
HAL Id: hal-01632638
https://hal.inria.fr/hal-01632638

Submitted on 10 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Ontology-Based Data Access with
OWL 2 QL and Bounded Treewidth Queries

Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii,
Vladislav Ryzhikov, Michael Zakharyaschev

To cite this version:
Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, Vladislav Ryzhikov, et
al.. The Complexity of Ontology-Based Data Access with OWL 2 QL and Bounded Treewidth Queries.
PODS: Principles of Database Systems, Jun 2017, Chicago, United States. �hal-01632638�

https://hal.inria.fr/hal-01632638
https://hal.archives-ouvertes.fr

ar
X

iv
:1

70
2.

03
35

8v
1

 [
cs

.D
B

]
 1

1
Fe

b
20

17

The Complexity of Ontology-Based Data Access with

OWL 2 QL and Bounded Treewidth Queries

Meghyn Bienvenu1 Stanislav Kikot2 Roman Kontchakov2

Vladimir V. Podolskii3 Vladislav Ryzhikov4

Michael Zakharyaschev2

1 CNRS & University of Montpellier, France
2 Birkbeck, University of London, UK

3 Steklov Mathematical Institute & National Research University
Higher School of Economics, Moscow, Russia

4 Free University of Bozen-Bolzano, Italy

Abstract

Our concern is the overhead of answering OWL 2 QL ontology-mediated queries (OMQs) in
ontology-based data access compared to evaluating their underlying tree-shaped and bounded
treewidth conjunctive queries (CQs). We show that OMQs with bounded-depth ontologies
have nonrecursive datalog (NDL) rewritings that can be constructed and evaluated in LOGCFL

for combined complexity, even in NL if their CQs are tree-shaped with a bounded number
of leaves, and so incur no overhead in complexity-theoretic terms. For OMQs with arbitrary
ontologies and bounded-leaf CQs, NDL-rewritings are constructed and evaluated in LOGCFL.
We show experimentally feasibility and scalability of our rewritings compared to previously
proposed NDL-rewritings. On the negative side, we prove that answering OMQs with tree-
shaped CQs is not fixed-parameter tractable if the ontology depth or the number of leaves in
the CQs is regarded as the parameter, and that answering OMQs with a fixed ontology (of
infinite depth) is NP-complete for tree-shaped and LOGCFL for bounded-leaf CQs.

Keywords: Ontology-based data access; ontology-mediated query; query rewriting; com-
bined & parameterised complexity.

1 Introduction

The main aim of ontology-based data access (OBDA) [49, 42] is to facilitate access to complex data
for non-expert end-users. The ontology, given by a logical theory T , provides a unified conceptual
view of one or more data sources, so the users do not have to know the actual structure of the
data and can formulate their queries in the vocabulary of the ontology, which is connected to the
data schema by a mapping M. The instance M(D) obtained by applying M to a given dataset
D is interpreted under the open-world assumption, and additional facts can be inferred using the
domain knowledge provided by the ontology. A certain answer to a query q(x) over D is any
tuple of constants a such that T ,M(D) |= q(a). OBDA is closely related to querying incomplete
databases under (ontological) constraints, data integration [19], and data exchange [2].

In the classical approach to OBDA [12, 49], the computation of certain answers is reduced to
standard database query evaluation: given an ontology-mediated query (OMQ) Q = (T , q(x)),
one constructs a first-order (FO) query q′(x), called a rewriting of Q, such that, for all datasets
D and mappings M,

T ,M(D) |= q(a) iff IM(D) |= q′(a), (1)

where IM(D) is the FO-structure comprised of the atoms in M(D). When the form of M is
appropriately restricted (e.g., M is a GAV mapping), one can further unfold q′(x) using M to

1

http://arxiv.org/abs/1702.03358v1

o
n

to
lo

g
y

d
e
p

th

0

1

2

. . .

d

∞

2 . . . ℓ ∞ 2 . . . t ∞
number of leaves

treewidth
trees

NL LOGCFL

NPLOGCFL

(a)

0

1

2

. . .

d

∞

2 . . . ℓ ∞ 2 . . . t ∞
number of leaves

treewidth
trees (treewidth 1)

poly NDL
no poly PE

poly FO
iff

NL/poly ⊆ NC1

poly NDL
no poly PE

poly FO iff
LOGCFL/poly ⊆ NC1

no poly NDL & PE

poly

FO

iff

NP/poly⊆

NC
1

poly Π2-PE

poly Π4-PE poly PE
poly NDL

no poly PE
poly FO

iff
NL/poly ⊆ NC1

(b)

Figure 1: OMQ answering in OWL 2 QL (a) combined complexity and (b) the size of rewritings.

obtain an FO-query that can be evaluated directly over the original dataset D (so there is no need
to materialise M(D)).

For reduction (1) to hold for all OMQs, it is necessary to restrict the expressivity of T and q.
The DL-Lite family of description logics [12] was specifically designed to ensure (1) for OMQs
with conjunctive queries (CQs) q. Other ontology languages with this property include linear
and sticky tuple-generating dependencies (tgds) [9, 10], and the OWL 2 QL profile [44] of the
W3C-standardised Web Ontology Language OWL 2 , the focus of this work. Like many other
ontology languages, OWL 2 QL admits only unary and binary predicates, but arbitrary relational
instances can be queried due to the mapping. Various types of FO-rewritings q′(x) have been
developed and implemented for the preceding languages [49, 46, 40, 53, 14, 20, 52, 37, 27, 43, 39],
and a few mature OBDA systems have emerged, including pioneering MASTRO [11], commercial
Stardog [47] and Ultrawrap [54], and the Optique platform [23] with the query answering engine
Ontop [50, 41].

Our concern here is the overhead of OMQ answering—i.e., checking whether the left-hand side
of (1) holds—compared to evaluating the underlying CQs. At first sight, there is no apparent
difference between the two problems when viewed through the lens of computational complexity:
OMQ answering is in AC0 for data complexity by (1) and NP-complete for combined complex-
ity [12], which in both cases corresponds to the complexity of evaluating CQs in the relational
setting. Further analysis revealed, however, that answering OMQs is already NP-hard for combined
complexity when the underlying CQs are tree-shaped (acyclic) [36], which sharply contrasts with
the well-known LOGCFL-completeness of evaluating bounded treewidth CQs [61, 13, 26]. This
surprising difference motivated a systematic investigation of the combined complexity of OMQ
answering along two dimensions: (i) the query topology (treewidth t of CQs, and the number
ℓ of leaves in tree-shaped CQs), and (ii) the existential depth d of ontologies (i.e., the length
of the longest chain of labelled nulls in the chase on any data). The resulting landscape, dis-
played in Fig. 1 (a) (under the assumption that datasets are given as RDF graphs and M is the
identity) [12, 36, 34, 5], indicates three tractable cases:

OMQ(d, t,∞): ontologies of depth ≤ d coupled with CQs of treewidth ≤ t (for fixed d, t);

OMQ(d, 1, ℓ): ontologies of depth ≤ d with tree-shaped CQs with ≤ ℓ leaves (for fixed d, ℓ);

OMQ(∞, 1, ℓ): ontologies of arbitrary depth and tree-shaped CQs with ≤ ℓ leaves (for fixed ℓ).

Observe in particular that when the ontology depth is bounded by a fixed constant, the complexity
of OMQ answering is precisely the same as for evaluating the underlying CQs. If we place no
restriction on the ontology, then tractability of tree-shaped queries can be recovered by bounding
the number of leaves, but we have LOGCFL rather than the expected NL.

While the results in Fig. 1(a) appear to answer the question of the additional cost incurred by
adding an OWL 2 QL ontology, they only tell part of the story. Indeed, in the context of classical

2

rewriting-based OBDA [49], it is not the abstract complexity of OMQ answering that matters,
but the cost of computing and evaluating OMQ rewritings. Fig. 1(b) summarises what is known
about the size of positive existential (PE), nonrecursive datalog (NDL) and FO-rewritings [35, 25,
34, 5]. Thus, we see, for example, that PE-rewritings for OMQs from OMQ(d, t,∞) can be of
super-polynomial size, and so are not computable and evaluable in polynomial time, even though
Fig. 1(a) shows that such OMQs can be answered in LOGCFL. The same concerns OMQ(d, 1, ℓ)
and OMQ(∞, 1, ℓ), which can be answered in NL and LOGCFL, respectively, but do not enjoy
polynomial-size PE-rewritings. Moreover, our experiments show that standard rewriting engines
exhibit exponential behaviour on OMQs drawn from OMQ(1, 1, 2) lying in the intersection of the
three tractable classes.

Our first aim is to show that the positive complexity results in Fig. 1(a) can in fact be achieved
using query rewriting. To this end, we develop NDL-rewritings for the three tractable cases that
can be computed and evaluated by algorithms of optimal combined complexity. In theory, such
algorithms are known to be space efficient and highly parallelisable. We demonstrate practical
efficiency of our optimal NDL-rewritings by comparing them with the NDL-rewritings produced
by Clipper [20], Presto [53] and Rapid [14], using a sequence of OMQs from the class OMQ(1,1,2).

Our second aim is to understand the contribution of the ontology depth and the number of
leaves in tree-shaped CQs to the complexity of OMQ answering. (As follows from Fig. 1 (a),
if these parameters are unbounded, this problem is harder than evaluating the underlying CQs
unless LOGCFL = NP.) Unfortunately, it turns out that answering OMQs with ontologies of finite
depth and tree-shaped CQs is not fixed-parameter tractable if either the ontology depth or the
number of leaves in CQs is regarded as a parameter. More precisely, we prove that the problem is
W [2]-hard in the former case and W [1]-hard in the latter. These results suggest that the ontology
depth and the number of leaves are inherently in the exponent of the size of the input in any OMQ
answering algorithm.

Finally, we revisit the NP- and LOGCFL-hardness results for OMQs with tree-shaped CQs. The
known NP and LOGCFL lower bounds have been established using sequences (Tn, qn) of OMQs,
where the depth of Tn grows with n [36, 5]. One might thus hope to make answering OMQs with
tree-shaped CQs easier by restricting the ontology signature, size, or even by fixing the whole
ontology, which is very relevant for applications as a typical OBDA scenario has users posing
different queries over the same ontology. Our third main result is that this is not the case: we
present ontologies T† and T‡ of infinite depth such that answering OMQs (T†, q) with tree-shaped
q and (T‡, q) with linear q is NP- and LOGCFL-hard for query complexity, respectively. We also
show that no algorithm can construct FO-rewritings of the OMQs (T†, q) in polynomial time unless
P = NP, even though polynomial-size FO-rewritings of these OMQs do exist.

The paper is organised as follows. We begin in Section 2 by introducing the OWL 2 QL ontology
language and key notions like OMQ answering and query rewriting. In Section 3, we first identify
fragments of NDL which can be evaluated in LOGCFL or NL, and then we use these results to
develop NDL-rewritings of optimal combined complexity for the three tractable cases. Section 4
concerns the parameterised complexity of OMQ answering with tree-shaped CQs. For ontologies
of finite depth, we show W [2]-hardness (resp. W [1]-hardness) when the ontology depth (resp.
number of leaves) is taken as the parameter. For the infinite depth case, we show in Section 5 that
NP-hardness applies even for a fixed ontology. The final section of the paper presents preliminary
experiments comparing our new rewritings to those produced by existing rewriting engines and
discusses possible directions for future work.

3

2 Preliminaries

An OWL 2 QL ontology (TBox in description logic), T , is a finite set of sentences (axioms) of the
forms

∀x (τ(x)→ τ ′(x)), ∀x (τ(x) ∧ τ ′(x)→ ⊥),

∀xy (̺(x, y)→ ̺′(x, y)), ∀xy (̺(x, y) ∧ ̺′(x, y)→ ⊥),

∀x̺(x, x), ∀x (̺(x, x)→ ⊥),

where τ(x) and ̺(x, y) are defined, using unary predicates A and binary predicates P , by the
grammars

τ(x) ::= ⊤ | A(x) | ∃y ̺(x, y),

̺(x, y) ::= ⊤ | P (x, y) | P (y, x).

When writing ontology axioms, we omit the universal quantifiers and denote by RT the set of
binary predicates P occurring in T and their inverses P−, assuming that P−− = P . For every
̺ ∈ RT , we take a fresh unary predicate A̺ and add A̺(x) ↔ ∃y ̺(x, y) to T (where, as usual,
ϕ↔ ψ is an abbreviation for ϕ→ ψ and ψ → ϕ). The resulting ontology is said to be in normal
form, and we assume, without loss of generality, that all our ontologies are in normal form.

A data instance, A, is a finite set of unary or binary ground atoms (called an ABox in de-
scription logic). We denote by ind(A) the set of individual constants in A and write ̺(a, b) ∈ A if
P (a, b) ∈ A and ̺ = P , or P (b, a) ∈ A and ̺ = P−. We say that A is complete for an ontology T
if T ,A |= S(a) implies S(a) ∈ A, for any ground atom S(a) with a ⊆ ind(A).1

A conjunctive query (CQ) q(x) is a formula of the form ∃y ϕ(x,y), where ϕ is a conjunction of
atoms S(z) all of whose variables are among var(q) = x∪y. We assume, without loss of generality,
that CQs contain no constants. We often regard a CQ as the set of its atoms. With every CQ q,
we associate its Gaifman graph G whose vertices are the variables of q and whose edges are the
pairs {u, v} such that P (u, v) ∈ q, for some P . We call q connected if G is connected, tree-shaped
if G is a tree, and linear if G is a tree with two leaves.

An ontology-mediated query (OMQ) is a pair Q(x) = (T , q(x)), where T is an ontology and
q(x) a CQ. A tuple a ⊆ ind(A) is a certain answer to Q(x) over a data instance A if I |= q(a)
for all models I of T and A; in this case we write T ,A |= q(a). If x = ∅, then a certain answer
to Q over A is ‘yes’ if T ,A |= q and ‘no’ otherwise. The OMQ answering problem (for a class
of OMQs) is to decide whether T ,A |= q(a) holds, given an OMQ Q(x) (in the class), A and
a ⊆ ind(A). If T , q(x), and A are regarded as input, we speak about combined complexity of
OMQ answering; if A and T are regarded as fixed, we speak about query complexity.

Every consistent knowledge base (KB) (T ,A) has a canonical model (or chase in database
theory) [1] CT ,A with the property that T ,A |= q(a) iff CT ,A |= q(a), for all CQs q(x) and
a ⊆ ind(A). In our constructions, we use the following definition of CT ,A, where without loss of
generality we assume that T contains no binary predicates P with T |= ∀xy P (x, y). The domain,
∆CT ,A , consists of ind(A) and the witnesses (or labelled nulls) of the form w = a̺1 . . . ̺n, for
n ≥ 1, such that

– a ∈ ind(A) and T ,A |= ∃y ̺1(a, y);

– T 6|= ̺i(x, x), for 1 ≤ i ≤ n;

– T |= ∃x̺i(x, y)→ ∃z ̺i+1(y, z) but T 6|= ̺i(x, y)→ ̺i+1(y, x), for 1 ≤ i < n.

We denote by WT the set of words ̺1 . . . ̺n ∈ R∗
T satisfying the last two conditions. Every

a ∈ ind(A) is interpreted in CT ,A by itself, and unary and binary predicates are interpreted as
follows:

– CT ,A |= A(u) iff either u ∈ ind(A) and T ,A |= A(u), or u = w̺ with T |= ∃y ̺(y, x)→ A(x);

1If the meaning is clear from the context, we use set-theoretic notation for lists.

4

– CT ,A |= P (u, v) iff one of the three conditions holds: (i) u, v ∈ ind(A) and T ,A |= P (u, v);
(ii) u = v and T |= P (x, x); (iii) T |= ̺(x, y)→ P (x, y) and either v = u̺ or u = v̺−.

We say that T is of depth 0 if it does not contain any axioms with ∃ on the right-hand side,
excepting the normalisation axioms2. Otherwise, we say that T is of depth 0 < d <∞ if d is the
maximum length of the words in WT , and it is of depth ∞ if WT is infinite. (Note that the depth
of T is computable in NL; cf. [24, 8] for related results on chase termination for tgds.)

An FO-formula q′(x), possibly with equality, is an FO-rewriting of an OMQ Q(x) = (T , q(x))
if, for any data instance A and any tuple a ⊆ ind(A),

T ,A |= q(a) iff IA |= q′(a), (2)

where IA is the FO-structure over the domain ind(A) such that IA |= S(a) iff S(a) ∈ A, for any
ground atom S(a). If q′(x) is a positive existential formula, we call it a PE-rewriting of Q(x).
A PE-rewriting whose matrix is a Πk-formula (with respect to ∧ and ∨) is called a Πk-rewriting.
The size |q′| of q′ is the number of symbols in it.

We also consider rewritings in the form of nonrecursive datalog queries. A datalog program, Π,
is a finite set of Horn clauses ∀z (γ0 ← γ1 ∧ · · · ∧ γm), where each γi is an atom Q(y) with y ⊆ z

or an equality (z = z′) with z, z′ ∈ z. (As usual, we omit ∀z from clauses.) The atom γ0 is the
head of the clause, and γ1, . . . , γm its body. All variables in the head must occur in the body, and
= can only occur in the body. The predicates in the heads of clauses in Π are IDB predicates,
the rest (including =) EDB predicates. A predicate Q depends on P in Π if Π has a clause with
Q in the head and P in the body. Π is a nonrecursive datalog (NDL) program if the (directed)
dependence graph of the dependence relation is acyclic.

An NDL query is a pair (Π, G(x)), where Π is an NDL program and G(x) a predicate. A
tuple a ⊆ ind(A) is an answer to (Π, G(x)) over a data instance A if G(a) holds in the first-order
structure with domain ind(A) obtained by closing A under the clauses in Π; in this case we write
Π,A |= G(a). The problem of checking whether a is an answer to (Π, G(x)) over A is called the
query evaluation problem. The depth of (Π, G(x)) is the length, d(Π, G), of the longest directed
path in the dependence graph for Π starting from G. NDL queries are equivalent if they have
exactly the same answers over any data instance.

An NDL query (Π, G(x)) is an NDL-rewriting of an OMQ Q(x) = (T , q(x)) over complete
data instances in case T ,A |= q(a) iff Π,A |= G(a), for any complete A and any a ⊆ ind(A).
Rewritings over arbitrary data instances are defined by dropping the completeness condition.
Given an NDL-rewriting (Π, G(x)) of Q(x) over complete data instances, we denote by Π∗ the
result of replacing each predicate S in Π with a fresh IDB predicate S∗ of the same arity and
adding the clauses

A∗(x)← τ(x), if T |= τ(x)→ A(x),

P ∗(x, y)← ̺(x, y), if T |= ̺(x, y)→ P (x, y),

P ∗(x, x)← ⊤(x), if T |= P (x, x),

where⊤(x) is an EDB predicate for the active domain [32]. Clearly, (Π∗, G(x)) is an NDL-rewriting
of Q(x) over arbitrary data instances and |Π∗| ≤ |Π|+ |T |2.

Finally, we remark that, without loss of generality, we can (and will) assume that our ontologies
T do not contain ⊥. Indeed, we can always incorporate into rewritings subqueries that check
whether the left-hand side of an axiom with ⊥ holds and output all tuples of constants if this is
the case [9].

3 Optimal NDL-Rewritings

To construct theoretically optimal NDL-rewritings for OMQs in the three tractable classes, we
first identify two types of NDL queries whose evaluation problems are in NL and LOGCFL for

2This somewhat awkward definition of depth 0 ontologies is due to the use of normalisation axioms, which may
introduce unnecessary words on length 1 in WT .

5

combined complexity.

3.1 NL and LOGCFL fragments of NDL

To simplify the analysis of non-Boolean NDL queries, it is convenient to regard certain variables
as parameters to be instantiated with constants from the candidate answer. Formally, an NDL
query (Π, G(x1, . . . , xn)) is called ordered if each of its IDB predicates Q comes with fixed variables
xi1 , . . . , xik (1 ≤ i1 < · · · < ik ≤ n), called the parameters of Q, such that (i) every occurrence of
Q in Π is of the form Q(y1, . . . , ym, xi1 , . . . , xik), (ii) the parameters of G are x1, . . . , xn, and (iii)
parameters of the head of every clause include all the parameters of the predicates in the body.
Observe that Boolean NDL queries are trivially ordered. The width w(Π, G) of an ordered (Π, G)
is the maximal number of non-parameter variables in a clause of Π.

Example 1. The NDL query (Π, G(x)), where

Π = {G(x)← R(x, y) ∧Q(x), Q(x)← R(y, x) },

is ordered with parameter x and width 1 (the conditions do not restrict the EDB predicate R).
Replacing Q(x) by Q(y) in the first clause yields a query that is not ordered in view of (i). A
further swap of Q(x) in the second clause with Q(y) would satisfy (i) but not (iii).

As all the NDL-rewritings we construct are ordered, with their parameters being the answer
variables, from now on we only consider ordered NDL queries.

Given an NDL query (Π, G(x)), a data instanceA and a tuple a with |x| = |a|, the a-grounding
Πa

A of Π on A is the set of ground clauses obtained by first replacing each parameter in Π by the
corresponding constant from a, and then performing the standard grounding [17] of Π using the
constants from A. The size of Πa

A is bounded by |Π| · |A|w(Π,G), and so we can check whether
Π,A |= G(a) holds in time poly(|Π| · |A|w(Π,G)).

3.1.1 Linear NDL in NL

An NDL program is linear [1] if the body of its every clause contains at most one IDB predicate.

Theorem 2. For any w > 0, evaluation of linear NDL queries of width ≤ w is NL-complete for
combined complexity.

Proof. Let (Π, G(x)) be a linear NDL query. Deciding whether Π,A |= G(a) is reducible to
finding a path to G(a) from a certain set X in the grounding graph G constructed as follows. The
vertices of G are the IDB atoms of Πa

A, and G has an edge from Q(c) to Q′(c′) iff Πa
A contains

Q′(c′) ← Q(c) ∧ S1(c1) ∧ · · · ∧ Sk(ck) with Si(ci) ∈ A, for 1 ≤ i ≤ k (we assume A contains all
c = c, for c ∈ ind(A)). The set X consists of all vertices Q(c) with IDB predicates Q being of
in-degree 0 in the dependency graph of Π for which there is a clause Q(c)← S1(c1)∧ · · · ∧Sk(ck)
in Πa

A with Si(ci) ∈ A (1 ≤ i ≤ k). Bounding the width of (Π, G) ensures that G is of polynomial
size and can be constructed by a deterministic Turing machine with read-only input, write-once
output and logarithmic-size work tapes. ❑

The transformation ∗ of NDL-rewritings over complete data instances into NDL-rewritings
over arbitrary data instances does not preserve linearity. A more involved construction is given in
the proof of the following:

Lemma 3. Fix any w > 0. There is an LNL-transducer that, for any linear NDL-rewriting
(Π, G(x)) of an OMQ Q(x) over complete data instances with w(Π, G) ≤ w, computes a linear
NDL-rewriting (Π′, G(x)) of Q(x) over arbitrary data instances such that w(Π′, G) ≤ w + 1.

We note that a possible increase of the width by 1 is due to the ‘replacement’ of unary atoms
A(z) by binary atoms ̺(y, z) whenever T |= ∃y ̺(y, z)→ A(z).

6

3.1.2 Skinny NDL in LOGCFL

The complexity class LOGCFL can be defined using nondeterministic auxiliary pushdown automata
(NAuxPDAs) [15], which are nondeterministic Turing machines with an additional work tape
constrained to operate as a pushdown store. Sudborough [57] proved that LOGCFL coincides with
the class of problems that are solved by NAuxPDAs in logarithmic space and polynomial time (the
space on the pushdown tape is not subject to the logarithmic bound). It is known that LOGCFL

can equivalently be defined in terms of logspace-uniform families of semi-unbounded fan-in circuits
(where or-gates have arbitrarily many inputs, and and-gates two inputs) of polynomial size and
logarithmic depth. Moreover, there is an algorithm that, given such a circuit C, computes the
output using an NAuxPDA in logarithmic space in the size of C and exponential time in the depth
of C [60, pp. 392–397].

Similarly to the restriction on the circuits for LOGCFL, we call an NDL query (Π, G) skinny if
the body of any clause in Π has at most two atoms.

Lemma 4. For any skinny (Π, G(x)) and any data instance A, query evaluation can be done by
an NAuxPDA in space log |Π|+ w(Π, G) · log |A| and time 2O(d(Π,G)).

Proof. Using the atoms of the grounding Πa
A as gates and inputs, we define a monotone Boolean

circuit C as follows: its output is G(a); for every atom γ in the head of a clause in Πa
A, we take

an or-gate whose output is γ and inputs are the bodies of the clauses with head γ; for every such
body, we take an and-gate whose inputs are the atoms in the body. We set input γ to 1 iff γ ∈ A.
Clearly, C is a semi-unbounded fan-in circuit of depth O(d(Π, G)) with O(|Π| · |A|w(Π,G)) gates.
Having observed that our C can be computed by a deterministic logspace Turing machine, we
conclude that the query evaluation problem can be solved by an NAuxPDA in the required space
and time. ❑

Observe that Lemma 4 holds for NDL queries with any bounded number of atoms, not only two.
In the rewritings we propose in Sections 3.2 and 3.4, however, the number of atoms in the clauses
is not bounded by a constant. We require the following notion to generalise skinny programs.
A function ν from the predicate names in Π to N is called a weight function for an NDL query
(Π, G(x)) if

ν(Q) > 0 and ν(Q) ≥ ν(P1) + · · ·+ ν(Pk),

for any clause Q(z)← P1(z1)∧ · · · ∧Pk(zk) in Π. Note that ν(P) can be 0 for an EDB predicate
P . To illustrate, we consider NDL queries with the following dependency graphs:

The NDL on the left has a weight function bounded by the number of predicates, and so, such
weight functions are linear in the size of the query; intuitively, this function corresponds to the
number of directed paths from a vertex to the leaves. In contrast, any NDL query with the
dependency graph on the right can only have a weight function whose values (numbers of paths)
are exponential. Also observe that linear NDL queries have weight functions bounded by 1.

We show, using Huffman coding, that any NDL query (Π, G(x)) can be transformed into an
equivalent skinny NDL query whose depth increases linearly in addition to the logarithms of the
weight function and the number eΠ of EDB predicates in a clause. We call the minimum (over
possible weight functions ν) value of 2d(Π, G) + log ν(G) + log eΠ the skinny depth of (Π, G) and
denote it by sd(Π, G).

Lemma 5. Any NDL query (Π, G(x)) is equivalent to a skinny NDL query (Π′, G(x)) such that
|Π′| = O(|Π|2), d(Π′, G) ≤ sd(Π, G), and w(Π′, G) ≤ w(Π, G).

7

Proof. Let ν be a weight function such that sd(Π, G) = 2d(Π, G) + log ν(G) + log eΠ. Without loss
of generality, we will assume that ν(E) = 0, for EDB predicates E. First, we split clauses into
their EDB and IDB components: each Q(z) ← ϕ(z′) is replaced by Q(z) ← QE(zE) ∧ QI(z′

E)
and Qα(zα) ← ϕα(z′

α), for α ∈ {E, I}, where QE and QI are fresh predicates, and ϕE(z′
E)

and ϕI(z′
I) are conjunctions of the EDB and IDB predicates in ϕ, respectively. The depth of

the resulting NDL query (Π∗, G(x)) is 2d(Π, G). Next, each clause QE(zE) ← ϕE(z′
E) in Π∗ is

replaced by ≤ eΠ − 1 clauses with at most two atoms in the body, which results in an NDL query
of depth not exceeding 2d(Π, G) + log eΠ. In the rest of the proof, we concentrate on the part
Π† of Π∗ comprising clauses that have predicates Q and QI in their heads (thus making the QE
EDB predicates). The weight function for (Π†, G(x)) is obtained by extending ν as follows: we
set ν(QI) = ν(Q) and ν(QE) = 0, for each Q.

Next, by induction on d(Π†, G), we show that there is an equivalent skinny NDL query
(Π′

†, G(x)) of the required size and width and such that d(Π′
†, G) ≤ d(Π†, G) + log ν(G). We take

Π′
† = Π† if d(Π†, G) = 0. Otherwise, let ψ be a clause of the form G(z) ← P1(z1) ∧ · · · ∧ Pk(zk)

in Π†, for k > 2. Since, by the construction of Π†, if a clause has an EDB predicate, then k = 2.
So, the Pi are IDB predicates and ν(G) ≥ ν(Pi) > 0. Suppose that, for each i (1 ≤ i ≤ k), we
have an NDL query (Π′

i, Pi) equivalent to (Π†, Pi) with

d(Π′
i, Pi) ≤ d(Π†, Pi) + log ν(Pi) ≤ d(Π†, G)− 1 + log ν(Pi). (3)

Construct the Huffman tree [30] for the alphabet {1, . . . , k}, where the frequency of i is ν(Pi)/ν(G).
For example, for ν(G) = 39, ν(P1) = 15, ν(P2) = 7, ν(P3) = 6, ν(P4) = 6 and ν(P5) = 5, we
obtain the following tree:

g 39

115 24

13 11

27 36 4 6 5 5

In general, the Huffman tree is a binary tree with k leaves 1, . . . , k, a root g and k − 2 internal
nodes and such that the length of the path from g to any leaf i is bounded by ⌈log(ν(G)/ν(Pi))⌉.
For each internal node v of the tree, we take a predicate Pv(zv), where zv is the union of zu for
all descendants u of v; for the root g, we take Pg(zg) = G(z). Let Π′

ψ be the extension of the
union of the Π′

i (1 ≤ i ≤ k) with clauses Pv(zv)← Pu1 (zu1)∧Pu2 (zu2), for each v with immediate
successors u1 and u2. The number of the new clauses is k − 1. By (3), we have:

d(Π′
ψ , G) ≤ maxi{⌈log(ν(G)/ν(Pi))⌉+ d(Π′

i, Pi)}

≤ maxi{log(ν(G)/ν(Pi)) + d(Π†, G) + log ν(Pi)} = d(Π†, G) + log ν(G).

Let Π′
† be the result of applying this transformation to each clause in Π† with head G(z) and

more than two atoms in the body.
Finally, we add to Π′

† the clauses with the QE predicates and denote the result by Π′. It is
readily seen that (Π′, G) is as required; in particular, |Π′| = O(|Π|2). ❑

We now use Lemmas 4 and 5 to obtain the following:

Theorem 6. For every c > 0 and w > 0, evaluation of NDL queries (Π, G(x)) of width at most w

and such that sd(Π, G) ≤ c log |Π| is in LOGCFL for combined complexity.

We say that a class of OMQs is skinny-reducible if, for some fixed c > 0 and w > 0, there is an
LLOGCFL-transducer that, given any OMQ Q(x) in the class, computes its NDL-rewriting (Π, G(x))
over complete data instances such that sd(Π, G) ≤ c log |Π| and w(Π, G) ≤ w. Theorem 6 and the
transformation ∗ give the following:

Corollary 7. For any skinny-reducible class, the OMQ answering problem is in LOGCFL for
combined complexity.

8

In the following subsections, we will exploit the results obtained above to construct optimal
NDL-rewritings for the three classes of tractable OMQs. Appendix A.6 gives concrete examples
of our rewritings.

3.2 LOGCFL rewritings for OMQ(d, t, ∞)

Recall (see, e.g., [22]) that a tree decomposition of an undirected graph G = (V,E) is a pair (T, λ),
where T is an (undirected) tree and λ a function from the nodes of T to 2V such that

– for every v ∈ V , there exists a node t with v ∈ λ(t);

– for every e ∈ E, there exists a node t with e ⊆ λ(t);

– for every v ∈ V , the nodes {t | v ∈ λ(t)} induce a connected subgraph of T (called a subtree
of T).

We call the set λ(t) ⊆ V a bag for t. The width of (T, λ) is maxt∈T |λ(t)| − 1. The treewidth of
a graph G is the minimum width over all tree decompositions of G. The treewidth of a CQ is the
treewidth of its Gaifman graph.

Example 8. Consider the CQ q(x0, x7) depicted below (black nodes represent answer variables):

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

Its natural tree decomposition of treewidth 1 is based on the chain T of 7 vertices shown as bags
below:

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

In this section, we prove the following:

Theorem 9. For any fixed d ≥ 0 and t ≥ 1, the class OMQ(d, t,∞) is skinny-reducible.

In a nutshell, we split recursively a given CQ q into sub-CQs qD based on subtrees D of
the tree decomposition of q, and combine their rewritings into a rewriting of q. To guarantee
compatibility of these rewritings, we use ‘boundary conditions’ w that describe the types of points
on the boundaries of the qD and, for each possible boundary condition w, we define recursively a
fresh IDB predicate Gw

D. We now formalise the construction and illustrate it using the CQ from
Example 8.

Fix a connected CQ q(x) and a tree decomposition (T, λ) of its Gaifman graph G = (V,E). Let
D be a subtree of T . The size of D is the number of nodes in it. A node t of D is called boundary if
T has an edge {t, t′} with t′ /∈ D. The degree deg(D) of D is the number of its boundary nodes (T
itself is the only subtree of T of degree 0). We say that a node t splits D into subtrees D1, . . . , Dk

if the Di partition D without t: each node of D except t belongs to exactly one Di.

Lemma 10 ([5]). Let D be a subtree of T of size n > 1. If deg(D) = 2, then there is a node t
splitting D into subtrees of size ≤ n/2 and degree ≤ 2 and, possibly, one subtree of size < n − 1
and degree 1. If deg(D) ≤ 1, then there is t splitting D into subtrees of size ≤ n/2 and degree ≤ 2.

In Example 8, t splits T into D1 and D2 as follows:

D1 D2
t

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

9

We define recursively a set D of subtrees of T , a binary ‘predecessor’ relation ≺ on D, and a
function σ on D indicating the splitting node. We begin by adding T to D. Take any D ∈ D that
has not been split yet. If D is of size 1, then σ(D) is the only node of D. Otherwise, by Lemma 10,
we find a node t in D that splits it into D1, . . . , Dk. We set σ(D) = t and, for 1 ≤ i ≤ k, add Di to
D and set Di ≺ D; then, we apply the procedure recursively to each of D1, . . . , Dk. In Example 8
with t splitting T , we have σ(T) = t, D1 ≺ T and D2 ≺ T .

For each D ∈ D, we recursively define a set of atoms

qD =
{

S(z) ∈ q | z ⊆ λ(σ(D))
}

∪
⋃

D′≺D

qD′ .

By the definition of tree decomposition, qT = q. Denote by xD the subset of x that occurs in
qD. In Example 8, xT = {x0, x7}, xD1 = {x0} and xD2 = {x7}. Let ∂D be the union of all
λ(t) ∩ λ(t′) for boundary nodes t of D and its neighbours t′ in T outside D. In our example,
∂T = ∅, ∂D1 = {x3} and ∂D2 = {x4}.

Let T be an ontology of depth ≤ d. A type is a partial map w from V to WT ; its domain
is denoted by dom(w). The unique partial type with dom(ε) = ∅ is denoted by ε. We use types
to represent how variables are mapped into CT ,A, with w(z) = w indicating that z is mapped to
an element of the form aw (for some a ∈ ind(A)), and with w(z) = ε that z is mapped to an
individual constant. We say that a type w is compatible with a bag t if, for all y, z ∈ λ(t)∩dom(w),
we have

– if z ∈ x, then w(z) = ε;

– if A(z) ∈ q, then either w(z) = ε or w(z) = w̺ with T |= ∃y ̺(y, x)→ A(x);

– if P (y, z) ∈ q, then one of the three conditions holds: (i) w(y) = w(z) = ε; (ii) w(y) = w(z)
and T |= P (x, x); (iii) T |= ̺(x, y)→ P (x, y) and either w(z) = w(y)̺ or w(y) = w(z)̺−.

In the sequel we abuse notation and use sets of variables in place of sequences assuming that
they are ordered in some (fixed) way. For example, we use xD for a tuple of variables in the set
xD (ordered in some way). Also, given a tuple a ∈ ind(A)|xD | and x ∈ xD, we write a(x) to refer
to the component of a that corresponds to x (that is, the component with the same index).

We now define an NDL-rewriting of Q(x) = (T , q(x)). For any D ∈ D and type w with
dom(w) = ∂D, let Gw

D(∂D,xD) be a fresh IDB predicate with parameters xD (note that ∂D and
xD may be not disjoint). For each type s with dom(s) = λ(σ(D)) such that s is compatible with
σ(D) and agrees with w on their common domain, the NDL program ΠLog

Q contains

Gw
D(∂D,xD)← Ats ∧

∧

D′≺D

G
(s∪w)↾∂D′

D′ (∂D′,xD′),

where (s ∪w) ↾ ∂D′ is the restriction of the union s ∪w to ∂D′ (since dom(s ∪w) covers ∂D′,
the domain of the restriction is ∂D′), and Ats is the conjunction of

(a) A(z), for A(z) ∈ q with s(z) = ε, and P (y, z), for P (y, z) ∈ q with s(y) = s(z) = ε;

(b) y = z, for P (y, z) ∈ q with s(y) 6= ε or s(z) 6= ε;

(c) A̺(z), for z with s(z) = ̺w, for some w.

The conjuncts in (a) ensure that atoms all of whose variables are assigned ε hold in the data
instance. The conjuncts in (b) ensure that if one variable in a binary atom is not mapped to ε,
then the images of both its variables share the same initial individual. Finally, the conjuncts in (c)
ensure that if a variable is to be mapped to a̺w, then a̺w is indeed in the domain of CT ,A.

Example 11. With the query in Example 8, consider now the following ontology T :

P (x, y)→ S(x, y), AP (x)↔ ∃y P (x, y),

P (x, y)→ R(y, x), AP−(x)↔ ∃y P (y, x)

10

(the remaining normalisation axioms are omitted). Since λ(t) = {x3, x4}, there are two types
compatible with t that can contribute to the rewriting: s1 = {x3 7→ ε, x4 7→ ε} and s2 = {x3 7→
ε, x4 7→ P−}. So we have Ats1 = R(x3, x4) and Ats2 = AP− (x4)∧ (x3 = x4). Thus, the predicate
Gε
T is defined by two clauses with the head Gε

T (x0, x7) and the following bodies:

Gx3 7→ε
D1

(x3, x0) ∧R(x3, x4) ∧Gx4 7→ε
D2

(x4, x7),

Gx3 7→ε
D1

(x3, x0) ∧AP− (x4) ∧ (x3 = x4) ∧Gx4 7→P−

D2
(x4, x7),

for s1 and s2, respectively. Although {x3 7→ P, x4 7→ ε} is also compatible with t, its predicate
Gx3 7→P
D1

will have no definition in the rewriting, and hence can be omitted. The same is true of
the other compatible types {x3 7→ ε, x4 7→ R} and {x3 7→ R−, x4 7→ ε}.

By induction on ≺, one can now show that (ΠLog
Q , Gε

T) is a rewriting of Q(x); see Appendix A.3
for details.

Now fix d and t, and consider Q(x) = (T , q(x)) from OMQ(d, t,∞). Let T be a tree decom-
position of q of treewidth ≤ t; we may assume without loss of generality that T has at most |q|
nodes. We take the following weight function: ν(Gw

D) = |D|, where |D| is the size of D, that is,
the number of nodes in it. Clearly, ν(Gε

T) ≤ |Q|. By Lemma 10, we have

w(ΠLog
Q , Gε

T) ≤ max
D
|∂D ∪ λ(σ(D))| ≤ 3(t + 1),

sd(ΠLog
Q , Gε

T) ≤ 4 log |T |+ 2 log |Q| ≤ 6 log |Q|.

Since |D| ≤ |T |2 and there are at most |T |2d(t+1) options for w, there are polynomially many
predicates Gw

D, and so ΠLog
Q is of polynomial size. Thus, by Corollary 7, the constructed NDL-

rewriting over arbitrary data instances can be evaluated in LOGCFL. Finally, we note that a tree
decomposition of treewidth ≤ t can be computed using an LLOGCFL-transducer [26], and so the
NDL-rewriting can also be constructed by an LLOGCFL-transducer.

The obtained NDL-rewriting shows that answering OMQs (T , q(x)) with T of finite depth d

and q of treewidth t over any data instance A can be done in time

poly(|T |dt, |q|, |A|t). (4)

Indeed, we can evaluate (ΠLog
Q , Gε

T (x)) in time polynomial in |ΠLog
Q | and |A|w(ΠLog

Q ,Gε
T), which are

bounded by a polynomial in |T |2d(t+1), |q| and |A|2(t+1).

3.3 NL rewritings for OMQ(d, 1, ℓ)

Theorem 12. Let d ≥ 0 and ℓ ≥ 2 be fixed. There is an LNL-transducer that, given an OMQ
Q = (T , q(x)) in OMQ(d, 1, ℓ), constructs its polynomial-size linear NDL-rewriting of width ≤ 2ℓ.

Let T be an ontology of finite depth d, and let q(x) be a tree-shaped CQ with at most ℓ

leaves. Fix one of the variables of q as root, and let M be the maximal distance to a leaf from
the root. For 0 ≤ n ≤ M , let zn denote the set of all variables of q at distance n from the root;
clearly, |zn| ≤ ℓ. We call the zn slices of q and observe that they satisfy the following: for every
P (z, z′) ∈ q with z 6= z′, there exists n < M such that

either z ∈ zn and z′ ∈ zn+1 or z′ ∈ zn and z ∈ zn+1.

For 0 ≤ n ≤ M , let qn(zn
∃
,xn) be the query consisting of all atoms S(z) of q such that z ⊆

⋃

n≤k≤M zk, where xn is the subset of x that occurs in qn and zn
∃

= zn \ x.
By a type for slice zn, we mean a total map w from zn to WT . Analogously to Section 3.2, we

define the notions of types compatible with slices. Specifically, we call w locally compatible with
zn if for every z ∈ zn:

– if z ∈ x, then w(z) = ε;

11

– if A(z) ∈ q, then either w(z) = ε or w(z) = w̺ with T |= ∃y ̺(y, x)→ A(x);

– if P (z, z) ∈ q, then either w(z) = ε or T |=P (x, x).

If w, s are types for zn and zn+1, respectively, then we say (w, s) is compatible with (zn, zn+1)
if w is locally compatible with zn, s is locally compatible with zn+1,

– for every P (z, z′) ∈ q with z ∈ zn and z′ ∈ zn+1, one of the three condition holds: w(z) =
s(z′) = ε, or w(z) = s(z′) with T |= P (x, x), or T |= ̺(x, y)→ P (x, y) with either s(z′) =
w(z)̺ or w(z) = s(z′)̺−.

Consider the NDL program ΠLin
Q defined as follows. For every 0 ≤ n < M and every pair of

types (w, s) that is compatible with (zn, zn+1), we include the clause

Gw
n (zn

∃
,xn)← Atw∪s(zn, zn+1) ∧Gs

n+1(zn+1
∃

,xn+1),

where xn are the parameters of Gw
n and Atw∪s(zn, zn+1) is the conjunction of atoms (a)–(c) as

defined in Section 3.2, for the union w ∪ s. For every type w locally compatible with zM , we
include the clause

Gw
M (zM

∃
,xM)← Atw(zM).

(Recall that zM is a disjoint union of zM
∃

and xM .) We use G with parameters x as the goal
predicate and include G(x) ← Gw

0 (z0
∃
,x) for every predicate Gw

0 occurring in the head of one of
the preceding clauses.

By induction on n, we show in Appendix A.4 that (ΠLin
Q , G(x)) is a rewriting of (T , q(x)) over

complete data instances. It should be clear that ΠLin
Q is a linear NDL program of width ≤ 2ℓ and

containing ≤ |q| · |T |2dℓ predicates. Moreover, it takes only logarithmic space to store a type w,
which allows us to show that ΠLin

Q can be computed by an LNL-transducer. We apply Lemma 3 to
obtain an NDL-rewriting for arbitrary data instances, and then use Theorem 2 to conclude that
the resulting program can be evaluated in NL.

The obtained NDL-rewriting shows that answering OMQs (T , q(x)) with T of finite depth d

and tree-shaped q with ℓ leaves over any data A can be done in time

poly(|T |dℓ, |q|, |A|ℓ). (5)

Indeed, (ΠLin
Q , G(x)) can be evaluated in time polynomial in |ΠLin

Q | and |A|w(ΠLin
Q ,G), which are

bounded by a polynomial in |T |2dℓ, |q| and |A|2ℓ.

3.4 LOGCFL rewritings for OMQ(∞, 1, ℓ)

Unlike the previous two classes, answering OMQs in OMQ(∞, 1, ℓ) can be harder—LOGCFL-
complete—than evaluating their CQs, which can be done in NL.

Theorem 13. For any fixed ℓ ≥ 2, OMQ(∞, 1, ℓ) is skinny-reducible.

For OMQs with bounded-leaf CQs and ontologies of unbounded depth, our rewriting uses the
notion of tree witness [37]. Consider an OMQ Q(x) = (T , q(x)). Let t = (tr, ti) be a pair of
disjoint sets of variables in q such that ti 6= ∅ but ti ∩ x = ∅. Set

q
t

=
{

S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr
}

.

If q
t

is a minimal subset of q containing every atom of q with a variable from ti and such that
there is a homomorphism h : q

t
→ CT ,{A̺(a)} with h−1(a) = tr, we call t a tree witness for Q(x)

generated by ̺. Intuitively, t identifies a minimal subset of q that can be mapped to the tree-
shaped part of the canonical model consisting of labelled nulls: the variables in tr are mapped to
an individual constant, say, a, at the root of a tree and the ti are mapped to the labelled nulls
of the form aw, for some w ∈ WT that begins with ̺. Note that the same tree witness can be
generated by different ̺.

The logarithmic-depth NDL-rewriting for OMQs from OMQ(∞, 1, ℓ) is based on the following
observation:

12

Lemma 14 ([34]). Every tree T of size n has a node splitting it into subtrees of size ≤⌈n/2⌉.

Let Q(x0) = (T , q0(x0)) be an OMQ with a tree-shaped CQ. We will repeatedly apply
Lemma 14 to decompose the CQ into smaller and smaller subqueries. Formally, for a tree-shaped
CQ q, we denote by zq a vertex in the Gaifman graph G of q that satisfies the condition of
Lemma 14; if |var(q)| = 2 and q has at least one existentially quantified variable, then we assume
that zq is such. Let Q be the smallest set that contains q0(x0) and the following CQs, for every
q(x) ∈ Q with existentially quantified variables:

– for each zi adjacent to zq in G, the CQ qi(xi) comprising all binary atoms with both zi and
zq, and all atoms whose variables cannot reach zq in G without passing by zi, where xi is
the set of variables in x ∪ {zq} that occur in qi;

– for each tree witness t for (T , q(x)) with tr 6= ∅ and zq ∈ ti, the CQs qt

1(xt

1), . . . , qt

k(xt

k) that
correspond to the connected components of the set of atoms of q that are not in q

t
, where

each xt

i is the set of variables in x ∪ tr that occur in qt

i.

The two cases are depicted below:

q1

q2

q3
zq

z1

z2

z3

a tr

ti

qt

1 qt

2

zq

a

a̺

Note that tr 6= ∅ ensures that part of the query without q
t

is mapped onto individual constants.
The NDL program ΠTw

Q uses IDB predicates Gq(x), for q(x) ∈ Q, whose parameters are the
variables in x0 that occur in q(x). For each q(x) ∈ Q, if it has no existentially quantified variables,
then we include the clause Gq(x)← q(x). Otherwise, we include the clause

Gq(x) ←
∧

S(z)∈q, z⊆{zq}

S(z) ∧
∧

1≤i≤n

Gqi
(xi),

where q1(x1), . . . , qn(xn) are the subqueries induced by the neighbours of zq in G, and, for each
tree witness t for (T , q(x)) with tr 6= ∅ and zq ∈ ti and for every ̺ generating t, the following
clause

Gq(x) ← A̺(z0) ∧
∧

z∈tr\{z0}

(z = z0) ∧
∧

1≤i≤k

Gqt

i
(xt

i),

where z0 is any variable in tr and qt

1, . . . , q
t

k are the connected components of q without q
t
.

Finally, if q0 is Boolean, then we include clauses Gq0
← A(x) for all unary predicates A such that

T , {A(a)} |= q0.
The program ΠTw

Q is inspired by a similar construction from [34]. By adapting the proof, we
can show that (ΠTw

Q , Gq0
(x0)) is indeed a rewriting; see Appendix A.5.

Now fix ℓ > 1 and consider Q(x) = (T , q0(x)) from the class OMQ(∞, 1, ℓ). The size of
the program ΠTw

Q is polynomially bounded in |Q| since q0 has O(|q0|
ℓ) tree witnesses and tree-

shaped subqueries. It is readily seen that the function ν defined by setting ν(Gq) = |q|, for each
q ∈ Q, is a weight function for (ΠTw

Q , Gq0
(x)) with ν(Gq0

) ≤ |Q|. Moreover, by Lemma 14,
d(ΠTw

Q , Gq0
) ≤ log ν(Gq0

) + 1; and clearly, w(ΠTw
Q , Gq0

) ≤ ℓ + 1. By Corollary 7, the obtained
NDL-rewritings can be evaluated in LOGCFL. Finally, we note that since the number of leaves
is bounded, it is in NL to decide whether a vertex satisfies the conditions of Lemma 14, and in
LOGCFL to decide whether T , {A(a)} |= q0 [5] or whether a (logspace) representation of a possible
tree witness is indeed a tree witness. This allows us to show that (ΠTw

Q , Gq0
(x)) can be generated

by an LLOGCFL-transducer.
It also follows that answering OMQs (T , q(x)) with a tree-shaped CQ with ℓ leaves over any

data instance A can be done in time

poly(|T |, |q|ℓ, |A|ℓ). (6)

13

Indeed, (ΠTw
Q , G(x)) can be evaluated in time polynomial in |ΠTw

Q | and |A|w(ΠTw
Q ,G), which are

bounded by polynomials in |T |, |q|ℓ and |A|ℓ, respectively.

4 Parameterised complexity

The upper bounds (4) and (6) for the time required to evaluate NDL-rewritings of OMQs from
OMQ(d, 1,∞) and OMQ(∞, 1, ℓ) contain d and ℓ in the exponent of |T | and |q|. Moreover, if we
allow d and ℓ to grow while keeping CQs tree-shaped, the combined complexity of OMQ answering
will jump to NP; see Fig. 1(a). In this section, we regard d and ℓ as parameters and show that
answering tree-shaped OMQs is not fixed-parameter tractable.

4.1 Ontology Depth

Consider the following problem pDepth-TreeOMQ:

Instance: an OMQ Q = (T , q) with T of finite depth and tree-shaped Boolean CQ q.
Parameter: the depth of T .
Problem: decide whether T , {A(a)} |= q.

Theorem 15. pDepth-TreeOMQ is W [2]-hard.

Proof. The proof is by reduction of the problem p-HittingSet, which is known to be W [2]-
complete [22]:

Instance: a hypergraph H = (V,E) and k ∈ N.
Parameter: k.
Problem: decide whether there is A ⊆ V such that |A| = k and e ∩A 6= ∅, for every e ∈ E.
(Such a set A of vertices is called a hitting set of size k.) Suppose that H = (V,E) is a hypergraph
with vertices V = {v1, . . . , vn} and hyperedges E = {e1, . . . , em}. Let T kH be the (normal form of
an) ontology with the following axioms, for 1 ≤ l ≤ k:

V l−1
i (x)→ ∃z

(

P (z, x) ∧ V li′(z)
)

, for 0 ≤ i < i′ ≤ n,

V li (x)→ Elj(x), for vi ∈ ej, ej ∈ E,

Elj(x)→ ∃z
(

P (x, z) ∧ El−1
j (z)

)

, for 1 ≤ j ≤ m.

Let qkH be a tree-shaped Boolean CQ with the following atoms, for 1 ≤ j ≤ m:

P (y, zk−1
j), P (zlj, z

l−1
j) for 1 ≤ l < k, and E0

j (z0
j).

The first axiom of T kH generates a tree of depth k, with branching ranging from n to 1, such that
the points w of level k are labelled with subsets X ⊆ V of size k that are read off the path from
the root to w. The CQ qkH is a star with rays corresponding to the hyperedges of H . The second
and third axioms generate ‘pendants’ ensuring that, for any hyperedge e, the central point of the
CQ can be mapped to a point with a label X iff X and e have a common vertex. The canonical
model of (T 2

H , {V
0

0 (a)}) and the CQ q2
H , for H = (V, {e1, e2, e3}) with V = {1, 2, 3}, e1 = {1, 3},

e2 = {2, 3} and e3 = {1, 2}, is shown below:
CT 2

H
,{V 0

0
(a)}

q2
H

level

0

1

2

a

1 2 3

2 3 3

E1
E3E2 E3

E1 E2 E1 E2E1 E2E3E2

y

E2 E3 E1

Points i at level l belong to V li . In Appendix B.1 we prove that T kH , {V
0

0 (a)} |= qkH iff H has a
hitting set of size k. In the example above, {1, 2} is a hitting set of size 2, which corresponds to
the homomorphism from q2

H into the part of CT 2
H
,{V 0

0 (a)} shown in black. ❑

14

By Theorem 9, OMQs (T , q) from OMQ(d, 1,∞) can be answered (via NDL-rewriting) over a
data instance A in time poly(|T |d, |q|, |A|). Theorem 15 shows that no algorithm can do this in
time f(d) · poly(|T |, |q|, |A|), for any computable function f , unless W [2] = FPT.

4.2 Number of Leaves

Next we consider the problem pLeaves-TreeOMQ:
Instance: an OMQ Q = (T , q) with T of finite depth and tree-shaped Boolean CQ q.
Parameter: the number of leaves in q.
Problem: decide whether T , {A(a)} |= q.

Theorem 16. pLeaves-TreeOMQ is W [1]-hard.

Proof. The proof is by reduction of the following W [1]-complete PartitionedClique prob-
lem [21]:

Instance: a graph G = (V,E) whose vertices are partitioned into p sets V1, . . . , Vp.
Parameter: p, the number of partitions.
Problem: decide whether G has a clique of size p containing one vertex from each Vi.

Consider a graph G = (V,E) with V = {v1, . . . , vM} partitioned into V1, . . . , Vp. The ontology
TG will create a tree rooted at A(a) whose every branch corresponds to selecting one vertex from
each Vi. Each branch has length (p · 2M) + 1 and consists of p ‘blocks’ of length 2M , plus an
extra edge at the end (used for padding). Each block corresponds to an enumeration of V , with
positions 2j and 2j + 1 being associated with vj . In the ith block of a branch, we will select a
vertex vji

from Vi by marking the positions 2ji and 2ji + 1 with the binary predicate S; we also
mark the positions of the neighbours of vji

in G with the predicate Y . We use the unary predicate
B to mark the end of the pth block (square nodes in the picture below). The left side of the
picture illustrates the construction for p = 3, where V1 = {v1, v2}, V2 = {v3}, V3 = {v4, v5}, and
E = {{v1, v3}, {v3, v5}}.

a

1 2

3

4 5

3

54

Y Y1

2

SS3

4

Y Y5

V1

V2

V3

2
M

a
rr

ow
s

CTG,{A(a)} qGy

SS

z2

SSj

z1

j⊕1

j⊕2

j⊕3

j⊕4

Y Yj

2
M

a
rrow

s

Since vertices are enumerated in the same order in every block, to check whether the selected
vertex vji

for Vi is a neighbour of the vertices selected from Vi+1, . . . , Vp, it suffices to check that
positions 2ji and 2ji + 1 in blocks i + 1, . . . , p are marked Y Y . Moreover, the distance between
the positions of a vertex in consecutive blocks is always 2M − 2. The idea is thus to construct
a CQ qG (right side of the picture) which, starting from a variable labelled B (mapped to the
end of a pth block), splits into p − 1 branches, with the ith branch checking for a sequence of i
evenly-spaced Y Y markers leading to an SS marker. The distance from the end of the pth block
(marked B) to the positions 2ji and 2ji + 1 in the pth block (where the first Y Y should occur)
depends on the choice of vji

. We thus add an outgoing edge at the end of the pth block, which
can be navigated in both directions, to be able to ‘consume’ any even number of query atoms
preceding the first Y Y .

15

The Boolean CQ qG looks as follows (for readability, we use atoms with star-free regular
expressions):

B(y) ∧
∧

1≤i<p

(

U2M−2 · (Y Y · U2M−2)i · SS
)

(y, zi),

and the ontology TG contains the following axioms:

A(x)→ ∃y L1
j(x, y), for vj ∈ V1,

∃z Lkj (z, x)→ ∃y Lk+1
j (x, y), for 1 ≤ k < 2M, vj ∈ V,

∃z L2M
j (z, x)→ ∃y L1

j′(x, y), for vj ∈ Vi, vj′ ∈ Vi+1,

Lkj (x, y)→ S(y, x), for k ∈ {2j, 2j + 1},

Lkj (x, y)→ Y (y, x), for {vj , vj′} ∈ E and k ∈ {2j′, 2j′ + 1},

Lkj (x, y)→ U(y, x), for 1 ≤ k ≤ 2M, vj ∈ V,

∃z L2M
j (z, x)→ B(x), for vj ∈ Vp,

B(x)→ ∃y
(

U(x, y) ∧ U(y, x)
)

.

We prove in the appendix that TG, {A(a)} |= qG iff G has a clique containing one vertex from
each set Vi. ❑

By (6), OMQs (T , q) from OMQ(∞, 1, ℓ) can be answered (via NDL-rewriting) over a data
instance A in time poly(|T |, |q|ℓ, |A|ℓ). Theorem 16 shows that no algorithm can do this in time
f(ℓ) · poly(|T |, |q|, |A|), for any computable function f , unless W [1] = FPT.

One may consider various other types of parameters that can hopefully reduce the complexity
of OMQ answering. Obvious candidates are the size of ontology, the size of ontology signature
or the number of role inclusions in ontologies. (Indeed, it is shown in [6] that in the absence of
role inclusions, tree-shaped OMQ answering is tractable.) Unfortunately, bounding any of these
parameters does not make OMQ answering easier, as we establish in Section 5 that already one
fixed ontology makes the problem NP-hard for tree-shaped CQs and LOGCFL-hard for linear ones.

5 OMQs with a Fixed Ontology

In a typical OBDA scenario [33], users are provided with an ontology in a familiar signature
(developed by a domain expert) with which they formulate their queries. Thus, it is of interest
to identify the complexity of answering tree-shaped OMQs (T , q) with a fixed T of infinite depth
(see Fig. 1). Surprisingly, we show that the problem is NP-hard even when both T and A are fixed
(in the database setting, answering tree-shaped CQs is in LOGCFL for combined complexity).

Theorem 17. There is an ontology T† such that answering OMQs of the form (T†, q) with Boolean
tree-shaped CQs q is NP-hard for query complexity.

Proof. The proof is by reduction of SAT. Given a CNF ϕ with variables p1, . . . , pk and clauses
χ1, . . . , χm, take a Boolean CQ qϕ with A(y) and, for 1 ≤ j ≤ m, the following atoms with zkj = y:

P+(zlj , z
l−1
j), if pl occurs in χj positively,

P−(zlj , z
l−1
j), if pl occurs in χj negatively,

P0(zlj , z
l−1
j), if pl does not occur in χj ,

B0(z0
j).

16

Thus, qϕ is a star with centre A(y) and m rays encoding the χj by the binary predicates P+, P−

and P0. Let T† be an ontology with the axioms

A(x)→ ∃y
(

P+(y, x) ∧ P0(y, x) ∧B−(y) ∧A(y)
)

,

B−(y)→ ∃x′
(

P−(y, x′) ∧B0(x′)
)

,

A(x)→ ∃y
(

P−(y, x) ∧ P0(y, x) ∧B+(y) ∧A(y)
)

,

B+(y)→ ∃x′
(

P+(y, x′) ∧B0(x′)
)

,

B0(x)→ ∃y
(

P+(x, y) ∧ P−(x, y) ∧ P0(x, y) ∧B0(y)
)

.

Intuitively, (T†, {A(a)}) generates an infinite binary tree whose nodes of depth n represent all 2n

truth assignments to n propositional variables. The CQ qϕ can only be mapped along a branch
of this tree towards its root a, with the image of y, the centre of the star, giving a satisfying
assignment for ϕ. Each non-root node of the tree also starts an infinite ‘sink’ branch of B0-nodes,
where the remainder of the ray for χj can be mapped as soon as one of its literals is satisfied.
We show in Appendix C.1 that T†, {A(a)} |= qϕ iff ϕ is satisfiable. To illustrate, the CQ qϕ for
ϕ = (p1 ∨ p2) ∧ ¬p1 and a fragment of the canonical model CT†,{A(a)} are shown below:

p2

p1

y A

z1
1 z1

2

z0
1 z0

2

+

+

0

−

p1∨p2 ¬p1
a

+
0

−

0

+
0

−

0
+
0

−

− + −

CT†,{A(a)}qϕ

Here, are the points in B0 and the labels on arrows indicate the subscripts of the binary
predicates P (the empty label means all three: +, − and 0); predicates A, B+, B− are not shown
in CT†,{A(a)}. ❑

The proof above uses OMQs Qϕ = (T†, qϕ) over a data instance with a single individual
constant. Thus:

Corollary 18. No polynomial-time algorithm can construct FO- or NDL-rewritings for the OMQs
Qϕ unless P = NP.

Proof. Indeed, if a polynomial-time algorithm could find a rewriting q′
ϕ of Qϕ, then we would be

able to check whether ϕ is satisfiable in polynomial time by evaluating q′
ϕ over the data instance

{A(a)}. ❑

Curiously enough, Corollary 18 can be complemented with the following theorem:

Theorem 19. The Qϕ have polynomial FO-rewritings.

Proof. Define q′
ϕ as the FO-sentence

∀xy
(

(x = y) ∧A(x) ∧ ϕ∗
)

∨ ∃xy
(

(x 6= y) ∧ q∗
ϕ(x, y)

)

,

where ϕ∗ is ⊤ if ϕ is satisfiable and ⊥ otherwise, and q∗
ϕ(x, y) is the polynomial-size FO-rewriting

of Qϕ over data with at least 2 constants [25, Corollary 14]. Recall that the proof of Theorem 17
shows that, if A has a single constant, a, and there is a homomorphism from qϕ to CT†,A, then
A(a) ∈ A and ϕ is satisfiable. Thus, the first disjunct of q′

ϕ is an FO-rewriting of Qϕ over data
instances with a single constant; the case of at least 2 constants follows from [25, Corollary 14]. ❑

17

Whether the OMQs Qϕ have a polynomial-size PE- or NDL-rewritings remains open. We have
only managed to construct a modification q̄ϕ(x) of qϕ with the following interesting properties
(details are given in Appendix C.2). Let T be the class of data instances representing finite binary
trees with root a whose edges are labelled with P+ and P−, and some of whose leaves are labelled
with B0. Let QL be any query language such that, for every QL-query Φ(x) and every A ∈ T, the
answer to Φ(a) over A can be computed in time polynomial in |Φ| and |A|. Typical examples of
QL are modal-like languages such as certain fragments of XPath [38] or description logic instance
queries [4].

Theorem 20. The OMQs (T†, q̄ϕ(x)) do not have polynomial-size rewritings in QL unless NP ⊆
P/poly.

To our surprise, Theorem 20 is not applicable to PE.3

Theorem 21. Evaluating PE-queries over trees in T is NP-hard.

Finally, we consider bounded-leaf CQs (whose evaluation is NL-complete in the database set-
ting) with fixed ontology and data.

Theorem 22. There is an ontology T‡ such that answering OMQs of the form (T‡, q) with Boolean
linear CQs q is LOGCFL-hard for query complexity.

The proof is by reduction of the recognition problem for the hardest LOGCFL language L [29,
56]. We construct an ontology T‡ and a logspace transducer that converts the words w in the
alphabet of L to linear CQs qw such that w ∈ L iff T‡, {A(a)} |= qw.

6 Experiments & Conclusions

The main positive result of this paper is the development of theoretically optimal NDL-rewritings
for three classes OMQ(d, t,∞), OMQ(d, 1, ℓ), OMQ(∞, 1, ℓ) of OMQs. It was known that answer-
ing such OMQs is tractable, but the proofs employed elaborate algorithms tailored for each of
the three cases. We have shown that the optimal complexity can be achieved via NDL-rewriting,
thus reducing OMQ answering to standard query evaluation. This result is practically relevant as
many user queries are tree-shaped (see, e.g., [48] for evidence in the RDF setting), and indeed,
recent tools for query formulation over ontologies (like [55]) produce tree-shaped CQs. Moreover,
the majority of important real-world OWL 2 ontologies are of finite depth; see [16] for statistics.
In the context of OBDA, OWL 2 QL ontologies are often built starting from the database schemas
(bootstrapping [31]), which typically do not contain cycles such as ‘every manager is managed
by a manager.’ For example, the NPD FactPages ontology,4 designed to facilitate querying the
datasets of the Norwegian Petroleum Directorate, is of depth 5.

The starting point of our research was the observation that standard query rewriting systems
tend to produce suboptimal rewritings of the OMQs in these three classes. This is obviously
so for UCQ-rewriters [49, 46, 14, 27, 43, 39]. However, this is also true of more elaborate PE-
rewriters (which use disjunctions inside conjunctions) [50, 58] whose rewritings in theory can be
of superpolynomial size; see Fig. 1(b). Surprisingly, even NDL-rewriters such as Clipper [20],
Presto [53] and Rapid [14] do not fare much better in practice. To illustrate, we generated
three sequences of OMQs in the class OMQ(1, 1, 2) (lying in the intersection of OMQ(d, t,∞),
OMQ(d, 1, ℓ) and OMQ(∞, 1, ℓ)) with the ontology from Example 11 and linear CQs of up to 15
atoms as in Example 8 (which are associated with words from {R,S}∗). By Fig. 1(a), answering
these OMQs can be done in NL. The barcharts in Fig. 2 show the number of clauses in their NDL-
rewritings produced by Clipper, Presto and Rapid, as well as by our algorithms Lin, Log and
Tw from Sections 3.2–3.4, respectively. The first three NDL-rewritings display a clear exponential
growth, with Clipper and Rapid failing to produce rewritings for longer CQs. In contrast, our
rewritings grow linearly in accord with theory.

3This result might be known but we could not find it in the literature, and so provide a proof in Appendix C.3.
4http://sws.ifi.uio.no/project/npd-v2/

18

RRSRSRSRRSRRSSR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

25

50

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

25

50

100

SRRSSRSRSRRSRRS

SRRRRRSRSRRRRRR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

25

50

100

Tw Lin Log Rapid Clipper Presto

Figure 2: The size of NDL-rewritings produced by different algorithms.

We evaluated the rewritings over a few randomly generated data instances using off-the-shelf
datalog engine RDFox [45]. The experiments (details are in the appendix) show that our rewritings
are usually executed faster than those produced by Clipper, Presto and Rapid.

The version of RDFox we used did not seem to take advantage of the structure of the NL/LOGCFL

rewritings by simply materialising all the predicates without using magic sets or optimising pro-
grams before execution. It would be interesting to see whether the nonrecursiveness and paral-
lelisability of our rewritings can be utilised to produce efficient execution plans. One could also
investigate whether our rewritings can be efficiently implemented using views in standard DBMSs.

Our rewriting algorithms are based on the same idea: pick a point splitting the given CQ into
sub-CQs, rewrite the sub-CQs recursively, and then formulate rules that combine the resulting
rewritings. The difference between the algorithms is in the choice of the splitting points, which
determines the execution plans for OMQs and has a big impact on their performance. The experi-
ments show that none of the three splitting strategies systematically outperforms the others. This
suggests that execution times may be dramatically improved by employing an ‘adaptable’ splitting
strategy that would work similarly to query execution planners in DBMSs and use statistical in-
formation about the relational tables to generate efficient NDL programs. For example, one could
first define a ‘cost function’ on some set of alternative rewritings that roughly estimates their eval-
uation time and then construct a rewriting minimising this function. Such a performance-oriented
approach was introduced and exploited in [7], where the target language for OMQ rewritings was
joins of UCQs (unions of CQs). Other optimisation techniques for removing redundant rules or
sub-queries from rewritings [53, 50, 28, 39] or exploiting the emptiness of certain predicates [59]
are also relevant here. In the context of OBDA with relational databases and mappings, integrity
constraints [52, 51] and the structure of mappings [18] are particularly important for optimisation.

Having observed that (i) the ontology depth and (ii) the number of leaves in tree-shaped CQs
occur in the exponent of our upper bounds for the complexity of OMQ answering algorithms, we
regarded (i) and (ii) as parameters and investigated the parameterised complexity of the OMQ
answering problem. We proved that the problem is W [2]-hard in the former case and W [1]-hard
in the latter (it remains open whether these lower bounds are tight). Furthermore, we established
that answering OMQs with a fixed ontology (of infinite depth) is NP-complete for tree-shaped CQs
and LOGCFL-complete for linear CQs, which dashed hopes of taming intractability by restricting

19

the ontology size, signature, etc. One remaining open problem is whether answering OMQs with a
fixed ontology and tree-shaped CQs is fixed-parameter tractable if the number of leaves is regarded
as the parameter.

A more general avenue for future research is to extend the study of succinctness and optimality
of rewritings to suitable ontology languages with predicates of higher-arity, such as linear and sticky
tgds.

7 Acknowledgements

This work was supported by the French ANR grant 12-JS02-007-01 ‘PAGODA: Practical Algo-
rithms for Ontology-Based Data Access’, the UK EPSRC grant EP/M012670 ‘iTract: Islands of
Tractability in Ontology-Based Data Access’, the Russian Foundation for Basic Research grant
MK-7312.2016.1, and the Russian Academic Excellence Project 5-100. We thank the develop-
ers of Clipper and Rapid for making their systems freely available and Riccardo Rosati for the
opportunity to conduct experiments with Presto.

A Proofs for Section 3

A.1 Lemma 3

Lemma 3. Fix any w > 0. There is an LNL-transducer that, for any linear NDL-rewriting (Π, G(x))
of an OMQ Q(x) over complete data instances with w(Π, G) ≤ w, computes a linear NDL-rewriting
(Π′, G(x)) of Q(x) over arbitrary data instances such that w(Π′, G) ≤ w + 1.

Proof. Let (Π, G(x)) be a linear NDL-rewriting of the OMQ Q(x) = (T , q(x)) over complete data
instances such that w(Π, G) ≤ w. We will replace every clause λ in Π by a set of clauses λ∗ defined
as follows. Suppose λ is of the form

Q(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En,

where I is the only IDB body atom in λ, EQ contains all equality body atoms, and E1, . . . , En are
the EDB body atoms not involving equality. For every atom Ei, we define a set υ(Ei) of atoms
by taking

υ(Ei) =
{

B(z) | T |= B(x)→ A(x)
}

∪
{

̺(yi, z) | T |= ∃y ̺(y, x)→ A(x)
}

, if Ei = A(z),

υ(Ei) =
{

̺(z, z′) | T |= ̺(x, y)→ P (x, y)
}

, if Ei = P (z, z′),

where yi is a fresh variable not occurring in λ; we assume P−(z, z′) coincides with P (z′, z), for all
binary predicates P . Intuitively, υ(Ei) captures all atoms that imply Ei with respect to T . Then
λ∗ consists of the following clauses:

Q0(z0)← I,

Qi+1(zi)← Hi(zi) ∧ E
′
i, for 1 ≤ i ≤ n and E′

i ∈ υ(Ei),

Q(z)← Hn+1(zn) ∧ EQ,

where zi is the restriction of z to variables occurring in I if i = 0 and in Qi(zi) and E′
i except for

yi if i > 0 (note that zn = z). Let Π′ be the program obtained from Π by replacing each clause
λ by the set of clauses λ∗. By construction, Π′ is a linear NDL program and its width cannot
exceed w(Π, G) + 1 (the possible increase of 1 is due to the replacement of unary atoms A(z) by
binary atoms ̺(yi, z)).

We now argue that (Π′, G(x)) is a rewriting of Q(x) over arbitrary data instances. It can be
easily verified that (Π′, G(x)) is equivalent to (Π′′, G(x)), where NDL program Π′′ is obtained

20

from Π by replacing each clause Q(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En by the (possibly exponentially
larger) set of clauses of the form

Q(z)← I ∧ EQ ∧ E′
1 ∧ . . . ∧ E

′
n,

for all E′
i ∈ υ(Ei) and 1 ≤ i ≤ n. It thus suffices to show that (Π′′, G(x)) is a rewriting of Q(x)

over arbitrary data instances.
First suppose that T ,A |= q(a), where A is an arbitrary data instance. Let A′ be the complete

data instance obtained from A by adding the ground atoms:

P (a, b) if ̺(a, b) ∈ A and T |= ̺(x, y)→ P (x, y);

A(a) if B(a) ∈ A and T |= B(x)→ A(x);

A(a) if ̺(a, b) ∈ A and T |= ∃y ̺(y, x)→ A(x).

(We write ̺(a, b) ∈ A for P (a, b) ∈ A if ̺ = P and for P (b, a) if ̺ = P−.) Clearly, T ,A′ |= q(a),
so we must have Π,A′ |= G(a). A simple inductive argument (on the order of derivation of
ground atoms) shows that whenever a clause Q(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En is applied using a
substitution c for the variables in the body to derive Q(c(z)) using Π, we can find a corresponding
clause Q(z)← I ∧ EQ ∧ E′

1 ∧ . . . ∧ E
′
n and a substitution c′ extending c (on the fresh variables

yi) that allows us to derive Q(c′(z)) using Π′′. Indeed,

– if Ei = A(z), then A(c(z)) ∈ A′, so there must exist either a unary ground atom B(c(z)) ∈ A
such that T |= B(x)→ A(x) or a binary ground atom ̺(a, c(z)) ∈ A, for some a ∈ ind(A),
such that T |= ∃y ̺(y, x)→ A(x); in the latter case, we set c′(yi) = a;

– similarly, if Ei = P (z, z′), then there must exist a binary ground atom ̺(c(z), c(z′)) ∈ A
such that T |= ̺(x, y)→ P (x, y).

It then suffices to choose Q(z)← I ∧ EQ ∧ E′
1 ∧ . . . ∧ E

′
n with atoms E′

i whose form match that
of the ground atoms in A corresponding to Ei.

For the converse direction, it suffices to observe that Π ⊆ Π′′.
To complete the proof, we note that it is in NL to decide whether an atom belongs to υ(Ei),

and thus we can construct the program Π′ by means of an LNL-transducer. ❑

A.2 Theorem 6

Next, we combine the transformation in Lemma 5 with the established complexity in Lemma 4 to
obtain the combined complexity upper bound:

Theorem 6. For every c > 0 and w > 0, evaluation of NDL queries (Π, G(x)) of width at
most w and such that sd(Π, G) ≤ c log |Π| is in LOGCFL for combined complexity.

Proof. By Lemma 5, (Π, G) is equivalent to a skinny NDL query (Π′, G) such that |Π′| = O(|Π|2),
w(Π′, G) ≤ w, and d(Π′, G) ≤ sd(Π, G). By Lemma 4, query evaluation for (Π′, G) over A
is done by an NAuxPDA in space log |Π′| + w(Π′, G) · log |A| = O(log |Π| + log |A|) and time
2O(d(Π′,G)) ≤ |Π|O(1). ❑

A.3 Log-rewritings

Lemma 23. For any complete data instance A, any D ∈ D, any type w with dom(w) = ∂D
and any tuples b ∈ ind(A)|∂D| and a ∈ ind(A)|xD|, we have ΠLog

Q ,A |= Gw
D(b,a) iff there is a

homomorphism h : qD → CT ,A such that

h(x) = a(x), for x ∈ xD, and h(z) = b(z)w(z), for z ∈ ∂D. (7)

21

Proof. (⇒) The proof is by induction on ≺. For the basis of induction, let D be of size 1. By the
definition of ΠLog

Q , there exists a type s such that dom(s) = λ(σ(D)) and w agrees with s on ∂D
and a respective tuple c ∈ ind(A)|λ(σ(D))| such that c(z) = b(z), for all z ∈ ∂D, and c(x) = a(x),
for all x ∈ xD, and ΠLog

Q ,A |= Ats(c). Then, for any atom S(z) ∈ qD, we have z ⊆ λ(σ(D)),
whence CT ,A |= S(h(z)) as w agrees with s on ∂D.

For the inductive step, suppose that we have ΠLog
Q ,A |= Gw

D(b,a). By the definition of ΠLog
Q ,

there exists a type s such that dom(s) = λ(σ(D)) and w agrees with s on their common domain
and a respective tuple c ∈ ind(A)|λ(σ(D))| such that c(z) = b(z), for all z ∈ ∂D, and c(x) = a(x),
for all x ∈ xD, and

ΠLog
Q ,A |= Ats(c) ∧

∧

D′≺D

G
(s∪w)↾∂D′

D′ (bD′ ,aD′),

where bD′ and aD′ are the restrictions of b ∪ c to ∂D′ and of a to xD′ , respectively. By the
induction hypothesis, for any D′ ≺ D, there is a homomorphism hD′ : qD′ → CT ,A such that (7)
is satisfied.

Let us show that the hD′ agree on common variables. Suppose that z is shared by qD′ and
qD′′ for D′ ≺ D and D′′ ≺ D. By the definition of tree decomposition, for every z ∈ V , the nodes
{t | z ∈ λ(t)} induce a connected subtree of T , and so z ∈ λ(σ(D)) ∩ λ(t′) ∩ λ(t′′), where t′ and
t′′ are the unique neighbours of σ(D) lying in D′ and D′′, respectively. Since w′ = (w ∪ s) ↾ ∂D′

and w′′ = (w ∪ s) ↾ ∂D′′ are the restrictions of w ∪ s, we have w′(z) = w′′(z). This implies that

hD′(z) = c(z)w′(z) = c(z)w′′(z) = hD′′(z).

Now we define h on every z in qD by taking

h(z) =

hD′(z) if z ∈ λ(t),

for t ∈ D′ and D′ ≺ D,

c(z) · (w ∪ s)(z), if z ∈ λ(σ(D)).

If follows that h is well defined, h satisfies (7) and that h is a homomorphism from qD to CT ,A.
Indeed, take an atom S(z) ∈ qD. Then either z ⊆ λ(σ(D)), in which case CT ,A |= S(h(z)) since
w is compatible with σ(D) and ΠLog

Q ,A |= Ats(c), or S(z) ∈ qD′ for some D′ ≺ D, in which case
we use the fact that h extends a homomorphism hD′ .

(⇐) The proof is by induction on ≺. Fix D and w such that |w| = |∂D|. Take tuples
b ∈ ind(A)|∂D| and a ∈ ind(A)|xD |, and a homomorphism h : qD → CT ,A satisfying (7). Define a
type s and a tuple c ∈ ind(A)|λ(σ(D))| by taking, for all z ∈ λ(σ(D)),

s(z) = w and c(z) = a, if h(z) = aw, for a ∈ ind(A).

By definition, dom(s) = λ(σ(D)) and, by (7), s and w agree on the common domain. For the
inductive step, for each D′ ≺ D, let hD′ be the restriction of h to qD′ and let bD′ and and aD′

be the restrictions of b ∪ c to ∂D′ and of a to xD′ , respectively. By the inductive hypothesis,
ΠLog

Q ,A |= Gw′

D′ (bD′ ,aD′). (This argument is not needed for the basis of induction.) Since h is a
homomorphism, we have ΠLog

Q ,A |= Ats(c), whence, ΠLog
Q ,A |= Gw

D(b,a). ❑

It follows that answering OMQs Q(x) = (T , q(x)) with T of finite depth d and q of treewidth
t over any data instance A can be done in time

poly(|T |dt, |q|, |A|t). (4)

Indeed, we can evaluate (ΠLog
Q , Gε

T (x)) in time polynomial in |ΠLog
Q | and |A|w(ΠLog

Q ,Gε
T), which are

bounded by a polynomial in |T |2d(t+1), |q| and |A|2(t+1).

22

A.4 Lin-rewritings

Lemma 24. For any complete data instance A, any predicate Gw
n , any a ∈ ind(A)|xn| and

b ∈ ind(A)|zn
∃ |, we have ΠLin

Q ,A |= Gw
n (b,a) iff there is a homomorphism h : qn → CT ,A such that

h(x) = a(x), for x ∈ xn, and h(z) = b(z)w(z), for z ∈ zn
∃
. (8)

Proof. The proof is by induction on n.

For the base case (n = M), first suppose that we have ΠLin
Q ,A |= Gw

M (b,a). The only rule
in ΠLin

Q with head predicate Gw
M is Gw

M (zM
∃
,xM) ← Atw(zM) with zM = zM

∃
⊎ xM , which is

equivalent to

Gw
M (zM

∃
,xM)←

∧

z∈zM

(

∧

A(z)∈q

w(z)=ε

A(z) ∧
∧

P (z,z)∈q

w(z)=ε

P (z, z) ∧
∧

w(z)=̺w

A̺(z)
)

. (9)

So the body of this rule must be satisfied when b and a are substituted for zM
∃

and xM respectively.
Moreover, by local compatibility of w with zM , we know that w(x) = ε for every x ∈ xM . It
follows that

– A(a(x)) ∈ A for every A(x) ∈ q such that x ∈ xM ;

– A(b(z)) ∈ A for every A(z) ∈ q such that z ∈ zM
∃

and w(z) = ε;

– P (a(x),a(x)) ∈ A for every P (x, x) ∈ q such that x ∈ xM ;

– P (b(z), b(z)) ∈ A for every P (z, z) ∈ q such that z ∈ zM
∃

and w(z) = ε;

– A̺(z) ∈ A for every z ∈ zM with w(z) = ̺w.

Now let hM be the unique mapping from zM to ∆CT ,A satisfying (8). First note that hM is well-
defined, since by the last item, if w(z) = ̺w, then we have A̺(z) ∈ A and ̺w ∈WT , so b(z)̺w
belongs to ∆CT ,A . To show that hM is a homomorphism of qM into CT ,A, first recall that the
atoms of qM are of two types: A(z) or P (z, z), with z ∈ zM . Take some A(z) ∈ qM . If w(z) = ε,
then we immediately obtain either A(hM (z)) = A(a(z)) ∈ A or A(hM (z)) = A(b(z)) ∈ A,
depending on whether z ∈ zM

∃
or in xM . Otherwise, if w(z) 6= ε, then the local compatibility

of w with zM means that the final letter ̺ in w(z) is such that T |= ∃y ̺(y, x) → A(x), hence
hM (z) = b(z)w(z) ∈ ACT ,A . Finally, suppose that P (z, z) ∈ q. The local compatibility of w

with zM ensures that either w(z) = ε or T |= P (x, x). In the former case, we have either
P (a(z),a(z)) ∈ A or P (b(z), b(z)) ∈ A, depending again on whether z ∈ zM

∃
or z ∈ xM . In the

latter case, (hM (z), hM (z)) ∈ P CT ,A .

For the other direction, (⇐), of the base case, suppose that the mapping hM given by (8)
defines a homomorphism from qM into CT ,A. We therefore have:

– a(x) ∈ ACT ,A for every A(x) ∈ q with x ∈ xM ;

– b(z)w(z) ∈ ACT ,A for every A(z) ∈ q with z ∈ zM
∃

;

– (a(x),a(x)) ∈ P CT ,A for every P (x, x) ∈ q such that x ∈ xM ;

– (b(z), b(z)) ∈ P CT ,A for every P (z, z) ∈ q such that z ∈ zM
∃

;

– T ,A |= ∃y ̺(b(z), y) for every z ∈ zM
∃

with w(z) = ̺w (for otherwise b(z)w(z) would not
belong to the domain of CT ,A).

The first two items, together with completeness of the data instance A, ensure that all atoms in
{

A(z) | A(z) ∈ q, z ∈ zM ,w(z) = ε
}

23

are present in A when b and a substituted for zM
∃

and xM , respectively. The third and fourth
items, again together with completeness of A, ensure the presence of the atoms in

{

P (z, z) | P (z, z) ∈ q, z ∈ zM ,w(z) = ε
}

.

Finally, the fifth item plus completeness of A ensure that A contains all atoms in

{A̺(z) | z ∈ zM ,w(z) = ̺w}.

It follows that the body of the unique rule for Gw
M is satisfied when b and a are substituted for

zM
∃

and xM respectively, and thus ΠLin
Q ,A |= Gw

M (b,a).

For the induction step, assume that the statement has been shown to hold for all n ≤ k+1 ≤M ,
and let us show that it holds when n = k. For the first direction, (⇒), suppose ΠLin

Q ,A |= Gw
k (b,a).

It follows that there exists a pair of types (w, s) compatible with (zk, zk+1) and an assignment c of
individuals from A to the variables in zk∪zk+1 such that c(x) = a(x) for all x ∈ (zk ∪ zk+1) ∩ x,
and c(z) = b(z) for all z ∈ zk

∃
, and such that every atom in the body of the clause

Gw
k (zk

∃
,xk)← Atw∪s(zk, zk+1) ∧Gs

k+1(zk+1
∃

,xk+1)

is entailed from ΠLin
Q ,A when the individuals in c are substituted for zk ∪ zk+1. Recall that

Atw∪s(zk, zk+1) is the conjunction of the following atoms, for z, z′ ∈ zk ∪ zk+1:

– A(z), if A(z) ∈ q and (w ∪ s)(z) = ε,

– P (z, z′), if P (z, z′) ∈ q and (w ∪ s)(z) = (w ∪ s)(z′) = ε,

– z = z′, if P (z, z′) ∈ q and either (w ∪ s)(z) 6= ε or (w ∪ s)(z′) 6= ε,

– A̺(z), if (w ∪ s)(z) is of the form ̺w.

In particular, we have ΠLin
Q ,A |= Gs

k+1(c(zk+1
∃

), c(xk+1)). By the induction hypothesis, there
exists a homomorphism hk+1 : qk+1 → CT ,A such that hk+1(z) = c(z)s(z) for every z ∈ zk+1

∃
∪

xk+1. Define a mapping hk from var(qk) to ∆CT ,A by setting hk(z) = hk+1(z) for every variable
z ∈ var(qk+1), setting hk(x) = a(x) for every x ∈ zk ∩ x, and setting hk(z) = b(z)w(z) for every
z ∈ zk. Using the same argument as was used in the base case, we can show that hk is well-defined.
For atoms from qk involving only variables from qk+1, we can use the induction hypothesis to
conclude that they are satisfied under hk, and for atoms only involving variables from zk, we can
argue as in the base case. It thus remains to handle role atoms that contain one variable from zk

and one variable from zk+1. Consider such an atom P (z, z′) ∈ qk, for z ∈ zk and z′ ∈ zk+1. If
w(z) = s(z′) = ε, then the atom P (z, z′) appears in the body of the clause we are considering.
It follows that ΠLin

Q ,A |= P (c(z), c(z′)), hence (c(z), c(z′)) ∈ P CT ,A . It then suffices to note that
c agrees with a and b on the variables in zk. Next suppose that either w(z) 6= ε or s(z′) 6= ε.
It follows that the clause body contains z = z′, hence c(z) = c(z′). As (w, s) is compatible with
(zk, zk+1), one of the following must hold: either

(a) s(z′) = w(z) and T |= P (x, x)

(b) or T |= ̺(x, y)→ P (x, y) and either s(z′) = w(z)̺ or w(z) = s(z′)̺−.

We give the argument in the case where z ∈ zk
∃

(the argument is entirely similar if z ∈ xk). If (a)
holds, then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) = (b(z)w(z), c(z′)w(z)) ∈ P CT ,A

since T |= P (x, x) and c(z′) = c(z) = b(z). If the first option of (b) holds, then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) = (b(z)w(z), c(z′)w(z)̺) ∈ P CT ,A

24

since T |= ̺(x, y)→ P (x, y) and c(z′) = c(z) = b(z). If the second option of (b) holds, then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) = (b(z)s(z′)̺−, c(z′)s(z′)) ∈ P CT ,A

since T |= ̺(x, y)→ P (x, y).

For the converse direction, (⇐), of the induction step, let w be a type that is locally compatible
with zk, let a ∈ ind(A)|xk|, b ∈ ind(A)|zk

∃|, and let hk : qk → CT ,A be a homomorphism satisfying

hk(x) = a(x), for x ∈ xk, and hk(z) = b(z)w(z), for z ∈ zk
∃
. (10)

We let c for zk+1 be defined by setting c(z) equal to the unique individual c such that h(z) is of
the form cw (for some w ∈WT), and let s be the unique type for zk+1 satisfying h(z) = c(z)s(z)
for every z ∈ zk+1; in other words, we obtain s(z) from h(z) by omitting the initial individual
name c(z). Note that since xk+1 ⊆ xk, we have a(x) = c(x) for every x ∈ xk+1. It follows from
the fact that hk is a homomorphism that s is locally compatible with zk+1 and that, for every role
atom P (z, z′) ∈ qk with z ∈ zk and z′ ∈ zk+1, one of the following holds: (i) w(z) = s(z′) = ε,
(ii) w(z) = s(z′) and T |= P (x, x), (iii) T |= ̺(x, y) → P (x, y) and either s(z′) = w(z)̺ or
w(z) = s(z′)̺−. Thus, the pair of types (w, s) is compatible with (zk, zk+1), and so the following
rule appears in ΠLin

Q :

Gw
k (zk

∃
,xk)← Atw∪s(zk, zk+1) ∧Gs

k+1(zk+1
∃

,xk+1),

where we recall that Atw∪s(zk, zk+1) is the conjunction of the following atoms, for z, z′ ∈ zk∪zk+1:

– A(z), if A(z) ∈ q and (w ∪ s)(z) = ε,

– P (z, z′), if P (z, z′) ∈ q and (w ∪ s)(z) = (w ∪ s)(z′) = ε,

– z = z′, if P (z, z′) ∈ q and either (w ∪ s)(z) 6= ε or (w ∪ s)(z′) 6= ε,

– A̺(z), if (w ∪ s)(z) is of the form ̺w.

It follows from Equation (10) and the fact that hk is a homomorphism that each of the ground
atoms obtained by taking an atom from Atw∪s(zk, zk+1) and substituting a, b, and c for xk, zk

∃

and zk+1, respectively, is present in A. By applying the induction hypothesis to the predicate
Gs
k+1 and the homomorphism hk+1 : qk+1 → CT ,A obtained by restricting hk to var(qk+1), we

obtain that ΠLin
Q ,A |= Gs

k+1(c(zk+1
∃

),a(xk+1)). Since for the considered substitution, all body
atoms are entailed, we can conclude that ΠLin

Q ,A |= Gw
k (b,a). ❑

It follows that answering OMQs Q(x) = (T , q(x)) with T of finite depth d and tree-shaped q

with ℓ leaves over any data instance A can be done in time

poly(|T |dℓ, |q|, |A|ℓ). (5)

Indeed, (ΠLin
Q , G(x)) can be evaluated in time polynomial in |ΠLin

Q | and |A|w(ΠLin
Q ,G), which are

bounded by a polynomial in |T |2dℓ, |q| and |A|2ℓ.

A.5 Tw-rewritings

Lemma 25. For any OMQ Q(x0) = (T , q0(x0)) with a tree-shaped CQ, any complete data in-
stance A, any q(x) ∈ Q and a ∈ ind(A)|x|, we have ΠTw

Q ,A |= Gq(a) iff there exists a homomor-
phism h : q → CT ,A such that h(x) = a.

Proof. An inspection of the definition of the set Q shows that every q(x) ∈ Q is a tree-shaped
query having at least one answer variable, with the possible exception of the original query q0(x0),
which may be Boolean.

25

Just as we did for subtrees in Section 3.2, we associate a binary relation on the queries in Q by
setting q′(x′) ≺ q(x) whenever q′(x′) was introduced when applying one of the two decomposition
conditions on p. 13 to q(x). The proof is by induction on the subqueries in Q, according to ≺.
We will start by establishing the statement for all queries in Q other than q0(x0), and afterwards,
we will complete the proof by giving an argument for q0(x0).

For the basis of induction, take some q(x) ∈ Q that is minimal in the ordering induced by ≺,
which means that var(q) = x. Indeed, if there is an existentially quantified variable, then the first
decomposition rule will give rise to a ‘smaller’ query (in particular, if |var(q)| = 2, then although
the ‘smaller’ query may have the same atoms, the selected existential variable will become an
answer variable). For the first direction, (⇒), suppose that ΠTw

Q ,A |= Gq(a). By definition,
Gq(x)← q(x) is the only clause with head predicate Gq. Thus, all atoms in the ground CQ q(a)
are present in A, and hence the desired homomorphism exists. For the converse direction, (⇐),
suppose there is a homomorphism h : q(x)→ CT ,A such that h(x) = a. It follows that every atom
in the ground CQ q(a) is entailed from T ,A. Completeness of A ensures that all of the ground
atoms in q(a) are present in A, and thus we can apply the clause Gq(x)← q(x) to derive Gq(a).

For the induction step, let q(x) ∈ Q with var(q) 6= x and suppose that the claim holds for all
q′(x′) ∈ Q with q′(x′) ≺ q(x). For the first direction, (⇒), suppose ΠTw

Q ,A |= Gq(a). There are
two cases, depending on which type of clause was used to derive Gq(a).

• Case 1: Gq(a) was derived by an application of the following clause:

Gq(z)←
∧

A(zq)∈q

A(zq) ∧
∧

P (zq,zq)∈q

P (zq, zq) ∧
∧

1≤i≤n

Gqi
(xi),

where q1(x1), . . . , qn(xn) are the subqueries induced by the neighbours of zq in the Gaifman
graph G of q. Then there exists a substitution c for the variables in the body of this rule
that coincides with a on z and is such that the ground atoms obtained by applying c to
the variables in the body are all entailed from ΠTw

Q ,A. In particular, ΠTw
Q ,A |= Gqi

(c(xi))
for every 1 ≤ i ≤ n. We can apply the induction hypothesis to the qi(xi) to obtain
homomorphisms hi : qi → CT ,A such that hi(xi) = c(xi). Let h be the mapping from var(q)
to ∆CT ,A defined by taking h(z) = hi(z), for z ∈ var(qi). Note that h is well-defined since
var(q) =

⋃n
i=1 var(qi), and the qi have no variable in common other than zq, which is sent

to c(zq) by every hi. To see why h is a homomorphism from q to CT ,A, observe that

q =

n
⋃

i=1

qi ∪
{

A(zq) ∈ q
}

∪
{

P (zq, zq) ∈ q
}

.

By the definition of h, all atoms in
⋃n
i=1 qi hold under h. If A(zq) ∈ q, then A(c(zq)) is

entailed from ΠTw
Q ,A, and hence is present in A. Similarly, we can show that for every

P (zq, zq) ∈ q, the ground atom P (c(zq), c(zq)) belongs to A. It follows that all of these
atoms hold in CT ,A under h. Finally, we recall that c coincides with a on x, so we have
h(x) = a, as required.

• Case 2: Gq(a) was derived by an application of the following clause, for a tree witness t for
(T , q(x)) generated by ̺ with tr 6= ∅ and zq ∈ ti:

Gq(x)← A̺(z0) ∧
∧

z∈tr\{z0}

(z = z0) ∧
∧

1≤i≤k

Gqt

i
(xt

i),

where qt

1, . . . , q
t

k are the connected components of q without q
t

and z0 is some variable
in tr. There must exist a substitution c for the variables in the body of this rule that
coincides with a on x and is such that the ground atoms obtained by applying c to the

26

variables in the body are all entailed from ΠTw
Q ,A. In particular, for every 1 ≤ i ≤ k, we

have ΠTw
Q ,A |= Gqt

i
(c(xt

i)). We can apply the induction hypothesis to the qt

i(z
t

i) to find
homomorphisms h1, . . . , hk of qt

1, . . . , q
t

k into CT ,A such that hi(xt

i) = c(xt

i). Since t is a tree
witness for (T , q(x)) generated by ̺, there exists a homomorphism ht of q

t
into CT ,{A̺(a)}

with tr = h−1
t

(a) and such that ht(z) begins by a̺ for every z ∈ ti. Now take z0 ∈ tr such
that A̺(z0) is the atom in the clause body (recall that tr 6= ∅), and so ΠTw

Q ,A |= A̺(c(z0)),
which means that A̺(c(z0)) must appear in A. It follows that for every element in CT ,{A̺(a)}

of the form a̺w, there exists a corresponding element c(z0)̺w in ∆CT ,A . We now define a
mapping h from var(q) to ∆CT ,A as follows:

h(z) =

hi(z), for every z ∈ var(qt

i),

c(z0)̺w, if z ∈ ti and ht(z) = a̺w,

c(z0) if z ∈ tr.

Every variable in var(q) occurs in tr ∪ ti or in exactly one of the qt

i, and so is assigned a
unique value by h. Note that although tr ∩ var(qt

i) is not necessarily empty, due to the
equality atoms, we have h(z) = h(z′), for all z, z′ ∈ tr, and so the function is well-defined.
We claim that h is a homomorphism from q into CT ,A. Clearly, the atoms occurring in
some qt

i are preserved under h. Now consider some unary atom A(z) with z ∈ ti. Then
h(z) = c(z0)̺w, where ht(z) = a̺w. Since ht is a homomorphism, we know that w ends
with a role σ such that T |= ∃y σ(y, x) → A(x). It follows that h(z) also ends with σ, and
thus h(z) ∈ ACT ,A . Next, consider a binary atom P (z, z′), where at least one of z and z′

belongs to ti. As ht is a homomorphism, either

– T |= σ(x, y)→ P (x, y), for some σ, such that ht(z′) = ht(z)σ or ht(z) = ht(z
′)σ−,

– or T |= P (x, x) and ht(z′) = ht(z).

We also know that c(z) = c(z0) for all z ∈ tr, hence h(z) = h(z0) for all z ∈ tr. It follows that
in the former case we have h(z′) = h(z)σ or h(z) = h(z′)σ− with T |= σ(x, y)→ P (x, y). In
the latter case, we have h(z′) = h(z) with T |= P (x, x). Thus, P (z, z′) is preserved under h.
Finally, since c coincides with a on x, we have h(x) = a.

For the converse direction, (⇐), of the induction step, suppose that h is a homomorphism of
q into CT ,A such that h(x) = a. There are two cases to consider, depending on where h maps the
‘splitting’ variable zq.

• Case 1: h(zq) ∈ ind(A). Let q1(x1), . . . , qn(xn) be the subqueries of q(x) induced by the
neighbours of zq in G. Recall that xi consists of zq and the variables in var(qi) ∩ x. By
restricting h to var(qi), we obtain, for each 1 ≤ i ≤ n, a homomorphism of qi(xi) into CT ,A

that maps zq to h(zq) and var(qi) ∩ x to a(var(qi) ∩ x). Consider a∗ defined by taking
a∗(x) = a(x) for every x ∈ var(qi)∩x and a∗(zq) = h(zq). By the induction hypothesis, for
every 1 ≤ i ≤ n, we have ΠTw

Q ,A |= Gqi
(a∗(xi)). Next, since h is a homomorphism, we must

have h(zq) ∈ ACT ,A whenever A(zq) ∈ q and (h(zq), h(zq)) ∈ P CT ,A whenever P (zq, zq) ∈ q.
Since A is a complete data instance, A(h(zq)) ∈ A for every A(zq) ∈ q and P (h(zq), h(zq))
for every P (zq, zq) ∈ q. We have thus shown that, under the substitution a∗, every atom in
the body of the clause

Gq(z)←
∧

A(zq)∈q

A(zq) ∧
∧

P (zq,zq)∈q

P (zq, zq) ∧
∧

1≤i≤n

Gqi
(xi),

is entailed from ΠTw
Q ,A. It follows that we must also have ΠTw

Q ,A |= Gq(a).

• Case 2: h(zq) /∈ ind(A). Then h(zq) is of the form b̺w, for some ̺. Let V be the smallest
subset of var(q) that contains zq and satisfies the following closure property:

27

– if z ∈ V , h(z) /∈ ind(A) and q contains an atom with z and z′, then z′ ∈ V .

Let V ′ consist of all variables z in V such that h(z) /∈ ind(A). We observe that h(z) begins
by b̺ for every z ∈ V ′ and h(z) = b for every z ∈ V \ V ′. Define qV as the CQ comprising
all atoms in q whose variables are in V and which contain at least one variable from V ′;
the answer variables of qV are V \ V ′. By replacing the initial b by a in the mapping h,
we obtain a homomorphism hV of qV into CT ,{A̺(a)} with V \ V ′ = h−1

V (a). It follows that
t = (tr, ti) with tr = V \ V ′ and ti = V ′ is a tree witness for (T , q(x)) generated by ̺ (and
q
t

= qV). Moreover, tr 6= ∅ because q has at least one answer variable. This means that the
program ΠTw

Q contains the following clause

Gq(x)← A̺(z0) ∧
∧

z∈tr\{z0}

(z = z0) ∧
∧

1≤i≤k

Gqt

i
(xt

i),

where qt

1, . . . , q
t

k are the connected components of q without q
t

and z0 ∈ tr. Recall that the
query qt

i has answer variables xt

i = var(qt

i) ∩ (x ∪ tr). Let a∗ be the substitution for x ∪ tr

such that a∗(x) = a(x) for x ∈ x and a∗(z) = h(z) for z ∈ tr. Then, for every 1 ≤ i ≤ k,
there exists a homomorphism hi from qt

i to CT ,A such that hi(x) = a∗(x) for every x ∈ xt

i.
By the induction hypothesis, we obtain ΠTw

Q ,A |= Gqt

i
(a∗(xt

i)). Next, since h(z) = b for
every z ∈ tr, we have a∗(z) = a∗(z′) for every z, z′ ∈ tr. Moreover, the presence of the
element b̺ in CT ,A means that T ,A |= A̺(b). Since A is a complete data instance, we have
A̺(b) ∈ A. It follows that under the substitution a∗, all atoms in the body of the clause
under consideration are entailed by ΠTw

Q ,A. Therefore, we must also have ΠTw
Q ,A |= Gq(a).

We have thus shown the lemma for all queries Q other than q0(x0). Let us now turn to q0(x0).

For the first direction, (⇒), suppose ΠTw
Q ,A |= Gq0

(a). There are four cases, depending on
which type of clause was used to derive Gq0

(a). We skip the first three cases, which are identical
to those considered in the base case and induction step, and focus instead on the case in which
Gq0

(a) was derived using a clause of the form Gq0
← A(x) with A a unary predicate such that

T , {A(a)} |= q0. In this case, there must exist some b ∈ ind(A) such that T ,A |= A(b). By
completeness of A, we obtain A(b) ∈ A. Since T , {A(a)} |= q0, we get T ,A |= q0, which implies
the existence of a homomorphism from q0 into CT ,A.

For the converse direction, (⇐), suppose that there is a homomorphism h : q0 → CT ,A such
that h(x0) = a. We focus on the case in which q0 is Boolean (x0 = ∅) and none of the variables in
q0 is mapped to an individual constant (the other cases can be handled exactly as in the induction
basis and induction step). In this case, there must exist an individual constant b and some ̺
such that h(z) begins by b̺ for every z ∈ var(q0). It follows that T , {A̺(a)} |= q0, since the
mapping h′ defined by setting h′(z) = a̺w whenever h(z) = b̺w is a homomorphism from q0 to
CT ,{A̺(a)}. It follows that ΠTw

Q contains the clause Gq0
← A̺(x). Since b̺ occurs in ∆CT ,A , we

have T ,A |= A̺(b). By completeness ofA, A̺(b) ∈ A, and so by applying the clauseGq0
← A̺(x),

we obtain ΠTw
Q ,A |= Gq0

. ❑

A.6 Rewritings Zoo

In this section, we put together the rewritings from Sections 3.2–3.4 for the OMQ given in Exam-
ples 8 and 11.

Consider the CQ q(x0, x7) depicted below (black nodes represent answer variables)

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

28

and the following ontology T in normal form:

P (x, y)→ S(x, y), P (x, y)→ R(y, x),

AP (x)↔ ∃y P (x, y), AP−(x)↔ ∃y P (y, x),

AR(x)↔ ∃y R(x, y), AR− (x)↔ ∃y R(y, x),

AS(x)↔ ∃y S(x, y) AS−(x)↔ ∃y S(y, x).

A.6.1 UCQ rewriting

The 9 CQs below form a UCQ rewriting of the OMQ Q(x0, x7) = (T , q(x0, x7)) over complete
data instances given as an NDL program with goal predicate G:

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧

[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[AP− (x0) ∧R(x0, x3)] ∧

[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧

[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧

[AP− (x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧

[R(x3, x6) ∧AP (x6)] ∧R(x6, x7),

G(x0, x7)←[AP− (x0) ∧R(x0, x3)] ∧

[AP− (x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[AP− (x0) ∧R(x0, x3)] ∧

[R(x3, x6) ∧AP (x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧

[AP− (x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧

[R(x3, x6) ∧AP (x6)] ∧R(x6, x7).

We note that a UCQ rewriting over all data instances would in addition contain variants of the CQs
above with each of the predicates R and S replaced by P (with arguments swapped appropriately).

The UCQ rewriting above can be obtained by transforming the following PE-formula into UCQ
form:

[(

R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)
)

∨
(

AP−(x0) ∧R(x0, x3)
)

∨
(

R(x0, x3) ∧AP (x3)
)]

∧
[(

R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)
)

∨
(

AP−(x3) ∧R(x5, x6)
)

∨
(

R(x3, x6) ∧AP (x6)
)]

∧ R(x6, x7).

(Intuitively, each of the two sequences RSR in the query can be derived in three possible ways:
from RSR, from AP−R and from RAP).

29

A.6.2 Log-rewriting

As explained in Example 11, we split T into D1 and D2 and obtain two rules:

Gε
T (x0, x7)← Gx3 7→ε

D1
(x3, x0) ∧R(x3, x4) ∧Gx4 7→ε

D2
(x4, x7),

Gε
T (x0, x7)← Gx3 7→ε

D1
(x3, x0) ∧AP−(x4) ∧ (x3 = x4) ∧Gx4 7→P−

D2
(x4, x7).

Next, we split each of D1 and D2 into single-atom subqueries, which yields the following rules:

Gx3 7→ε
D1

(x3, x0)← (x0 = x1) ∧AP−(x1) ∧ (x1 = x2) ∧R(x2, x3),

Gx3 7→ε
D1

(x3, x0)← R(x0, x1) ∧ (x1 = x2) ∧AP (x2) ∧ (x2 = x3),

Gx3 7→ε
D1

(x3, x0)← R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3),

Gx4 7→ε
D2

(x4, x7)← (x4 = x5) ∧AP (x5) ∧ (x5 = x6) ∧R(x6, x7),

Gx4 7→ε
D2

(x4, x7)← S(x4, x5) ∧R(x5, x6) ∧R(x6, x7),

Gx4 7→P−

D2
(x4, x7)← AP−(x4) ∧ (x4 = x5) ∧R(x5, x6) ∧R(x6, x7).

Note that in each case we consider only those types that give rise to predicates that have definitions
in the rewriting. The resulting NDL rewriting with goal Gε

T consists of 8 rules. Note, however,
that the rewriting illustrated above is a slight simplification of the definition given in Section 3.2:
here, for the leaves of the tree decomposition, we directly use the atoms Ats instead of including
a rule Gw

D(∂D,xD) ← Ats in the rewriting. This simplification clearly does not affect the width
of the NDL query or the choice of weight function.

A.6.3 Lin-rewriting

We assume that x0 is the root, which makes x7 the only leaf of the query. (Note that we could
have chosen another variable, say x3, as the root, with x0 and x7 the two leaves.) So, the top-level
rule is

G(x0, x7)← Gx0 7→ε
0 (x0, x7).

We then move along the query and consider the variables x1, x2 and x3. The possible ways of
mapping these variables to the canonical model give rise to the following 7 rules:

Gx0 7→ε
0 (x0, x7)← R(x0, x1) ∧ P x1 7→ε

1 (x1, x7),

Gx0 7→ε
0 (x0, x7)← (x0 = x1) ∧AP−(x1) ∧Gx1 7→P−

1 (x1, x7),

Gx1 7→ε
1 (x1, x7)← S(x1, x2) ∧Gx2 7→ε

2 (x2, x7),

Gx1 7→ε
1 (x1, x7)← (x1 = x2) ∧AP (x2) ∧Gx2 7→P

2 (x2, x7),

Gx1 7→P−

1 (x1, x7)← AP− (x1) ∧ (x1 = x2) ∧Gx2 7→ε
2 (x2, x7),

Gx2 7→ε
2 (x2, x7)← R(x2, x3) ∧Gx3 7→ε

3 (x3, x7),

Gx2 7→P
2 (x2, x7)← AP (x2) ∧ (x2 = x3) ∧Gx3 7→ε

3 (x3, x7).

30

Next, we move to the variables x4, x5 and x6, which give similar 7 rules:

Gx3 7→ε
3 (x3, x7)← R(x3, x4) ∧ P x4 7→ε

4 (x4, x7),

Gx3 7→ε
3 (x3, x7)← (x3 = x4) ∧AP−(x4) ∧Gx4 7→P−

4 (x4, x7),

Gx4 7→ε
4 (x4, x7)← S(x4, x5) ∧Gx5 7→ε

5 (x5, x7),

Gx4 7→ε
4 (x4, x7)← (x4 = x5) ∧AP (x5) ∧Gx5 7→P

5 (x5, x7),

Gx4 7→P−

4 (x4, x7)← AP− (x4) ∧ (x4 = x5) ∧Gx5 7→ε
5 (x5, x7),

Gx5 7→ε
5 (x5, x7)← R(x5, x6) ∧Gx6 7→ε

6 (x6, x7),

Gx5 7→P
5 (x5, x7)← AP (x2) ∧ (x5 = x6) ∧Gx6 7→ε

6 (x6, x7).

Finally, the last variable can only be mapped to a constant in the data instance, which yields a
single rule:

Gx6 7→ε
6 (x6, x7)← R(x6, x7).

Note that, like in the previous case, we consider only those types that give rise to predicates with
definitions (and ignore the dead-ends in the construction).

A.6.4 Tw-rewriting

We begin by splitting the query roughly in the middle, that is, we choose x3 and consider two
subqueries:

q03(x0, x3) = ∃x1x2

(

R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)
)

and

q37(x3, x7) = ∃x4x5x6

(

R(x3, x4) ∧ S(x4, x5) ∧

R(x5, x6) ∧R(x6, x7)
)

.

Since there is no tree witness t for (T , q(x0, x7)) that contains x3 in ti, we have only one top-level
rule:

G07(x, y)← G03(x0, x3) ∧G37(x3, x7).

Next, we focus on q03 and choose x1 as the splitting variable. In this case, there is a tree witness
t1 with t1i = {x1} and t1r = {x0, x2}, and so we obtain two rules for G03:

G03(x0, x3)← R(x0, x1) ∧G13(x1, x3),

G03(x0, x3)← AP− (x0) ∧ (x0 = x2) ∧R(x2, x3).

The subquery q13(x1, x3) = ∃x2

(

S(x1, x2)∧R(x2, x3)
)

contains two atoms and is split at x2. Since
there is a tree witness t2 for (T , q13(x1, x3)) with t2i = {x2} and t2r = {x1, x3}, we obtain two rules:

G13(x1, x3)← S(x1, x2) ∧R(x2, x3),

G13(x1, x3)← AP (x1) ∧ (x1 = x3).

By applying the same procedure to q37(x3, x7), we get the following five rules:

G37(x3, x7)← G35(x3, x5) ∧G57(x5, x7),

G37(x5, x7)← R(x3, x4) ∧AP (x4) ∧ (x4 = x6) ∧R(x6, x7),

G35(x3, x5)← R(x3, x5) ∧ S(x5, x7),

G35(x3, x5)← AP− (x3) ∧ (x3 = x5),

G57(x3, x5)← R(x3, x4) ∧R(x4, x7).

31

Note that the rewriting illustrated above is slightly simpler than the definition in Section 3.4:
here, we directly use the atoms of q(x) instead of including a rule Gq(x) ← q(x), for each q(x)
without existentially quantified variables. This simplification clearly does not affect the width of
the NDL query and the choice of weight function.

B Proofs for Section 4

B.1 Theorem 15

Theorem 15. pDepth-TreeOMQ is W [2]-hard.

Proof. We show that T kH , {V
0

0 (a)} |= qkH iff H has a hitting set of size k. Denote by C the
canonical model of (T kH , {V

0
0 (a)}). For convenience of reference to the points of the canonical

model we assume that T kH contains the following axioms:

V l−1
i (x)→ ∃z υli′(x, z) and

υli′(x, z)→ P (z, x) ∧ V li′ (z), for 0 ≤ i < i′ ≤ n,

V li (x)→ Elj(z), for vi ∈ ej , ej ∈ E,

Elj(x)→ ∃z ηlj(x, z) and

ηlj(x, z)→ P (x, z) ∧ El−1
j (z), for 1 ≤ j ≤ m.

We show that C |= qkH iff H has a hitting set of size k.

(⇒) Suppose h : qkH → C is a homomorphism. Note that C satisfies the following properties:
(i) w ∈ E0

j iff w = aυ1
i1
υ2
i2
. . . υsisη

s
jη
s−1
j . . . η1

j where vjs
∈ ej and (ii) all points in ∆C have at

most one P -predecessor. By starting with some E0
j atom and applying first (i) and then iterating

(ii), we conclude that h(y) = aυ1
i1
. . . υkik for some 1 ≤ i1 < i2 < . . . ik ≤ n. We claim that

{vi1 , vi2 , . . . , vik} is a hitting set in H . Indeed, for every branch j of qkH , there is 1 ≤ s ≤ k such
that this branch is mapped on C in the following way:

h(zlj) = aυ1
i1
υ2
i2
. . . υlil , s ≤ l ≤ k − 1,

h(zlj) = aυ1
i1
υ2
i2
. . . υsisη

s
jη
s−1
j . . . ηl+1

j , 0 ≤ l < s,

with vis ∈ ej . This can be shown by induction on l from 0 to k − 1 using (i) to prove the base
of induction and (ii) to prove the induction step. Therefore, for every j, there exists s such that
vis ∈ ej .

(⇐) Suppose {vi1 , vi2 , . . . , vik} is a hitting set in H . We construct a homomorphism h from
qkH to C. First, we set h(y) = aυ1

i1
. . . υkik . Then, for each 1 ≤ j ≤ m, we find s such vis ∈ ej and

define h as follows:

h(zlj) = aυ1
i1
υ2
i2
. . . υlil , s ≤ l ≤ k − 1,

h(zlj) = aυ1
i1
υ2
i2
. . . υsisη

s
jη
s−1
j . . . ηl+1

j , 0 ≤ l < s.

It should be clear that h is indeed a homomorphism. ❑

B.2 Theorem 16

Theorem 16. pLeaves-TreeOMQ is W [1]-hard.

Proof. We prove that TG, {A(a)} |= qG iff G has a clique containing one vertex from each set Vi.

32

We start with some preliminaries. First note we assume that the final axiom in TG (which uses
the syntactic sugar ∧) is actually given by the following three axioms (where P is a fresh binary
predicate):

B(x)→ ∃y P (x, y),

P (x, y)→ U(x, y),

P (x, y)→ U(y, x).

To simplify notation, we will abbreviate CTG,{A(a)} by C, and for every 1 ≤ j ≤ M , we let
w(vj) = L1

jL
2
j . . . L

2M
j . Observe that for every vj1 ∈ V1, vj2 ∈ V2, . . . , vjp

∈ Vp, the element
aw(vj1)w(vj2) . . .w(vjp

) belongs to ∆C . Further, observe that if aw ∈ ∆C with |w| = 2M · p, then
there exist vj1 ∈ V1, vj2 ∈ V2, . . . , vjp

∈ Vp such that w = w(vj1)w(vj2) . . .w(vjp
).

(⇒) Suppose that TG, {A(a)} |= qG, and let h be a homomorphism of qG into C. Note that
because of the atom B(y), the variable y must be sent by h to an element occurring at the end of
the pth block. As noted above, every such element takes the form

aw(vj1)w(vj2) . . .w(vjp
)

where vj1 ∈ V1, vj2 ∈ V2, . . . , vjp
∈ Vp. We claim that {vj1 , . . . , vjp

} is a clique in G. To see why,
consider the ith branch of qG, compactly represented as follows:

(

U2M−2 · (Y Y · U2M−2)i · SS
)

(y, zi)

By examining the axioms, we see that starting from the first occurrence of Y Y , every U and
Y atom takes us one step closer to a (prior to the first Y Y , we may go back and forth on the
extra P -edge leaving from h(y)). It follows that SS must be mapped within the p-ith block of
the selected branch, and since S is present only at positions 2jp−i and 2jp−i + 1 of the block, we
must have h(zi) = aw(vj1) . . .w(vjp−i−1)L1

jp−i
. . . L

2jp−i−1
jp−i

. As the distance between consecutive
occurrences of Y Y (and between the final Y Y and the SS) is 2M−2, it follows that all Y Y blocks
occur at positions 2jp−i and 2jp−i + 1 of blocks p− i+ 1, . . . , p, which implies that vjp−i+1 , . . . , vjp

are neighbours of vji
in G. Since qG contains branches for every 1 ≤ i < p, the selected vertices

vj1 , . . . , vjp
are all neighbours in G, and G contains a clique with the required properties.

(⇐) Suppose that vj1 ∈ V1, . . . , vjp
∈ Vp form a clique. We construct a homomorphism h of qG

into C. First, set h(y) = aw where w = w(vj1)w(vj2) . . .w(vjp
) and observe that the atom B(y) is

satisfied by this assignment. We will use w[ℓ, ℓ′] to denote the subword of w beginning with the
ℓth symbol of w and ending with the ℓ′th symbol (note that w = |2M · p|, so w = w[1, 2M · p]).
Next, consider the ith branch of the query, which connects y to zi, and let y0, y1, . . . y2M(i+1)

be the variables lying between y and zi with y0 = y and zi = y2M(i+1). For 0 ≤ k ≤ 2jp−i,
we set h(yk) = h(y) if k is even, and set h(yk) = h(y)P otherwise. Observe that because P is
included in both U and U−, we satisfy all binary atoms between variables from {y0, . . . , y2jp−i

}.
For 2jp−i < k ≤ 2M(i+ 1), we set

h(yk) = aw[1, 2M · p− (k − 2jp−i)].

Note that, in particular, this yields

h(y2M(i+1)−2) = aw[1, 2M(p− i− 1) + 2jp−i + 2],

h(y2M(i+1)−1) = aw[1, 2M(p− i− 1) + 2jp−i + 1],

h(y2M(i+1)) = aw[1, 2M(p− i− 1) + 2jp−i],

so the final two S-atoms in the branch are satisfied by h. It is easy to see that all U -atoms
between variables from y2jp−i

, . . . , y2M(i+1) are also satisfied. Finally, using the fact that vertices
vjp−i+1 , . . . , vjp

are neighbours of vjp−i
, we can show that all of the Y -atoms in the ith branch

are satisfied by h. As we have constructed a homomorphism from qG into C, we can conclude
TG, {A(a)} |= qG. ❑

33

p4

p3

p2

p1

y

z3
1 z3

2

z2
1 z2

2

z3
3 z3

4

z2
3 z2

4

z1
1 z1

2

z0
1 z0

2

z1
3 z1

4

z0
3 z0

4

z−1
1 z−1

2 z−1
3 z−1

4

z−2
1 z−2

2 z−2
3 z−2

4

y3

y2

y1

x

+ + 0 −

− − 0 −

0 0 0 0

+ 0 + 0

0

0

0

0

−

−

−

+

+

−

+

+

χ1 χ2 χ3 χ4

a

+
0

−

0

+
0

−

0
+
0

−

0

−

− + −

+

+

CT†,Aα
m

−

− +

+

− +

Aα
m

q̄ϕ(x)

Figure 3: Example of q̄ϕ(x) and CT†,Aα
m

for ϕ = χ1 ∧ · · · ∧ χ4 with χ1 = (p1 ∨ ¬p3 ∨ p4),
χ2 = (¬p3 ∧ p4), χ3 = p1, χ4 = (¬p3 ∨ ¬p4) and α = (0, 1, 1, 0)

C Proofs for Section 5

C.1 Theorem 17

Theorem 17. There is an ontology T† such that answering OMQs of the form (T†, q) with Boolean
tree-shaped CQs q is NP-hard for query complexity.

Proof. We assume that T† consists of the following axioms:

A(x)→ ∃y υ+(x, y)

υ+(x, y)→ P+(y, x) ∧ P0(y, x) ∧B−(y) ∧A(y),

B−(x)→ ∃y η−(x, y)

η−(x, y)→ P−(x, y) ∧B0(y),

A(x)→ ∃y υ−(x, y)

υ−(x, y)→ P−(y, x) ∧ P0(y, x) ∧B+(y) ∧A(y),

B+(x)→ ∃y η+(x, y)

η+(x, y)→ P+(x, y) ∧B0(y),

B0(x)→ ∃y η0(x, y)

η0(x, y)→ P+(x, y) ∧ P−(x, y) ∧ P0(x, y) ∧B0(y).

Let C be the canonical model of (T†, {A(a)}). We prove that C |= qϕ iff ϕ is satisfiable.

(⇒) Suppose h is a homomorphism from qϕ to C and h(zkj) = h(y) = a̺1 . . . ̺n, for some roles
̺l. Since A(y) ∈ qϕ, it follows that ̺l ∈ {υ+, υ−}. Moreover, because of the structure of C, without
any loss of generality we may assume that n = k. Define a valuation ν : {p1, . . . , pk} → {t, f} by
taking ν(pl) = t if ̺l = υ−, ν(pl) = f, if ̺l = υ+. We claim that ν makes ϕ true. To verify that
the clause χj is satisfied, consider a number 1 ≤ s ≤ k, such that the jth branch of the query is
mapped on C in the following way:

h(zlj) = a̺1 . . . ̺l, s ≤ l ≤ k,

h(zlj) = a̺1 . . . ̺sγ1 . . . γs−l, 0 ≤ l < s,

34

for some roles γ1 . . . γs−l with γ1 ∈ {η−, η+} and γi = η0 for 2 ≤ i ≤ s − l. Such s and the roles
γi exist, because the P -atoms in C are directed towards the root if they cover υ-atoms, and away
from the root if they cover η-atoms (s ≥ 1 since B0(z0

j) ∈ qϕ). Clearly, T† |= γ1(x, y)→ P+(x, y)
iff ρs = υ− iff ν(ps) = t and T† |= γ1(x, y) → P−(x, y) iff ρs = υ+ iff ν(ps) = f. It follows that
either P+(zsj , z

s−1
j) ∈ qϕ and ν(ps) = t, or P−(zsj , z

s−1
j) ∈ qϕ and ν(ps) = f. In either case, χj

contains a literal with ps satisfied by ν.

(⇐) Suppose a valuation ν : {p1, . . . , pk} → {t, f} satisfies ϕ. Consider the sequence of roles
̺1 . . . ̺k, such that for 1 ≤ l ≤ k we have ̺l = υ+, if ν(pl) = f, and ̺l = υ−, if ν(pl) = t. We claim
that there exists a homomorphism h from qϕ to C. First, let h(y) = a̺1 . . . ̺k. To map the jth
branch of the query, consider the maximal 1 ≤ s ≤ k, such that a ps-literal (positive or negative)
makes χj true. Set

h(zlj) = a̺1 . . . ̺l, s ≤ l ≤ k − 1,

h(zlj) = a̺1 . . . ̺sγ1 . . . γs−l, 0 ≤ l < s,

where γ1 = η+ if ps occurs positively, γ1 = η− if ps occurs negatively and γi = η0 for i ≥ 2. That
zlj , for s ≤ l ≤ k − 1, are mapped correctly follows from the maximality of s. That zlj is mapped
correctly for l = s − 1 follows from the fact that ps occurs in χj positively iff P+(zsj , z

s−1
j) ∈ qϕ

iff ν(ps) = t iff ̺s = υ− iff γ1 = η+ (similarly for negative ps). Finally, zlj is mapped correctly for
0 ≤ l < s − 1 since the sequence of roles γ2 . . . γs−l can embed any P+, P−, or P0 roles, and B0

concept. Thus, h is a homomorphism from qϕ to C. ❑

C.2 Theorem 20

We need several intermediate results and definitions before we present the proof in the end of the
section. Suppose ϕ is a propositional formula in CNF having k variables p1, . . . , pk and m clauses
χ1, . . . , χm. We assume that m = 2ℓ. We associate with every such ϕ a CQ q̄ϕ(x) with one answer
variable x and the following atoms, where 1 ≤ j ≤ m, 1 ≤ l ≤ k, and zkj = yk:

P0(y1, x), . . . , P0(yk, yk−1),

P+(zlj , z
l−1
j) if χj contains pl,

P−(zlj , z
l−1
j), if χj contains ¬pl,

P0(zlj , z
l−1
j), if χj contains no occurrence of pl.

Then, for 0 ≤ l ≤ ℓ− 1,

P−(z−l
j , z−l−1

j), if the lth bit of (j − 1)2 is 0,

P+(z−l
j , z−l−1

j), if the lth bit of (j − 1)2 is 1,

B0(z−ℓ
j).

See an example in Fig. 3. For any α ∈ {0, 1}m, define a data instance Aα
m as the full binary tree

of depth ℓ (and so m = 2ℓ leaves) on the binary predicates P− (for the left child) and P+ (for
the right child); Aα

m contains A(a) for the root a of the tree and, for every ith leaf bi of the tree,
B0(bi) ∈ A

α
m iff αi = 1.

Denote by fϕ : {0, 1}m → {0, 1} the monotone function such that fϕ(α) = 1 iff the CNF ϕ−α,
which is obtained from ϕ by removing all conjuncts χi with αi = 1, is satisfiable. It is readily
checked that we have

Lemma 26. For any α ∈ {0, 1}m,

T†,A
α
m |= q̄ϕ(a) iff fϕ(α) = 1.

35

Let QL be any query language such that, for any QL-query Φ(x) and any Aα
m, the answer to

Φ(a) over Aα
m can be computed in time poly(|Φ|,m).

Theorem 27. The OMQ (T†, q̄ϕ(x)) does not have a polynomial-size rewriting in QL unless
NP ⊆ P/poly.

Proof. Take any sequence of CNFs ϕn of polynomial size in n such that fϕn
is NP-hard [25, Sec. 3].

Suppose there is a QL-rewriting Φn of (T†, q̄ϕ(x)) of polynomial size. By adapting the proof of
P ⊆ P/poly [3, Theorem 6.6] to the algorithm that checks Aα

m |= Φn(a), we obtain a sequence of
polynomial-size circuits computing fϕn

, from which NP ⊆ P/poly. ❑

C.3 Theorem 21

Theorem 21. Evaluating PE-queries over trees in T is NP-hard.

More precisely, we are going to prove:

Theorem 28. The evaluation problem for PE-queries over data instances of the form Aα
m is

NP-hard.

Proof. Let ϕk, k ≥ 1, be the 3-CNF with all possible m = O(k3) clauses of k variables. Without
loss of generality, we will assume that the number of clauses in ϕk is actually m = 2ℓ, for some
ℓ. We construct a PE-query qm(x) such that, for any α ∈ {0, 1}m, we have Aα

m |= qm(a) iff the
CNF ϕ−α

k is satisfiable, and the size of qm is polynomial in m (and k).
The query qm(x) takes the form

qm(x) = ∃z
(

r(x, z) ∧ s(x, z) ∧ t(x, z)
)

,

where the subqueries (without quantified variables) r, s and t and the variables z are defined as
follows. Among the variables z, there are variables z1, . . . , zm corresponding to the leaves of Aα

m,
variables x1, . . . , xk corresponding to the propositional variables of ϕk, and variables x′

1, . . . , x
′
k

corresponding to their negations (there are other auxiliary variables which will be introduced later
on).

Now we will describe the subqueries r, s, t of qm. The subquery r expresses that the variables
z1, . . . , zm indeed correspond to the clauses of ϕk; it takes the form r =

∧m
i=1 ri. Each ri corre-

sponds to a leaf of Aα
m. Consider a path from the root a to this ith leaf. Let P1, . . . , Pℓ be the

sequence of labels on the edges of this path, that is, each Pi is either P− or P+. Then

ri = P1(x, y1
i) ∧ P2(y1

i , y
2
i) ∧ . . . ∧ Pℓ(y

ℓ−1
i , zi),

where y1
i , . . . , y

ℓ−1
i are variables among z.

The subquery s encodes that the variables x1 . . . , xk and x′
1, . . . , x

′
k correspond to an arbitrary

Boolean assignment. It is of the form s =
∧k
i=1 si, and each si is the following:

P±(x, u1
i) ∧ P±(u1

i , u
2
i) ∧ · · · ∧ P±(uℓ−2

i , uℓ−1
i) ∧

[(

P±(uℓ−1
i , xi) ∧ P±(x′

i, u
ℓ−1
i) ∧B0(xi)

)

∨
(

P±(uℓ−1
i , x′

i) ∧ P±(xi, u
ℓ−1
i) ∧B0(x′

i)
)]

,

where u1
i , . . . , u

ℓ−1
i are variables among z and P±(x, y) = P−(x, y) ∨ P+(x, y).

The last subquery t encodes that the assignment given by x1, . . . , xk and x′
1, . . . , x

′
k satisfies the

CNF given by z1, . . . , zm. The formula t has the following form: t =
∧m
i=1 ti. Suppose the clause

zi is a disjunction of literals li,1, li,2 and li,3, where each li,n is among x1, . . . , xk and x′
1, . . . , x

′
k.

Then
ti = B0(zi) ∨B0(li,1) ∨B0(li,2) ∨B0(li,3).

It is easy to see that qm is satisfiable over a given Aα
m iff Aα

m corresponds to a satisfiable 3-CNF
ϕ−α
k . Thus we have reduced the 3-SAT problem to the problem of evaluating qm over Aα

m. Since
3-SAT is NP-complete, we thus have shown NP-hardness of our query evaluation problem. ❑

36

C.4 Theorem 22

Theorem 22. There is an ontology T‡ such that answering OMQs of the form (T‡, q) with Boolean
linear CQs q is LOGCFL-hard for query complexity.

Proof. Our proof encodes the hardest LOGCFL language L [29] as formulated in [56]. The language
L enjoys the following property: for every language L′ over the alphabet Σ′ in LOGCFL, there
exists a logspace transducer τ converting words over Σ′ to the words over the alphabet Σ of L in
the sense that w ∈ L′ iff τ(w) ∈ L. We construct an ontology T‡ and a logspace transducer that
converts the words w ∈ Σ∗ to linear Boolean CQs qw such that

w ∈ L iff T‡, {A(a)} |= qw.

To explain the construction, we begin with a simpler context-free language. Let Σ0 = {a1, b1, a2, b2}
be an alphabet and B0 be the context-free language generated by the following grammar:

S → SS, S → ǫ, S → a1Sb1, S → a2Sb2.

With each word w = c0 . . . cn over Σ0 we associate conjunction γw(u0, v0, . . . , un, vn, un+1) of the
following atoms:

Rc0(u0, v0), Sc0(v0, u1), Rc1 (u1, v1), Sc1 (v1, u2), . . . , Rcn
(un, vn), Scn

(vn, un+1),

where Rc and Sc are binary predicates, for c ∈ Σ0. Let T0 contain the following axioms, for
i = 1, 2:

D(x)→ ∃y
(

Rai
(x, y) ∧ Sbi

(y, x) ∧ ∃z
(

Sai
(y, z) ∧Rbi

(z, y) ∧D(z)
))

. (11)

An initial part of the canonical model of (T0, {A(a), D(a)}) encoded by these axioms is shown
below:

a : A

a1

a1

b1

b1

a
2

a
2

b
2

b
2

a 1

a 1

b 1

b 1

a
2

a
2

b
2

b
2

a 1

a 1

b 1

b 1

a
2

a
2

b
2

b
2

(each large gray node belongs to D, each solid arrow with label c belongs to Rc and each dashed
arrow with label c to Sc, for c ∈ Σ0). Let qAw be the following linear Boolean CQ:

A(u0) ∧ γw(u0, v0, . . . , un, vn, un+1) ∧A(un+1).

The following claim can readily be verified:

Proposition 29. For every w ∈ Σ∗
0, we have w ∈ B0 iff T0, {A(a), D(a)} |= qAw.

The language B0 is, however, not LOGCFL-hard. We now reproduce the definition of the
hardest LOGCFL language L from [56], which uses B0 as a basis of the construction. Let Σ =
Σ0 ∪ {[,],#}, for distinct symbols [,], and # not in Σ0. Then set

L =
{

[x1y1z1][x2y2z2] . . . [xkykzk] | k ≥ 1,

xi ∈ (Σ0 ∪ {#})
∗{#} ∪ {ǫ} and

zi ∈ {ǫ} ∪ {#}(Σ0 ∪ {#})
∗, for all i ≤ k, and y1y2 . . . yk ∈ B0

}

.

37

To explain the intuition, following [56], let a string of symbols of the form [w1#w2# . . .#wn],
where wi ∈ Σ∗ for all i, be called a block and let each of the substrings wi be called a choice.
Then, L is the set of all strings of blocks such that there exists a sequence of choices, one from
each block, which is in the base language B0. The reader should notice that a choice (possibly of
the empty string) must be made from each block. For example,

[a1a2#b2b1] /∈ L, (12)

[a1a2#b2b1][b2b1] ∈ L, (13)

[a1a2#b2b1][a1b1] /∈ L, (14)

[#a1a2#b2b1][a1b1] ∈ L. (15)

We say that a word w over Σ is block-formed if the following conditions are satisfied:

– the word begins with [and ends with],

– after each [there is no [before];

– each non-final] is followed immediately by [;

– between each pair of matching [and] there is at least one symbol.

With these definitions at hand, we first describe a logspace transducer that, given a word w
over Σ, returns a linear Boolean CQ qw with binary predicates Rc and Sc, for c ∈ Σ, and unary
predicates A and E. If the word w = c0 . . . cn is block-formed, then qw consists of the following
atoms:

A(u0) ∧ γw(u0, v0, . . . , un, vn, un+1) ∧A(un+1).

Otherwise, the transducer returns a query that consists of a prefix ofA(u0)∧γw(u0, v0, . . . , un, vn, un+1)
and ends in E(ui), for some i, which will indicate an error (as all queries containing E will be false
in T‡, {A(a)}). It is straightforward to verify that the required transducer can be implemented
in L.

Let T‡ contain the two axioms (11) and the following axioms:

A(x)→ D(x), (16)

D(x)→ ∃y
(

R[(x, y) ∧ S[(y, x)
)

, (17)

D(x)→ ∃y
(

R[(x, y) ∧ S#(y, x) ∧ ∃z
(

S[(y, z) ∧R#(z, y) ∧ F (z)
))

, (18)

D(x)→ ∃y
(

R](x, y) ∧ S](y, x)
)

, (19)

D(x)→ ∃y
(

R#(x, y) ∧ S](y, x) ∧ ∃z
(

S#(y, z) ∧R](z, y) ∧ F (z)
))

, (20)

F (x)→ ∃y
(

Rc(x, y) ∧ Sc(y, x)
)

, for c ∈ Σ0 ∪ {#}. (21)

The four additional branches of the canonical model of (T‡, {A(a)}) at each point in D are shown
below:

D

F F

[

[

#

#
#

#

]

]

c

c

c

c

[

[

]

]

(the labels D and F are indicated next to the nodes, and, as before, each solid arrow with label
c belongs to Rc and each dashed arrow with label c to Sc, for c ∈ Σ0; to avoid clutter, only one
pair of c-arrows is shown at the bottom).

Let qDw be defined identically to qAw except that the two occurrences of A are replaced by D.
The following property is established similarly to Proposition 29:

38

Proposition 30. For any block-formed word w] ∈ Σ∗,

w = [x, for x ∈ (Σ0 ∪ {#})
∗{#} ∪ {ǫ}, iff {(17), (18), (21)}, {D(d)} |= qDw .

For any block-formed word [w ∈ Σ∗,

w = z], for z ∈ {ǫ} ∪ {#}(Σ0 ∪ {#})
∗, iff {(19), (20), (21)}, {D(d)} |= qDw .

With these properties established, it can readily be verified that T‡, {A(a)} |= qw iff w ∈ L.
Consider a block-formed word w ∈ Σ∗. Let [w1#w2# . . .#wn] be its m-th block and wj = ym
(that is, wj is the segment of the B0-word in this block). By Proposition 30, the subtree generated
by (18) matches the (translation of) [w1# . . .#wj−1#, whereas the subtree generated by (20)
matches #wj+1# . . .#wn]. By Proposition 29, the wj itself is mapped into the main tree generated
by (11). Note that (17) and (19) are needed for the case when j = 1 and j = n, respectively.
Finally, observe that (the translation of) w has to be mapped starting from a (the root of the
tree) and ending at a, and that the tree of the canonical model does not contain concept E, so
only a block-formed w can be mapped to the canonical model. In particular, T‡, {A(a)} 6|= qw for
w of (12) and (14), and T‡, {A(a)} |= qw for w of (13) and (15). ❑

D Experiments

D.1 Computing rewritings

We computed 6 types of rewritings for linear queries similar to those in Example 8 and a fixed
ontology from Example 11. The first three rewritings were obtained by running executables of
Rapid [14], Clipper [20] and Presto [53] with a 15 minute timeout on a desktop machine. The
other three rewritings are rewritings Lin, Log and Tw described in Sections 3.3, 3.2 and 3.4
respectively.

We considered the following three sequences:

RRSRSRSRRSRRSSR, (Sequence 1)

SRRRRRSRSRRRRRR, (Sequence 2)

SRRSSRSRSRRSRRS. (Sequence 3)

For each of the three sequences, we consider the line-shaped queries with 1–15 atoms formed by
their prefixes. Table 1 presents the sizes of the different types of rewritings.

39

Table 1: The size (number of clauses) of different types of rewritings for the three sequences of
queries (– indicates timeout after 15 minutes)

no. Sequence 1 Sequence 2 Sequence 3
of RRSRSRSRRSRRSSR SRRRRRSRSRRRRRR SRRSSRSRSRRSRRS

atoms Rapid Clipper Presto Lin Log Tw Rapid Clipper Presto Lin Log Tw Rapid Clipper Presto Lin Log Tw

1 1 1 5 2 1 1 1 1 5 2 1 1 1 1 5 2 1 1
2 1 1 5 5 2 0 2 2 14 5 4 2 2 2 14 5 4 2
3 2 2 14 8 5 3 2 2 14 8 5 3 2 2 14 8 5 3
4 3 3 19 11 8 4 2 2 14 11 6 3 4 4 23 11 8 5
5 5 5 24 14 12 6 2 2 14 14 8 4 4 4 23 14 10 6
6 7 7 33 17 16 10 2 2 14 17 10 4 8 8 39 17 15 7
7 10 11 49 20 20 10 4 4 23 20 13 7 11 11 57 20 18 14
8 13 16 77 23 24 14 6 7 29 23 16 7 18 24 96 23 21 8
9 13 16 77 26 27 15 10 13 50 26 22 10 24 35 183 26 27 10
10 26 44 203 29 32 16 14 26 83 29 27 11 34 63 356 29 33 17
11 39 72 329 32 36 16 14 26 83 32 29 14 43 100 356 32 37 20
12 39 126 329 35 40 21 14 26 83 35 33 18 56 302 1028 35 42 23
13 – 241 959 38 45 24 – 30 83 38 35 20 – – 1712 38 46 25
14 – – 959 41 47 25 – 31 83 41 36 16 – – 1712 41 51 27
15 – – 2723 44 51 22 – 30 83 44 37 15 – – 5108 44 52 29

Table 2: Generated datasets

dataset V p q
avg. degree
of vertices no. of atoms

1.ttl 1 000 0.050 0.050 50 61 498
2.ttl 5 000 0.002 0.004 10 64 157
3.ttl 10 000 0.002 0.004 20 256 804
4.ttl 20 000 0.002 0.010 40 1 027 028

D.2 Datasets

We used Erdös-Rènyi random graphs with independent parameters V (number of vertices), p
(probability of an R-edge) and q (probability of concepts A and B at a given vertex). Note that
we intentionally did not introduce any S-edges. The last parameter, the average degree of a vertex,
is V · p. Table 2 summarises the parameters of the datasets.

D.3 Evaluating rewritings

We evaluated all obtained rewritings on the datasets in Section D.2 using RDFox triplestore [45]
with 999-second timeout. The materialisation time and other relevant statistics are given in
Tables 3, 4, and 5.

D.4 Discussion

Note that the three types of rewritings suggested in this paper give rise to three different rewriting
strategies for linear queries. Let us compare how the execution time depends on the exact rewriting
strategy. We see in Table 3 that for most queries in Sequence 1 the Lin rewriting shows the best
performance, while for Sequences 2 and 3 algorithms Log and Tw* are the winners (Tables 4 and
5). Note also that even within a single sequence the results may vary with the number of atoms.

All three rewriting algorithms are based upon a common idea: given a query, pick a point (or a
set of points) that would split the query into subqueries, then rewrite these subqueries recursively,
and then include rules that join the results into the rewriting of the initial query. However, there
is a liberty in the choice of this point, and our rewritings are essentially different in this strategy.
Thus, different rewritings generate NDL programs which are related to each other like different
execution plans for CQs. Taking into account that we use highly unbalanced data (empty S
versus dense R) and that RDFox just materialises all of the predicates of the program without

40

Table 3: Evaluating rewritings on RDFox - 1
data- query evaluation time (sec) no. of no. of generated tuples
set size Rapid Clipper Presto Lin Log Tw Tw* answers Rapid Clipper Presto Lin Log Tw Tw*

1 0.021 0.019 0.034 0.049 0.017 0.016 0.01 61390 61390 61390 122780 61449 61390 61390 61390
2 0.675 0.694 0.706 0.898 0.505 0.652 0.698 976789 976789 976789 1038179 1041822 1038179 976789 976789
3 0.058 0.053 0.125 0.013 0.112 0.01 0.012 2956 2956 2956 64394 3054 64394 3004 3004
4 0.204 0.201 0.314 0.087 0.675 0.76 0.12 212213 212213 212213 273710 283409 1314797 1189061 212272
5 0.12 0.114 0.314 0.014 0.576 0.696 0.064 2956 2956 2956 64453 3150 1105636 976837 3004
6 0.266 0.248 0.685 0.093 0.266 0.768 0.124 212213 212213 212213 273710 292815 337479 1198455 218710
7 0.271 0.242 1.11 0.008 0.243 0.687 0.05 2 956 2 956 2 956 64453 3 246 125 361 982797 3148
8 0.412 0.377 1.406 0.084 0.904 0.944 0.186 212 213 212 213 212 213 273710 302 221 1 659 409 1410727 431100
9 3.117 3.337 12.713 3.376 2.941 2.405 1.633 998 945 998 945 998 945 1060442 2 927 979 2 684 359 2435551 1455913

1.ttl 10 1.079 1.102 18.432 0.012 0.607 0.76 0.166 8 374 8 374 10 760 69871 12 573 1 178 714 1203649 224057
11 2.246 1.984 48.311 0.385 0.945 1.075 0.371 436 000 436 000 436 000 497497 836 876 1 618 743 1663534 664174
12 13.693 30.032 >999 8.129 6.867 5.922 5.28 999 998 999 998 1 000 000 – 5 311 314 4 439 352 3217262 2241208
13 – 6.810 560.206 0.027 0.616 0.946 0.274 20 985 – 24 839 82482 38 200 553 821 1234421 254888
14 – – 913.387 0.013 0.358 0.819 0.27 0 – – 61497 48 312 723 1201459 228307
15 – – >999 0.032 0.394 0.994 0.33 2 000 – – – 70 277 376 313 1417786 442579
1 0.02 0.022 0.039 0.02 0.019 0.017 0.008 64103 64103 64103 128206 64125 64103 64103 64103
2 0.273 0.305 0.321 0.29 0.297 0.275 0.466 809731 809731 809731 873834 874112 873834 809731 809731
3 0.03 0.028 0.06 0.011 0.058 0.01 0.013 427 427 427 64561 489 64561 458 458
4 0.057 0.054 0.103 0.032 0.448 0.315 0.035 8778 8778 8778 72934 74004 947164 818531 8800
5 0.05 0.046 0.128 0.014 0.423 0.301 0.03 427 427 427 64583 551 938875 809762 458
6 0.08 0.074 0.27 0.035 0.084 0.316 0.038 8778 8778 8778 72934 75103 77253 819648 9490
7 0.089 0.080 0.378 0.008 0.078 0.295 0.024 427 427 427 64583 613 68 546 810647 551
8 0.136 0.125 0.467 0.029 0.434 0.322 0.037 8 778 8 778 8 778 72934 76 202 1 085 362 828448 18334
9 0.202 0.254 1.179 0.369 0.554 0.391 0.102 105 853 105 853 105 853 170009 1 020 363 1 190 249 933295 123190

2.ttl 10 0.174 0.204 2.341 0.011 0.461 0.321 0.052 11 11 438 64167 506 943 097 819428 9354
11 0.192 0.259 4.726 0.036 0.473 0.336 0.053 651 651 9 396 64807 74 922 944 210 820354 11271
12 0.244 0.699 24.778 0.396 1.034 0.509 0.15 8 058 8 058 113 179 72214 1 004 735 1 940 300 934269 124420
13 – 0.629 20.555 0.015 0.244 0.458 0.084 0 – 438 64156 502 209 915 820373 10321
14 – – 25.243 0.014 0.153 0.350 0.081 0 – – 64156 31 200 962 820106 10722
15 – – 66.916 0.032 0.172 0.335 0.072 0 – – 64156 64 543 265 087 828884 19522
1 0.131 0.094 0.225 0.101 0.096 0.14 0.032 256699 256699 256699 513398 256756 256699 256699 256699
2 2.933 2.946 3.017 2.955 3.053 2.929 3.039 6379932 6379932 6379932 6636631 6638150 6636631 6379932 6379932
3 0.206 0.175 0.519 0.03 0.499 0.029 0.034 1217 1217 1217 257963 1311 257963 1264 1264
4 0.399 0.424 0.927 0.171 4.003 3.419 0.231 67022 67022 67022 323825 327716 6961626 6447011 67079
5 0.36 0.357 1.112 0.036 4.133 3.396 0.179 1217 1217 1217 258020 1405 6895915 6379979 1264
6 0.632 0.57 1.806 0.169 0.836 3.425 0.228 67022 67022 67022 323825 331647 363640 6450931 69782
7 0.631 0.581 2.981 0.035 0.756 3.255 0.156 1 217 1 217 1 217 258020 1 499 296 711 6382460 1405
8 0.925 0.876 3.739 0.159 4.377 3.405 0.278 67 022 67 022 67 022 323825 335 578 7 546 184 6518010 136975
9 1.949 2.275 14.564 4.063 5.251 4.169 1.169 1 678 668 1 678 668 1 678 668 1935471 8 613 829 9 225 201 8196944 1815899

3.ttl 10 1.24 1.377 35.109 0.049 4.731 3.571 0.342 60 60 1 277 256863 1 389 6 936 178 6449555 68557
11 1.403 1.798 60.858 0.249 4.846 3.607 0.343 11 498 11 498 77 811 268301 341 459 6 949 160 6462905 85267
12 1.697 5.413 572.53 4.355 10.128 6.693 1.645 305 640 305 640 1 951 654 562443 8 780 232 15 626 926 8438115 2058532
13 – 4.382 484.969 0.082 1.762 4.926 0.599 0 – 1 277 256803 1 377 917 117 6453717 72776
14 – – 575.487 0.063 1.115 3.972 0.584 0 – – 256803 47 850 309 6452195 73900
15 – – >999 0.177 1.011 3.585 0.501 0 – – – 257 974 1 107 065 6519217 140979
1 0.433 0.451 1.037 0.495 0.439 0.456 0.165 1026526 1026526 1026526 2053052 1026774 1026526 1026526 1026526
2 27.549 28.088 28.329 27.011 29.532 32.331 31.34 49364886 49364886 49364886 50391412 50404311 50391412 49364886 49364886
3 2.067 2.409 3.657 0.159 4.087 0.161 0.162 13103 13103 13103 1039882 13613 1039882 13356 13356
4 4.866 5.438 9.511 1.37 38.919 31.188 2.746 1286991 1286991 1286991 2314018 2353661 52718280 50652125 1287239
5 4.061 4.032 10.374 0.209 42.943 33.064 2.142 13103 13103 13103 1040130 14119 51444898 49365139 13356
6 6.909 7.133 16.249 1.443 7.767 36.268 2.782 1286991 1286991 1286991 2314018 2393145 2952225 50691250 1313261
7 6.614 6.277 23.7 0.243 8.586 29.098 2.02 13 103 13 103 13 103 1040130 14 625 1 665 376 49391598 14115
8 11.441 10.923 29.1 1.880 54.813 29.426 3.669 1 286 991 1 286 991 1 286 991 2314018 2 432 629 56 098 445 51978489 2600996
9 46.704 50.668 193 76.169 102.055 66.464 33.63 58 753 514 58 753 514 58 753 514 59780541 114 973 160 114 837 395 110717131 61339643

4.ttl 10 14.348 15.503 462 0.375 43.347 30.008 4.694 19 966 19 966 33 014 1046993 35 359 52 103 362 50698955 1321716
11 19.593 20.907 821 2.843 44.410 31.061 5.319 1 872 159 1 872 159 3 051 184 2899186 4 397 556 53 986 724 52602849 3224788
12 71.354 182.499 >999 172.822 237.478 179.12 90.04 79 939 048 79 939 048 120 229 590 – 199 083 489 242 500 074 189429768 140064931
13 – 54.497 >999 0.562 22.345 44.427 7.105 22 474 – 53 717 – 58 826 5 686 759 50759705 1382714
14 – – >999 0.550 12.462 36.259 7.493 0 – – – 253 4 356 739 50704606 1353393
15 – – >999 1.211 11.315 30.709 7.028 12 165 – – – 1 064 542 5 395 902 52014512 2652797

41

Table 4: Evaluating rewritings on RDFox - 2
data- query evaluation time (sec) no. of no. of generated tuples
set size Rapid Clipper Presto Lin Log Tw Tw* answers Rapid Clipper Presto Lin Log Tw Tw*

1 0.009 0.005 0.005 0.005 0.005 0.005 0.007 0 0 0 0 48 0 0 0
2 0.009 0.008 0.021 0.05 0.012 0.008 0.007 59 59 59 61508 64406 118 59 59
3 0.083 0.058 0.077 0.9 0.093 0.732 0.058 3584 3584 3584 65033 1092161 65033 980373 3584
4 2.363 4.049 2.301 8.32 0.11 0.723 0.073 57571 57571 57571 119020 2204964 119079 1034419 57630
5 97 92 102 13.599 2 14.272 2.718 59000 59000 59000 120449 3265393 1097297 2035848 59059
6 >999 >999 >999 17.882 19 13.881 42.914 59000 – – – 4324393 1162212 2039373 62584
7 129 122 >999 0.384 0.25 0.749 0.344 2832 2832 2832 – 156824 132259 1030122 6464
8 >999 >999 >999 10.963 2 1.82 21.399 55991 – – – 3352724 304347 1302623 268322
9 162 158 >999 0.395 0.21 0.722 0.344 2832 2832 2832 – 156920 187155 1040255 5895

1.ttl 10 >999 >999 >999 11.118 2 12.928 39.21 55991 – – – 3362130 1220806 2104667 68937
11 >999 >999 >999 20.217 4 14.611 >999 59000 – – – 5920653 2251570 2342243 –
12 >999 >999 >999 31.648 21 19.079 >999 59000 – – – 8714382 3361965 4165789 –
13 – >999 >999 34.395 46 193.512 >999 59000 – – – 9783393 3429574 4198870 –
14 – >999 >999 39.818 223 190.334 >999 59000 – – – 10842393 1509563 4130571 –
15 – >999 >999 49.391 232 226.827 >999 59000 – – – 11901393 1594164 4420495 –
1 0.007 0.007 0.005 0.007 0.007 0.005 0.004 0 0 0 0 31 0 0 0
2 0.01 0.01 0.028 0.027 0.011 0.008 0.008 22 22 22 64147 64543 44 22 22
3 0.025 0.025 0.041 0.345 0.046 0.313 0.024 256 256 256 64381 879372 64381 809987 256
4 0.135 0.136 0.169 4.798 0.055 0.297 0.023 3300 3300 3300 67425 9329702 67447 813053 3322
5 1.314 1.278 1.824 39.195 0.513 4.714 0.122 34474 34474 34474 98599 33935400 908352 9240858 34496
6 13.597 13.652 19.52 119.212 0.698 4.606 0.178 106742 106742 106742 170867 59117304 1044957 9313360 106998
7 1.396 1.34 18.91 0.116 0.102 0.326 0.028 248 248 248 64404 214761 129190 815625 535
8 1.572 1.987 20.58 2.518 0.095 0.364 0.069 3478 3478 3478 67634 2968573 199843 825309 12300
9 1.397 1.554 35.15 0.118 0.076 0.333 0.033 248 248 248 64404 214823 132187 813759 728

2.ttl 10 1.636 2.634 233 2.591 0.639 4.45 0.069 3478 3478 3478 67634 2969672 976875 9245685 4871
11 1.677 12.024 895 30.575 0.98 4.434 0.66 35382 35382 35382 99538 26328037 1823608 9285127 44313
12 2.009 143 >999 128.532 1.756 5.666 7.999 106895 106895 106895 – 71017728 2184441 10358119 1010563
13 – >999 >999 243.656 2.559 47.098 5.121 110000 – – – 115653199 2742932 34483363 145486
14 – >999 >999 325.755 2.866 50.997 12.028 110000 – – – 151038934 1448087 35282112 111224
15 – >999 >999 433.438 26.903 54.518 133.512 110000 – – – 176515562 9102348 35442252 118515
1 0.009 0.01 0.009 0.011 0.009 0.011 0.009 0 0 0 0 47 0 0 0
2 0.023 0.02 0.115 0.145 0.022 0.019 0.019 57 57 57 256813 257974 114 57 57
3 0.123 0.127 0.249 3.364 0.315 3.212 0.136 1462 1462 1462 258218 6668549 258218 6381394 1462
4 1.992 1.93 3.072 85.844 0.345 3.21 0.122 36260 36260 36260 293016 86686553 293073 6416249 36317
5 47 56 76.8 967 7.09 70.117 1.898 452502 452502 452502 709258 187656175 7089247 86439255 452559
6 >999 >999 >999 >999 9.996 73.99 3.965 570000 - – – – 7464849 86558158 571462
7 47 51 >999 1.591 0.736 3.47 0.181 2125 2125 2125 – 883690 518306 6413768 3634
8 77 99 >999 60.365 0.667 3.601 1.842 53191 53191 53191 – 22657990 862422 6536462 120327
9 50 56 >999 1.885 0.473 3.496 0.223 2125 2125 2125 – 883784 553583 6419638 3446

3.ttl 10 79 142 >999 59.019 7.999 67.145 2.083 53191 53191 53191 – 22661921 7401781 86497805 58664
11 81 >999 >999 >999 10.862 68.956 50.812 516631 516631 – – – 14275796 87027128 587987
12 116 >999 >999 >999 26.218 112.098 306.304 570000 570000 – – – 16280643 95308112 8298971
13 – >999 >999 >999 45.19 >999 785.247 570000 – – – – 27255415 – 1026838
14 – >999 >999 >999 74.691 >999 >999 570000 – – – – 9092721 – –
15 – >999 >999 >999 >999 >999 >999 – – – – – – – –
1 0.026 0.027 0.027 0.035 0.026 0.047 0.029 0 0 0 0 253 0 0 0
2 0.068 0.067 0.5 0.543 0.078 0.069 0.07 248 248 248 1027022 1040241 496 248 248
3 0.992 0.99 1.483 33.62 1.98 30.768 0.976 12651 12651 12651 1039425 51050537 1039425 49377537 12651
4 60.836 69.126 65.671 M 2.175 30.532 1.272 609193 609193 609193 1635967 – 1636215 49974327 609441
5 >999 >999 >999 >999 85 >999 60.335 4947136 – – – – 55339044 – 4947384
6 >999 >999 >999 >999 287 >999 261.562 4960000 – – – – 56390837 – 4972651
7 >999 >999 >999 63 5 31.839 3.118 62572 – – – 10949093 2141879 50070886 75476
8 >999 >999 >999 >999 13 37.121 273.336 2435666 – – – – 6151203 53696984 3723153
9 >999 >999 >999 61 5 31.899 5.725 62572 – – – 10949599 2739031 50050255 76176

4.ttl 10 >999 >999 >999 >999 131 >999 319.902 2435666 – – – – 58829172 – 2487953
11 >999 >999 >999 M 214 >999 – 4960000 – – – – 111363802 – –
12 >999 >999 >999 M >999 >999 – – – – – – – – –
13 – >999 >999 M >999 >999 – – – – – – – – –
14 – >999 >999 M >999 >999 – – – – – – – – –
15 – >999 >999 M >999 >999 – – – – – – – – –

42

Table 5: Evaluating rewritings on RDFox - 3
data- query evaluation time (sec) no. of no. of generated tuples
set size Rapid Clipper Presto Lin Log Tw Tw* answers Rapid Clipper Presto Lin Log Tw Tw*

1 0.004 0.003 0.003 0.004 0.003 0.021 0.003 0 0 0 0 48 0 0 0
2 0.006 0.006 0.017 0.022 0.008 0.014 0.005 59 59 59 61508 64406 118 59 59
3 0.053 0.06 0.065 0.849 0.087 0.69 0.053 3584 3584 3584 65033 1092161 65033 980373 3584
4 0.012 0.01 0.074 0.01 0.009 0.008 0.008 2 2 2 61499 3176 168 109 109
5 0.011 0.009 0.07 0.008 0.009 0.008 0.009 0 0 0 61497 48 166 59 59
6 0.018 0.015 0.139 0.023 0.09 0.677 0.055 2 2 2 61499 64560 65203 980434 3704
7 0.017 0.015 0.145 0.01 0.087 0.68 0.057 0 0 0 61497 144 65190 980480 3691

1.ttl 8 0.025 0.034 0.339 0.026 0.044 0.009 0.008 2 2 135 61499 73966 129565 170 286
9 0.025 0.034 0.433 0.01 0.034 0.009 0.008 0 0 2 61497 240 65530 109 214

10 0.035 0.086 0.549 0.029 0.026 0.015 0.015 2 2 135 61499 83372 67690 12950 13114
11 0.034 0.086 4.445 1.164 0.54 0.765 0.221 133 0 2 61630 1684864 1095576 1227962 251278
12 0.048 0.223 4.877 0.013 0.137 0.699 0.062 2 2 135 61499 4082 192211 983694 4115
13 - - 13.007 0.141 0.153 0.79 0.175 133 - - 61630 380205 226874 1228297 229396
14 - - 382.922 3.738 0.878 1.166 0.318 1967 - - 63464 3842746 1282299 1809813 270081
15 - - 307.184 0.017 0.36 0.771 0.224 11 - - 61508 16542 242156 1228610 252720
1 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0 0 0 0 31 0 0 0
2 0.006 0.006 0.02 0.023 0.009 0.006 0.006 22 22 22 64147 64543 44 22 22
3 0.022 0.019 0.04 0.339 0.045 0.29 0.019 256 256 256 64381 879372 64381 809987 256
4 0.013 0.011 0.047 0.01 0.01 0.009 0.009 0 0 0 64156 490 75 53 53
5 0.012 0.011 0.044 0.008 0.009 0.01 0.009 0 0 0 64156 31 75 22 22
6 0.02 0.016 0.081 0.027 0.042 0.304 0.021 0 0 0 64156 64543 64456 810009 300

2.ttl 7 0.018 0.015 0.094 0.011 0.041 0.297 0.024 0 0 0 64156 93 64465 810040 309
8 0.025 0.036 0.182 0.027 0.053 0.01 0.009 0 0 0 64156 65642 129037 75 119
9 0.026 0.037 0.215 0.012 0.03 0.009 0.009 0 0 0 64156 155 64611 53 106

10 0.038 0.091 0.327 0.028 0.029 0.014 0.013 0 0 0 64156 66741 65120 1393 1468
11 0.036 0.09 1.467 0.345 0.358 0.314 0.055 0 0 0 64156 906286 879949 818896 9218
12 0.052 0.268 1.868 0.014 0.106 0.294 0.03 0 0 0 64156 494 193096 810468 385
13 - - 4.579 0.032 0.119 0.359 0.051 0 - - 64156 74216 193944 819532 10495
14 - - 26.213 0.38 0.454 0.37 0.123 0 - - 64156 995998 1008466 819319 9523
15 - - 26.689 0.017 0.209 0.352 0.063 0 - - 64156 502 198540 819067 9293
1 0.009 0.009 0.009 0.01 0.007 0.008 0.008 0 0 0 0 47 0 0 0 0
2 0.019 0.017 0.104 0.111 0.02 0.017 0.016 57 57 57 256813 257974 114 57 57
3 0.11 0.135 0.233 3.244 0.274 3.109 0.113 1462 1462 1462 258218 6668549 258218 6381394 1462
4 0.038 0.034 0.277 0.034 0.026 0.027 0.028 0 0 0 256803 1314 161 104 104
5 0.036 0.036 0.275 0.025 0.024 0.031 0.027 0 0 0 256803 47 161 57 57
6 0.063 0.056 0.663 0.128 0.298 3.122 0.133 0 0 0 256803 257974 258379 6381451 1576

3.ttl 7 0.061 0.062 0.709 0.032 0.287 3.101 0.132 0 0 0 256803 141 258369 6381498 1566
8 0.094 0.153 1.425 0.138 0.297 0.03 0.027 0 0 0 256803 261905 516433 161 275
9 0.098 0.15 1.819 0.037 0.156 0.03 0.027 0 0 0 256803 235 258660 104 208

10 0.143 0.399 2.478 0.15 0.148 0.049 0.048 0 0 0 256803 265836 259504 5473 5634
11 0.141 0.368 12.374 3.343 3.315 3.397 0.384 0 0 0 256803 6866425 6670079 6452693 72865
12 0.21 1.136 15.915 0.051 0.576 3.133 0.171 0 0 0 256803 1326 773580 6382718 1730
13 - - 35.05 0.194 0.623 3.521 0.341 0 - - 256803 329484 776449 6451652 74135
14 - - 399.257 3.948 3.982 3.344 0.558 0 - - 256803 8461907 7190771 6463879 74581
15 - - 388.289 0.06 1.34 3.213 0.378 0 - - 256803 1377 803755 6452448 73026
1 0.026 0.025 0.025 0.039 0.025 0.024 0.025 0 0 0 0 253 0 0 0
2 0.064 0.069 0.471 0.522 0.064 0.07 0.064 248 248 248 1027022 1040241 496 248 248
3 0.929 0.938 1.404 28.325 1.857 28.103 0.945 12651 12651 12651 1039425 51050537 1039425 49377537 12651
4 0.198 0.173 1.617 0.157 0.095 0.129 0.135 4 4 4 1027031 13800 753 505 505
5 0.182 0.174 1.617 0.144 0.094 0.143 0.138 0 0 0 1027027 253 749 248 248
6 0.327 0.312 4.729 0.64 1.913 28.148 1 4 4 4 1027031 1040479 1040182 49377789 13151

4.ttl 7 0.308 0.325 4.721 0.222 1.98 27.908 1.106 0 0 0 1027027 759 1040183 49378038 13152
8 0.504 0.778 9.217 0.675 1.278 0.158 0.129 4 4 236 1027031 1079963 2080575 757 1249
9 0.522 0.835 12.456 0.266 0.705 0.14 0.131 0 0 4 1027027 1265 1041493 505 1002

10 0.782 2.174 15.698 0.738 0.66 0.288 0.253 4 4 236 1027031 1119447 1055223 52295 53040
11 0.76 2.077 93.286 30.477 30.641 29.507 3.476 232 0 4 1027259 54927712 51065747 50689528 1325139
12 1.083 6.03 114.063 0.354 3.362 28.046 1.329 4 4 236 1027031 15222 3107857 49391554 14314
13 - - 253.131 1.64 3.442 30.217 3.913 232 - - 1027259 2499217 3173640 50730474 1353321
14 - - >999 74.607 35.483 30.531 5.52 10972 - - - 117902759 53931133 52556376 1368984
15 - - >999 0.454 10.929 29.497 3.763 1 - - - 35953 3754770 50690218 1326126

43

using magic sets or optimising the program before executions, the performance naturally depends
on how we split the query into subqueries in the rewriting algorithm.

In the paper, we described three simple complexity-motivated splitting strategies. Our exper-
iments show that none of them is always the best and the execution time may be dramatically
improved by using an ‘adaptable’ splitting strategy which would work similarly to a query execu-
tion planner in database management systems and use statistical information about the data to
generate a quickly executable NDL program.

The difference in performance between different types of optimal rewritings made us investigate
its causes. For example, we noticed that the Tw-rewriting of the query with 3 atoms of Sequence 3

G(x, y)← S(x, z) ∧ P13(z, y),

P13(x, y)← R(x, z) ∧R(z, y),

G(x, y)← AP (x) ∧R(x, y)

takes as long as 28 seconds to execute on the fourth dataset because it needs so much time to
materialise P13, which has around 6 · 106 triples. On the other hand, if we remove this predicate
by substituting its definition into the first rule, we obtain the rewriting

G(x, y)← S(x, z) ∧R(x, v) ∧R(v, y),

G(x, y)← AP (x) ∧R(x, y),

which is executed in 0.945 seconds. This substitution could be done automatically by a clever NDL
engine, but not performed by RDFox. Thus, we made an attempt to ‘improve’ the Tw-rewriting
by getting rid in this fashion of all predicates that are defined by a single rule and occur not more
than twice in the bodies of the rules. However, though the rewriting Tw* thus obtained shows
a much better performance on Sequences 1 and 3 (see Tables 3 and 5), it is not always so on
Sequence 2 (Table 4). This observation suggests that our rewriting could be executed faster on a
more advanced NDL engine than RDFox which would carry out such substitutions depending on
the cardinality of EDBs.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange. Cambridge
University Press, 2014.

[3] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, New York, NY, USA, 1st edition, 2009.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2003.

[5] M. Bienvenu, S. Kikot, and V. V. Podolskii. Tree-like queries in OWL 2 QL: succinctness
and complexity results. In Proc. of the 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, pages 317–328. IEEE Computer Society, 2015.

[6] M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. Tractable queries for lightweight description
logics. In Proc. of the 23nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2013), pages
768–774. IJCAI/AAAI, 2013.

[7] D. Bursztyn, F. Goasdoué, and I. Manolescu. Teaching an RDBMS about ontological con-
straints. PVLDB, 9(12):1161–1172, 2016.

44

[8] M. Calautti, G. Gottlob, and A. Pieris. Chase termination for guarded existential rules. In
Proc. of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, pages
91–103, 2015.

[9] A. Calì, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable
query answering over ontologies. Journal of Web Semantics, 14:57–83, 2012.

[10] A. Calì, G. Gottlob, and A. Pieris. Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence, 193:87–128, 2012.

[11] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The MASTRO system for ontology-based data ac-
cess. Semantic Web, 2(1):43–53, 2011.

[12] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: the DL-Lite family. Journal of Automated
Reasoning, 39(3):385–429, 2007.

[13] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical Com-
puter Science, 239(2):211–229, 2000.

[14] A. Chortaras, D. Trivela, and G. Stamou. Optimized query rewriting for OWL 2 QL. In
Proc. of CADE-23, volume 6803 of LNCS, pages 192–206. Springer, 2011.

[15] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers.
Journal of the ACM, 18(1):4–18, 1971.

[16] B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik, and Z. Wang.
Acyclicity notions for existential rules and their application to query answering in ontologies.
Journal of Artificial Intelligence Research (JAIR), 47:741–808, 2013.

[17] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. ACM Computing Surveys, 33(3):374–425, 2001.

[18] F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, and D. F.
Savo. Optimizing query rewriting in ontology-based data access. In Proc. of the 16th Int.
Conf. on Extending Database Technology (EDBT 2013), pages 561–572. ACM, 2013.

[19] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

[20] T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. Query rewriting for Horn-SHIQ
plus rules. In Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI 2012), pages
726–733. AAAI, 2012.

[21] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parameterized com-
plexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53–61,
2009.

[22] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006.

[23] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti,
M. Rezk, G. Xiao, Ö. Özçep, and R. Rosati. Optique: Zooming in on big data. IEEE
Computer, 48(3):60–67, 2015.

[24] T. Gogacz and J. Marcinkowski. All-instances termination of chase is undecidable. In Proc.
of the 41st Int. Colloquium Automata, Languages, and Programming (ICALP 2014), Part II,
volume 8573 of Lecture Notes in Computer Science, pages 293–304. Springer, 2014.

45

[25] G. Gottlob, S. Kikot, R. Kontchakov, V. V. Podolskii, T. Schwentick, and M. Zakharyaschev.
The price of query rewriting in ontology-based data access. Artificial Intelligence, 213:42–59,
2014.

[26] G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates. In Proc. of the
26th Int. Colloquium on Automata, Languages and Programming (ICALP-99), volume 1644
of Lecture Notes in Computer Science, pages 361–371. Springer, 1999.

[27] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization. In Proc.
of ICDE 2011, pages 2–13. IEEE Computer Society, 2011.

[28] G. Gottlob, G. Orsi, and A. Pieris. Query rewriting and optimization for ontological
databases. ACM Transactions on Database Systems (TODS), 39(3):25, 2014.

[29] S. A. Greibach. The hardest context-free language. SIAM J. Comput., 2(4):304–310, 1973.

[30] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings
of the Institute of Radio Engineers, 40(9):1098–1101, 1952.

[31] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M. G. Skjæve-
land, E. Thorstensen, and J. Mora. BootOX: Bootstrapping OWL 2 ontologies and R2RML
mappings from relational databases. In Proc. of the ISWC 2015 Posters & Demonstrations
Track at the 14th Int. Semantic Web Conf. (ISWC-2015), volume 1486 of CEUR Workshop
Proceedings. CEUR-WS, 2015.

[32] M. Kaminski, Y. Nenov, and B. Cuenca Grau. Datalog rewritability of Disjunctive Datalog
programs and non-Horn ontologies. Artificial Intelligence, 236:90–118, 2016.

[33] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, C. Pinkel, M. Rezk, M. G.
Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, and I. Horrocks. Ontology based
access to exploration data at Statoil. In Proc. of the 14th Int. Semantic Web Conf. (ISWC
2015), Part II, volume 9367 of Lecture Notes in Computer Science, pages 93–112. Springer,
2015.

[34] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev. On the succinctness of query
rewriting over shallow ontologies. In Proc. of the Joint Meeting of the 23rd EACSL Annual
Conf. on Computer Science Logic (CSL 2014) and the 29th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2014), pages 57:1–57:10. ACM, 2014.

[35] S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. Exponential lower bounds
and separation for query rewriting. In Proc. of the 39th Int. Colloquium on Automata, Lan-
guages and Programming (ICALP 2012), volume 7392 of Lecture Notes in Computer Science,
pages 263–274. Springer, 2012.

[36] S. Kikot, R. Kontchakov, and M. Zakharyaschev. On (in)tractability of OBDA with OWL 2
QL. In Proc. of the 24th Int. Workshop on Description Logics (DL 2011), volume 745, pages
224–234. CEUR-WS, 2011.

[37] S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive query answering with
OWL 2 QL. In Proc. of the 13th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2012), pages 275–285. AAAI, 2012.

[38] C. Koch. Processing queries on tree-structured data efficiently. In Proc. of the 25th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2006),
pages 213–224. ACM, 2006.

[39] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. Sound, complete and minimal
UCQ-rewriting for existential rules. Semantic Web, 6(5):451–475, 2015.

46

[40] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined ap-
proach to query answering in DL-Lite. In Proc. of the 12th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2010), pages 247–257. AAAI Press, 2010.

[41] R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. Answering
SPARQL queries over databases under OWL 2 QL entailment regime. In Proc. of the 13th
Int. Semantic Web Conf. (ISWC 2014), Part I, volume 8796 of Lecture Notes in Computer
Science, pages 552–567. Springer, 2014.

[42] M. Lenzerini. Ontology-based data management. ACM SIGMOD Blog, May 2013.

[43] J. Mora, R. Rosati, and Ó. Corcho. Kyrie2: query rewriting under extensional constraints in
ELHIO. In Proc. of the 13th Int. Semantic Web Conf. (ISWC 2014), volume 8796 of Lecture
Notes in Computer Science, pages 568–583. Springer, 2014.

[44] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL
2 Web Ontology Language Profiles. W3C Recommendation, 2012. Available at
http://www.w3.org/TR/owl2-profiles/.

[45] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and J. Banerjee. RDFox: A highly-scalable
RDF store. In Proc. of the 14th Int. Semantic Web Conf. (ISWC 2015), Part II, volume 9367
of Lecture Notes in Computer Science, pages 3–20. Springer, 2015.

[46] H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewriting techniques for
DL-Lite. In Proc. of the 22nd Int. Workshop on Description Logics (DL 2009), volume 477
of CEUR Workshop Proceedings. CEUR-WS, 2009.

[47] H. Pérez-Urbina, E. Rodríguez-Díaz, M. Grove, G. Konstantinidis, and E. Sirin. Evaluation
of query rewriting approaches for OWL 2. In Proc. of SSWS+HPCSW 2012, volume 943 of
CEUR Workshop Proceedings. CEUR-WS, 2012.

[48] F. Picalausa and S. Vansummeren. What are real SPARQL queries like? In Proc. of the Int.
Workshop on Semantic Web Information Management (SWIM). ACM, 2011.

[49] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. Journal on Data Semantics, X:133–173, 2008.

[50] M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontology-based data access:
Ontop of databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC 2013), Part I,
volume 8218 of Lecture Notes in Computer Science, pages 558–573. Springer, 2013.

[51] M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Query rewriting and optimisa-
tion with database dependencies in Ontop. In Informal Proc. of the 26th Int. Workshop on
Description Logics (DL 2013), volume 1014 of CEUR Workshop Proceedings, pages 917–929.
CEUR-WS, 2013.

[52] R. Rosati. Prexto: Query rewriting under extensional constraints in DL-Lite. In Proc. of the
9th Extended Semantic Web Conf. (EWSC 2012), volume 7295 of Lecture Notes in Computer
Science, pages 360–374. Springer, 2012.

[53] R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In Proc.
of the 12th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2010),
pages 290–300. AAAI Press, 2010.

[54] J. F. Sequeda, M. Arenas, and D. P. Miranker. OBDA: query rewriting or materialization? In
practice, both! In Proc. of the 13th Int. Semantic Web Conf. (ISWC 2014), Part I, volume
8796 of Lecture Notes in Computer Science, pages 535–551. Springer, 2014.

47

http://www.w3.org/TR/owl2-profiles/

[55] A. Soylu, M. Giese, E. Jimenez-Ruiz, G. Vega-Gorgojo, and I. Horrocks. Experiencing op-
tiquevqs: A multi-paradigm and ontology-based visual query system for end users. Universal
Access in the Information Society, 15(1):129–152, 2016.

[56] I. H. Sudborough. A note on tape-bounded complexity classes and linear context-free lan-
guages. Journal of the ACM, 22(4):499–500, Oct. 1975.

[57] I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal
of the ACM, 25(3):405–414, 1978.

[58] M. Thomazo. Compact rewritings for existential rules. In Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence (IJCAI 2013). IJCAI/AAAI, 2013.

[59] T. Venetis, G. Stoilos, and V. Vassalos. Rewriting minimisations for efficient ontology-based
query answering. In Proc. of the 28th Int. Conf. on Tools with Artificial Intelligence (ICTAI
2016), pages 1095–1102. IEEE, 2016.

[60] H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and System
Sciences, 43(2):380–404, 1991.

[61] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on
Very Large Data Bases (VLDB), pages 82–94. IEEE Computer Society, 1981.

48

	1 Introduction
	2 Preliminaries
	3 Optimal NDL-Rewritings
	3.1 NL and LOGCFL fragments of NDL
	3.1.1 Linear NDL in NL
	3.1.2 Skinny NDL in LOGCFL

	3.2 LOGCFL rewritings for OMQ(bold0mu mumu dddddd, bold0mu mumu tttttt,)
	3.3 NL rewritings for OMQ(bold0mu mumu dddddd, 1, bold0mu mumu)
	3.4 LOGCFL rewritings for OMQ(,1,bold0mu mumu)

	4 Parameterised complexity
	4.1 Ontology Depth
	4.2 Number of Leaves

	5 OMQs with a Fixed Ontology
	6 Experiments & Conclusions
	7 Acknowledgements
	A Proofs for Section 3
	A.1 Lemma 3
	A.2 Theorem 6
	A.3 Log-rewritings
	A.4 Lin-rewritings
	A.5 Tw-rewritings
	A.6 Rewritings Zoo
	A.6.1 UCQ rewriting
	A.6.2 Log-rewriting
	A.6.3 Lin-rewriting
	A.6.4 Tw-rewriting

	B Proofs for Section 4
	B.1 Theorem 15
	B.2 Theorem 16

	C Proofs for Section 5
	C.1 Theorem 17
	C.2 Theorem 20
	C.3 Theorem 21
	C.4 Theorem 22

	D Experiments
	D.1 Computing rewritings
	D.2 Datasets
	D.3 Evaluating rewritings
	D.4 Discussion

