H(w*1i), N)ψ)

Pr[Event13] = 1

E Pr[Event13] = 1

Pr[¬Event14] ≥ 2ξ

Event14 j ∈ {0,1}

w0i w1i A

A j* j = j* 1
2

Pr[j = j*] = Pr[j = j* |Event14]Pr[Event14] + Pr[j = j* |Event14]

Pr[¬Event14] ≤ Pr[j = j* |Event14]Pr[Even14] + Pr[¬Event14] =

1
2 ∙ Pr[Event14] + Pr[¬Event14] = 1

2 + 1
2 ∙ Pr[¬Event14]

|Pr[j = j*] − 1
2 | ≥ ξ

ξ ≤ Pr[j = j*] − 1
2 ≤ 1

2 ∙ Pr[¬Event14] Pr[¬Event14] ≥ 2ξ

95

Overall, due to requests either or being

at least , the probability that requests is at least . However,

according to the previous definition that requests at most hash function queries,

is the probability that the challenger chooses the correct solution. Overall, the success

probability achieved by is , which is negligible.

The proposed scheme above could be regarded as Trapdoor-IND-CPA secure in

Game8 under the random oracle model, if the BDH assumption (Boneh and Boyen,

2004) is completely difficult.

Game8: Let suppose to be an untrusted outside attacker.

Consider that the challenger is able to achieve the input

 of BDH assumption (Boneh and Boyen, 2004). sets up the computation

of a BDH key of , and using ’s IND-CPA as a goal. Apart from

that, requests at most and hash function queries.

Stage1 (Setup)

 selects , and in the beginning. Then, the following

parameters are returned by , which are the common parameter

, the server’s public PEKS key , and the receiver’s public PEKS key

. In addition, two specific hash functions and are randomly selected by .

Stage2（Trapdoor queries)

If queries a Trapdoor request with a specific keyword-vector

, will randomly choose and subsequently calculate

. After that, also computes in the following:

A H*(e(H(w*0i), N)ψ) H*(e(H(w*1i), N)ψ)

2ξ A H*(e(H(w*ji), N)ψ) ξ

A h* 1
h*

E

ξ* E ξ
h*

A

E (g, P, G1, GT , e,

αP, βP, γP) E

e(P, P)αβγ αP βP γP A

A h h*

E M = αP K = βP N = γP

E (g, P, G1, GT , e,

H, H*) (cp, M, K)

(cp, N) H H* E

A

Wi = (w1, w2, . . . wι) E t* ∈ ZP

Q = e(t*βP, αP) E T1, T2, . . . , Tι

96

. So, . After that, returns to .

Stage3 (Challenge simulation)

 uploads a keyword-vector pair and to ,

where and . Once obtains the pair,

he/she will do the following steps:

— The challenger randomly chooses .

—The challenger recalls the algorithm for searching the Challenge

Trapdoor .

So,

 .

Stage4 (Trapdoor queries)

 can continue return any Trapdoor query for any keyword-vector to as

in Stage2 (Game8), only if .

Stage5 (Guess)

 exports as the guess. If , outputs “yes” and “no”

otherwise.

T1 = γH(w1) ⊕ e(βP, αP)t*+γ, T2 = γH(w2) ⊕ e(βP, αP)t*+γ, …, Tι = γH(wι) ⊕

e(βP, αP)t*+γ TW = (Q, T1, T2, . . . , Tι) E TW A

A (W*0i, μ*0i, ν*0i, ε*0i) (W*1i, μ*1i, ν*1i, ε*1i) E

W*0 = (w01, w02, . . . , w0ι) W*1 = (w11, w12, . . . , w1ι) E

E δ* ∈ {0,1}

E Trapdoor

T*W = (Q*, T*1 , T*2 , . . . , T*ι) = (e(t*βP, αP), B1, B2, . . . , Bι)

T1 = γH(wδ*1
) ⊕ e(βP, αP)t*+γ = γH(wδ*1

) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*,

T2 = γH(wδ*2
) ⊕ e(βP, αP)t*+γ = γH(wδ*2

) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*, . . . ,

Tι = γH(wδ*ι) ⊕ e(βP, αP)t*+γ = γH(wδ*ι) ⊕ e(P, P)αβγ ∙ e(P, P)αβt*

E T*W W* A

W* ≠ W*0 , W*1

A δ* ∈ {0,1} δ = δ* E

97

Analysis of Game8

According to is an untrusted outside attacker, he/she is not able to observe any

difference between two Trapdoor queries even if these two queries contain the same

keyword. This is because selects uniformly at random and changes in

every calculation so that changes in every calculation.

Consider two Trapdoor queries contain the same keyword, but the calculation results are

different mainly because of the value . Hence, the core part of Trapdoor-IND-CPA

secure in the proposed scheme is the confidentiality of .

Consider that if has , he/she could estimate whether two Trapdoor

queries have the same keyword or not. More specially, computes one extra XOR as

follows: . So, is able to know

that and are equal，only if .

By Stage3 in Game8, it shows that , which

meets BDH assumption. Therefore, is not able to computes so that he/

she cannot calculate either.

6.8 The Efficiency and Performance of m-PEMKS

This scheme is implemented by JAVA requiring two libraries: JPBC (Angelo and

Vincenzo, 2011) and jFuzzyLogic (Cingolani et al., 2012). The flow chart is described

in Figure 30. More specially, sender, receiver and server are implemented by JAVA

socket programming. The specific keywords are encrypted by PEKS (JPBC) while the

fuzzy keyword is encrypted by RSA (java.security). All encrypted messages are kept in

server’s file system and the file indexes are stored in Mysql database. Mamdani Fuzzy

Inference system is implemented by JAVA Fuzzy Control Language (jFuzzyLogic).

A

E t* ∈ ZP t*

Ti = nH(wi) ⊕ e(M, K)t*+n

t*

e(M, K)t*+n

A e(M, K)t*+n

A

Ti = nH(wi) ⊕ e(M, K)t*+n ⊕ e(M, K)t*+n = nH(wi) A

Tw0i
= nH(w0i) Tw1i

= nH(w1i) w0 = w1

e(M, K)t*+n = e(P, P)αβγ ∙ e(P, P)αβt*

A e(M, K)t*+n

Ti = nH(wi) ⊕ e(M, K)t*+n

98

FIGURE 30. FLOW CHART OF M-PEMKS

99

Table 11 below illustrates the simulation platform of m-PEMKS scheme. Note

that the proposed scheme is programmed by JAVA and JPBC Library (Angelo and

Vincenzo, 2011) .

TABLE 11. THE SIMULATION PLATFORM FOR m-PEMKS

6.9 The Key Code of m-PEMKS

The m-PEMKS scheme is programmed by JAVA using JPBC Library (Angelo and

Vincenzo, 2011). The pairing parameters are generated by Type A curve. Figure 31

shows all java files used in this proposed scheme.

100

FIGURE 31. JAVA FILES FOR M-PEMKS

6.9.1 For senders’ site

Many senders (employees) wish to send the emails appending with keywords to

the receiver (manager). The emails and keywords should be encrypted before sending to

the third party. With out loss generality, let the sender’s number be three and the

keyword’s number be three. So, the computer simulation can be found as follows: three

senders encrypt the same keywords (“barclays”, “finance”, a number stands for the date)

101

to the online third party as shown in Figure 32, Figure 33 and Figure 34 respectively.

Note that due to the property of Ciphertext Indistinguishability (CI), the encryption

results are different even though the keywords are same.

FIGURE 32. ENCRYPTION RESULT OF SENDER1 IN M-PEMKS

FIGURE 33. ENCRYPTION RESULT OF SENDER2 IN M-PEMKS

102

FIGURE 34. ENCRYPTION RESULT OF SENDER3 IN M-PEMKS

6.9.2 For receiver’s site

Later on, if the receiver (manager) wishes to obtain the “latest” emails, he/she

should send a Trapdoor request to the third party. The keywords in Trapdoor request

should be encrypted by Trapdoor and RSA algorithms (See in Figure 35). For instance,

if the manager wishes to obtain “Barclays Bank latest financial statements”, he/she will

only send the Trapdoor request with three keywords (“barclays”, “finance”, “latest”).

FIGURE 35. REQUEST RESULT OF RECEIVER IN M-PEMKS

6.9.3 For server’s site

After receiving Searchable ciphertext and Trapdoor request, the server will call

Test algorithm to estimate whether they have the same keywords or not. However, due

to the server storing millions of encrypted documents, if the receiver wishes to obtains a

specific file, it will impossible for the server to decrypt all of the encrypted documents

and then compare the keywords both in Searchable ciphertext and Trapdoor request
103

before making a response. In this scheme, the server does not execute decryption

operation but only compares the hash values of the results (ciphertext) between PEKS

ciphertext and Trapdoor (Figure 36). If matched, the server will run Fuzzy Match

algorithm and then reply to the receiver.

 FIGURE 36. PEKS CIPHERTEXT AND TRAPDOOR REQUEST COMPARISON IN M-PEMKS

104

In addition, the online third party keeps the encrypted messages in its file system

and stores the file indexes in the Mysql database (See in Figure 37)

FIGURE 37. THE FILE INDEXES STORING IN MYSQL DATABASE OF M-PEMKS SYSTEM

Mamdani Fuzzy Inference System is the key tool in Fuzzy Match, which could be

regarded as a router to filter irrelative documents. The example of Mamdani Fuzzy

Inference System using Fuzzy Control Language (FCL) which calculates the assessed

value by DATE is implemented by jFuzzyLogic. Figure 38 points out that the

trapezoidal and triangular membership functions are applied for fuzzification in m-

PEMKS system while the defuzzification is defined by triangular membership function

only and the Center of Gravity (COG) is selected as defuzzification method.

Meanwhile, Figure 39 illustrates the corresponding JAVA code to execute FCL code. In

addition, Figure 40 describes the membership functions of Inputs and Outputs for this

example.

105

FIGURE 38. FCL CODE IN M-PEMKS

FIGURE 39. JAVA API TO EXECUTE FCL CODE IN M-PEMKS

106

FIGURE 40. MEMBERSHIP FUNCTIONS OF INPUTS AND OUTPUTS FOR M-PEMKS SYSTEM

It is apparent that the proposed scheme applies the Single Input Single Output

(SISO) Mamdani Fuzzy Inference System. The reason is due to the properties of

Artificial Intelligence and Cryptography. Artificial Intelligence explores and analyzes

the data for discovering the relationships between the different data sets. On the

contrary, the purpose of cryptography is hiding information as much as possible. In

addition, the input value of Mamdani system is plaintext. Therefore, if m-PEMKS

applies Two or More Input Single Out (T/MISO) Mamdani Fuzzy Inference System,

sufficient information will be exposed to the general public network so that crackers

may break the ciphertext to some extent. However, SISO Mamdani system has less

accuracy than T/MISO Mamdani system. In order to reverse low accuracy problem, the

proposed system will firstly execute Searchable Match and then execute Fuzzy Match.

More specially, the server will select the encrypted emails containing “barclays” and

“finance” keywords by Exact Match. Then, the server will decrypt the keyword of

“DATE” (in PEKS ciphertext) and the keyword “latest” (in Trapdoor). Note that

“DATE” and “latest” are the condition and the conclusion of the rules in Mamdani

System respectively. Finally, the server will execute Fuzzy Match to distill the most

related documents via the assessed values by SISO Mamdani Fuzzy Inference System

and reply to the receiver in the end.

107

In Figure 41, it is obvious that Mamdani system will calculate an assessed value

for each input. More specifically, the third keyword of sender1 is “2” and the assessed

value is 9.26. According to Figure 38, the value “2” contains two portions, which partly

belongs to “old” and “acceptable”. However, the value “2” takes more percentage in

“old” part than “acceptable” part. Therefore, the trapezium of “old” in Figure 39 is

bigger than the trapezium of “acceptable”. Similarly, the third keyword of sender2 is

“5” and the assessed value is 15.00, which belongs to “acceptable” part. In terms of the

sender3, the third keyword is “10” and the assessed value is 25.00, which fully belongs

to “new” part.

FIGURE 41. THE ASSESSED VALUES OF THREE DIFFERENT DATE INPUT IN M-PEMKS

108

6.10 The Comparison between Three Proposed Schemes

Table 12 provides the comparison of security and functionality between three

proposed MPEKS schemes.

TABLE 12. A COMPARISON BETWEEN THREE PROPOSED SCHEMES

It can be seen that all of these three proposed schemes do not rely on a secure

channel to transmit the trapdoor queries. Apart from that, all of these three proposed

schemes satisfy the properties of Ciphertext Indistinguishability and Trapdoor

Indistinguishability so that they have an ability to resist Off-line Keyword Guessing

Attack. However, rSCF-MPEKS scheme incorporates with User Authentication

technique and therefore, it could prevent Inside Keyword Guessing Attack. Last but not

least, m-PEMKS scheme applies Fuzzy Logic technique, which is able to solve the

fuzzy and imprecise keyword search, such as “latest”, etc.

To conclude, these three proposed schemes are much secure and strengthen and

have powerful functionalities comparing with theirs counterparts.

109

7. Conclusion

Public Key Encryption with Keyword Search (PEKS) is one of the most powerful

crypto-systems to solve Single Keyword Search problem. Compared with the

traditional Public Key Infrastructure (PKI), PEKS based on Identity Based Encryption

(IBE) is independent of an online trusted third party (such as Certificate Authority) to

authorize the public key.

Although PEKS carries out a lot of merits, it should not be overlooked that PEKS

has its weaknesses. Firstly, the original PEKS schemes require secure channels between

the sever and the receiver to transmit Trapdoor queries. However, building secure

channel consumes huge human and material resources and seems impossible in some

cases. Secondly, many PEKS schemes are able to solve Single Keyword Search problem

but do not support Multiple Keywords Search and therefore, these PEKS approaches

may not be applied to the general public networks. Last but not least, due to the online

third party and/or the receiver in PEKS system may honest but curious, he/she may

release the private key to the public networks so that the PEKS schemes could suffer

Off-line Keyword Guessing Attack (OKGA). Although the later PEKS systems

incorporate with Trapdoor indistinguishability to resist OKGA, their security still need

to improve. For instance, almost all current PEKS schemes are vulnerable to Inside

Keyword Guessing Attack (IKGA), etc.

This PhD thesis concentrates on proposing three secure and efficient PEKS

schemes to solve both Single and Multiple Keyword(s) Search problems, and also resist

OKGA and/or IKGA.

Many current Public Key Encryption with Multiple Keywords Search (MPEKS)

schemes suffers OKGA. Therefore, the thesis firstly defines a MPEKS scheme

110

incorporating with Trapdoor indistinguishability to resist OKGA, which is called

“Trapdoor-indistinguishable Secure Channel Free Public Key Encryption with Multi-

keywords Search (tSCF-MPEKS)”. More specially, the proposed scheme is proved to be

semantic secure under the Random Oracles Models with BDH and 1-BDHI assumptions

so that it is able to resist OKGA. Besides, it has the ability to address both Single and

Multiple Keyword(s) Search problems. Comparing with its counterparts, the efficiency

and performance of tSCF-MPEKS scheme are affordable by the mathematical

calculation and the computer simulation.

Secondly, IKGA in MPEKS schemes is still an intractable problem up to now. The

research then defines the strengthen and powerful MPEKS scheme called “Robust

Secure Channel Free Public Key Encryption with Multi-keywords Search (rSCF-

MPEKS)” to prevent IKGA. More specially, the rSCF-MPEKS system has the

characters of Ciphertext Indistinguishability and Trapdoor Indistinguishability and also

incorporates with User Authentication technique so that it is not only able to resist

OKGA but also prevents IKGA. In addition, rSCF-MPEKS scheme has the ability to

solve both Single and Multiple Keyword(s) Search problems. Comparing with some

typical MPEKS schemes (such as MPEKS and SCF-MPEKS, etc.), the rSCF-MPEKS

approach is much more secure and also has high efficiency and better performance as

well.

Last but not least, almost all current PEKS and MPEKS schemes cannot deal with

imprecise keywords, such as “latest”, “newest”, etc. For instance, if the keyword is

fuzzy (i.e. “latest, biggest”), these current PEKS/MPEKS schemes will be terminated

and report errors. Therefore, the research formalizes the third MPEKS statement,

namely “Public Key Encryption with Multi-keywords Search using Mamdani System

(m-PEMKS)”, to address Fuzzy Keyword Search problem. More specially, the proposed

111

MPEKS scheme applies Mamdani Fuzzy Inference System (Fuzzy Logic) in Artificial

Intelligence to solve Fuzzy Keyword Search problem. The m-PEMKS scheme is

verified to be semantic secure under the Random Oracles Models with BDH and 1-

BDHI assumptions and therefore, it is also able to resists OKGA.

Furthermore, the performance and efficiency of the proposed schemes are

analyzed by the theoretical analysis based on mathematical calculations and the

practical analysis based on programming with JAVA, JPBC Library and jFuzzylogic

Library. For practical analysis, the proposed approaches are called by 1000 times

computer simulations and every 100 times computer simulations is considered to be

one round. To conclude, these proposed schemes consume less computing time and

resources and have better performance and functionalities comparing with theirs

counterparts.

112

References

En.wikipedia.org. (2019). Scytale. [online] Available at: https://en.wikipedia.org/

wiki/Scytale [Accessed 20 Jun. 2019].

En.wikipedia.org. (2019). Enigma machine. [online] Available at: https://

en.wikipedia.org/wiki/Enigma_machine [Accessed 20 Jun. 2019].

En.wikipedia.org. (2019). Bombe. [online] Available at: https://en.wikipedia.org/

wiki/Bombe [Accessed 20 Jun. 2019].

A. Shamir. Identity-based Crypto-systems and Signature Schemes. In: G. R.

Blakley, D.C. Chaum (ed.), Advances in Cryptology-Proceedings of CRYPTO’84.

California: Springer-Verlag, LNCS, Vol. 196, 1985. 48~53.

Boneh, D., Di Crescenzo, G., Ostrovsky, R. and Persiano, G.: Public Key

Encryption with Keyword Search, Advances in Cryptology, EUROCRYPT 2004, vol

3024, 506-522 (2004).

Koblitz, Neal; Menezes, Alfred (2005). Pairing-Based Cryptography at High

Security Levels. LNCS. 3796.

Baek, J., Safavi-Naini, R. and Susilo, W.: Public Key Encryption with Keyword

Search Revisited, Computational Science and Its Applications, ICCSA 2008, vol 5072,

1249-1259 (2008).

Rhee, H., Park, J., Susilo, W. and Lee, D.: Trapdoor Security in a Searchable

Public-key Encryption Scheme with a Designated Tester, Journal of Systems and

Software, vol 83(5), 763-771 (2010).

Zhao, Y. J., Chen, X. F., Ma, H., Tang, Q., and Zhu, H.: A New Trapdoor

indistinguishable Public Key Encryption with Keyword Search, Journal of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol 3, 72-81

113

(2013).

Wang, T., Au, M. andWu,W.: An Efficient Secure Channel Free Searchable

Encryption Scheme with Multiple Keywords, Network and System Security, v9955,

251-265 (2016).

Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-

Lee, J., Neven, G., Paillier, P. and Shi, H.: Searchable Encryption Revisited:

Consistency Properties, Relation to Anonymous IBE, and Extensions, Advances in

Cryptology, CRYPTO 2005, vol 3621, 205-222 (2005).

Byun J.W., Rhee H.S., Park HA., Lee D.H.: Off-Line Keyword Guessing Attacks

on Recent Keyword Search Schemes over Encrypted Data, Secure Data Management

2006, vol 4165, 75-83 (2006).

Yau, W., Heng, S. and Goi, B. (n.d.). Off-Line Keyword Guessing Attacks on

Recent Public Key Encryption with Keyword Search Schemes. Lecture Notes in

Computer Science, pp.100-105.

Huang, Q. and Li, H. (2017). An Efficient Public-key Searchable Encryption

Scheme Secure against Inside Keyword Guessing Attacks. Information Sciences,

403-404, pp.1-14.

Jeong, I., Kwon, J., Hong, D. and Lee, D. (2009). Constructing PEKS Schemes

Secure against Keyword Guessing Attacks is Possible? Computer Communications,

32(2), pp.394-396.

Ma, Y. and Kazemian, H. (2018). Trapdoor-indistinguishable Secure Channel Free

Public Key Encryption with Multi-Keywords Search (Student Contributions).

Proceedings of the 11th International Conference on Security of Information and

Networks - SIN’18.

Tang, Q. and Chen, L.: Public-Key Encryption with Registered Keyword Search,

114

Public Key Infrastructures, Services and Applications, EuroPKI 2009, vol 6391,

163-178 (2010).

Zhang, X., Xu, C., Xie, R. and Jin, C. (2018). Designated Cloud Server Public

Key Encryption with Keyword Search from Lattice in the Standard Model. Chinese

Journal of Electronics, 27(2), pp.304-309.

Li, J., Wang, Q., Wang, C., Cao, N., Ren, K. and Lou, W.: Fuzzy Keyword Search

over Encrypted Data in Cloud Computing, 2010 Proceedings IEEE INFOCOM,

257-266 (2010).

Xu, P., Jin, H., Wu, Q. and Wang, W.: Public-Key Encryption with Fuzzy

Keyword Search: A Provably Secure Scheme under Keyword Guessing Attack, IEEE

Transactions on Computers, vol 62(11), 2266-2277 (2013).

Ibraimi, L., Nikova, S., Hartel, P. and Jonker, W. (2011). Public-Key Encryption

with Delegated Search. Applied Cryptography and Network Security, pp.532-549.

Chen, R.,Mu, Y., Yang, G., Guo, F. andWang, X. (2015). Dual-Server Public-Key

Encryption with Keyword Search for Secure Cloud Storage. IEEE Transactions on

Information Forensics and Security, pp.1-1.

He, Z., Cai, Z., Han, Q., Tong, W., Sun, L. and Li, Y. (2016). An Energy Efficient

Privacy-preserving Content Sharing Scheme in Mobile Social Networks. Personal and

Ubiquitous Computing, 20(5), pp.833-846.

Angelo De Caro and Vincenzo Iovino. 2011. jPBC: Java Pairing Based

Cryptography. In Proceedings of the 16th IEEE Symposium on Computers and

Communications, ISCC 2011. Kerkyra, Corfu, Greece, June 28 - July 1, 850–855.

Huang, Q. and Li, H. (2017). An Efficient Public-key Searchable Encryption

Scheme Secure against Inside Keyword Guessing Attacks. Information Sciences,

403-404, pp.1-14.

115

Goldwasser, S. and Micali, S. (1984). Probabilistic Encryption. Journal of

Computer and System Sciences, 28(2), pp.270-299.

Moni Naor and Moti Yung. Public-key Crypto-systems Provably Secure against

Chosen Ciphertext Attacks. Proceedings 21st Annual ACM Symposium on Theory of

Computing: 427–437. 1990.

Rackoff, C. and D. Simon (1991). Non-interactive Zero-knowledge Proof of

Knowledge and Chosen Ciphertext Attack. Advances in Cryptology—CRYPTO'91,

Lecture Notes in Computer Science, vol. 576, ed. J. Feigenbaum. Springer-Verlag,

Berlin, 433–444.

X. Boyen and B. Waters. Anonymous Hierarchical Identity-Based Encryption.

In:Dwork, Cynthia (ed.), Advances in Cryptology-Crypto 2006. California:Springer-

Verlag, LNCS, Vol. 4117, 2006. 290~307.

D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In:

J.Kilian (ed.), Advances in Cryptology-Crypto 2001. California: Springer-Verlag,

LNCS,Vol.2139, 2001. 231~229.

 S. Al-Riyami, K. Paterson. Certificateless Public Key Cryptography. In: Chi-Sung

Laih (ed.), Advances in Cryptology-Asiacrypt’2003. Taiwan: Springer-Verlag, LNCS,

Vol. 2332, 2003. 452-473.

V. Goyal. Reducing Trust in the PKG in Identity-Based Cryptosystems. In: A.

Menezes (ed.), Advances in Cryptology-Crypto 2007. California: Springer-Verlag,

LNCS, Vol. 4622, 2007. 430~447.

V. Goyal. Reducing Trust in the PKG in Identity-Based Cryptosystems. In: A.

Menezes (ed.), Advances in Cryptology-Crypto 2007. California: Springer-Verlag,

LNCS, Vol.4622, 2007. 430~447.

Felix Brandt and Tuomas Sandholm. Efficient Privacy-Preserving Protocols for

116

Multi-unit Auctions. In A.S. Patrick and M. Yung (ed.), FC 2005, LNCS, Vol. 3570,

Springer-Verlag, 2005. 298~312.

M. R. Clarkson, S. Chong and A.C. Myers. Civitas: Toward a Secure Voting

System. In Proceeding of SP 2008. 354~368.

D. Boneh and X. Boyen. Secure Identity Based Encryption Without Random

Oracles. In: M. K. Franklin (ed.), Advances in Cryptology-Crypto 2004. California:

Springer-Verlag, LNCS, Vol. 3152, 2004. 443~459.

D. Boneh and X. Boyen. Efficient Selective-ID Identity Based Encryption

Without Random Oracles. In: C. Cachin, J. Camenisch (ed.), Advances in Cryptology

EUROCRYPT’2004. Switzerland: Springer-Verlag, LNCS, Vol. 3027, 2004. 223~238.

B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In:

R.Cramer (ed.), Advances in Cryptology-EUROCRYPT’2005. Denmark: Springer-

Verlag, LNCS, Vol. 3494, 2005. 114~127.

C.Gentry. Practical Identity-Based Encryption Without Random Oracles. In: S.

Vaudenay (ed.), Advances in Cryptology-EUROCRYPT’2006. Russia: Springer-Verlag,

LNCS, Vol. 4004, 2006. 445~464.

W. C. Yau, S. H. Heng, and B. M. Goi. Off-line Keyword Guessing Attacks on

Recent Public Key Encryption with Keyword Search Schemes. in Autonomic and

Trusted Computing, vol. 5060 of Lecture Notes in Computer Science, pp. 100–105,

Oslo, Norway, 2008. Springer Berlin/ Heidelberg.

C. Hu and P. Liu. A Secure Searchable Public Key Encryption Scheme with a

Designated Tester against Keyword Guessing Attacks and its Extension. In Advances in

Computer Science, Environment, Ecoinformatics, and Education, vol. 215 of

Communications in Computer and Information Science, pp. 131– 136, Wuhan, China,

2011. Springer Berlin/ Heidelberg.

117

Chen, Y. (2014). SPEKS: Secure Server-Designation Public Key Encryption with

Keyword Search against Keyword Guessing Attacks. The Computer Journal, 58(4), pp.

922-933.

Sun, L., Xu, C., Zhang, M., Chen, K. and Li, H. (2017). Secure Searchable Public

Key Encryption against Inside Keyword Guessing Attacks from Indistinguishability

Obfuscation. Science China Information Sciences, 61(3).

Mao, Y., Fu, X., Guo, C. and Wu, G. (2018). Public Key Encryption with

Conjunctive Keyword Search Secure against Keyword Guessing Attack from Lattices.

Transactions on Emerging Telecommunications Technologies, p.e3531.

Noroozi, M. and Eslami, Z. (2019). Public Key Encryption with Keyword Search:

A Generic Construction Secure against Online and Offline Keyword Guessing Attacks.

Journal of Ambient Intelligence and Humanized Computing.

P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and

Factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer

Science (SFCS '94), pp. 124–134, IEEE, 1994.

M. Ajtai. Generating Hard Instances of Lattice Problems (extended abstract). In

STOC '96: Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing, pages 99-108, New York, NY, USA, 1996. ACM.

C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and

New Cryptographic Constructions. In Richard E. Ladner and Cynthia Dwork, editors,

STOC, pages 197-206. ACM, 2008.

S. Agrawal, D. Boneh, and X. Boyen. Efficient Lattice HIBE in the Standard

Model. In Advances in EUROCRYPT 2010, volume 6110 of LNCS, pages 553-572.

Springer, 2010.

S. Agrawal, D. Boneh, and X. Boyen. Lattice Basis Delegation in Fixed

118

Dimension and Shorter Ciphertext Hierarchical IBE. In Advances in CRYPTO 2010,

volume 6223 of LNCS, pages 98-115. Springer, 2010.

D. Micciancio. Generalized Compact Knapsacks, Cyclic Lattices and Efficient

One-way Functions from Worst-case Complexity Assumptions. In FOCS, pages

356-365, 2002.

C. Gentry. Fully Homomorphic Encryption using Ideal Lattices. In Proceedings of

the 41th Annual ACM Symposium on Theory of Computing (STOC '09), pp. 169–178,

ACM, 2009.

C. Gentry. Toward Basing Fully Homomorphic Encryption on Worst-case

Hardness. In Annual Cryptology Conference: CRYPTO 2010: Advances in Cryptology—

CRYPTO 2010, vol. 6223 of Lecture Notes in Computer Science, pp. 116–137, Springer,

Berlin, Germany, 2010.

C. Gu, Y. Guang, Y. Zhu, and Y. Zheng. Public Key Encryption with Keyword

Search from Lattices. International Journal of Information Technology, vol. 19, no. 1,

2013.

C. Hou, F. Liu, H. Bai, and L. Ren. Public Key Encryption with Keyword Search

from Lattice. In Proceedings of the 8th International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing (3PGCIC '13), pp. 336–339, IEEE, Compiegne, France,

October 2013.

P. Golle, J. Staddon, and B. Waters. Secure Conjunctive Keyword Search over

Encrypted Data. In Applied Cryptography and Network Security: Second International

Conference, ACNS 2004, Yellow Mountain, China, June 8–11, 2004. Proceedings, vol.

3089 of Lecture Notes in Computer Science, pp. 31–45, Springer, Berlin, Germany,

2004.

D. Boneh and B. Waters. Conjunctive, Subset, and Range Queries on Encrypted

119

Data. In Theory of Cryptography Conference: TCC 2007: Theory of Cryptography, vol.

4392 of Lecture Notes in Computer Science, pp. 535–554, Springer, Berlin, Germany,

2007.

J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and Anonymous

Identity-based Encryption and Authorised Private Searches on Public Key Encrypted

Data. In Public Key Cryptography-PKC 2009, pp. 196–214, Springer, Berlin, Germany,

2009.

N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving Multi-keyword

Ranked Search over Encrypted Cloud Data. IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 1, pp. 222–233, 2014.

Cryptowiki.net. (2019). Cipher Block Chaining (CBC) - CryptoWiki. [online]

Available at: http://cryptowiki.net/index.php?title=Cipher_Block_Chaining_(CBC)

[Accessed 5 Aug. 2019].

Stallings, W. (2017). Cryptography and Network Security. Boston, Mass: Pearson.

Angelo De Caro and Vincenzo Iovino. 2011. jPBC: Java Pairing Based

Cryptography. In Proceedings of the 16th IEEE Symposium on Computers and

Communications, ISCC 2011. Kerkyra, Corfu, Greece, June 28 - July 1, 850–855.

Zadeh, L. (1973). Outline of a New Approach to the Analysis of Complex

Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics,

SMC-3(1), pp.28-44.

Mamdani, E.H. and Assilian, S. (1975). An Experiment in Linguistic Synthesis

with a Fuzzy Logic Controller. International Journal of Man–Machine Studies, 7(1), 1–

13.

Takagi, T.; Sugeno, M. Fuzzy Identification of Systems and its Applications to

Modeling and Control. IEEE Trans. Sys. Man. Cybern. 1985, 15, 116–132.

120

Singh, J., Singh, N. and Sharma, J. K. 2006. Fuzzy Modeling and Identification of

Intelligent Control for Refrigeration Compressor. J. Sci. Ind. Res., 65: 22-30.

Lermontov, A.; Yokoyama, L.; Lermontov, M.; Machado, M.A.S. River Quality

Analysis using Fuzzy Water Quality Index: Ribeira do Iguape river watershed, Brazil.

Ecol. Indic. 2009, 9, 1188–1197.

Marchini, A.; Facchinetti, T.; Mistri, M. F-IND: A Framework to Design Fuzzy

Indices of Environmental Conditions. Eco. Indic. 2009, 9, 485–496.

Wang, C., Chew, M. and Harlow, D., 2015. A Study Of Membership Functions On

Mamdani-Type Fuzzy Inference System For Industrial Decision-Making.

121

Appendix

Publication

Ma, Y. and Kazemian, H. (2018). Trapdoor-indistinguishable Secure Channel Free

Public Key Encryption with Multi-Keywords Search (Student Contributions).

Proceedings of the 11th International Conference on Security of Information and

Networks - SIN’18.

Kazemian, H. and Ma, Y. (2020). Fuzzy Logic Application to Searchable

Cryptography. Proceedings of the 21st International Conference on Engineering

Applications of Neural Networks - EANN 2020.

122

	1. Introduction
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Evaluation
	1.4 Contribution of the Research to the Knowledge
	1.5 The Outline of the Thesis
	2. Background and Literature Review
	2.1 Introduction
	2.2 The History and Development of Cryptography
	2.3 Literature Review on PEKS
	2.4 Literature Review on Fuzzy Logic
	3. Preliminary for the PEKS Research
	3.1 Introduction
	3.2 Number Theory
	3.3 Public Key Encryption with Keyword Search (PEKS)
	3.4 Secure Channel Free Public Key Encryption with Multiple Keywords Search (SCF-MPEKS)
	3.5 Security Verification Models
	3.6 The Procedure of PEKS Verification
	3.7 Fuzzy Logic
	4. Trapdoor-indistinguishable Secure Channel Free Public Key Encryption with Multi-keywords Search
	4.1 Introduction
	4.2 The Outline of tSCF-MPEKS
	4.3 The Security Models of tSCF-MPEKS
	4.4 The Concrete Construction of tSCF-MPEKS
	4.5 The Correctness of tSCF-MPEKS
	4.6 The Security Analysis of tSCF-MPEKS
	4.7 The Efficiency and Performance of tSCF-MPEKS
	4.8 The Key Code of tSCF-MPEKS
	5. Robust Secure Channel Free Public Key Encryption with Multi-keywords Search
	5.1 Introduction
	5.2 The Outline of rSCF-MPEKS
	5.3 The Security Models of rSCF-MPEKS
	5.4 The Concrete Construction of rSCF-MPEKS
	5.5 The Correctness of rSCF-MPEKS
	5.6 The Security Analysis of rSCF-MPEKS
	5.7 The Efficiency and Performance of rSCF-MPEKS
	5.8 The Key Code of rSCF-MPEKS
	6. Public Key Encryption with Multi-keywords Search using Mamdani System
	6.1 Introduction
	6.2 The Outline of m-PEMKS
	6.3 The Security Models of m-PEMKS
	6.4 The Fuzzy Inference System of m-PEMKS
	6.5 The Concrete Construction of m-PEMKS
	6.6 The Correctness of m-PEMKS
	6.7 The Security Analysis of m-PEMKS
	6.8 The Efficiency and Performance of m-PEMKS
	6.9 The Key Code of m-PEMKS
	6.10 The Comparison between Three Proposed Schemes
	7. Conclusion
	References
	Appendix

