Characterization and topical delivery of phenylethyl resorcinol

Zhang, Yanling, Sil dos Santos, Bruno, Kung, Chin-Ping, Hadgraft, Jonathan, Heinrich, Michael, Sinko, Balint and Lane, Majella E. (2019) Characterization and topical delivery of phenylethyl resorcinol. International journal of cosmetic science, 41 (5). pp. 479-488. ISSN 0142-5463

[img] Text
Zhang_et_al-2019-International_Journal_of_Cosmetic_Science.pdf - Accepted Version
Restricted to Repository staff only until 4 August 2020.

Download (1MB) | Request a copy

Abstract / Description

Objective:
Phenylethyl resorcinol (PR) has been used widely in the personal care industry as a novel skin lightening ingredient. Surprisingly, there is only limited information describing the physicochemical properties of this active. Therefore, the primary objective of this study was to perform a comprehensive characterization of PR. A secondary objective was to investigate the delivery of this molecule to mammalian skin.

Methods:
PR was characterised using Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Nuclear Magnetic Resonance (NMR). A new high‐performance liquid chromatographic (HPLC) method for analysis of PR was developed and validated. The logP (octanol water partition coefficient), value, solubility and short‐term stability of PR in a series of vehicles were also determined using HPLC. The evaporation of the selected vehicles was examined using Dynamic Vapour Sorption (DVS). The permeation profiles of PR were investigated under finite dose conditions in porcine and human skin.

Results:
The melting point of PR was determined to be 79.13 °C and the measured logP (octanol water partition coefficient) at 21 °C was 3.35 ± 0.03. The linearity of the HPLC analytical method was confirmed with an r2 value of 0.99. Accuracy of the method was evaluated by average recovery rates at three tested concentrations, and the values ranged from 99 – 106%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.19 and 0.57 μg/mL, respectively. The solubility of PR in PG, DMI, glycerol was within the range of 367 to 877 mg/mL. The stability of PR in tested solvents were also confirmed by the 72 h stability studies. From the DVS studies, 70‐125% of applied formulations were recovered at 24h. The permeation through porcine skin at 24 h ranged from 4 to 13 μg/cm2, while the corresponding amounts of PR delivered through human skin were 2 to 10 μg/cm2.

Conclusion:
The physicochemical properties of PR confirm it is suitable for dermal delivery. In this study, propylene glycol was the most promising vehicle for PR delivery to human skin. Future work will expand the range of vehicles studied and explore the percutaneous absorption from more complex formulations.

Item Type: Article
Uncontrolled Keywords: phenylethyl resorcinol (PR); personal care industry; skin lightening ingredients; Differential Scanning Calorimetry (DSC); Thermogravimetric Analysis (TGA); Nuclear Magnetic Resonance (NMR)
Subjects: 500 Natural Sciences and Mathematics > 540 Chemistry & allied sciences
600 Technology > 610 Medicine & health
Department: School of Social Sciences
Depositing User: Bruno Da Silva sil dos santos
Date Deposited: 20 Sep 2019 08:48
Last Modified: 17 Oct 2019 10:54
URI: http://repository.londonmet.ac.uk/id/eprint/5055

Actions (login required)

View Item View Item