Ontological Foundations of Modelling Security
Policies for Analysis*

Karolina Bataityte', Vassil Vassilev?, and Olivia Jo Gill!

1 School of Computing, London Metropolitan University, London, UK
2 Cyber Security Research Centre, London Metropolitan University, London, UK
{k.bataityte,v.vassilev,o0.gill}@londonmet.ac.uk

Abstract. Modelling of knowledge and actions in AT has advanced over
the years but it is still a challenging topic due to the infamous frame
problem, the inadequate formalization and the lack of automation. Some
problems in cyber security such as logical vulnerability, risk assessment,
policy validation etc. still require formal approach. In this paper we
present the foundations of a new formal framework to address these chal-
lenges. Our approach is based on three-level formalisation: ontological,
logical and analytical levels. Here we are presenting the first two levels
which allow to model the security policies and provide a practical solu-
tion to the frame problem by efficient utilization of parameters as side
effects. Key concepts are the situations, actions, events and rules. Our
framework has potential use for analysis of a wide range of transactional
systems within the financial, commercial and business domains and fur-
ther work will include analytical level where we can perform vulnerability
analysis of the model.

Keywords: Security Policies, Modelling, Ontologies, Knowledge Repre-
sentation, Situations and Actions, Frame Problem

1 Introduction

In recent years there has been an increase in interest of analysing the logical
vulnerability and the security policies of cyber systems. The security policies
cover a wide range of situations: how to identify and authenticate the user, how
to authorize the operations, how to maintain sessions and control the transac-
tions, how to neutralize malicious activities and prevent unauthorized access to
the information, etc. Any gaps or inconsistencies can open the door for logical
vulnerabilities and leave the system exposed [3]. Our approach for analysis is to
represent the domain knowledge in the ontological model and to formulate the
security policies as a system of rules, so that we can analyse them formally. For
this purpose, we developed a theory of Situations and Actions in Description

* This research is partially funded by Lloyds Banking Group in London, UK. However,
no actual data from the bank has been used, the results and the opinions formulated
in the paper are the author’s and the examples are for illustration purpose only,
without any resemblance to the actual banking policies and practices.

2 K. Bataityte, V. Vassilev et al.

Logic (DL) and modelled the Security Policies in Clausal Logic (CL), which can
be implemented using the standard languages of Semantic Web - Ontology Web
Language (OWL) [4] and Semantic Web Rule Language (SWRL)[5]. We can
model dynamic changes and synchronous actions with different security events
asynchronously.

The paper is organized as follows. In Section 2 we will present the overall
methodology which we follow. In Section 3 we will present logical foundations.
In Section 4 we will introduce the ontological level. Section 5 will consider the
security policies as rules on logical level. Section 6 we will conclude the paper
and comment on the security policy analysis on Analytical Level.

2 Methodology

We separate the model of the world (ontological level) from the model of the
policies which govern the changes in the world (logical level) and the model of
the dynamic changes as a result of decisions (analytical level) (see Fig. 1). For
each of the three levels we will use different formal systems, suitable for modelling
of an aspect of the problem in a manner, similar to the infamous “layered cake”
of the Semantic Web [7].

Analytical Level decision making
Logical Level governing policies
Ontological Level the world as such

Fig. 1. Multi- level Model for Analysis

On Ontological Level we model the world using the vocabulary presented
in Section 4.1. The conceptualization is similar to the famous situation calculus
(SitCalc) [6], but formulating it using the language of DL makes it more “object-
oriented” and allows for a new solution of the frame problem [8]. Using DL on
this level allows us to implement the model entirely using OWL.

The Logical Level models the policies, captures constraints and completeness.
It reflects the expert knowledge in the domain, which can be formulated as logical
rules in CL and can be represented in computer format using SWRL.

The Analytical Level will deal with the analysis of the policies on a directed
graph, considering the situations as nodes and the actions as edges however it
is beyond the scope of this paper and is left for the next publication.

3 Logical Foundations

For developing of the theory of situations and actions we consider DL called ALC
[11] which is not the most expressive but is expressive enough to support our
needs without being too complicated beyond the necessity. More constructors
can be added to extend ALC if the modelling requires it. As we choose DL

Ontological Foundations 3

for comfortable implementation in OWL, similarly we choose CL as we can
implement rules in SWRL. The following two logics can be glued together for
modelling the domain ontology and the policies within that domain.

3.1 Description Logic ALC as a Modelling Language

The syntax and the semantic interpretation is shown in Table 1. The interpre-
tation I is a pair I = (Al .1), where A is a non-empty set (domain) and -/ is
a mapping function [10].

Table 1. Syntax and Semantics

Concepts Roles
Syntax Semantics Syntax Semantics
T AT R RTC AT x AT
1 0 Domain(R,C) < a,b>€ R wa€C’!
A Al c Al Range(R,C) <a,b>€ R' -beC!
-C AN\CT
cnbD c'nD’
cubD c'uD’
VR.C {a € A'|Vb.(<a,b>€ RT - beCh)}
JR.C {a € A"Fb.(<a,b>c R"Abe)}

where C, D are concepts, A is an atomic concept, R is a role.

Given interpretation I in model M with axiom «, we say that M is a model
of o under I if M satisfies «, written I = «. We will be expressing the domain
restrictions as IR.T C C and the range restrictions as T C VR.C [11]. By adding
domain and range axioms we are able to have a fixed structure of the real world
we are modelling without the necessity to use more expressive language or non-
standard semantics.

3.2 Clausal Logic and SWRL

In most logical languages it is possible to formulate rules, which are necessary
for modelling the static constraints and dynamic changes. We have chosen a
version of the first order clausal logic similar to the horn-clause logic because its
serialized version SWRL refers directly to the terms of OWL.

SWRL Knowledge Base (K) is defined as follows: K = (X, R) where X is
KB of ALC and R is set of rules. The rules is composted of body and head which
is represented as following: body — head. It consists of a conjunctions of atoms
which are classes C'(¢) (concepts in ALC) and object properties R(i,j) (roles in
ALC) [5].

4 K. Bataityte, V. Vassilev et al.

4 Ontological Level: The Domain Model

The term ontology in a narrow logical sense provides the terminology, which can
be used for building the domain model, together with its interpretation in the
semantic domain [9].

4.1 Ontology of the Domain

In our ontology the semantic domain, /A, is a non-empty set, split into three
disjoint subdomains: Entities, Events and Situations (plural) as Agntities,
Apvents and Agituations respectively. In our theory we will use three terms
with predefined meaning: Entity, Fvent and Situation (singular), which will be
three separate taxonomies representing the static model of the world. The inter-
pretation of ALC concepts in the domain are as follows: Entity! C AL ...

Event! C AL . and Situation! C AL, . . Our terminology (Table 2) will
also include some predefined roles, one of them is Action (Action! C AL, . x
A{S'ituati ons); Which can be used as a top of the hierarchy of actions. The ontology
can have as many specific named concepts and named roles as needed, (noted as
Entityx, Situationy, Evente, Action,), with the intended meaning and interpretations
in the semantic subdomains introduced above in accordance with the syntax and se-
mantics of ALC as presented in Section 3.1. Concepts from three subdomains must be
disjoint as follows:

Situation N Event C 1, Situation M Entity C 1, Entity N Event C L. (1)

Table 2. Vocabulary of the Domain Ontology

Term |DL Category Use in modelling Condition
Situation concept partial static description of the world axiom 1
FEvent concept asynchronous activity axiom 1
Entity concept qualitative descriptor axiom 1
Action role synchronous activity axiom 2
occur—in role event occurrence axiom 4
present—at role situation description axiom 6
part-of role event description axiom 5
describe role describing entities and specifying dependencies| axiom 7
chain role connecting events causally axiom 3

At the moment we are using only ALC TBox for terminological axioms and RBox
for relational axioms.

4.2 Static Model of the World

Here we are defining a fix structure of the modelling world using terms above. A
Situation is a concept, which represents a partial description of the world in a specific
moment of time. Two Situation concepts can be connected via Action roles to model
the potential change:

JAction.T C Situation, T C VAction.Situation (2)

Ontological Foundations 5

The events are asynchronous activities which are modelled using Fvent concepts, linked
through the predefined role chain in a causal chain (axiom 3). The intended meaning
of Event is to represent a real-world events which can occur in the situations through
the predefined role occur—in with domain Event and range Situation (axiom 4). This
way we can formulate security policies with regard to unexpected or expected activities
(events) which may or may not happen in the situations.

dchain.T C Event, T C Ychain.Event (3)

Joccur—in. T C Event, T C Voccur—in.Situation (4)

The Entity concepts are used to describe both situations and events using the prede-
fined roles: part—of with domain Entity and range Fvent (axiom 5); present—at with
domain Entity and range Situation (axiom 6); describe with domain Entity and range
Entity (axiom 7).

dpart-of. T T Entity, T C Vpart—of.Event (5)
Jpresent—at. T C Entity, T C Vpresent—at.Situation (6)
Adescribe. T C Entity, T C Vdescribe. Entity (7)

It is important to note that the events do not change the situations in our theory, they
can only occur in them; the changes can be caused only by actions.

4.3 World Dynamics

In state-based dynamic theories which uses DL, the actions are represented as (pre-
condition, occlusion, post-condition) triplets [1], [2]. Unfortunately, there is no easy
implementation of such a formalism since it has additional syntactic structure.

We have adopted the view that the dynamic changes are possible only through
actions, similar to the original SitCalc from the early days of AI [8]. This logic formalism
encounters the infamous frame problem, caused by the propositional treatment of the
situations which require them to incorporate their parameters as arguments.

However, in our approach the definition of the actions (as relations between the
situations) looks almost identical to SitCalc approach. The partitioning of our ontology
has interesting and unexpected characteristics with practical importance for applica-
tions. We define the parameters of the actions contextually. In our approach the actions
can change the situations only through their parameters, which are entities, but the
action parameters are no longer attributed to the actions — they are attributed to the
situations which the actions relate instead. This completely eliminates the need for
heavy “frame axioms” because the complete absence of any “side effect” of the actions.

If we have TBox T with situations and entities as follows:

T := {Entityx C Entity, Situation, C Situation} (8)
and Entityx describe Situationy, T is extended as follows:
T' := T U {Entityx C 3present—at.Situationy }. 9)

FEzxzample 1. Let’s consider the situation LoggedIn and the entity User. For this sce-
nario the TBox T is as follows:

T := {User C Entity, LoggedIn C Situation, User C Ipresent—at.LoggedIn}

6 K. Bataityte, V. Vassilev et al.

Each situation can be described by a number of entities. Since the actions change the
situations, they will affect these entities but not directly. So, we can consider the entities
which describe all situations in which a given action applies as its input parameters and
similarly, entities which describe the situations to which the action leads as its output
parameters. NB: not all entities are input and/or output parameters, some of them just
describe the situation without being needed for an action. To specify the parameters
of all actions, we can create a GBox G as follows:

Definition 1. A GBoz G = {(Entityx, Action,), (Action,, Entityy)} is a set of pairs of
actions and entities, representing the action parameters where pair (Entityx, Action,)
is for input parameters and pair (Action,, Entityy) is for output parameters.

The action parameters will be important on the Analytical Level since the input
parameters are binding the actions, making them executable, while the output param-
eters are producing the effect, determining the changes in the situations.

In order for an entity to be an input parameter, it must meet the following condi-
tions:

1. JAction,.T C Situationy,
2. Entity. C dpresent—at.Situationy.

If both conditions hold, we can say GBox G = {(Entitye, Action,)}. It can be formalized
as the following axiom:

Entitye C Jpresent—at.(Situationk M JAction,.T) (10)

which says that Entity. is connected to a Situationx via present—at and there is an
Action, starting at Situationyx and leading to another unknown Situation. This gives
us the first criteria for analysing the descriptive completeness of the security policies
with respect to the possibility of binding the input parameters of the applicable actions
to the descriptions of the situations in which they apply.

In order for an entity to be an output parameter, it must meet the following con-
ditions:

1. T C VAction,.Situationy,
2. Entity. C Jdpresent—at.Situationy.

If both conditions hold, we can say GBox G = {(Action,, Entity.)}. It can be formalized
as follows:

Entitye C Jpresent—at.3Action,.Situationy (11)

which says that Entity. describes Situationy via present—at and Action, leads to
Situation, after it executes.

In our dynamical model the situations change as a result of an action. The only
way this can affect the description of new situations is through the output parameters
of the actions causing the transition. The specific changes caused by the actions must
be specified by the corresponding rules of the security policy.

Principle of preservaltion: Any description of the situations within the domain
of the action in terms fo input parameters remains unchanged.

Principle of propagations: Any description of the situations within the range of
the action in terms fo output parameters defines the change.

Ontological Foundations 7

Ezample 2. In Fig. 2 we have a scenario which starts in situation Situation; and finishes
in Situations after executing Action; and Actions . The two actions have parameters
amongst the entities which are present in the corresponding situations. In this case
G = {(Entitys, Action;), (Action;, Entitys), (Action;, Entitys), (Entitys, Actions)}.
Amongst the parameters Entitys is both input and output parameter of Actions.
Entity: and Entitys simply describe the situations without being needed for actions.

1 1 1
! Entity: 1 ! Entityz ! Entitys 1 ! Entitys ' Entitys
______ 1 - [Ep—] - - -l - - = - 1 - [E——]
p're\sent—at ’ present—at ,', s ~ 7
AN ,/present—at \ % present—atl ~ _ , present—at
\ ’ ~

\ 7’ ~ /

[Somton]—
Action1

- ACtiOHQ

occur—in

|| Event ||< ————————————— - Entitys E

Fig. 2. A graphical representation of two-step journey

The ontological considerations we have presented so far can be constructed in any
variation of DL. Since such a theory can be serialized directly in OWL, the process of
developing the ontology can be done entirely interactively using any standard ontology
editor, such as Protégé.

5 Logical Level: Constraints, Dependencies and Domain
Policies

In order to describe the logical characteristics of the model, as well as to represent
adequately the domain policies controlling the execution of the actions, we can use
axioms, rules of inference and heuristic rules. Although DL and CL, as theoretical base
of our framework, have well-defined inference mechanisms for practical purposes, it is
more convenient to work with derived inference rules rather than the rules of inference
within the underlying logic. In this section we will discuss some derived rules of our
framework which allow us to automate this process.

5.1 Parameter Binding and Entity Completion

To make sure that our KB is descriptively complete, we need to guarantee that it
contains all needed information in the TBox (the ontology model) to match the SWRL
rules (the policies) so that the policy rules which prescribe actions actually lead to
executable actions. In practice this means that all parameters of the actions in the
head of the rules must be bound to the situations in which the rules apply. This can
be implemented using an algorithm which uses the ontology in the TBox to check if
the parameters of the actions prescribed by the rules are defined.

The following derived rule captures the parameters of various events in the sit-
uations to prevent the loss of bindings. It is used to implement a “reasoner” which
performs a secondary logical inference according to the following schema:

8 K. Bataityte, V. Vassilev et al.

Entity C Ipart—of. Event
FEvent C Joccur—in.Situation
. Entity C dpresent—at.Situation

Derived Inference Rule 1 (Entity Triangulation). Let the following TBox T be
given:

T := {Entity C 3part-of.Event, (12a)
Event C Joccur—in.Situation} (12b)

Then the following holds:
T' := T U {Entity C 3present—at.Situation}. (13)

Proof. The TBox T holds since it states the domain and range of part—of (12a) and
occur—in (12b) roles which satisfy the axioms 5 and 4 respectively. The same concept
Event is used as range of part—of (12a) and as a domain of occur—in (12b). Therefore,
we can substitute Fvent in 12a by the right-hand side of 12b to derive Entity C
dpart—of.Joccur—in.Situation. As we can see, Entity is connected to Situation via
two roles. We know from Section 4.2, this can be done via present—at (axiom 6),
therefore, it can be expressed as Entity C Ipresent—at.Situation (13).

0

5.2 Transitivity of the Roles and Entity Propagation

The next derived rule reflects the abstract “transitivity” of the logical descriptions
within one and the same situation. It can be accounted by another “reasoner” which
performs secondary inference according to the following schemas against concept Situation
or Event:

Entityy, C Jdescribe. Entityx Entity, C Jdescribe.Entityy
Entityx C dpresent—at.Situationy Entityx C dpresent—at.Event,

.. Entityy, C Jpresent—at.Situationy .. Entity, C Jpresent—at.Event,

Derived Inference Rule 2 (Entity Transitivity). Let the following TBox T be
given:
T := {Entity, C Jdescribe.Entityx, (14a)

Entityx C Ipresent—at.Situationy } (14b)
Then the following holds:

T' := T U {Entity, C Ipresent—at.Situationy}. (15)

Proof. The TBox T holds since it states the domain and range of describe (14a) and
present—at (14b) roles which satisfy the axioms 7 and 6 respectively. The same concept
Entityx is used as range of describe (14a) and domain of present—at (14b). Therefore,
we can substitute Entityx in 14a by the right-hand side of 14b to derive Entity, C
Jdescribe.3present—at.Situation,. As we can see, Entity, is connected to Situationy
via two roles. Therefore Entity, is connected to Situationy and we can simply rewrite
it as Entityy, C Ipresent—at.Situationy (15).

O

Ontological Foundations 9

5.3 Conceptual Taxonomies and Entity Inheritance

Although the DL allows to automate the subsumption of concepts, we can extend
our framework with additional inheritance mechanisms to allow full “parameter in-
heritance” in the style of object-oriented programming. This is possible because the
entities, which are connected to situations or to events, are like the class attributes
in object-oriented parlance. It is relatively straightforward to construct algorithmic
reasoners which tackle more complex inheritance of entities, along the taxonomic hier-
archies of situations and events.

Situation, C JSituationy Event, T JEventy
Entityx C dpresent—at.Situationy Entityx C dpresent—at.Eventy

.. Entityx C Jpresent—at.Situationy .. Entityx C Jpresent—at.Situationy

Derived Inference Rule 3 (Entity Inheritance). Let the following TBox T be
given:

T := {Situation, C Situationy, (16a)
Entityx C Ipresent—at.Situationy } (16Db)

Then the following holds:
T’ := T U {Entityx C 3present—at.Situationy }. 1)

Proof. The TBox T holds since it states that Situationy is a sub-concept of Situationy
(16a) and Entityx is related to Situationy via present—at (16b). Therefore, Entityy is
also related to sub-concept of Situationy, which is Situationy (17).

O

5.4 Policy Rules

The policies on the Logical Level are rules which link the concepts and roles from
the Ontological Level. Such rules have clausal form and can be represented as SWRL
expressions (Section 3.2). This makes possible the use of the ontological editors like
Protégé for modelling of the policies on the Logical Level.

The policy rules can be modelled in SWRL using different templates which combine
Situation, Event, Entity and Action atoms in the body and the head of the rule to
serve different purposes - for analysis of the situations, making decisions for contin-
uation of the journey or responding to events. Two such templates are shown below,
which can be finely tuned to the particular need.

1. (situation)(?sa) A (entity)(?ia) N present—at(?ia,?sa) A ... A (situation)(?sb) A
(action)(?sa, 7sb) — (entity)(?ib) A present—at(?ib, 7sb) A ...
2. (situation)(?sa) A (entity)(?ia) A present—at(?ia,?sa) A (event)(?ea) A occur—in

(?ea, 7sa) A ... A {entity)(?ib) A part—of(?ib, 7ea) A ... A {situation)(?sb) A {action)

(?sa, 7sb) — (entity)(?ic) A present—at(?ic, ?sb)...

In the templates above (situation)(?s), (entity)(?en), (event)(?ev) are SWRL classes
(which correspond to ALC concepts), {(action)(?sa,?sb) are SWRL object properties
(which correspond to ALC roles) and they have to be adopted to the specific scenario.
Other classes/concepts and object properties/roles do not have to be adopted to the
scenario and can be used as it is (present—at(?ib, ?sb), occur—in(?ea, 7sa), etc.)

10 K. Bataityte, V. Vassilev et al.

5.5 Detailed Example

The following fragment was built in Protégé 5.1.0 with FaCT++ 1.6.5 reasoner. Web-
VOWTL 1.1.7 was used for visualization of Fig. 3 and Fig. 4 was created using a drawing
tool since softaware to generate these graphs is still in the development stage. Some
specifications such as TBox, RBox and some of the named concepts are omitted due
to space limitation. The purpose of this example is to illustrate our framework as well
show the interpretation and understanding of it.

Lets consider the case when transaction is requested (S_TransactionRequested)
and there are three possible events which may or may not happen (E_AccountIn
Overdraft, E_MaxOverdraftReached, E_AccountOverloaded). The end situation as
well as entities depend on policy rules expressed in SWRL.

Fig. 3 shows the interpretation of ontological vocabulary from Ontological Level
where yellow arrows represents some of the derived inference rules from Logical Level.
Fig. 4 visualise the rules on Logical Level and will be used for Analytical Level for
analysis which is left for another publication. The rules are as follows:

A_TransactionRequested

-y RSN 3
A_TransactionRequestedRepeatedly

P

A_TransactionDeclined

oceur-if E_Max Rejected

Overdraft oceur-in A
Reached
present-at N
p""*’\q a Blocked 3
present-at E Accountin present-at presanta present-at /

Overdraft 3\\ \ / present-at

pre .
present-a present-at

..... f/ present-at present-at

Overioaded oo

Overdraft
Amount

Transaction \-
Amount

" describe

T~

Account describe 3 Balance

Fig. 3. Example Visualization of Ontological and Logical Levels

— S_TransactionRequested(?sa) A Balance(?iz) N present—at(?ix, 7sa) A
Transaction Amount(?it) A present—at(?it, 7sa) A E_AccountInOverdraft(?ea) A
occur — in(?ea, ?sa) A Overdraft Amount(?i0) A part—of(?io, 7ea) A
present—at(?io, 7sa) A S_Transaction Executed(?sb) A
A TransactionApproved(?sa, 7sb) — Balance(?1y)

Ontological Foundations 11

Balance |
Overdraft | ‘'---oqecoootooo-

present-at @ @resent-at Eprcscm-at
1 describe .

1 A4

A_TransactionReguested <
d S_Transaction
5_Transaction

Cur-i E
A_TransactionDeclined i '
E_MaxOverdraft i ~»| Rejected '
Reached Requested A_TransactionRequestedRep diyy b
e S_Account
E_Account oo | A_AccountSuspended » Blocked
Overloaded

Fig. 4. Example Visualization of Logical and Analytical Levels

— S_TransactionRequested(?sa) A Balance(?ib) A present—at(?ib, 7sa) A
Transaction Amount(?it) Apresent—at(?it, 7sa) NE_MazOverdraft Reached(?eb) A
occur — in(?eb, 7sa) A S_TransactionRejected(?sb) N
A_TransactionDeclined(?sa, ?7sb) — Balance(?ib)

— S_TransactionRequested(?sa) A Balance(?ib) A present—at(?ib, 7sa) A
Transaction Amount(?it) A present—at(?it, 7sa) A S_TransactionRejected(?sb) N
A_Transaction Requested Repeatedly(?sa, ?7sb) — Balance(?ib)

— S_TransactionRequested(?sa) A Balance(?ib) A present—at(?ib, ?7sa) A
Transaction Amount(?it) A present—at(?it, ?sa) A E_AccountOverloaded(?eb) A
occur —in(?eb, 7sa) A S_AccountBlocked(?sb) A A_AccountSuspended(?sa, 7sb) —
Balance(?ib)

Although some bigger rules can look too complex, most of the literals in it are
type checking conditions which can be eliminated from the formulation by assuming a
separate type checking algorithm.

6 Conclusion and Further Work

In this paper we presented ontological and logical considerations of knowledge repre-
sentation. Also, the processing of transactions in dynamic systems, which involve syn-
chronous and asynchronous activities such as events and actions have been described.
We outlined a multi-level framework for modelling security policies for analysis. It is
entirely based on the use of standard modelling languages of the Semantic Web, which
greatly simplifies the implementation, makes it transparent and efficient. Our frame-
work provides a theoretical basis for solving some of the hard problems in modelling
dynamic behaviour. We utilize the concept of state, to provide a proper distinction
between the static characteristics of the situations and the possible side effect of the
actions on them. We have a pilot implementation of the framework as a Java program,
which makes use of the APIs for OWL and SWRL in Jena for processing the onto-
logical representation and the security policies in symbolic form [12], which allows us
to perform various logical analytics related to risk assessment and policy validation.

12 K. Bataityte, V. Vassilev et al.

We have successfully applied this framework to cross—channel transaction processing,
in digital banking, for preventing social engineering fraud.

Currently, we are working on an extension of the framework with risk analysis
capabilities, based on Bayesian theory. We are also exploring the potential use of the
same framework in other domains, related to workflow control, production line fault
recovery and safety management, like evacuation in the event of fire or other disastrous
situations.

The semantic and logical considerations discussed above provide the formal ground
for formalizing the concepts of accessibility, logical vulnerability and risks. Within
our framework this can be done by simulating different scenarios for execution of the
actions, under the conditions imposed on the situations and with possibility for events
happening in them. Although such an analysis is beyond the scope of this paper, the
experiments we conducted using our prototype implementation, have demonstrated
that this approach is both transparent and convenient to be used for practical purposes
[12].

References

1. Baader, F., Lutz, C., Mili¢ic, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proc. of the 20th National Con-
ference on Artificial Intelligence - Volume 2. pp. 572-577. AAAT'05, AAAT Press

2005

2. ghan;, L., Lin, F., Shi, Z.: A dynamic description logic for representation and
reasoning about actions. In: KSEM (2007)

3. Eric Jizba, Yan Chen, F.S.G.P.. Web logic vulnerability, https://users.
cs.northwestern.edu/~ychen/classes/cs450-s14 /lectures/ Web%20Logic%
20Vulnerability.pdf, [Online; accessed January-2020)

4. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

5. Lawan, A., Rakib, A.: The semantic web rule language expressiveness extensions-a
survey (03 2019)

6. McCarthy, J., Hayes, P.: Some philisophical problems from the standpoint of ar-
tificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
pp. 463-502. Edinburgh University Press, Edinburgh, UK (1969)

7. Passin, T.B.: The Explorer’s Guide to the Semantic Web. Manning Publications

2004

8. %ieitelz, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

9. Sanchez, D., Cavero, J.M., Marcos Martnez, E.: The Road Toward Ontologies,
vol. 14, pp. 3-20. Springer US (2007)

10. Szeredi, P., Lukéacsy, G., Benk6, T.: The Semantic Web Explained: The Technology
and Mathematics Behind Web 3.0. Cambridge University Press, New York, NY,
USA (2014)

11. Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints.
In: Proc. of the 2004 International Workshop on Description Logics (DL2004)

2004

12. g/aussil)ev7 V., Sowinski-Mydlarz, V., Gasiorowski, P., Ouazzane, K., Phipps, A.: In-
telligence graphs for threat intelligence and security policy validation of cyber sys-
tems. In: Proc. Int. Conf. on Artificial Intelligence and Applications (ICAIA2020).
Advances in Intelligent Systems and Computing, Springer (2020)

