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Abstract

We propose a nonlinear heterogeneous panel unit root test for testing the null hypothesis of
unit-root processes against the alternative that allows a proportion of units to be generated by
globally stationary ESTAR processes and a remaining non-zero proportion to be generated by
unit root processes. The proposed test is simple to apply and accommodates cross section
dependence. Monte Carlo simulations shows that our test holds correct size and under the
hypothesis that data are generated by globally stationary ESTAR processes has a better power
than the recent linear test proposed in Pesaran (2005). An application to a panel of bilateral
real exchange rates with the US Dollar from the 20 major OECD countries is provided.
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1. Introduction

There is now a large literature on testing for unit roots in economic and financial variables
employing a variety of time series and panel tests'. The growth in that area is mainly due to
empirical applications on, for example, Purchasing Power Parity (PPP) and Growth (see
Cerrato and Sarantis, 2007a, 2007b; and Emerson and Kao, 2006, amongst others).

A weakness of the existing univariate and panel unit root tests is that they are based on

the assumption that the underlying variable follows a linear process. However economic
theory suggests that many variables exhibit nonlinear behaviour. For example, a number of
theoretical models in international macroeconomics formalise the notion of nonlinear
exchange rate behaviour due to transaction costs (e.g. Dumas, 1992; Sercu et al, 1995;
O’Connell, 1998; Goswami et al, 2002)2, while others describe currency and financial crises
as non-linear processes (e.g. Jeanne and Masson, 2000; Chang and Velasco, 2001). In growth
economics, a number of theoretical models suggest that economic growth is a nonlinear
process with the economy bouncing back and forth between different regimes (e.g. Zilibotti,
1995; Peretto, 1999; Matsuyama, 1999; Galor et al, 2000)3 . Theoretical models in finance
highlight heterogeneous expectations (e.g. Brock and Hommes, 1998; De Grauwe and
Grimadi, 2005), heterogeneity in investors’ objectives (e.g. Peters, 1994), and herd behaviour
(e.g. Lux, 1995) as some of the sources of nonlinearity in asset prices.
If economic and financial variables exhibit nonlinear behaviour, the standard unit root tests
that are based on a linear AR process will have low power. Two recent papers, Sollis et al
(2002) and Kapetanios et al (2003), address this issue by developing formal unit root tests
against the alternative of nonlinear mean reversion. Both papers examine the unit root
hypothesis against the nonlinear STAR (smooth transition autoregressive) alternative and
show that, under the null hypothesis, the distribution of the respective tests is not normal. As
a result the two papers employ Monte Carlo simulations to obtain critical values. The main
difference between the two tests is that Sollis ef al use a logistic transition function (LSTAR)
while Kapetanios ef a/ use an exponential transition function (ESTAR).

However both these nonlinear unit root tests are univariate and, consequently, will still

suffer from low power in the case of small samples. In this paper we extend the Kapetanios et

! For a review of the various unit root tests see, for example, Breitung and Pesaran (2007) and Cerrato and
Sarantis (2007b).

? For empirical studies on nonlinear exchange rate models, see Michael et al, (1997), Sarantis (1999), Taylor et
al (2001), and Rapach and Wohar (2003), among others.

* A number of authors have also undertaken empirical investigations of nonlinear growth models; see, for
example, Fiaschi and Lavezzi (2007), Liu and Stengos (1999) and Durlauf and Johnson (1995).



al nonlinear unit root test to a panel context in order to address the low power problem of
univariate tests. Since heterogeneous cross-section dependence tends to be important in most
empirical applications, we employ the Pesaran (2005) panel unit root framework that enables
us to account for heterogeneous cross-section dependence in a novel way. Pesaran (2005)
shows that the individual CADF (Cross Augmented Dickey Fuller) and the panel statistic
(CIPS) have non-normal distributions, so their critical values (for different N and 7) are
obtained by Monte Carlo simulations. The panel unit root test proposed by Pesaran (2005)
differs from other tests such as Choi (2001) and Hadri (2000) in that while the latter all
assume that individual time series are independent, Pesaran (2005) shows that cross sectional
dependence can be accounted for by augmenting the standard DF regression with the cross
section averages of lagged levels and first differences of the individual series.

In this paper we propose a novel nonlinear panel unit root test that extends both the
univariate nonlinear tests and the linear panel unit root tests, thus filling an important gap in
the existing literature. Since the panel nonlinear statistic has a non-normal distribution, we use
Monte Carlo simulations to analyse the size and power of the test under different scenarios,
and we calculate critical values which can be used in future applications of the test. We also
illustrate the applicability of our test by applying it to a panel of bilateral real exchange rates.

The rest of the paper is organised as follows. Section 2 specifies the nonlinear
dynamic panel model with cross-section dependence. Section 3 derives the individual and
panel nonlinear unit root tests, and then uses stochastic simulations to obtain the distributions
of these statistics and critical values. Section 4 analyses the size and power of the panel
nonlinear unit root test under alternative scenarios and compares the results to the
performance of the linear Pesaran (2005) test. Section 5 reports the results from an application

to real exchange rates, while Section 6 concludes.

2. A Nonlinear Dynamic Panel with Cross-Section Dependence
Suppose the observation y, on the i” cross-section unit at time ¢ is generated according to the

dynamic nonlinear heterogeneous panel ESTAR model below:

Vi =By ¥ 0,0 2Oy, )+t =1, Ti=1, ., N, (1

where initial value, y;, is given, and the error term, u;, has the one-factor structure:



u,=y.f. +¢e, g, =iid.(0,07,) (2)

in which f; is the unobserved common effect, and ¢, is the individual-specific (idiosyncratic)

error. Following the literature on STAR models, the transition function adopted here is of the

exponential form, i.e.,

Z(0,; Vieea) =1— exp(_‘giyiz,t—d ) 3)

where we assume that €, 20, and d 21 is the delay parameter. To begin with we assume that

vir 1s @ mean zero stochastic process. We discuss processes with nonzero mean and later. To
simplify the model and following the existing literature, the delay parameter d is set to be

equal to one and (1)-(3) are re-written in first difference form as:

Ay, = ¢iyi,t—l +0,Y 4 [1- eXp(_Hiin,t—l N+7. 1, +é&,, 4)

where ¢, =—(1- ;). If y, is assumed to follow a unit root process in the middle regime,

then ¢, =0 ,* and equation (4) can be re-written as:

Ay, =0y, L [l=exp(=0,y] D1+7.1, + &, (5)
Using (5), we are interested in testing the hypotheses:

Ho:0=0 forall i (5a)
against the possibly heterogeneous alternatives,

Ha0>0 fori=12..,N;; 8, =0 fori=N, +1,N, +2,..,.N (5b)

1

Remark 1: The alternative hypothesis above implies that some units are generated by a

stationary ESTAR model but it also allows a proportion of units being a unit root process.

* 1t follows the practice in the literature (e.g. Balke and Fomby, 1997, in the context of TAR models and Michael
et al., 1997 in the context of ESTAR models).



The following assumptions are introduced:

Assumption 1: N,/ N — g as N — oo, with 0 < ¢ <1 under the alternative hypothesis.’

Assumption 2: ¢, are independently distributed for all i=1,...,N and ¢t =1,...,T, with zero
mean, constant variance G-;, and finite fourth order moment.

Assumption 3: f, is serially uncorrelated with zero mean, constant variance a; , and finite
fourth moment. (Without loss of generality 0';. will be set equal to unity.)

Assumption 4: ¢,, f,, and y;are independently distributed for all 7.

it?

Assumption 5: Following Pesaran (2004a), we define the weights {¢; } having the following

1

roperties: @, =0
prop ?; (N

N N N

1

); 2.0 =15 2l [<K for K<es 307 =0(1).
i=1 i< =

1 N

Assumption 6: Let y = NZ}/

J=1

. We suppose y # 0 for a fixed N and for N — 0.

J

3. Nonlinear Unit Root Tests with Serially Uncorrelated Errors
Assumptions 1 and 2 together imply that the composite error, u;, is serially uncorrelated. This

restriction will be relaxed in Section 3.3.

3.1 Individual NCADF Test
Testing the null hypothesis (5a) directly is not feasible, since v, is not identified under the

null.® To overcome this problem, we follow Luukkonen et al. (1988), and derive below a -
type test statistic. Using Taylor expansion on (5), under the null hypothesis, the following

auxiliary regression is obtained:

Ay, =a, +biyi3,t—l +y.f, +e,. (6)

Lemma 1: If Assumptions (2)-(6) are satisfied, then the common factor f; can be

approximated by:

> As noted in Im, Pesaran and Shin (2003) this condition is necessary for the consistency of the panel unit root
tests.

6 See for example Davies (1987).



f‘tzTAyt_Tiyt—l (7)

Proof: see Appendix 1.

Therefore, it follows that Equation (6) can be written as the following nonlinear cross-

sectionally augmented DF (NCADF) regression:

3

Ay, =a, +biyi3,t4 +CiA.);t+di .;}t—l-’_eit (8)

The idea is, given the framework above, to develop a unit root test in heterogeneous panel
model based on Equation (8). Extending the idea in Kapetanios et al. (2003), we suggest

using model (8) and #-statistic on b;, that is denoted by

A

t,»NL(N,T)zseb("B), 9)

where b, is the OLS estimate of b, and s.e.(b,) its associated standard error. Denote the

student statistic on the ratio of b; in Equation (8) as:

y;,—l M Ay,

(Ay, M Ay (3, M y, )"

Lt (N,T) =

(10)

where Ayi:(AyilﬂAinJ“'ﬂAyi,T)"yi3,—1:(yio’y?,l"“’y?,T—l)" X =My, yi 1), M the

projection matrix onto J(.X), the orthogonal complement of the span of X, 7'=(LL...,]) and
_ N _ N

Ay= N"IZij s Vi = N‘lz Y, - The critical values of the NCADF test can be
Jj=1 Jj=1

computed by stochastic simulation for any fixed 7 > 3, and for given distributional

assumptions for the random variables (g,f").



To accommodate stochastic processes with nonzero means, we need the following
modifications. In the case where the data has nonzero mean, i.e., where x, = u + y, , we use
the de-meaned data y, = x, — X, where x is the sample mean. In this case the asymptotic
distribution of the #yy statistic is basically the same as (10), except that data are replaced by
the de-meaned data.”

Figure 1 displays the simulated cumulative distribution function of the individual
NCADF statistic under the null hypothesis using 50,000 replications for N = 100 and 7 = 500.
For comparison the simulated cumulative distribution function of Pesaran CADF statistic is
also provided. The series y; =i, +fitu;, fori=1,2,...,100, and t = -50,-49,..., 1, 2, ..., 500
were first generated from y; 5o = 0, with f, and u;, as i.i.d. N(0,1). Then 50,000 NCADF
regressions of Ay;; on yi.;, Ay, and y.,°. Ay and ¥ ;> were computed over the sample 7 =
1,2, ...,500. Figure 1 plots the ordered values of the OLS r-ratios of y;,.;” in these regressions.

Not surprisingly the nonlinear CADF distribution, as the Pesaran’s CADF distribution,
is more skewed to the left as compared to the standard DF distribution. This is clearly
reflected in the critical values of the distributions summarized in Table 1.Critical values of the
individual nonlinear CADF distribution for values of 7 and N in the range of 10 to 200 are
given in Appendix 2.

The nonlinecar CADF distribution, like the Pesaran’s CADF distribution and the
standard DF distribution, departs from normality in two important respects: it has a
substantially negative mean and its standard deviation is less than unity, although not by a
large amount. The simulated density functions of the standardized NCADF, computed with N
= 100, T = 500, and 50,000 replications are displayed in Figure 2. The mean, standard
deviation, skewness and Kurtosis -3 coefficients of the NCADF and the Pesaran’s CADF
distributions are reported in Table 2. They are quite small, although statistically highly
significant.

Since cross-sectional dependence in panel data is widely known now to be a serious
problem, in the next sections we shall be using model (6) to develop a unit root test to test for

the null hypothesis of unit root against an ESTAR stationary alternative.

7 Similarly, for the case with nonzero mean and nonzero linear trend, i.e., where x, = pu + § t +y, , we use the de-

meaned and de-trended data y, = xt — [l — § t, where (1 and § are the OLS estimators of p and 8. Now the

associated asymptotic distributions are such that W(r) is replaced by the de-meaned and de-trended standard
Brownian motion W ().



3.2 Panel Nonlinear CADF Test

Following Pesaran (2005), we suggest using the #-statistic in Equation (10) to construct a

panel unit root test by averaging the individual test statistics:

(N, T) = NS, (N, T) (11)

i=1

This is a nonlinear cross-sectionally augmented version of the IPS test based (NCIPS).
The test statistic defined in Equation (11) can also be extended to the case where serial
correlation is present in the data. In this particular case, one may include, in the model, lags of
the left hand side variable after using an information criteria to select the lag order.

We simulated the distribution of NCIPS setting N = 100, 7' = 500, and using 50,000
replications. The simulated density functions of the NCIPS and the Pesaran’s CIPS Statistics
are displayed in Figure 3. Both the densities show marked departures from normality. The
density shows a great degree of departure from normality. The skewness and Kurtosis -3
coefficients of the NCIPS and the Pesaran’s CIPS distributions are reported in Table 4. The

critical values of the nonlinear CIPS test are given in Appendix 2.

3.3 The Serially Correlated Errors Case

Serial correlation can be incorporated in the model in a variety of different ways. In what

follows, we use the model in Equation (4) and specify the serial correlation structure as:

U, = P, +1, (12)
We first model serial correlation as above and thereafter cross section dependence as

My =7ifo + & (13)
Using Equation (6) jointly with (12) above we obtain:

Ay, =a,(1-p;)+b,(1- pi)y?,t—l + piAyi,t—l + 17, (14)



And substituting (13) into (14)

Ay, =a,(1=p)+b,(1= Py + PAY, . +7.f, + &, (15)
Finally by imposing the unit root null on Equation (15):

Ay, =a,(1=p)+ P&y, + 7., + &, (16)

Using Equation (16) and the same approach as in Appendix 1, one can obtain proxies for f; .

We suggest in this case using the following non-linear CADF regression:

-3 )4 - J2
Ay, =a; +biyi3,t—l +¢ yi,t—l+Zdy‘Ayt—j+z5ijAyi,t—j +e, (14) (17)

j=0 J=1
Information criteria can be used to choose the length of p.

4. Small Sample Analysis

In this section we assess the size of the nonlinear panel test defined in Equation (11) under
different scenarios. Firstly, we look at power of the test in the case of weak and strong cross
sectional dependence but not moving average structure for the error term. In the next section,
we generalise this scenario by allowing a moving average specification for the error term and
weak-strong cross sectional dependence. For comparison, in all the above experiment we also
report the size of the Pesaran (2005) test when a nonlinear DGP is considered.

The data generating process (DGP) considered is the following Panel ESTAR:
Ay, =0, y;,4[1- exp(_eiyiz,t—l N+7.f + &, (18)

with i=1, 2, .., N; t=-51, -50, .., 1, 2, .., T; f ~iid.N(O)); &, ~iid N(0,5,);
o’ ~iid.U[0.5,1.5]. We consider two scenarios for cross sectional dependence, namely low

cross sectional dependence y, ~iid.U[0,0.20], and high cross sectional dependence

y. ~iidU[-13].

10



4.1 Size Distortion Analysis

In our size analysis below, we generate data by setting 6, = 0 for all i. Size is computed at the

5% nominal significance level. The number of replications is set to 5,000. The standard error
of the computed size is 0.0031. Results for the size are reported in Table 4 below.
The test seems to have an acceptable size for large cross section dimension and

somehow slightly undersized with respect to the Pesaran (2005) test.

4.2 Power Analysis

In this section we assess the power of the test defined in Equation (11) under the same DGP
as above but we consider the cases of weak and strong alternatives, namely we assume for the

weak alternative:

6 =0for i=12,.,N/2 6 =001fori=N/2+1,..,N, (19a)

while for the strong alternative:

6 =0fori=12,..,N/2 6 =005 fori=N/2+1,.,N. (19b)

The power is computed at the 5% nominal significance level, and results are reported
in Tables 5 and 6. The test we propose seems to have stronger power than the Pesaran (2005)

test when the true DGP is nonlinear.

4.3 Serial Correlated Errors Case

In this section we analyze size and power of the proposed test when serial correlation is
incorporated into the DGP. We consider positive serial correlation. The errors & were

generated as:

&ir = pi&irl + Cin (20a)
G~ 1.1.d.N(0,67), (20b)
oi ~i.i.d U0.5; 1.5], (20¢)
pi~1...d.U[0.2; 0.4] in the case of positive correlation, (20d)
pi~i.i.d.U[-0.4; -0.2] in the case of negative correlation. (20e)

11



We only consider here for the power analysis the case where
0 =0fori=12,..,N/2, 0. =005 fori=N/2+1,.,N, (2la)

and high cross-sectional dependence:

v, ~iidU[-13]. (21b)

The size and power are computed at 5% nominal significance level and it are based on the

following non-linear CADF regression:

3

Ay, =a; + biyit—l +¢, Y, ,t di,OA Y.+ di,lA Voot 5i,lAyi,t—1 te, (22)

_ N
i=1,2,.,N;t=12,.T, y = iZyi, .
NS

The test is computed as:

tm(N,T)=N"" izm(zv, T) (23)

i=1

where ¢ Nz (N,T)1s the OLS t-ratio of b;in the above non-linear ADF regression. The number

of simulation is set equal to 5,000. Table 7 below shows the results.

Both tests have a good size with the Pesaran (2005) being consistently oversized. In
Table 80 we show results on the power of the test in the case when positive as well as
negative serial correlation is present in the DGP. For panels of a moderate size, the gain in
power from using the non-linear panel unit root test with respect to the Pesaran (2005) test is

evident.

12



5. An Empirical Application: Real Exchange Rates

In this section we apply our test to real exchange rates against the US dollar for twenty OECD
countries over the period 1973Q1-1998Q2. The data set is the same used by Murray and
Papell (2002, 2004).

Since the long-run Purchasing Power Parity (PPP) relationship is one of the main
components of theoretical international macroeconomic models, a large number of studies
have tested this relationship by applying unit root tests to real exchange rates. Most of these
studies show evidence of unit root behaviour in real exchange rates, which has become a
puzzle in international finance. The growing literature on nonlinear exchange rates argues that
transaction costs and frictions in financial markets may lead to nonlinear convergence in real
exchange rates. Consequently, the non-mean reversion reported by linear unit root tests may
be due to the fact these tests are based on a mis-specified stochastic process.

The individual statistics for our unit root test are shown in Table 9. For comparison
purposes, we also report the statistics for the Pesaran (2005) test which accounts for cross
section dependence but not for nonlinearity.

The Pesaran (2005) test rejects the unit root null hypothesis in only 1 out of 20 cases at
all levels of significance. By contrast, the nonlinear test rejects the null in 2 cases at the 1%
significance level, and in 5 cases at the 5% and 10% level. Hence our test rejects the unit root
null more frequently and therefore yields stronger support for the long-run PPP.

As we argued above, univariate tests have low power and this problem is overcome by
employing panel unit root tests. The results for our panel unit root test and the Pesaran panel
unit root test are shown in Table 10.

The contrast between the two panel statistics is rather strong. The Pesaran (2005) test
fails to reject the unit root null at all levels of significance, thus implying non-mean reversion
in the whole panel of real exchange rates. On the other hand, our nonlinear panel test rejects
the unit root null for the panel of real exchange rates at all levels of significance, giving
support to the long-run PPP for the whole panel of OECD countries. This evidence of
nonlinear mean reversion in the OECD real exchange rates may suggest that previous

evidence of non-mean reversion in real exchange rates is due to using linear unit root tests.

13



6. Conclusion

A number of panel unit root tests allowing for cross-section dependence have been proposed
in the literature. In this paper we propose a nonlinear heterogeneous panel unit root test for
testing the null hypothesis of unit-root processes against the alternative that allows a
proportion of units to be generated by globally stationary ESTAR processes and a remaining
non-zero proportion to be generated by unit root processes. The proposed test is simple to
apply and accommodates both nonlinearity and cross sectional dependence. Our test is
compared to Pesaran’s (2005) linear test via Monte Carlo simulation exercises, and it is found
that our test holds correct size and under the hypothesis that data are generated by globally
stationary ESTAR processes has a better power than the Pesaran test. We also calculate
critical values for varying cross section and time dimensions which can be used in future
applications of our test.

We provide an application to a panel of bilateral real exchange rate series with the US
dollar from the 20 major OECD countries. In contrast to the evidence obtained by linear tests,
we find evidence of nonlinear mean-reversion in the real exchange rates for the whole OECD
panel that gives support to the long-run PPP hypothesis. Given the importance of the PPP in
international macroeconomic models, our evidence suggests that the employment of nonlinear
panel unit root tests may provide a solution to the PPP puzzle.

Given the growing literature of nonlinear models, we believe that the development of
panel nonlinear unit root tests has large potential in macroeconomic and financial
applications. Evidence indicates that different time series may follow different nonlinear
specifications. Consequently, one could consider unit root tests with different types of
transition functions that allow for asymmetric dynamic adjustment. Another extension would
be to allow for different transition variables. Further applications of our tests and theoretical

extensions are left for future work.

14



Appendix 1

Proof of Lemma 1

We assume that the error term u;; in (8) follows a stationary process, for alli, with summable

o0
auto-covariance given by u;; = z a;s; 11, with g; ; being a zero mean random variable
/=0

with variance matrix defined by /;,;and finite fourth order moment.

The variance of u;, is finite and given by:

2

o0 —

Var(u; ) = Zaizl :012 <o <. (24)
/=0

First note that, after using cross sectional averages, Equation (8) can be written as:

- -3 - -
Ay(pt:a)¢y¢t—l+7(pft+u(0t (25)

_ N _3 N _ N

- N
: _ 3. .
With qu)t = Z¢iAyit s y¢t—] = Z¢iyi,t—1 H CI)¢) = z¢iwi ’ 7/@ = Z(Diyl' and
i=1 i=1 i=1 i=1

N
Upt = Z(l’iait .
i=1

Assuming thaty > 0, then f; can be approximated as follows:

3
R s 1 -
Jt"— AV ——@p Yy~ Ugpt (26)

7o 7o Yo

15



_ N 0 — _2 N
And since Var(ug)=Y ¢ (> af)andVar(up) <o (Zgo,?):o%), It follows that
i=1 i=0 i=1

asN — o , E(us) =0. consequently the factor f; can now be approximated by:

3
1 T Wy~
i z—Ayw—Tyi,t_l (27)

Yo Yo

16
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Figure 1: Cumulative Distribution Function of Pesaran’s Cross-Sectionally Augmented
DF, and nonlinear Cross-Sectionally Augmented DF Statistics
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Figure 2: Simulated Density Function of the Standardized NCADFi and the
Standardized Pesaran’s CADFi Distributions as Compared to the Normal Density
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Figure 3: Simulated Density Function of the NCIPS Statistic and the Pesaran’s CIPS
Distributions
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Table 1: Critical Values of the DF, Pesaran’s CADF, and nonlinear CADF Distributions
(N=100,T=500, 50,000 replications)

Level | DF CADF | NCADF
I % |-2.60 |-3.80 -3.72
2.5% |-2.23 |-3.49 -3.41
5% |[-194 |-3.22 -3.15
10% |-1.61 |-291 -2.85

Table 2: Moments of the CADF Distributions

Pesaran’s CADF | NCADF
Mean -1.80 -1.83
Standard deviation 0.90 0.83
Skewness 0.20 0.28
Kurtosis -3 0.19 0.77

Table 3: Moments of the CIPS distributions

Pesaran’s CIPS | NCIPS
Mean -1.80 -1.83
Standard deviation 0.17 0.12
Skewness -0.10 -0.068
Kurtosis -3 -1.67 -1.45

22



Table 4: Size of Nonlinear Cross-Sectionally Augmented Panel Unit Root Tests
No Serial Correlation, Low and High Cross Section Dependence Case

Low Cross Section Dependence

N/T| Test 10 20 30 50 100
10 CIPS 10.04980.04920.0540(0.0506 [0.0496
NCIPS | 0.046810.0474]0.0582]0.0438 | 0.0494
CIPS 10.05380.0508|0.0464 [0.0520{0.0520
NCIPS |0.0532]0.0484|0.0444]0.0556 | 0.0488
CIPS |0.055410.0560|0.0426 |0.0498 | 0.0490
NCIPS[0.0516]0.0456]0.0490]0.0478]0.0448
CIPS |0.0516/0.0564 |0.0508 [0.0432 |0.0496
NCIPS [0.0474]0.0520|0.0486]0.0474]0.0512
CIPS 10.05260.0454|0.0490|0.0468 | 0.0488
NCIPS [0.0470(0.0458]0.0434]0.0452]0.0478

High Cross Section Dependence
N/T| Test 10 20 30 50 100
10 CIPS |0.05500.049210.0594 [0.0520(0.0616
NCIPS[0.050810.0432]0.0456]0.0414]0.0474
CIPS |0.04880.0492|0.0566|0.0568 | 0.0614
NCIPS [0.046810.0432]0.044810.0402]0.0432
CIPS |0.0568|0.0518|0.0568 0.0466 | 0.0504
NCIPS|0.0470]0.0394]0.04380.0332]0.0354
CIPS 10.06160.05660.04220.0448|0.0458
NCIPS | 0.0408|0.0410]0.0386]0.0328 | 0.0348
CIPS |0.05220.0518[0.0496|0.0530 |0.0500
NCIPS[0.0436]0.0414]0.0348]0.03540.0350

20

30

50

100

20

30

50

100
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Table 5: Power of Cross-Sectionally Augmented Nonlinear Panel Unit Root Tests
No Serial Correlation, Low and High Cross Section Dependence Case
Weak Alternative

Low Cross Section Dependence
N/T Test 10 20 30 50 100
10 CIPS 0.0584 0.0884 0.1356 0.2398 0.7280
NCIPS 0.0598 0.1098 0.1934 0.3620 0.8942

20 CIPS  0.0590 0.1134 0.1594 0.3960 0.9480
NCIPS 0.0818 0.1724 0.2970 0.6516 0.9954

30 CIPS 0.0712 0.1116 0.1818 0.4696 0.9864
NCIPS 0.0906 0.2002 0.3806 0.7988 0.9998

50 CIPS  0.0660 0.1246 0.2088 0.5280 0.9990
NCIPS 0.0978 0.2678 0.5032 0.9334 1.00

100 CIPS 0.0744 0.1264 0.2398 0.6428 1.00
NCIPS 0.1006 0.3346 0.6682 0.9912 1.00

High Cross Section Dependence
N/T Test 10 20 30 50 100
10 CIPS 0.0632 0.1144 0.2294 0.4952 0.9180
NCIPS 0.0680 0.1590 0.3314 0.6666 0.9722
20 CIPS 0.0554 0.1278 0.2678 0.7026 0.9918
NCIPS 0.0820 0.2240 0.4618 0.8780 0.9986
30 CIPS  0.0486 0.1302 0.3234 0.8080 0.9964
NCIPS 0.0842 0.2508 0.5628 0.9536 0.9998
50 CIPS 0.0516 0.1466 0.3638 0.8916 1.00
NCIPS 0.0846 0.3134 0.6700 0.9900 1.00
CIPS 0.0478 0.1476 0.4122 0.9592 1.00

100 NCIPS 0.0986 0.3598 0.7776 0.9976 1.00
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Table 6: Power of Cross-Sectionally Augmented Nonlinear Panel Unit Root Tests
No Serial Correlation, Low and High Cross Section Dependence Case
Strong Alternative

Low Cross Section Dependence
N/T Test 10 20 30 50 100
10 CIPS 0.0862 0.1928 0.4066 0.8394 1.00
NCIPS 0.0994 0.3190 0.6336 0.9616 1.00

20 CIPS  0.0890 0.2692 0.5978 0.9870 1.00
NCIPS 0.1582 0.5706 0.8988 0.9998 1.00

30 CIPS 0.1010 0.3014 0.6978 0.9974 1.00
NCIPS 0.1722 0.6862 0.9716 1.00 1.00

50 CIPS 0.1016 0.4010 0.8064 1.00 1.00
NCIPS 0.2158 0.8592 0.9984 1.00 1.00

100 CIPS 0.1124 0.3994 0.9210 1.00 1.00
NCIPS 0.2596 09700 1.00 1.00 1.00

High Cross Section Dependence
N/T Test 10 20 30 50 100
10 CIPS  0.0886 0.3448 0.7300 0.9516 0.9914
NCIPS 0.1378 0.5020 0.8490 0.9846 0.9986
20 CIPS  0.0898 0.4930 0.8976 0.9956 1.00
NCIPS 0.1958 0.7346 0.9656 0.9982 1.00
30 CIPS  0.0978 0.5900 0.9654 0.9996 1.00
NCIPS 0.2268 0.8488 0.9948 1.00 1.00
50 CIPS 0.1048 0.7074 0.9908 1.00 1.00
NCIPS 0.2752 0.9250 0.9990 1.00 1.00
CIPS 0.1004 0.7626 0.9996 1.00 1.00

100 NCIPS 0.3150 0.9720 1.00 1.00 1.00
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Table 7: Size of Cross-Sectionally Augmented Nonlinear Panel Unit Root Tests
Strong alternave, High Cross Section Dependence Case

Positive Serial Correlation
N/T 10 20 30 50 100

10 CIPS 0.5504 0.1402 0.1066 0.0764 0.0668
NCIPS 0.2928 0.06 0.0646 0.0514 0.0534
CIPS 0.6520 0.1492 0.1034 0.0796 0.0800
NCIPS 0.3534 0.061 0.0558 0.0542 0.0526
CIPS 0.6990 0.1504 0.0976 0.0768 0.0664
NCIPS 0.3774 0.0534 0.0478 0.0528 0.0484
CIPS 0.7700 0.1666 0.0932 0.0734 0.0618
NCIPS 0.4174 0.0482 0.0458 0.0538 0.0374
CIPS 0.8292 0.1502 0.1012 0.0726 0.0648
NCIPS 0.4672 0.0476 0.0464 0.0448 0.0432

20

30

50

100

Negative Serial Correlation
N/T 10 20 30 50 100
10 CIPS 0.5688 0.1606 0.1162 0.0756 0.0694
NCIPS 0.2544 0.0396 0.0326 0.0294 0.0384
20 CIPS 0.6960 0.1722 0.1124 0.0886 0.0744
NCIPS 0.3038 0.0262 0.0228 0.0306 0.0306
30 CIPS 0.7598 0.1888 0.1160 0.0866 0.0606
NCIPS 0.3194 0.0244 0.0238 0.0244 0.0306
50 CIPS 0.8132 0.2000 0.1172 0.0794 0.0680
NCIPS 0.3620 0.0216 0.0146 0.0228 0.0300
100 CIPS 0.8758 0.2100 0.1284 0.0898 0.0742
NCIPS 0.3896 0.0164 0.0142 0.0208 0.0240
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Table 8: Power of Cross-Sectionally Augmented Nonlinear Panel Unit Root Tests
Strong alternave, High Cross Section Dependence Case

Positive Serial Correlation

N/T 10 20 30 50 100
10 CIPS 0.5836 0.2762 0.4712 0.8246 0.9808
NCIPS 0.3840 0.3684 0.6998 0.9592 0.9978
20  CIPS 0.6922 0.3472 0.6214 0.9576 0.9984
NCIPS 0.4968 0.5556 0.8986 0.9966 0.9998
30 CIPS 0.7464 0.3858 0.7222 0.9884 0.9998
NCIPS 0.5470 0.6476 0.9580 0.9994 1
50 CIPS 0.8016 0.4738 0.8238 0.9996
NCIPS 0.6320 0.767 0.9916 1
100 CIPS 0.8734 0.485 0.9234 1
NCIPS 0.7290 0.8896 0.9984 1

—t ek

Negative Serial Correlation

N/T 10 20 30 50 100
10 CIPS 0.5746 0.3378 0.5846 0.8714 0.9756
NCIPS 0.3004 0.2394 0.5534 0.8966 0.9898
20 CIPS 0.6870 0.4642 0.7680 0.9802 0.9952
NCIPS 0.3814 0.3466 0.7468 0.9846 0.9990
30 CIPS 0.7676 0.5350 0.8618 0.9966 0.9996
NCIPS 0.4356 0.4034 0.8466 0.9962 1
50 CIPS 0.8202 0.6054 0.9288 0.9998
NCIPS 0.4936 0.5024 0.9230 0.9996
100 CIPS 0.8810 0.6742 0.9806 1
NCIPS 0.5552 0.6038 0.9688 1

— e
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Table 9: Individual Unit Root Tests for Real Dollar Exchange Rates

Country Lag Cerrato et al | Pesaran
(NCADF) | (CADF)
Australia 3 -2.1765 -1.6501
Austria 4 -2.2085 -2.1432
Belgium 4 -2.4220 -1.2380
Canada 6 -1.1528 -1.3575
Denmark 3 -3.3390 -2.8699
Finland 7 -1.7015 -2.4148
France 4 -0.9386 -2.1170
Germany 4 -3.3166 -2.6044
Greece 4 -0.1449 -2.1730
Ireland 6 -0.1855 -1.0970
Italy 4 -2.6717 -2.0218
Japan 3 -2.5943 -1.9477
Netherlands 4 -2.7076 -1.9930
N Zealand 3 -3.7296 -3.8758
Norway 7 -2.2595 -1.8869
Portugal 8 -1.9120 -0.6359
Spain 8 -1.6911 -2.1622
Sweden 8 -3.8830 -1.5888
Switzerland 4 -5.1263 -2.7768
UK 7 -2.5354 -2.0689
Critical
Values
(N=20,
7=100):
1% -3.74 -3.87
5% -3.09 -3.24
10% -2.80 -2.92

Rejection Rates of the Panel Unit Root Tests

Cerrato et al(2007) Pesaran (2005)
HO H1 HO H1
1% 90% 10% 95% 5%
5% 75% 25% 95% 5%
10% 75% 25% 95% 5%
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Table 10: Panel Unit Root Tests

Cerrato et al Pesaran
(NCIPS) (CIPS)
-2.3348 -2.0311
Critical
Values
(N=20,
7=100):
1% -2.24 -2.36
5% -2.11 -2.20
10% -2.03 -2.11
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Appendix 2

Critical values

A: Critical Values of Individual NCADF Distribution

N|T [1%25%[5%|10%| [ N | T [1%]25%|5% [10%
10]-5.18|-4.17 |-3.50[-2.87 10 [-5.16| -4.17 |-3.52[-2.91
15]-4.19]-3.60 {-3.16[-2.69 15 |-4.21|-3.57 |-3.15|-2.68
20(-3.93|-3.44 |-3.07|-2.67 20 [-4.10{ -3.47 |-3.11|-2.69

10 30(-3.79|-3.38 |-3.05[-2.70 50 30 [-3.75] -3.33 [-3.00|-2.69
50({-3.81[-3.41 [-3.11[-2.78 50 [-3.68|-3.35 |-3.04|-2.76
70(-3.67|-3.39 |-3.12|-2.80 70 [-3.70| -3.36 |-3.07|-2.75
100{-3.71] -3.39 [-3.12]-2.80 100{-3.59| -3.31 [-3.09|-2.79
200|-3.73| -3.40 |-3.12|-2.82 200(-3.72| -3.36 |-3.10|-2.81
10]-5.35|-4.22 |-3.52[-2.92 10 [-5.17| -4.23 |-3.52(-2.92
15]-4.21]-3.64 [-3.15|-2.67 15 [-4.32-3.64 [-3.22|-2.74
20(-3.96|-3.42 |-3.06|-2.68 20 [-3.97|-3.47 |-3.10|-2.65

15 30(-3.81-3.36 |-3.06[-2.69 70 30 [-3.79] -3.41 [-3.06|-2.71
50(-3.69-3.32 [-3.06 [-2.75 50 [-3.73|-3.41 |-3.11|-2.76
70(-3.75(-3.41 |-3.11[-2.78 70 [-3.68| -3.37 [-3.05]|-2.76
100{-3.70| -3.38 |-3.13]|-2.76 100{-3.71| -3.40 [-3.10[-2.81
200|-3.67|-3.37|-3.09|-2.78 200(-3.62| -3.34|-3.11|-2.83
10]-5.05|-4.20 |-3.47[-2.89 10 [-4.89]-3.99 |-3.39(-2.81
15(-4.27|-3.63 [-3.13[-2.73 15 [-4.04| -3.53 [-3.16[-2.75
20(-3.94|-3.39 |-3.04|-2.67 20 [-3.91]-3.45|-3.05|-2.66

20 30(-3.71|-3.39 [-3.09(-2.74 100 30 [-3.76] -3.36 [-3.06|-2.70
50(-3.70| -3.28 [-3.04[-2.73 50 [-3.63|-3.33 |-3.04|-2.75
70(-3.66 -3.35|-3.07[-2.75 70 [-3.64| -3.31 [-3.01 |-2.74
100]-3.74] -3.38 |-3.09]-2.80 100|-3.74| -3.35]-3.10-2.79
200|-3.77| -3.40 |-3.14 |-2.84 200|-3.69|-3.40 |-3.11|-2.82
10]-5.62| -4.37 |-3.55[-2.95 10 [-5.21]|-4.17 [-3.42|-2.84
15]-4.22]-3.62 [-3.14|-2.68 15 [-4.30| -3.67 |-3.21 |-2.78
20]-3.87]-3.421-3.09|-2.70 20 [-3.91|-3.441-3.11[-2.70

30 30(-3.86-3.42 |-3.14[-2.73 200 30 [-3.69| -3.34 [-3.04 |-2.73
50(-3.69|-3.37 [-3.06 [-2.75 50 [-3.77| -3.40 |-3.10|-2.77
70(-3.71|-3.32 |-3.07[-2.75 70 [-3.66| -3.28 [-3.08 |-2.75
100)-3.77| -3.32 |-3.10|-2.79 100|-3.70| -3.38 |-3.11|-2.79
200|-3.68|-3.37|-3.11|-2.84 200-3.64| -3.38 |-3.14|-2.81
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B: Critical Values of Average of Individual Nonlinear Cross-Sectionally Augmented

Dickey-Fuller Distribution

NI T | 1% [25%] 5% [10% | | N | T | 1% [2.5%] 5% [10%
200[-2.50|-2.40]-2.33[-2.25 200(-2.14(-2.09]-2.04[-1.99
100(-2.42|-2.31|-2.22|-2.11 100{-2.10]-2.05|-2.01 [-1.96
70 [-2.39(-2.27(-2.19[-2.10 70 [-2.08[-2.03[-1.99|-1.94

10 50 [-2.36]-2.26|-2.16[-2.05 50 50 [-2.05]|-2.00]-1.96[-1.91
30 [-2.31-2.20(-2.12|-2.01 30 [-2.00(-1.95[-1.90|-1.84
20 [-2.32]-2.20(-2.09|-1.97 20 [-1.96[-1.90|-1.85[-1.79
15 [-2.34|-2.19]-2.08|-1.94 15 [-1.95|-1.88]-1.82[-1.75
10 [-2.53[-2.34(-2.17|-1.98 10 [-2.01|-1.91[-1.83|-1.75
200[-2.33|-2.25]-2.18[-2.09 200(-2.11|-2.06]-2.02|-1.98
100{-2.30)-2.22|-2.14[-2.06 100{-2.07|-2.03|-1.99[-1.95
70 [-2.26(-2.19(-2.13|-2.04 70 |-2.05|-2.00(-1.97|-1.92

15 50 [-2.241-2.16|-2.08 [-2.00 70 50 [-2.02]-1.98|-1.94|-1.89
30 [-2.20|-2.11[-2.03 [-1.95 30 [-1.96(-1.91|-1.87|-1.83
20 [-2.17(-2.09]-2.00|-1.90 20 |-1.92|-1.87]|-1.83|-1.77
15 [-2.19[-2.08|-1.98 |-1.88 15 [-1.91|-1.84[-1.80(-1.73
10 [-2.34(-2.18(-2.04[-1.90 10 [-1.95[-1.88(-1.80(-1.72
200(-2.26(-2.19]-2.13[-2.06 200[-2.08|-2.04]-2.01 [-1.97
100-2.24|-2.16(-2.11|-2.03 100-2.05|-2.01{-1.97[-1.93
70 [-2.20[-2.13|-2.08 [-2.00 70 [-2.02|-1.99|-1.95|-1.91

20 50 [-2.18]-2.11]-2.05[-1.98 100 50 [-1.99]-1.95]-1.92|-1.88
30 [-2.14|-2.07(-2.00{-1.92 30 [-1.94|-1.89|-1.86[-1.81
20 [-2.11]-2.03]-1.95|-1.86 20 |-1.89(-1.84|-1.81|-1.76
15 [-2.10[-2.00(-1.93|-1.84 15 |-1.87[-1.82|-1.77[-1.72
10 [-2.22(-2.09(-1.97|-1.84 10 [-1.92(-1.85[-1.78 [-1.70
200(-2.20(-2.14]-2.09 [-2.02 200(-2.05|-2.01]-1.99[-1.95
100|-2.18[-2.11{-2.06 [-2.00 100|-2.01|-1.98(-1.96(-1.92
70 |-2.15|-2.09|-2.03 |-1.97 70 [-2.00/-1.96|-1.93|-1.89

30 50 [-2.11]-2.05]-2.00(-1.94 200 50 [-1.96]-1.93|-1.90|-1.86
30 [-2.07[-2.00(-1.95|-1.88 30 [-1.90|-1.87|-1.84|-1.80
20 [-2.02{-1.95]-1.90|-1.83 20 |-1.86(-1.81]-1.78|-1.73
15 [-2.02(-1.94|-1.87[-1.79 15 [-1.82|-1.78]-1.74[-1.69
10 [-2.13|-2.00{-1.90[-1.80 10 |-1.87|-1.80(-1.75|-1.68
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