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Abstract
We investigate the size of first-order rewritings of conjunctive queries over OWL 2 QL ontologies of

depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and neg-
ative results are obtained. Conjunctive queries over ontologies of depth 1 have polynomial-size nonre-
cursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however,
in the worst case, positive existential rewritings can only be of superpolynomial size. Positive existential
and nonrecursive datalog rewritings of queries over ontologies of depth 2 suffer an exponential blowup
in the worst case, while first-order rewritings are superpolynomial unless NP ⊆ P/poly. We also analyse
rewritings of tree-shaped queries over arbitrary ontologies and observe that the query entailment problem
for such queries is fixed-parameter tractable.

1 Introduction
Our concern here is the size of conjunctive query (CQ) rewritings over OWL 2 QL ontologies. OWL 2 QL
(www.w3.org/TR/owl2-profiles) is a profile of the Web Ontology Language OWL 2 designed for
ontology-based data access (OBDA). In first-order logic, an OWL 2 QL ontology can be given as a finite
set of sentences of the form

∀~x
(
ϕ(~x)→ ∃~y ψ(~x, ~y)

)
or ∀~x

(
ϕ(~x) ∧ ϕ′(~x)→ ⊥

)
(1)

where ϕ, ϕ′ and ψ are unary or binary predicates (such sentences are known as linear tuple-generating
dependencies of arity 2 and disjointness constraints). OWL 2 QL is a (nearly) maximal fragment of OWL 2
enjoying first-order (FO) rewritability of CQs: given an ontology T and a CQ q(~x), one can construct
an FO-formula q′(~x) in the signature of q and T such that T ,A |= q(~a) iff A |= q′(~a), for any set A
of ground atoms (data instance) and any tuple ~a of constants in A. Thus, to find certain answers to q(~x)
over (T ,A), we can compute an FO-rewriting q′(~x) and evaluate it over A using, for example, a database
system. The ontology T in the OBDA paradigm serves as a high-level global schema providing the user
with a convenient query language over possibly heterogeneous data sources and enriching the data with
additional knowledge. OBDA is widely regarded as a key to the new generation of information systems.
OWL 2 QL is based on the DL-Lite family of description logics [11, 4]; other languages supporting FO-
rewritability of CQs include linear, sticky and sticky-join sets of tuple-generating dependencies [10, 7].

In practice, rewriting-based OBDA systems1 can only work efficiently with those CQs and ontologies
that have reasonably short rewritings. This obvious fact raises fundamental succinctness problems such as:
What is the size of FO-rewritings of CQs and OWL 2 QL ontologies in the worst case? Can rewritings of
one type (say, nonrecursive datalog) be substantially shorter than rewritings of another type (say, positive
existential)? First answers to these questions were given in [20] which constructed CQs qn and ontolo-
gies Tn, n < ω, with only exponential positive existential (PE) and nonrecursive datalog (NDL) rewrit-
ings, and superpolynomial FO-rewritings (unless NP ⊆ P/poly); [20] also showed that NDL-rewritings

1See, e.g., QuOnto [28], Presto/Prexto [34, 33], Rapid [13], Ontop [32], Requiem/Blackout [26, 27], Nyaya [15], Clipper [14] and
[23].
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(FO-rewritings) can be exponentially (superpolynomially) more succinct than PE-rewritings. These pro-
hibitively high lower bounds are caused by the fact that the chases (canonical models) for Tn contain full
binary trees of depth n and give rise to exponentially-many homomorphisms from qn to the labelled nulls
of the chases, all of which have to be reflected in the rewritings of qn and Tn.

In this paper, we investigate succinctness of CQ rewritings over ‘shallow’ ontologies whose (polyno-
mial-size) chases are finite trees of depth 1 or 2 (which do not have chains of more than 1 or 2 labelled
nulls). From the theoretical point of view, ontologies of depth 1 are important because their chases can
only generate linearly-many homomorphisms of CQs to the labelled nulls; on the other hand, shallow
ontologies are typical in the real-world OBDA applications. We obtain both positive and, unexpectedly,
‘negative’ results summarised below:

(i) any CQ and ontology of depth 1 have a polynomial-size NDL-rewriting;

(ii) PE-rewritings of some CQs and ontologies of depth 1 are of superpolynomial size;

(iii) any tree-shaped CQ and ontology of depth 1 have a PE-rewriting of polynomial size;

(iv) the existence of polynomial-size FO-rewritings for all CQs and ontologies of depth 1 is equivalent to
an open problem ‘NL/poly ⊆ NC1?’;

(v) NDL- and PE-rewritings of some CQs and ontologies of depth 2 are of exponential size, while FO-
rewritings are of superpolynomial size unless NP ⊆ P/poly.

We prove (i)–(v) by establishing a fundamental connection between FO-, PE- and NDL-rewritings, on
the one hand, and, respectively, formulas, monotone formulas and monotone circuits computing certain
monotone Boolean functions, on the other. These functions are associated with hypergraph representations
of the tree-witness rewritings [22], reflecting possible homomorphisms of the given CQ to the labelled nulls
of the chases for the given ontology. In particular, any hypergraph H of degree 2 (every vertex in which
belongs to 2 hyperedges) corresponds to a CQ qH and an ontology TH of depth 1 such that answering
qH over TH and single-individual data instances amounts to computing the hypergraph function for H .
We show that representing Boolean functions as hypergraphs of degree 2 is polynomially equivalent to
representing their duals as nondeterministic branching programs (NBPs) [18]. This correspondence and
known results on NBPs [31, 19] give (i), (ii) and (iv) above. To prove (v), we observe that hypergraphs
of degree 3 are computationally as powerful as nondeterministic Boolean circuits (NP/poly) and encode
the function CLIQUEn,k(~e) (graph ~e with n vertices has a k-clique) as CQs over ontologies of depth 2. It
also follows that there exist polynomial-size FO-rewritings for all CQs and ontologies (of depth 2) with
polynomially-many tree witnesses iff all functions in NP/poly are computed by polynomial-size formulas,
that is, iff NP/poly ⊆ NC1 (which is a well-known open problem). Finally, we show that any tree-shaped
CQ q and ontology T have a PE-rewriting of size O(|T |2 · |q|1+log d), where d is a parameter related to
the number of tree witnesses sharing a common variable. This gives (iii) since d = 2 for ontologies of
depth 1. We also note that the problem ‘T ,A |= q?’, for tree-shaped Boolean CQs and any T , is fixed-
parameter tractable (recall that the problem ‘A |= q?’, for tree-shaped q, is known to be tractable [35],
while ‘T ,A |= q?’ is NP-hard [21]).

As shown in [16], exponential rewritings can be made polynomial at the expense of polynomially-many
additional existential quantifiers over a domain with two constants not necessarily occurring in the CQs;
cf. [6]. Intuitively, given q, T and A, the extra quantifiers guess a homomorphism from q to the chase
for (T ,A), whereas the standard rewritings (without extra constants) represent such homomorphisms ex-
plicitly (likewise NFAs are exponentially more succinct than DFAs, and ∃-QBFs are exponentially more
succinct than SAT). A more practical utilisation of additional constants was suggested in the combined
approach to OBDA [24], where they are used to construct a polynomial-size encoding of the chase for
the given ontology and data over which the original CQ is evaluated. This encoding may introduce
(exponentially-many in the worst case) spurious answers that are eliminated by a special polynomial-time
filtering procedure.
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2 The Tree-Witness Rewriting
In this paper, we assume that an ontology, T , is a finite set of tuple-generating dependencies (tgds) of the
form

∀~x
(
ϕ(~x)→ ∃~y

∧
ψi(~x, ~y)

)
, (2)

where ϕ and the ψi are unary or binary atoms without constants and |~x∪~y| ≤ 2. These tgds are expressible
via tgds in (1) using fresh binary predicates, whereas disjointness constraints in (1) do not contribute to
the size of rewritings. Although the language given by (1) is slightly different from OWL 2 QL , all the
results obtained here are applicable to OWL 2 QL ontologies as well. When writing tgds, we will omit the
universal quantifiers. The size, |T |, of T is the number of predicate occurrences in T . A data instance,
A, is a finite set of ground atoms. The set of individual constants in A is denoted by ind(A). Taken
together, T and A form the knowledge base (KB) (T ,A). To simplify notation, we will assume that the
data instances in all KBs are complete in the following sense: for any ground atom S(~a) with ~a ⊆ ind(A),
if T ,A |= S(~a) then S(~a) ∈ A (see Lemma 1 below).

A conjunctive query (CQ) q(~x) is a formula ∃~y ϕ(~x, ~y), where ϕ is a conjunction of unary or binary
atoms S(~z) with ~z ⊆ ~x ∪ ~y (without loss of generality, we assume that CQs do not contain constants). A
tuple ~a ⊆ ind(A) is a certain answer to q(~x) over (T ,A) if I |= q(~a) for all models I of T andA; in this
case we write T ,A |= q(~a). If ~x = ∅ then the CQ q is called Boolean; a certain answer to such a q over
(T ,A) is ‘yes’ if T ,A |= q and ‘no’ otherwise. Where convenient, we regard a CQ as the set of its atoms.

Given a CQ q(~x) and an ontology T , an FO-formula q′(~x) without constants is called an FO-rewriting
of q(~x) and T if, for any (complete) data instance A and any ~a ⊆ ind(A), we have (T ,A) |= q(~a) iff
A |= q′(~a).2 If q′ is a positive existential formula, we call it a PE-rewriting of q and T . We also consider
rewritings in the form of nonrecursive datalog queries. Recall [1] that a datalog program, Π, is a finite
set of Horn clauses ∀~x (γ1 ∧ · · · ∧ γm → γ0), where each γi is an atom of the form P (x1, . . . , xl) with
xi ∈ ~x. The atom γ0 is the head of the clause, and γ1, . . . , γm its body. All variables in the head must also
occur in the body. A predicate P depends on Q in Π if Π has a clause with P in the head and Q in the
body; Π is nonrecursive if this dependence relation is acyclic. For a nonrecursive program Π and an atom
q′(~x), (Π, q′) is called an NDL-rewriting of q(~x) and T in case T ,A |= q(~a) iff Π,A |= q′(~a), for any
(complete) A and ~a ⊆ ind(A). Rewritings over arbitrary data are defined without stipulating that the data
instances in KBs are complete.

Lemma 1. (i) For any (PE-) FO-rewriting q′ of q and T over complete data, there is a (PE-) FO-rewriting
q′′ over arbitrary data with |q′′| ≤ O(|q′| · |T |).

(ii) For any NDL-rewriting (Π, q′) of q and T over complete data, there is an NDL-rewriting (Π′, q′)
over arbitrary data with |Π′| ≤ |Π|+O(|T |).

Proof. Given T and q, we define a partial order ≤ on the formulas %(x) of the form S(x), S(x, x),
∃y S(x, y) and ∃y S(y, x), where S is a predicate in T or q, to be the transitive and reflexive closure
of the following relation ≤1:

%1(x) ≤1 %2(x) iff %1(x)→ %2(x) ∈ T .

This partial order ≤ is extended to the formulas %(x1, x2) of the form S(x1, x2) and S(x2, x1), where S is
a binary predicate in T or q, by adding the transitive and reflexive closure of the following relation ≤2:

%1(~x) ≤2 %2(~x) iff %1(~x)→ %2(~x) ∈ T .

We also define an equivalence relation on such %(~x) by taking %1(~x) ≡ %2(~x) iff %1(~x) ≤ %2(~x) and
%2(~x) ≤ %1(~x). In each equivalence class, we fix a representative, denoted %(~x)/≡.

(i) For PE- and FO-rewritings, we replace each S(~x) in q′ with a disjunction of all %(~x) such that
%(~x) ≤ S(~x). The size of the resulting rewriting q′′ increases linearly in |T |.

2Thus, we do not allow the rewriting from [16] since it contains constants.
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(ii) We assume without loss of generality that q′ is not a predicate name in T . Let Π∗ be the result of
replacing each predicate name S in Π that occurs in T with a fresh predicate name S∗. Define Π′ to be the
union of Π∗ and the following clauses:

S∗(~x)← %(~x), for all %(~x) with %(~x) ≡ S(~x),

S∗(~x)← %∗(~x), for all %(~x)/≡ such that %(~x) is an immediate predecessor of S(~x) in ≤,

where %∗(~x) is the result of replacing the predicate, S1, in % with S∗1 . It should be clear that (Π′, q′) is an
NDL-rewriting of q and T over arbitrary data and that the size of the additional clauses in Π′ is linear in
|T | (and does not depend on q). q

We now define an improved version of the tree-witness PE-rewriting [22] that will be used to establish
links with formulas and circuits computing certain monotone Boolean functions.

As is well-known [1], for any KB (T ,A), there is a canonical model (or chase) CT ,A such that
T ,A |= q(~a) iff CT ,A |= q(~a), for all CQs q(~x) and ~a ⊆ ind(A). The domain of CT ,A consists of
ind(A) and the witnesses, or labelled nulls, introduced by the existential quantifiers in T .

For any formula %(x) of the form S(x), S(x, x), ∃y S(x, y) or ∃y S(y, x), where S is a predicate in
T , we denote by C%(a)

T the canonical model of the KB (T ∪ {A(x)→ %(x)}, {A(a)}), where A is a fresh
unary predicate. We say that T is of depth k, 1 ≤ k < ω, if one of the C%(a)

T contains a chain of the form
R0(w0, w1) . . . Rk−1(wk−1, wk), with not necessarily distinct wi, but none of the C%(a)

T has such a chain
of greater length.

Suppose we are given a CQ q(~x) = ∃~y ϕ(~x, ~y) and an ontology T . For a pair t = (tr, ti) of disjoint
sets of variables in q, with ti ⊆ ~y and ti 6= ∅ (tr can be empty), set

qt = {S(~z) ∈ q | ~z ⊆ tr ∪ ti and ~z 6⊆ tr }.

We call t = (tr, ti) a tree witness for q and T generated by % if qt is a minimal subset of q for which there
exists a homomorphism h : qt → C

%(a)
T such that tr = h−1(a) and qt contains all atoms of q with at least

one variable from ti (cf. aggregated unifiers from [23]). Note that the same tree witness t = (tr, ti) can be
generated by different %. Now, we set

twt(tr) =
∨

t generated by %

∃z
(
%(z) ∧

∧
x∈tr

(x = z)
)
. (3)

The variables in ti do not occur in twt and are called internal. The length, |twt|, of twt is O(|q| · |T |). Tree
witnesses t and t′ are conflicting if qt ∩ qt′ 6= ∅. Denote by Θq

T the set of tree witnesses for q and T . A
subset Θ ⊆ Θq

T is independent if no pair of distinct tree witnesses in it is conflicting. Let qΘ =
⋃

t∈Θ qt.
The following PE-formula qtw is called the tree-witness rewriting of q and T :

qtw(~x) =
∨

Θ⊆Θq
T independent

∃~y
( ∧

S(~z)∈q\qΘ

S(~z) ∧
∧
t∈Θ

twt(tr)
)
. (4)

Example 2. Consider the following ontology and CQ:

T =
{
A1(x)→ ∃y

(
R1(x, y) ∧Q(x, y)

)
, A2(x)→ ∃y

(
R2(x, y) ∧Q(y, x)

) }
,

q(x1, x2) = ∃y1y2

(
R1(x1, y1) ∧Q(y2, y1) ∧R2(x2, y2)

)
.

The CQ q is shown in Fig. 1 alongside the CAk(a)
T , k = 1, 2. There are two tree witnesses, t1 and t2, for q

and T with

qt1 = {R1(x1, y1), Q(y2, y1) } and qt2 = {Q(y2, y1), R2(x2, y2) }

(they are shown as shaded rectangles in Fig. 1); the tree witness tk = (tkr , t
k
i ), for k = 1, 2, is generated by

Ak(x) with tkr = {xk, y3−k} and tki = {yk}, which gives

twtk(xk, y3−k) = ∃z
(
Ak(z) ∧ (xk = z) ∧ (y3−k = z)

)
.
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R1 Q R2
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Q
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CA2(a)
T
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Q
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T

Figure 1: Query q(x1, x2) and canonical models CA1(a)
T and CA2(a)

T from Example 2.

As t1 and t2 are conflicting, we obtain the following rewriting:

∃y1y2

[(
R1(x1, y1) ∧Q(y2, y1) ∧R2(x2, y2)

)
∨
(
R2(x2, y2) ∧ twt1

)
∨
(
R1(x1, y1) ∧ twt2

)]
.

Theorem 3 ([22]). For any complete data instance A and any ~a ⊆ ind(A), we have T ,A |= q(~a) iff
A |= qtw(~a).

The number of tree witnesses, |Θq
T |, is bounded by 3|q|. On the other hand, there is a sequence of

queries qn and ontologies Tn with exponentially many (in |qn|) tree witnesses [22]. The length of qtw is
O(2|Θ

q
T | · |q| · |T |). If any two tree-witnesses for q and T are compatible—that is, they are either non-

conflicting or one is included in the other—then qtw can be equivalently transformed into the PE-rewriting

q′tw(~x) = ∃~y
∧

S(~z)∈q

(
S(~z) ∨

∨
t∈Θq

T with S(~z)∈qt

twt(tr)
)

of size O(|Θq
T | · |q|2 · |T |). Our aim now is to investigate transformations of this kind in the more abstract

setting of Boolean functions. In Section 5, we shall see an example of q and T with only |q|-many
tree witnesses any PE-rewriting of which is of superpolynomial size because of multiple combinations of
incompatible tree witnesses.

3 Hypergraph Functions
The rewriting qtw gives rise to monotone Boolean functions we call hypergraph functions. For the com-
plexity theory of monotone Boolean functions, the reader is referred to [3, 18]. Let H = (V,E) be a
hypergraph with vertices v ∈ V and hyperedges e ∈ E, E ⊆ 2V . A subset X ⊆ E is independent if
e ∩ e′ = ∅, for any distinct e, e′ ∈ X . Denote by VX the set of vertices occurring in the hyperedges of X .
With each v ∈ V and e ∈ E we associate propositional variables pv and pe, respectively. The hypergraph
function fH for H is given by the Boolean formula

fH =
∨

X⊆E independent

( ∧
v∈V \VX

pv ∧
∧
e∈X

pe

)
. (5)

The rewriting qtw of q and T defines a hypergraph Hq
T whose vertices are the atoms of q and hyperedges

are the sets qt, for t ∈ Θq
T . Formula (5) for Hq

T is the same as rewriting (4) with the atoms S(~z) ∈ q and
the tree witness formulas twt, for t ∈ Θq

T , treated as propositional variables, pS(~z) and pt, respectively.

Example 4. For q and T from Example 2, the hypergraph Hq
T is shown in Fig. 2 and

fHq
T

= (pR1(x1,y1) ∧ pQ(y2,y1) ∧ pR2(x2,y2)) ∨ (pR2(x2,y2) ∧ pt1) ∨ (pR1(x1,y1) ∧ pt2).

Suppose the function fHq
T

is computed by some Boolean formula χ. Consider the FO-formula obtained
by adding the prefix ∃~y to χ and replacing each pS(~z) in it with S(~z) and each pt with the formula twt(tr)
of length O(|q| · |T |). By comparing (5) and (4), we see that the resulting FO-formula is a rewriting of
q and T . This gives the first claim in the following theorem; the second one requires some basic skills in
datalog programming. (Recall [3] that monotone Boolean formulas and circuits contain only ∧ and ∨.)
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R1(x1, y1)

Q(y2, y1)

R2(y2, x2)

t1 t2

Figure 2: Hypergraph Hq
T for q and T from Example 2.

Theorem 5. If fHq
T

is computed by a (monotone) Boolean formula χ then there is a (PE-) FO-rewriting of
q and T of size O(|χ| · |q| · |T |).

If fHq
T

is computed by a monotone Boolean circuit C then there is an NDL-rewriting of q and T of size
O(|C| · |q| · |T |).

Proof. The first claim was explained above, so we only prove the second one. Let q(~x) = ∃~y ϕ(~x, ~y).
First, we define a unary predicate D0 by taking the following clauses

D0(z)← %(z), (6)

for every formula %(z) of the form S(z), ∃y S(z, y) and ∃y S(y, z), where S is a predicate occurring in T
or q (we say that such a % is in the signature of T and q). Intuitively, the interpretation of D0 contains all
the individual constants of the given data instance. We then set ~z = ~x ∪ ~y and define a |~z|-ary predicate D
by the following clause

D(~z)←
∧
z∈~z

D0(z). (7)

We need the predicate D to ensure that all the clauses in our NDL-program are safe (that is, every variable
in the head of a clause also occurs in the body).

Suppose Hq
T has m vertices and l hyperedges. Let g1, . . . , gn be the nodes of C ordered in such a way

that g1, . . . , gm correspond to the atoms S1(~z1), . . . , Sm(~zm) of q, gm+1, . . . , gm+l correspond to the tree
witnesses t1, . . . , tl and gm+l+1, . . . , gn correspond to the gates of C with gn its output. For 1 ≤ i ≤ m,
we take the clauses

Gi(~z)← Si(~zi) ∧D(~z). (8)

For m < i ≤ m+ l, take the clauses

Gi(~z)← %(z0) ∧
∧

y∈ti−mr

(z0 = y) ∧D(~z), for all %(z) with ti−m is generated by %(z). (9)

where z0 is a fresh variable. For i > m+ l, we take the clauses

Gi(~z)← Gj(~z) ∧Gj′(~z) ∧D(~z), if gi = gj ∧ gj′ , (10)

Gi(~z)← Gj(~z) ∧D(~z),

Gi(~z)← Gj′(~z) ∧D(~z),

}
if gi = gj ∨ gj′ . (11)

Denote the resulting set of clauses (6)–(11) by Π. We claim that (Π, Gn) is an NDL-rewriting of q and T
over complete data. To see this, we can transform (Π, Gn) to a PE-formula of the form

∃~y
[
ψ(~x, ~y) ∧

∧
z∈~x∪~y

( ∨
% in signature of T , q

%(z)
)]
,

where ∃~y ψ(~x, ~y) can be constructed by taking the Boolean formula representing C and replacing pS(~z)

with S(~z) and pt with twt(tr). It follows from the first claim of the theorem that ∃~y ψ(~x, ~y) is a rewriting
of q and T over complete data. It should be clear that the big conjunction does not change this fact. q

Thus, the problem of constructing short rewritings is reducible to the problem of finding short (mono-
tone) Boolean formulas or circuits computing the hypergraph functions.

In the next section, we consider hypergraphs as programs for computing Boolean functions and com-
pare them with the well-known formalisms of nondeterministic branching programs (NBPs) and nondeter-
ministic Boolean circuits [3, 18].
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4 Hypergraphs, NBPs and Nondeterministic Boolean Circuits
Let p1, . . . , pn be propositional variables. An input to a hypergraph program or an NBP is a vector ~α ∈
{0, 1}n assigning the truth-value ~α(pi) to each of the pi. We extend this notation to negated variables and
constants by setting ~α(¬pi) = ¬~α(pi), ~α(0) = 0 and ~α(1) = 1.

A hypergraph program (HGP) is a hypergraph H = (V,E) in which every vertex is labelled with 0,
1, pi or ¬pi. We say that the hypergraph program H computes a Boolean function f in case, for any input
~α, we have f(~α) = 1 iff there is an independent subset in E that covers all zeros—that is, contains all the
vertices in V labelled with 0 under ~α. A hypergraph program is monotone if there are no negated variables
among its vertex labels. The size, |H|, of a hypergraph program H is the number of hyperedges in it.

We say that a hypergraph (program) H is of degree ≤ n if every vertex in it belongs to at most
n hyperedges; H is of degree n if every vertex in it belongs to exactly n hyperedges. We denote by
HGP(f) (HGPn(f)) the minimal size of hypergraph programs (of degree ≤ n) computing f ; HGP+(f)
and HGPn+ (f) are used for the size of monotone programs.

We show first that monotone hypergraph programs of degree ≤ 2 capture the computational power of
hypergraph functions for hypergraphs of degree ≤ 2. On the one hand, a monotone hypergraph program
H computes the subfunction of fH obtained by setting pe = 1, for all e ∈ E, and setting pv to be equal to
the label of v. On the other hand, any hypergraph function fH can be computed by a monotone hypergraph
program of degree 2 and size O(|H|).

Lemma 6. For any hypergraph H of degree ≤ n, there is a monotone HGP of degree ≤ max(2, n) and
size 2|H| computing the function fH .

Proof. Given a hypergraph H = (V,E), we label each v ∈ V by a variable pv . For each e ∈ E, we add
a fresh vertex ae labelled with 1 and a fresh vertex be labelled with pe; then we create a new hyperedge
e′ = {ae, be} and add ae to the hyperedge e. We claim that the resulting hypergraph program H ′ computes
fH . Indeed, for any input ~α with ~α(pe) = 0, we have to include the edge e′ into the cover, and so cannot
include the edge e itself. Thus, the program returns 1 iff there is an independent set X of hyperedges with
~α(pe) = 1, for all e ∈ X , covering all zeros of the variables pv . It follows that H ′ computes fH . q

Lemma 7. If f is computable by a (monotone) HGP H of degree ≤ 2, then it can also be computed by a
(monotone) HGP of degree 2 and size |H|+ 3.

Proof. Let v1, . . . , vk be vertices of degree 0 and vk+1, . . . , vl vertices of degree 1 in H . It suffices to
extend H with vertices, x, y, z labelled with 1, 0, 0, respectively, and hyperedges e1 = {v1, . . . , vl, x, y},
e2 = {v1, . . . , vk, x, z} and e3 = {y, z}. It is easy to see that each cover should contain e3 but cannot
contain e1, e2. Indeed, y and z should both be covered. However, e1 and e2 intersect and cannot be both
in the same cover. Thus, y and z should be covered by e3, while e1 and e2, intersecting e3, are not in
the cover. After these choices we are left to deal with the original hypergraph. Clearly, this construction
preserves monotonicity. q

Our next result in this section establishes a link between hypergraph programs of degree ≤ 2 and
NBPs. Recall [18] that an NBP is a directed multigraph with two distinguished vertices, s and t, and the
arcs labelled with 0, 1, pi or ¬pi (the arcs of the first type have no effect, the arcs of the second type are
called rectifiers, and those of the third and fourth types contacts). We assume that s has no incoming and
t no outgoing arcs, and note that NBPs may have multiple parallel arcs (with distinct labels) connecting
two nodes. We write v →~α v′ if there is a directed path from v to v′ labelled with 1 under ~α. An NBP
computes a Boolean function f if f(~α) = 1 just in case s →~α t. The size of an NBP is the number of
arcs in it. An NBP is monotone if it has no negated variables among its labels. We denote by NBP(f)
(respectively, NBP+(f)) the minimal size of (monotone) NBPs computing f . NBP(poly) is the class of
Boolean functions computable by polynomial-size NBPs. As usual, f∗ is the Boolean function dual to f .

Theorem 8. (i) For any Boolean function f , HGP2(f) and NBP(¬f) are polynomially related.
(ii) For any monotone Boolean function f , HGP2

+ (f) and NBP+(f∗) are polynomially related.
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Proof. We only prove (i); (ii) is proved by the same argument. Suppose ¬f is computed by an NBP G. We
construct a hypergraph program H of degree ≤ 2 as follows. For each arc e in G, H has two vertices e0

and e1, which represent the beginning and the end of e. The vertex e0 is labelled with the negated label of e
in G and e1 with 1. We also add to H a vertex t labelled with 0. For each arc e in G, H has an e-hyperedge
{e0, e1}. For each vertex v in G but s and t, H has a v-hyperedge that consists of all vertices e1, for the
arcs e leading to v, and all vertices e0, for the arcs e leaving v. For the vertex t, H contains a hyperedge
that consists of t and all vertices e1, for the arcs e leading to t. We claim that the constructed hypergraph
program H computes f . Indeed, if s 6→~α t in G then the following subset of hyperedges is independent
and covers all zeros: all e-hyperedges, for the arcs e reachable from s and labelled with 1 under ~α, and all
v-hyperedges with s 6→~α v. Conversely, if s →~α t then it can be shown by induction that, for each arc ei
of the path, the ei-hyperedge must be in the cover of all zeros. Thus, no independent set can cover t, which
is labelled with 0.

Suppose f is computed by a hypergraph program H of degree 2 with hyperedges e1, . . . , ek. We first
provide a graph-theoretic characterisation of independent sets covering all zeros based on the implication
graph [5] (or the chain criterion of Lemma 8.3.1 [9]). With any hyperedge ei we associate a propositional
variable pei and with an input ~α we associate the following set Φ~α of binary clauses:

– ¬pei ∨¬pej , if ei ∩ ej 6= ∅ (informally: intersecting hyperedges cannot be chosen at the same time),

– pei ∨ pej , if there is v ∈ ei ∩ ej such that ~α(v) = 0 (informally: all zeros must be covered; note that
all vertices have at most two incident edges).

By definition, X is an independent set covering all zeros iff X = {ei | ~β(pei) = 1}, for some assignment
~β satisfying Φ~α. Let B~α = (V,E~α) be a directed graph with

V =
{
e+
i , e
−
i | 1 ≤ i ≤ k

}
,

E~α =
{

(e+
i , e
−
j ) | ei ∩ ej 6= ∅

}
∪
{

(e−i , e
+
j ) | v ∈ ei ∩ ej and ~α(v) = 0

}
.

(V is the set of all ‘literals’ for the variables of Φ~α and E~α is the arcs for the implicational form of the
clauses of Φ~α; note that ¬pei ∨ ¬pej gives rise to two implications, pei → ¬pej and pej → ¬pei , and so
to two arcs in the graph). By Lemma 8.3.1 in [9], Φ~α is satisfiable iff there is no ei with a (directed) cycle
going through e+

i and e−i . It will be convenient for us to regard the B~α, for assignments ~α, as a single
labelled directed graph B with arcs of the from (e+

i , e
−
j ) labelled with 1 and arcs of the form (e−i , e

+
j )

labelled with ¬v, for v ∈ ei ∩ ej . It should be clear that B~α has a cycle going through e+
i and e−i iff

e−i →~α e
+
i and e+

i →~α e
−
i in B.

The required NBP will contain two distinguished vertices, s and t, and, for each hyperedge ei, two
copies, B+

i and B−i , of B with arcs from s to the e−i vertex of B+
i , from the e+

i vertex of B+
i to the e+

i

vertex of B−i and from the e−i vertex of B−i to t. This construction guarantees that s →~α t iff there is ei
such that B~α contains a cycle going through e+

i and e−i . q

In terms of expressive power, polynomial-size NBPs are a nonuniform analogue of the class NL; in
symbols: NBP(poly) = NL/poly. Compared to other nonuniform computational models, (monotone)
NBPs sit between (monotone) Boolean formulas and Boolean circuits [31]. As shown above, a (monotone)
Boolean function f is computable by a polynomial-size (monotone) HGP of degree ≤ 2 iff its dual f∗ is
computable by a polynomial-size (monotone) NBP. (The problem whether f∗ can be replaced with f is
open; a negative solution would give a solution to the open problem 5 from [31].) Thus, (monotone) HGPs
of degree ≤ 2 also sit between (monotone) Boolean formulas and Boolean circuits. However, (monotone)
hypergraphs of degree ≤ 3 turn out to be much more powerful than (monotone) hypergraphs of degree
≤ 2: we show now that polynomial-size (monotone) HGPs of degree ≤ 3 can compute NP-hard Boolean
functions.

A function f : {0, 1}n → {0, 1} is computed by a nondeterministic Boolean circuit C(~x, ~y), with
|~x| = n, if for any ~α ∈ {0, 1}n, we have f(~α) = 1 iff there is ~β ∈ {0, 1}m with C(~α, ~β) = 1. The
variables in ~y are called advice variables. We say that a nondeterministic circuit C(~x, ~y) is monotone if
the negations in C are only applied to variables in ~y. Denote by NBC(f) (respectively, NBC+(f)) the
minimal size of (monotone) nondeterministic Boolean circuits computing f .
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Theorem 9. (i) For any Boolean function f , HGP(f), HGP3(f) and NBC(f) are polynomially related.
(ii) For any monotone Boolean function f , HGP+(f), HGP3

+ (f) and NBC+(f) are polynomially related.

Proof. Clearly, HGP(f) ≤ HGP3(f).
Now, given a (monotone) HGP of size m, we construct a (monotone) nondeterministic circuit C(~x, ~y)

of size poly(m). Its ~x-variables are the variables of the program, and its advice variables correspond
to the edges of the program. The circuit C will return 1 on (~α, ~β) iff the family {ei | ~β(ei) = 1}
of edges of the hypergraph forms an independent set covering all zeros under ~α. It is easy to construct
a polynomial-size circuit checking this property. Indeed, for each pair of intersecting edges ei, ej , it is
enough to take disjunction ¬ei ∨ ¬ej , and for each vertex of the hypergraph labelled with p and adjacent
to edges ei1 , . . . , eik to take disjunction p∨ ei1 ∨ · · · ∨ eik . (Note that applications of ¬ to advice variables
in the monotone case are allowed.) It then remains to take a conjunction of these disjunctions. Finally, it is
easy to see that the resulting nondeterministic circuit is monotone if the hypergraph program is monotone.

Conversely, suppose f is computed by a nondeterministic circuit C(~x, ~y). Let g1, . . . , gn be the nodes
of C (including the inputs ~x and ~y). We construct an HGP of degree≤ 3 computing f by taking, for each i,
a vertex gi labelled with 0 and a pair of hyperedges ēgi and egi , both containing gi. No other edge contains
gi, and so either ēgi or egi should be present in any cover of zeros. (Intuitively, if the node gi is positive
then egi belongs to the cover; otherwise, ēgi is there.) To ensure this property, for each input variable xi,
we add a vertex labelled with ¬xi to exi and a fresh vertex labelled with xi to ēxi . For each gate gi, we
consider three cases.

– If gi = ¬gj then we add a vertex labelled with 1 to egi and ēgj , and a vertex labelled with 1 to ēgi
and egj .

– If gi = gj ∨ gj′ then we add a vertex labelled with 1 to egj and ēgi , add a vertex labelled with 1
to egj′ and ēgi ; then, we add vertices hj and hj′ labelled with 1 to ēgj and ēgj′ , respectively, and a
vertex ui labeled with 0 to ēgi ; finally, we add hyperedges {hj , ui} and {hj′ , ui}.

– If gi = gj ∧ gj′ then we use the dual construction.

It is not hard to see that egi is in the cover iff it contains ēgj in the first case, and egi is in the cover iff it
contains at least one of egj and egj′ in the second one. Indeed, in the second case if, say, the cover contains
egj then it cannot contain ēgi , and so it contains egi . The vertex ui in this case can be covered by the
hyperedge {hj , ui} since ēgj is not in the cover. Conversely, if neither egj nor egj′ is in the cover, then it
must contain both ēgj and ēgj′ and so, neither {hj , ui} nor {hj′ , ui} can belong to the cover and we will
have to include ēgi to the cover. Finally, we add one more vertex labelled with 0 to eg for the output gate g
of C. By induction on the structure of C one can show that, for each ~α, there is ~β such that C(~α, ~β) = 1
iff the constructed HGP returns 1 on ~α.

If C is monotone, we remove all vertices labelled with ¬xi. Then, for an input ~α, there is a cover of
zeros in the resulting HGP iff there are ~β and ~α′ ≤ ~α with C(~α′, ~β) = 1. q

Now, we use the developed machinery to investigate the size of rewritings over ontologies of depth 1
and 2.

5 Rewritings over Ontologies of Depth 1
Theorem 10. For any ontology T of depth 1 and any CQ q, the hypergraph Hq

T is of degree ≤ 2 and
|Θq
T | ≤ |q|.

Proof. We have to show that every atom in q belongs to at most two qt, t ∈ Θq
T . Suppose t = (tr, ti)

is a tree witness and y ∈ ti. Since T is of depth 1, ti = {y} and tr consists of all those variables z in q
for which S(y, z) ∈ q or S(z, y) ∈ q, for some S. Thus, different tree witnesses have different internal
variables y. An atom of the form A(u) ∈ q is in qt iff u = y. An atom of the form P (u, v) ∈ q is in qt iff
either u = y or v = y. Therefore, P (u, v) ∈ q can only be covered by the tree witness with internal u and
by the tree witness with internal v. q
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Theorem 11. Any CQ q and ontology T of depth 1 have a polynomial-size NDL-rewriting.

Proof. By Theorem 10, the hypergraph Hq
T is of degree ≤ 2, and so, by Lemma 6, there is a polynomial-

size HGP of degree ≤ 2 computing fHq
T

. By Theorem 8, we have a polynomial-size monotone NBP
computing f∗

Hq
T

. But then we also have a polynomial-size monotone Boolean circuit that computes f∗
Hq
T

(see, e.g., [31]). By swapping ∧ and ∨ in this circuit, we obtain a polynomial-size monotone circuit
computing fHq

T
. It remains to apply Theorem 5. q

We show next that any hypergraphH of degree 2 is representable by means of a CQ qH and an ontology
TH of depth 1 in the sense that H is isomorphic to HqH

TH . We can assume that H = (V,E) comes with two
fixed maps i1, i2 : V → E such that i1(v) 6= i2(v), v ∈ i1(v) and v ∈ i2(v), for any v ∈ V . For each
hyperedge e ∈ E, we take an individual variable ze and let ~z be the vector of these variables. For every
vertex v ∈ V , we take a binary predicate Rv and set:

qH = ∃~z
∧
v∈V

Rv(zi1(v), zi2(v)).

Let TH be an ontology with the following tgds, for e ∈ E:

Ae(x) → ∃y
[ ∧
v∈V

i1(v)=e

Rv(y, x) ∧
∧
v∈V

i2(v)=e

Rv(x, y)
]
. (12)

Example 12. Consider H = (V,E) with V = {v1, v2, v3, v4} and E = {e1, e2, e3}, where

e1 = {v1, v2, v3}, e2 = {v3, v4}, e3 = {v1, v2, v4},

and assume that

i1 : v1 7→ e1, v2 7→ e3, v3 7→ e1, v4 7→ e2,

i2 : v1 7→ e3, v2 7→ e1, v3 7→ e2, v4 7→ e3.

The hypergraph H is shown in Fig. 3, where each vk is represented by an edge, i1(vk) is indicated by the
circle-shaped end of the edge and i2(vk) by the diamond-shaped end of the edge; the ej are shown as large
grey squares.

e2

e1

e3

v1
v2

v4

v3

hypergraph H tree witness te1

ze1

ze2

ze3

Ae1

R
− v 3

R
v
2

R
− v 1

Figure 3: A hypergraph H and a tree witness for qH and TH .

In this case,

qH = ∃ze1ze2ze3
(
Rv1

(ze1 , ze3) ∧Rv2
(ze3 , ze1) ∧Rv3

(ze1 , ze2) ∧Rv4
(ze2 , ze3)

)
and the ontology TH consists of the following tgds:

Ae1(x)→ ∃y
[
Rv1(y, x) ∧Rv2(x, y) ∧Rv3(y, x)

]
,

Ae2(x)→ ∃y
[
Rv3(x, y) ∧Rv4(y, x)

]
,

Ae3(x)→ ∃y
[
Rv1(x, y) ∧Rv2(y, x) ∧Rv4(x, y)

]
.
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The canonical model CAe1 (a)

TH is shown on the right-hand side of the picture above. Note that each ze
determines the tree witness te with qte = {Rv(zi1(v), zi2(v)) | v ∈ e}; te and te

′
are conflicting iff

e ∩ e′ 6= ∅. It follows that H is isomorphic to HqH
TH . In fact, this example generalises to the following:

Theorem 13. Any hypergraph H of degree 2 is isomorphic to HqH
TH , with TH being an ontology of depth 1.

Proof. We show that the map h : v 7→ Rv(zi1(v), zi2(v)) is an isomorphism between H and HqH
TH . By the

definition of qH , h is a bijection between V and the atoms of qH . For any e ∈ E, there is a tree witness
te = (ter , t

e
i ) generated by Ae(x) with

tei = {ze} and ter = {ze′ | e′ ∩ e 6= ∅},

and qte consists of the h(v), for v ∈ e. Conversely, every tree witness t for qH and TH contains ze ∈ ti,
for some e ∈ E, and so qt = {h(v) | v ∈ e}. q

We now show that answering qH over TH and certain single-individual data instances amounts to
computing the Boolean function fH . Let H = (V,E) be a hypergraph of degree 2 with V = {v1, . . . , vn}
and E = {e1, . . . , em}. We denote by ~α(vi) the i-th component of ~α ∈ {0, 1}n, by ~β(ej) the j-th
component of ~β ∈ {0, 1}m, and set

A~α,~β = {Rvi(a, a) | ~α(vi) = 1 } ∪ {Aej (a) | ~β(ej) = 1 }.

Theorem 14. Let H = (V,E) be a hypergraph of degree 2. Then TH ,A~α,~β |= qH iff fH(~α, ~β) = 1, for

any ~α ∈ {0, 1}|V | and ~β ∈ {0, 1}|E|.

Proof. (⇐) Let X be an independent subset of E such that
∧
v∈V \VX pv ∧

∧
e∈X pe is true on ~α (for the

pv) and ~β (for the pe). Define h : qH → CTH ,A~α,~β by taking h(ze) = a if e /∈ X and h(ze) = we other-
wise, where we is the labelled null in the canonical model CTH ,A~α,~β introduced to witness the existential
quantifier in (12). One can check that h is a homomorphism, and so TH ,A~α,~β |= qH .

(⇒) Suppose h : qH → CTH ,A~α,~β is a homomorphism. We show that the set X = {e ∈ E | h(ze) 6= a} is
independent. Indeed, if e, e′ ∈ X and v ∈ e ∩ e′, then h sends one variable of the Rv-atom to the labelled
null we and the other end to we′ , which is impossible. We claim that fH(~α, ~β) = 1. Indeed, for each
v ∈ V \ VX , h sends both ends of the Rv-atom to a, and so ~α(v) = 1. For each e ∈ X , we must have
h(ze) = we because h(ze) 6= a, and so ~β(e) = 1. It follows that fH(~α, ~β) = 1. q

We are now fully equipped to show that there exist CQs and ontologies of depth 1 without polynomial-
size PE-rewritings:

Theorem 15. There is a sequence of CQs qn and ontologies Tn of depth 1, both of polynomial size in n,
such that any PE-rewriting of qn and Tn is of size nΩ(logn).

Proof. As shown in [19], there is a sequence fn of monotone Boolean functions that are computable by
polynomial-size monotone NBPs, but any monotone Boolean formulas computing fn are of size nΩ(logn).
In fact, fn from [19] checks whether two given vertices are connected by a path in a given undirected graph
(alternatively, one could use the functions from [17]).

By Theorem 8 (ii) and Lemma 7, there is a sequence of polynomial-size monotone HGPs H ′n of de-
gree 2 computing f∗n. By applying Theorem 13 to the hypergraph Hn of H ′n, we obtain a sequence of CQs
qn and ontologies Tn of depth 1 such that Hn is isomorphic to Hqn

Tn . We show now that any PE-rewriting
q′n of qn and Tn can be transformed to a monotone Boolean formula computing fn and having size≤ |q′n|.

To define such a formula, we eliminate the quantifiers in q′n in the following way: take a constant a and
replace every subformula of the form ∃xψ(x) in q′n with ψ(a), repeating this operation as many times as
possible. The resulting formula q′′n is built from atoms of the form Ae(a), Rv(a, a) and Se(a, a) using ∧
and ∨. For every data instance A with a single individual a, we have Tn,A |= qn iff A |= q′′n. Let χn be
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the result of replacing Se(a, a) in q′′n with ⊥, Ae(a) with pe and Rv(a, a) with pv . Clearly, |χn| ≤ |q′n|.
By the definition of A~α,~β and Theorem 14, we obtain:

χn(~α, ~β) = 1 iff A~α,~β |= q′′n iff Tn,A~α,~β |= qn iff fHn(~α, ~β) = 1.

As H ′n computes f∗n, we can obtain f∗n from fHn by replacing each pe with 1 and each pv with the label of
v in H ′n. The same substitution in χn (with > and ⊥ in place of 1 and 0) gives a monotone formula that
computes f∗n. By swapping ∨ and ∧ in it, we obtain a monotone formula χ′n computing fn. It remains to
recall that |q′n| ≥ |χ′n| = nΩ(logn). q

It may be of interest to note that the function fn in the proof above is in the complexity class L.
The algorithm computing fn by querying the NDL-rewriting of Theorem 11 over single-individual data
instances runs in polynomial time; the algorithm querying any PE-rewriting to compute fn requires, by
Theorem 15, superpolynomial time.

We note further that instead of reachability in undirected graphs in Theorem 15 we could use reachabil-
ity in directed graphs. Indeed, since the undirected case reduces to the directed one, we have the same lower
bound for computing directed reachability by monotone formulas. On the other hand, it is known that di-
rected reachability also can be computed by polynomial-size monotone circuits. As reachability in directed
graphs is NL/poly-complete under NC1-reductions, the argument in the proof of Theorem 15 shows that
the existence of short FO-rewritings of CQs and ontologies of depth 1 is equivalent to a well-known open
problem in computational complexity:

Theorem 16. There exist polynomial-size FO-rewritings for all CQs and ontologies of depth 1 iff all
functions in NL/poly are computed by polynomial-size Boolean formulas, that is, iff NL/poly ⊆ NC1.

Proof. (⇐) Suppose NL/poly ⊆ NC1. Take an arbitrary CQ and an ontology of depth 1. By Theorem 10,
its hypergraph Hq

T is of degree ≤ 2 and polynomial size. By Lemma 6, there is a polynomial-size HGP H
computing fHq

T
, whence, by Theorem 8 (i), there is a polynomial-size NBP computing ¬fHq

T
, and so fHq

T
is in CONL/poly = NL/poly. Therefore, by our assumption, it can be computed by a polynomial-size
Boolean formula. By Theorem 5, the latter translates into a polynomial-size FO-rewriting of q and T .
(⇒) Suppose that there exist polynomial-size FO-rewritings for all CQs and ontologies of depth 1. Con-
sider a sequence of functions fn that compute the connectivity function in directed graphs. Since fn ∈ NL
and NL = CONL, the functions ¬fn are computable by a sequence of polynomial-size NBPs. Now we use
an argument similar to the one in the proof of Theorem 15. We apply Theorem 8 (i) and Lemma 7 to ¬fn
and obtain a polynomial-size HGP H ′n of degree 2 that computes fn. By Theorem 13, there are sequences
of CQs qn and ontologies Tn of depth 1 such that fn is a subfunction of fHqn

Tn
in the sense that fn is the

result of replacing each pe with 1 and each pv with the label of v in H ′n. By our assumption, there is a
polynomial-size FO-rewriting q′n of qn and Tn. We eliminate the quantifiers in q′n and apply to the result
the substitution giving fn from fHqn

Tn
to obtain a polynomial-size propositional Boolean formula that com-

putes fn. Since fn is NL/poly-complete under NC1 reductions, we then must have NL/poly ⊆ NC1. q

As we shall see in Section 7, tree-shaped CQs and ontologies of depth 1 always have polynomial-size
PE-rewritings.

6 Rewritings over Ontologies of Depth 2
Our next aim is to show that CQs and ontologies of depth 2 can compute the NP-complete function check-
ing whether a graph with n vertices has a k-clique. We remind the reader (see, e.g., [3] for details) that the
monotone Boolean function CLIQUEn,k(~e) of n(n − 1)/2 variables ejj′ , 1 ≤ j < j′ ≤ n, returns 1 iff
the graph with vertices {1, . . . , n} and edges {{j, j′} | ejj′ = 1} contains a k-clique. A series of papers,
started by Razborov’s [30], gave an exponential lower bound for the size of monotone circuits computing
CLIQUEn,k: 2Ω(

√
k) for k ≤ 1

4 (n/ log n)2/3 [2]. For monotone formulas, an even better lower bound is
known: 2Ω(k) for k = 2n/3 [29].
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We first construct a monotone HGP computing CLIQUEn,k and then use the intuition behind the con-
struction to encode CLIQUEn,k by means of a Boolean CQ qn,k and an ontology Tn,k of depth 2 and
polynomial size. As a consequence, any PE- or NDL-rewriting of qn,k and Tn,k is of exponential size,
while any FO-rewriting is of superpolynomial size unless NP ⊆ P/poly.

Given n and k, let Hn,k be a monotone HGP with vertices

wjj′ labelled with ejj′ , (1 ≤ j < j′ ≤ n),

ujj′ and uj′j labelled with 1, (1 ≤ j < j′ ≤ n),

vi labelled with 0 (1 ≤ i ≤ k),

and hyperedges

hjj
′
={wjj′ , ujj′} and hj

′j={wjj′ , uj′j} (1 ≤ j < j′ ≤ n),

f ij = {vi} ∪ {ujj′ | j′ 6= j} (1 ≤ i ≤ k, 1 ≤ j ≤ n).

Informally, the wjj′ represent the edges of the complete graph with n vertices; they can be turned ‘on’ or
‘off’ by means of the variables ejj′ . The vertex ujj′ together with the hyperedge hjj

′
represent the ‘half’

of the edge connecting j and j′ that is adjacent to j; the other ‘half’ is represented by uj′j and hj
′j . The

vertices vi represent a k-clique and the edge f ij corresponds to the choice of the vertex j of the graph as
the ith element of the clique. The hypergraph of H4,2 is shown in Fig. 4.

h12

h21

f13

f14

f11

f12

f22

f21

f24

f23

v1v2

1

23

4

w12

w23

w34

w14

w24 w13

u12

u21

Figure 4: The hypergraph of H4,2.

Theorem 17. The HGP Hn,k computes CLIQUEn,k.

Proof. We show that, for each ~e ∈ {0, 1}n(n−1)/2, there is an independent set X of hyperedges covering
all zeros in Hn,k under ~e iff CLIQUEn,k(~e) = 1.
(⇐) Let λ : {1, . . . , k} → {1, . . . , n} be such that C = {λ(i) | 1 ≤ i ≤ k} is a k-clique in the graph G
given by ~e. Then

X =
{
f iλ(i) | 1 ≤ i ≤ k

}
∪
{
hjj
′
| j /∈ C, j′ ∈ C

}
∪
{
hjj
′
| j, j′ /∈ C and j < j′

}
is independent and covers all zeros in Hn,k under ~e. Indeed, X is independent because, in every hjj

′ ∈ X ,
the index j does not belong to C. By definition, each f iλ(i) covers vi, for 1 ≤ i ≤ k. Thus, it remains to
show that any wjj′ with ejj′ = 0 (that is, the edge {j, j′} belongs to the complement of G) is covered by
some hyperedge. All edges of the complement of G can be divided into two groups: those that are adjacent
to C, and those that are not. The wjj′ that correspond to the edges of the former group are covered by the
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hjj
′

from the middle disjunct of X , where j corresponds to the end of the edge {j, j′} that is not C. To
cover wjj′ of the latter group, take hjj

′
from the last disjunct of X .

(⇒) Suppose X is an independent set covering all zeros labelling the vertices of Hn,k, for an input ~e.
The vertex vi, 1 ≤ i ≤ k, is labelled with 0, and so there is λ(i) such that f iλ(i) ∈ X . We claim that
C = {λ(i) | 1 ≤ i ≤ k} is a k-clique in the graph given by ~e. Indeed, suppose that the graph has no
edge between some vertices j, j′ ∈ C, that is, ejj′ = 0 for j < j′. Since wjj′ is labelled with 0, it must
be covered by a hyperedge in X , which can only be either hjj

′
or hj

′j (see the picture above). But hjj
′

intersects fλ
−1(j)j and hj

′j intersects fλ
−1(j′)j′ , which is a contradiction. q

v1v2

1

23

4

w12

w23

w34

w14

w24 w13

u12

u21

x12

x21

Q

P21

Q

P12

z12

U

T12

z11

U

T
11

z14

z13

z23

z24

z21

z22

Figure 5: The CQ q4,2 for H4,2.

We are now in a position to define Tn,k of depth 2 and qn,k, both of polynomial size in n, that can
compute CLIQUEn,k. Let qn,k contain the following atoms (all variables are quantified):

Tij(vi, zij) (1 ≤ i ≤ k, 1 ≤ j ≤ n),

Pjj′(wjj′ , xjj′), Pj′j(wjj′ , xj′j) (1 ≤ j < j′ ≤ n),

Q(ujj′ , xjj′), U(ujj′ , zij) (1 ≤ j 6= j′ ≤ n, 1 ≤ i ≤ k).

Figs. 5 and 6 show two different views of the CQ q4,2 for H4,2. Fig. 7 illustrates the fragments of qn,k
centred in each variable of the form zij and xjj′ (the fragment centred in xj′j is similar to that of xjj′
except the index of the wjj′ ).

The ontology Tn,k mimics the arrangement of atoms in the layers depicted in Fig. 7 and contains the
following tgds, where 1 ≤ i ≤ k and 1 ≤ j 6= j′ ≤ n,

Aij(x)→ ∃y
[ ∧
j′′ 6=j

Tij′′(y, x) ∧ U(y, x) ∧Q(y, x) ∧A′ij(y)
]
,

A′ij(x)→ ∃y
[
Tij(x, y) ∧ U(x, y)

]
,

Bjj′(x)→ ∃y
[
Pj′j(y, x) ∧ U(y, x) ∧B′jj′(y)

]
,

B′jj′(x)→ ∃y
[
Pjj′(x, y) ∧Q(x, y)

]
.

14



zij

vi

ujj′ xjj′

wjj′

Figure 6: The CQ q4,2 for H4,2.

vi

zij

ujj′

for j′ 6= j

xjj′

zij′′
for j′′ 6=j

zi′j
for i′ 6=i

T
i
j U

QU

T
i
j
′′

CAij(a)Tn,k

cij

c′ij

T
− ij
′′

U
−
,
Q
−

T
i
j
,
U

wjj′

xjj′

ujj′

xj′j zij
for all i

P
j
j
′

P
j
′ j

Q

U

C
Bjj′ (a)

Tn,k

djj′

d′jj′

P
− j′
j

U
−

P
j
j ′ ,
Q

Figure 7: Fragments of qn,k and the canonical models CAij(a)
Tn,k and CBjj′ (a)

Tn,k .

The canonical models CAij(a)
Tn,k and CBjj′ (a)

Tn,k are also illustrated in Fig. 7 with the horizontal dashed lines
showing possible ways of embedding the fragments of qn,k into them. These embeddings give rise to the
following tree witnesses:

– tij = (tijr , t
ij
i ) generated by Aij(x), for 1 ≤ i ≤ k and 1 ≤ j ≤ n, where

tijr = {zij′ , xjj′ | 1 ≤ j′ ≤ n, j′ 6= j} ∪ {zi′j | 1 ≤ i′ ≤ k, i 6= i′},
tiji = {vi, zij} ∪ {ujj′ | 1 ≤ j′ ≤ n, j′ 6= j};

– sjj
′

= (sjj
′

r , sjj
′

i ) and sj
′j = (sj

′j
r , sj

′j
i ), generated by Bjj′(x) and Bj′j(x), respectively, for 1 ≤

j < j′ ≤ n, where

sjj
′

r = {xj′j} ∪ {zij | 1 ≤ i ≤ k}, sjj
′

i = {wjj′ , ujj′ , xjj′},

sj
′j

r = {xjj′} ∪ {zij′ | 1 ≤ i ≤ k}, sj
′j

i = {wjj′ , uj′j , xj′j}.

The tree witnesses tij , sjj
′

and sj
′j are uniquely determined by their most remote (from the root) variables,

zij , xjj′ and xj′j , respectively, and correspond to the hyperedges f ij , hjj
′
, hj

′j of Hn,k; their internal
variables of the form vi, wjj′ and ujj′ correspond to the vertices in the respective hyperedge (see Fig. 5).
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Given a vector ~e representing a graph with n vertices, we construct a data instance A~e with a single
individual a by taking the following atoms:

Q(a, a), U(a, a), Aij(a), for 1 ≤ i ≤ k and 1 ≤ j ≤ n,
Pjj′(a, a) and Pj′j(a, a), for 1 ≤ j < j′ ≤ n with ejj′ = 1.

Lemma 18. Tn,k,A~e |= qn,k iff CLIQUEn,k(~e) = 1.

Proof. (⇒) Suppose Tn,k,A~e |= qn,k. Then there is a homomorphism g from qn,k to the canonical model
C of (Tn,k,A~e). Since the only points of C that belong to ∃y Tij(x, y) are of the form cij (see Fig. 7) and
qn,k contains atoms of the form Tij(vi, zij), there is λ : {1, . . . , k} → {1, . . . , n} such that g(vi) = ciλ(i).
We claim that C = {λ(i) | 1 ≤ i ≤ k} is a k-clique in the graph given by ~e.

We first show that λ is injective. Suppose to the contrary that λ(i) = λ(i′) = j, for i 6= i′. Since
qn,k contains Tij(vi, zij) and Ti′j(vi′ , zi′j), we have g(zij) = c′ij and g(zi′j) = c′i′j . Take j′ 6= j. Since
U(ujj′ , zij), U(ujj′ , zi′j) ∈ qn,k, we obtain g(ujj′) = cij and g(ujj′) = ci′j , contrary to i 6= i′.

Next, we show that ejj′ = 1, for all j, j′ ∈ C with j < j′. Since U(ujj′ , zij) is in qn,k, we have
g(ujj′) = cij , and so g(xjj′) = a. Similarly, we also have g(uj′j) = ci′j′ and g(xj′j) = a. Then, since
qn,k contains both Pjj′(wjj′ , xjj′) and Pj′j(wjj′ , xj′j) and C contains no pair of points in both Pjj′ and
Pj′j apart from (a, a), we obtain ejj′ = 1 whenever g(xjj′) = g(xj′j) = a, as shown in Fig. 8.

wjj′

xj′juj′jzi′j′vi′ P
j ′j

QU
T
i′j′

xjj′ujj′zijvi Pjj
′

QUTij

Figure 8: Proof of Lemma 18.

(⇐) Suppose λ : {1, . . . , k} → {1, . . . , n} is a k-clique. We construct a homomorphism g from qn,k to
the canonical model of (Tn,k,A~e) by taking (see Fig. 7), for 1 ≤ i ≤ k and 1 ≤ j < j′ ≤ n,

g(vi) = ciλ(i),

g(zij) =

{
c′ij , if j = λ(i),

a otherwise,
g(wjj′) =


a, if j, j′ ∈ C,
dj′j , if j′ /∈ C and j ∈ C,
djj′ , otherwise,

and, for 1 ≤ j 6= j′ ≤ n,

g(ujj′) =


cλ−1(j)j , if j ∈ C,
djj′ , if j /∈ C, j′ ∈ C,
djj′ , if j, j′ /∈ C, j < j′,

a, if j, j′ /∈ C, j′ < j,

g(xjj′) =


a, if j ∈ C,
d′jj′ , if j /∈ C, j′ ∈ C,
d′jj′ , if j, j′ /∈ C, j < j′,

a, if j, j′ /∈ C, j′ < j.

This homomorphism mimics the cover X constructed for Hn,k in the proof of Theorem 17. The internal
variables of the tree witnesses from X are sent to labelled nulls, and all other points are sent to a. For
example, in the definition of g(ujj′), the first case corresponds to ujj′ ∈ fλ

−1(j)j ∈ X; the second
and third cases to ujj′ ∈ hjj

′ ∈ X; and in the fourth case, ujj′ is not covered by X . It follows that
Tn,k,A~e |= qn,k. q

Theorem 19. There exists a sequence of CQs qn and ontologies Tn of depth 2 any PE- and NDL-rewritings
of which are of exponential size, while any FO-rewriting is of superpolynomial size unless NP ⊆ P/poly.
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Proof. Given a PE-, FO- or NDL-rewriting q′n,k of qn,k and Tn,k, we show how to construct, respectively, a
monotone Boolean formula, a Boolean formula or a monotone Boolean circuit for the function CLIQUEn,k
of size |q′n,k|.

Suppose q′n,k is a PE-rewriting of qn,k and Tn,k. We eliminate the quantifiers in q′n,k by replacing first
every subformula of the form ∃xψ(x) in q′n with ψ(a), and then replacing each Pjj′(a, a) and Pj′j(a, a)
with ejj′ , each Tij(a, a), A′ij(a) and B′jj′(a) with 0 and each U(a, a), Q(a, a), Aij(a) and Bjj′(a) with 1.
One can check that the resulting propositional monotone Boolean formula computes CLIQUEn,k.

If q′n,k is an FO-rewriting of qn,k, then we eliminate the quantifiers by replacing ∃xψ(x) and ∀xψ(x)
in q′n,k with ψ(a), and then carry out the replacing procedure above, obtaining a propositional Boolean
formula computing CLIQUEn,k.

If (Π, q′n,k) is an NDL-rewriting of qn,k, we replace all the individual variables in Π with a and then
perform the replacement described above. Denote the resulting propositional NDL-program by Π′. The
program Π′ can now be transformed into a monotone Boolean circuit computing CLIQUEn,k: for every
(propositional) variable p occurring in the head of a clause in Π′, we introduce an ∨-gate whose output is
p and inputs are the bodies of the clauses with the head p; and for each such body, we introduce an ∧-gate
whose inputs are the propositional variables in the body.

Now Theorem 19 follows from the lower bounds for monotone Boolean circuits and formulas comput-
ing CLIQUEn,k given at the beginning of this section. q

As the function CLIQUEn,k is known to be NP/poly-complete with respect to NC1-reductions, we also
obtain:

Theorem 20. There exist polynomial-size FO-rewritings for all CQs and ontologies of depth 2 with
polynomially-many tree witnesses iff all functions in NP/poly are computed by polynomial-size formulas,
that is, iff NP/poly ⊆ NC1.

Proof. (⇐) Suppose NP/poly ⊆ NC1. Consider an arbitrary CQ q and an ontology T of depth 2 with
polynomially-many tree witnesses. Then the hypergraph Hq

T is of polynomial size. The hypergraph func-
tion fHq

T
is in the class NP/poly because the problem whether there exists an independent set of hyper-

edges in a hypergraph covering all zeros is in NP. Therefore, by our assumption, fHq
T

can be computed by
a polynomial-size formula, which translates into a polynomial-size FO-rewriting by Theorem 5.
(⇒) Conversely, suppose that there is a polynomial-size FO-rewriting for all CQs and ontologies of depth 2.
In particular, there is a polynomial-size FO-rewriting for the CQs and ontologies of depth 2 encoding
CLIQUEn,k defined above. These CQs and ontologies have polynomially-many tree witnesses. Our as-
sumption and the construction in the proof of Theorem 19 provide us with a polynomial-size Boolean
formula computing CLIQUEn,k. Since CLIQUEn,k is NP/poly-complete under NC1 reductions, this gives
us NP/poly ⊆ NC1. q

7 Rewritings of Tree-Shaped CQs
A CQ is said to be tree-shaped if its Gaifman graph is a tree. It is well known [35, 12] that tree-shaped CQs
(or, more generally, CQs of bounded treewidth) can be evaluated over plain data instances in polynomial
time. In contrast, the evaluation of arbitrary CQs is NP-complete for combined complexity and W [1]-
complete for parameterised complexity. In this section, we consider tree-shaped CQs over ontologies.

At first sight, we do not gain much by focusing on tree-shaped CQs: answering such CQs over on-
tologies is NP-complete for combined complexity [21], while their PE- and NDL-rewritings can suffer
an exponential blowup [20]. However, by examining the tree-witness rewriting (4), we see that the twt

formula (3) defines a predicate over the data that can be computed in linear time. It follows that, for a
tree-shaped q, every disjunct of (4) can also be regarded as a tree-shaped CQ of size ≤ |q|. So, bearing in
mind that |Θq

T | ≤ 3|q|, we obtain the following:

Theorem 21. Given a tree-shaped CQ q(~x), an ontology T , a data instance A and a tuple ~a ⊆ ind(A),
the problem of deciding whether T ,A |= q(~a) is fixed-parameter tractable, with parameter |q|.
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Furthermore, if each variable in a tree-shaped CQ is covered by a ‘small’ number of tree witnesses then
we can obtain polynomial-size PE- or NDL-rewritings.

Example 22. Consider the following ontology and CQ illustrated in Fig. 9:

T =
{
Ai(x)→ ∃y

(
Ri(x, y) ∧Ri+1(y, x)

)
| 1 ≤ i ≤ 3

}
,

q = ∃y1 . . . y5

∧
1≤i≤4

Ri(yi, yi+1).

q1 q2

y1 y2

y3

y4 y5

R1

R
2 R

3

R4
A2

R
2

R
− 3

Figure 9: CQ and ontology from Example 22.

We construct a PE-rewriting q† of q and T recursively by splitting q into smaller subqueries. Suppose
T ,A |= q, for some A. Then there is a homomorphism h : q → CT ,A. Consider the ‘central’ variable y3

dividing q in half. If h(y3) is in the data part of CT ,A then y3 behaves like a free variable in q. Since q is
tree-shaped, we can then proceed by constructing PE-rewritings, q†1(y3) and q†2(y3), for the subqueries

q1(y3) = ∃y1y2 (R1(y1, y2) ∧R2(y2, y3)),

q2(y3) = ∃y4y5 (R3(y3, y4) ∧R4(y4, y5)).

If h(y3) is a labelled null, then y3 must be an internal point of some tree witness for q and T . We have
only one such tree witness, t = (tr, ti), generated by A2(x) with tr = {y2, y4}, ti = {y3} and qt =
{R2(y2, y3), R3(y3, y4)} (shaded in Fig. 9). But then h(y2) = h(y4) and this element is in the data part of
CT ,A. So, we need PE-rewritings, q†3(y2) and q†4(y4), of the remaining fragments of q:

q3(y2) = ∃y1R1(y1, y2), q4(y4) = ∃y5R4(y4, y5).

If the required rewritings q†i , 1 ≤ i ≤ 4, are constructed then we obtain a PE-rewriting q† of q and T :

q† = ∃y3

(
q†1(y3) ∧ q†2(y3)

)
∨ ∃y2y4

(
A2(y2) ∧ (y2 = y4) ∧ q†3(y2) ∧ q†4(y4)

)
.

We analyse q1, q2, q3 and q4 in the same way and obtain

q†1(y3) = ∃y2

(
q†3(y2) ∧R2(y2, y3)

)
∨ ∃y1

(
A1(y3) ∧ (y1 = y3)

)
,

q†2(y3) = ∃y4

(
R3(y3, y4) ∧ q†4(y4)

)
∨ ∃y5

(
A3(y3) ∧ (y5 = y3)

)
,

q†3(y2) and q†4(y4) equal to q3(y2) and q4(y4), respectively.

We now give a general definition of a PE-rewriting obtained by the strategy ‘divide and rewrite’ and
applicable to any (not necessarily tree-shaped) CQ. Let q(~x) = ∃~y ϕ(~x, ~y) and an ontology T be given. We
recursively define a PE-query q†(~x) as follows. Take the finest partition of ∃~y ϕ(~x, ~y) into a conjunction∧
j ∃~yj ϕj(~x, ~yj) such that every atom containing some y ∈ ~yj belongs to the same conjunct ϕj(~x, ~yj).

(Informally, the Gaifman graph of ϕ is cut along the answer variables ~x.) By definition, the set of tree
witnesses for ∃~y ϕ(~x, ~y) and T is the disjoint union of the sets of tree witnesses for the ∃~yj ϕj(~x, ~yj) and
T . Then we set (∃~y ϕ(~x, ~y))† =

∧
j ψj , where ψj is ϕj(~x) in case ~yj is empty; otherwise, we choose a

variable z in ~yj and define ψj to be the formula

∃z
(
∃ [~yj \ {z}]ϕj(~x, ~yj)

)† ∨
∨

t a tree witness for ∃~yj ϕj(~x,~yj) and T
such that t=(tr,ti) and z∈ti

∃~yj,t
((
∃ [~yj \ ~yj,t]ϕj,t(~x, ~yj)

)† ∧ twt(tr)
)
,
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where ~yj,t = ~yj ∩ tr contains the variables in ~yj that occur among tr, the quantifiers ∃ [~yj \ {z}] and
∃ [~yj \ ~yj,t] contain all variables in ~yj but z and ~yj,t, respectively, and ϕj,t consists of all the atoms of ϕj
except those in qt. Note that the variables in ti (in particular, z) do not occur in the disjunct for t (and so can
be removed from the respective quantifier). Intuitively, the first disjunct represents the situation where z is
mapped to a data individual and treated as a free variable in the rewriting of ϕj . The other disjuncts reflect
the cases where z is mapped to a labelled null, and so z is an internal variable of a tree witness t = (tr, ti)
for ∃~yj ϕj(~x, ~yj) and T . As the variables in tr must be mapped to data individuals, this only leaves the
set of atoms ϕj,t with existentially quantified ~yj \ ~yj,t for further rewriting. The existentially quantified
variables in each of the disjuncts do not contain z, and so our recursion is well-founded. The proof of the
following theorem is straightforward:

Theorem 23. For any CQ q(x) and ontology T , q†(~x) is a PE-rewriting of q and T (over complete data).

The exact form of the rewriting q† depends on the choice of the variables z. We now consider two
strategies for choosing these variables in the case of tree-shaped CQs. Let

dqT = 1 + max
z∈~y

∣∣{t = (tr, ti) ∈ Θq
T | z ∈ ti}

∣∣.
We call dqT the tree-witness degree of q and T . For example, the tree-witness degree of any CQ and
ontology of depth 1 is at most 2, as observed in the proof of Theorem 10. In general, however, it can only
be bounded by 1 + |Θq

T |.
Given a tree-shaped CQ q(~x) = ∃~y ϕ(~x, ~y), we pick some variable as its root and define a partial order

� on the variables of q by taking z � z′ iff z′ occurs in the subtree of q rooted in z. The strategy used
in [8] chooses the smallest z with respect to�. Since the number of distinct subtrees of q is bounded by |q|
and NDL programs allow for structure sharing, this strategy yields an NDL-rewriting of size |T | · |q| · dqT :

Corollary 24 ([8]). Any tree-shaped CQ and ontology with polynomially-many tree-witnesses have a
polynomial-size NDL-rewriting.

The depth of recursion in the rewiring process with the above strategy is |q| in the worst case. Therefore,
we can only obtain a PE-rewriting of exponential size in |q|. However, if we adopt the strategy of choosing
z that splits the graph of each ϕj in half, then the depth of recursion does not exceed log |q|, and so the
resulting PE-rewriting is of polynomial size for q and T of bounded tree-witness degree. This strategy is
based on the following fact:

Proposition 25. Any tree T = (V,E) contains a vertex v ∈ V such that each connected component
obtained by removing v from T has at most |V |/2 vertices.

As a consequence, we obtain:

Theorem 26. For any tree-shaped CQ q and any ontology T , there is a PE-rewriting of size |T |·|q|1+log dqT

(over complete data).

Proof. Denote by F (n) the maximal size of p† for a subquery p of q with at most n atoms. We show by
induction that F (n) ≤ |T | · n1+log d, where d = dqT . By definition, for each component pj of the finest
partition of p, the length of its contribution to p† does not exceed

F (nj) +
∑d−1

i=1
(F (nj −mji) + |T | ·mji),

where nj is the number of atoms in pj and mji is the number of atoms in the ith tree witness with z ∈ ti,
1 ≤ mji ≤ nj . By the induction hypothesis, the length of the contribution of pj does not exceed

|T | · n1+log d
j + |T | ·

d−1∑
i=1

(
(nj −mji)

1+log d +mji

)
≤

|T | ·
(
n1+log d
j + (d− 1) · n1+log d

j

)
= |T | · d · n1+log d

j .
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By Proposition 25, we can choose z (at the preceding step) so that p with n atoms is split into components
p1, . . . ,pk each of which has nj ≤ n/2 atoms (by definition,

∑k
j=1 nj = n). Then we obtain

F (n) ≤ |T | · d ·
∑k

j=1

(
(n/2)log d · nj

)
≤ |T | · n1+log d,

as required. q

Corollary 27. Any tree-shaped CQ q and ontology T of depth 1 have a PE-rewriting of size |T | · |q|2 (over
complete data).

8 Conclusions
We established a fundamental link between FO-rewritings of CQs over OWL 2 QL ontologies of depth
1 and 2 and—via the hypergraph functions and programs—classical computational models for Boolean
functions. This link allowed us to apply the Boolean complexity theory and obtain both polynomial upper
and exponential (or superpolynomial) lower bounds for the size of rewritings. It is to be noted that the high
lower bounds were proved for CQs and ontologies with polynomially-many tree witnesses and polynomial-
size chases.

A few challenging important questions remain open: (i) Are all hypergraphs representable as subgraphs
of some tree-witness hypergraphs? (ii) Do all tree-shaped CQs have polynomial-size rewritings over on-
tologies of depth 2 (more generally, of bounded depth)? (iii) What is the size of CQ rewritings over a fixed
ontology in the worst case? (The last question is related to the non-uniform approach to the complexity of
query answering in OBDA on the level of individual ontologies [25].)
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