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1. INTRODUCTION
1.1. Ontology-based data access
Ontology-based data access (OBDA) via query rewriting was proposed by Poggi et al.
[2008] with the aim of facilitating query answering over complex, possibly incomplete
and heterogeneous data sources. In an OBDA system (see Fig. 1), the user does not
have to be aware of the structure of data sources, which can be relational databases,
spreadsheets, RDF triplestores, etc. Instead, the system provides the user with an
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SELECT ?s {
?s a :Staff .
?s a [ a owl:restriction;

owl:onProperty :assistedBy;
owl:someValuesFrom :Secretary] . }

query

[] rdf:type rr:TriplesMap ;
rr:logicalTable "SELECT * FROM PROJECT";
rr:subjectMap [ a rr:BlankNodeMap ;

rr:column "PRJ ID" ; ] ;
rr:propertyObjectMap [ rr:property a:name;

rr:column "PRJ NAME" ] ;
... mappings

ontology

Staff

ProjectManager

Project

manages

PAisAssistedBy

Secretary

∪∪

CREATE TABLE PROJECT (
PRJ ID INT NOT NULL,
PRJ NAME VARCHAR(60) NOT NULL,
PRJ MANAGER ID INT NOT NULL
...

)

A B C D
1
2
3
4
5
6
7

data sources

Fig. 1. Ontology-based data access.

ontology that serves as a high-level conceptual view of the data, gives a convenient
vocabulary for user queries, and enriches incomplete data with background knowledge.
A snippet, T , of such an ontology is shown below in the syntax of first-order (FO) logic:

∀x
(
ProjectManager(x)→ ∃y (isAssistedBy(x, y) ∧ PA(y))

)
,

∀x
(
∃ymanagesProject(x, y)→ ProjectManager(x)

)
,

∀x
(
ProjectManager(x)→ Staff(x)

)
,

∀x
(
PA(x)→ Secretary(x)

)
.

User queries are formulated in the signature of the ontology. For example, the conjunc-
tive query (CQ)

q(x) = ∃y (Staff(x) ∧ isAssistedBy(x, y) ∧ Secretary(y)))

is supposed to find the staff assisted by secretaries. The ontology signature and data
schemas are related by mappings designed by the ontology engineer and invisible to
the user. The mappings allow the system to view the data sources as a single RDF
graph (a finite set of unary and binary atoms), A, in the signature of the ontology. For
example, the global-as-view (GAV) mappings

∀x, y, z
(
PROJECT(x, y, z)→ managesProject(x, z)

)
,

∀x, y
(
STAFF(x, y) ∧ (y = 2)→ ProjectManager(x)

)
populate the ontology predicates managesProject and ProjectManager with values from
the database relations PROJECT and STAFF. In the query rewriting approach of Poggi et
al. [2008], the OBDA system employs the ontology and mappings in order to transform
the user query into a query over the data sources, and then delegates the actual query
evaluation to the underlying database engines and triplestores.

For example, the first-order query

q′(x) = ∃y
[
Staff(x) ∧ isAssistedBy(x, y) ∧ (Secretary(y) ∨ PA(y))

]
∨

ProjectManager(x) ∨ ∃zmanagesProject(x, z)
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is an FO-rewriting of the ontology-mediated query (OMQ) Q = (T , q) over any RDF
graphA in the sense that a is an answer to q′(x) overA iff q(a) is a logical consequence
of T and A. As the system is not supposed to materialise A, it uses the mappings to
unfold the rewriting q′ into an SQL (or SPARQL) query over the data sources.

Ontology languages suitable for OBDA via query rewriting have been identified by
the Description Logic, Semantic Web, and Database/Datalog communities. The DL-
Lite family of description logics, first proposed by Calvanese et al. [2007] and later
extended by Artale et al. [2009], was specifically designed to ensure the existence of
FO-rewritings for all conjunctive queries (CQs). Based on this family, the W3C defined
a profile OWL 2 QL 1 of the Web Ontology Language OWL 2 ‘so that data [. . . ] stored in
a standard relational database system can be queried through an ontology via a simple
rewriting mechanism.’ Various dialects of tuple-generating dependencies (tgds) that
admit FO-rewritings of CQs and extend OWL 2 QL have also been identified [Baget
et al. 2011; Calı̀ et al. 2012b; Civili and Rosati 2012]. We note in passing that while
most work on OBDA (including the present paper) assumes that the user query is
given as a CQ, other query languages, allowing limited forms of recursion and/or nega-
tion, have also been investigated [Rosati 2007; Gutiérrez-Basulto et al. 2015; Bienvenu
et al. 2015; Kostylev et al. 2015]. SPARQL 1.1, the standard query language for RDF
graphs, contains negation, aggregation and other features beyond first-order logic. The
entailment regimes of SPARQL 1.12 also bring inferencing capabilities in the setting,
which are, however, necessarily limited for efficient implementations.

By reducing OMQ answering to standard database query evaluation, which is gener-
ally regarded to be very efficient, OBDA via query rewriting has quickly become a hot
topic in both theory and practice. A number of rewriting techniques have been proposed
and implemented for OWL 2 QL (PerfectRef [Poggi et al. 2008], Presto/Prexto [Rosati
and Almatelli 2010; Rosati 2012], tree witness rewriting [Kikot et al. 2012a]), sets
of tuple-generating dependencies (Nyaya [Gottlob et al. 2011], PURE [König et al.
2015b]), and more expressive ontology languages that require recursive datalog rewrit-
ings (Requiem [Pérez-Urbina et al. 2009], Rapid [Chortaras et al. 2011], Clipper [Eiter
et al. 2012] and Kyrie [Mora et al. 2014]). A few mature OBDA systems have also
recently emerged: pioneering MASTRO [Calvanese et al. 2011], commercial Star-
dog [Pérez-Urbina et al. 2012] and Ultrawrap [Sequeda et al. 2014], and the Optique
platform [Giese et al. 2015] based on the query answering engine Ontop [Rodriguez-
Muro et al. 2013; Kontchakov et al. 2014]. By providing a semantic end-to-end con-
nection between users and multiple distributed data sources (and thus making the
IT expert middleman redundant), OBDA has attracted the attention of industry, with
companies such as Siemens [Kharlamov et al. 2014] and Statoil [Kharlamov et al.
2015] experimenting with OBDA technologies to streamline the process of data access
for their engineers.3

1.2. Succinctness and complexity
In this paper, our concern is two fundamental theoretical problems whose solutions
will elucidate the computational costs required for answering OMQs with OWL 2 QL
ontologies. The succinctness problem for FO-rewritings is to understand how difficult it
is to construct FO-rewritings for OMQs in a given class and, in particular, to determine
whether OMQs in the class have polynomial-size FO rewritings or not. In other words,
the succinctness problem clarifies the computational costs of the reduction of OMQ
answering to database query evaluation. On the other hand, it is also important to

1http://www.w3.org/TR/owl2-overview/#Profiles
2http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321
3See, e.g., http://optique-project.eu.
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Fig. 2. (a) Succinctness of OMQ rewritings, and (b) combined complexity of OMQ answering (tight bounds).

measure the resources required to answer OMQs by a best possible algorithm, not
necessarily a reduction to database query evaluation. Thus, we are interested in the
combined complexity of the OMQ answering problem: given an OMQ Q = (T , q(x))
from a certain class, a data instance A and a tuple a of constants from A, decide
whether T ,A |= q(a). The combined complexity of CQ evaluation has been thoroughly
investigated in database theory; cf. [Grohe et al. 2001; Libkin 2004] and references
therein. To slightly simplify the setting for our problems, we assume that data is given
in the form of an RDF graph and leave mappings out of the picture (in fact, GAV
mappings only polynomially increase the size of FO-rewritings over RDF graphs).

We suggest a ‘two-dimensional’ classification of OMQs. One dimension takes ac-
count of the shape of the CQs in OMQs by quantifying their treewidth (as in clas-
sical database theory) and the number of leaves in tree-shaped CQs. Note that, in
SPARQL 1.1, the sub-queries that require rewriting under the OWL 2 QL entailment
regime are always tree-shaped (they are, in essence, complex class expressions). The
second dimension is the existential depth of ontologies, that is, the length of the longest
chain of labelled nulls in the chase on any data. Thus, the NPD FactPages ontology,4
which was designed to facilitate querying the datasets of the Norwegian Petroleum Di-
rectorate,5 is of depth 5. A typical example of an ontology axiom causing infinite depth
is ∀x

(
Person(x)→ ∃y (ancestor(y, x) ∧ Person(y))

)
.

1.3. Results
The results of our investigation are summarised in the succinctness and complexity
landscapes of Fig. 2. In what follows, we discuss these results in more detail.

The succinctness problem we consider can be formalised as follows: given a sequence
Qn (n < ω) of OMQs whose size is polynomial in n, determine whether the size of
minimal rewritings ofQn can be bounded by a polynomial function in n. We distinguish
between three types of rewritings: arbitrary FO-rewritings, positive existential (PE-)
rewritings (in which only ∧, ∨ and ∃ are allowed), and non-recursive datalog (NDL-)
rewritings.6 This succinctness problem was first considered by Kikot et al. [2012b] and

4http://sws.ifi.uio.no/project/npd-v2/
5http://factpages.npd.no/factpages/
6Domain-independent FO-rewritings correspond to SQL queries, PE-rewritings to SELECT-PROJECT-JOIN-
UNION (or SPJU) queries, and NDL-rewritings to SPJU queries with views; see also Remark 2.3.
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Gottlob and Schwentick [2012]. The former constructed a sequence Qn of OMQs (with
tree-shaped CQs) whose PE- and NDL-rewritings are of exponential size, while FO-
rewritings are superpolynomial unless NP ⊆ P/poly. Gottlob and Schwentick [2012]
and Gottlob et al. [2014] showed that PE- (and so all other) ‘rewritings’ can be made
polynomial under the condition that all relevant data instances contain two special
constants. The ‘succinctification’ trick involves polynomially many extra existential
quantifiers over these constants to guess a derivation of the given CQ in the chase,
which makes such rewritings impractical (cf. NFAs vs DFAs, and [Avigad 2003]). In
this paper, we stay within the classical OBDA setting that does not impose any extra
conditions on the data and does not allow any special constants in rewritings.

Figure 2 (a) gives a summary of the succinctness results obtained in this paper. It
turns out that polynomial-size PE-rewritings are guaranteed to exist—in fact, can be
constructed in polynomial time—only for the class of OMQs with ontologies of depth 1
and CQs of bounded treewidth; moreover, tree-shaped OMQs have polynomial-size Π4-
PE-rewritings (with matrices of the form ∧∨∧∨). Polynomial-size NDL-rewritings can
be efficiently constructed for all tree-shaped OMQs with a bounded number of leaves,
all OMQs with ontologies of bounded depth and CQs of bounded treewidth, and all
OMQs with ontologies of depth 1. For OMQs with ontologies of depth 2 and arbitrary
CQs, and OMQs with arbitrary ontologies and tree-shaped CQs, we have an expo-
nential lower bound on the size of NDL- (and so PE-) rewritings. The existence of
polynomial-size FO rewritings for all OMQs in each of these classes (save the first
one) turns out to be equivalent to one of the major open problems in computational
complexity such as NC1 = NP/poly.7

We obtain these results by establishing a connection between succinctness of rewrit-
ings and circuit complexity, a branch of computational complexity theory that classifies
Boolean functions according to the size of circuits computing them. Our starting point
is the observation that the tree-witness PE-rewriting of an OMQ Q = (T , q) intro-
duced by Kikot et al. [2012a] defines a hypergraph whose vertices are the atoms in
q and whose hyperedges correspond to connected sub-queries of q that can be homo-
morphically mapped to labelled nulls of some chases for T . Based on this observation,
we introduce a new computational model for Boolean functions by treating any hy-
pergraph H, whose vertices are labelled by (possibly negated) Boolean variables or
constants 0 and 1, as a program computing a Boolean function fH that returns 1 on a
valuation for the variables iff there is an independent subset of hyperedges covering
all vertices labelled by 0 (under the valuation). We show that constructing short FO-
(respectively, PE- and NDL-) rewritings of Q is (nearly) equivalent to finding short
Boolean formulas (respectively, monotone formulas and monotone circuits) computing
the hypergraph function for Q.

For each of the OMQ classes in Fig. 2 (a), we characterise the computational power
of the corresponding hypergraph programs and employ results from circuit complexity
to identify the size of rewritings. For example, we show that OMQs with ontologies
of depth 1 correspond to hypergraph programs of degree ≤ 2 (in which every vertex
belongs to at most two hyperedges), and that the latter are polynomially equivalent to
nondeterministic branching programs (NBPs). Since NBPs compute the Boolean func-
tions in the class NL/poly ⊆ P/poly, the tree-witness rewritings for OMQs with ontolo-
gies of depth 1 can be equivalently transformed into polynomial-size NDL-rewritings.
On the other hand, there exist monotone Boolean functions computable by polynomial-
size NBPs but not by polynomial-size monotone Boolean formulas, which establishes

7C/poly is the non-uniform analogue of a complexity class C.
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a superpolynomial lower bound for PE-rewritings. It also follows that all such OMQs
have polynomial-size FO-rewritings iff NC1 = NL/poly.

The succinctness results in Fig. 2 (a), characterising the complexity of the reduction
to plain database query evaluation, are complemented by the combined complexity
results in Fig. 2 (b). Combined complexity measures the time and space required for
a best possible algorithm to answer an OMQ Q = (T , q) from the given class over a
data instance A, as a function of the size of Q and A. It is known [Calvanese et al.
2007; Artale et al. 2009] that the general OMQ answering problem is NP-complete
for combined complexity—that is, of the same complexity as standard CQ evaluation
in databases. However, answering tree-shaped OMQs turns out to be NP-hard [Kikot
et al. 2011] in contrast to the well-known tractability of evaluating tree-shaped and
bounded-treewidth CQs [Yannakakis 1981; Chekuri and Rajaraman 2000; Gottlob
et al. 1999]. Here, we prove that, surprisingly, answering OMQs with ontologies of
bounded depth and CQs of bounded treewidth is no harder than evaluating CQs of
bounded treewidth, that is, LOGCFL-complete. By restricting further the class of CQs
to trees with a bounded number of leaves, we obtain an even better NL-completeness
result, which matches the complexity of evaluating the underlying CQs. If we consider
bounded-leaf tree-shaped CQs coupled with arbitrary OWL 2 QL ontologies, then the
OMQ answering problem remains tractable, LOGCFL-complete to be more precise.

The plan of the paper is as follows. Section 2 gives formal definitions of OWL 2 QL ,
OMQs and rewritings. Section 3 defines the tree-witness rewriting. Section 4 reduces
the succinctness problem for OMQ rewritings to the succinctness problem for hyper-
graph Boolean functions associated with tree-witness rewritings, and introduces hy-
pergraph programs for computing these functions. Section 5 establishes a correspon-
dence between the OMQ classes in Fig. 2 and the structure of the corresponding hy-
pergraph functions and programs. Section 6 characterises the computational power of
hypergraph programs in these classes by relating them to standard models of compu-
tation for Boolean functions. Section 7 uses the results of the previous three sections
and some known facts from circuit complexity to obtain the upper and lower bounds
on the size of PE-, NDL- and FO-rewritings in Fig. 2 (a). Section 8 establishes the
combined complexity results in Fig. 2 (b). We conclude in Section 9 by discussing the
obtained succinctness and complexity results and formulating a few open problems.
All omitted proofs can be found in the appendix.

2. OWL 2 QL ONTOLOGY-MEDIATED QUERIES AND FIRST-ORDER REWRITABILITY
In first-order logic, any OWL 2 QL ontology (or TBox in description logic parlance), T ,
can be given as a finite set of sentences (often called axioms) of the following forms

∀x
(
τ(x)→ τ ′(x)

)
, ∀x

(
τ(x) ∧ τ ′(x)→ ⊥

)
,

∀x, y
(
%(x, y)→ %′(x, y)

)
, ∀x, y

(
%(x, y) ∧ %′(x, y)→ ⊥

)
,

∀x %(x, x), ∀x
(
%(x, x)→ ⊥

)
,

where the formulas τ(x) (called classes or concepts) and %(x, y) (called properties or
roles) are defined, using unary predicates A and binary predicates P , by the grammars

τ(x) ::= > | A(x) | ∃y %(x, y) and %(x, y) ::= > | P (x, y) | P (y, x). (1)

(Strictly speaking, OWL 2 QL ontologies can also contain inequalities a 6= b, for con-
stants a and b. However, they do not have any impact on the problems considered in
this paper, and so will be ignored.)

Example 2.1. To illustrate, we show a snippet of the NPD FactPages ontology:

∀x (GasPipeline(x)→ Pipeline(x)),
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∀x (FieldOwner(x)↔ ∃y ownerForField(x, y)),

∀y (∃x ownerForField(x, y)→ Field(y)),

∀x, y (shallowWellboreForField(x, y)→ wellboreForField(x, y)),

∀x, y (isGeometryOfFeature(x, y)↔ hasGeometry(y, x)).

To simplify presentation, in our ontologies we also use sentences of the form

∀x
(
τ(x)→ ζ(x)

)
, (2)

where

ζ(x) ::= τ(x) | ζ1(x) ∧ ζ2(x) | ∃y
(
%1(x, y) ∧ · · · ∧ %k(x, y) ∧ ζ(y)

)
.

It is readily seen that such sentences are just syntactic sugar and can be eliminated by
means of polynomially many fresh predicates. Indeed, any axiom of the form (2) with

ζ(x) = ∃y
(
%1(x, y) ∧ · · · ∧ %k(x, y) ∧ ζ ′(y)

)
can be (recursively) replaced by the following axioms, for a fresh Pζ and i = 1, . . . , k:

∀x
(
τ(x)→ ∃y Pζ(x, y)

)
, ∀x, y

(
Pζ(x, y)→ %i(x, y)

)
, ∀y

(
∃xPζ(x, y)→ ζ ′(y)

)
(3)

because any first-order structure is a model of (2) iff it is a restriction of some model
of (3) to the signature of (2). The result of eliminating the syntactic sugar from an
ontology T is called the normalisation of T . We always assume that all of our ontologies
are normalised even though this is not done explicitly; however, we stipulate (without
loss of generality) that the normalisation predicates Pζ never occur in the data.

When writing ontology axioms, we usually omit the universal quantifiers. We typi-
cally use the characters P , R to denote binary predicates, A, B, C for unary predicates,
and S for either of them. For a binary predicate P , we write P− to denote its inverse;
that is, P (x, y) = P−(y, x), for any x and y, and P−− = P .

A conjunctive query (CQ) q(x) is a formula of the form ∃y ϕ(x,y), where ϕ is a con-
junction of atoms S(z) all of whose variables are among x, y.

Example 2.2. Here is a (fragment of a) typical CQ from the NPD FactPages:

q(x1, x2, x3) = ∃y, z
[
ProductionLicence(x1) ∧ ProductionLicenceOperator(y) ∧

dateOperatorValidFrom(y, x2) ∧ licenceOperatorCompany(y, z) ∧
name(z, x3) ∧ operatorForLicence(y, x1)

]
.

To simplify presentation and without loss of generality, we assume that CQs do not
contain constants. Where convenient, we regard a CQ as the set of its atoms; in par-
ticular, |q| is the size of q. The variables in x are called the answer variables of a CQ
q(x). A CQ without answer variables is called Boolean. With every CQ q, we associate
its Gaifman graph Gq whose vertices are the variables of q and whose edges are the
pairs {u, v} such that P (u, v) ∈ q, for some P . A CQ q is connected if the graph Gq is
connected. We call q tree-shaped if Gq is a tree8, and if Gq is a tree with at most two
leaves, then q is said to be linear.

An OWL 2 QL ontology-mediated query (OMQ) is a pair Q(x) = (T , q(x)), where T
is an OWL 2 QL ontology and q(x) a CQ. The size of Q is defined as |Q| = |T | + |q|,
where |T | is the number of symbols in T .

A data instance, A, is a finite set of unary or binary ground atoms (called an ABox
in description logic). We denote by ind(A) the set of individual constants in A. Given

8Tree-shaped CQs also go by the name of acyclic queries [Yannakakis 1981; Bienvenu et al. 2013].
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an OMQ Q(x) and a data instance A, a tuple a of constants from ind(A) of length |x|
is called a certain answer to Q(x) over A if I |= q(a) for all models I of T ∪ A; in this
case we write T ,A |= q(a). If q(x) is Boolean, a certain answer to Q over A is ‘yes’ if
T ,A |= q, and ‘no’ otherwise. We remind the reader [Libkin 2004] that, for any CQ
q(x) = ∃y ϕ(x,y), any first-order structure I and any tuple a from its domain ∆, we
have I |= q(a) iff there is a map h : x∪y → ∆ such that (i) if S(z) ∈ q then I |= S(h(z)),
and (ii) h(x) = a. If (i) is satisfied then h is called a homomorphism from q to I, and
we write h : q → I; if (ii) also holds, we write h : q(a)→ I.

Central to OBDA is the notion of OMQ rewriting that reduces the problem of finding
certain answers to standard query evaluation. More precisely, an FO-formula q′(x),
possibly with equality, =, is an FO-rewriting of an OMQ Q(x) = (T , q(x)) if, for any
data instanceA (without the normalisation predicates for T ) and any tuple a in ind(A),

T ,A |= q(a) iff IA |= q′(a), (4)

where IA is the first-order structure over the domain ind(A) such that IA |= S(a)
iff S(a) ∈ A, for any ground atom S(a). As A is arbitrary, this definition implies,
in particular, that the rewriting must be constant-free. If q′(x) is a positive existen-
tial formula—that is, q′(x) = ∃y ϕ(x,y) with ϕ constructed from atoms (possibly with
equality) using ∧ and ∨ only—we call it a PE-rewriting of Q(x). A PE-rewriting whose
matrix ϕ is a disjunction of conjunctions is known as a UCQ-rewriting; if ϕ takes the
form ∧∨∧∨ we call it a Π4-rewriting. The size |q′| of q′ is the number of symbols in it.

We also consider rewritings in the form of nonrecursive datalog queries. Re-
call [Abiteboul et al. 1995] that a datalog program, Π, is a finite set of Horn clauses
∀x (γ1∧· · ·∧γm → γ0), where each γi is an atom P (x1, . . . , xl) with xi ∈ x. The atom γ0 is
the head of the clause, and γ1, . . . , γm its (possibly empty) body. A predicate S depends
on S′ in Π if Π has a clause with S in the head and S′ in the body; Π is nonrecursive if
this dependence relation is acyclic.

Let Q = (T , q(x)) be an OMQ, Π a constant-free nonrecursive program, and G(x) a
predicate. The pair q′(x) = (Π, G(x)) is an NDL-rewriting ofQ if, for any data instance
A and any tuple a in ind(A), we have T ,A |= q(a) iff Π(IA) |= G(a), where Π(IA) is
the structure with domain ind(A) obtained by closing IA under the clauses in Π. Every
PE-rewriting can clearly be represented as an NDL-rewriting of linear size.

Remark 2.3. As defined, FO- and PE-rewritings are not necessarily domain-
independent queries, while NDL-rewritings are not necessarily safe [Abiteboul et al.
1995]. For example, (x = x) is a PE-rewriting of the OMQ ({∀xP (x, x)}, P (x, x)), and
the program ({> → A(x)}, A(x)) is an NDL-rewriting of the OMQ ({> → A(x)}, A(x)).
Rewritings can easily be made domain-independent and safe by relativising their vari-
ables to the predicates in the data signature (relational schema). For instance, if this
signature is {A,P}, then a domain-independent relativisation of (x = x) is the PE-
rewriting

(
A(x) ∨ ∃y P (x, y) ∨ ∃y P (y, x)

)
∧ (x = x). Note that if we exclude from

OWL 2 QL reflexivity statements and axioms with> on the left-hand side, then rewrit-
ings are guaranteed to be domain-independent, and no relativisation is required. In
any case, rewritings are always interpreted under the active domain semantics adopted
in databases; see (4).

As mentioned in the introduction, the OWL 2 QL profile of OWL 2 was designed to
ensure FO-rewritability of all OMQs with ontologies in the profile or, equivalently,
OMQ answering in AC0 for data complexity. It should be clear, however, that for the
OBDA approach to work in practice, the rewritings of OMQs must be of ‘reasonable
shape and size’. Indeed, it was observed experimentally [Calvanese et al. 2011] and
also established theoretically [Kikot et al. 2012b] that sometimes the rewritings are
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prohibitively large—exponentially-large in the size of the original CQ, to be more pre-
cise. These facts imply that, in the context of OBDA, we should actually be interested
not in arbitrary but in polynomial-size rewritings. In complexity-theoretic terms, the
focus should not only be on the data complexity of OMQ answering, which is an ap-
propriate measure for database query evaluation (where queries are indeed usually
small) [Vardi 1982], but also on the combined complexity that takes into account the
contribution of ontologies and queries.

3. TREE-WITNESS REWRITING
Now we define one particular rewriting of OWL 2 QL OMQs that will play a key role in
the succinctness and complexity analysis later on in the paper. This rewriting is a mod-
ification of the tree-witness PE-rewriting originally introduced by Kikot et al. [2012a]
(cf. [Lutz 2008; Kontchakov et al. 2010; König et al. 2015b] for rewritings based on
similar ideas).

We begin with two simple observations that will help us remove unneeded clutter
from the definitions. Every OWL 2 QL ontology T consists of two parts: T −, which
contains all the sentences with ⊥, and the remainder, T +, which is consistent with
every data instance. For any ψ(z) → ⊥ in T −, consider the Boolean CQ ∃z ψ(z). It
is not hard to see that, for any OMQ (T , q(x)) and data instance A, a tuple a is a
certain answer to (T , q(x)) over A iff either T +,A |= q(a) or T +,A |= ∃z ψ(z), for some
ψ(z) → ⊥ in T −; see [Calı̀ et al. 2012a] for more details. Thus, from now on we will
assume that, in all our ontologies T , the ‘negative’ part T − is empty, and so they are
consistent with all data instances.

The second observation will allow us to restrict the class of data instances we need to
consider when rewriting OMQs. In general, if we only require condition (4) to hold for
any data instance A from some class A, then we call q′(x) a rewriting of Q(x) over A.
Such classes of data instances can be defined, for example, by the integrity constraints
in the database schema and the mapping [Rodriguez-Muro et al. 2013]. We say that a
data instance A is complete9 for an ontology T if T ,A |= S(a) implies S(a) ∈ A, for any
ground atom S(a) with a from ind(A). The following proposition means that from now
on we will only consider rewritings over complete data instances.

PROPOSITION 3.1. If q′(x) is an NDL-rewriting of Q(x) = (T , q(x)) over complete
data instances, then there is an NDL-rewriting q′′(x) of Q(x) over arbitrary data in-
stances with |q′′| ≤ |q′| · |T |. A similar result holds for PE- and FO-rewritings.

PROOF. Let (Π, G(x)) be an NDL-rewriting of Q(x) over complete data instances.
Denote by Π∗ the result of replacing each predicate S in Π with a fresh predicate S∗.
Define Π′ to be the union of Π∗ and the following clauses for predicates in Π:

τ(x)→ A∗(x), if T |= τ(x)→ A(x),

%(x, y)→ P ∗(x, y), if T |= %(x, y)→ P (x, y),

> → P ∗(x, x), if T |= P (x, x)

(the empty body is denoted by >). It is readily seen that (Π′, G∗(x)) is an NDL-
rewriting of Q(x) over arbitrary data instances. The cases of PE- and FO-rewritings
are similar except that we replace A(x) and P (x, y) with∨

T |=τ(x)→A(x)

τ(x) and
∨

T |=%(x,y)→P (x,y)

%(x, y) ∨
∨

T |=P (x,x)

(x = y),

respectively (the empty disjunction is, by definition, ⊥).

9Rodriguez-Muro et al. [2013] used the term ‘H-completeness’; see also [König et al. 2015a].
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Fig. 3. Canonical models in Example 3.2.

As is well-known [Abiteboul et al. 1995], every pair (T ,A) of an ontology T and
data instance A possesses a canonical model (or chase) CT ,A such that T ,A |= q(a)
iff CT ,A |= q(a), for all CQs q(x) and a in ind(A). In our proofs, we use the following
definition of CT ,A, where without loss of generality we assume that T does not contain
binary predicates P such that T |= ∀x, y P (x, y). Indeed, occurrences of such P in T
can be replaced by > and occurrences of P (x, y) in CQs can simply be removed without
changing certain answers over any data instance (provided that x and y occur in the
remainder of the query).

The domain ∆CT ,A of the canonical model CT ,A consists of ind(A) and the witnesses,
or labelled nulls, introduced by the existential quantifiers in (the normalisation of) T .
More precisely, the labelled nulls in CT ,A are finite words of the form w = a%1 . . . %n
(n ≥ 1) such that
– a ∈ ind(A) and T ,A |= ∃y %1(a, y), but T ,A 6|= %1(a, b) for any b ∈ ind(A);
– T 6|= %i(x, x) for 1 ≤ i ≤ n;
– T |= ∃x %i(x, y)→ ∃z %i+1(y, z) and T 6|= %i(y, x)→ %i+1(x, y) for 1 ≤ i < n.

Every individual name a ∈ ind(A) is interpreted in CT ,A by itself, and unary and binary
predicates are interpreted as follows: for any u, v ∈ ∆CT ,A ,
– CT ,A |= A(u) iff either u ∈ ind(A) and T ,A |= A(u), or u = w%, for some w and % with
T |= ∃y %(y, x)→ A(x);

– CT ,A |= P (u, v) iff one of the following holds: (i) u, v ∈ ind(A) and T ,A |= P (u, v);
(ii) u = v and T |= P (x, x); (iii) v = u% and T |= %(x, y) → P (x, y); (iv) u = v%− and
T |= %(x, y)→ P (x, y).

Example 3.2. Consider the following ontologies:

T1 = { A(x)→ ∃y
(
R(x, y) ∧Q(y, x)

)
},

T2 = { A(x)→ ∃y R(x, y), ∃xR(x, y)→ ∃z Q(z, y) },
T3 = { A(x)→ ∃y R(x, y), ∃xR(x, y)→ ∃z R(y, z) }.

The canonical models of (Ti,A), for A = {A(a)}, i = 1, 2, 3, are shown in Fig. 3, where
ζ(x) = ∃y (R(x, y)∧Q(y, x)) and Pζ is the corresponding normalisation predicate. When
depicting canonical models, we use for constants and for labelled nulls.

For any ontology T and any formula τ(x) given by (1), we denote by Cτ(a)
T the canon-

ical model of (T ∪ {A(x)→ τ(x)}, {A(a)}), for a fresh unary predicate A. We say that T
is of depth k, 1 ≤ k < ω, if (i) there is no % with T |= %(x, x), (ii) at least one of the Cτ(a)

T
contains a word a%1 . . . %k, but (iii) none of the Cτ(a)

T has such a word of greater length.
Thus, T1 in Example 3.2 is of depth 1, T2 of depth 2, while T3 is not of any finite depth.

Ontologies of infinite depth generate infinite canonical models. However, OWL 2 QL
has the polynomial derivation depth property (PDDP) in the sense that there is a poly-
nomial p such that, for any OMQ Q(x) = (T , q(x)), data instance A and a in ind(A),
we have T ,A |= q(a) iff q(a) holds in the sub-model of CT ,A whose domain consists
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of words of the form a%1 . . . %n with n ≤ p(|Q|) [Johnson and Klug 1982; Calı̀ et al.
2012a]. (In general, the bounded derivation depth property of an ontology language is
a necessary and sufficient condition of FO-rewritability [Gottlob et al. 2014].)

We call a set ΩQ of words of the form w = %1 . . . %n fundamental for Q if, for any A
and a in ind(A), we have T ,A |= q(a) iff q(a) holds in the sub-model of CT ,A with the
domain {aw | a ∈ ind(A), w ∈ ΩQ}. We say that a class Q of OMQs has the polynomial
fundamental set property (PFSP) if there is a polynomial p such that every Q ∈ Q has
a fundamental set ΩQ with |ΩQ| ≤ p(|Q|). The class of all OMQs (even with ontologies
of finite depth and tree-shaped CQs) does not have the PFSP [Kikot et al. 2012b]. On
the other hand, it should be clear that the class of OMQs with ontologies of bounded
depth does enjoy the PFSP. A less trivial example is given by the following theorem,
which is an immediate consequence of Theorem 3.7 below:

THEOREM 3.3. The class of OMQs whose ontologies do not contain axioms of the
form %(x, y)→ %′(x, y) (and syntactic sugar (2)) enjoys the PFSP.

We are now in a position to define the tree-witness PE-rewriting of OWL 2 QL OMQs.
Suppose we are given an OMQ Q(x) = (T , q(x)) with q(x) = ∃y ϕ(x,y). For a pair
t = (tr, ti) of disjoint sets of variables in q, with ti ⊆ y10 and ti 6= ∅ (tr can be empty), set

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

If qt is a minimal subset of q for which there is a homomorphism h : qt → Cτ(a)
T such

that tr = h−1(a) and qt contains every atom of q with at least one variable from ti, then
we call t = (tr, ti) a tree witness forQ generated by τ (and induced by h). Observe that if
tr = ∅ then qt is a connected component of q; in this case we call t detached. Note also
that the same tree witness t = (tr, ti) can be generated by different τ . Now, we set

twt(tr) = ∃z
(∧
x∈tr

(x = z) ∧
∨

t generated by τ

τ(z)
)
. (5)

The variables in ti do not occur in twt and are called internal. The variables in tr, if any,
are called root variables. Note that no answer variable in q(x) can be internal. The
length |twt| of twt is O(|Q|). Tree witnesses t and t′ are conflicting if qt∩qt′ 6= ∅. Denote
by ΘQ the set of tree witnesses for Q(x). A subset Θ ⊆ ΘQ is independent if no pair of
distinct tree witnesses in it is conflicting. Let qΘ =

⋃
t∈Θ qt. The following PE-formula

is called the tree-witness rewriting of Q(x) over complete data instances:

qtw(x) =
∨

Θ⊆ΘQ independent

∃y
( ∧
S(z)∈q\qΘ

S(z) ∧
∧
t∈Θ

twt(tr)
)
. (6)

Remark 3.4. As the normalisation predicates Pζ cannot occur in data instances,
we can omit from (5) all the disjuncts with Pζ . For the same reason, the tree witnesses
generated only by concepts with normalisation predicates will be ignored in the sequel.

Example 3.5. Consider the OMQ Q(x1, x2) = (T , q(x1, x2)) with

T =
{
A1(x)→ ∃y

(
R1(x, y) ∧Q(x, y)

)︸ ︷︷ ︸
ζ1(x)

, A2(x)→ ∃y
(
R2(x, y) ∧Q(y, x)

)︸ ︷︷ ︸
ζ2(x)

}
,

q(x1, x2) = ∃y1, y2

(
R1(x1, y1) ∧Q(y2, y1) ∧R2(x2, y2)

)
.

The CQ q is shown in Fig. 4 alongside CA1(a)
T and CA2(a)

T . When depicting CQs, we use
for answer variables and for existentially quantified variables. There are two tree

10We (ab)use set-theoretic notation for lists and, for example, write ti ⊆ y to say that every element of ti is
an element of y.
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t1 t2x1

y1

y2

x2

R1 Q

R2

A2
a

aPζ2

R2, Q− Pζ2 CA2(a)
T

A1

a

aPζ1

R1, QPζ1CA1(a)
T

Fig. 4. Tree witnesses in Example 3.5.

witnesses, t1 and t2, for Q with

qt1 =
{
R1(x1, y1), Q(y2, y1)

}
and qt2 =

{
Q(y2, y1), R2(x2, y2)

}
shown in Fig. 4 by the dark and light shading, respectively. The tree witness t1 = (t1r , t

1
i )

with t1r = {x1, y2} and t1i = {y1} is generated by A1(x), which gives

twt1(x1, y2) = ∃z
(
A1(z) ∧ (x1 = z) ∧ (y2 = z)

)
.

(Recall that although t1 is also generated by ∃y Pζ1(y, z), we do not include it in the
disjunction in twt1 because Pζ1 cannot occur in data instances.) Symmetrically, the tree
witness t2 gives

twt2(x2, y1) = ∃z
(
A2(z) ∧ (x2 = z) ∧ (y1 = z)

)
.

As t1 and t2 are conflicting, ΘQ contains three independent subsets: ∅, {t1} and {t2}.
Thus, we obtain the following tree-witness rewriting qtw(x1, x2) of Q over complete
data instances:

∃y1, y2

[(
R1(x1, y1) ∧Q(y2, y1) ∧R2(x2, y2)

)
∨
(
twt1 ∧R2(x2, y2)

)
∨
(
R1(x1, y1) ∧ twt2

)]
.

THEOREM 3.6 ([KIKOT ET AL. 2012A]). For any OMQ Q(x) = (T , q(x)), any data
instance A, which is complete for T , and any tuple a from ind(A), we have T ,A |= q(a)
iff IA |= qtw(a). In other words, qtw is a rewriting of Q(x) over complete data instances.

Intuitively, for every homomorphism h : q(a)→ CT ,A, the sub-CQs of q mapped by h
to sub-models of the form Cτ(a)

T define an independent set Θ of tree witnesses; see
Fig. 5. Conversely, if Θ is such a set, then the homomorphisms corresponding to the
tree witnesses in Θ can be pieced together into a homomorphism from q(a) to CT ,A—
provided that the S(z) from q \ qΘ and the twt(tr) for t ∈ Θ hold in IA.

q

qt1

qt2

CT ,ACτ1(a1)
T

Cτ2(a2)
T

h

h

Fig. 5. Tree-witness rewriting.
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Fig. 6. The query qn(x0) (all edges are labelled by R), the canonical model CA(a)
T (the normalisation predi-

cates are not shown) and two ways of mapping a branch of the query to the canonical model in Example 3.8.

The size of the tree-witness PE-rewriting qtw depends on the number of tree wit-
nesses in the given OMQ Q = (T , q) and, more importantly, on the cardinality of ΘQ
as we have |qtw| = O(2|ΘQ| · |Q|2) with |ΘQ| ≤ 3|q|.

THEOREM 3.7. OMQs Q = (T , q), in which T does not contain axioms of the form
%(x, y)→ %′(x, y) (and syntax sugar (2)), have at most 3|q| tree witnesses.

PROOF. As observed above, there can be only one detached tree witness for each
connected component of q. As T has no axioms of the form %(x, y) → %′(x, y), any two
points in Cτ(a)

T can be R-related for at most one R, and so no point can have more than
one R-successor, for any R. It follows that, for every atom P (x, y) in q, there can be at
most one tree witness t = (tr, ti) with P (x, y) ∈ qt, x ∈ tr and y ∈ ti (P−(y, x) may give
another tree witness).

OMQs with arbitrary axioms can have exponentially many tree witnesses:

Example 3.8. Consider the OMQ Qn = (T , qn(x0)), where

T =
{
A(x)→ ∃y

(
R(y, x) ∧ ∃z (R(y, z) ∧B(z))

)}
,

qn(x0) = ∃y,y1,x1,y2
(
B(y) ∧

∧
1≤k≤n

(
R(y1

k, y) ∧R(y1
k, x

1
k) ∧R(y2

k, x
1
k) ∧R(y2

k, x
0
k)
))

and xi and yi denote vectors of n variables xik and yik, for 1 ≤ k ≤ n, respectively. The
CQ is shown in Fig. 6 alongside the canonical model CA(a)

T . OMQ Qn has at least 2n

tree witnesses: for any α = (α1, . . . , αn) ∈ {0, 1}n, there is a tree witness (tαr , t
α
i ) with

tαr = {xαkk | 1 ≤ k ≤ n}. Note, however, that the tree-witness rewriting of Qn can be
equivalently transformed into the following polynomial-size PE-rewriting:

qn(x0) ∨ ∃z
[
A(z) ∧

∧
1≤i≤n

(
(x0
i = z) ∨ ∃y (R(y, x0

i ) ∧R(y, z))
)]
.

If any two tree witnesses for an OMQ Q are compatible in the sense that either
they are non-conflicting or one is included in the other, then qtw can be equivalently
transformed to the PE-rewriting

∃y
∧

S(z)∈q

(
S(z) ∨

∨
t∈ΘQ with S(z)∈qt

twt(tr)
)

of size O(|ΘQ| · |Q|2).

We now analyse transformations of this kind in the setting of Boolean functions.

4. OMQ REWRITINGS AS BOOLEAN FUNCTIONS
For any OMQ Q(x) = (T , q(x)), we define Boolean functions fOQ and fMQ such that:
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R1(x1, y1)

Q(y2, y1)

R2(y2, x2)

t1 t2

Fig. 7. The hypergraph H(Q) for Q from Example 3.5.

– if fOQ is computed by a Boolean formula (monotone formula or monotone circuit) Φ,
then Q has an FO- (respectively, PE- or NDL-) rewriting of size O(|Φ| · |Q|);

– if q′ is an FO- (PE- or NDL-) rewriting of Q, then fMQ is computed by a Boolean
formula (respectively, monotone formula or monotone circuit) of size O(|q′|).

We remind the reader (for details see, e.g., [Arora and Barak 2009; Jukna 2012]) that
an n-ary Boolean function, for n ≥ 1, is any function from {0, 1}n to {0, 1}. A Boolean
function f is monotone if f(α) ≤ f(β) for all α ≤ β, where ≤ is the component-wise
≤ on vectors of {0, 1}. A Boolean circuit, C, is a directed acyclic graph whose vertices
are called gates. Each gate is labelled with a propositional variable, a constant 0 or 1,
or with NOT, AND or OR. Gates labelled with variables and constants have in-degree 0
and are called inputs; NOT-gates have in-degree 1, while AND- and OR-gates have in-
degree 2 (unless otherwise specified). One of the gates in C is distinguished as the
output gate. Given an assignment α ∈ {0, 1}n to the variables, we compute the value of
each gate in C under α as usual in Boolean logic. The output C(α) of C on α ∈ {0, 1}n
is the value of the output gate. We usually assume that the gates g1, . . . , gm of C are
ordered in such a way that g1, . . . , gn are input gates; each gate gi, for i ≥ n, gets inputs
from gates gj1 , . . . , gjk with j1, . . . , jk < i, and gm is the output gate. We say that C
computes an n-ary Boolean function f if C(α) = f(α) for all α ∈ {0, 1}n. The size |C|
of C is the number of gates in C. A circuit is monotone if it contains only inputs, AND-
and OR-gates. Boolean formulas can be thought of as circuits in which every logic gate
has at most one outgoing edge. Any monotone circuit computes a monotone function,
and any monotone Boolean function can be computed by a monotone circuit.

4.1. Hypergraph Functions
Let H = (V,E) be a hypergraph with vertices v ∈ V and hyperedges e ∈ E ⊆ 2V . A
subset E′ ⊆ E is said to be independent if e ∩ e′ = ∅, for any distinct e, e′ ∈ E′. The set
of vertices that occur in the hyperedges of E′ is denoted by VE′ . For each vertex v ∈ V
and each hyperedge e ∈ E, we take propositional variables pv and pe, respectively. The
hypergraph function fH for H is given by the monotone Boolean formula

fH =
∨

E′ independent

( ∧
v∈V \VE′

pv ∧
∧
e∈E′

pe

)
. (7)

The tree-witness PE-rewriting qtw of any OMQ Q(x) = (T , q(x)) defines a hyper-
graph whose vertices are the atoms of q and hyperedges are the sets qt, where t is a
tree witness for Q. We denote this hypergraph by H(Q) and call fH(Q) the tree-witness
hypergraph function for Q. To simplify notation, we write fOQ instead of fH(Q). Note
that formula (7) defining fOQ is obtained from rewriting (6) by regarding the atoms
S(z) in q and tree-witness formulas twt as propositional variables. We denote these
variables by pS(z) and pt (rather than pv and pe), respectively.

Example 4.1. For the OMQ Q in Example 3.5, the hypergraph H(Q) has 3 vertices
(one for each atom in the query) and 2 hyperedges (one for each tree witness) shown in
Fig. 7. The tree-witness hypergraph function for Q is as follows:
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fOQ =
(
pR1(x1,y1) ∧ pQ(y2,y1) ∧ pR2(x2,y2)

)
∨
(
pt1 ∧ pR2(x2,y2)

)
∨
(
pR1(x1,y1) ∧ pt2

)
.

Suppose the function fOQ for an OMQ Q(x) is computed by a Boolean formula Φ.
Consider the first-order formula Φ∗(x) obtained by replacing each pS(z) in Φ with S(z),
each pt with twt, and adding the appropriate prefix ∃y. By comparing (7) and (6), we
see that Φ∗(x) is an FO-rewriting of Q(x) over data instances that are complete over
T . This gives claim (i) of the following theorem:

THEOREM 4.2. (i) If fOQ is computed by a (monotone) Boolean formula Φ, then there
is a (PE-) FO-rewriting of Q(x) of size O(|Φ| · |Q|).

(ii) If fOQ is computed by a monotone Boolean circuit C, then there is an NDL-
rewriting of Q(x) of size O(|C| · |Q|).

PROOF. (ii) Let t1, . . . , tl be tree witnesses for Q(x) = (T , q(x)), where
q(x) = ∃y

∧n
i=1 Si(zi). We assume that the gates g1, . . . , gn of C are the inputs

pS1(z1), . . . , pSn(zn) for the atoms, the gates gn+1, . . . , gn+l are the inputs pt1 , . . . , ptl for
the tree witnesses and gn+l+1, . . . , gm are AND- and OR-gates. Denote by Π the following
NDL-program, where z = x ∪ y:
– Si(zi)→ Gi(z), for 0 < i ≤ n;
– τ(u) → Gi+m(z[tjr /u]), for 0 < j ≤ l and τ generating tj , where z[tjr /u] is the result

of replacing each z ∈ tjr in z with u;

–
{
Gj(z) ∧Gk(z)→ Gi(z), if gi = gj ∧ gk,
Gj(z)→ Gi(z) and Gk(z)→ Gi(z), if gi = gj ∨ gk,

for n+ l < i ≤ m;

– Gm(z)→ G(x).
It is not hard to see that (Π, G(x)) is an NDL-rewriting of Q(x).

Thus, the problem of constructing polynomial-size rewritings of OMQs reduces to
finding polynomial-size (monotone) formulas or monotone circuits for the correspond-
ing functions fOQ. Note, however, that fOQ contains a variable pt for every tree witness t,
which makes this reduction useless for OMQs with exponentially many tree witnesses.
To be able to deal with such OMQs, we slightly modify the tree-witness rewriting.

Suppose t = (tr, ti) is a tree witness for Q = (T , q) induced by a homomorphism
h : qt → C

τ(a)
T . We say that t is %-initiated if h(z) is of the form a%w, for every (equiv-

alently, some) variable z ∈ ti. For such %, we define a formula %∗(x) by taking the
disjunction of τ(x) with T |= τ(x) → ∃y %(x, y). Again, the disjunction includes only
those τ(x) that do not contain normalisation predicates (even though % itself can be
one).

Example 4.3. Consider the OMQ Q(x) = (T , q(x)) with

T =
{
∃y Q(x, y)→ ∃y P (x, y), P (x, y)→ R(x, y)

}
and q(x) = ∃y R(x, y).

As shown in Fig. 8, the tree witness t = ({x}, {y}) for Q(x) is generated by ∃y Q(x, y),
∃y P (x, y) and ∃y R(x, y); it is also P - and R-initiated, but not Q-initiated. We have:

P ∗(x) = ∃y Q(x, y) ∨ ∃y P (x, y) and R∗(x) = ∃y Q(x, y) ∨ ∃y P (x, y) ∨ ∃y R(x, y).

The modified tree-witness rewriting forQ(x) = (T , q(x)), denoted q′tw(x), is obtained
by replacing (5) in (6) with the formula

tw′t(tr, ti) =
∧

R(z,z′)∈qt

(z = z′) ∧
∨

t is %-initiated

∧
z∈tr∪ti

%∗(z). (5′)
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∃y Q(a, y)
a

aQ aP

Q P,R

∃y P (a, y)
a

aP

P,R

∃y R(a, y)
a

aR

R

Fig. 8. Canonical models in Example 4.3.

Note that unlike (5), this formula contains the variables in both ti and tr, which must
be equal under every satisfying assignment. We associate with q′tw(x) the monotone
Boolean function fHQ given by the formula obtained from (7) by replacing each variable
pv with the respective pS(z), for S(z) ∈ q, and each variable pe with the formula∧

R(z,z′)∈qt

pz=z′ ∧
∨

t is %-initiated

∧
z∈tr∪ti

p%∗(z), (8)

for the respective tree witness t = (tr, ti) for Q(x), where pz=z′ and p%∗(z) are proposi-
tional variables. Clearly, the number of variables in fHQ is polynomial in |Q|.

Example 4.4. For the OMQ Q(x) in the Example 3.5, we have:

fHQ =
(
pR1(x1,y1) ∧ pQ(y2,y1) ∧ pR2(x2,y2)

)
∨((

px1=y1
∧ py2=y1

∧
∧

z∈{x1,y1,y2}

pP∗ζ1 (z)

)
∧ pR2(x2,y2)

)
∨

(
pR1(x1,y1) ∧

(
py2=y1

∧ px2=y2
∧

∧
z∈{y1,y2,x2}

pP∗ζ2 (z)

))
.

The proof of the following theorem is given in Appendix A:

THEOREM 4.5. (i) For any OMQ Q(x), the formulas qtw(x) and q′tw(x) are equiva-
lent, and so q′tw(x) is a PE-rewriting of Q(x) over complete data instances.

(ii) Theorem 4.2 continues to hold for fOQ replaced by fHQ.

Finally, we observe that although fOQ and fHQ are defined by exponential-size formu-
las, each of these functions can be computed by a nondeterministic polynomial algo-
rithm (in the number of propositional variables). Indeed, given truth-values for the
pS(z) and pt in fOQ, guess a set Θ of at most |q| tree witnesses and check whether (i) Θ is
independent, (ii) pt = 1 for all t ∈ Θ, and (iii) every S(z) with pS(z) = 0 belongs to some
t ∈ Θ. The function fHQ is computed similarly except that, in (ii), we check whether the
polynomial-size formula (8) is true under the given truth-values for every t ∈ Θ.

4.2. Primitive Evaluation Functions
To obtain lower bounds on the size of rewritings, we associate with every OMQ Q a
third Boolean function fMQ that describes the result of evaluating Q on data instances
with a single individual constant. Let γ ∈ {0, 1}n be a vector assigning the truth-value
γ(Si) to each unary or binary predicate Si in Q. We associate with γ the data instance

A(γ) =
{
Ai(a) | γ(Ai) = 1

}
∪
{
Pi(a, a) | γ(Pi) = 1

}
and set fMQ(γ) = 1 iff T ,A(γ) |= q(a), where a is the |x|-tuple of as. We call fMQ the
primitive evaluation function for Q.

THEOREM 4.6. (i) If q′ is a (PE-) FO-rewriting of Q, then fMQ can be computed by a
(monotone) Boolean formula of size O(|q′|).
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(ii) If q′ is an NDL-rewriting of Q, then fMQ can be computed by a monotone Boolean
circuit of size O(|q′|).

PROOF. (i) Let q′ be an FO-rewriting of Q. We eliminate the quantifiers in q′ by
replacing each subformula of the form ∃xψ(x) and ∀xψ(x) in q′ with ψ(a). We then
replace each a = a with > and each atom of the form A(a) and P (a, a) with the corre-
sponding propositional variable. The resulting Boolean formula clearly computes fMQ. If
q′ is a PE-rewriting ofQ, then the result is a monotone Boolean formula computing fMQ.

(ii) If (Π, G) is an NDL-rewriting of Q, then we replace all variables in Π with a and
then perform the replacement described in (i). We now turn the resulting propositional
NDL-program Π′ into a monotone circuit computing fMQ. For every (propositional) vari-
able p occurring in the head of a rule in Π′, we take an appropriate number of OR-gates
whose output is p and inputs are the bodies of the rules with head p; for every such
body, we introduce an appropriate number of AND-gates whose inputs are the proposi-
tional variables in the body, or, if the body is empty, we take the gate for constant 1.

4.3. Hypergraph Programs
We introduced hypergraph functions as Boolean abstractions of the tree-witness
rewritings. Our next aim is to define a model of computation for these functions.

A hypergraph program (HGP) P is a hypergraph H = (V,E) each of whose ver-
tices is labelled by 0, 1 or a literal over a list p1, . . . , pn of propositional variables. (As
usual, a literal, l, is a propositional variable or its negation.) An input for P is a tuple
α ∈ {0, 1}n, which is regarded as a valuation for p1, . . . , pn. The output P (α) of P on α
is 1 iff there is an independent subset of E that covers all zeros—that is, contains ev-
ery vertex in V whose label evaluates to 0 under α. We say that P computes an n-ary
Boolean function f if f(α) = P (α), for all α ∈ {0, 1}n. An HGP is monotone if its vertex
labels do not have negated variables. The size |P | of an HGP P is the size |H| of the
underlying hypergraph H = (V,E), which is |V |+ |E|.

The following observation shows that monotone HGPs capture the computational
power of hypergraph functions. We remind the reader that a subfunction of a Boolean
function f is obtained from f using two operations: (1) fixing some of its variables
to 0 or 1, and (2) renaming (in particular, identifying) some of the variables in f . A
hypergraph H is said to be of degree at most d if every vertex in it belongs to at most d
hyperedges; H is of degree d if every vertex in it belongs to exactly d hyperedges.

PROPOSITION 4.7. (i) Any monotone HGP based on a hypergraph H computes a
subfunction of the hypergraph function fH .

(ii) For any hypergraph H of degree at most d, there is a monotone HGP of size O(|H|)
that computes fH and such that its hypergraph is of degree at most max(2, d).

PROOF. To show (i), it is enough to replace the vertex variables pv in fH by the
corresponding vertex labels of the given HGP and fix all the edge variables pe to 1.

For (ii), given a hypergraph H = (V,E), we label each v ∈ V by the variable pv. For
each e ∈ E, we add a fresh vertex ae labelled by 1 and a fresh vertex be labelled by pe;
then we create a new hyperedge e′ = {ae, be} and add ae to the hyperedge e. We claim
that the resulting HGP P computes fH . Indeed, for any input α with α(pe) = 0, we
have to include the edge e′ into the cover, and so cannot include the edge e itself. Thus,
P (α) = 1 iff there is an independent set E of hyperedges with α(pe) = 1, for all e ∈ E,
covering all zeros of the variables pv.

In some cases, it will be convenient to use generalised HGPs that allow hypergraph
vertices to be labelled by conjunctions

∧
i li of literals li. The following proposition

shows that this generalisation does not increase the computational power of HGPs.
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Fig. 9. The OMQ QH for H from Example 4.1 and its tree witnesses.

PROPOSITION 4.8. For every generalised HGP P over n variables, there is an HGP
P ′ computing the same function and such that |P ′| ≤ n · |P |.

PROOF. To construct P ′, we split every vertex v of P labelled with
∧k
i=1 li into k new

vertices v1, . . . , vk and label vi with li, for 1 ≤ i ≤ k (without loss of generality, we can
assume that li and lj have distinct variables for i 6= j); each hyperedge containing v
will now contain all the vi. It is easy to see that P (α) = P ′(α), for any input α. Since
k ≤ n, we have |P ′| ≤ n · |P |.

5. OMQS, HYPERGRAPHS AND MONOTONE HYPERGRAPH PROGRAMS
We now establish a correspondence between the structure of OMQs and hypergraphs.

5.1. OMQs with ontologies of depth 2
To begin with, we show that every hypergraph H = (V,E) can be represented by a
polynomial-size OMQ QH = (T , q) with T of depth 2. With every vertex v ∈ V we
associate a unary predicate Av, and with every hyperedge e ∈ E a unary predicate Be
and a binary predicate Re. We define T to be the set of the following axioms, for e ∈ E:

Be(x) → ∃y
[ ∧
e∩e′ 6=∅, e 6=e′

Re′(x, y) ∧
∧
v∈e

Av(y) ∧ ∃z Re(z, y)
]
.

Clearly, T is of depth 2. We also take the Boolean CQ q with variables yv, for v ∈ V ,
and ze, for e ∈ E:

q =
{
Av(yv) | v ∈ V

}
∪
{
Re(ze, yv) | v ∈ e, for v ∈ V and e ∈ E

}
.

Example 5.1. Consider again the hypergraph from Example 4.1, which we now de-
note by H = (V,E) with V = {v1, v2, v3}, E = {e1, e2}, e1 = {v1, v2} and e2 = {v2, v3}.
The CQ q and the canonical models CBei (a)

T , for i = 1, 2, are shown in Fig. 9 along with
four tree witnesses for QH (as explained in Remark 3.4, we ignore the two extra tree
witnesses generated only by normalisation predicates).

It is not hard to see that the number of tree witnesses for QH does not exceed |H|.
Indeed, all the tree witnesses for QH fall into two types:

tv = (ti, tr) with tr = {ze | v ∈ e} and ti = {yv}, for v ∈ V that belong to a single e ∈ E;

te = (ti, tr) with tr = {ze′ | e ∩ e′ 6= ∅, e 6= e′} and ti = {ze} ∪ {yv | v ∈ e}, for e ∈ E.

We call a hypergraphH ′ a subgraph of a hypergraphH = (V,E) ifH ′ can be obtained
from H by (i) removing some of its hyperedges and (ii) removing some of its vertices
from both V and the hyperedges in E.

THEOREM 5.2. (i) Any hypergraph H is isomorphic to a subgraph of H(QH).
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(ii) Any monotone HGP P based on a hypergraph H computes a subfunction of the
primitive evaluation function fMQH .

PROOF. (i) An isomorphism betweenH and a subgraph ofH(QH) can be established
by the map v 7→ Av(yv), for v ∈ V , and e 7→ qte , for e ∈ E.

(ii) Suppose that P is based on a hypergraph H = (V,E). Given an input α for P ,
we define an assignment γ for the predicates in QH = (T , q) by taking γ(Av) to be
the value of the label of v under α, γ(Be) = 1, γ(Re) = 1 (and of course γ(Pζ) = 0, for
all normalisation predicates Pζ). By the definition of T , for each e ∈ E, the canonical
model CT ,A(γ) contains labelled nulls we and w′e such that

CT ,A(γ) |=
∧

e∩e′ 6=∅, e 6=e′
Re′(a,we) ∧

∧
v∈e

Av(we) ∧ Re(w
′
e, we).

We now show that P (α) = 1 iff fMQH (γ) = 1 (iff T ,A(γ) |= q). Suppose P (α) = 1, that is,
there is an independent subset E′ ⊆ E such that the label of each v /∈

⋃
E′ evaluates

to 1 under α. Then the map h : q → CT ,A(γ) defined by taking

h(ze) =

{
w′e, if e ∈ E′,
a, otherwise,

h(yv) =

{
we, if v ∈ e ∈ E′,
a, otherwise

is a homomorphism witnessing CT ,A(γ) |= q, whence fMQH (γ) = 1.
Conversely, if fMQH (γ) = 1 then there is a homomorphism h : q → CT ,A(γ). For any

hyperedge e ∈ E, there are only two options for h(ze): either a or w′e. It follows that the
set E′ = {e ∈ E | h(ze) = w′e} is independent and covers all zeros. Indeed, if v /∈

⋃
E′

then h(yv) = a, and so the label of v evaluates to 1 under α because Av(yv) ∈ q.

Next, we establish a tight correspondence between hypergraphs of degree at most 2
and OMQs with ontologies of depth 1.

5.2. Hypergraphs of Degree 2 and OMQs with Ontologies of Depth 1
THEOREM 5.3. For any OMQ Q = (T , q) with T of depth 1, the hypergraph H(Q)

is of degree at most 2 and |H(Q)| ≤ 2|q|.
PROOF. We have to show that every atom in q belongs to at most two qt, t ∈ ΘQ.

Suppose t = (tr, ti) is a tree witness for Q and y ∈ ti. Since T is of depth 1, ti = {y}
and tr consists of all the variables in q adjacent to y in the Gaifman graph Gq of q.
Thus, different tree witnesses have different internal variables y. An atom of the form
A(u) ∈ q is in qt iff u = y. An atom of the form P (u, v) ∈ q is in qt iff either u = y or
v = y. Therefore, P (u, v) ∈ q can only be covered by the tree witness with internal u
and by the tree witness with internal v.

Conversely, we show now that any hypergraph H of degree 2 is isomorphic toH(SH),
for some OMQ SH = (T , q) with T of depth 1. We can assume that H = (V,E) comes
with two fixed maps i1, i2 : V → E such that for every v ∈ V , we have i1(v) 6= i2(v),
v ∈ i1(v) and v ∈ i2(v). For any v ∈ V , we fix a binary predicate Rv, and let the ontology
T in SH contain the following axioms, for e ∈ E:

Ae(x) → ∃y
[ ∧
v∈V

i1(v)=e

Rv(y, x) ∧
∧
v∈V

i2(v)=e

Rv(x, y)
]
.

Clearly, T is of depth 1. The Boolean CQ q contains variables ze, for e ∈ E, and is
defined by taking

q =
{
Rv(zi1(v), zi2(v)) | v ∈ V

}
.
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Fig. 10. Hypergraph H in Example 5.4, its CQ q, tree witness te1 for SH and canonical model CAe1 (a)

T .

Example 5.4. Suppose that H = (V,E), where V = {v1, v2, v3, v4}, E = {e1, e2, e3}
and e1 = {v1, v2, v3}, e2 = {v3, v4}, e3 = {v1, v2, v4}. Let

i1 : v1 7→ e1, v2 7→ e3, v3 7→ e1, v4 7→ e2,

i2 : v1 7→ e3, v2 7→ e1, v3 7→ e2, v4 7→ e3.

The hypergraph H and the query q are shown in Fig. 10: each Rvk is represented
by an edge, i1(vk) is indicated by the circle-shaped end of the edge and i2(vk) by the
diamond-shaped end of the edge; the ej are shown as large grey squares. In this case,

q = ∃ze1 , ze2 , ze3
(
Rv1

(ze1 , ze3) ∧Rv2
(ze3 , ze1) ∧Rv3

(ze1 , ze2) ∧Rv4
(ze2 , ze3)

)
and T consists of the following axioms:

Ae1(x)→ ∃y
[
Rv1

(y, x) ∧Rv2
(x, y) ∧Rv3

(y, x)
]
,

Ae2(x)→ ∃y
[
Rv3

(x, y) ∧Rv4
(y, x)

]
,

Ae3(x)→ ∃y
[
Rv1(x, y) ∧Rv2(y, x) ∧Rv4(x, y)

]
.

The canonical model CAe1 (a)
T is shown on the right-hand side of Fig. 10. Note that each

ze determines the tree witness te with qte = {Rv(zi1(v), zi2(v)) | v ∈ e}; distinct te and te
′

are conflicting iff e ∩ e′ 6= ∅. It follows that H is isomorphic to H(SH).

THEOREM 5.5. (i) Any hypergraph H of degree 2 is isomorphic to H(SH).
(ii) Any monotone HGP P based on a hypergraph H of degree 2 computes a subfunc-

tion of the primitive evaluation function fMSH .

PROOF. (i) We show that the map g : v 7→ Rv(zi1(v), zi2(v)) is an isomorphism between
H and H(SH). By the definition of SH , g is a bijection between V and the atoms of q.
For any e ∈ E, there is a tree witness te = (ter , t

e
i ) generated by Ae(x) with tei = {ze} and

ter = {ze′ | e ∩ e′ 6= ∅, e 6= e′}, and qte consists of the g(v), for v ∈ e. Conversely, every
tree witness t for SH contains ze ∈ ti, for some e ∈ E, and so qt = {g(v) | v ∈ e}.

(ii) By Proposition 4.7 (i), P computes a subfunction of fH . Thus, it suffices to show
that fH is a subfunction of fMSH . Let H = (V,E) be a hypergraph of degree 2. For
any α ∈ {0, 1}|H|, we define γ by taking γ(Rv) = α(pv) for v ∈ V , γ(Ae) = α(pe) for
e ∈ E (and γ(Pζ) = 0 for all normalisation predicates Pζ). We prove that fH(α) = 1 iff
T ,A(γ) |= q. By the definition of T , for each e ∈ E with Ae(a) ∈ A(γ) or, equivalently,
α(pe) = 1, the canonical model CT ,A(γ) contains a labelled null we such that

CT ,A(γ) |=
∧
v∈V

i1(v)=e

Rv(we, a) ∧
∧
v∈V

i2(v)=e

Rv(a,we).
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Fig. 11. Tree T in Example 5.6.

(⇒) Let E′ be an independent subset of E such that
∧
v∈V \VE′

pv ∧
∧
e∈E′ pe is true

on α. Define h : q → CT ,A(γ) by taking h(ze) = a if e /∈ E′ and h(ze) = we otherwise. One
can check that h is a homomorphism, and so T ,A(γ) |= q.

(⇐) Given a homomorphism h : q → CT ,A(γ), we show that E′ = {e ∈ E | h(ze) 6= a}
is independent. Indeed, if e, e′ ∈ E′ and v ∈ e ∩ e′, then h sends one variable of the
Rv-atom to the labelled null we and the other end to we′ , which is impossible. We claim
that fH(α) = 1. Indeed, for each v ∈ V \ VE′ , h sends both ends of the Rv-atom to a,
and so α(pv) = 1. For each e ∈ E′, we must have h(ze) = we because h(ze) 6= a, and so
α(pe) = 1. It follows that fH(α) = 1.

5.3. Tree-Shaped OMQs and Tree Hypergraphs
We call an OMQ Q = (T , q) tree-shaped if the CQ q is tree-shaped. We now estab-
lish a close correspondence between tree-shaped OMQs and tree hypergraphs that are
defined as follows.11

Suppose T = (VT , ET ) is an (undirected) tree. A leaf is a vertex of degree 1. A subtree
T ′ = (V ′T , E

′
T ) of T is said to be convex if, for any non-leaf vertex u in the subtree T ′,

we have {u, v} ∈ E′T whenever {u, v} ∈ ET . A hypergraph H = (V,E) is called a tree
hypergraph if there is a tree T = (VT , ET ) such that V = ET and every hyperedge
e ∈ E induces a convex subtree Te of T . In this case, we call T the underlying tree
of H. The boundary of a hyperedge e consists of all leaves of Te; the interior of e is the
set of non-leaves of Te. A tree hypergraph program (THGP) is an HGP based on a tree
hypergraph.

Example 5.6. Let T be the tree shown in Fig. 11. Any tree hypergraph with un-
derlying tree T has the set of vertices {{1, 2}, {2, 3}, {2, 6}, {3, 4}, {4, 5}} (each vertex is
an edge of T ), and its hyperedges may include {{1, 2}, {2, 3}, {2, 6}} as the subtree of T
induced by these edges is convex, but not {{1, 2}, {2, 3}}.

THEOREM 5.7. If an OMQ Q = (T , q) is tree-shaped, then H(Q) is isomorphic to
a tree hypergraph. Furthermore, if q has at least one binary atom, then the number of
leaves in the tree underlying H(Q) is the same as the number of leaves in q.

PROOF. The case when q has no binary atoms is trivial. Otherwise, let Gq be the
Gaifman graph of q whose vertices u are labelled with the unary atoms ξ(u) in q
of the form A(u) and P (u, u), and whose edges {u, v} are labelled with the atoms
of the form P (u, v) and P ′(v, u) in q. We replace every edge {u, v} labelled with
P1(u′1, v

′
1), . . . , Pn(u′n, v

′
n), for n ≥ 2, by a sequence of n edges forming a path from u

to v and label them with P1(u′1, v
′
1), . . . , Pn(u′n, v

′
n), respectively. In the resulting tree,

for every vertex u labelled with n unary atoms ξ1(u), . . . , ξn(u), for n ≥ 1, we pick an
edge {u, v} labelled with some P (u′, v′) and replace it by a sequence of n + 1 edges
forming a path from u to v and label them with ξ1(u), . . . , ξn(u), P (u′, v′), respectively.
The resulting tree T has the same number of leaves as q. It is readily checked that, for

11Our definition of tree hypergraph is a minor variant of the notion of (sub)tree hypergraph (aka hypertree)
from graph theory [Flament 1978; Brandstädt et al. 1999; Bretto 2013].
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Fig. 12. The canonical model CAe(a)T and the query q (yij is the half-way point between zi and zj ) for the
tree hypergraph H in Example 5.8.

any tree witness t for Q, the set of edges in T labelled with atoms in qt forms a convex
subtree of T , which gives a tree hypergraph isomorphic to H(Q).

Suppose H = (V,E) is a tree hypergraph whose underlying tree T = (VT , ET ) has
vertices VT = {1, . . . , n}, for n > 1, and 1 is a leaf of T . Let T 1 = (VT , E

1
T ) be the directed

tree obtained from T by fixing 1 as the root and orienting the edges away from 1. We
associate with H a tree-shaped OMQ TH = (T , q), in which q is the Boolean CQ

q =
{
Rij(zi, yij), Sij(yij , zj) | (i, j) ∈ E1

T

}
,

where the zi, for i ∈ VT , are the variables for vertices of the tree and the yij , for
(i, j) ∈ E1

T , are the variables for the edges of the tree. To define T , suppose a hyperedge
e ∈ E induces a convex directed subtree Te = (Ve, Ee) of T 1 with root re ∈ Ve and leaves
Le ⊆ Ve. Denote by T the ontology that contains the following axiom, for each e ∈ E:

Ae(x) → ∃y
[ ∧
(i,j)∈Ee, i=re

Rrej(x, y) ∧
∧

(i,j)∈Ee, j∈Le

Sij(y, x) ∧

∃z
( ∧

(i,j)∈Ee, i 6=re
Rij(z, y) ∧

∧
(i,j)∈Ee, j /∈Le

Sij(y, z)
)]
.

Since Te is convex, its root, re, has only one outgoing edge, (re, j), for some j, and so
the first conjunct above contains a single atom, Rrej(x, y). These axioms (together with
convexity of hyperedges) ensure that TH has a tree witness te = (ter , t

e
i ), for e ∈ E, with

ter = { zi | i is on the boundary of e },
tei = { zi | i is in the interior of e } ∪ { yij | (i, j) ∈ e }.

Note that T is of depth 2, and TH is of polynomial size in |H|.
Example 5.8. Let H be the tree hypergraph whose underlying tree is as in Exam-

ple 5.6 with fixed root 1 and whose only hyperedge is e = {{1, 2}, {2, 3}, {3, 4}, {2, 6}}.
The CQ q and the canonical model CAe(a)

T for this H are shown in Fig. 12. Note the
homomorphism from qte into CAe(a)

T .

The proofs of the following results (which are THGP analogues of Theorem 5.2 and
Propositions 4.7 (ii) and 4.8, respectively) are given in Appendices B and C:

THEOREM 5.9. (i) Any tree hypergraph H is isomorphic to a subgraph of H(TH).
(ii) Any monotone THGP based on a tree hypergraph H computes a subfunction of

the primitive evaluation function fMTH .

PROPOSITION 5.10. (i) For any tree hypergraph H of degree at most d, there is a
monotone THGP of size O(|H|) that computes fH and such that its hypergraph is of
degree at most max(2, d).
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y1
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y2, y3, y4 N2

Fig. 13. Tree decomposition in Example 5.11.

(ii) For every generalised THGP P over n variables, there is a THGP P ′ such that
|P ′| ≤ n · |P | and P ′ has the same degree and number of leaves as P and computes the
same function.

5.4. OMQs with Bounded Treewidth CQs and Bounded Depth Ontologies
Recall (see, e.g., [Flum and Grohe 2006]) that a tree decomposition of an undirected
graph G = (V,E) is a pair (T, λ), where T is an (undirected) tree and λ a function from
the set of nodes of T to 2V such that
– for every v ∈ V , there exists a node N with v ∈ λ(N);
– for every e ∈ E, there exists a node N with e ⊆ λ(N);
– for every v ∈ V , the nodes {N | v ∈ λ(N)} induce a (connected) subtree of T .

We call the set λ(N) ⊆ V a bag for N . The width of a tree decomposition (T, λ) is the
size of its largest bag minus one. The treewidth of G is the minimum width over all tree
decompositions of G. The treewidth of a CQ q is the treewidth of its Gaifman graph Gq.

Example 5.11. The Boolean CQ q =
{
R(y2, y1), R(y4, y1), S1(y3, y4), S2(y2, y4)

}
and

its tree decomposition (T, λ) of width 2 are shown in Fig. 13, where T has two nodes,N1

and N2, connected by an edge, with bags λ(N1) = {y1, y2, y4} and λ(N2) = {y2, y3, y4}.

Our aim in this section is to show that, for any OMQ Q(x) = (T , q(x)) with q of
bounded treewidth and a finite fundamental set ΩQ, the modified tree-witness hyper-
graph function fHQ can be computed using a monotone THGP of size bounded by a
polynomial in |q| and |ΩQ|.

Let (T, λ) be a tree decomposition of Gq of width m− 1. In order to refer to the
variables of q, for each bag λ(N), we fix an order of variables in the bag and define a
injection νN : λ(N) → {1, . . . ,m} that gives the index of each z in λ(N). A (bag) type
is an m-tuple of the form w = (w[1], . . . ,w[m]), where each w[i] ∈ ΩQ. Intuitively,
the ith component w[i] of w indicates that the ith variable in the bag is mapped to a
domain element of the form aw[i] in the canonical model CT ,A. We say that a type w is
compatible with a node N of T if the following conditions hold, for all z, z′ ∈ λ(N):

(1) if A(z) ∈ q and w[νN (z)] 6= ε, then w[νN (z)] = w% and T |= ∃y %(y, x)→ A(x);
(2) if P (z, z′) ∈ q and either w[νN (z)] 6= ε or w[νN (z′)] 6= ε, then

– w[νN (z)] = w[νN (z′)] and T |= P (x, x), or
– w[νN (z′)] = w[νN (z)]% and T |= %(x, y)→ P (x, y), or
– w[νN (z)] = w[νN (z′)]%− and T |= %(x, y)→ P (y, x).

Clearly, the type with all components equal to ε is compatible with any node N and
corresponds to mapping all variables in λ(N) to individuals in ind(A).

Example 5.12. Suppose T = {A(x) → ∃y R(x, y) } and q is the same as in Ex-
ample 5.11. Let νN1

and νN2
respect the order of the variables in the bags shown in

Fig. 13. The only types compatible with N1 are (ε, ε, ε) and (R, ε, ε), whereas the only
type compatible with N2 is (ε, ε, ε).
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Fig. 14. THGP PQ in Example 5.14: non-zero labels of vertices in PQ are given on the edges of the tree.

Let w1, . . . ,wM be all the bag types for ΩQ (M = |ΩQ|m). Denote by T ′ the tree
obtained from T by replacing every edge {Ni, Nj} with the following sequence of edges:

{Ni, u1
ij}, {ukij , vkij} and {vkij , uk+1

ij }, for 1 ≤ k < M, {uMij , vMij }, {vMij , vMji },

{vMji , uMji }, {uk+1
ji , vkji} and {vkji, ukji}, for 1 ≤ k < M, {u1

ji, Nj},

for some fresh nodes ukij , vkij , ukji and vkji. We now define a generalised monotone THGP
PQ based on a hypergraph with the underlying tree T ′. Denote by [L] the set of nodes
of the minimal convex subtree of T ′ containing all nodes of L. The hypergraph has the
following hyperedges:
– Eki = [Ni, u

k
ij1
, . . . , ukijn ] if Nj1 , . . . , Njn are the neighbours of Ni in T and wk is com-

patible with Ni;
– Ek`ij = [vkij , v

`
ji] if {Ni, Nj} is an edge in T and (wk,w`) is compatible with (Ni, Nj) in

the sense that wk[νNi(z)] = w`[νNj (z)], for all z ∈ λ(Ni) ∩ λ(Nj).
We label the vertices of the hypergraph—that is, the edges of T ′—in the following
way. The edges {Ni, u1

ij}, {vkij , u
k+1
ij } and {vMij , vMji } are labelled with 0, and every edge

{ukij , vkij} is labelled with the conjunction of the following variables:

– pS(z), whenever S(z) ∈ q, z ⊆ λ(Ni) and wk[νNi(z)] = ε, for all z ∈ z;
– p%∗(z), whenever A(z) ∈ q, z ∈ λ(Ni) and wk[νNi(z)] = %w;
– p%∗(z), p%∗(z′) and pz=z′ , whenever R(z, z′) ∈ q (possibly with z = z′), z, z′ ∈ λ(Ni),

and either wk[νNi(z)] = %w or wk[νNi(z
′)] = %w.

The following result is proved in Appendix D:

THEOREM 5.13. For every OMQ Q = (T , q) with a fundamental set ΩQ and with q
of treewidth t, the generalised monotone THGP PQ computes fHQ and is of size polyno-
mial in |q| and |ΩQ|t.

Example 5.14. Let Q = (T , q) be the OMQ from Example 5.12. As we have seen,
there are only two types compatible with nodes in T : w1 = (ε, ε, ε) and w2 = (R, ε, ε).
This gives us the generalised THGP PQ shown in Fig. 14, where the omitted labels
are all 0. To explain the meaning of PQ, suppose T ,A |= q, for some data instance A.
Then there is a homomorphism h : q → CT ,A. This homomorphism defines the type of
bag N1, which can be either w1 (if h(z) ∈ ind(A) for all z ∈ λ(N1)) or w2 (if h(y1) = aR
for some a ∈ ind(A)). These two cases are represented by the hyperedges E1

1 = [N1, u
1
12]

and E2
1 = [N1, u

2
12]. Since {N1, u

1
12} is labelled with 0, exactly one of them must be

chosen to construct an independent subset of hyperedges covering all zeros. In con-
trast to that, there is no hyperedge E2

2 because w2 is not compatible with N2, and
so E1

2 = [u1
21, N2] must be present in every covering of all zeros. Both (w1,w1) and

(w2,w1) are compatible with (N1, N2), which gives E11
12 = [v1

12, v
1
21] and E21

12 = [v2
12, v

1
21].

Thus, if N1 is of type w1, then we include E1
1 and E11

12 in the covering of all zeros, and
so pR(y4,y1) ∧ pR(y2,y1) should hold. If N1 is of type w2, then instead of E11

12 , we take E21
12 ,
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Table I. HGPs computing tree-witness hypergraph functions for OMQs.

OMQ Q = (T , q) PQ of size computes

T of depth 1 mHGP2 O(|q|) fO
Q

tree-shaped q with ` leaves mTHGP(`) |q|O(`) fO
Q

q of treewidth t,
ΩQ a fundamental set mTHGP |q|O(1) · |ΩQ|O(t) fH

Q

Table II. Representation results for classes of hypergraphs.

hypergraph H is isomorphic to any mHGP based on H
computes a subfunction of

any a subgraph of H(QH) fM
QH

of degree 2 H(SH) fM
SH

tree hypergraph a subgraph of H(TH) fM
TH

and so py4=y1 ∧ py2=y1 ∧ pR∗(y1) ∧ pR∗(y2) ∧ pR∗(y4) should be true. Finally, since {v1
21, u

1
21}

does not belong to any hyperedge, pS1(y4,y3) ∧ pS2(y2,y3) must hold in either case.

5.5. Summary
In Tables I and II, we summarise the results of Section 5 that will be used in Sec-
tion 7 to obtain lower and upper bounds for the size of OMQ rewritings. Table I shows
how Theorems 5.3 and 5.7 (on the shape of tree-witness hypergraphs) combined with
Proposition 4.7 (ii), as well as Theorem 5.13 provide us with hypergraph programs
computing tree-witness hypergraph functions for OMQs. Table II contains the repre-
sentation results of Theorems 5.2, 5.5 and 5.9 that show how abstract hypergraphs
can be embedded into tree-witness hypergraphs of OMQs.

6. HYPERGRAPH PROGRAMS AND CIRCUIT COMPLEXITY
In the previous section, we saw how different classes of OMQs gave rise to different
classes of monotone HGPs. Here we characterise the computational power of HGPs in
these classes by relating them to standard models of computation for Boolean func-
tions. Table III shows some of the obtained results. For example, its first row says that
any Boolean function computable by a polynomial-size nondeterministic circuit can
also be computed by a polynomial-size HGP of degree at most 3, and the other way
round.

We remind the reader that the complexity classes in the table form the chain

Π3 $ AC0 $ NC1 ⊆ NL/poly ⊆ LOGCFL/poly ⊆ P/poly ⊆ NP/poly (9)

and that whether any of the non-strict inclusions is actually strict remains a major
open problem in complexity theory; see, e.g., [Arora and Barak 2009; Jukna 2012]. All
these classes are non-uniform in the sense that they are defined in terms of polynomial-
size non-uniform sequences of Boolean circuits of certain shape and depth. The suffix
‘/poly’ comes from an alternative definition of C/poly in terms of Turing machines for
the class C with an additional advice input of polynomial size.

When talking about complexity classes, instead of individual Boolean functions, we
consider sequences of functions f = {fn}n<ω with fn : {0, 1}n → {0, 1}. The same con-
cerns circuits, HGPs and the other models of computation we deal with. For example,
we say that a circuitC = {Cn}n<ω computes a function f = {fn}n<ω if Cn computes fn
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Table III. Complexity classes, models of computation and corresponding classes of HGPs.

complexity
class model of computation class of HGPs

NP/poly nondeterministic Boolean circuits HGP = HGPd, d ≥ 3

P/poly Boolean circuits —

LOGCFL/poly
(SAC1)

logarithmic-depth circuits with
unbounded fan-in AND-gates and
NOT-gates only on inputs

THGP

NL/poly nondeterministic branching programs HGP2 = THGP(`), ` ≥ 2

NC1 Boolean formulas THGPd, d ≥ 3

AC0
constant-depth circuits with

unbounded fan-in AND- and OR-gates, and
NOT-gates only on inputs

—

Π3 AC0 circuits of depth 3 with output AND-gate THGP2 = THGP2(2)

for every n < ω. (It will always be clear from context whether f , C, etc. denote an indi-
vidual function, circuit, etc. or a sequence thereof.) A circuit C is said to be polynomial
if there is a polynomial p : N → N such that |Cn| ≤ p(n), for every n < ω. The depth
of Cn is the length of the longest directed path from an input to the output of Cn.

The complexity class P/poly can be defined as comprising those Boolean functions
that are computed by polynomial circuits, and NC1 consists of functions computed by
polynomial formulas (that is, circuits every logic gate in which has at most one output).
Alternatively, a Boolean function is in NC1 iff it can be computed by a polynomial-size
circuit of logarithmic depth, whose AND- and OR-gates have two inputs.

LOGCFL/poly (also known as SAC1) is the class of Boolean functions computable by
polynomial-size and logarithmic-depth circuits in which AND-gates have two inputs
but OR-gates can have arbitrarily many inputs (unbounded fan-in) and NOT-gates can
only be applied to inputs of the circuit [Vollmer 1999]. AC0 is the class of functions
computable by polynomial-size circuits of constant depth with AND- and OR-gates of
unbounded fan-in and NOT-gates only at the inputs; Π3 is the subclass of AC0 that only
allows circuits of depth 3 (not counting the NOT-gates) with an output AND-gate.

Finally, a Boolean function f = {fn}n<ω is in the class NP/poly if there is a polyno-
mial p and a polynomial circuit C = {Cn+p(n)}n<ω such that, for any n and α ∈ {0, 1}n,

fn(α) = 1 iff there is β ∈ {0, 1}p(n) such that Cn+p(n)(α,β) = 1 (10)

(the β-inputs are sometimes called certificate inputs).
By allowing only monotone circuits or formulas in the definitions of the complex-

ity classes, we obtain their monotone variants: for example, the monotone variant of
NP/poly is denoted by mNP/poly and defined by restricting the use of NOT-gates in the
circuits to the certificate inputs only. We note in passing that the monotone variants of
the classes in (9) also form a chain [Razborov 1985; Alon and Boppana 1987; Karchmer
and Wigderson 1988]:

mΠ3 $ mAC0 $ mNC1 $ mNL/poly ⊆ mLOGCFL/poly $ mP/poly $ mNP/poly. (11)

Whether the inclusion mNL/poly ⊆ mLOGCFL/poly is proper remains an open problem.
We use these facts in the next section to show lower bounds on the size of OMQ

rewritings.
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Fig. 15. HGP in the proof of Theorem 6.1: black vertices are labelled with 1 and white vertices with 0.

6.1. NP/poly and HGP3

Our first result shows that NP/poly and mNP/poly coincide with the classes HGP3 and
mHGP3 of Boolean functions computable by polynomial-size (sequences of) HGPs and
monotone HGPs of degree at most 3, respectively.

THEOREM 6.1. NP/poly = HGP = HGP3 and mNP/poly = mHGP = mHGP3.

PROOF. Suppose P is a (monotone) HGP. We construct a non-deterministic circuitC
of size polynomial in |P |, whose input variables are the same as the variables in P ,
certificate inputs correspond to the hyperedges of P , and such that C(α,β) = 1 iff
{ei | β(ei) = 1} is an independent set of hyperedges covering all zeros under α. It will
then follow that

P (α) = 1 iff there is β such that C(α,β) = 1. (12)

First, for each pair of intersecting hyperedges ei, ej in P , we take the disjunction
¬ei ∨ ¬ej , and, for each vertex in P labelled with a literal l (that is, p or ¬p) and the
hyperedges ei1 , . . . , eik incident to it, we take the disjunction l∨ei1∨· · ·∨eik . The circuit
C is then a conjunction of all such disjunctions. Note that if P is monotone, then ¬ is
only applied to the certificate inputs, e, in C.

Conversely, let C be a circuit with certificate inputs. We construct an HGP P of
degree at most 3 satisfying (12) as follows. For each gate gi in C, the HGP contains a
vertex gi labelled with 0 and a pair of hyperedges ēi and ei, both containing gi. No other
hyperedge contains gi, and so either ēi or ei should be present in any cover of zeros. To
ensure this property, for each gate gi, we add the following vertices and hyperedges to
P (see Fig. 15):
– if gi is an input p, then we add a vertex labelled with ¬p to ei and a vertex labelled

with p to ēi;
– if gi is a certificate input, then no additional vertices and hyperedges are added;
– if gi = ¬gj , then we add a vertex labelled with 1 to hyperedges ei and ēj , and a

vertex labelled with 1 to hyperedges ēi and ej ;
– if gi = gj∨gk, then we add a vertex labelled with 1 to hyperedges ej and ēi, add a ver-

tex labelled with 1 to ek and ēi; then, we add vertices vj and vk labelled with 1 to ēj
and ēk, respectively, and a vertex ui labelled with 0 to ēi; finally, we add hyperedges
{vj , ui} and {vk, ui} to P ;

– if gi = gj ∧ gk, then we add the pattern dual to the case of gi = gj ∨ gk: we add a
vertex labelled with 1 to ēj and ei, a vertex labelled with 1 to ēk and ei; then, we add
vertices vj and vk labelled with 1 to ej and ek, respectively, and a vertex ui labelled
with 0 to ei; finally, we add hyperedges {vj , ui} and {vk, ui} to P .
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Fig. 16. HGP in the proof of Theorem 6.2: black vertices are labelled with 1.

Finally, we add one more vertex labelled with 0 to em for the output gate gm ofC, which
ensures that em must be included the cover. It is easily verified that the constructed
HGP is of degree at most 3. One can establish (12) by induction on the structure of C.
We illustrate the proof of the inductive step for the case of gi = gj ∨ gk: we show that
ei is in the cover iff it contains either ej or ek. Suppose the cover contains ej . Then it
cannot contain ēi, and so it contains ei. The vertex ui in this case can be covered by
{vj , ui} since ēj is not in the cover. Conversely, if neither ej nor ek is in the cover, then
it must contain both ēj and ēk, and so neither {vj , ui} nor {vk, ui} can belong to the
cover, and thus we will have to include ēi to the cover.

IfC is monotone, then we remove from P all vertices labelled with ¬p, for an input p,
and denote the resulting program by P ′. We claim that, for any α, we have P ′(α) = 1
iff there is β such that C(α,β) = 1. The implication (⇐) is trivial: if C(α,β) = 1
then, by the argument above, P (α) = 1 and, clearly, P ′(α) = 1. Conversely, suppose
P ′(α) = 1. Each of the vertices gi in P ′ corresponding to the inputs is covered by one of
the hyperdges ei or ēi. Let α′ be the vector corresponding to these hyperedges; clearly,
α′ ≤ α. This cover of vertices of P ′ gives us P (α′) = 1. Thus, by the argument above,
there is β such that C(α′,β) = 1. Since C is monotone, C(α,β) = 1.

6.2. NL/poly and HGP2

A Boolean function belongs to the class NL/poly iff it can be computed by a
polynomial-size nondeterministic branching program (NBP). We remind the reader
(consult [Jukna 2012] for more details) that an NBP B is a directed graph G = (V,E),
whose arcs are labelled with the Boolean constants 0 and 1, propositional variables
p1, . . . , pn or their negations, and which distinguishes two vertices s, t ∈ V . Given an
assignment α to variables p1, . . . , pn, we write s →α t if there is a path in G from s
to t all of whose labels evaluate to 1 under α. We say that an NBP B computes a
Boolean function f if f(α) = 1 iff s →α t, for any α ∈ {0, 1}n. The size |B| of B is the
size of the underlying graph, |V | + |E|. An NBP is monotone if there are no negated
variables among its labels. The class of Boolean functions computable by polynomial-
size monotone NBPs is denoted by mNL/poly; the class of functions f whose duals
f∗(p1, . . . , pn) = ¬f(¬p1, . . . ,¬pn) are in mNL/poly is denoted by co-mNL/poly.

THEOREM 6.2. NL/poly = HGP2 and co-mNL/poly = mHGP2.

PROOF. As follows from [Szelepcsényi 1988; Immerman 1988], if a function f is
computable by a polynomial-size NBP, then ¬f is also computable by a polynomial-size
NBP. So suppose ¬f is computed by an NBP B. We construct an HGP P computing f
of degree at most 2 and polynomial size in |B| as follows (see Fig. 16). For each arc e
in B, the HGP P has two vertices e0 and e1, which represent the beginning and the
end of e, respectively. The vertex e0 is labelled with the negated label of e in B and e1

with 1. For each arc e in B, the HGP P has an e-hyperedge {e0, e1}. For each vertex v
in B but s and t, the HGP P has a v-hyperedge comprising all vertices e1 for the arcs
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Fig. 17. The NBP in the proof of Theorem 6.2.

e leading to v, and all vertices e0 for the arcs e leaving v. We also add to the HGP P a
vertex w labelled with 0 and a hyperedge, ēw, that consists of w and all vertices e1 for
the arcs e in B leading to t. We claim that the constructed HGP P computes f . Indeed,
if s 6→α t then the following subset of hyperedges is independent and covers all zeros:
all e-hyperedges, for the arcs e reachable from s and labelled with 1 under α, and all
v-hyperedges with s 6→α v (including ēw). Conversely, if s →α t then one can show by
induction that, for each arc e of the path, the e-hyperedge must be in the cover of all
zeros. Thus, no independent set can cover w, which is labelled with 0.

Conversely, suppose f is computed by an HGP P of degree 2 with hyperedges
e1, . . . , ek. We first provide a graph-theoretic characterisation of independent sets cov-
ering all zeros based on the implication graph [Aspvall et al. 1979]. With every hy-
peredge ei we associate a propositional variable ui and with every assignment α we
associate the following set Φα of propositional binary clauses:

¬ui ∨ ¬uj , if ei ∩ ej 6= ∅,
ui ∨ uj , if there is v ∈ ei ∩ ej with α(v) = 0.

Informally, the former means that intersecting hyperedges cannot be chosen at the
same time and the latter that all zeros must be covered; note that all vertices have at
most two incident edges. By definition, X is an independent set covering all zeros iff
X = {ei | γ(ui) = 1}, for some assignment γ satisfying Φα. Let Cα = (V,Eα) be the
implication graph of Φα, that is, a directed graph with

V =
{
ui, ūi | 1 ≤ i ≤ k

}
,

Eα =
{

(ui, ūj) | ei ∩ ej 6= ∅
}
∪
{

(ūi, uj) | there is v ∈ ei ∩ ej with α(v) = 0
}
.

(V is the set of all ‘literals’ for the variables of Φα and Eα is the arcs for the impli-
cational form of the clauses of Φα.) Note that ¬ui ∨ ¬uj gives rise to two implications,
ui → ¬uj and uj → ¬ui, and so to two arcs in the graph; similarly, for ui∨uj . By [Aspvall
et al. 1979, Theorem 1], Φα is satisfiable iff there is no ui with a (directed) cycle going
through ui and ūi. It will be convenient for us to regard the Cα, for assignments α,
as a single labelled directed graph C with arcs of the form (ui, ūj) labelled with 1 and
arcs of the form (ūi, uj) labelled with the negation of the literal labelling the uniquely
defined v ∈ ei∩ej (recall that the hypergraph of P is of degree 2). It should be clear that
Cα has a cycle going through ui and ūi iff we have both ūi →α ui and ui →α ūi in C.
The required NBP B contains distinguished vertices s and t, and, for each hyperedge
ei in P , two copies, C0

i and C1
i , of C with additional arcs from s to the ūi vertex of C0

i ,
from the ui vertex of C0

i to the ui vertex of C1
i , and from the ūi vertex of C1

i to t; see
Fig. 17. By construction, s →α t iff there is a hyperedge ei in P such that Cα contains
a cycle going through ui and ūi. We have thus constructed a polynomial-size NBP B
computing ¬f , and thus f must also be computable by a polynomial-size NBP.

As to co-mNL/poly = mHGP2, observe that the first construction, if applied to a mono-
tone NBP for f∗, produces a polynomial-size HGP of degree 2 computing ¬f∗, all of
whose labels are negative. By removing negations from labels, we obtain a monotone
HGP computing f . The second construction allows us to transform a monotone HGP of
degree 2 for f into an NBP with only negative literals that computes ¬f . By changing
the polarity of the literals in the labels, we obtain a monotone NBP computing f∗.
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6.3. NL/poly and THGP(`)
For any natural ` ≥ 2, we denote by THGP(`) and mTHGP(`) the classes of Boolean func-
tions computable by (sequences of) polynomial-size THGPs and, respectively, monotone
THGPs whose underlying trees have at most ` leaves.

THEOREM 6.3. NL/poly = THGP(`) and mNL/poly = mTHGP(`), for any ` ≥ 2.

PROOF. Suppose a polynomial-size THGP P computes a Boolean function f . For
simplicity, we consider only ` = 2 here and prove the general case in Appendix E.
Thus, we can assume that the vertices v1, . . . , vn of P are consecutive edges of
the path graph underlying P , and therefore, every hyperedge in P is of the form
[vi, vi+m] = {vi, . . . , vi+m}, for some m ≥ 0. We add to P two extra vertices, v0 and
vn+1 (thereby extending the underlying 2-leaf tree to v0, v1, . . . , vn, vn+1) and label them
with 0; we also add two hyperedges s = {v0} and t = {vn+1} to P . Clearly, the resulting
THGP P ′ computes the same f . To construct a polynomial-size NBP B computing f , we
take a directed graph whose vertices are hyperedges of P ′ and which contains an arc
from ei = [vi1 , vi2 ] to ej = [vj1 , vj2 ] iff i2 < j1; we label this arc with

∧
i2<k<j1

lk, where
lk is the label of vk in HGP P . It is not hard to see that a path from s to t evaluated
to 1 under given assignment α corresponds to a cover of zeros in P ′ under α. Finally,
to get rid of conjunctive labels on edges, we replace every arc with a label li1 ∧ · · · ∧ lik
by a sequence of k arcs consequently labelled with li1 , . . . , lik .

Conversely, suppose a Boolean function f is computed by an NBP B based on a
directed graph with vertices V = {v1, . . . , vn}, edges E = {e1, . . . , em}, s = v1 and
t = vn. Without loss of generality, we assume that em is a loop from t to t labelled
with 1. Thus, if there is a path from s to t whose labels evaluate to 1, then there is such
a path of length n − 1. We now construct a polynomial-size THGP computing f whose
underlying tree T has two leaves. The vertices of the tree T are arranged into n vertex
blocks and n− 1 edge blocks, which alternate. The kth vertex (edge) block contains two
copies vki , v̄ki (respectively, eki , ēki ) of every vi ∈ V (respectively, ei ∈ E):

v1
1 , v̄

1
1 , v

1
2 , v̄

1
2 , . . . , v

1
n, v̄

1
n,︸ ︷︷ ︸

1st vertex block

e1
1, ē

1
1, e

1
2, ē

1
2, . . . , e

1
m, ē

1
m,︸ ︷︷ ︸

1st edge block

v2
1 , v̄

2
1 , v

2
2 , v̄

2
2 , . . . , v

2
n, v̄

2
n,︸ ︷︷ ︸

2nd vertex block

. . .

en−1
1 , ēn−1

1 , en−1
2 , ēn−1

2 , . . . , en−1
m , ēn−1

m ,︸ ︷︷ ︸
(n− 1)th edge block

vn1 , v̄
n
1 , v

n
2 , v̄

n
2 , . . . , v

n
n , v̄

n
n︸ ︷︷ ︸

nth vertex block

.

We remove the first, v1
1 , and last vertex, v̄nn (shown in grey in the formula above), and

connect the adjacent vertices by edges to construct the undirected tree T . Consider
now a hypergraph H whose vertices are the edges of T and hyperedges are of the form
hki = [v̄kj , e

k
i ] and gki = [ēki , v

k+1
j′ ], for ei = (vj , vj′) ∈ E and 1 ≤ k < n. The vertices of H

of the form {eki , ēki }, which separate hyperedges hki and gki , are labelled with the label
of ei in the given NBP B, and all other vertices of H with 0. We show now that the
constructed THGP P computes f . Indeed, if f(α) = 1, then there is a path ei1 , . . . , ein−1

from v1 to vn whose labels evaluate to 1 under α. It follows that {hkik , g
k
ik
| 1 ≤ k < n}

is an independent set in H covering all zeros. Conversely, if E′ is an independent set
in H and covers all zeros under α, then it must contain exactly one pair of hyperedges
hkik and gkik for every k with 1 ≤ k < n, and the corresponding sequence of edges
ei1 , . . . , ein−1 defines a path from v1 to vn. Moreover, since E′ does not cover vertices
{ekik , ē

k
ik
}, for 1 ≤ k < n, their labels (that is, the labels of the eik in B) evaluate to 1

under α.
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Fig. 18. (a) A circuitC. (b) The labelled tree T forC: the vertices in the ith triple are ui, vi, wi and the omit-
ted edge labels are 0s. The vertices of THGP are the edges of T (with the same labels) and the hyperedges
are sets of edges of T (two of them are shown).

To prove Theorem 7.6 below, we shall require a somewhat different variant of Theo-
rem 6.3. The proof of the following result is given in Appendix E:

THEOREM 6.4. Fix ` ≥ 2. For any tree hypergraph H based on a tree with at most `
leaves, the function fH can be computed by an NBP of size polynomial in |H|.

Note that Theorem 6.4 does not immediately follow from Theorem 6.3 and Propo-
sition 5.10 (i) because the transformation of H into a monotone HGP computing fH
given in the proof of Proposition 5.10 (i) does not preserve the number of leaves.

6.4. LOGCFL/poly and THGP
THGP and mTHGP are the classes of functions computable by polynomial-size THGPs
and, respectively, monotone THGPs.

THEOREM 6.5. LOGCFL/poly = THGP and mLOGCFL/poly = mTHGP.

PROOF. To show LOGCFL/poly ⊆ THGP, consider a SAC1-circuit C of depth
d ≤ log |C|. It will be convenient to think of C as containing no NOT-gates but hav-
ing literals as inputs. By the AND-depth of a gate g in C we mean the maximal number
of AND-gates in a path from an input of C to g (it does not exceed d). Let Sn be the set
of AND-gates in C of AND-depth n. We denote by left(g) and right(g) the sub-circuits of
C computing the left and right inputs of an AND-gate g, respectively. Without loss of
generality (see Lemma F.1 in Appendix F) we can assume that, for any n ≤ d,⋃

g∈Sn
left(g) ∩

⋃
g∈Sn

right(g) = ∅.

Our aim is to transformC into a polynomial-size THGP P . We construct its underlying
tree T by associating with each gate gi three vertices ui, vi, wi and arranging them into
a tree as shown in Fig. 18. More precisely, we first arrange the vertices associated with
the gates of maximal AND-depth, n, into a path following the order of the gates in C
and the alphabetic order for ui, vi, wi. Then we fork the path into two branches one of
which is associated with the sub-circuit

⋃
g∈Sn left(g) and the other with

⋃
g∈Sn right(g),

and so forth. We obtain the tree T by removing the vertex wm from the result, where
m = |C| and gm is the output gate of C; it has vm as its root and contains 3|C| − 1
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vertices. The THGP P is based on the hypergraph whose vertices are the edges of T
and whose hyperedges comprise the following (see Fig. 18):
– [wi, ui], for each i < m (pairs of edges in each triple of vertices in Fig. 18);
– [vj , vk, vi], for each gi = gj ∧ gk (shown in Fig. 18 by shading);
– [vj1 , vi], . . . , [vjk , vi], for each gi = gj1 ∨ · · · ∨ gjk ,

where [L] is the minimal convex subtree of T containing the vertices in L. Finally, if an
input gate gi is a literal l, we label the edge {ui, vi} with l; we label all other {uj , vj}-
and {wj , vj}-edges with 0, and the remaining ones with 1. Clearly, the size of P is
polynomial in |C|. By Lemma F.2, for any input α, the output of gi is 1 iff the subtree
with root vi can be covered, i.e., there is an independent set of hyperedges wholly inside
and covering all zeros. Thus, P computes the same function as C.

To show THGP ⊆ LOGCFL/poly, suppose a THGP P is based on a hypergraph H with
an underlying tree T . By a subtree of T we understand a (possibly empty) connected
subset of edges in T . Given an input α for P and a nonempty subtree D of T , we set
coverD true iff there exists an independent subset of hyperedges in H that lie in D and
cover all zeros in D. We also set cover∅ true. Note that, for any edge e of T , cover{e} is
true if {e} is a hyperedge of H; otherwise cover{e} is the value of e’s label in P under α.

Our aim is to construct recursively a polynomial-size SAC1-circuit C computing the
function coverT . Observe that, ifD is a subtree of T and a vertex v splitsD into subtrees
D1, . . . , Dk, then

coverD =
∧

1≤j≤k

coverDj ∨
∨

v∈h⊆D

∧
1≤j≤kh

coverDhj , (13)

where h ranges over the hyperedges in H, and Dh
1 , . . . , D

h
kh

are the maximal convex
subtrees of T that lie in D \ h. We call a vertex v of D boundary if T has an edge {v, u}
with u not in D, and define the degree deg(D) of D to be the number of its boundary
vertices. Note that T itself is the only subtree of T of degree 0. The following lemma
shows that to compute coverT we only need subtrees of degree 1 and 2 and the depth of
recursion O(log |P |).

LEMMA 6.6. Let D be a subtree of T with m vertices and deg(D) ≤ 2. If deg(D) ≤ 1,
then there is a vertex v splitting D into subtrees of size at most m/2 + 1 and degree at
most 2. If deg(D) = 2, then there is v splitting D into subtrees of size at most m/2 + 1
and degree at most 2 and, possibly, one subtree of size less than m and degree 1.

PROOF. Let deg(D) ≤ 1. Suppose some vertex v1 splits D into subtrees one of which,
say D1, is larger than m/2 + 1. Let v2 be the (unique) vertex in D1 adjacent to v1. The
splitting of D by v2 consists of the subtree D2 = (D \D1) ∪ {v1, v2} of size at most m/2
and some other subtrees lying inside D1; all of them are of degree at most 2. We repeat
this process until the size of the largest subtree becomes at most m/2 + 1.

Let deg(D) = 2, with b1 and b2 being the boundary vertices. We proceed as above
starting from v1 = b1, but stop when either the largest subtree has ≤ m/2 + 1 vertices
or vi+1 leaves the path between b1 and b2, in which case vi splits D into subtrees of
degree at most 2 and one subtree of degree 1 with more than m/2 + 1 vertices.

By applying (13) to T recursively and choosing the splitting vertices v as prescribed
by Lemma 6.6, we obtain a circuit C whose inputs are the labels of some vertices
of H. Since any tree has polynomially many subtrees of degree 1 or 2, the size of C is
polynomial in |P |. We now show how to make the depth of C logarithmic in |P |.

Suppose D is a subtree with m edges constructed on the recursion step i. To compute
coverD using (13), we need one OR-gate of unbounded fan-in and a number of AND-gates
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of fan-in 2. We show by induction that we can make the AND-depth of these AND-gates
at most logm + i. Suppose Dj in (13) has mj edges, and so m = m1 + · · · + mk. By
the induction hypothesis, we can compute each coverDj within the AND-depth at most
logmj+ i−1. Assign the probability mj/m to Dj . As shown by Huffman [1952], there is
a prefix binary code such that each Dj is encoded by a word of length dlog(m/mj)e. This
encoding can be represented as a binary tree whose leaves are labelled with the Dj so
that the length of the branch ending at Dj is dlog(m/mj)e. By replacing each non-leaf
vertex of the tree with an AND-gate, we obtain a circuit for the first conjunction in (13)
whose depth does not exceed

max
j
{logmj + (i− 1) + log(m/mj) + 1} = logm+ i.

The second conjunction is considered analogously.

6.5. NC1, Π3 and THGPd

The proof of the following theorem, given in Appendix F, is a simplified version of the
proof of Theorem 6.5:

THEOREM 6.7. NC1 = THGPd and mNC1 = mTHGPd, for any d ≥ 3.

THGPs of degree 2 turn out to be less expressive:

THEOREM 6.8. Π3 = THGP2 = THGP2(2) and mΠ3 = mTHGP2 = mTHGP2(2).

PROOF. To show THGP2 ⊆ Π3, take a THGP P of degree 2. Without loss of gener-
ality we can assume that it contains no hyperedges e, e′ with e ⊆ e′, for otherwise the
vertices in e would not be covered by any other hyperedges, and so could be removed
from P together with e.

Consider the graph D whose vertices are the hyperedges of P , with two vertices be-
ing connected if the corresponding hyperedges intersect. Clearly,D is a forest. We label
an edge {e1, e2} with the conjunction of the labels of the vertices in e1 ∩ e2, and label
a vertex e with the conjunction of the labels of the vertices in P contained exclusively
in e. It is easy to see that, for any given input, an independent cover of zeros in P
corresponds to an independent set in D covering all zeros in the vertices and such that
each edge labelled with 0 has precisely one endpoint in that independent set.

We claim that there is no such an independent set I in D iff there is a path
e0, e1, . . . , ek in D with odd k (in particular, k = 1) such that e0 and ek are labelled
with 0 and ‘even’ edges {ei−1, ei} with even i are labelled with 0. To see (⇐), observe
that we have to include e0 and ek in I. Then, the edge {e1, e2} labelled with 0 makes
us to include e2 to I (e1 is adjacent to e and cannot be included in I). Next, the edge
{e3, e4} makes us to include e4 in I and so on. In the end we will have to include ek−1

to I and, since ek is also in I, this gives a contradiction with independence of I.
To show (⇒), suppose there is no such a pair of vertices. Then we can construct a

desired independent set I. Add to I all vertices labelled with 0. If there is a triple of
consecutive vertices e, e1, e2 in D such that e is already in I and an edge {e1, e2} is
labelled with 0, then we add e2 to I. Note that, if we have add some vertex e′ to e in
this process, then there is a path e = e0, e1, . . . , ek = e′ with even k such that vertex e
is labelled with 0 and every edge {ei−1, ei} for even i in this path is labelled with 0.

In this process we never add two connected vertices e and e′ of D to I, for otherwise
the union of the paths described above for these two vertices would result in a path of
odd length with endpoints labelled with 0 and with every second edge labelled with 0.
This directly contradicts our assumption.

If there are still edges labelled with 0 in D with no endpoints in I, then add any
endpoint of such an edge to I and repeat the process above. This also will not lead to a
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Table IV. The size of OMQ rewritings.

OMQ Q = (T , q) PE NDL FO

T of depth 2 exp (Th. 7.1) exp (Th. 7.1) > poly if NP 6⊆ P/poly (Th. 7.1)
poly iff NP/poly ⊆ NC1 (Th. 7.2)

T of depth 1 > poly (Th. 7.4) poly (Th. 7.3) poly iff NL/poly ⊆ NC1 (Th. 7.5)
& q of treewidth t poly (Th. 7.12) poly (Th. 7.12) poly (Th. 7.12)
& q tree poly-Π4 (Th. 7.13) poly (Th. 7.13) poly-Π4 (Th. 7.13)

q tree with ` leaves > poly (Th. 7.7)
(T is of depth 2) poly (Th. 7.6) poly iff NL/poly ⊆ NC1 (Th. 7.8)

Q with PFSP
q of treewidth t

poly (Th. 7.9) poly iff LOGCFL/poly ⊆ NC1

(Th. 7.11)

pair of connected vertices in I. Indeed, if as a result we add to I a vertex e1 connected
to a vertex e which was added to I previously, then there is an edge {e2, e1} labelled
with 0 (that was the reason for adding e1 to I), and so we should have added e2 to I
before. By repeating this process, we obtain an independent set I covering all vertices
and edges labelled with 0.

The established claim means that an independent set I in D exists iff, for any simple
path e0, e1, . . . , ek with an odd k, the label of e0 or ek evaluates to 1, or the label of at
least one {ei−1, ei}, for even i, evaluates to 1. This property is computed by a Π3-circuit
where, for each simple path e0, e1, . . . , ek with an odd k, we take (k + 3)/2-many AND-
gates whose inputs are the literals in the labels of e0, ek and the {ei−1, ei} for even i;
then we send the outputs of those AND-gates to an OR-gate; and, finally, we collect the
outputs of all the OR-gates as inputs to an AND-gate.

To show Π3 ⊆ THGP2(2), suppose we are given a Π3-circuitC. We can assumeC to be
a conjunction of DNFs. So, we first construct a generalised HGP P from THGP2(2) com-
puting the same function as C. Denote the OR-gates of C by g1, . . . , gk and the inputs
of gi by hi1, . . . , h

i
li

, where each hij is an AND-gate. Now, we define a tree hypergraph
whose underlying path graph has the following edges (in the given order)

v1
0 , . . . , v

1
2l1−2, v2

0 , . . . , v
2
2l2−2, . . . , vk0 , . . . , v

k
2lk−2

and whose hyperedges are of the form {vij , vij+1}. We label vi2m with a conjunction of the
inputs of him+1 and the remaining vertices with 0. By the previous analysis for a given i
and an input for C, we can cover all zeros among vi0, . . . , vi2li−2 with an independent set
of hyperedges iff at least one of the gates hi1, . . . , h

i
li

outputs 1. For different i, the
corresponding vi0, . . . , v

i
2li−2 are covered independently. Thus, P computes the same

function as C. We convert P to a THGP from THGP2(2) using Proposition 5.10 (ii).

7. THE SIZE OF OMQ REWRITINGS
In this section, by an OMQ Q = (T , q) we mean a sequence {Qn = (Tn, qn)}n<ω of
OMQs whose size is polynomial in n; by a rewriting q′ of Q we mean a sequence
{q′n}n<ω, where each q′n is a rewriting of Qn, for n < ω.

By putting together the results of the previous three sections and some known facts
from circuit complexity, we obtain the upper and lower bounds on the size of PE-, NDL-
and FO-rewritings for various OMQ classes that are collected in Table IV, where exp
means an exponential lower bound, > poly a superpolynomial lower bound, poly a poly-
nomial upper bound, poly-Π4 a polynomial-size Π4-rewriting (that is, a PE-rewriting
with the matrix of the form ∧∨∧∨), and ` and t are any fixed constants. It is to be
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noted that, in case of polynomial upper bounds, we actually provide polynomial algo-
rithms for constructing rewritings.

7.1. Rewritings for OMQs with ontologies of depth 2
By Theorem 6.1, OMQs with ontologies of depth 2 can compute any NP-complete mono-
tone Boolean function, in particular, the function CLIQUE with n(n − 1)/2 variables
ejj′ , 1 ≤ j < j′ ≤ n, that returns 1 iff the graph with vertices {1, . . . , n} and edges
{{j, j′} | ejj′ = 1} contains a k-clique, for some fixed k. A series of papers, started by
Razborov [1985], gave an exponential lower bound for the size of monotone circuits
computing CLIQUE, namely, 2Ω(

√
k) for k ≤ 1

4 (n/ log n)2/3 [Alon and Boppana 1987].
For monotone formulas, an even better lower bound is known: 2Ω(k) for k = 2n/3 [Raz
and Wigderson 1992]. Thus, we obtain:

THEOREM 7.1. There is an OMQ with ontologies of depth 2, any PE- and NDL-
rewritings of which are of exponential size, while any FO-rewriting is of superpolyno-
mial size unless NP ⊆ P/poly.

PROOF. In view of CLIQUE ∈ NP ⊆ NP/poly and Theorem 6.1, there is a polynomial-
size monotone HGP P computing CLIQUE. Suppose P is based on a hypergraph H and
QH is the OMQ for H constructed in Section 5.1. By Theorem 5.2 (ii), CLIQUE is a
subfunction of the primitive evaluation function fMQH . By Theorem 4.6, if q′ is a PE-
or NDL-rewriting of QH , then fMQH—and so CLIQUE—can be computed by a monotone
formula or, respectively, circuit of size O(|q′|). Thus, q′ must be of exponential size. If
q′ is an FO-rewriting ofQH then, by Theorem 4.6, CLIQUE is computable by a Boolean
formula of size O(|q′|). If NP 6⊆ P/poly then CLIQUE cannot be computed by a polyno-
mial circuit, and so q′ must be of superpolynomial size.

Our next theorem gives a complexity-theoretic characterisation of the existence of
FO-rewritings for OMQs with ontologies of depth 2.

THEOREM 7.2. The following conditions are equivalent:

(1) all OMQs with ontologies of depth 2 have polynomial-size FO-rewritings;
(2) all OMQs with ontologies of depth 2 and polynomially many tree witnesses have

polynomial-size FO-rewritings;
(3) NP/poly ⊆ NC1.

PROOF. The implication (1)⇒ (2) is obvious. To show that (2)⇒ (3), suppose there is
a polynomial-size FO-rewriting for the OMQ QH from the proof of Theorem 7.1, which
has polynomially many tree witnesses. Then CLIQUE is computed by a polynomial-
size Boolean formula. Since CLIQUE is NP/poly-complete under NC1-reductions, we
have NP/poly ⊆ NC1. Finally, to prove (3) ⇒ (1), assume NP/poly ⊆ NC1. Let Q be an
arbitrary OMQ with ontologies of depth 2. As observed in Section 4.1, the function fHQ is
in NP ⊆ NP/poly. Therefore, by our assumption, fHQ can be computed by a polynomial-
size formula, and so, by Theorem 4.5, Q has a polynomial-size FO-rewriting.

7.2. Rewritings for OMQs with ontologies of depth 1
THEOREM 7.3. Any OMQ Q with ontologies of depth 1 has a polynomial-size NDL-

rewriting.

PROOF. By Theorem 5.3, the hypergraph H(Q) is of degree at most 2, and so, by
Proposition 4.7 (ii), there is a polynomial-size monotone HGP of degree at most 2 com-
puting fOQ. By Theorem 6.2, co-mNL/poly = mHGP2, and so we have a polynomial-size
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monotone NBP computing the dual fOQ
∗ of fOQ. Since mNL/poly ⊆ mP/poly, we also have

a polynomial-size monotone Boolean circuit that computes fOQ
∗. By swapping AND- and

OR-gates in that circuit, we obtain a polynomial-size monotone circuit computing fOQ.
It remains to apply Theorem 4.2 (ii).

However, this upper bound cannot be extended to PE-rewritings:

THEOREM 7.4. There is an OMQ Q with ontologies of depth 1, any PE-rewriting of
which is of superpolynomial size (nΩ(logn), to be more precise).

PROOF. Consider the monotone function REACHABILITY that takes the adjacency
matrix of a directed graph G with two distinguished vertices s and t and returns 1
iff the graph G contains a directed path from s to t. It is known [Karchmer and
Wigderson 1988; Jukna 2012] that REACHABILITY is computable by a polynomial-size
monotone NBP (that is, belongs to mNL/poly), but any monotone Boolean formula for
REACHABILITY is of size nΩ(logn). Let f = REACHABILITY. By Theorem 6.2, there is
a polynomial-size monotone HGP that is based on a hypergraph H of degree 2 and
computes the dual f∗ of f . Consider now the OMQ SH for H defined in Section 5.2. By
Theorem 5.5 (ii), f∗ is a subfunction of fMSH . By Theorem 4.6 (i), no PE-rewriting of the
OMQ SH can be shorter than nΩ(logn).

THEOREM 7.5. All OMQs with ontologies of depth 1 have polynomial-size FO-
rewritings iff NL/poly ⊆ NC1.

PROOF. Suppose NL/poly ⊆ NC1. Let Q be an OMQ with ontologies of depth 1. By
Theorem 5.3, its hypergraph H(Q) is of degree 2 and polynomial size. By Proposi-
tion 4.7 (ii), there is a polynomial-size HGP of degree 2 that computes fOQ. By The-
orem 6.2, fOQ ∈ NL/poly. Therefore, by our assumption, fOQ can be computed by a
polynomial-size Boolean formula. Finally, Theorem 4.2 (i) gives a polynomial-size FO-
rewriting of Q.

Conversely, suppose there is a polynomial-size FO-rewriting for any OMQ with on-
tologies of depth 1. Let f = REACHABILITY. Since f ∈ NL ⊆ NL/poly, by Theorem 6.2,
we obtain a polynomial-size HGP computing f and based on a hypergraph H of de-
gree 2. Consider the OMQ SH with ontologies of depth 1 defined in Section 5.2. By
Theorem 5.5 (ii), f a subfunction of fMSH . By our assumption, SH has a polynomial-size
FO-rewriting; hence, by Theorem 4.6 (i), fMSH (and so f ) are computed by polynomial-
size Boolean formulas. Since f is NL/poly-complete under NC1-reductions [Razborov
1991], we obtain NL/poly ⊆ NC1.

7.3. Rewritings for tree-shaped OMQs with a bounded number of leaves
Since, by Theorem 6.4, the hypergraph function of a leaf-bounded OMQ can be com-
puted by a polynomial-size NBP, we have:

THEOREM 7.6. For any fixed ` ≥ 2, all tree-shaped OMQs with at most ` leaves
have polynomial-size NDL-rewritings.

The superpolynomial lower bound below is proved in exactly the same way as Theo-
rem 7.4 using Theorems 6.3 and 5.9 instead of Theorems 6.2 and 5.5.

THEOREM 7.7. There is an OMQ with ontologies of depth 2 and linear CQs any
PE-rewriting of which is of superpolynomial size (nΩ(logn), to be more precise).

Our next result is similar to Theorem 7.5:

THEOREM 7.8. The following are equivalent:
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(1) there exist polynomial-size FO-rewritings for all OMQs with linear CQs and ontolo-
gies of depth 2;

(2) for any fixed `, there exist polynomial-size FO-rewritings for all tree-shaped OMQs
with at most ` leaves;

(3) NL/poly ⊆ NC1.

PROOF. (1) ⇒ (3) Suppose every OMQ Q = (T , q) with linear q and T of
depth 2 has an FO-rewriting of size p(|Q|), for some fixed polynomial p. Consider
f = REACHABILITY. As f is monotone and f ∈ NL, we have f ∈ mNL/poly. Thus,
Theorem 6.3 gives us an HGP P from mTHGP(2) that computes f . Let P be based on
a hypergraph H, and let TH be the OMQ with a linear CQ and an ontology of depth 2
constructed in Section 5.3. By Theorem 5.9 (ii), f is a subfunction of fMTH . By our as-
sumption, however, TH has a polynomial-size FO-rewriting, and so, by Theorem 4.6 (i),
it is computed by a polynomial-size Boolean formula. Since f is NL/poly-complete under
NC1-reductions [Razborov 1991], we obtain NL/poly ⊆ NC1. The implication (3) ⇒ (2)
follows from Theorems 6.4 and 4.2 (i), and (2)⇒ (1) is trivial.

7.4. Rewritings for OMQs with PFSP and bounded treewidth
Since OMQs with the polynomial fundamental set property (PFSP, see Section 3) and
CQs of bounded treewidth can be polynomially translated into monotone THGPs and
mTHGP = mLOGCFL/poly ⊆ mP/poly, we obtain:

THEOREM 7.9. For any fixed t > 0, all OMQs with the PFSP and CQs of treewidth
at most t have polynomial-size NDL-rewritings.

Using Theorem 3.3 and the fact that OMQs with ontologies of bounded depth enjoy
the PFSP, we obtain:

COROLLARY 7.10. The following OMQs have polynomial-size NDL-rewritings:
– OMQs with ontologies of bounded depth and CQs of bounded treewidth;
– OMQs with ontologies not containing axioms of the form %(x, y) → %′(x, y) (and (2))

and CQs of bounded treewidth.

Whether all OMQs without axioms of the form %(x, y) → %′(x, y) have polynomial-
size rewritings remains open.12

THEOREM 7.11. The following are equivalent:

(1) there exist polynomial-size FO-rewritings for all tree-shaped OMQs with ontologies
of depth 2;

(2) there exist polynomial-size FO-rewritings for all OMQs with the PFSP and CQs of
treewidth at most t (for any fixed t);

(3) LOGCFL/poly ⊆ NC1.

PROOF. The implication (2)⇒ (1) is trivial, and (1)⇒ (3) is proved similarly to the
corresponding case of Theorem 7.8 using Theorems 6.5, 5.9 and 4.6. (3) ⇒ (2) follows
from Theorems 5.13, 6.5 and 4.5.

7.5. Rewritings for OMQs with ontologies of depth 1 and CQs of bounded treewidth
We show finally that polynomial PE-rewritings are guaranteed to exist for OMQs with
ontologies of depth 1 and CQs of bounded treewidth. By Theorem 6.7, it suffices to show
that fHQ is computable by a THGP of bounded degree. However, since tree witnesses can

12A positive answer to this question given by Kikot et al. [2011] is based on a flawed proof.
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be initiated by multiple roles, the THGPs constructed in Section 5.4 do not enjoy this
property and require a minor modification.

Let Q = (T , q) be an OMQ with T of depth 1. For every tree witness t = (tr, ti),
we take a fresh binary predicate Pt (which cannot occur in any data instance) and
extend T with the following axioms:

τ(x)→ ∃y Pt(x, y), if τ generates t,

Pt(x, y)→ %(x, y), if %(u, v) ∈ qt, u ∈ tr and v ∈ ti.

Denote the resulting ontology by T ′ and set Q′ = (T ′, q). By Theorem 5.3, the number
of tree witnesses for Q does not exceed |q|, and so the size of Q′ is polynomial in |Q|. It
is easy to see that any rewriting of Q′ (with Pt replaced by ⊥) is also a rewriting for Q.
Thus, it suffices to consider OMQs of the form Q′, which will be called explicit.

Given an explicit OMQ Q = (T , q), we construct a THGP P ′Q in the same way as
PQ in Section 5.4 except that in the definition of Eki , instead of considering all types
wk of Ni, we only use wk = (w[1], . . . ,w[m]) in which w[j] is either ε or Pt for the
unique tree witness t = (tr, ti) with ti = {λj(Ni)}. (Since T is of depth 1, every tree
witness t has ti = {z}, for some variable z, and ti 6= t′i whenever t 6= t′.) This modification
guarantees that, for every i, the number of distinct Eki is bounded by 2m. It follows that
the hypergraph of P ′Q is of bounded degree, 2m+22m to be more precise. To establish the
correctness of the modified construction, we can prove an analogue of Theorem 5.13,
in which the original THGP PQ is replaced by P ′Q, and the function fHQ is replaced by

fH′Q =
∨

Θ⊆ΘQ
independent

( ∧
S(z)∈q\qΘ

pS(z) ∧
∧
t∈Θ

( ∧
R(z,z′)∈qt

pz=z′ ∧
∧

z∈tr∪ti

p∃yPt(z,y)

))

(which is obtained from fHQ by always choosing Pt as the predicate that initiates t). It
is easy to see that Theorem 4.2 holds also for fH′Q (with explicit Q), which gives us:

THEOREM 7.12. For any fixed t > 0, all OMQs with ontologies of depth 1 and CQs
of treewidth at most t have polynomial-size PE-rewritings.

For tree-shaped OMQs, we obtain an even better result. Indeed, by Theorem 5.7,
H(Q) is a tree hypergraph; by Theorem 5.3, it is of degree at most 2, and so, by The-
orem 6.8, fOQ is computed by a polynomial-size Π3-circuit (which is monotone by defi-
nition). Thus, Theorem 4.2 (i) gives us the following (Π3 turns into Π4 because of the
disjunction in the formula twt):

THEOREM 7.13. All tree-shaped OMQs with ontologies of depth 1 have polynomial-
size Π4-rewritings.

8. COMBINED COMPLEXITY OF OMQ ANSWERING
The size of OMQ rewritings we investigated so far is crucial for classical OBDA, which
relies upon a reduction to standard database query evaluation (under the assump-
tion that it is efficient in real-world applications). However, this way of answering
OMQs may not be optimal, and so understanding the size of OMQ rewritings does not
shed much light on how hard OMQ answering actually is. For example, answering the
OMQs from the proof of Theorem 7.4 via PE-rewriting requires superpolynomial time,
while the graph reachability problem encoded by those OMQs is NL-complete. On the
other hand, the existence of a short rewriting does not obviously imply tractability.

In this section, we analyse the combined complexity of answering OMQs classified
according to the depth of ontologies and the shape of CQs. More precisely, our concern
is the following decision problem: given an OMQ Q(x) = (T , q(x)), a data instance A
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and a tuple a from ind(A) (of the same length as x), decide whether T ,A |= q(a). Recall
from Section 3 that T ,A |= q(a) iff CT ,A |= q(a) iff there exists a homomorphism from
q(a) to CT ,A.

The combined complexity of CQ evaluation has been thoroughly investigated in rela-
tional database theory. In general, evaluating CQs is NP-complete [Chandra and Mer-
lin 1977], but becomes tractable for tree-shaped CQs [Yannakakis 1981] and bounded
treewidth CQs [Chekuri and Rajaraman 2000; Grohe et al. 2001]—LOGCFL-complete,
to be more precise [Gottlob et al. 2001].

The emerging combined complexity landscape for OMQ answering is summarised
in Fig. 2 (b) in Section 1.3. The NP and LOGCFL lower bounds for arbitrary OMQs
and tree-shaped OMQs with ontologies of bounded depth are inherited from the cor-
responding CQ evaluation problems. The NP upper bound for all OMQs was shown
by Calvanese et al. [2007] and Artale et al. [2009], while the matching lower bound
for tree-shaped OMQs by Kikot et al. [2011] and Gottlob et al. [2014]. By reduction of
the reachability problem for directed graphs, one can easily show that evaluation of
tree-shaped CQs with a bounded number of leaves (as well as answering OMQs with
unary predicates only) is NL-hard. We now establish the remaining results.

8.1. OMQs with bounded-depth ontologies
We begin by showing that the LOGCFL upper bound for CQs of bounded treewidth [Got-
tlob et al. 2001] is preserved even in the presence of ontologies of bounded depth.

THEOREM 8.1. For any fixed d ≥ 0 and t > 0, answering OMQs with ontologies of
depth at most d and CQs of treewidth at most t is LOGCFL-complete.

PROOF. Let Q(x) = (T , q(x)) be an OMQ with T of depth at most d and q of
treewidth at most t. As T is of finite depth, CT ,A is finite for any A. As LOGCFL is
closed under LLOGCFL reductions [Gottlob et al. 1999] and evaluation of CQs of bounded
treewidth is LOGCFL-complete, it suffices to show that CT ,A can be computed by an
LLOGCFL-transducer (a deterministic logspace Turing machine with a LOGCFL oracle).
Clearly, we need only logarithmic space to represent any predicate name or individual
constant from T and A, as well as any word aw ∈ ∆CT ,A (since |w| ≤ d and d is fixed).
Finally, as entailment in OWL 2 QL is in NL [Artale et al. 2009], each of the following
problems can be decided by making a call to an NL (hence LOGCFL) oracle:
– decide whether a%1 . . . %n ∈ ∆CT ,A , for any n ≤ d and roles %i from T ;
– decide whether u ∈ ∆CT ,A belongs to ACT ,A , for a unary A from T and A;
– decide whether (u1, u2) ∈ ∆CT ,A×∆CT ,A is in P CT ,A , for a binary P from T andA.

If we restrict the number of leaves in tree-shaped OMQs, then the LOGCFL upper
bound can be reduced to NL:

THEOREM 8.2. For any fixed d ≥ 0 and ` ≥ 2, answering OMQs with ontologies of
depth at most d and tree-shaped CQs with at most ` leaves is NL-complete.

PROOF. Algorithm 1 defines a non-deterministic procedure TreeQuery for deciding
whether a tuple a is a certain answer to a tree-shaped OMQ (T , q(x)) over A. The
procedure views q as a directed tree (we pick one of its variables z0 as a root) and
constructs a homomorphism from q(x) to CT ,A on-the-fly by traversing the tree from
root to leaves. The set frontier is initialised with a pair z0 7→ u0 representing the choice
of where to map z0. The possible choices for z0 include ind(A) and aw ∈ ∆CT ,A such that
|w| ≤ 2|T |+ |q|, which are enough to find a homomorphism if it exists [Artale et al.
2009]. This set of possible choices is denoted by U in Algorithm 1. Note that U occurs
only in statements of the form ‘guess u ∈ U ’ and need not be materialised. Instead, we
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ALGORITHM 1: Non-deterministic procedure TreeQuery for answering tree-shaped OMQs
Data: a tree-shaped OMQ (T , q(x)), a data instance A and a tuple a from ind(A)
Result: true if T ,A |= q(a) and false otherwise
fix a directed tree T compatible with the Gaifman graph of q and let z0 be its root;
let U =

{
aw ∈ ∆CT ,A | a ∈ ind(A) and |w| ≤ 2|T |+ |q|

}
; /* not computed */

guess u0 ∈ U ; /* use the definition of U to check whether the guess is allowed */
check canMap(z0,u0);
frontier←− {z0 7→ u0};
while frontier 6= ∅ do

remove some z 7→ u from frontier;
foreach child z′ of z in T do

guess u′ ∈ U ; /* use the def. of U to check whether the guess is allowed */

check (u, u′) ∈ P CT ,A , for all P (z, z′) ∈ q, and canMap(z′,u′);
frontier←− frontier ∪ {z′ 7→ u′}

return true;
Function canMap(z, u)

if z is the ith answer variable and u 6= ai then return false;
if u = aw% then /* the element u is in the tree part of the canonical model */

check T |= ∃y %(y, x)→ A(x), for all A(z) ∈ q, and T |= P (x, x), for all P (z, z) ∈ q
else /* otherwise, u ∈ ind(A) */

check u ∈ ACT ,A , for all A(z) ∈ q, and (u, u) ∈ P CT ,A , for all P (z, z) ∈ q

return true;

assume that the sequence u is guessed element-by-element and the condition u ∈ U
is verified along the sequence of guesses. We use the subroutine call canMap(z0, u0)
to check whether the guessed u0 is compatible with z0.13 It first ensures that, if z0 is
an answer variable of q(x), then u0 is the individual constant corresponding to z0 in
a. Next, if z0 ∈ ind(A), then it verifies that u0 satisfies all atoms in q(x) that involve
only z0. If u0 6∈ ind(A), then u0 must take the form aw% and the subroutine checks
whether T |= ∃y %(y, x) → A(x) (equivalently, aw% ∈ ACT ,A ) for every A(z0) ∈ q and
whether T |= P (x, x) for every P (z0, z0) ∈ q. The remainder of the algorithm consists
of a while loop, in which we remove z 7→ u from frontier, and if z is not a leaf node,
guess where to map its children. We must then check that the guessed element u′
for child z′ is compatible with (i) the binary atoms linking z to z′ and (ii) the atoms
that involve only z′; the latter is done by canMap(z′, u′). If the check succeeds, we add
z′ 7→ u′ to frontier, for each child z′ of z; otherwise, false is returned. We exit the while
loop when frontier is empty, i.e., when an element of CT ,A has been assigned to each
variable in q(x).

Correctness and termination of the algorithm are straightforward and hold for tree-
shaped OMQs with arbitrary ontologies. Membership in NL for bounded-depth ontolo-
gies and bounded-leaf queries follows from the fact that the number of leaves of q does
not exceed `, in which case the cardinality of frontier is bounded by `, and the fact that
the depth of T does not exceed d, in which case every element of U requires only a fixed
amount of space to store. So, since each variable z can be stored in logarithmic space,
the set frontier can also be stored in logarithmic space. Finally, it should be clear that
the subroutine canMap(z, u) can also be implemented in NL [Artale et al. 2009].

13The operator check immediately returns false if the condition is not satisfied.
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8.2. OMQs with bounded-leaf CQs
It remains to settle the complexity of answering OMQs with arbitrary ontologies and
bounded-leaf CQs, for which neither the upper bounds from the preceding subsection
nor the NP lower bound by Kikot et al. [2011] are applicable.

THEOREM 8.3. For any fixed ` ≥ 2, answering OMQs with tree-shaped CQs having
at most ` leaves is LOGCFL-complete.

PROOF. First, we establish the upper bound using a characterisation of the class
LOGCFL in terms of non-deterministic auxiliary pushdown automata (NAuxPDAs).
An NAuxPDA [Cook 1971] is a non-deterministic Turing machine with an additional
work tape constrained to operate as a pushdown store. Sudborough [1978] showed that
LOGCFL coincides with the class of problems that can be solved by NAuxPDAs running
in logarithmic space and polynomial time (note that the space on the pushdown tape
is not subject to the logarithmic space bound). Algorithms 2 and 3 give a procedure
BLQuery for answering OMQs with bounded-leaf CQs that can be implemented by an
NAuxPDA.

Similarly to TreeQuery, the idea is to view the input CQ q(x) as a tree and iteratively
construct a homomorphism from q(x) to CT ,A, working from root to leaves. We begin
by guessing an element a0w to which the root variable z0 is mapped and checking that
a0w is compatible with z0. However, instead of storing directly a0w in frontier, we guess
it element-by-element and push the word w onto the stack, stack. We assume that we
have access to the top of the stack, denoted by top(stack), and the call top(stack) on
empty stack returns ε. During execution of BLQuery, the height of the stack will never
exceed 2|T | + |q|, and so we assume that the height of the stack, denoted by |stack|, is
also available as, for example, a variable whose value is updated by the push and pop
operations on stack.

After having guessed a0w, we check that z0 can be mapped to it, which is done by
calling canMapTail(z0, a0, top(stack)). If the check succeeds, we initialise frontier to the
set of 4-tuples of the form (z0 7→ (a0, |stack|), zi), for all children zi of z0 in T . Intuitively,
a tuple (z 7→ (a, n), z′) records that the variable z is mapped to the element a stack≤n
and that the child z′ of z remains to be mapped (in the explanations we use stack≤n
to refer to the word comprising the first n symbols of stack; the algorithm, however,
cannot make use of it).

In the main loop, we remove one or more tuples from frontier, choose where to map
the variables and update frontier and stack accordingly. There are four options. Op-
tion 1 is used for tuples (z 7→ (a, 0), z′) where both z and z′ are mapped to individual
constants, Option 2 (Option 3) for tuples (z 7→ (a, n), z′) in which we map z′ to a child
(respectively, parent) of the image of z in CT ,A, while Option 4 applies when z and z′

are mapped to the same element (which is possible if P (z, z′) ∈ q, for some P that
is reflexive according to T ). Crucially, however, the order in which tuples are treated
matters due to the fact that several tuples ‘share’ the single stack. Indeed, when ap-
plying Option 3, we pop a symbol from stack, and may therefore lose some information
that is needed for processing other tuples. To avoid this, Option 3 may only be applied
to tuples (z 7→ (a, n), z′) with maximal n, and it must be applied to all such tuples at
the same time. For Option 2, we require that the selected tuple (z 7→ (a, n), z′) is such
that n = |stack|: since z′ is being mapped to an element a stack≤n %, we need to access
the nth symbol in stack to determine the possible choices for % and to record the symbol
chosen by pushing it onto stack.

The procedure terminates and returns true when frontier is empty, meaning that we
have successfully constructed a homomorphism witnessing that the input tuple is an
answer. Conversely, given a homomorphism from q(a) to CT ,A, we can define a success-
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ALGORITHM 2: Non-deterministic procedure BLQuery for answering bounded-leaf OMQs.
Data: a bounded-leaf OMQ (T , q(x)), a data instance A and a tuple a from ind(A)
Result: true if T ,A |= q(a) and false otherwise
fix a directed tree T compatible with the Gaifman graph of q and let z0 be its root;
guess a0 ∈ ind(A); /* guess the ABox element */
guess n0 < 2|T |+ |q|; /* maximum distance from ABox of relevant elements */
foreach n in 1, . . . , n0 do /* guess the initial element in a step-by-step fashion */

guess a role % in T such that isGenerated(%, a0, top(stack));
push % on stack

check canMapTail(z0, a0, top(stack));
frontier←−

{
(z0 7→ (a0, |stack|), zi) | zi is a child of z0 in T

}
;

while frontier 6= ∅ do
guess one of the 4 options;
if Option 1 then /* take a step in ind(A) */

remove some (z 7→ (a, 0), z′) from frontier;
guess a′ ∈ ind(A);
check (a, a′) ∈ P CT ,A , for all P (z, z′) ∈ q, and canMapTail(z′, a′, ε);
frontier←− frontier ∪ {(z′ 7→ (a′, 0), z′i) | z′i is a child of z′ in T}

else if Option 2 and |stack| < 2|T |+ |q| then /* a step ‘forward’ in the tree part */
remove some (z 7→ (a, |stack|), z′) from frontier;
guess a role % in T such that isGenerated(%, a, top(stack));
push % on stack;
check T |= %(x, y)→ P (x, y), for all P (z, z′) ∈ q, and canMapTail(z′, a, top(stack));
frontier←− frontier ∪ {(z′ 7→ (a, |stack|), z′i) | z′i is a child of z′ in T}

else if Option 3 and |stack| > 0 then /* take a step ‘backward’ in the tree part */
let deepest = {(z 7→ (a, n), z′) ∈ frontier | n = |stack|}; /* may be empty */
remove all deepest from frontier;
pop % from stack;
foreach (z 7→ (a, n), z′) ∈ deepest do

check T |= %(x, y)→ P (x, y), for all P (z′, z) ∈ q, and canMapTail(z′, a, top(stack));
frontier←− frontier ∪ {(z′ 7→ (a, |stack|), z′i) | z′i is a child of z′ in T}

else if Option 4 then /* take a ‘loop’-step in the tree part of CT ,A */
remove some (z 7→ (a, |stack|), z′) from frontier;
check T |= P (x, x), for all P (z, z′) ∈ q, and canMapTail(z′, a, top(stack));
frontier←− frontier ∪ {(z′ 7→ (a, |stack|), z′i) | z′i is a child of z′ in T}

else return false;
return true;

ful execution of BLQuery. We prove in Appendix H that BLQuery terminates (Proposi-
tion H.1), is correct (Proposition H.2) and can be implemented by an NAuxPDA (Propo-
sition H.3). The following example illustrates the construction.

Example 8.4. Suppose T has the following axioms:

A(x)→ ∃y P (x, y), P (x, y)→ U(y, x),

∃y P (y, x)→ ∃y S(x, y), ∃y S(y, x)→ ∃y T (y, x), ∃y P (y, x)→ B(x).

the query is as follows:

q(x1, x2) = ∃y1y2y3y4y5

(
R(y2, x1) ∧ P (y2, y1) ∧ S(y1, y3) ∧

T (y5, y3) ∧ S(y4, y3) ∧ U(y4, x2)
)
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ALGORITHM 3: Subroutines for BLQuery.
Function canMapTail(z, a, σ)

if z is the ith answer variable and either a 6= ai or σ 6= ε then return false;
if σ 6= ε then /* an element of the form a . . . σ in the tree part */

check T |= ∃y σ(y, x)→ A(x), for all A(z) ∈ q, and T |= P (x, x), for all P (z, z) ∈ q
else /* otherwise, in ind(A) */

check a ∈ ACT ,A , for all A(z) ∈ q, and (a, a) ∈ P CT ,A , for all P (z, z) ∈ q

return true;

Function isGenerated(%, a, σ)
if σ 6= ε then /* an element of the form a . . . σ in the tree part */

check T |= ∃y σ(y, x)→ ∃y %(x, y)
else /* otherwise, in ind(A) */

check (a, b) ∈ %(x, y)CT ,A , for some b ∈ ∆CT ,A \ ind(A)

return true;

and A = {A(a), R(a, c)}. Observe that CT ,A |= q(c, a). We show how to define an ex-
ecution of BLQuery that returns true on ((T , q),A, q, (c, a)) and the homomorphism it
induces. We fix some variable, say y1, as the root of the query tree. We then guess the
constant a and the word P , push P onto stack and check using canMapTail(y1, a, P)
that our choice is compatible with y1. At the start of the while loop, we have

frontier = {(y1 7→ (a, 1), y2), (y1 7→ (a, 1), y3)} and stack = P, (w-1)

where the first tuple, for example, records that y1 has been mapped to a stack≤1 = aP
and y2 remains to be mapped. We are going to use Option 3 for (y1 7→ (a, 1), y2) and
Option 2 for (y1 7→ (a, 1), y3). We (have to) start with Option 2 though: we remove
(y1 7→ (a, 1), y3) from frontier, guess S, push it onto stack, and add (y3 7→ (a, 2), y4)
and (y3 7→ (a, 2), y5) to frontier. Note that the tuples in frontier allow us to read off the
elements a stack≤1 and a stack≤2 to which y1 and y3 are mapped. Thus,

frontier = {(y1 7→ (a, 1), y2), (y3 7→ (a, 2), y4), (y3 7→ (a, 2), y5)} and stack = PS (w-2)

at the start of the second iteration of the while loop. We are going to use Option 3 for
(y3 7→ (a, 2), y4) and Option 2 for (y3 7→ (a, 2), y5). Again, we have to start with Option 2:
we remove (y3 7→ (a, 2), y5) from frontier, and guess T− and push it onto stack. As y5 has
no children, we leave frontier unchanged. At the start of the third iteration,

frontier = {(y1 7→ (a, 1), y2), (y3 7→ (a, 2), y4)} and stack = PST−; (w-3)

see Fig. 19 (a). We apply Option 3 and, since deepest = ∅, we pop T− from stack
but make no other changes. In the fourth iteration, we again apply Option 3. Since
deepest = {(y3 7→ (a, 2), y4)}, we remove this tuple from frontier and pop S from stack. As
the checks succeed for S, we add (y4 7→ (a, 1), x2) to frontier. Before the fifth iteration,

frontier = {(y1 7→ (a, 1), y2), (y4 7→ (a, 1), x2)} and stack = P ; (w-5)

see Fig. 19 (b). We apply Option 3 with deepest = {(y1 7→ (a, 1), y2), (y4 7→ (a, 1), x2)}.
This leads to both tuples being removed from frontier and P popped from stack. We next
perform the required checks and, in particular, verify that the choice of where to map
the answer variable x2 agrees with the input vector (c, a) (which is indeed the case).
Then, we add (y2 7→ (a, 0), x1) to frontier. The final, sixth, iteration begins with

frontier = {(y2 7→ (a, 0), x1)} and stack = ε; (w-6)
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Fig. 19. Partial homomorphisms from a tree-shaped CQ q(x1, x2) to the canonical model CT ,A and the
contents of stack in Example 8.4: (a) before the third iteration, (b) before the fifth iteration, (c) before and (d)
after the final (sixth) iteration. Large nodes indicate the last component of the tuples in frontier.

see Fig. 19 (c). We choose Option 1, remove (y2 7→ (a, 0), x1) from frontier, guess c, and
perform the required compatibility checks. As x1 is a leaf, no new tuples are added to
frontier; see Fig. 19 (d). We are thus left with frontier = ∅, and return true.

The proof of LOGCFL-hardness is by reduction of the following problem: decide
whether an input of length n is accepted by the nth circuit of a logspace-uniform fam-
ily of SAC1 circuits, which is known to be LOGCFL-hard [Venkateswaran 1991]. This
problem was used by Gottlob et al. [2001] to show LOGCFL-hardness of evaluating
tree-shaped CQs. We follow a similar approach, but with one crucial difference: using
an ontology, we ‘unravel’ the circuit into a tree, which allows us to replace tree-shaped
CQs by linear ones. Following Gottlob et al. [2001], we assume without loss of general-
ity that the considered SAC1 circuits adhere to the following normal form:
– fan-in of all AND-gates is 2;
– nodes are assigned to levels, with gates on level i only receiving inputs from gates

on level i− 1, the input gates on level 1 and the output gate on the greatest level;
– the number of levels is odd, all even-level gates are OR-gates, and all odd-level non-

input gates are AND-gates.
It is well known [Gottlob et al. 2001; Venkateswaran 1991] that a circuit in normal
form accepts an input α iff there is a labelled rooted tree (called a proof tree) such that
– the root node is labelled with the output AND-gate;
– if a node is labelled with an AND-gate gi and gi = gj ∧ gk, then it has two children

labelled with gj and gk, respectively;
– if a node is labelled with an OR-gate gi and gi = gj1 ∨ . . . ∨ gjk , then it has a unique

child that is labelled with one of gj1 , . . . , gjk ;
– every leaf node is labelled with an input gate whose literal evaluates to 1 under α.
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Fig. 20. (a) A circuit C of 5 levels with input α : x1 7→ 1, x2 7→ 0, x3 7→ 0, x4 7→ 0, x5 7→ 0 (the gate
number is indicated on the left and gates with value 1 under α are shaded); (b) a proof tree for C and α;
(c) CQs q (thick gray arrows) and q′ (black arrows); (d) canonical model of (Tα,A) with the subscript of Gi
inside the nodes.

For example, the circuit in Fig. 20 (a) accepts (1, 0, 0, 0, 1), as witnessed by the proof
tree in Fig. 20 (b). While a circuit-input pair may admit multiple proof trees, they are
all isomorphic modulo the labelling. Thus, with every circuit C, we can associate a
skeleton proof tree T such that C accepts α iff some labelling of T is a proof tree for C
and α. Note that T depends only on the number of levels in C. The reduction [Gottlob
et al. 2001], which is for presentation purposes reproduced here with minor modifica-
tions, encodes C and α in the database and uses a Boolean tree-shaped CQ based on
the skeleton proof tree. Specifically, the databaseD(α) uses the gates ofC as constants
and consists of the following facts:

L(gj , gi) and R(gk, gi), for every AND-gate gi with gi = gj ∧ gk;

U(gj1 , gi), . . . , U(gjk , gi), for every OR-gate gi with gi = gj1 ∨ · · · ∨ gjk ;

A(gi), for every input gate gi whose value is 1 under α.

The CQ q uses the nodes of T as variables, has an atom U(zj , zi) (L(zj , zi), R(zj , zi))
for every node zi with unique (left, right) child zj , and has an atom A(zi) for every leaf
node zi. These definitions guarantee that D(α) |= q iff C accepts α; moreover, both q
and D(α) can be constructed by logspace transducers.

To adapt this reduction to our setting, we replace q by a linear CQ q′, which is
obtained by a depth-first traversal of q. When evaluated on D(α), the CQs q′ and q
may give different answers, but the answers coincide if the CQs are evaluated on the
unravelling of D(α) into a tree. Thus, we define (Tα,A) whose canonical model induces
a tree isomorphic to the unravelling of D(α). To formally introduce q′, consider the
sequence of words defined inductively as follows:

w0 = ε and wj+1 = L− U− wj U LR
− U− wj U R, for j > 0.
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Suppose C has 2d+ 1 levels, d ≥ 0. Consider the dth word wd = %1%2 . . . %k and take

q′(y0) = ∃y1, . . . , yk

[ k∧
i=1

%i(yi−1, yi) ∧
∧

%i%i+1=U− U

A(yi)
]
;

see Fig. 20 (c). We now define (Tα,A). Suppose C has gates g1, . . . , gm, with gm the
output gate. In addition to predicates U , L, R, A, we introduce a unary predicate Gi for
each gate gi. We set A = {Gm(a)} and include the following axioms in Tα:

Gi(x)→ ∃y
(
S(x, y) ∧Gj(y)

)
, for every S(gj , gi) ∈ D(α), S ∈ {U,L,R},

Gi(x)→ A(x), for every A(gi) ∈ D(α);

see Fig. 20 (d) for an illustration. When restricted to predicates U , L, R, A, the canoni-
cal model of (Tα,A) is isomorphic to the unravelling of D(α) starting from gm.

We show in Appendix I that q′ and (Tα,A) can be constructed by logspace transduc-
ers (Proposition I.1), and that C accepts α iff Tα,A |= q′(a) (Proposition I.2).

9. CONCLUSIONS AND OPEN PROBLEMS
Our aim in this work was to understand how the size of OMQ rewritings and the com-
bined complexity of OMQ answering depend on (i) the existential depth of OWL 2 QL
ontologies, (ii) the treewidth of CQs or the number of leaves in tree-shaped CQs, and
(iii) the type of rewriting: PE, NDL or arbitrary FO.

We tackled the succinctness problem by representing OMQ rewritings as (Boolean)
hypergraph functions and establishing an unexpectedly tight correspondence between
the size of OMQ rewritings and the size of various computational models for com-
puting these functions. It turned out that polynomial-size PE-rewritings can only be
constructed for OMQs with ontologies of depth 1 and CQs of bounded treewidth. On-
tologies of larger depth require, in general, PE-rewritings of super-polynomial size.
The good and surprising news, however, is that, for classes of OMQs with ontolo-
gies of bounded depth and CQs of bounded treewidth, we can always (efficiently)
construct polynomial-size NDL-rewritings. The same holds if we consider OMQs ob-
tained by pairing ontologies of depth 1 with arbitrary CQs or coupling arbitrary on-
tologies with bounded-leaf queries; see Fig. 2 for details. The existence of polynomial-
size FO-rewritings for different classes of OMQs was shown to be equivalent to ma-
jor open problems in computational and circuit complexity such as ‘NL/poly ⊆ NC1?’,
‘LOGCFL/poly ⊆ NC1?’ and ‘NP/poly ⊆ NC1?’

We also determined the combined complexity of answering OMQs from the consid-
ered classes. In particular, we showed that OMQ answering is tractable—either NL-
or LOGCFL-complete—for bounded-depth ontologies coupled with bounded treewidth
CQs, as well as for arbitrary ontologies paired with tree-shaped queries with a bounded
number of leaves. We point out that membership in LOGCFL implies that answering
OMQs from the identified tractable classes can be ‘profitably parallelised’ (for details,
consult [Gottlob et al. 2001]).

Comparing the two sides of Fig. 2, we remark that the class of tractable OMQs
nearly coincides with the OMQs admitting polynomial-size NDL-rewritings (the only
exception being OMQs with ontologies of depth 1 and arbitrary CQs). However, the
LOGCFL and NL membership results cannot be immediately inferred from the existence
of polynomial-size NDL-rewritings, since evaluating polynomial-size NDL-queries is a
PSPACE-complete problem in general. In fact, much more work is required to construct
NDL-rewritings that can be evaluated in LOGCFL and NL, which will be done in a
follow-up publication; see technical report [Bienvenu et al. 2016].
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Although the present work gives comprehensive solutions to the succinctness and
combined complexity problems formulated in Section 1, it also raises some interesting
and challenging questions:

(1) What is the size of rewritings of OMQs with a fixed ontology?
(2) What is the size of rewritings of OMQs with ontologies in a fixed signature?
(3) Is answering OMQs with CQs of bounded treewidth and ontologies of finite depth

fixed-parameter tractable if the ontology depth is the parameter?
(4) What is the size of rewritings for OMQs whose ontologies do not contain role inclu-

sions, that is, axioms of the form %(x, y)→ %′(x, y)?

Answering these questions would provide further insight into the difficulty of OBDA
and could lead to the identification of new classes of well-behaved OMQs.

As far as practical OBDA is concerned, our experience with the query answering en-
gine Ontop [Rodriguez-Muro et al. 2013; Kontchakov et al. 2014], which employs the
tree-witness rewriting, shows that mappings and database constraints together with
semantic query optimisation techniques can drastically reduce the size of rewritings
and produce efficient SQL queries over the data. The role of mappings and data con-
straints in OBDA is yet to be fully investigated [Rodriguez-Muro and Calvanese 2012;
Rosati 2012; Lembo et al. 2015; Bienvenu and Rosati 2015] and constitutes another
promising avenue for future work.

Finally, the focus of this paper was on the ontology language OWL 2 QL that has
been designed specifically for OBDA via query rewriting. However, in practice ontol-
ogy designers often require constructs that are not available in OWL 2 QL. Typical
examples are axioms such as A(x) → B(x) ∨ C(x) and P (x, y) ∧ A(y) → B(x). The for-
mer is a standard covering constraint in conceptual modelling, while the latter occurs
in ontologies such as SNOMED CT. There are at least two ways of extending the appli-
cability of rewriting techniques to a wider class of ontology languages. A first approach
relies upon the observation that although many ontology languages do not guarantee
the existence of rewritings for all ontology-query pairs, it may still be the case that
the queries and ontologies typically encountered in practice do admit rewritings. This
has motivated the development of diverse methods for identifying particular ontolo-
gies and OMQs for which (first-order or Datalog) rewritings exist [Lutz et al. 2011;
Bienvenu et al. 2013; Bienvenu et al. 2014; Kaminski et al. 2014; Hansen et al. 2015].
A second approach consists in replacing an ontology formulated in a complex ontology
language (which lacks efficient query answering algorithms) by an ontology written
in a simpler language, for which query rewriting methods can be employed. Ideally,
one would show that the simpler ontology is equivalent to the original with regards to
query answering [Botoeva et al. 2016], and thus provides the exact set of answers. Al-
ternatively, one can use a simpler ontology to approximate the answers for the full one
[Console et al. 2014; Botoeva et al. 2016] (possibly employing a more costly complete
algorithm to decide the status of the remaining candidate answers [Zhou et al. 2015]).
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A. PROOF OF THEOREM 4.5
THEOREM 4.5 (i) For any OMQQ(x), the formulas qtw(x) and q′tw(x) are equivalent,

and so q′tw(x) is a PE-rewriting of Q(x) over complete data instances.
(ii) Theorem 4.2 continues to hold for fOQ replaced by fHQ.

PROOF. Let Q(x) = (T , q(x)) and q(x) = ∃y ϕ(x,y). We begin by showing that for
every tree witness t for Q(x), we have the following chain of equivalences:∧

R(z,z′)∈qt

(z = z′) ∧
∨

t is %-initiated

∧
z∈tr∪ti

%∗(z) ≡
∧

z,z′∈tr∪ti

(z = z′) ∧
∨

t is %-initiated

∧
z∈tr∪ti

%∗(z)

≡ ∃z0

( ∧
z∈tr∪ti

(z = z0) ∧
∨

t is %-initiated

%∗(z0)
)
≡ ∃z0

( ∧
z∈tr∪ti

(z = z0) ∧
∨

t generated by τ

τ(z0)
)
,

where z0 is a fresh variable. The first equivalence follows from the transitivity of equal-
ity and the fact that every pair of variables z, z′ in a tree witness must be linked by
a sequence of binary atoms. The following equivalence can be readily verified using
first-order semantics. For the final equivalence, we use the fact that if t is %-initiated
and T |= τ(x) → ∃y %(x, y), then t is generated by τ , and conversely, if t is generated
by τ , then there is some % that initiates t and is such that T |= τ(x)→ ∃y %(x, y).

By the above equivalences, the query q′tw(x) can be equivalently expressed as follows:

∃y
∨

Θ⊆ΘQ
independent

( ∧
S(z)∈q\qΘ

S(z) ∧
∧
t∈Θ

(
∃z0 (

∧
z∈tr∪ti

(z = z0) ∧
∨

t is generated by τ

τ(z0))
))
.

Finally, we observe that, for every independent Θ ⊆ ΘQ, the variables that occur in
some ti, for t ∈ Θ, do not occur in t′i for any other t′ ∈ Θ. It follows that if z ∈ ti
and t ∈ Θ, then the only occurrence of z in the disjunct for Θ is in the equality atom
z = z0. We can thus drop all such atoms, while preserving equivalence, which gives us
precisely the tree-witness rewriting qtw(x). In particular, this means that q′tw(x) is a
rewriting of Q(x) over complete data instances.

To establish the second statement, let Φ be a Boolean formula that computes

fHQ =
∨

Θ⊆ΘQ
independent

( ∧
S(z)∈q\qΘ

pS(z) ∧
∧
t∈Θ

( ∧
R(z,z′)∈qt

pz=z′ ∧
∨

t is %-initiated

∧
z∈tr∪ti

p%∗(z)
))
,

and let q′(x) be the FO-formula obtained by replacing each pz=z′ in Φ with z = z′,
each pS(z) with S(z), each p%∗(z) with

∨
T |=τ(x)→∃y %(x,y) τ(z), and prefixing the result

c© 2010 ACM. 0004-5411/2010/03-ART39 $15.00
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with ∃y. Recall that the modified rewriting q′tw(x) was obtained by applying this same
transformation to the original monotone Boolean formula for fHQ. Since Φ computes
fHQ, q′(x) and q′tw(x) are equivalent FO-formulas. As we have already established that
q′tw(x) is a rewriting of Q(x), the same must be true of q′(x). The statement regarding
NDL-rewritings can be proved similarly to the proof of Theorem 4.2 (ii).

B. PROOF OF THEOREM 5.9
THEOREM 5.9 (i) Any tree hypergraph H is isomorphic to a subgraph of H(TH).
(ii) Any monotone THGP based on a tree hypergraph H computes a subfunction of

the primitive evaluation function fMTH .

PROOF. (i) Fix a tree hypergraph H = (V,E) whose underlying tree T = (VT , ET )
has vertices VT = {1, . . . , n}, for n > 1, and 1 is a leaf of T . The directed tree obtained
from T by fixing 1 as the root and orienting the edges away from 1 is denoted by
T 1 = (VT , E

1
T ). By definition, each e ∈ E induces a convex subtree T e = (Ve, Ee) of T 1.

Since, for each subtree T e, the OMQ TH has a tree-witness te with

ter = { zi | i in on the boundary of e },
tei = { zi | i is in the interior of e } ∪ { yij | (i, j) ∈ e },

it follows that H is isomorphic to the subgraph of H(TH) obtained by removing all
superfluous hyperedges and all vertices corresponding to atoms with Sij .

(ii) Suppose that P is bssed on a tree hypergraph H. Given an input α for P , we
define an assignment γ for the predicates in TH = (T , q) by taking each γ(Rij) and
γ(Sij) to be the value of the label of (i, j) ∈ E1

T under α and γ(Ae) = 1 for all e ∈ E
(γ(Rζ) = 0, for all normalisation predicates Rζ). We show that for all α we have

P (α) = 1 iff fMTH (γ) = 1.

Observe that the canonical model CT ,A(γ) contains two labelled nulls, we and w′e, for
each e ∈ E, satisfying

CT ,A(γ) |=
∧

(i,j)∈Ee, i=re
Rrej(a,we) ∧

∧
(i,j)∈Ee, j∈Le

Sij(we, a) ∧

∧
(i,j)∈Ee, i 6=re

Rij(w
′
e, we) ∧

∧
(i,j)∈Ee, j /∈Le

Sij(we, w
′
e).

(⇒) Suppose that P (α) = 1. Then there exists an independent E′ ⊆ E that covers all
zeros of α. We show T ,A(γ) |= q (that is, fMTH (γ) = 1). Define a mapping h as follows:

h(zi) =

{
w′e, if i is in the interior of e ∈ E′,
a, otherwise,

h(yij) =

{
we, if (i, j) ∈ e ∈ E′,
a otherwise.

Note that h is well-defined: since E′ is independent, its hyperedges share no interior,
and there can be at most one hyperedge e ∈ E′ containing any given vertex (i, j).

It remains to show that h is a homomorphism from q to CT ,A(γ). Consider a pair of
atoms Rij(zi, yij) and Sij(yij , zj) in q. Then (i, j) ∈ E1

T . If there is e ∈ E′ with(i, j) ∈ e
then there are four possibilities to consider:
– if neither i nor j is in the interior then, since Te is a tree and (i, j) is its edge, the

only possibility is e = {(i, j)}, whence h(zi) = h(zj) = a and h(yij) = we;
– i is on the boundary and j is internal, then h(zi) = a, h(yij) = we, and h(zj) = w′e;
– if j is on the boundary and i is internal, then this case is the mirror image;
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– if both i and j are in the interior, then h(zi) = h(zj) = w′e and h(yij) = we.
Otherwise, the label of (i, j) must evaluate to 1 underα, whenceA(γ) containsRij(a, a)
and Sij(a, a) and we set h(zi) = h(yij) = h(zj) = a. In all cases, h preserves the atoms
Rij(zi, yij) and Sij(yij , zj), and so h is indeed a homomorphism.

(⇒) Suppose that fMTH (γ) = 1. Then T ,A(γ) |= q, and so there is a homomorphism
h : q → CT ,A(γ). We show that there is an independent E′ ⊆ E that covers all zeros
of α. Let E′ be the set of all e ∈ E such that h−1(we) 6= ∅ (that is, we is in the image
of h). To show that E′ is independent, we need the following claim:

Claim. If h−1(we) 6= ∅, then h(yij) = we for all (i, j) ∈ e.
Proof of claim. Let re be the root of T e and Le its leaves. Pick some variable z ∈ h−1(we)
such that there is no z′ ∈ h−1(we) higher than z in q (we use the ordering of variables
induced by the tree T 1). Observe that z cannot be of the form zj , because then q would
contain some atom Rj`(zj , yj`) or S`j(y`j , zj), but we has no outgoing Rj` or S−`j arcs in
CT ,A(γ). It follows that z is of the form yj`, for some j, `. By considering the available
arcs leaving we again, we conclude that (j, `) ∈ e. We next show that j = re. Suppose
that this is not the case. Then, there must be (p, j) ∈ e with (p, j) ∈ T 1. A simple
examination of the axioms in T shows that the only way for h to satisfy the atom
Rj`(zj , yj`) is to map zj to w′e. It follows that to satisfy the atom Spj(ypj , zj), we must put
h(ypj) = we contrary to the assumption that z = yj` was a highest vertex in h−1(we).
Thus, j = re. Now, using a simple inductive argument on the distance from zre , and
considering the possible ways of mapping the atoms of q, we can show that h(yij) = we
for every (i, j) ∈ e. (end proof of claim)

Suppose that there are two distinct hyperedges e, e′ ∈ E′ that have a non-empty inter-
section: (i, j) ∈ e ∩ e′. We know that either yij or yji occurs in q, and we can assume
the former without loss of generality. By the claim, we obtain h(yij) = we = we′ , a
contradiction. Therefore, E′ is independent. We now show that it covers all zeros. Let
(i, j) be such that its label evaluates to 0 under α, and assume again without loss of
generality that yij occurs in q. Then A(γ) does not contain Rij(a, a), so the only way h
can satisfy the atom Rij(zi, yij) is by mapping yij to some we with (i, j) ∈ e. It follows
that there is an e ∈ E′ such that (i, j) ∈ e, so all zeros of α are covered by E′. We have
thus shown that E′ is an independent subset of E that covers all zeros of α, and hence,
P (α) = 1.

C. PROOF OF PROPOSITION 5.10
PROPOSITION 5.10. (i) For any tree hypergraph H of degree ≤ d, there is a mono-

tone THGP of size O(|H|) that computes fH and such that its hypergraph is of de-
gree ≤ max(2, d).

(ii) For every generalised THGP P over n variables, there is a THGP P ′ computing
the same function and such that |P ′| ≤ n · |P |.

PROOF. (i) Consider a hypergraph H = (V,E) based on a tree T = (VT , ET ) with
V = ET . We label each v ∈ V with a variable pv and, for each e ∈ E, we choose
some ve ∈

⋃
e, add fresh vertices ae and be with edges {ve, ae} and {ae, be} to T as

well as a new hyperedge e′ = [ve, be] to E. We label the segment [ve, ae] with 1 and
the segment [ae, be] with pe. We also extend e to include the segment [ve, ae]. We claim
that the resulting THGP P computes fH . Indeed, for any input α with α(pe) = 0, we
have to include the edge e′ into the cover, and so cannot include the edge e itself. Thus,
P (α) = 1 iff there is an independent set E of hyperedges with α(pe) = 1, for all e ∈ E,
covering all zeros of the variables pv. It follows that P computes fH .
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(ii) Let P be a generalised THGP based on a hypergraph H = (V,E) with the un-
derlying tree T = (VT , ET ) such that V = ET . To construct P ′, we split every vertex
v ∈ V (which is an edge of T ) labelled with

∧k
i=1 li into k new edges v1, . . . , vk and label

vi with li, for 1 ≤ i ≤ k; each hyperedge containing v will now contain all the vi. It is
easy to see that P (α) = P ′(α), for any valuation α. Since k ≤ n, we have |P ′| ≤ n · |P |.
It should be clear that the degree of P ′ and the number of leaves in it are the same as
in P .

D. PROOF OF THEOREM 5.13
THEOREM 5.13. For every OMQ Q(x) = (T , q(x)) with a fundamental set ΩQ and

with q of treewidth t, the generalised monotone THGP PQ computes fHQ and is of size
polynomial in |q| and |ΩQ|t.

PROOF. By [Flum and Grohe 2006, Lemma 11.9], we can assume that the tree T in
the tree decomposition of q has at most N , N ≤ |q|, nodes. Recall that M = |ΩQ|t is the
number of bag types. We claim that PQ
– contains at most (2M + 1)N vertices and at most N(M +M2) hyperedges;
– and has labels with at most 3|q| conjuncts.

The vertices of the hypergraph of PQ correspond to the edges of T ′, and there can be
at most N · (2M + 1) of them, because there can be no more than N edges in T , and
each is replaced by a sequence of 2M + 1 new edges. The hyperedges are of two types:
Eki (where 1 ≤ i ≤ N and 1 ≤ k ≤ M ) and Ek`ij (where (i, j) correspond to an edge
in T and 1 ≤ k, ` ≤ M ). It follows that the total number of hyperedges cannot exceed
N(M + M2). Finally, a simple examination of the labelling function shows that there
can be at most 3|q| conjuncts in each label. Indeed, given i, j and k, each atom S(z)
with z ⊆ λ(Ni) generates either 1 or 3 propositional variables in the label of {ukij , vkij},
and |q| is the upper bound for the number of such atoms.

To complete the proof, we show that PQ computes fHQ: for any valuation α,

fHQ(α) = 1 iff PQ(α) = 1.

(⇒) Let α be such that fHQ(α) = 1. Then we can find an independent Θ ⊆ ΘQ such
that α satisfies the corresponding disjunct of fHQ:∧

S(z)∈q\qΘ

pS(z) ∧
∧
t∈Θ

( ∧
R(z,z′)∈qt

pz=z′ ∧
∨

t is %-initiated

∧
z∈tr∪ti

p%∗(z)

)
. (14)

For every t ∈ Θ, let %t be a role that makes the disjunction hold. Since t is %t-initiated,
we can choose a homomorphism ht : qt → C

%t(a)
T such that, for every z ∈ ti, ht(z) is of

the form a%tw, for some w .
With each node N in the tree decomposition (T, λ) we associate the type w of N by

taking, for all z ∈ λ(N):

w[νN (z)] =

{
w, if z ∈ ti and ht(z) = aw, for some t ∈ Θ,

ε, otherwise.

Observe thatw is well-defined since the independence of Θ guarantees that every vari-
able in q can appear in ti for at most one t ∈ Θ. We show that w is compatible with N .
Consider a unary atom A(z) ∈ q such that z ∈ λ(N) andw[νN (z)] 6= ε. Then there must
be t ∈ Θ such that z ∈ ti, in which case ht(z) = aw[νN (z)]. Let % be the final symbol
in ht(z). Since ht : qt → C

∃y%t(a,y)
T is a homomorphism, we have T |= ∃y %(y, x) → A(x).
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Consider now a binary atom P (z, z′) ∈ q such that z, z′ ∈ λ(N) and either w[νN (z)] 6= ε
or w[νN (z′)] 6= ε. We assume w.l.o.g. that the former is true (the other case is han-
dled analogously). By definition, there is t ∈ Θ such that z ∈ ti and ht(z) = aw[νN (z)].
Since z ∈ ti and P (z, z′) ∈ q, by the definition of tree witnesses, z′ ∈ tr ∪ ti. Since
ht : qt → C

∃y%t(a,y)
T is a homomorphism, one of the following holds:

– w[νN (z′)] = w[νN (z)] and T |= P (x, x);
– w[νN (z)] = w[νN (z′)] · % for some % with T |= %(y, x)→ P (x, y);
– w[νN (z′)] = w[νN (z)] · % for some % with T |= %(x, y)→ P (x, y).

This establishes the second part of the compatibility condition. Next, we show that the
pairs associated with different nodes in T are compatible. Consider a pair of nodes N
andN ′ and their typesw andw′. It is clear that, by construction,w[νN (z)] = w′[νN ′(z)],
for all z ∈ λ(N) ∩ λ(N ′).

Let w1, . . . ,wM be all the bag types. Consider now the tree hypergraph PQ, and
let E′ be the set consisting of the following hyperedges:
– for every Ni in T , the hyperedge Eki = [Ni, u

k
ij1
, . . . , ukijn ], where k is such that wk is

the type of Ni, and Nj1 , . . . , Njn are the neighbours of Ni;
– for every pair of adjacent nodes Ni, Nj in T , the hyperedge Ek`ij = [vkij , v

`
ji], where k

and ` are such that wk and w` are the types of Ni and Nj , respectively.
Note that all these hyperedges are present in the hypergraph of PQ because we have
shown that the type of each node Ni is compatible with it and that the pairs of types of
Ni andNj are compatible with the pair (Ni, Nj). It is easy to see that E′ is independent,
since whenever we include Eki or Ek`ij , we do not include any Ek

′

i or Ek
′`
ij for k′ 6= k. It

remains to show that every vertex of the hypergraph of PQ that is not covered by
E′ evaluates to 1 under α. Observe first that most of the vertices are covered by E′.
Specifically:
– {Ni, u1

ij} is covered by Eki ;
– {vkij , u

k+1
ij } is covered either by Eni (if n ≤ k + 1) or by En`ij (if n > k + 1);

– {vMij , vMji } is covered by Ek`ij ;
– {ukij , vkij} is covered by Eni if k < n, and by En`ij if n > k.

Thus, the only type of vertex not covered by E′ is of the form {ukij , vkij}, where wk is the
type of Ni. In this case, by definition, {ukij , vkij} is labelled by the following variables:

– pS(z), if S(z) ∈ q, z ⊆ λ(Ni) and wk[νNi(z)] = ε, for all z ∈ z;
– p%∗(z), if A(z) ∈ q, z ∈ λ(Ni) and wk[νNi(z)] = %w;
– p%∗(z), p%∗(z′) and pz=z′ , if S(z, z′) ∈ q (possibly with z = z′), z, z′ ∈ λ(Ni) and either
wk[νNi(z)] = %w or wk[νNi(z

′)] = %w.
First suppose that pS(z) appears in the label of {ukij , vkij}. Then wk[νNi(z)] = ε, for
all z ∈ z, and hence there is no variable in S(z) that belongs to any ti for t ∈ Θ. It
follows that S(z) ∈ q \ qΘ, and since (14) is satisfied, the variable pS(z) evaluates to
1 under α. Next suppose that one of p%∗(z), p%∗(z′) and pz=z′ is part of the label. We
focus on the case where these variables came from a binary atom (third item above),
but the proof is similar for the case of a unary atom (second item above). We know
that there is some atom S(z, z′) ∈ q with z, z′ ∈ λ(Ni) and either wk[νNi(z)] = %w or
wk[νNi ] = %w. It follows that there is a tree witness t ∈ Θ such that z, z′ ∈ tr ∪ ti.
This means that the atom pz=z′ is a conjunct of (14), and so it is satisfied under α.
Also, either wk[νNi(z)] = ht(z) or wk[νNi(z

′)] = ht(z
′) is of the form %w, and, since
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all non-empty words in the image of ht begin by %t, we obtain % = %t. Since %t was
chosen so that

∧
z∈tr∪ti

p%∗(z) is satisfied under α, both p%∗(z) and p%∗(z′) evaluate to 1
under α. Therefore, E′ is independent and covers all zeros under α, which means that
PQ(α) = 1.

(⇐) Suppose PQ(α) = 1, i.e., there is an independent subset E′ of the hyperedges
in PQ that covers all vertices evaluated to 0 under α. It is clear from the construction
of PQ that E′ contains exactly one hyperedge of the form Eki for every node Ni in
T , and so we can associate with every node Ni the unique index µ(Ni) = k. We also
know that E′ contains exactly one hyperedge of the form Ek`ij for every edge {Ni, Nj}
in T . Moreover, if we have hyperedges Eki and Ek

′`
ij (respectively, E`j and Ek`

′

ij ), then
k = k′ (respectively, ` = `′). It also follows from the definition of PQ that every wµ(Ni)

is compatible with Ni, and pairs (wµ(Nj),wµ(Nj)) are compatible for adjacent nodes
Ni, Nj . Using the compatibility properties and the connectedness condition of tree
decompositions, we can conclude that the pairs assigned to any two nodes Ni and Nj
in T are compatible. Since every variable must appear in at least one node label, it
follows that we can associate a unique word wz with every variable z in q.

Since all zeros are covered by E′, we know that for every node Ni, the following
variables are assigned to 1 by α:
– pS(z), if S(z) ∈ q, z ⊆ λ(Ni) and wz = ε, for z ∈ z;
– p%∗(z), if A(z) ∈ q, z ∈ λ(Ni), and wz = %w; (?)
– p%∗(z), p%(z′) and pz=z′ , if S(z, z′) ∈ q (possibly with z = z′), z, z′ ∈ λ(Ni) and either
wz = %w or wz′ = %w.

Now let ≡ be the smallest equivalence relation on the atoms of q that satisfies the
following condition, for every variable z in q,

if wz 6= ε and z occurs in both S1(z1) and S2(z2), then S1(z1) ≡ S2(z2).

Let q1, . . . , qn be the subqueries corresponding to the equivalence classes of ≡. It is
easily verified that the qi are pairwise disjoint. Moreover, if qi contains only variables z
with wz = ε, then qi consists of a single atom. We can show that the remaining qi
correspond to tree witnesses.
Claim. For every qi that contains a variable z with wz 6= ε:

(1) there is a role %i such that every wz 6= ε (with z a variable in qi) begins by %i;
(2) there is a homomorphism hi : qi → C

∃y%i(a,y)
T such that hi(z) = awz for every vari-

able z in qi;
(3) there is a tree witness ti for Q that is %i-initiated and such that qi = qti

Proof of claim. By the definition of qi, there exists a sequence Q0, . . . , Qn of subsets of q
such that Q0 = {S0(z0)} ⊆ qi contains a variable z0 with wz0 6= ε, Qn = qi, and for
every 0 ≤ ` < n, Q`+1 is obtained from Q` by adding an atom that contains a variable z
that appears inQ` and is such that wz 6= ε. By construction, every atom in qi contains a
variable z with wz 6= ε. Let %i be the first letter of the word wz0 , and for every 0 ≤ ` ≤ n,
let h` be the function that maps every variable z in Q` to awz.

Statements 1 and 2 can be shown by induction. The base case is trivial. For the
induction step, suppose that at stage `, we know that every variable z in Q` with
wz 6= ε begins by %i, and that h` is a homomorphism of Q` into the canonical model
C∃y%i(a,y)
T that satisfies h`(y) = awz. We let S(z) be the unique atom in Q`+1 \Q`. Then
S(z) contains a variable z that appears in Q` and is such that wz 6= ε. If S(z) = B(z) or
S(z) = R(z, z), then Statement 1 for wz is immediate. For Statement 2, we let N be a
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node in T such that z ∈ λ(N). Since wN is compatible with N , it follows that, if S(z) =
B(z), then wz ends by a role % with T |= ∃y %(y, x) → B(x), and, if S(z) = R(z, z), then
T |= R(x, x), which proves Statement 2. Next, consider the case when S(z) contains
two variables, that is, it is of the form R(z, z′) or R(z, z′). We give the argument for the
former (the the latter is analogous). Let N be a node in T such that {z, z′} ⊆ λ(N).
Since wN is compatible with N , either
– wz′ = wz% with T |= %(x, y)→ R(x, y), or
– wz = wz′% with T |= %(y, x)→ R(x, y).

Since wz begins with %i, the same holds for wz′ unless wz′ = ε, which proves State-
ment 1. It is also clear from the way we defined h`+1 that it is homomorphism from
Q`+1 to C∃y%i(a,y)

T , so Statement 2 holds.
Statement 3 now follows from Statements 1 and 2, the definition of qi and the defi-

nition of tree witnesses. (end proof of claim)

Let Θ consist of all the tree witnesses ti obtained in the claim. As the qi are disjoint,
the set {qti | ti ∈ Θ} is independent. We show that α satisfies the disjunct of fHQ that
corresponds to Θ; cf. (14). First, consider some S(z) ∈ q \qΘ. Then, for every variable z
in S(z), we have wz = ε. Let N be a node in T such that z ⊆ λ(N). Then wz = ε, for all
z ∈ z. It follows from (?) that α(pS(z)) = 1. Next, consider a variable pz=z′ such that
there is an atom S(z) ∈ qti with z = {z, z′}. Since S(z) ∈ qi, either wz 6= ε or wz′ 6= ε. It
follows from (?) that α(pz=z′) = 1. Finally, let us consider a tree witness ti ∈ Θ, and let
%i be the role from the claim. We show that p%∗i (z) = 1 for every variable z in ti, which
will imply that the final disjunction is satisfied by α. Consider a variable z in ti. By
the construction of the query qi = qti , it contains a binary atom S(z) with z, z′ ∈ z and
either wz 6= ε or wz′ 6= ε. By the definition of tree decompositions, there is a node N in
T with z, z′ ∈ λ(N). Then, by Statement 1 of the claim, either wz = %iw or wz′ = %iw.
Now we can apply (?) to obtain p%∗i (z) = 1, as required.

E. PROOFS OF THEOREMS 6.3 AND 6.4
THEOREM 6.3 (GENERAL CASE). NL/poly = THGP(`) and mNL/poly = mTHGP(`), for
any ` ≥ 2.

PROOF. Suppose a polynomial-size THGP P based on a tree hypergraph H with at
most ` leaves computes a Boolean function f . We show how to construct a polynomial-
size NBP that computes the same f . By Theorem 6.4 (to be proved below), fH can be
computed by a polynomial-size NBP B. We replace the vertex variables pv in labels of
B by the corresponding vertex labels in P and fix all the edge variables pe to 1; see the
proof of Proposition 4.7 (i). Clearly, the resulting NBP B′ is as required.

The converse direction is given in Section 6.3.

THEOREM 6.4. Fix ` ≥ 2. For any tree hypergraph H based on a tree with at most `
leaves, the function fH can be computed by an NBP of size polynomial in |H|.

PROOF. Let H = (V,E) be a tree hypergraph and T = (VT , ET ) its underlying tree
(V = ET and each e ∈ E induces a convex subtree Te of T ). Pick some vertex r ∈ VT and
fix it as a root of T . We call an independent subset F ⊆ E of hyperedges flat if every
simple path in T with endpoint r intersects at most one of Te, for e ∈ F . Note that every
flat subset can contain at most ` hyperedges, so the number of flat subsets is bounded
by a polynomial in |H|. We denote by [F ] the union of subtrees Te, for all e ∈ F ([F ] is a
possibly disconnected subgraph of T ). Flat subsets can be partially ordered by taking
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F

F ′

between(F, F
′ ) after(F

′)

before(F )

r

Fig. 21. Parts of the underlying tree in the proof of Theorem 6.4: F ≺ F ′ for F with one hyperedge and F ′

with two hyperedges.

F � F ′ if every simple path between the root r and a vertex of [F ′] intersects [F ]. As
usual, F ≺ F ′ if F � F ′ but F 6= F ′.

The required NBP P is based on the graph G = (VP , EP ) with

VP =
{
uF , ūF | F is flat

}
∪
{
s, t
}
,

EP =
{

(s, uF ), (ūF , t), (uF , ūF ) | F is flat
}
∪
{

(ūF , uF ′) | F, F ′ are flat and F ≺ F ′
}
.

To define labels, we introduce some notation first for sets of edges of T (which are sets
of vertices of H). For a flat F , let before(F ) be the edges of T that lie outside [F ] and are
accessible from the root r via paths not passing through [F ]; we denote by after(F ) the
edges of T outside [F ] that are accessible from r only via paths passing through [F ].
Finally, for flat F and F ′ with F ≺ F ′, we denote by between(F, F ′) the set of edges in T
‘between’ [F ] and [F ′], that is those edges of T outside [F ] and [F ′] that are accessible
from [F ] via paths not passing through [F ′] but are not accessible from the root r via a
path not passing through [F ]; see Fig. 21. Now we are ready to define the labelling for
edges of G:
– each (uF , ūF ) is labelled with the conjunction of pe for e ∈ F ;
– each (s, uF ) is labelled with the conjunction of pv for v ∈ before(F );
– each (ūF , uF ′) is labelled with the conjunction of pv for v ∈ between(F, F ′);
– each (ūF , t) is labelled with the conjunction of pv for v ∈ after(F ).

We claim that under any valuation α of pe and pv, there is a path from s to t in G all
of whose labels evaluate to 1 under α iff fH(α) = 1, that is, iff there is an independent
(not necessarily flat) subset E′ ⊆ E such that α(pe) = 1 for all e ∈ E′ and α(pv) = 1
for all v ∈ V \ VE′ . Indeed, any such E′ splits into flat ‘layers’ F 1, F 2, . . . Fm that form
a path

s→ uF 1 → ūF 1 → uF 2 → · · · → ūFm → t

in G and whose edge labels evaluate to 1: take F 1 to be the set of all hyperedges from
E′ that are accessible from r via paths which do not cross (that is come in and go out)
any hyperedge of E′; take F 2 to be the set of all edges from E′ \ F 1 that are accessible
from r via paths that do not cross any hyperedge of E′ \F 1, and so on. Conversely, any
path leading from s to t gives us a covering E′, which is the union of all flat sets that
occur in the subscripts of vertices on this path.
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F. PROOF OF THEOREMS 6.5 AND 6.7
LEMMA F.1. Any semi-unbounded fan-in circuit C of AND-depth d is equivalent to

a semi-unbounded fan-in circuit C ′ of size 2d|C| and AND-depth d such that, for each
n ≤ d, C ′ satisfies ⋃

g∈Sn
left(g) ∩

⋃
g∈Sn

right(g) = ∅.

PROOF. We show by induction on n that we can reconstruct the circuit in such a
way that the property holds for all i ≤ n, the AND-depth of the circuit does not change
and the size of the circuit increases at most by the factor of 2n.

Consider a subcircuit
⋃
g∈Sn left(g) of C, take its copy C ′′ and feed the outputs of

C ′′ as left inputs to AND-gates in Sn. This at most doubles the size of the circuit
and ensures the property for Sn. Now apply the induction hypothesis to both C ′′ and⋃
g∈Sn right(g) (which do not intersect). The size of the resulting circuit will increase at

most by the factor of 2n−1 and the property for Si for i < n will be ensured.

Let gi be a gate in C. We denote by Ti the subtree of T with the root vi and, given an
input α, we say that Ti can be covered under α if the hypergraph with the underlying
tree Ti has an independent subset of hyperedges that are wholly in Ti and cover all
zeros under α.

LEMMA F.2. For a given inputα and any i, the gate gi outputs 1 iff Ti can be covered.

PROOF. We prove the claim by induction on i. If gi is an input gate and outputs 1,
then the label of the edge {vi, ui} is evaluated into 1 under α, and the remainder of Ti
can be covered by a set of [wj , uj ]-hyperedges. Conversely, if an input gate gi outputs 0,
then no hyperedge can cover {vi, ui}.

If gi = gj ∧ gk is an AND-gate and outputs 1, then both its inputs output 1. We cover
both subtrees corresponding to the inputs (by induction hypothesis) and add to the
covering the hyperedge [vi, vj , vk], which covers Ti. Conversely, any covering of zeros
in Ti must include the hyperedge [vi, vj , vk], and so the subtrees Tj and Tk must be
covered. Thus, by the induction hypothesis, gj and gk should output 1, and so does gi.

If gi = gj1 ∨ · · · ∨ gjk is an OR-gate and outputs 1, then one of its inputs, say, gj , is 1.
By the induction hypothesis, we cover its subtree and add the hyperedge [vi, vj ], which
forms a covering of Ti. Conversely, since {vi, ui} is labelled by 0, any covering of Ti must
include a hyperedge of the form [vi, vj ] for some j ∈ {j1, . . . , jk}. Thus Tj must also be
covered. By the induction hypothesis, gj outputs 1 and so does gi.

THEOREM 6.7.NC1 = THGPd and mNC1 = mTHGPd, for any d ≥ 3.

PROOF. To prove NC1 ⊆ THGP3, consider a polynomial-size formula C, which we
represent as a tree of gates g1, . . . , gm enumerated so that j < i whenever gj is an input
of gi. We assume thatC has negated variables in place of NOT-gates. We now construct
the tree, T , underlying the THGP P we are after: T contains triples of vertices ui, vi, wi
partially ordered in the same way as the gi in C. We then remove vertex wm and make
vm the root of T . The THGP P is based on the hypergraph whose vertices are the edges
of T and whose hyperedges comprise the following:
– [ui, uj ], for each i < m, where j < i and gj is the input of gi;
– [vi, vj , vk], for each gi = gj ∧ gk;
– [vi, vj , wk], [vi, wj , vj ], for each gi = gj ∨ gk.

Finally, if an input gate gi is a literal l, we label the edge {ui, vi} with l; we label all
other edges with 0. It is not hard to check that P is of degree 3, has size polynomial
in |C|, and computes the same function as C.
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The inclusion NC1 ⊇ THGPd follows from the proof of LOGCFL/poly ⊆ THGP in The-
orem 6.5. Indeed, if the degree of the THGP is at most d, then the disjunction in (13)
has at most d+ 1 disjuncts, and so the constructed circuit has depth O(log s).

G. PROOFS FOR SECTION 7
THEOREM 7.6. For any fixed ` ≥ 2, all tree-shaped OMQs with at most ` leaves have

polynomial-size NDL-rewritings.

PROOF. Fix ` ≥ 2 and let Q be a tree-shaped OMQ with at most ` leaves. By Theo-
rem 5.7, H(Q) is a tree hypergraph whose underlying tree has at most ` leaves. By
Theorem 6.4, fOQ is computable by a polynomial-size monotone NBP, and so, since
mNL/poly ⊆ mP/poly, fOQ can be computed by a polynomial-size monotone Boolean cir-
cuit. It remains to apply Theorem 4.2 (ii).

THEOREM 7.7. There is an OMQ with ontologies of depth 2 and linear CQs any PE-
rewriting of which is of superpolynomial size nΩ(logn).

PROOF. We consider the function f = REACHABILITY. Since f ∈ mNL/poly, by The-
orem 6.3, there is a polynomial-size monotone HGP that is based on a hypergraph H
with underlying tree with 2 leaves and computes f . Consider now the OMQ TH for H
defined in Section 5.3, which has an ontology of depth 2. By Theorem 5.9 (ii), f is a
subfunction of fMTH . By Theorem 4.6 (i), no PE-rewriting of the OMQ TH can be shorter
than nΩ(logn).

THEOREM 7.9. For any fixed t > 0, all OMQs with the PFSP and CQs of treewidth at
most t have polynomial-size NDL-rewritings.

PROOF. Fix a t > 0 and a class of OMQs with PFSP. Take an OMQ Q of treewidth
at most t from the class. By Theorem 5.13, there is a polynomial-size monotone THGP
that computes fHQ. Since mTHGP ⊆ mLOGCFL/poly ⊆ mP/poly (Theorem 6.5), fHQ can
be computed by a polynomial-size monotone Boolean circuit. It remains to apply The-
orem 4.5 (ii).

THEOREM 7.12. For any fixed t > 0, all OMQs with ontologies of depth 1 and CQs of
treewidth at most t have polynomial-size PE-rewritings.

The main argument underlying Theorem 7.12 was given in the body of the paper. To
complete the proof, we give the following two lemmas, which are the modified versions
of Theorems 4.2 and 5.13 mentioned in the body.

LEMMA G.1. Theorem 4.2 continues to hold if fOQ is replaced by fH′Q .

PROOF. The proof proceeds similarly to the proof of Theorem 4.5. The key step in
the proof is showing that the FO-formula

∃y
∨

Θ⊆ΘQ
independent

( ∧
S(z)∈q\qΘ

S(z) ∧
∧
t∈Θ

( ∧
R(z,z′)∈qt

z = z′ ∧
∧

z∈tr∪ti

∨
t generated by τ

τ(z)
))

obtained from fH′Q by replacing variables pS(z), pz=z′ , and p∃yPt(z,y) by S(z), z = z′, and∨
t generated by τ τ(z) respectively is equivalent the tree-witness rewriting qtw.

LEMMA G.2. In the setting of Section 7.5, for the modified hypergraph program P ′Q
we still have fP ′Q(v) = fH′Q (v).

PROOF. The proof closely follows that of Theorem 5.13. For the first direction of the
proof, the only notable difference is that instead of selecting a role %t that satisfies
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the disjunct corresponding to the tree witness t, we must take the special role Pt. For
the second direction, we use the assumption that T is of depth 1 to show that every
query qj (constructed according to the equivalence relation) has a single variable vj
such that wvj 6= ε. This allows us to prove a stronger version of the claim in which
qj = qtj , with tj the unique tree witness with tji = {vj}, and the selected role %j is
equal to the special predicate Ptj associated with tj .

THEOREM 7.13. All tree-shaped OMQs with ontologies of depth 1 have polynomial-
size Π4-rewritings.

PROOF. Take an OMQ Q = (T , q) with T of depth 1 and a tree-shaped q. By The-
orems 5.3 and 5.7, H(Q) is a polynomial-size tree hypergraph of degree at most 2. By
Proposition 5.10 (i), fOQ can be computed by a polynomial-size THGP P of degree at
most 2. By Theorem 6.8, there is a polynomial-size monotone Π3-circuit computing fOQ.
By a simple unravelling argument, it follows that there is polynomial-size monotone
Boolean formula computing fOQ. It remains to apply Theorem 4.2 (i) and conclude that
there is a polynomial-size positive existential Π4-rewriting for Q.

H. PROOF OF LOGCFL MEMBERSHIP IN THEOREM 8.3
We say that an iteration of the while loop is successful if the procedure BLQuery does
not return false; in particular, if none of the check operations returns false. The follow-
ing properties can be easily seen to hold by examination of BLQuery and straightfor-
ward induction:

For every tuple (z 7→ (a, n), z′) ∈ frontier, z′ is a child of z in T. (15)
For every tuple (z 7→ (a, n), z′) ∈ frontier, we have n ≤ |stack|. (16)
All tuples (z 7→ (a, n), z′) ∈ frontier with n > 0 share the same a. (17)
Once (z 7→ (a, n), z′) is added to frontier, no tuple of the form (z 7→ (a′, n′), z′) (18)

can ever be added to frontier.

In every successful iteration, either at least one tuple is removed from frontier (19)
or frontier is unchanged but one % is popped from the stack.

If (z 7→ (a, n), z′) is removed from frontier in a successful iteration, (20)
then a tuple of the form (z′ 7→ (a′, n′), z′′) is added to frontier,

for every child z′′ of z′ in T.

PROPOSITION H.1. Every execution of BLQuery terminates.

PROOF. A simple examination of BLQuery shows that the only possible source of
non-termination is the while loop, which continues as long as frontier is non-empty.
By (15) and (18), the total number of tuples that may appear in frontier at any point
cannot exceed the number of edges in T , which is itself bounded by |q|. By (18) and (19),
every tuple is added at most once and is eventually removed from frontier. Thus, either
the algorithm will exit the while loop by returning false (if one of the check operations
fails), or it will eventually exit the loop after reaching an empty frontier.

PROPOSITION H.2. There exists an execution of BLQuery that returns true on input
((T , q),A,a) if and only if T ,A |= q(a).

PROOF. (⇐) Suppose that T ,A |= q(a). Then there exists a homomorphism
h : q → CT ,A such that h(x) = a. Without loss of generality we may choose h so that the
image of h consists of elements aw with |w| ≤ 2|T |+ |q| [Artale et al. 2009]. We use h to
specify an execution of BLQuery((T , q),A,a) that returns true. First, we fix an arbitrary
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variable z0 as root, and then, we choose the element h(z0) = a0w0. Since h defines a
homomorphism of q(a) into CT ,A, the call canMapTail(z0, a0, top(stack)) returns true.
We initialise stack to w0 and frontier to {(z0 7→ (a0, |stack|), vi | vi is a child of v0}. Next,
we enter the while loop. Our aim is to make the non-deterministic choices to satisfy
the following invariant:

If (z 7→ (a,m), z′) ∈ frontier, then h(z) = a stack≤m. (21)

Recall that stack≤m denotes the word obtained by concatenating the first m symbols
of stack. Observe that before the while loop, property (21) is satisfied. At the start of
each iteration of the while loop, we proceed as follows.

[CASE 1.] If frontier contains (z 7→ (a, 0), z′) such that h(z′) ∈ ind(A), then we choose
Option 1. We remove the tuple from frontier and choose the individual a′ = h(z′) for the
guess. As a = h(z) (by (21)) and h is a homomorphism, we have (a, a′) ∈ P CT ,A , for all
P (z, z′) ∈ q, and the call canMapTail(z′, a′, ε) returns true. We thus add (z′ 7→ (a′, 0), z′′)
to frontier for every child z′′ of z′ in T . These additions to frontier clearly preserve the
invariant.

[CASE 2.] If Case 1 does not apply and frontier contains (z 7→ (a, |stack|), z′)
such that h(z′) = h(z), then we choose Option 4 and remove the tuple from
frontier. Since h is homomorphism, we have T |= P (x, x), for all P (z, z′) ∈ q, and
canMapTail(z′, a, top(stack)) returns true. Then, for every child z′′ of z′ in T , we add
(z′ 7→ (a, |stack|), z′′) to frontier. Observe that since h(z) = h(z′) and (21) holds for z,
property (21) also holds for the newly added tuples.

[CASE 3.] If neither Case 1 nor Case 2 applies and frontier contains (z 7→ (a, |stack|), z′)
such that h(z′) = h(z)%, then we choose Option 2 and remove the tuple from frontier.
Note that in this case, |stack| < 2|T |+|q| since (i) by (21), h(z) = aw, for w = stack≤|stack|,
and (ii) by the choice of homomorphism h, we have |w%| ≤ 2|T | + |q|. So, we continue
and choose % for the guess. By (21), since h is a homomorphism and h(z′) = h(z)%, the
call isGenerated(%, a, top(stack)) returns true, T |= %(x, y)→ P (x, y), for all P (z, z′) ∈ q
and the call canMapTail(z′, a, top(stack)) returns true. So, we push % onto stack and add
(z′ 7→ (a, |stack|), z′′) to frontier for every child z′′ of z′ in T . As stack contains the word
component of h(z′), invariant (21) holds for the newly added tuples.

[CASE 4.] If none of Case 1, Case 2 or Case 3 is applicable, then we choose Option 3
and remove all elements in deepest = {(z 7→ (a, n), z′) ∈ frontier | n = |stack|} from
frontier. Since neither Case 1 nor Case 3 applies, |stack| > 0. So, we pop the top sym-
bol % from stack. Suppose first that deepest 6= ∅. By (17), all tuples in deepest share the
same individual a. By (21), every tuple (z 7→ (a, n), z′) ∈ deepest is such that h(z) = aw%,
where w = stack≤|stack|. Moreover, since Case 3 is not applicable, for every such tuple
(z 7→ (a, n), z′), we have h(z′) = aw. Using the fact that h is a homomorphism, one can
show that T |= %(x, y) → P (x, y), for all P (z′, z) ∈ q, and canMapTail(z′, a, top(stack))
returns true. So, we add to frontier all tuples (z′ 7→ (a, |stack|), z′′), a child z′′ of z′ in
T . Note that invariant (21) is satisfied by all the new tuples. Moreover, since we only
removed the last symbol in stack, all the remaining tuples in frontier continue to sat-
isfy (21). Finally, if deepest was empty, then we do nothing but the tuples in frontier
continue to satisfy (21).

It is easily verified that so long as frontier is non-empty, one of these four cases ap-
plies. Since we have shown how to make the non-deterministic choices in the while
loop without returning false, by Proposition H.1, the procedure eventually leaves the
while loop and returns true.
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(⇒) Consider an execution of BLQuery((T , q),A,a) that returns true. It follows that
the while loop is successfully exited after reaching an empty frontier. Let L be the total
number of iterations of the while loop. We inductively define a sequence h0, h1, . . . , hL
of partial functions from the variables of q to ∆CT ,A by considering the guesses made
during the different iterations of the while loop. The domain of hi will be denoted by
dom(hi). We will ensure that the following properties hold for every 0 ≤ i < L:

If i > 0, then dom(hi−1) ⊆ dom(hi), and hi(z) = hi−1(z), for z ∈ dom(hi−1). (22)
If (z 7→ (a, n), z′) ∈ frontier at the end of iteration i, then (23)

hi(z) = aw, where w = stack≤n, (23a)
and neither z′ nor any of its descendants belongs to dom(hi). (23b)

hi is a homomorphism qi → CT ,A, where qi is the restriction of q to dom(hi). (24)
We begin by setting h0(z0) = a0w0, where w0 is the word in stack (and leaving h0

undefined for all other variables). Property (22) is vacuously satisfied. Property (23)
holds because of the initial values of frontier and stack because only z0 ∈ dom(h0), and
z0 cannot be its own child (hence, it cannot appear in the last component of a tuple in
frontier). To see why (24) is satisfied, first suppose that w0 = ε and so a0w0 ∈ ind(A).
Then, the call canMapTail(z0, a0, top(stack)) returns true. It follows that

if z0 is the jth answer variable then a0 = aj ;

a0 ∈ ACT ,A , for each A(z0) ∈ q, and (a0, a0) ∈ P CT ,A , for each P (z0, z0) ∈ q;

and hence, h0 defines a homomorphism of q0 into CT ,A. Otherwise, w0 is non-empty
and w0 = w′0%. It follows that
z0 is not an answer variable of q;

T |= ∃y %(y, x)→ A(x), for each A(z0) ∈ q, and T |= P (x, x), for each P (z0, z0) ∈ q;

and hence h0 homomorphically maps all atoms of q0 into CT ,A. Thus, the initial partial
function h0 satisfies (22)–(24).

Next we show how to inductively define hi from hi−1 while preserving (22)–(24). The
variables that belong to dom(hi) \ dom(hi−1) are precisely those variables that appear
in the last position of tuples removed from frontier during iteration i (since these are
the variables for which we guess a domain element). The choice of where to map these
variables depends on which of the four options was selected. In what follows, we will
use stacki to denote the contents of stack at the end of iteration i.
OPTION 1: we remove a tuple (z 7→ (a, 0), z′) and guess a′ ∈ ind(A). So, we set hi(z′) = a′

and hi(v) = hi−1(v) for all v ∈ dom(hi−1) (all other variables remain undefined). Prop-
erty (22) is by definition. For property (23), consider a tuple τ = (v 7→ (c,m), v′) that
belongs to frontier at the end of iteration i. Suppose first τ was added to frontier during
iteration i, in which case τ = (z′ 7→ (a′, 0), z′′) for some child z′′ of z′. Property (23a)
is satisfied because stacki≤0 = ε. Since hi−1 satisfies (23), z′′ (a descendant of z′) is not
in dom(hi−1), which satisfies (23b). The remaining possibility is that τ was already in
frontier at the beginning of iteration i. Since hi−1 satisfies (23), we have hi−1(v) = cw

for w = stacki−1
≤n and neither v′ nor any of its descendants belongs to dom(hi−1). Since

stacki = stacki−1 and hi(v) = hi−1(v), property (23a) holds for τ . Moreover, as τ was not
removed from frontier during iteration i, we have τ 6= (z 7→ (a, 0), z′), and so, by (18),
v′ 6= z′. Thus, neither v′ nor any of its descendants is in dom(hi).

For property (24), we first note that since hi agrees with hi−1 on dom(hi) and hi−1

satisfies (24), it is only necessary to consider the atoms in qi that do not belong to qi−1.
There are three kinds of such atoms:
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– if A(z′) ∈ qi, then, since canMapTail(z′, a′, ε) returns true, hi(z′) = a′ ∈ ACT ,A ;
– if P (z′, z′) ∈ qi, then, again, since canMapTail(z′, a′, ε) returns true, we have

(hi(z
′), hi(z

′)) = (a′, a′) ∈ P CT ,A ;
– if P (z′, v) ∈ qi with v 6= z′, then v ∈ dom(hi), so v must coincide with z, the par-

ent of z′ (rather than being one of the children of z′); the check operation in the
algorithm then guarantees (hi(z

′), hi(v)) = (a′, a) ∈ P CT ,A .
Thus, (24) holds for hi.
OPTION 2: a tuple (z 7→ (a, n), z′) was removed from frontier, n = |stack| and a role %
was guessed. We set hi(z′) = hi−1(z)%. By (23), hi−1(z) is defined. Moreover, the call
isGenerated(%, a, top(stack)) ensures that hi−1(z)% ∈ ∆CT ,A . We also set hi(v) = hi−1(v)
for all v ∈ dom(hi−1) and leave the remaining variables undefined. Property (22) is
immediate from the definition of hi, and (23b) can be shown exactly as for Option 1.
To show (23a), consider a tuple τ = (v 7→ (c,m), v′) that belongs to frontier at the end
of iteration i. Suppose first that τ was added to frontier during iteration i, in which
case τ = (z′ 7→ (a, n + 1), z′′) for some child z′′ of z′. Since hi−1 satisfies (23), hi−1(z) =

a stacki−1
≤n . Property (23a) follows then from hi(z

′) = hi−1(z)% and stacki = stacki−1 %.
The other possibility is that τ was present in frontier at the beginning of iteration i.
Since hi−1 satisfies (23), we have hi−1(v) = a stacki−1

≤m. Property (23a) continues to hold
for τ because stacki = stacki−1 % and m ≤ |stacki−1| and hi(v) = hi−1(v).

We now turn to property (24). As explained in the proof for Option 1, it is sufficient
to consider the atoms in qi \ qi−1, which can be of three types:
– if A(z′) ∈ qi, then, since canMapTail(z′, a, %) returns true, we have
T |= ∃y %(y, x)→ A(x), hence hi(z′) = hi−1(z)% ∈ ACT ,A .

– if P (z′, z′) ∈ qi, then, again, since canMapTail(z′, a, %) returns true, we have
T |= P (x, x), hence (hi(z

′), hi(z
′)) ∈ P CT ,A .

– if P (z′, v) ∈ qi with v 6= z′ then v = z (see Option 1); so, T |= %(x, y) → P (y, x),
whence (hi(z

′), hi(v)) = (hi−1(z)%, hi−1(z)) ∈ P CT ,A .
Therefore, hi is a homomorphism from qi into CT ,A, which is required by (24).

OPTION 3: tuples in deepest = {(z 7→ (a, n), z′) ∈ frontier | n = |stack|} are removed from
frontier, and role % is popped from stack. By (17), all tuples in deepest share the same
individual a. Let V = {z′ | (z 7→ (a, n), z′) ∈ deepest}. For every v ∈ V , we set hi(v) =

a stacki; we also set hi(v) = hi−1(v) for all v ∈ dom(hi−1) and leave the remaining
variables undefined. Property (22) is again immediate, and the argument for (23b) is
the same as in Option 1. For property (23a), take any tuple τ = (v 7→ (c,m), v′) in
frontier at the end of iteration i. If the tuple was added to frontier during this iteration,
then v ∈ V , a = c, m = |stacki|, and hi(v) = a stacki, whence (23a). The other possibility
is that τ was present in frontier at the beginning of iteration i. Then hi−1(v) = c stacki−1

≤m
and m < |stacki−1|. Since stacki is obtained from stacki−1 by popping one role, we have
m ≤ |stacki|, and so (23a) holds for τ .

For property (24), the argument is similar to Options 1 and 2 and involves consider-
ing the different types of atoms that may appear in qi \ qi−1:
– if A(z′) ∈ qi with z′ ∈ V then, since canMapTail(z′, a, top(stack)) returns true, we

have hi(z′) ∈ ACT ,A (see Options 1 and 2);
– if P (z′, z′) ∈ qi with z′ ∈ V then, since canMapTail(z′, a, top(stack)) returns true, we

have (hi(z
′), hi(z

′)) = (a, a) ∈ P CT ,A ;
– if P (z′, v) ∈ qi with v 6= z′ and z′ ∈ V , then v is the parent of z (see Option 1) and,

since T |= %(y, x)→ P (x, y), we obtain (hi(z
′), hi(v)) = (a stacki, a stacki %) ∈ P CT ,A .
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Thus, (24) holds for hi.

OPTION 4: a tuple (z 7→ (a, n), z′) was removed from frontier with n = |stack|. We set
hi(z

′) = hi(z), hi(v) = hi−1(v) for every v ∈ dom(hi−1), and leave all other variables un-
mapped. Again, it is easy to see that properties (22) and (23b) are satisfied by hi. For
property (23a), let τ = (v 7→ (c,m), v′) be a tuple in frontier at the end of iteration i. If the
tuple was added during iteration i, then v = z′, a = c, and m = n. Since (z 7→ (a, n), z′)

was present at the end of iteration i−1 and stacki = stacki−1, we have hi(z′) = a stacki−1
≤n ,

hence hi(z) = c stacki≤m. As hi(z
′) = hi(z), we have hi(z

′) = a stacki≤m, so τ satis-
fies (23a). If τ was already present at the beginning of iteration i, then we can use
the fact that stacki = stacki−1 and all tuples in frontier satisfy (23a).

To show (24), we consider the three types of atoms that may appear in qi \ qi−1:
– if A(z′) ∈ qi then, since canMapTail(z′, a, top(stack)) returns true, then
T |= ∃y %(y, x)→ A(x), where % = top(stack), and so hi(z′) ∈ ACT ,A ;

– if P (z′, z′) ∈ qi then, since canMapTail(z′, a, top(stack)) returns true, then
T |= P (x, x), and so (hi(z

′), h(z′)) ∈ P CT ,A ;
– if P (z′, v) ∈ qi with v 6= z′, then v = z (see Option 1), and so, since T |= P (x, x), we

have (hi(z
′), hi(z)) ∈ P CT ,A .

We claim that the final partial function hL is a homomorphism of q to CT ,A.
Since hL is a homomorphism of qL into CT ,A, it suffices to show that q =
qL, or equivalently, that all variables of q are in dom(hL). This follows from
the tree-shapedness of q (which in particular means that q is connected), in-
variants (15), and (20), and the fact that dom(hi+1) = dom(hi) ∪ {z′ | (z 7→
(a, n), z′) is removed from frontier during iteration i}.

PROPOSITION H.3. BLQuery can be implemented by an NAuxPDA.

PROOF. It suffices to show that BLQuery runs in non-deterministic logarithmic space
and polynomial time (the size of stack does not have to be bounded).

First, we non-deterministically fix a root variable z0, but do not actually need to
store the induced directed tree T in memory. Instead, it suffices to decide, given two
variables z and z′, whether z′ is a child of z in T , which clearly belongs to NL.

Next, we need only logarithmic space to store the individual a0. The initial word
w0 = %1 . . . %n0

is guessed symbol by symbol and pushed onto stack. We note that both
subroutines, isGenerated and canMapTail, can be made to run in non-deterministic
logarithmic space. Then, since the children of a node in T can be identified in NL, we
can decide in non-deterministic logarithmic space whether a tuple (z0 7→ (a0, |stack|, zi)
should be included in frontier. Moreover, since the input query q is a tree-shaped query
with a bounded number of leaves, we know that only constantly many tuples can be
added to frontier by each such operation. Moreover, it is clear that every tuple can be
stored using in logarithmic space. More generally, by (15) and (18), one can show that
|frontier| is bounded by a constant throughout the execution of the procedure, and the
tuples added during the while loop can also be stored in logarithmically space.

Next observe that every iteration of the while loop involves a polynomial number of
the following elementary operations such as
– remove a tuple from frontier, or add a tuple to frontier;
– pop a role from stack, or push a role onto stack;
– guess a single individual constant or symbol;
– identify the children of a given variable;
– test whether T |= α, for some inclusion α involving symbols from T ;
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– make a call to one of the subroutines isGenerated or canMapTail.
For each of the above operations, it is either easy to see, or has already been explained,
that the operation can be performed in non-deterministic logarithmic space.

To complete the proof, observe that, by (19), each iteration of the while loop involves
removing a tuple from frontier or popping a role from stack. By (15) every tuple in frontier
corresponds to an edge in T , and, by (18), we create at most one tuple per edge. Thus,
there can be at most |q| iterations involving the removal of a tuple. The total number
of roles added to stack is bounded by at most ≤ 2|T |+ |q| roles in the initial stack, plus
the at most |q| roles added in later iterations, yielding at most 2|T | + 2|q| iterations
involving only the popping of a role. Thus, the total number of iterations of the while
loop cannot exceed can 2|T |+ 3|q|.

I. PROOF OF LOGCFL-HARDNESS IN THEOREM 8.3
PROPOSITION I.1. The query q′ and KB (Tα,A) can be computed from C by

logspace transducers.

PROOF. Consider a circuit C in normal form with 2d + 1 layers of gates, where d is
logarithmic in number of its inputs n. We show that (Tα,A) and q′ can be constructed
using O(log(n)) worktape memory.

To produce the query q′, we can generate the word wd letter-by-letter and insert the
corresponding variables. This can be done by a simple recursive procedure of depth d,
using the worktape to remember the current position in the recursion tree as well as
the index of the current variable yi. Note that |wd| (hence the largest index of the query
variables) may be exponential in d, but is only polynomial in n, and so we need only
logarithmic space to store the index of the current variable.

The ontology Tα is obtained by making a single pass over a (graph representation)
of the circuit and generating the axioms that correspond to the gates of C and the
links between them. To decide which axioms of the form Gi(x) → A(x) to include, we
must also look up the value of the variables associated to the input gates under the
valuation α. Finally, A consists of a single constant atom.

PROPOSITION I.2. C accepts α iff Tα,A |= q′(a).

PROOF. Denote by e the natural homomorphism from q′ to q, and by e′ the natural
homomorphism from CTα,A to D(α). Since C accepts input α iff there is a homomor-
phism h from q to D(α) [Gottlob et al. 2001], it suffices to show that there exists a
homomorphism f from q′ to CTα,A iff there is a homomorphism h from q to D(α):

(a) q′

q D(α)

CTα,A

e e′

h

h′

f
(b) q′

q D(α)

CTα,A

e e′

f

f ′

h

(⇒) Suppose that h is a homomorphism from q to D(α). We define a homomorphism
h′ : q → CTα,A inductively moving from the root n1 of q to its leaves. For the basis of
induction, we set h′(n1) = a; note that CTα,A |= Gm(a). For the inductive step, suppose
that nj is a child of ni, h′(ni) is defined, CTα,A |= Gi′(h(ni)) and h(nj) = gj′ . In this case,
we set h′(nj) = h′(ni)P

−
i′j′ . It follows from the definition of Tα that CTα,A |= Gj′(h

′(nj)),
which enables us to continue the induction. It should be clear that h′ is indeed a homo-

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Ontology-Mediated Queries: Complexity and Succinctness App–17

morphism from q into CTα,A. The desired homomorphism f : q′ → CTα,A can be obtained
as the composition of e and h′, as illustrated in diagram (a).

(⇐) Suppose that f is a homomorphism from q′ to CTα,A. We prove, by induction on
|j − i|, that for all its variables yi, yj ,

e(yi) = e(yj) implies f(yi) = f(yj). (25)

The base case (|j − i| = 0) is trivial. For the inductive step, we may assume without
loss of generality that i < j and between yi and yj there is no intermediate variable
yk with e(yi) = e(yk) = e(yj) (otherwise, we can simply use the induction hypothesis
together with the transitivity of equality). It follows that e(yi+1) = e(yj−1), and the
atom between yj−1 and yj is oriented from yj−1 towards yj , while the atom between
yi and yi+1 goes from yi+1 to yi. Indeed, this holds if the node n = e(yi) = e(yj) is an
OR-node since there are exactly two variables in q′ which are mapped to n, and they
bound the subtree in q generated by n. For an AND-node, this also holds because of
our assumption about intermediate variables. By the induction hypothesis, we have
f(yi+1) = f(yj−1) = aw% for some word aw%. Since the only parent of aw% in CTα,A is
aw, all arrows in relations U , L and R are oriented towards the root, and f is known to
be a homomorphism, it follows that f(yi) = f(yj) = aw. This concludes the inductive
argument.

Next, we define f ′ : q → CTα,A by setting f ′(x) = f(y), where y is such that e(y) = x.
By (25), f ′ is well-defined, and because f is a homomorphism, the same holds for f ′. To
obtain the desired homomorphism h : q → D(α), it suffices to consider the composition
of f ′ and e′; see diagram (b).
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