

Abstract—Software Quality Assurance (SQA) becomes one of

the most important objectives of software development and

maintenance activities, and many SQA standards have emerged

as part of the Software Engineering discipline. However, despite

the effort made to improve consistency and coherency among

SAQ standards, still there is no single standard that covers the

whole SQA knowledge area. To contribute to this effort, this

paper presents a framework of an ontological model to describe

and define both domain and operational knowledge of SQA.

International standards (SWEBOK, IEEE, and ISO) were the

main sources of the terminology and semantic relations of the

proposed SQA conceptual model. Different approaches have

been used to evaluate the developed SQA ontology. The ultimate

goal was to develop an ontology that faithfully models the SQA

discipline as practiced in the software development life cycle.

Index Terms—Domain modeling, knowledge representation,

ontology, ontology evaluation, semantic web, software

engineering, software quality assurance.

I. INTRODUCTION

Many areas of human activities such as communication,

transportation, health, finances, and education are highly

dependent on software applications that range from simple to

highly complex life critical systems. This requires software

of high quality. Software quality is a rather complex concept;

some authors have defined the entire discipline of SE as the

production of quality software [1]. Therefore, Software

Quality Assurance (SQA) becomes one of the most important

objectives of software development and maintenance

activities, and many SQA standards have emerged as part of

the Software Engineering (SE) discipline.

Although Software Quality Assurance (SQA) becomes

one of the most important objectives of software

development and maintenance activities, yet there is no

consensus among the SQA community of most of the domain

terminology and concepts. Despite the efforts in research and

international standardization, inconsistency and terminology

conflicts appear between standards even within the same

organization. A well-defined, complete and disciplined SQA

process can be helpful to improve communication and

collaboration among project participants and can serve as a

standard when there is a disagreement.

Ontologies provide a common understanding and sharing

Manuscript received September 16, 2015; revised February 12, 2016.
Nada O. Bajnaid is with King Abdulaziz University, Saudi Arabia (e-mail:

nbajnaid@kau.edu.sa).

Rachid Benlamri is with Lakehead University, Canada (e-mail:
rbenlamr@lakeheadu.ca).

Algirdas Pakstas and Shahram Salekzamankhani are with London

Metropolitan University, UK (e-mail: a.pakstas@londonmet.ac.uk,

s.salekzamankhani@londonmet.ac.uk).

of knowledge by using a general agreement on terminology

among all interested people. SE domain ontologies are very

useful in developing high quality, reusable software by

providing an unambiguous terminology that can be shared

through various sof tware development processes.

Ontologies also help in eliminating ambiguity, increasing

consistency and integrating distinct user viewpoints [2]-[5].

Using ontology to model the SE knowledge shortens the

development time, improves productivity, decreases cost,

and increases product quality. Ontologies provide better

understanding of the required changes and the system to be

maintained [6].

There was an effort by different bodies to develop

Software Engineering standards followed by the forming of

the ISO/IEC Joint Technical Committee 1 (JTC1) workgroup

in order to guarantee consistency and coherency among

standards. This work is motivated by the need for having

consistent terminology and agreed upon concepts among

existing taxonomies of the SQA domain, where these

taxonomies are mainly found in standard documents. The

next section introduces the use of the development of the

SQA ontology using agreed standards. Evaluation of the

developed SQA ontology is presented in Section III. Section

IV presents enhanced version of the SQA otology based on

latest standards and results of the evaluation process. A case

study showing the deployment of the SQA ontology in an

e-learning system is presented in Section V, while Section VI

concludes and summaries the findings of this research.

II. SQA ONTOLOGY MODEL

Higher quality ontologies can be easier reused and shared

with confidence among applications and domains.

Additionally in case of re-use, the ontology may help to

decrease maintenance costs [7]. The SQA ontology must

contain well-defined, structured and organized knowledge of

the SQA domain including the type of software process, its

SQA requirements, quality attributes, and corresponding

SQA measurements and metrics.

A. Conceptualization

There are various vocabularies to describe the SQA

domain knowledge. In fact, there is no single standard which

embraces the whole software quality assurance knowledge.

Different standards and proposals have used different

terminologies for the same term. Similarly, the same term

may be used to refer to different concepts. This issue has been

recognized by the International Standards Organization (ISO)

and in 1987 the ISO/IEC has established the Joint Technical

Committee 1 (JTC1) workgroup to guarantee consistency and

coherency among standards. Also the IEEE computer society

An Ontological Approach to Model Software Quality

Assurance Knowledge Domain

Nada O. Bajnaid, Rachid Benlamri, Algirdas Pakstas, and Shahram Salekzamankhani

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

193doi: 10.18178/lnse.2016.4.3.249

mailto:a.pakstas@londonmet.ac.uk

and the ISOJTC1-SC7 agreed to harmonize terminology

among their standards.

The primary source of the SQA ontology is the Software

Engineering Body of Knowledge SWEBOK guide [8] in

addition to the above-mentioned ISO and IEEE standards

(ISO 9126, IEEE 12207, IEEE 610.12, IEEE 00100, PMBOK

2008, CMMI v1.2). An enhanced SQA ontology has also

been developed in our previous research [9].

We used the above-mentioned software engineering

knowledge sources aided by domain experts to build the

vocabulary and relationships of the SQA ontology. Ontology

properties are used to describe relationships among

individuals classes. Various properties are used to describe

both static and dynamic aspects of the SQA knowledge, such

as SQA-processes and related SQA issues. The ontology

provides a formal description for SQAProcess which may

have Quality Attributes (QAs) that can be measured. Various

quality assurance processes, such as Validation, Verification,

and Audit can be instantiated as shown in Table I.

Measurement plays an important part in software

development. It can be used to indicate the quality of the

product being developed [10]. According to Pressman’s

categorization of software metrics, quality metrics, which

measure customer requirements fulfillment, indicate how

closely software conforms to explicit and implicit customer

requirements. In this study, software measurements and

metrics are at the heart of the SQA ontology design. All

aspects of SQA measurements and metrics as described in the

ISO/IEC 9126 standard [11] are reflected in the proposed

SQA ontology. Fig. 1 illustrates the top level of the SQA

ontology model.

Fig. 1. Top level of the SQA ontology.

The proposed model may include some overwhelmed or

unnecessary content. Ontology axioms, a declaratively and

rigorously represented knowledge that has to be accepted

without proof, were added to prevent unnecessary

knowledge. In ontology representation, axioms can be used

to represent the meaning of concepts carefully, and to answer

questions on the capability of the built ontology using

ontology concepts.

TABLE I: THE SQA ONTOLOGY PROPERTIES

Name Domain Range Cardinality Inverse Property

hasProcess Project Process Multiple: a project may have more than one process -

enforces Process Quality-Attribute Multiple: a process may enforces (ensures) more than one attribute enforcedBy

Uses Process Resource Multiple: a process may use more than one resource isUsedBy

isInputTo Deliverable Process Multiple: a process may have more than one deliverable as input isInputTo

invokes Process Process Multiple: a process might invoke other process (es) -

hasProcess Project Process Multiple: a project may have more than one process -

enforces Process Quality-Attribute Multiple: a process may enforces (ensures) more than one attribute enforcedBy

Uses Process Resource Multiple: a process may use more than one resource isUsedBy

isInputTo Deliverable Process Multiple: a process may have more than one deliverable as input isInputTo

invokes Process Process Multiple: a process might invoke other process (es) -

Fig. 2. Class hierarchy of the SQA ontology.

B. Implementation

The conceptual model resulted from the previous step is

transformed into formal OWL ontology. The Protégé editing

tool is used to translate the SQA conceptual model into

machine processable ontology represented in OWL language

[12]. The Jambalay tab, a Protégé plug used for ontology

visualization generates graphical representation of the

ontology. Fig. 2 shows a class hierarchy of the software

quality domain ontology. The figure shows classes and

individuals of the SQA ontology where blue arrows represent

the subclass relationships and the red arrows represent

individuals of the class. Note that in the figure not all

individuals of the classes are shown due to space limitation.

Moreover, the Protégé checker is used to verify the

ontology consistency while the Racer Pro-reasoner is used as

a Protégé plug in to check the consistency of the developed

ontology.

III. ONTOLOGY EVALUATION

Evaluating the ontology (its concepts definitions,

taxonomy and axioms) is important and worthwhile task [7].

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

194

Mistakes and omissions in ontologies can lead to applications

not realizing the potential of exchanging data. In addition,

ontology evaluation increases the availability and thus

reusability of the ontology and decreases maintenance costs.

Ontology evaluation assesses the quality of the ontologies

and thus encourages their publication and reusability since

the confidence of the re-users in the quality of these

ontologies increases.

Evaluating ontology is not an evidence of the absence of

problems, but it will make its use safer. The main efforts

towards evaluating ontology content were made by

Gómez-Pérez [13], [14] in the framework of

METHONTOLOGY and by Welty and Guarino [15] with the

OntoClean method. A survey on evaluation methods and

tools can be found in [16].

According to [16], ontology evaluation requires:

 Verification which refers to building the ontology

correctly;

 Validation which refers to whether the ontology definitions

really model the domain for which the ontology was created.

Ontology validation ensures that the correct ontology was

built. The goal is to show that the world model is compliant

with the formal model;

 Assessment which focuses on judging the ontology from

users’ points of view (human judgment).

In this work, ontology evaluation is limited to the criteria

identified by Gómez-Pérez [14] such as: completeness:

where all knowledge that is expected to be in the ontology is

either explicitly stated in it or can be inferred; consistency:

refers to the absence (or not) of contradictory information in

the ontology; conciseness: checks if the ontology is free from

any unnecessary, useless, or redundant definition; and

expandability: refers to the ability to add new definitions

without altering the already stated semantic.

Different ontology evaluation approaches have been

considered in literature depending on the purpose of the

evaluation and the type of the ontology being evaluated.

Brank and colleagues [17] classify ontology evaluation

approaches as follows:

1) Those based on comparing the ontology to a “golden

standard” which might be an ontology itself;

2) those based on using the ontology in an application and

evaluating the results or application-based ontology

evaluation;

3) those involving comparison with a source of data (e.g. a

collection of documents) about the domain to be

modeled by the ontology; and

4) those where evaluation is done by humans who try to

assess how well the ontology meets a set of predefined

criteria, standards, requirements, etc.

The first approach is not applicable due to the lack of a

“golden standard” or upper-level Software Engineering

ontology. However, the second approach has been adopted in

this study and an application-based ontology evaluation was

conducted using a prototype system which was implemented

for this purpose (see Section V).

The third approach was held during development of the

ontology when the evolving conceptual model was compared

to the sources of knowledge. Recall that the goal of validating

the ontology is to show that the world model is compliant

with the formal model, i.e. the formal OWL representation

of the ontology is compliant with the defined conceptual

model.

Moreover, during implementation, the developed ontology

was verified for consistency using the Protégé consistency

checker tool which automatically checks the consistency and

conciseness of the developed ontology. Only inconsistent

classes will be displayed by the tool. Fig. 3 shows the result

generated by Protégé and the Racer Pro reasoning for the

consistency checking where no inconsistence classes are

listed. Syntax checking is performed by Protégé OWL plugin,

which generates OWL statements during creation of the

ontology using the Graphical User Interface. The plugin

ensures that the generated OWL statements adhere to the

rules of the OWL language.

Fig. 3. Protégé consistency checking result for the SQA ontology’s concepts.

The fourth approach included usage of the ontology

assessment questionnaire which was distributed among SE

specialists to evaluate the quality of the ontology. The use of

the conceptual model eases the assessment process in this

work where the domain specialists can validate wither the

model matches the purpose it was built for. The conceptual

model with a link to the questionnaire has been sent to

domain specialists inviting them to participate in the SQA

ontology assessment process to verify its coverage of the

SQA domain, structure, clarity, and extendibility.

Although, there is no such a single ontology that can

unanimously represent any knowledge area, especially for an

evolving domain like SQA, the survey shows a high level of

agreement around the major assessment criteria. This is

despite the fact that each participant responds based on their

own view, background and context. Fig. 4 summaries results

of the assessment process.

0

2

4

6

8

10
Disagree

Borderline

Agree

Fig. 4. Participants’ assessments of the SQA ontology.

Although, there is no such a single ontology that can

unanimously represent any knowledge area, especially for an

evolving domain like SQA, the survey shows a high level of

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

195

agreement around the major assessment criteria. This is

despite the fact that each participant responds based on their

own view, background and context.

IV. ENHANCED VERSION OF THE SQA ONTOLOGY

Based on the results and findings of the ontology

evaluation process, enhanced version of the ontology is

developed. In the new version, the ontology concepts

“Quality Attribute” and “Measurement” are renamed

“Quality Characteristic” and “Quality Sub-characteristic”

respectively. The concept “Measurement Metric” is also

renamed “Measure” to follow the transformation from the

ISO/IEC 9126 [11] to the last quality standard ISO/IEC

25010 [18].

Comparison of the quality characteristics and

sub-characteristics in the two standards as adopted from the

ISO/IEC 25010 [18] is used in addition to the ISO/IEC

25023 [19] standard for development of a new enhanced

SQA ontology as illustrated in Fig. 5.

Class

SQAProcess

Class

Deliverable

Class

Project

Class

Resource

hasProcess

Class

Quality

Characteristic

uses

Functional

Suitability

Performance

Efficiency

Compatibility

Usability

Reliability

Security

Portability

is-a

is-a

isInputTo

is-a

hasQualityAttribute

Class

Sub-

characteristic

measures

Class

Measure

hasMeasure

is-a

conductedUsing

Validation

Verification

Inspection

Audit

Testing

Review

Technical Review

Joint Review

Management Review

Quality Assurance

SW Design Quality

Evaluation

is-a

Class

 Procedure

Class

 Technique

Class

 Method

is-a

is-a

 Functional Correctness

Capacity

 Maturity

Fault Tolerance

Recoverability

Learnability

 Operability

Installability

Interoperability

 Appropriateness Recognizability

Time Behavior

 Resource Utilization

 Accessibility

 User Error Protection

Availability

 Functional Appropriateness

User Interface aesthetics

Analyzability

Modifiability

Testability

Adaptability

Replaceability

Coexistence

MTBF

Precision

Ease of Installation

Authentication Methods

Data Exchangeability

Access Controllability

Failure Resolution

Fault Density

Test Coverage

Fault Removal

 Availability

 Restartability

 Restorability

 Test Restartability

 Description Completeness

 Demonstration Capability

 Operational Consistency

 Message Clarity

 Service Time Ratio

 I/O Utilization

 Accuracy to Expectation

 Mean Down Time

 Redundancy

Mean Recovery Time

 Access Controllability

 Data Encryption

 Access Auditability

invokes

Data Flow Analysis

Complexity Analysis

is-a

Class

Requirement

produces

Class

Functional

Requirement

Class

NonFunctional

Requirement

is-a

hasDeliverable

hasRequirement

enforces

isInputTo

Measurement

Functional Completeness

 is-a

Confidentiality

 Integrity

 Non-repudiation

 Accountability

 Authenticity

 Modularity

Audit Strategy

Design

QA Plan

Req. Specification

Review Report

Source Code

Test Cases

Test Report

User Manual

Validation Plan

Verification Plan

Test Specification

Operation Report

User Monitoring Record

Problem Report

FaultRemoval Report

Walk Through

Prototyping

Check List

Meeting

Use Cases

Simulation

Reusability

Fig. 5. Conceptual model of the SQA ontology according to ISO/IEC 25010.

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

196

V. SQAES: CASE STUDY

Application-based (or task-based) evaluations offer a

useful framework for measuring practical results of ontology

conciseness such as responses provided by the system and the

ease of use of the query component [20]. A querying

prototype consisting of an SQA E-Learning System (SQAES)

has been designed and implemented [21] to evaluate the

impact of ontologies on the information retrieval application

where semantic search is combined with keyword- based

search.

The prototype system aims at guiding software developers

(e- learning in the workplace) or student (in traditional

learning scenario) through the necessary QA practices by

providing resources that deal with SQA related aspects of the

software process in hand and hence improves product quality.

The main components of the SQA e-learning system

(SQAES) are: the learning recommendation generator, the

process discovery unit and the ontology reasoning unit as

illustrated in Fig. 6 [22].

Fig. 6. SQAES structure.

A. Adding Axioms to the SQA Ontology

The prototype system provides the learner with a

recommendation list based on the initial query. However, this

list may include some overwhelmed Learning Objects (LOs)

or unnecessary content. Ontology axioms, a declaratively and

rigorously represented knowledge which has to be accepted

without proof, were added to prevent unnecessary knowledge.

In ontology representation, axioms can be used to represent

the meaning of concepts carefully, and to answer questions

on the capability of the built ontology using the ontology

concepts.

Consider the case when the user queries the Verification

concept, which is a process according to the SQA ontology,

the system retrieves the core LOs associated with the

Verification concept from the LOs repository. Related

concepts represent the list of recommended SQA concepts to

be provided to the user for further investigation. However,

this list may include some overwhelmed or unnecessary

contents. In the example of Verification, by firing the Invokes

rule, LOs associated with all SQA processes will be added to

the list of recommendation as illustrated in Fig. 7.

In theory (i.e. as per IEEE 12207 standard) [23], only those

processes that are associated with Review and Audit should

have been added to the list (Fig. 8).

Fig. 7. System response without using axioms.

Fig. 8. System response using axioms.

To prevent such situation, recommendation refining is

guaranteed by adding ontology axioms to the ontology model.

By referring back to our example related to Verification

concept and according to ISO/IEC 9126 standard, a

Verification process produces Test Report and Verification

Plan and requires Requirement Specification, Source Code,

Review Report and Design as inputs. In addition, Verification

has Efficiency as quality attributes. The above knowledge can

be represented with the following axioms added to the

Verification concept of the SQA ontology model:

 produces only (Test_Report or Verification_Plan)

 invokes only (Review or Audit)

 ensuresQA only Efficiency

 uses only (Use_case or Measurement or Prototyping)

 hasInput only (Requirement_Specification or

Source_Code or Review_Report or Design)

VI. CONCLUSION

A well-defined, complete and disciplined SQA process can

be helpful to improve communication and collaboration

among project participants and can serve as a standard when

there is a disagreement. This research has designed and

developed a Software Quality Assurance ontology that at the

first time represents both domain and operational knowledge

Process - Driven Framework

Ontology
Reasoning

Ontology
Management

SQA Process
Discovery

Learner
 Centric

Adaptation

Learner
Profile

Personalized Lea rning
Recommendation Generator

Learning Layer

SQA Domain
Ontology

Learning Object
Repository

Reasoning Layer

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

197

of the SQA knowledge area. The ontology provides

consistent terminology that aims to support communication

between people and software agents. The common

vocabulary and relationships modeled in the developed

ontology is an attempt to resolve the problem of

inconsistency among current standards and proposals.

Different ontology evaluation approaches were conducted to

validate and assess the SQA ontology. This research defines a

framework of building ontology- based application for SQA

e-learning. The presented framework can be easily

transformed to reflect new standards in the domain. This

research area is very rich and many ideas can be developed

as extension to this research this may include merging the

developed SQA ontology with other ontologies in the

Software Engineering knowledge domain.

REFERENCES

[1] E. Mnkandla and B. Dwolatzky, “Defining agile quality assurance,” in

Proc. International Conference on Software Engineering Advances,
2006.

[2] M. Uschold and M. Gruninger, “Ontologies: Principles, methods, and

applications,” Knowledge Engineering Review, vol. 11, no. 2, 1996.
[3] A. Perez and V . Benjamins, “Overview of knowledge sharing and

reuse components: Ontologies and problem solving methods,” in Proc.

Workshop on Ontologies and Problem-Solving Methods (KRR5),
Stockholm, Sweden, August 2, 1999.

[4] P. Spyns, R. Meersman, and M . Jarrar, “Data modelling versus
ontology engineering,” ACM SIGMOD Record, vol. 31, no. 4,

December 2002.

[5] Z. Yajing, D. Jing, and P. Tu, “Ontology classification for
semantic-web- based software engineering,” IEEE Transactions on

Services Computing, vol. 2, no. 4, pp. 303-317, 2009.

[6] C. Calero, F. Ruiz, and M. Piattini, Ontologies in Software Engineering
and Software Technology, Springer, 2006.

[7] D. Vrandečić, Ontology Evaluation, Handbook on Ontologies,

International Handbooks in Information Systems, 2nd ed. Springer,
Heidelberg, 2009, pp. 293-313.

[8] SWEBOK. (2004). Guide to the Software Engineering Body of

Knowledge. IEEE Computer Society Press. [Online]. Available:
http://www.swebok.org

[9] N. Bajnaid, R. Benlamri, A. Pakstas, and S. Salekzamankhani

“Software quality assurance ontology: from Development to
Evaluation,” in Proc. 25th International Conference on Software

Engineering and Knowledge Engineering, Boston, USA, pp. 27-29,

June 2013.
[10] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 6th

ed. McGraw-Hill Inc, 2005.

[11] Software Engineering – Product Quality, Part1: Quality Model, 2001.
[12] M. Smith, C. Welty, and D . McGuinness. (2004). OWL web

ontology language guide. W3C Recommendation. [Online]. Available:

http://www.w3.org/TR/owl-guide/#owl_Class
[13] A. Gómez-Pérez, M. Fernández-López, and A. de Vicente, “ Towards a

method to conceptualize domain ontologies,” in Proc. Workshop on

Ontological Engineering, Budapest, Hungary, 1996, pp. 41–52.
[14] A. Gómez-Pérez, “Evaluation of ontologies,” International Journal of

Intelligent Systems, vol. 16, no. 3, pp. 391–409, 2001.

[15] C. Welty and N. Guarino, “Supporting ontological analysis of
taxonomic relationships,” Data and Knowledge Engineering, vol. 39, no.

1, pp. 51–74, 2001.

[16] A. Gómez-Pérez, M. Fernandez-López, and O. Corcho, Ontological
Engineering: with Examples from the Areas of Knowledge

Management, e-Commerce and the Semantic Web, Springer-Verlag,

New York, London, 2004.
[17] J. Brank, M. Grobelnik, and D. Mladenic, “A survey of ontology

evaluation techniques,” in Proc. Conference on Data Mining and Data

Warehouses (SiKDD 2005), Ljubljana, Slovenia, 2005.
[18] Systems and Software Engineering-Systems and Software Quality

Requirements and Evaluation-System and Software Quality Models,

2011.
[19] Systems and Software Engineering-Systems and Software Quality

Requirements and Evaluation-Measurement of System and Software

Product Quality, 2011.
[20] L. Obrst et al., “The evaluation of ontologies: Toward improved

semantic interoperability,” Semantic Web: Revolutionizing Knowledge

Discovery in the Life Sciences, Springer, 2007.

[21] N. Bajnaid, R. Benlamri, and B. Cogan, “Context-aware SQA

e-learning system,” in Proc. the Sixth International Conference on

Digital Information Management, Melbourne, Australia, 26-28 Sept.,
2011, pp. 327-331.

[22] N. Bajnaid, A. Pakstas, S. Salekzamankhani, and R. Benlamri,

“Ontology-based personalized SQA e-learning system,” in Proc.
Centeral Europian Conference on Information and Intelligent Systems,

Varazdin, Croatia, Sep. 2013, pp. 18-20.

[23] IEEE Std 12207-2008: System and Software Engineering-Software
Life Cycle Processes, ISO/IEC 1220.

Nada O. Bajnaid was born in 1971 in Riyadh, SA. In

1992, Nada has earned a bachelor degree in computer
science from King Saud University, SA. In 2003, she

earned a master degree in computer science from the
University of Wisconsin Milwaukee, USA and a PhD

from London Metropolitan University, UK in 2014.

She is currently an assistant professor at King
Abdulaziz University and the chairperson of the Computer Science

Department (female section).

Nada’s research interest include ontology, semantic web, context
awareness, e-learning, software engineering, software quality and agile

methodology.

Rachid Benlamri was born in Constantine, Algeria
1961. He is a professor of software engineering at the

Faculty of Engineering at Lakehead University,

Canada. He is the head of the Semantic Web and
Mobile Computing Lab at Lakehead University. His

research interests are in the area of Semantic web,

context-aware computing, ubiquitous computing, and
mobile knowledge management. He supervised over

70 students and postdoctoral fellows. He served as keynote speaker for many

international conferences. Prof. Benlamri is an associate editor for the
International Journal of Ubiquitous Learning, and member of the editorial

board of many other journals such as the International Journal of Learning

Technologies, the International Journal of Mobile Communications, the
International Journal of Emerging Technologies in Web Intelligence, and the

International Journal of Electronic Government.

Algirdas Pakštas was born in Irkutsk, Russia in 1958.

He received the M.Sc. degree in radiophysics and

electronics from the Irkutsk State University in 1980
and the Ph.D. degree in systems programming from

Trapeznikov Institute of Control Sciences, Moscow,

Russia in 1987.
 From 1980 to 1983, he was a senior software engineer

with the Institute of Solar-Terrestrial Physics, Irkutsk.

Since 1987, he has been a head of the Department of Distributed Computing
Systems with the Institute of Mathematics and Informatics, Vilnius,

Lithuania. In 1994 he joined Agder University, Grimstad, Norway as a

professor of telematics. He joined University of Sunderland in 1998 and
moved to the University of North London (now London Metropolitan

University) in 2000. He is the author of two research monographs, more than

150 articles and co-editor of one book. His research interests include variety
of topics related to software engineering, network planning, modeling and

simulation as well as most recently the history of computer science.

Shahram Salekzamankhani was born in Tehran, Iran

in 1971. He received his B.Sc. degree in applied

physics from the Arak University in 1995 and the Ph.D.
degree in network security and modelling from Faculty

of Computing of London Metropolitan University in

2011.
From 1996 to 2000 he was a freelance IT consultant.

In 2001, he joined University of North London as a

senior lecture. In 2009 he became a Cisco academy manager at London
Metropolitan University. In 2012, he became the manager of Cisco Academy

Training Center (ITC) and Cisco Academy Support Centre (ASC).

His research interests covers various topics related to network security,
network planning and design, network simulation, network traffic

optimization, routing protocols as well as most recently ontology based

modeling and evaluation.
Since 2001, Dr. Shahram Salekzamankhani achieved several prestige

Industrial professional certifications. From 2005 to 2014, he’d published

several scientific papers in the field of Network security, modeling and
evaluation.

Lecture Notes on Software Engineering, Vol. 4, No. 3, August 2016

198

http://www.swebok.org/
http://www.swebok.org/
http://www.w3.org/TR/owl-guide/#owl_Class
http://www.w3.org/TR/owl-guide/#owl_Class

