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    Abstract- An effective method is presented for suppressing mutual coupling between adjacent radiating elements which is 

based on metasurface isolation for MIMO and synthetic aperture radar (SAR) systems. This is achieved by choking surface 

current waves induced over the patch antenna by inserting a cross-shaped metasurface structure between the radiating 

elements. Each arm of the cross-shaped structure constituting the metasurface is etched with meander-line slot (MLS). 

Effectiveness of the metasurface is demonstrated for a 2×2 antenna array that operates over six frequency sub-bands in X, 

Ku and K-bands. With the proposed technique, the maximum improvement achieved in attenuating mutual coupling 

between neighbouring antennas is: 8.5 dB (8-8.4 GHz), 28 dB (9.6-10.8 GHz), 27 dB (11.7-12.6 GHz), 7.5 dB (13.4-14.2 GHz), 

13 dB (16.5-16.8 GHz) and 22.5 dB (18.5-20.3 GHz). Furthermore, with the proposed technique (i) minimum center-to-center 

separation between the radiating elements can be reduced to 0.26λ0, where λ0 is 8.0 GHz; (ii) use of ground-plane or defected 

ground structures are unnecessary; (iii) use of short-circuited via-holes are avoided; (iv) it eliminates the issue with poor 

front-to-back ratio; and (v) it can be applied to existing arrays retrospectively. 

 

Keywords- Metasurface isolator, MIMO, synthetic-aperture radar, Meander line slot (MLS), Mutual coupling, Antenna 

array.  

I. INTRODUCTION  

Minimum spacing between the radiating elements of 0.5λ0 is normally required for achieving acceptable isolation between 

elements in microstrip MIMO antenna arrays. Otherwise the antenna performance is compromised in terms of radiation efficiency, 

gain and bandwidth due to the increased electromagnetic (EM) coupling among the closely packed antenna elements resulting from 

near-field effects [1]. Antenna arrays are important in next generation wireless communications systems such as 5G for beam 

steering and mitigating multipath fading.  

Various techniques have been previously explored to reduce mutual coupling between two neighbouring patches, e.g. by 

integrating electromagnetic band-gap (EBG) structures in patch antenna arrays [2]-[4] or implementing defected ground structures 

(DGS) in the ground-plane [5][6]. Although these techniques are effective in reducing mutual coupling, however the minimum 

edge-to-edge spacing between adjacent elements needs to be 0.5λ0. Waveguided metamaterial is another relatively recent stopband 

technique [7] realized by etching metamaterial unit-cells in the ground-plane under a microstrip-line to enhance the current paths in 

the ground. With this technique edge-to-edge element spacing of 0.125λ0 can be achieved and the reduction in coupling is confined 

to only one plane; however, with this approach the impedance bandwidth is limited to 0.02 GHz.  

This research work describes a new technique to substantially reduce EM coupling between adjacent radiating elements with 

reduced centre-to-centre spacing of 0.26λ0, where λ0 is at 8.0 GHz. This is achieved by implementing a metasurface consisting of 

meander-line slot etched inside a microstrip structure, which is inserted between neighbouring patches [8]-[11]. The proposed 

metasurface minimises the effects of EM coupling resulting from space-wave and the near-field. Compared to other techniques 

reported in literature, the proposed technique reduces the fabrication process because no ground-plane defection or short-circuited 

via-holes are required; and it eliminates the issue with poor front-to-back ratio. The effectiveness of the proposed technique is 

validated with measured results. The proposed technique is applied on a wideband antenna operating in X, Ku and K bands. In X-

band the application of the antenna is for military communication and wideband global satellite communication systems (WGS), in 

the Ku-band it is for terrestrial microwave and radar, specially police traffic speed-detector and in the K-band it is for airport surface 

detection equipment (ASDE). 
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II. METASURFACE ISOLATOR 

The proposed two-dimensional metasurface isolator is constituted by etching a meander-line slot (MLS) on a microstrip 

structure. In Figs. 1 and 2, the cross-shaped metasurface is incorporated between adjacent radiating patches in a 2×2 antenna array 

that has a truncated ground-plane. The proposed metasurface essentially chokes surface current waves induced over the antenna by 

near-field effects thus minimising EM coupling between the radiating elements. Although not shown the ground planes are common. 

The antenna array was constructed using a standard PCB etching technique on FR-4 dielectric substrate with relative permittivity 

of 4.3, thickness of 1.6 mm and loss-tangent of 0.025. The square patch has dimensions of 15×15 mm2 and the gap between the 

patch elements is 10 mm. 

 

                  
                                             (a)                                                                         (b)                                                                          (c) 

Fig. 1. Geometry of the antenna array and proposed metasurface. (a) Reference MIMO 2×2 antenna array without metasurface isolator; (b) Proposed metasurface 

isolator implemented using MLS; and (c) Antenna array with metasurface isolator. 

 

The proposed antenna structure in Fig. 1 was analysed using CST-Microwave Studio EM solver, where open (Add Space) 

boundary condition was applied to create a realistic model. Dimensions of the 2×2 antenna array were optimized using CST 

Microwave Studio to realize maximum bandwidth in the operating frequency bands. Dimensions of the MLS were optimized to 

realize high isolation between adjacent patches but without significantly affecting the antenna’s return-loss performance. The length 

and width of the arms of the cross-shaped isolator are 18.7 mm and 10.2 mm, respectively. It was observed that the most sensitive 

part of the proposed MLS to realise high isolation is its length of 69.9 mm and width of 0.57 mm. MLS is not implemented in the 

central section of the cross-shaped isolator because it facilitates electromagnetic interaction with the MLS arms of the cross-shaped 

structure, thus adversely affecting mutual coupling suppression and therefore the antenna’s bandwidth, isolation, and radiation 

properties. 
 

           
(a) 

             
(b) 

 

Fig. 2. (a) Fabricated prototypes of the antenna array without metasurface isolator (front & back), and (b) Fabricated prototypes with metasurface isolator (front & 

back). Length & width of each patch is 15 mm, and gap between them is 10 mm. Length & width of the meander line metasurface is 69.9 mm & 0.57 mm, 

respectively. 

 

Figs. 3-5 show the transmission and reflection-coefficients of two identical 2×2 antenna arrays, where the reference antenna 

array has no metasurface. These two parameters were measured using a network analyser.  It is evident that the antenna array with 
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the metasurface exhibits greater isolation than the reference antenna array in the six operating sub-bands defined for ∣S11∣ ≦ -10 dB. 

This is because the metasurface suppresses propagation of surface waves over the antenna and compensates the otherwise out-of-

phase radiation from the microstrip patch antennas to improve its reflection-coefficient performance. Improvement in the isolation 

is given in Table I. It is also evident in Figs. 3-5 there is general improvement in the reflection-coefficient too. 

 

                      

 
Fig. 3. Measured reflection & transmission-coefficient responses with (W) and without (WO) metasurface isolator at X- and Ku-bands. 

 

            
 

Fig. 4. Measured reflection & transmission-coefficient responses with (W) and without (WO) metasurface isolator at Ku-band. 

 
 

Fig. 5. Measured reflection & transmission-coefficient responses with (W) and without (WO) metasurface isolator at K-band. 
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TABLE I. ISOLATION IMPROVEMENT WITH METASURFACE  

Freq. range 

(GHz) 

∣S12∣  (dB)  

Min./Max./Ave. 

∣S13∣  (dB) 

Min./Max./Ave. 

∣S14∣  (dB) 

Min./Max./Ave. 

1:    8-8.4 7.5 / 8.5 / 8 2 / 8.5 / 6 - / 3 / - 

2:    9.6-10.8 2.5 / 3.5 / 3 5 / 28 / 17 7 / 18 / 12.5 

3:  11.7-12.6 3.5 / 13 / 9.5 8 / 27 / 18 5 / 5 / 5 

4:  13.4-14.2 5.5 / 7.5 / 6.5 - / 4 / 2 - / 6.5 / 3.5 

5:  16.5-16.8  - / 3.5 / 2 2 / 5.5 / 4 7 / 13 / 10.5 

6:  18.5-20.3 4.5 / 22.5 / 13.5 2.5 / 7.5 / 5.5 5.5 / 20 / 13 

 

 

The equivalent electrical circuit model of the antenna is shown in Fig. 6 where the patch radiator is represented with a resonant 

circuit comprising inductance LP, capacitance CP, and resistance RP; and where MLS is represented by inductance LM and 

capacitance CM, whose magnitude depends on the gap between the radiators. Coupling between the patch and metasurface isolator 

is through a combination of LC and CC. Inductance LC is more dominant because the metasurface isolator is coupled via non-radiating 

edge of the patch antenna. Ohmic and dielectric loss associated with the metasurface isolator is modelled by resistance RM. Optimised 

values of the equivalent circuit model given in Table II were extracted using Keysight’s ADS software tool based on S-parameter 

curves obtained from CST Microwave Studio. The equivalent circuit model was used to determine the effectiveness of the 

metasurface on the antenna array’s return-loss and isolation performance. To validate this circuit model, its input impedance was 

computed using CST Microwave Studio and equivalent circuit model (CM), which are shown in Fig. 7.   

 

 
 

Fig. 6. Equivalent circuit diagram of the proposed antenna array. 

 

TABLE II. OPTIMIZED VALUES OF THE EQUIVALENT MODEL REPRESENTING THE PROPOSED STRUCTURE 

CP LP RP  CM LM RM CC LC R1 

1.0 pF 7.1 nH 50 Ω 5.5 pF 2.8 nH 70 Ω 8.1 pF 0.7 nH 75.5 Ω 

 

 

    
 

                                (a) Real part of the input impedance                                                            (b) Imaginary Part of the input impedance 

 

Fig. 7. Input impedance (Ω) of the proposed antenna array obtained using EM simulation and equivalent circuit model. 

 

 



5 
 

Radiation patterns of the 2×2 antenna array were measured in a standard anechoic chamber by exciting all four elements 

simultaneously in-phase. Fig. 8 shows the simulated and measured radiation characteristics in the vertical plane of the array with 

and without the metasurface isolator at selected spot frequencies of 8.15, 10.3, 12.15, 13.9, 16.7, and 19.9 GHz across the operating 

bands. Compared to the reference antenna array, the array with the metasurface structure exhibits reduction in sideband emissions. 

The discrepancy between simulated and measured results is due manufacturing tolerances and mismatch between the feedline and 

the antenna.  

    Decoupling effects can also be observed by visualizing the surface current distribution plots over the 2×2 antenna array. With 

meander line metasurface isolator strong current is induced on the patch antenna and MLS, as shown in Fig. 9, which clearly verifies 

the effectiveness of the meander line metasurface isolator in suppressing surface current wave interaction between the four patches.  

  

 

       
                                                           

(a) Simulated                                                                                            (b) Measured 

 

Fig. 8. Simulated and measured radiation patterns of the reference and proposed antenna arrays at various frequencies of 8.15, 10.3, 12.15, 13.9, 16.7, and 19.9 

GHz. 

 

                       
 

                                        (a) with no metasurface isolator @ 8.15 GHz                                    (b) with meander line metasurface isolator @ 8.15 GHz 

 

Fig.9. Surface current distribution at a spot frequency over the reference antenna array with no metasurface, and over the antenna array with meander line 

metasurface isolator. 
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The figure of merit for MIMO enabled antenna systems is represented by envelop correlation coefficient (ECC). It can be 

calculated from measured field patterns by using [12] 

 

𝜌𝑒 =
|∬ �⃑� 1(𝜃, 𝜙) ∙

4𝜋
�⃑� 2(𝜃, 𝜙)𝑑Ω|

2

∬ |�⃑� 1(𝜃, 𝜙)|
2

4𝜋
𝑑Ω ∙ ∬ |�⃑� 1(𝜃, 𝜙)|

2

4𝜋
𝑑Ω

                   (1) 

 
Where 

�⃑� 1(𝜃, 𝜙) ∙ �⃑� 2(𝜃, 𝜙) = �⃑� 𝜃1
∗ (𝜃, 𝜙) ∙ �⃑� 𝜃2

∗ (𝜃, 𝜙) + �⃑� 𝜙1
∗ (𝜃, 𝜙) ∙ �⃑� 𝜙2

∗ (𝜃, 𝜙)  (2) 

 

The term �⃑� 1(𝜃, 𝜙) is the measured electric-field vector radiated by antenna#1 while other antenna ports are terminated with a 50Ω 

matched load [12]. The calculated ECCs for the array with and without metasurface are shown in Fig. 10. It is evident that by 

introducing the metasurface, the ECC has improved from 0.35 to less than 0.125. This should result in a higher channel capacity 

and diversity gain. 

 

Fig.10. Envelop correlation coefficient (ECC) for the array with and without metasurface. 

 

III. COMPARISON WITH LITERATURE 

The proposed antenna array using metasurface is compared in Table III with other mutual coupling reduction techniques reported 

recently. Antenna arrays cited in Table III are: (i) constructed using two radiation elements; (ii) operate over a narrow and single 

band; (iii) employ defected ground structure (DGS); and (v) exhibit deteriorated radiation patterns. In this paper, we have increased 

the array elements to four to give a more accurate representation of an array. The proposed method described here offers an optimum 

isolation between adjacent antennas of 32 dB at X-band, 27 dB at Ku-band, and 26 dB at K-band, which is significantly better than 

the references cited with exception of [13]. In [13] the authors achieved very good isolation of 40 dB using short-circuited via-holes, 

which is not used in our case, however the antenna operates in a very narrow band. Also, close examination of the decoupling 

structure in [24] reveals it is based on interdigital capacitance structure not slotted meander line. Compared to the decoupling 

structure in [24] the proposed metasurface (i) enables large number of radiation elements to be arranged more compactly in a 

symmetrical configuration; (ii) exhibits a much wider impedance bandwidth of 5.4 GHz for return-loss better than -10 dB; and (iii) 

isolation improvement on average is 10 dB better over the operating range of the antenna. Furthermore, the proposed technique is 

simple to implement in practice and can be retrofitted to existing antenna arrays quickly and at low cost. It is important to mention 

that, to achieve high isolation with a simple structure, the proposed array antenna was realized on a truncated ground-plane. Unlike 

other techniques the proposed technique is relatively easy to design and implement in practice.  

                                                         

TABLE III. COMPARISON BETWEEN THE PROPOSED ARRAY WITH THE RECENT WORKS 

Ref. Method  Max. isolation  Bandwidth 

 

Bands Reduction in 

bandwidth 

Rad. pattern 

deterioration 

No. of 

elements 

Use of 

DGS   

Edge-to-

Edge Gap 

[2] EBG 8.8 dB Narrow Single Yes - 2 Yes 0.75λ0 

[3] Fractal load & DGS 16 dB Narrow  Single Yes No 2 Yes 0.22λ0 

[4] U-Shaped Resonator 10 dB Narrow Single Yes Yes 2 Yes 0.6λ0 

[6] I-Shaped Resonator 30 dB Narrow Single Yes Yes 2 Yes 0.45λ0 

[7] W/g MTM 18 dB Narrow Single Yes No 2 Yes 0.093λ0 

[13] Ground Slot 40 dB Narrow Single Yes Yes 2 Yes 0.23λ0 

[14] SCSRR 10 dB Narrow Single Yes Yes 2 Yes 0.25λ0 

8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Freq. (GHz)

E
C

C

Title

With metasurface
Without metasurface
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[15] SCSSRR 14.6 dB Narrow Single Yes Yes 2 Yes 0.125λ0 

[16] Compact EBG 17 dB Narrow Single Yes Yes 2 Yes 0.8λ0 

[17] Meander line  10 dB Narrow Single Yes No 2 Yes 0.055λ0 

[18] UC-EBG 14 dB Narrow Single Yes Yes 2 Yes 0.5λ0 

[19] EBG 10 dB Narrow Single Yes Yes 2 Yes 0.5λ0 

[20] EBG 5 dB Medium  Single Yes - 2 Yes 0.6λ0 

[21] EBG 13 dB Medium  Single Yes Yes 2 Yes 0.5λ0 

[22] EBG&DGS 16 dB Narrow Single Yes No 2 Yes 0.6λ0 

[23] EBG 4 dB Narrow Single Yes Yes 2 Yes 0.84λ0 

[24] Slotted meander-line 16 dB Narrow Single Yes Yes 2 No 0.11λ0 

[25] W/g MTM 20 dB Narrow Single Yes No 2 Yes 0.125λ0 

[26] UC-EBG 10 dB Narrow Single Yes Yes 2 Yes 0.5λ0 

This 

work 

 

Metasurface 

32dB (X-band) 

27dB (Ku-band) 

26dB (K-band) 

Cumulative 

BW is 5.4 GHz 

 

Six 

 

No 

 

No 

 

4 

 

No 

 

0.26λ0 

 

IV. CONCLUSION 

A novel metasurface is shown to effectively isolate electromagnetic coupling between neighbouring antenna 

elements. Surface current waves over the patch antenna are suppressed by locating the cross-shaped metasurface 

between the radiating elements in the 2×2 antenna array. The proposed technique permits reduction in centre-to-

centre separation between antenna radiating elements to 0.26λ0, where λ0 is 8.0 GHz, does not require short-

circuited via-holes or defected ground structures, and can be retrofitted. Over its operating range the proposed 

technique offers an optimum isolation between adjacent antennas of 32 dB at X-band, 27 dB at Ku-band, and 26 

dB at K-band. The technique presented enables implementation of densely packed antenna arrays in MIMO and 

SAR systems.  
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